Browsing by Subject "Embedded protostars"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item The Class 0 protostar BHR71: Herschel observations and dust continuum models(2015-12) Yang, Yao-Lun; Evans, Neal J.; Lacy, John HWe performed a comprehensive analysis of the Herschel spectra of BHR71, an embedded Class 0 protostar. We recovered 66 lines in the central spaxel. Counting detections in all spaxels in PACS and SPIRE, more than 700 lines were detected. A CO rotational diagram analysis shows four excitation temperature components, 51 K, 153 K, 409 K, and 1053 K. Low-J CO lines trace the outflow while the high-J CO lines are centered on the infrared source. The low-excitation emission lines of water trace the large-scale outflow, while the high-excitation emission lines trace a small scale distribution around the equatorial plane. We model the structure of the envelope using the dust radiative transfer code, Hyperion, to fit the spectral energy distribution (SED) observed by Spitzer and Herschel. The model incorporates rotational collapse and an outer static envelope as well as an outflow cavity and disk. Our exploration of parameter space shows that the evolution of a collapsing envelope can be constrained by the Herschel SED and that the structure of the outflow cavity plays a critical role at shorter wavelengths. A cavity with a constant-density inner region and a power-law density outer region can reproduce the observations. The best fit model has a mass of 22 solar mass inside a radius of 0.2 pc and a central luminosity of 15.18 solar luminosity. The time since collapse began is 1.2x10^4 year with considerable uncertainty. The central luminosity in the best-fit model is greater than the observed luminosity because radiation is channeled out the outflow cavity. Even with this correction, the current mass accretion rate determined from the luminosity is about a factor of three less than the mass infall rate, suggestive of episodic accretion.Item Mass accretion in the embedded phase of low-mass star formation(2010-08) Dunham, Michael Mark; Evans, Neal J.; Bromm, Volker; Harvey, Paul M.; Jaffe, Daniel T.; Lacy, John H.; Myers, Philip; Dullemond, CornelisA long-standing problem in low-mass star formation is the "luminosity problem," whereby protostars are underluminous compared to the accretion luminosity expected both from theoretical collapse calculations and arguments based on the minimum accretion rate necessary to form a star within the embedded phase duration. In this dissertation, I present new research on protostars and the protostellar accretion process that addresses the luminosity problem in the following ways: I report new infrared detections of a very low luminosity protostar in Taurus and use all existing data ranging from the infrared through millimeter wavelengths to constrain radiative transfer models and determine physical properties of the source. I argue that the derived source luminosity is lower than that expected based on the properties of a previously detected molecular outflow driven by this source and suggest that this discrepancy can be resolved by variable rather than constant mass accretion. I report the discovery of a new protostar that is also driving a molecular outflow. Following a similar modeling procedure as above, I show that this source has an even lower luminosity that is once again inconsistent with that expected based on the properties of its outflow, again suggesting variable mass accretion. I present the results of a complete search for all protostars with luminosities less than or equal to that of our Sun in a new infrared survey of nearby star-forming regions. I identify 50 protostars with such luminosities. Only a small fraction (15-25%) of dense cores thought to be starless (not yet collapsing to form stars) in fact harbor low luminosity protostars. The distribution of luminosities of these 50 protostars is inconsistent with a constant protostellar mass accretion rate. I present a set of evolutionary models that start with existing models following the inside-out collapse of singular isothermal spheres and add isotropic scattering off dust grains, a circumstellar disk, two-dimensional envelope structure, mass-loss and the opening of outflow cavities, and a simple treatment of episodic mass accretion. I conclude that episodic mass accretion is both necessary and sufficient to resolve the luminosity problem.