Browsing by Subject "discontinuous galerkin method"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item A Conservative Discontinuous Galerkin Scheme With O(N-2) Operations In Computing Boltzmann Collision Weight Matrix(2014-07) Gamba, I. M.; Zhang, C. L.; Gamba, Irene M.; Zhang, ChenglongIn the present work, we propose a deterministic numerical solver for the homogeneous Boltzmann equation based on Discontinuous Galerkin (DG) methods. The weak form of the collision operator is approximated by a quadratic form in linear algebra setting. We employ the property of >shifting symmetry> in the weight matrix to reduce the computing complexity from theoretical O(N-3) down to O(N-2), with N the total number of freedom for d-dimensional velocity space. In addition, the sparsity is also explored to further reduce the storage complexity. To apply lower order polynomials and resolve loss of conserved quantities, we invoke the conservation routine at every time step to enforce the conservation of desired moments (mass, momentum and/or energy), with only linear complexity. Due to the locality of the DG schemes, the whole computing process is well parallelized using hybrid OpetiMP and MPI. The current work only considers integrable angular cross-sections under elastic and/or inelastic interaction laws. Numerical results on 2-D and 3-D problems are shown.Item Scalar Wave Equation Modeling with Time-Space Domain Dispersion-Relation-Based Staggered-Grid Finite-Difference Schemes(2011-02) Liu, Yang; Sen, Mrinal K.; Sen, Mrinal K.The staggered-grid finite-difference (SFD) method is widely used in numerical modeling of wave equations. Conventional SFD stencils for spatial derivatives are usually designed in the space domain. However, when they are used to solve wave equations, it becomes difficult to satisfy the dispersion relations exactly. Liu and Sen (2009c) proposed a new SFD scheme for one-dimensional (1D) scalar wave equation based on the time-space domain dispersion relation and plane wave theory, which is made to satisfy the exact dispersion relation. This new SFD scheme has greater accuracy and better stability than a conventional scheme under the same discretizations. In this paper, we develop this new SFD scheme further for numerical solution of 2D and 3D scalar wave equations. We demonstrate that the modeling accuracy is second order when the conventional 2M-th-order space-domain SFD and the second order time-domain finite-difference stencils are directly used to solve the scalar wave equation. However, under the same discretization, our 1D scheme can reach 2M-th-order accuracy and is always stable; 2D and 3D schemes can reach 2M-th-order accuracy along 8 and 48 directions, respectively, and have better stability. The advantages of the new schemes are also demonstrated with dispersion analysis, stability analysis, and numerical modeling.