Browsing by Subject "Serviceability"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item ASR/DEF-damaged bent caps: shear tests and field implications(2009-12) Deschenes, Dean Joseph; Bayrak, Oguzhan, 1969-; Folliard, Kevin J.Over the last decade, a number of reinforced concrete bent caps within Houston, Texas have exhibited premature concrete damage (cracking, spalling and a loss of material strength) due to alkali-silica reaction (ASR) and/or delayed ettringite formation (DEF). The alarming nature of the severe surface cracking prompted the Houston District of the Texas Department of Transportation to initiate an investigation into the structural implications of the premature concrete damage. Specifically, an interagency contract with the University of Texas at Austin charged engineers at Ferguson Structural Engineering Laboratory to: 1. Establish the time-dependent relationship between ASR/DEF deterioration and the shear capacity of affected bridge bent caps. 2. Develop practical recommendations for structural evaluation of in-service bridge bent caps affected by ASR and/or DEF. To accomplish these objectives, six large-scale bent cap specimens were fabricated within the laboratory. Four of the specimens (containing reactive concrete exposed to high curing temperatures) represented the most severe circumstances of deterioration found in the field. The remaining two specimens (non-reactive) provided a basis for the comparison of long-term structural performance. All of the specimens were subjected to a conditioning regimen meant to foster the development of realistic ASR/DEF-related damage. Resulting expansions were characterized over the course of the study through a carefully-planned monitoring program. Following a prolonged exposure period, three of the six bent cap specimens (representing undamaged, mild, and moderate levels of deterioration) were tested in shear. Observations made over the course of each test captured the service and ultimate load effects of ASR/DEF-induced deterioration. Six shear-critical spans were tested prior to this publication: three deep beam and three sectional shear tests. The remaining six shear spans (contained within the remaining three specimens) were retained to establish the effects of severe deterioration through future shear testing. Subsequent analysis of the expansion monitoring and shear testing data provided much needed insight into the performance and evaluation of ASR/DEF damaged bent structures. The results ultimately formed a strong technical basis for the preliminary assessment of a damaged bent structure within Houston, Texas.Item Design criteria for strength and serviceability of inverted-T straddle bent caps(2012-08) Fernandez Gomez, Eulalio, 1981-; Bayrak, Oguzhan, 1969-; Ghannoum, Wassim M.; Jirsa, James O.; Wood, Sharon L.; Ezekoye, Ofodike A.Several recently built inverted-T bent caps in Texas have shown significant inclined cracking triggering concern about current design procedures for such structures. The repair of such structures is very costly and often requires lane closures. For these reasons TxDOT funded Project 0-6416 aimed at obtaining a better understanding of the structural behavior of inverted-T bent caps and developing new design criteria to minimize such cracking in the future. Several tasks of the aforementioned project are addressed in this dissertation with particular focus on developing design criteria for strength and serviceability of inverted-T bent caps. Literature review revealed a scarcity of experimental investigation of inverted-T specimens. As part of this dissertation, an inverted-T database was assembled with experimental results from the literature and the current project. An extensive experimental program was completed to accomplish the objectives of the project with thirty one full-scale tests conducted on inverted-T beams. Experimental parameters varied in the study were: ledge length, ledge depth, web reinforcement, number of point loads, web depth, and shear span-to-depth ratio. The dissertation focuses on the effects of ledge length, ledge depth, number of point loads, and developing design criteria for strength and serviceability of inverted-T beams. Most inverted-T bent caps in Texas are designed using the traditional empirical design procedures outlined in the TxDOT bridge design manual LRFD (2011 current version) that follows closely the AASHTO LRFD bridge design specifications (2012 current version). Given the observed cracking in inverted-T bent caps, the accuracy and conservatism of the traditional design methods were evaluated based on experimental results. The accuracy and conservatism of STM design provisions recently developed in a TxDOT study (TxDOT Project 0-5253, Strength and Serviceability Design of Reinforced Concrete Deep Beams) were also evaluated.Item Design of reinforced concrete inverted-T beams for strength and serviceability(2013-05) Larson, Nancy Anne, 1986-; Bayrak, Oguzhan, 1969-Significant diagonal cracking in reinforced concrete inverted-T straddle bent caps has been reported throughout the State of Texas. Many of the distressed structures were recently constructed and all have been in service for less than two decades. The unique nature of the problem prompted a more detailed look into the design and behavior of such structural components. Strut-and-tie modeling is currently recommended for design of deep (rectangular) beams, but its application to more complex structures has not been fully explored. Due to concerns with current design provisions the application of strut-and-tie modeling to inverted-T beams was investigated along with serviceability-related considerations in this dissertation. An