# Browsing by Subject "numerical-solution"

Now showing 1 - 4 of 4

- Results Per Page
1 5 10 20 40 60 80 100

- Sort Options
Ascending Descending

Item Conservative Deterministic Spectral Boltzmann Solver Near The Grazing Collisions Limit(2012-07) Haack, J. R.; Gamba, I. M.; Haack, Jeffrey R.; Gamba, Irene M.Show more We present new results building on the conservative deterministic spectral method for the space homogeneous Boltzmann equation developed by Gamba and Tharkabhushaman. This approach is a two-step process that acts on the weak form of the Boltzmann equation, and uses the machinery of the Fourier transform to reformulate the collisional integral into a weighted convolution in Fourier space. A constrained optimization problem is solved to preserve the mass, momentum, and energy of the resulting distribution. Within this framework we have extended the formulation to the case of more general case of collision operators with anisotropic scattering mechanisms, which requires a new formulation of the convolution weights. We also derive the grazing collisions limit for the method, and show that it is consistent with the Fokker-Planck-Landau equations as the grazing collisions parameter goes to zero.Show more Item A Fast Conservative Spectral Solver For The Nonlinear Boltzmann Collision Operator(2014-07) Gamba, I. M.; Haack, J. R.; Hu, J. W.; Gamba, Irene M.; Haack, Jeffrey R.Show more We present a conservative spectral method for the fully nonlinear Boltzmann collision operator based on the weighted convolution structure in Fourier space developed by Gamba and Tharkabhushnanam.. This method can simulate a broad class of collisions, including both elastic and inelastic collisions as well as angularly dependent cross sections in which grazing collisions play a major role. The extension presented in this paper consists of factorizing the convolution weight on quadrature points by exploiting the symmetric nature of the particle interaction law, which reduces the computational cost and memory requirements of the method to O(M(2)N(4)logN) from the O(N-6) complexity of the original spectral method, where N is the number of velocity grid points in each velocity dimension and M is the number of quadrature points in the factorization, which can be taken to be much smaller than N. We present preliminary numerical results.Show more Item High Performance Computing With A Conservative Spectral Boltzmann Solver(2012-07) Haack, J. R.; Gamba, I. M.; Haack, Jeffrey R.; Gamba, Irene M.Show more We present new results building on the conservative deterministic spectral method for the space inhomogeneous Boltzmann equation developed by Gamba and Tharkabhushaman. This approach is a two-step process that acts on the weak form of the Boltzmann equation, and uses the machinery of the Fourier transform to reformulate the collisional integral into a weighted convolution in Fourier space. A constrained optimization problem is solved to preserve the mass, momentum, and energy of the resulting distribution. We extend this method to second order accuracy in space and time, and explore how to leverage the structure of the collisional formulation for high performance computing environments. The locality in space of the collisional term provides a straightforward memory decomposition, and we perform some initial scaling tests on high performance computing resources. We also use the improved computational power of this method to investigate a boundary-layer generated shock problem that cannot be described by classical hydrodynamics.Show more Item Scattered-wave-packet formalism with applications to barrier scattering and quantum transistors(2011-11) Chou, Chia-Chun; Wyatt, Robert E.; Chou, Chia-Chun; Wyatt, Robert E.Show more The scattered wave formalism developed for a quantum subsystem interacting with reservoirs through open boundaries is applied to one- or two-dimensional barrier scattering and quantum transistors. The total wave function is divided into incident and scattered components. Markovian outgoing wave boundary conditions are imposed on the scattered or total wave function by either the ratio or polynomial methods. For barrier scattering problems, accurate time-dependent transmission probabilities are obtained through the integration of the modified time-dependent Schrodinger equations for the scattered wave function. For quantum transistors, the time-dependent transport is studied for a quantum wave packet propagating through the conduction channel of a field effect transistor. This study shows that the scattered wave formalism significantly reduces computational effort relative to other open boundary methods and demonstrates wide applications to quantum dynamical processes.Show more