Browsing by Subject "Fatigue life"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Fatigue Analysis of Short Carbon Fiber Reinforced Composite Components Manufactured Using Fiber-Reinforced Additive Manufacturing(2022) Rajeshirke, Mithila; Fidan, Ismail; Gupta, Ankit; Mäntyjärvi, KariFiber-reinforced additive manufacturing (FRAM) has become quite popular in several industries. The technology offers an opportunity to improve the existing mechanical performance of the part. This research study has presented a successful methodology to fabricate the FRAM- based composite parts with improved fatigue properties. Most engineering applications are subjected to cycling loading which makes the fatigue study an important analysis. The scope of this paper is to present the fatigue properties of short carbon fiber-reinforced Polyethylene Terephthalate Glycol (SCFs/PETG) of 13.78% by weight. The fatigue behavior was analyzed by varying the 3D printing process parameters i.e., infill orientation (0°, 45°, and 90°), and infill layer heights (0.2 and 0.3 mm). The tests are carried out on 1600 N as a maximum load of fatigue cycle with a 0.1 stress ratio, for the specimens with 90° and 45° orientations with 0.2 and 0.3 mm layer heights. For 0° orientation, both 0.2 and 0.3 mm layer height specimens are applied to 2600 N as maximum load, keeping the stress ratio the same as 0.1. Analysis of Variance (ANOVA) is used to statistically analyze the testing data to understand the influence of input variables on fatigue properties.Item Finite element study of mast arm socket welded connections(2005-12-24) Duraisamy, Ramadevi; Frank, Karl H.There has been a rise in the number of failures of traffic cantilever signal mast arms in recent years due to increasing spans of mast arms and the inherent flexibility of the structures. This increased flexibility makes mast arm socket welded connections more critical. Extensive finite element analysis using Abaqus was carried out in this study to determine the effect of different geometric variables like end plate thickness, mast arm diameter, mast arm thickness and weld geometry on stress at the weld toe by estimating the Stress Concentration Factor (SCF) at weld toe. Two different approaches, Dong’s Structural Stress and Det Norske Veritas (DNV), were used to calculate the SCF at weld toe. To study the effect of end plate thickness, six models with different end plate thicknesses were analyzed. Effect of geometric variables like mast arm thickness, mast arm diameter, and weld geometry were studied for all the six different end plate thicknesses. It was found that of all of the geometric variables analyzed, end plate thickness had a greater effect on stresses at weld toe. Experimental results of fatigue behavior of mast arms socket welded connections from other research projects were used to investigate the hypothesis which states that, fatigue life (N) is some constant (A) times the stress range (SCF x SR) raised to the third power, where the constant (A) is the fatigue life coefficient. Investigation of the above stated hypothesis was done using both approaches for calculating SCF, namely Dong’s Structural Stress and DNV. From hypothesis investigation, it was found that scatter in the experimental data is reduced when maximum stress range at weld toe (SCF x nominal stress range) is plotted against fatigue life as compared to plotting nominal stress range against fatigue life