# Browsing by Subject "Free return"

Now showing 1 - 2 of 2

- Results Per Page
1 5 10 20 40 60 80 100

- Sort Options
Ascending Descending

Item Initial guess and optimization strategies for multi-body space trajectories with application to free return trajectories to near-Earth asteroids(2014-08) Bradley, Nicholas Ethan; Russell, Ryan Paul, 1976-; Ocampo, CesarShow more This concept of calculating, optimizing, and utilizing a trajectory known as a ``Free Return Trajectory" to facilitate spacecraft rendezvous with Near-Earth Asteroids is presented in this dissertation. A Free Return Trajectory may be defined as a trajectory that begins and ends near the same point, relative to some central body, without performing any deterministic velocity maneuvers (i.e., no maneuvers are planned in a theoretical sense for the nominal mission to proceed). Free Return Trajectories have been utilized previously for other purposes in astrodynamics, but they have not been previously applied to the problem of Near-Earth Asteroid rendezvous. Presented here is a series of descriptions, algorithms, and results related to trajectory initial guess calculation and optimal trajectory convergence. First, Earth-centered Free Return Trajectories are described in a general manner, and these trajectories are classified into several families based on common characteristics. Next, these trajectories are used to automatically generate initial conditions in the three-body problem for the purpose of Near-Earth Asteroid rendezvous. For several bodies of interest, example initial conditions are automatically generated, and are subsequently converged, resulting in feasible, locally-optimal, round-trip trajectories to Near-Earth Asteroids utilizing Free Return Trajectories. Subsequently, a study is performed on using an unpowered flyby of the Moon to lower the overall DV cost for a nominal round-trip voyage to a Near-Earth Asteroid. Using the Moon is shown to appreciably decrease the overall mission cost. In creating the formulation and algorithms for the Lunar flyby problem, an initial guess routine for generic planetary and lunar flyby tours was developed. This continuation algorithm is presented next, and details a novel process by which ballistic trajectories in a simplistic two-body force model may be iteratively converged in progressively more realistic dynamical models until a final converged ballistic trajectory is found in a full-ephemeris, full-dynamics model. This procedure is useful for constructing interplanetary transfers and moon tours in a realistic dynamical framework; an interplanetary and an inter-moon example are both shown. To summarize, the material in this dissertation consists of: novel algorithms to compute Free Return Trajectories, and application of the concept to Near-Earth Asteroid rendezvous; demonstration of cost-savings by using a Lunar flyby; and a novel routine to transfer trajectories from a simplistic model to a more realistic dynamical representation.Show more Item Optimal lunar orbit insertion from a free return trajectory(2012-05) Jesick, Mark Christopher; Ocampo, Cesar; Fowler, Wallace; Hull, David; Marchand, Belinda; Russell, RyanShow more With the discovery of water ice at the moon's south pole, future human lunar exploration will likely occur at polar sites and, therefore, require high inclination orbits. Also of importance for human missions is the capability to abort if unfavorable circumstances arise. This dissertation addresses both of these concerns by creating an automated, systematic architecture for constructing minimum propellant lunar orbit insertion sequences while ensuring crew safety by maintaining a ballistic Earth return trajectory. To ensure a maneuver-free abort option, the spacecraft is required to depart Earth on a free return trajectory, which is a ballistic Earth-moon-Earth segment that requires no propulsive maneuvers after translunar injection. Because of the need for global lunar access, the required spacecraft plane change at the moon may be large enough that a multi-maneuver sequence offers cost savings. The combination of this orbit insertion sequence with the free return orbit increases the likelihood of a safe Earth return for crew while not compromising the ability to achieve any lunar orbit. A procedure for free return trajectory generation in a simplified Earth-moon system is presented first. With two-body and circular restricted three-body models, the algorithm constructs an initial guess of the translunar injection state and time of flight. Once the initial trajectory is found, a square system of nonlinear equations is solved numerically to target Earth entry interface conditions leading to feasible free return trajectories. No trial and error is required to generate the initial estimate. The automated algorithm is used to generate families of free return orbits for analysis. A targeting and optimization procedure is developed to transfer a spacecraft from a free return trajectory to a closed lunar orbit through a multi-maneuver sequence in the circular restricted three-body model. The initial estimate procedure is automated, and analytical gradients are implemented to facilitate optimization. Cases are examined with minimum time, variable symmetric, and general free returns. The algorithm is then upgraded to include a more realistic solar system model with ephemeris-level dynamics. An impulsive engine model is used before conversion to a finite thrust model. Optimal control theory is applied and the results are compared with the linearly steered thrust model. Trends in the flight time and propellant for various orbit insertion sequences are analyzed.Show more