Browsing by Subject "galaxy : halo"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item The Century Survey Galactic Halo Project. III. A Complete 4300 Deg(2) Survey Of Blue Horizontal Branch Stars In The Metal-Weak Thick Disk And Inner Halo(2008-02) Brown, Warren R.; Beers, Timothy C.; Wilhelm, Ronald; Prieto, Carlos Allende; Geller, Margaret J.; Kenyon, Scott J.; Kurtz, Michael J.; Prieto, Carlos AllendeWe present a complete spectroscopic survey of 2414 2MASS-selected blue horizontal branch ( BHB) candidates selected over 4300 deg(2) of the sky. We identify 655 BHB stars in this non-kinematically selected sample. We calculate the luminosity function of field BHB stars, and find evidence for very few hot BHB stars in the field. The BHB stars located at a distance from the Galactic plane | Z| < 4 kpc trace what is clearly a metal-weak thick disk population, with a mean metallicity of [Fe/H]=-1.7, a rotation velocity gradient of dv(rot)/d|Z|=-28 +/- 3.4 km s(-1) in the region |Z| < 6 kpc, and a density scale height of h(Z) = 1.26 +/- 0.1 kpc. The BHB stars located at 5 < | Z| < 9 kpc are a predominantly inner-halo population, with a mean metallicity of [ Fe/ H] = - 2.0 and a mean Galactic rotation of - 4 +/- 31 km s(-1). We infer the density of halo and thick disk BHB stars is 104 +/- 37 kpc(-3) near the Sun, and the relative normalization of halo to thick-disk BHB stars is 4 +/- 1% near the Sun.Item Distances To Galactic High-Velocity Clouds. I. Cohen Stream, Complex Gcp, Cloud G1(2008-01) Wakker, B. P.; York, D. G.; Wilhelm, R.; Barentine, John C.; Richter, P.; Beers, Timothy C.; Ivezic, Z.; Howk, J. C.; Barentine, John C.The high- and intermediate-velocity interstellar clouds (HVCs/IVCs) are tracers of energetic processes in and around the Milky Way. Clouds with near-solar metallicity about 1 kpc above the disk trace the circulation of material between disk and halo (the Galactic fountain). The Magellanic Stream consists of gas tidally extracted from the SMC, tracing the dark matter potential of the Milky Way. Several other HVCs have low metallicity and appear to trace the continuing accretion of infalling intergalactic gas. These assertions are supported by the metallicities (0.1 to 1 solar) measured for about 10 clouds in the past decade. Direct measurements of distances to HVCs have remained elusive, however. In this paper we present four new distance brackets, using VLT observations of interstellar Ca II H and K absorption toward distant Galactic halo stars. We derive distance brackets of 5.0 to 11.7 kpc for the Cohen Stream (likely to be an infalling low-metallicity cloud), 9.8 to 15.1 kpc for Complex GCP (also known as the Smith Cloud or HVC 40-15+100 and with still unknown origin), 1.0 to 2.7 kpc for an IVC that appears associated with the return flow of the fountain in the Perseus arm, and 1.8 to 3.8 kpc for cloud g1, which appears to be in the outflow phase of the fountain. Our measurements further demonstrate that the Milky Way is accreting substantial amounts of gaseous material, which influences the Galaxy's current and future dynamical and chemical evolution.Item Distances To Galactic High-Velocity Clouds: Complex C(2007-12) Wakker, B. P.; York, D. G.; Howk, J. C.; Barentine, John C.; Wilhelm, R.; Peletier, R. F.; van Woerden, H.; Beers, Timothy C.; Ivezic, Z.; Richter, P.; Schwarz, U. J.; Barentine, John C.We report the first determination of a distance bracket for the high- velocity cloud (HVC) complex C. Combined with previous measurements showing that this cloud has a metallicity of 0.15 times solar, these results provide ample evidence that complex C traces the continuing accretion of intergalactic gas falling onto the Milky Way. Accounting for both neutral and ionized hydrogen as well as He, the distance bracket implies a mass of (3-14) x 10(6) M-circle dot, and the complex represents a mass inflow of 0.1-0.25 M-circle dot yr(-1). We base our distance bracket on the detection of Ca II absorption in the spectrum of the blue horizontal branch (BHB) star SDSS J120404.78 + 623345.6, in combination with a significant nondetection toward the BHB star BS 16034-0114. These results set a strong distance bracket of 3.7-11.2 kpc on the distance to complex C. A more weakly supported lower limit of 6.7 kpc may be derived from the spectrum of the BHB star BS 16079-0017.Item HE 1327-2326, An Unevolved Star With Fe/H < -5.0. II. New 3D-1D Corrected Abundances From A Very Large Telescope UVES Spectrum(2008-09) Frebel, Anna; Collet, Remo; Eriksson, Kiell; Christlieb, Norbert; Aoki, Wako; Frebel, AnnaWe present a new abundance analysis of HE 1327-2326, which is currently the most iron-poor star, based on observational data obtained with the VLT Ultraviolet and Visual Echelle Spectrograph (UVES). We correct the one-dimensional (1D) LTE abundances for three-dimensional (3D) effects to provide an abundance pattern that supersedes previous works and should be used to observationally test current models of the chemical yields of the first-generation supernovae (SNe). Apart from confirming the 1D LTE abundances found in previous studies before accounting for 3D effects, we make use of a novel technique to apply the 3D 1D corrections for CNO which are a function of excitation potential and line strength for the molecular lines that comprise the observable CH, NH, and OH features. We find that the fit