Browsing by Subject "Nicotinic acetylcholine receptors"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Molecular Mechanism for the Dual Alcohol Modulation of Cys-loop Receptors(Public Library of Science, 2012-10-04) Murail, Samuel; Howard, Rebecca J.; Broemstrup, Torben; Bertaccini, Edward J.; Harris, R. Adron; Trudell, James R.; Lindahl, ErikCys-loop receptors constitute a superfamily of pentameric ligand-gated ion channels (pLGICs), including receptors for acetylcholine, serotonin, glycine and γ-aminobutyric acid. Several bacterial homologues have been identified that are excellent models for understanding allosteric binding of alcohols and anesthetics in human Cys-loop receptors. Recently, we showed that a single point mutation on a prokaryotic homologue (GLIC) could transform it from a channel weakly potentiated by ethanol into a highly ethanol-sensitive channel. Here, we have employed molecular simulations to study ethanol binding to GLIC, and to elucidate the role of the ethanol-enhancing mutation in GLIC modulation. By performing 1-µs simulations with and without ethanol on wild-type and mutated GLIC, we observed spontaneous binding in both intra-subunit and inter-subunit transmembrane cavities. In contrast to the glycine receptor GlyR, in which we previously observed ethanol binding primarily in an inter-subunit cavity, ethanol primarily occupied an intra-subunit cavity in wild-type GLIC. However, the highly ethanol-sensitive GLIC mutation significantly enhanced ethanol binding in the inter-subunit cavity. These results demonstrate dramatic effects of the F(14′)A mutation on the distribution of ligands, and are consistent with a two-site model of pLGIC inhibition and potentiation.Item Recurrent inhibitory network among cholinergic inerneurons of the striatum(2008-12) Sullivan, Matthew Alexander; Morikawa, HitoshiThe striatum is the initial input nuclei of the basal ganglia, and it serves as an integral processing center for action selection and sensorimotor learning. Glutamatergic projections from the cortex and thalamus converge with dense dopaminergic axons from the midbrain to provide the primary inputs to the striatum. Striatal output is then relayed to downstream basal ganglia nuclei by GABAergic medium – sized spiny neurons, which comprise at least 95% of the population of neurons in the striatum. The remaining population of local circuit neurons is dedicated to regulating the activity of spiny projection neurons, and although spiny neurons form a weak lateral inhibitory network among themselves via local axon collaterals, feedforward modulation exerts more powerful control over spiny neuron excitability. Of the striatal interneurons, only one class is not GABAergic. These neurons are cholinergic and correspond to the tonically active neurons (TANs) recorded in vivo, which respond to specific environmental stimuli with a transient depression, or pause, of tonic firing. Striatal cholinergic interneurons account for less than 2 % of the striatal neuronal population, yet their axons form an extensive and complex network that permeates the entire striatum and significantly shapes striatal output by acting at numerous targets via varied receptor types. Indeed, the persistent level of ambient striatal acetylcholine as well as changes to that basal acetylcholine level underlie the major mechanisms of cholinergic signaling in the striatum, however regulation of this system by the local striatal microcircuitry is not well understood. This dissertation finds that activation of intrastriatal cholinergic fibers elicits polysynaptic GABAA inhibitory postsynaptic currents (IPSCs) in cholinergic interneurons recorded in brain slices. Excitation of striatal GABAergic neurons via nicotinic acetylcholine receptors (nAChRs) mediates this polysynaptic inhibition in a manner independent of dopamine. Moreover, activation of a single cholinergic interneuron is capable of eliciting polysynaptic GABAA IPSCs onto itself and nearby cholinergic interneurons. These findings provide an important insight into the striatal microcircuitry controlling cholinergic neuron excitability.