experimental study was conducted in which thirty-three reinforced concrete inverted-T beam tests were conducted. The effects of the following variables were evaluated: ledge depth and length, quantity of web reinforcement, number of point loads, member depth, and shear span-to-depth ratio. A strut-and-tie design method proposed by Birrcher et. al (2009), initially calibrated for compression-chord loaded deep beams, was investigated. It was concluded that the strut-and-tie method was a simple and accurate design method, and it was recommended for use in inverted-T beam design. A vi recommendation was also made for the amount of minimum web reinforcement needed for strength and serviceability considerations. A simple service-load check was proposed for the purpose of limiting diagonal cracking under service loads. Finally, a chart was created to aid in the evaluation of distressed, diagonally-cracked inverted-T bent caps in the field.Item RAS enhancements for RDMA communications(2010-12) Cardona, Omar; Nettles, Scott M.; Bard, WilliamEthernet as the communication medium in the enterprise data center has outlived all competing mediums and resisted the test of time with regards to speed and costs. The future is also poised for growth with 40 and 100Gps speeds just over horizon. The current state of the technology is being enhanced and extended with lossless features to allow for fabric convergence of Storage and Inter Process Communication (IPC) Networks. It is under this medium that an increase in the adoption of Remote Direct Memory Access (RDMA) over Ethernet using offloaded TCP/IP (iWARP) and Infiniband over Ethernet (RoCE) communication stacks to RDMA capable NIC adapter s (RNIC) is observed. RDMA enables direct application to application communication over the network resulting in numerous and significant benefits such as reduced CPU utilization, lower latency communications, increased energy efficiency, and reduced overall system requirements. However, with said benefits also comes increased software complexity in how RDMA interface users communicate. The RDMA communication semantics, which originate from the HPC domain, are heavily biased towards Low-Latency and High-Bandwidth communications rather than Reliability, Availability, and Serviceability (RAS). As adoption increases, and enterprise data centers begins to leverage RDMA over Ethernet, enhancements to the OS stack software architecture and design of the components involved is required to address these deficiencies. Operating system interfaces, device drivers, adapter hardware design, and embedded firmware features must be viewed from a high-availability and maintainability point of view. RAS enhancements for RDMA communications proposes the software architectural tradeoffs for enhancing the iWARP and RoCE RDMA implementations for communications in the enterprise data center, with new and traditional RAS features for existing communications stacks and devices. The architecture leverages software enhancements in traceability, availability, maintainability, serviceability, fault-isolation and resource management; such that in the advent of errors, the probability that the forensics data points to identify root cause are immediately and automatically available is increased.Item Strut-and-tie model design examples for bridge(2011-12) Williams, Christopher Scott; Bayrak, Oguzhan, 1969-; Ghannoum, Wassim M.Strut-and-tie modeling (STM) is a versatile, lower-bound (i.e. conservative) design method for reinforced concrete structural components. Uncertainty expressed by engineers related to the implementation of existing STM code specifications as well as a growing inventory of distressed in-service bent caps exhibiting diagonal cracking was the impetus for the Texas Department of Transportation (TxDOT) to fund research project 0-5253, D-Region Strength and Serviceability Design, and the current implementation project (5-5253-01). As part of these projects, simple, accurate STM specifications were developed. This thesis acts as a guidebook for application of the proposed specifications and is intended to clarify any remaining uncertainties associated with strut-and-tie modeling. A series of five detailed design examples feature the application of the STM specifications. A brief overview of each design example is provided below. The examples are prefaced with a review of the theoretical background and fundamental design process of STM (Chapter 2). • Example 1: Five-Column Bent Cap of a Skewed Bridge - This design example serves as an introduction to the application of STM. Challenges are introduced by the bridge’s skew and complicated loading pattern. A clear procedure for defining relatively complex nodal geometries is presented. • Example 2: Cantilever Bent Cap - A strut-and-tie model is developed to represent the flow of forces around a frame corner subjected to closing loads. The design and detailing of a curved-bar node at the outside of the frame corner is described. • Example 3a: Inverted-T Straddle Bent Cap (Moment Frame) - An inverted-T straddle bent cap is modeled as a component within a moment frame. Bottom-chord (ledge) loading of the inverted-T necessitates the use of local STMs to model the flow of forces through the bent cap’s cross section. • Example 3b: Inverted-T Straddle Bent Cap (Simply Supported) - The inverted-T bent cap of Example 3a is designed as a member that is simply supported at the columns. • Example 4: Drilled-Shaft Footing - Three-dimensional STMs are developed to properly model the flow of forces through a deep drilled-shaft footing. Two unique load cases are considered to familiarize the designer with the development of such models.