Browsing by Subject "ic 348"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item The Chemical Composition Of Cernis 52 (BD+31 Degrees 640)(2009-11) Hernandez, J. I. G.; Iglesias-Groth, S.; Rebolo, R.; Garcia-Hernandez, D. Anibal; Manchado, A.; Lambert, David L.; Lambert, David L.We present an abundance analysis of the star Cernis 52 in whose spectrum we recently reported the naphthalene cation in absorption at 6707.4 angstrom. This star is on a line of sight to the Perseus molecular complex. The analysis of high-resolution spectra using a chi(2)-minimization procedure and a grid of synthetic spectra provides the stellar parameters and the abundances of O, Mg, Si, S, Ca, and Fe. The stellar parameters of this star are found to be T(eff) = 8350 +/- 200 K, log(g/cm s(2))= 4.2 +/- 0.4 dex. We derived a metallicity of [Fe/H] = -0.01 +/- 0.15. These stellar parameters are consistent with a star of similar to 2 M(circle dot) in a pre-main-sequence evolutionary stage. The stellar spectrum is significantly veiled in the spectral range lambda lambda 5150-6730 angstrom up to almost 55% of the total flux at 5150 angstrom and decreasing toward longer wavelengths. Using Johnson-Cousins and Two Micron All Sky Survey photometric data, we determine a distance to Cernis 52 of 231(-85)(+135) pc considering the error bars of the stellar parameters. This determination places the star at a similar distance to the young cluster IC 348. This together with its radial velocity, v(r) = 13.7 +/- 1 kms(-1), its proper motion and probable young age support Cernis 52 as a likely member of IC 348. We determine a rotational velocity of v sin i = 65 +/- 5 kms(-1) for this star. We confirm that the stellar resonance line of Li I at 6707.8 angstrom is unable to fit the broad feature at 6707.4 angstrom. This feature should have a interstellar origin and could possibly form in the dark cloud L1470 surrounding all the cluster IC 348 at about the same distance.