Browsing by Subject "nozzle flow"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Effect of Extrudate Swell, Nozzle Shape, and Convergence Zone on Fiber Orientation in Fused Deposition Modeling Nozzle Flow(University of Texas at Austin, 2015) Heller, B.P.; Smith, D.E.; Jack, D.A.Recent advances for improving the mechanical properties of materials used in Fused Deposition Modeling (FDM) include the addition of carbon fibers to the filament feedstock. During processing, the flow field within the polymer melt orients the fiber suspension, which is important to quantify since fiber orientation influences mechanical and thermal properties. This paper presents a computational approach for evaluating polymer melt flow and fiber orientation within a FDM nozzle taking into consideration the converging flow in the nozzle, fluid expansion caused by extrudate swell, and nozzle exit shape. Finite elements are used to evaluate the Stoke’s flow in an axisymmetric nozzle and fiber orientation tensors are evaluated along streamlines within the flow using the Fast Exact Closure and Folgar-Tucker isotropic rotary diffusion. Fiber orientation is shown to increase in the shear-dominated flow through the nozzle, however, alignment is found to decrease in the expansion flow of the die swell.Item The Effect of Polymer Melt Rheology on Predicted Die Swell and Fiber Orientation in Fused Filament Fabrication Nozzle Flow(University of Texas at Austin, 2017) Wang, Z.; Smith, D.E.Short carbon fibers suspended in the polymer feedstock enhances the mechanical performance of products produced with Fused Filament Fabrication (FFF). As the melted filament is extruded and deposited on a moving platform, the velocity gradients within the polymer melt flow orientate the fibers, and the final orientation has a direct effect on the mechanical properties of printed bead. This paper numerically simulates an FFF nozzle flow, including the extrudate material beyond the nozzle exit. Finite element simulations of the extrusion process are performed with Generalized Newtonian Fluid (GNF) models and a viscoelastic rheology model, included in ANSYS Polyflow, to evaluate the polymer melt velocity field and predict die swell. Fiber orientation tensors are computed along streamlines using the Fast Exact Closure and Folgar-Tucker isotropic rotary diffusion. The predictions indicate that shear thinning behavior reduces the die swell but viscoelastic rheology significantly intensifies the extrudate swell. Orientation tensor values calculated from the flow results of the viscoelastic model yields lower principal alignment in printed beads than those computed with GNF models.