Browsing by Subject "Geological Information Systems (GIS)"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item An approach for evaluating changes in land-use from energy sprawl and other anthropogenic activities with implications for biotic resource management(Environmental Earth Sciences, 2018) Wolaver, Brad; Pierre, Jon Paul; Benjamin, Labay; Travis, LaDuc; Charles, Duran; Wade, Ryberg; Toby, HibbittsThis study presents an improved approach for evaluating land-use changes caused by energy development and other anthropogenic activities. We illustrate this approach by assessing the landscape footprint of energy development in the Eagle Ford Shale Play and Permian Basin. These two hydrocarbon provinces in Texas saw rapid expansion in drilling during 2008–2012. We compare changes in land-use from oil and gas infrastructure construction during this time period with that of wind energy development in West Texas, urbanization in Central Texas, and extensive agricultural areas. This land-change mapping approach is novel because it evaluates a suite of anthropogenic activities in one study, whereas most prior research assessed land-use effects of energy activities separately without comparing them to agricultural and urbanization processes. We found that changes in land-use caused by anthropogenic factors affected 1.06% (3,456 km2) of the ~324,000 km2 study area. Oil and gas development (well pads and pipelines) was ~48% of total changes in land use, changes in agriculture caused ~26%, and urbanization was ~24%. Construction of wind turbine pads and high voltage power transmission lines was less important (~1%). This study is part of an ongoing, multi-year research program generating science to inform the federal Endangered Species Act listing decision for the Spot-tailed Earless Lizard (Holbrookia lacerata). We illustrate this approach for a single species (i.e., H. lacerata) in Texas. Additionally, this technique can facilitate effective management of a variety of biotic resources in other rapidly developing environments globally by identifying what anthropogenic activities are most important and where land-change is most intense so that on-the-ground conservation strategies can be implemented where they are needed most.