Browsing by Subject "jet"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Diagnostics for magnetically confined high-temperature plasmas(1995-10) Gentle, K. W.; Gentle, K. W.During the last 20 years, magnetically confined laboratory plasmas of steadily increasing temperatures and densities have been obtained, most notably in tokamak configurations, and now approach the conditions necessary to sustain a fusion reaction. Even more important to the goal of understanding the physics of such systems, remarkable advances in plasma diagnostics, the techniques for determining the properties of such plasmas, have accompanied these developments. More parameters can be determined with greater accuracy and finer spatial and temporal resolution. The magnetic configuration, the primary local thermodynamic quantities (density, temperature, and drift velocity), and other necessary quantities can now be measured with sufficient accuracy to determine particle and energy fluxes within the plasma and to characterize the basic transport processes. These plasmas are far from thermodynamic equilibrium. This deviation manifests itself in a variety of instabilities on several spatial and temporal scales, many of which are aptly described as turbulence. Many aspects of the turbulence can also be characterized. This article reviews the current state of diagnostics from an epistemoiogical perspective: the capabilities and limitations for measuring each important physical quantity are presented.Item Dynamics of free surface perturbations along an annular viscous film(2008-03) Smolka, Linda B.; North, Justin; Guerra, Bree K.; Guerra, Bree K.It is known that the free surface of an axisymmetric viscous film flowing down the outside of a thin vertical fiber under the influence of gravity becomes unstable to interfacial perturbations. We present an experimental study using fluids with different densities, surface tensions, and viscosities to investigate the growth and dynamics of these interfacial perturbations and to test the assumptions made by previous authors. We find that the initial perturbation growth is exponential, followed by a slower phase as the amplitude and wavelength saturate in size. Measurements of the perturbation growth for experiments conducted at low and moderate Reynolds numbers are compared to theoretical predictions developed from linear stability theory. Excellent agreement is found between predictions from a long-wave Stokes flow model [Craster and Matar, J. Fluid Mech. 553, 85 (2006)] and data, while fair to excellent agreement (depending on fiber size ) is found between predictions from a moderate-Reynolds-number model [Sisoev et al., Chem. Eng. Sci. 61, 7279 (2006)] and data. Furthermore, we find that a known transition in the longer-time perturbation dynamics from unsteady to steady behavior at a critical flow rate Q(c) is correlated with a transition in the rate at which perturbations naturally form along the fiber. For Q < Q(c) (steady case), the rate of perturbation formation is constant. As a result, the position along the fiber where perturbations form is nearly fixed, and the spacing between consecutive perturbations remains constant as they travel 2 m down the fiber. For Q > Q(c) (unsteady case), the rate of perturbation formation is modulated. As a result, the position along the fiber where perturbations form oscillates irregularly, and the initial speed and spacing between perturbations varies, resulting in the coalescence of neighboring perturbations further down the fiber.Item Scale dependence of the alignment between strain rate and rotation in turbulent shear flow(2016-10) Fiscaletti, D.; Elsinga, G. E.; Attili, A.; Bisetti, F.; Buxton, O. R. H.; KAUST Supercomputing LaboratoryThe scale dependence of the statistical alignment tendencies of the eigenvectors of the strain-rate tensor e(i), with the vorticity vector omega, is examined in the self-preserving region of a planar turbulent mixing layer. Data from a direct numerical simulation are filtered at various length scales and the probability density functions of the magnitude of the alignment cosines between the two unit vectors vertical bar e(i) . (omega) over cap vertical bar are examined. It is observed that the alignment tendencies are insensitive to the concurrent large-scale velocity fluctuations, but are quantitatively affected by the nature of the concurrent large-scale velocity-gradient fluctuations. It is confirmed that the small-scale (local) vorticity vector is preferentially aligned in parallel with the large-scale (background) extensive strain-rate eigenvector e(1), in contrast to the global tendency for omega to be aligned in parallelwith the intermediate strain-rate eigenvector [Hamlington et al., Phys. Fluids 20, 111703 (2008)]. When only data from regions of the flow that exhibit strong swirling are included, the so-called high-enstrophy worms, the alignment tendencies are exaggerated with respect to the global picture. These findings support the notion that the production of enstrophy, responsible for a net cascade of turbulent kinetic energy from large scales to small scales, is driven by vorticity stretching due to the preferential parallel alignment between omega and nonlocal e(1) and that the strongly swirling worms are kinematically significant to this process.