Browsing by Subject "k-band spectra"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Characterizing The Cool KOIs. VII. Refined Physical Properties Of The Transiting Brown Dwarf LHS 6343 C(2015-02) Montet, Benjamin T.; Johnson, John A.; Muirhead, Phillip S.; Villar, Ashley; Vassallo, Corinne; Baranec, Christoph; Law, Nicholas M.; Riddle, Reed; Marcy, Geoffrey W.; Howard, Andrew W.; Isaacson, Howard; Vassallo, CorinneWe present an updated analysis of LHS 6343, a triple system in the Kepler field which consists of a brown dwarf transiting one member of a widely separated M+M binary system. By analyzing the full Kepler data set and 34 Keck/HIgh Resolution Echelle Spectrometer radial velocity observations, we measure both the observed transit depth and Doppler semiamplitude to 0.5% precision. With Robo-AO and Palomar/PHARO adaptive optics imaging as well as TripleSpec spectroscopy, we measure a model-dependent mass for LHS 6343 C of 62.1 +/- 1.2 M-Jup and a radius of 0.783 +/- 0.011 R-Jup. We detect the secondary eclipse in the Kepler data at 3.5 sigma, measuring e cos omega = 0.0228 +/- 0.0008. We also derive a method to measure the mass and radius of a star and transiting companion directly, without any direct reliance on stellar models. The mass and radius of both objects depend only on the orbital period, stellar density, reduced semimajor axis, Doppler semiamplitude, eccentricity, and inclination, as well as the knowledge that the primary star falls on the main sequence. With this method, we calculate a mass and radius for LHS 6343 C to a precision of 3% and 2%, respectively.Item Kepler-445, Kepler-446 And The Occurrence Of Compact Multiples Orbiting Mid-M Dwarf Stars(2015-03) Muirhead, Phillip S.; Mann, Andrew W.; Vanderburg, Andrew; Morton, Timothy D.; Kraus, Adam; Ireland, Michael; Swift, Jonathan J.; Feiden, Gregory A.; Gaidos, Eric; Gazak, J. Zachary; Mann, Andrew W.; Kraus, AdamWe confirm and characterize the exoplanetary systems Kepler-445 and Kepler-446: two mid-M dwarf stars, each with multiple, small, short-period transiting planets. Kepler-445 is a metal-rich ([ Fe/H] = + 0.25 0.10) M4 dwarf with three transiting planets, and Kepler-446 is a metal-poor ([ Fe/H] = -0.30 0.10) M4 dwarf also with three transiting planets. Kepler-445c is similar toGJ 1214b: both in planetary radius and the properties of the host star. The Kepler-446 system is similar to the Kepler-42 system: both are metal-poor with large galactic space velocities and three short-period, likely rocky transiting planets that were initially assigned erroneously large planet-to-star radius ratios. We independently determined stellar parameters from spectroscopy and searched for and fitted the transit light curves for the planets, imposing a strict prior on stellar density in order to remove correlations between the fitted impact parameter and planet-to-star radius ratio for short-duration transits. Combining Kepler-445, Kepler-446, and Kepler-42, and isolating all mid-M dwarf stars observed by Kepler with the precision necessary to detect similar systems, we calculate that 21+ 7 -5 % of mid-M dwarf stars host compact multiples ( multiple planets with periods of less than 10 days) for a wide range of metallicities. We suggest that the inferred planet masses for these systems support highly efficient accretion of protoplanetary disk metals by mid-M dwarf protoplanets.Item Prospecting In Ultracool Dwarfs: Measuring The Metallicities Of Mid- And Late-M Dwarfs(2014-06) Mann, Andrew W.; Deacon, Niall R.; Gaidos, Eric; Ansdell, Megan; Brewer, John M.; Liu, Michael C.; Magnier, Eugene A.; Aller, Kimberly M.; Mann, Andrew W.Metallicity is a fundamental parameter that contributes to the physical characteristics of a star. The low temperatures and complex molecules present in M dwarf atmospheres make it difficult to measure their metallicities using techniques that have been commonly used for Sun-like stars. Although there has been significant progress in developing empirical methods to measure Mdwarf metallicities over the last few years, these techniques have been developed