Browsing by Subject "UFPM"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Zero to sixty hertz : electrifying the transportation sector and enhancing the reliability of the bulk power system(2015-08) Legatt, Michael Elazar; Baldick, Ross; Webber, Michael EA revolution is underway in the energy sector. Traditional approaches for managing a bulk power system are beginning to give way to a "smart grid" world, in which controllers may have bidirectional communications, with engaged users. At the same time a second transformation has been underway and growing in strength, namely the transition from petroleum as a transportation fuel source towards natural gas for large fleet vehicles, and electricity for consumer vehicles. This thesis focuses primarily on the synergy between the "smart grid" and vehicle electrification transitions. Moving the transportation sector to electricity as a fuel source, at least in Texas, has a myriad of benefits: Charging an electric vehicle without significant growth in renewable or lower-emitting SOFC technologies leads to very significant (80% per mile, 58% per neighborhood) reductions in CO₂ emissions, as well as significant reductions in NO[subscript X] (41% per mile, 17% per neighborhood), PM₁₀ (73% / 62%), PM₂.₅ and UFPM (62% / 55%). SO[subscript X] levels rose by 37%, but could be mitigated with controlled EV charging strategies. Vehicle charging strategies also significantly improved the neighborhood's total emissions profile. Adding in distributed energy resources, microgrid generation and intelligent charging, when optimally allocated, can further reduce these emissions. Vehicle charging schemes that respond dynamically to distributed renewable generation can even be thought of as having zero emissions due to the continual balance of PV generation and EV load on the low side of the distribution transformer. This thesis argues that there may be additionally significant societal benefits by shifting vehicle transportation to electricity, likely far in excess of what could be achieved by controlling power plant emissions alone. Based on an analysis of the ERCOT region, this shift would be expected to produce significant cost reductions for overall energy, improve health (due primarily to the relocation of UFPM far away from major population centers), and lower societal costs. Further gains can be considered as electric vehicles are significantly more energy efficient than their ICE counterparts. Also, on a larger scale, it’s generally easier to reduce emissions from hundreds of fixed power plants than millions of moving ICE vehicles.