Browsing by Subject "patient specific"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Customised Design and Development of Patient Specific 3D Printed Whole Mandible Implant(University of Texas at Austin, 2016) Mohammed, Mazhar I.; Fitzpatrick, Angus P.; Malyala, Santosh K.; Gibson, IanIn this study we assessed the design criteria for the creation of a patient specific, whole mandible implant based on a patient’s medical imaging data and 3D printing. We tailor this procedure to a patient who will undergo a mandibulectomy due to cancer infiltration of the jaw. The patient CT scan data was used to generate a 3D representation of the patient’s skull, before the corrupted mandible was extracted. We examined two approaches based on classical symmetry matching and digital reconstruction of the defect to form the final model for printing. The final designs were then 3D printed and assessed for efficacy against a patient specific representative model of the skull and maxilla, where the final optimised design was found to provide an excellent fit. Ultimately, this technique provides a framework for the design and optimisation of a patient specific whole mandible implant.Item Design and Additive Manufacturing of a Patient Specific Polymer Thumb Splint Concept(University of Texas at Austin, 2018) Mohammed, Mazher Iqbal; Fay, PearseTraditionally, upper limb splints often fall short of being optimal with respect fit and patient expectations, resulting in a lack of use and no treatment of the underlying condition. In this study we address several current limitations and examine the feasibility of using 3D optical scanning, Computer Aided Design (CAD) and low cost 3D printing as a tool to create more ergonomic and efficacious splints for patients suffering from compromised musculature or trauma of the thumb. Optical scanning allows for a non-invasive and rapid means to reproduce the surface topology of a person’s hand and this data was used as the template for the device design. We explore the use of CAD to create a more aesthetically pleasing and functional splint, enhancing both comfort and potential moisture release. Finally, we demonstrate that low cost polymer printing can allow for rapid design evaluation and production of a final, usable device.Item Design Optimisation of a Thermoplastic Splint(University of Texas at Austin, 2017) Fitzpatrick, Angus; Mohammed, Mazher; Collins, Paul; Gibson, IanFollowing partial hand amputation, a post-surgery orthosis is required to hold the remaining ligaments and appendages of the patient in a fixed position to aid recovery. This type of orthosis is traditionally handmade and fabricated using laborious and qualitative techniques, which would benefit from the enhancements offered by modern 3D technologies. This study investigated the use of optical laser scanning, Computer Aided Design (CAD) and Material Extrusion (ME) additive manufacturing to manufacture a polymeric splint for use in post-surgical hand amputation. To examine the efficacy of our techniques, we take an existing splint from a patient and use this as the template data for production. We found this approach to be a highly effective means of rapidly reproducing the major surface contours of the orthosis while allowing for the introduction of advanced design features for improved aesthetics, alongside reduced material consumption. Our demonstrated techniques resulted in a more lightweight and lower cost device, while the design and manufacturing elements afford greater flexibility for orthosis customisation. Ultimately, this approach provides an optimized and complete methodology for orthosis production.