Browsing by Subject "Volatile organic compounds--Measurement"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Refueling and evaporative emissions of volatile organic compounds from gasoline powered motor vehicles(2007-12) Quigley, Christopher John, 1962-; Corsi, Richard L.The United States Environmental Protection Agency has estimated that over 111 million people reside in areas that exceed the National Ambient Air Quality Standards for ozone. One major source of the chemical precursors (nitrogen dioxides and volatile organic compounds (VOCs)) for ozone are motor vehicles. The overall goal of this research is to improve the knowledge base related to VOC refueling and evaporative emissions from motor vehicles. Refueling, running loss, hot soak, and diurnal loss total and speciated VOC emissions were investigated. A total of 12 uncontrolled refueling events were completed and involved the determination of volumetric flow rates of gasoline vapor during refueling, as well as total and speciated VOC concentrations. Total VOC emissions were compared with two commonly used algorithms. Speciated VOC vapor profiles were compared with two published gasoline vapor profiles and theoretical predictions based on knowledge of liquid composition and environmental conditions. An evaluation of refueling emissions impacts on ozone formation potentials using MIR was completed and results were compared against speciated emissions and MOBILE-based total VOC emissions estimates coupled with a default speciation profile. Refueling VOC emissions and resultant ozone formation potential may be underestimated in existing emission inventories, particularly during the summer ozone season, A model was developed to predict the speciation of VOCs associated with evaporative emissions from motor vehicles. Model-predicted speciation profiles were evaluated using SHED studies. Running loss, hot soak and diurnal emissions were included in each test. Total VOC emissions measured during each test were compared against MOBILE6 predicted emissions. An evaluation of evaporative emissions impacts on ozone formation potentials using MIR was completed, comparing measured and predicted emissions. The measured:predicted speciation results ranged between 0.93 and 1.11 and had an average value of 1.02. For the conditions tested, MOBILE6 underestimated evaporative emissions in 20 of 24 comparisons. MOBILE6-based ozone formation potentials may be underestimated.