to the NH band at 33608 is greatly improved due to the application of the 3D-1D corrections. This may indicate that 3D effects are actually observable in this star. We also report the first detection of several weak Ni lines. The cosmologically important element Li is still not detected; the new Li upper limit is extremely low, A(Li) < 0: 62, and in stark contrast with results not only from the Wilkinson Microwave Anisotropy Probe (WMAP) but also from other metal-poor stars. We also discuss how the new corrected abundance pattern of HE 1327-2326 is being reproduced by individual and integrated yields of SNe.Item The Milky Way Tomography With SDSS. II. Stellar Metallicity(2008-09) Ivezic, Zeljko; Sesar, Branimir; Juric, Mario; Bond, Nicholas; Dalcanton, Julianne; Rockosi, Constance M.; Yanny, Brian; Newberg, Heidi J.; Beers, Timothy C.; Prieto, Carlos Allende; Wilhelm, Ron; Lee, Young Sun; Sivarani, Thirupathi; Norris, John E.; Bailer-Jones, Coryn A. L.; Fiorentin, Paola Re; Schlegel, David; Uomoto, Alan; Lupton, Robert H.; Knapp, Gillian R.; Gunn, James E.; Covey, Kevin R.; Smith, J. Allyn; Miknaitis, Gajus; Doi, Mamoru; Tanaka, Masayuki; Fukugita, Masataka; Kent, Steve; Finkbeiner, Douglas; Munn, Jeffrey A.; Pier, Jeffrey R.; Quinn, Tom; Hawley, Suzanne; Anderson, Scott; Kiuchi, Furea; Chen, Alex; Bushong, James; Sohi, Harkirat; Haggard, Daryl; Kimball, Amy; Barentine, John; Brewington, Howard; Harvanek, Mike; Kleinman, Scott; Krzesinski, Jurek; Long, Dan; Nitta, Atsuko; Snedden, Stephanie; Lee, Brian; Harris, Hugh; Brinkmann, Jonathan; Schneider, Donald P.; York, Donald G.; Prieto, Carlos AllendeUsing effective temperature and metallicity derived from SDSS spectra for similar to 60,000 F- and G-type main-sequence stars (0.2 < g - r < 0.6), we develop polynomial models for estimating these parameters from the SDSS u - g and g - r colors. These photometric estimates have similar error properties as those determined from SDSS spectra. We apply this method to SDSS photometric data for over 2 million F/G stars and measure the unbiased metallicity distribution for a complete volume-limited sample of stars at distances between 500 pc and 8 kpc. The metallicity distribution can be exquisitely modeled using two components with a spatially varying number ratio, which correspond to disk and halo. The two components also possess the kinematics expected for disk and halo stars. The metallicity of the halo component is spatially invariant, while the median disk metallicity smoothly decreases with distance from the Galactic plane from -0.6 at 500 pc to -0.8 beyond several kiloparsecs. The absence of a correlation between metallicity and kinematics for disk stars is in a conflict with the traditional decomposition in terms of thin and thick disks. We detect coherent substructures in the kinematics-metallicity space, such as the Monoceros stream, which rotates faster than the LSR, and has a median metallicity of [Fe/H] = -0.95, with an rms scatter of only similar to 0.15 dex. We extrapolate our results to the performance expected from the Large Synoptic Survey Telescope (LSST) and estimate that LSST will obtain metallicity measurements accurate to 0.2 dex or better, with proper-motion measurements accurate to similar to 0.5 mas yr(-1), for about 200 million F/G dwarf stars within a distance limit of similar to 100 kpc (g < 23.5).Item The Stellar Content Of The Hamburg/ESO Survey - IV. Selection Of Candidate Metal-Poor Stars(2008-06) Christlieb, N.; Schorck, T.; Frebel, A.; Beers, T. C.; Wisotzki, L.; Reimers, D.; Frebel, A.We present the quantitative methods used for selecting candidate metal-poor stars in the Hamburg/ESO objective-prism survey (HES). The selection is based on the strength of the Ca II K line, B - V colors (both measured directly from the digital HES spectra), as well as J - K colors from the 2 Micron All Sky Survey. The KP index for Ca II K can be measured from the HES spectra with an accuracy of 1.0 angstrom, and a calibration of the HES B - V colors, using CCD photometry, yields a 1-sigma uncertainty of 0.07 mag for stars in the color range 0.3 < B - V < 1.4. These accuracies make it possible to reliably reject stars with [Fe/H] > -2.0 without sacrificing completeness at the lowest metallicities. A test of the selection using 1121 stars of the HK survey of Beers, Preston, and Shectman present on HES plates suggests that the completeness at [Fe/H] < -3.5 is close to 100% and that, at the same time, the contamination of the candidate sample with false positives is low: 50% of all stars with [Fe/H] > -2.5 and 97% of all stars with [Fe/H] > -2.0 are rejected. The selection was applied to 379 HES fields, covering a nominal area of 8853 deg(2) of the southern high Galactic latitude sky. The candidate sample consists of 20 271 stars in the magnitude range 10 less than or similar to B less than or similar to 18. A comparison of the magnitude distribution with that of the HK survey shows that the magnitude limit of the HES sample is about 2mag fainter. Taking the overlap of the sky areas covered by both surveys into account, it follows that the survey volume for metal-poor stars has been increased by the HES by about a factor of 10 with respect to the HK survey. We have already identified several very rare objects with the HES, including, e. g., the three most heavy-element deficient stars currently known.