Browsing by Subject "local interstellar-medium"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Characterizing Transition Temperature Gas In The Galactic Corona(2012-04) Wakker, Bart P.; Savage, Blair D.; Fox, Andrew J.; Benjamin, Robert A.; Shapiro, Paul R.; Shapiro, Paul R.We present a study of the properties of the transition temperature (T similar to 10(5) K) gas in the Milky Way corona, based on the measurements of O VI, N V, C IV, Si IV, and Fe III absorption lines seen in the far-ultraviolet spectra of 58 sight lines to extragalactic targets, obtained with the Far-Ultraviolet Spectroscopic Explorer and the Space Telescope Imaging Spectrograph. In many sight lines the Galactic absorption profiles show multiple components, which are analyzed separately. We find that the highly ionized atoms are distributed irregularly in a layer with a scale height of about 3 kpc, which rotates along with the gas in the disk, without an obvious gradient in the rotation velocity away from the Galactic plane. Within this layer the gas has randomly oriented velocities with a dispersion of 40-60 km s(-1). On average the integrated column densities are log N(O VI) = 14.3, log N(N V) = 13.5, log N(C IV) = 14.2, log N(Si IV) = 13.6, and log N(Fe III) = 14.2, with a dispersion of just 0.2 dex in each case. In sight lines around the Galactic center and Galactic north pole, all column densities are enhanced by a factor similar to 2, while at intermediate latitudes in the southern sky there is a deficit in N(O VI) of about a factor of two, but no deficit for the other ions. We compare the column densities and ionic ratios to a series of theoretical predictions: collisional ionization equilibrium, shock ionization, conductive interfaces, turbulent mixing, thick disk supernovae, static non-equilibrium ionization (NIE) radiative cooling, and an NIE radiative cooling model in which the gas flows through the cooling zone. None of these models can fully reproduce the data, but it is clear that NIE radiative cooling is important in generating the transition temperature gas.Item Sodium Absorption from the Exoplanetary Atmosphere of HD 189733B Detected in the Optical Transmission Spectrum(2008-01) Redfield, Seth; Endl, Michael; Cochran, William D.; Koesterke, Lars; Redfield, Seth; Endl, Michael; Cochran, William D.; Koesterke, LarsWe present the first ground-based detection of sodium absorption in the transmission spectrum of an extrasolar planet. Absorption due to the atmosphere of the extrasolar planet HD 189733b is detected in both lines of the Na I doublet. High spectral resolution observations were taken of 11 transits with the High Resolution Spectrograph ( HRS) on the 9.2 m Hobby-Eberly Telescope ( HET). The Na I absorption in the transmission spectrum due to HD 189733b is (-67.2 +/- 20.7) x 10(-5) deeper in the "narrow" spectral band that encompasses both lines relative to adjacent bands. The 1 sigma error includes both random and systematic errors, and the detection is > 3 sigma. This amount of relative absorption in Na I for HD 189733b is similar to 3 times larger than that detected for HD 209458b by Charbonneau et al. ( 2002) and indicates that these two hot Jupiters may have significantly different atmospheric properties.