(2013-08) Haque, Mohammad Moinul; Helm, David, doctor of mathematics

Show more

In this thesis we construct an analogue in tropical geometry for a class of Schubert varieties from classical geometry. In particular, we look at the collection of tropical lines contained in the fan tropical plane. We call these tropical spaces "tropical Schubert prevarieties", and develop them after creating a tropical analogue for flag varieties that we call the "flag Dressian". Having constructed this tropical analogue of Schubert varieties we then determine that the 2-skeleton of these tropical Schubert prevarieties is realizable. In fact, as long as the lift of the fan tropical plane is in general position, only the 2-skeleton of the tropical Schubert prevariety is realizable.

We describe combinatorial techniques for studying log Calabi-Yau surfaces. These can be viewed as generalizing the techniques for studying toric varieties in terms of their character and cocharacter lattices. These lattices are replaced by certain integral linear manifolds described in [GHK11], and monomials on toric varieties are replaced with the canonical theta functions defined in [GHK11] using ideas from mirror symmetry. We classify deformation classes of log Calabi-Yau surfaces in terms of the geometry of these integral linear manifolds. We then describe the tropicalizations of theta functions and use them to generalize the dual pairing between the character and cocharacter lattices. We use this to describe generalizations of dual cones, Newton and polar polytopes, Minkowski sums, and finite Fourier series expansions. We hope that these techniques will generalize to higher rank cluster varieties.