primarily for early-to mid-M dwarfs. We present a method to measure the metallicity of mid-to late-M dwarfs from moderate resolution (R similar to 2000) K-band (similar or equal to 2.2 mu m) spectra. We calibrate our formula using 44 wide binaries containing an F, G, K, or early-M primary of known metallicity and a mid-to late-M dwarf companion. We show that similar features and techniques used for early-M dwarfs are still effective for late-M dwarfs. Our revised calibration is accurate to similar to 0.07 dex for M4.5-M9.5 dwarfs with -0.58 < [Fe/H] < +0.56 and shows no systematic trends with spectral type, metallicity, or the method used to determine the primary star metallicity. We show that our method gives consistent metallicities for the components of M+M wide binaries. We verify that our new formula works for unresolved binaries by combining spectra of single stars. Lastly, we show that our calibration gives consistent metallicities with the Mann et al. study for overlapping (M4-M5) stars, establishing that the two calibrations can be used in combination to determine metallicities across the entire M dwarf sequence.Item The SDSS-III APOGEE Radial Velocity Survey Of M Dwarfs. I. Description Of The Survey And Science Goals(2013-12) Deshpande, R.; Blake, C. H.; Bender, C. F.; Mahadevan, S.; Terrien, R. C.; Carlberg, J. K.; Zasowski, G.; Crepp, J.; Rajpurohit, A. S.; Reyle, C.; Nidever, D. L.; Schneider, D. P.; Prieto, C. A.; Bizyaev, D.; Ebelke, G.; Fleming, S. W.; Frinchaboy, P. M.; Ge, J.; Hearty, F.; Hernandez, J.; Malanushenko, E.; Malanushenko, V.; Majewski, S. R.; Marchwinski, R.; Muna, D.; Oravetz, D.; Pan, K.; Schiavon, R. P.; Shetrone, M.; Simmons, A.; Stassun, K. G.; Wilson, J. C.; Wisniewski, J. P.; Shetrone, Matthew D.We are carrying out a large ancillary program with the Sloan Digital Sky Survey, SDSS-III, using the fiber-fed multi-object near-infrared APOGEE spectrograph, to obtain high-resolution H-band spectra of more than 1200 M dwarfs. These observations will be used to measure spectroscopic rotational velocities, radial velocities, physical stellar parameters, and variability of the target stars. Here, we describe the target selection for this survey, as well as results from the first year of scientific observations based on spectra that will be publicly available in the SDSS-III DR 10 data release. As part of this paper we present radial velocities and rotational velocities of over 200 M dwarfs, with a v sin i precision of similar to 2 km s(-1) a measurement floor at v sin i = 4 km s(-1). This survey significantly increases the number of M dwarfs studied for rotational velocities and radial velocity variability (at similar to 100-200 m s(-1)), and will inform and advance the target selection for planned radial velocity and photometric searches for low-mass exoplanets around M dwarfs, such as the Habitable Zone Planet Finder, CARMENES, and TESS. Multiple epochs of radial velocity observations enable us to identify short period binaries, and adaptive optics imaging of a subset of stars enables the detection of possible stellar companions at larger separations. The high-resolution APOGEE spectra, covering the entire H band, provide the opportunity to measure physical stellar parameters such as effective temperatures and metallicities for many of these stars. At the culmination of this survey, we will have obtained multi-epoch spectra and radial velocities for over 1400 stars spanning the spectral range M0-L0, providing the largest set of near-infrared M dwarf spectra at high resolution, and more than doubling the number of known spectroscopic a sin i values for M dwarfs. Furthermore, by modeling telluric lines to correct for small instrumental radial velocity shifts, we hope to achieve a relative velocity precision floor of 50 m s(-1) for bright M dwarfs. With three or more epochs, this precision is adequate to detect substellar companions, including giant planets with short orbital periods, and flag them for higher-cadence followup. We present preliminary, and promising, results of this telluric modeling technique in this paper.