# Browsing by Subject "heat-transport"

Now showing 1 - 2 of 2

- Results Per Page
1 5 10 20 40 60 80 100

- Sort Options
Ascending Descending

Item Electron Temperature Gradient Mode Transport(2008-05) Horton, W.; Kim, J. H.; Hoang, G. T.; Park, H.; Kaye, S. M.; LeBlanc, B. P.; Horton, W.; Kim, J. H.Show more Anomalous electron thermal losses plays a central role in the history of the controlled fusion program being the first and most persistent form of anomalous transport across all toroidal magnetic confinement devices. In the past decade the fusion program has made analysis and simulations of electron transport a high priority with the result of a clearer understanding of the phenomenon, yet still incomplete. Electron thermal transport driven by the electron temperature gradient is examined in detail from theory, simulation and power balance studies in tokamaks with strong auxiliary heating.Show more Item Time-stepping approach for solving upper-bound problems: Application to two-dimensional Rayleigh-Benard convection(2015-10) Wen, Baole L.; Chini, Gregory P.; Kerswell, Rich R.; Doering, Charles R.; Wen, BaoleShow more An alternative computational procedure for numerically solving a class of variational problems arising from rigorous upper-bound analysis of forced-dissipative infinite-dimensional nonlinear dynamical systems, including the Navier-Stokes and Oberbeck-Boussinesq equations, is analyzed and applied to Rayleigh-Benard convection. A proof that the only steady state to which this numerical algorithm can converge is the required global optimal of the relevant variational problem is given for three canonical flow configurations. In contrast with most other numerical schemes for computing the optimal bounds on transported quantities (e.g., heat or momentum) within the "background field" variational framework, which employ variants of Newton's method and hence require very accurate initial iterates, the new computational method is easy to implement and, crucially, does not require numerical continuation. The algorithm is used to determine the optimal background-method bound on the heat transport enhancement factor, i.e., the Nusselt number (Nu), as a function of the Rayleigh number (Ra), Prandtl number (Pr), and domain aspect ratio L in two-dimensional Rayleigh-Benard convection between stress-free isothermal boundaries (Rayleigh's original 1916 model of convection). The result of the computation is significant because analyses, laboratory experiments, and numerical simulations have suggested a range of exponents alpha and beta in the presumed Nu similar to (PrRa beta)-Ra-alpha scaling relation. The computations clearly show that for Ra <= 10(10) at fixed L = 2 root 2, Nu <= 0.106Pr(0)Ra(5/12), which indicates that molecular transport cannot generally be neglected in the "ultimate" high-Ra regime.Show more