Browsing by Subject "Discontinuous Petrov-Galerkin"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Space-time discontinuous Petrov-Galerkin finite elements for transient fluid mechanics(2016-05) Ellis, Truman Everett; Demkowicz, Leszek; Moser, Robert D; Hughes, Thomas J.R; Dawson, Clint N; Bui, TanInitial mesh design for computational fluid dynamics can be a time-consuming and expensive process. The stability properties and nonlinear convergence of most numerical methods rely on a minimum level of mesh resolution. This means that unless the initial computational mesh is fine enough, convergence can not be guaranteed. Any meshes below this minimum resolution level are termed to be in the ``pre-asymptotic regime.'' This condition implies that meshes need to in some way anticipate the solution before it is known. On top of the minimum requirement that the surface meshes must adequately represent the geometry of the problem under consideration, resolution requirements on the volume mesh make the CFD practitioner's job significantly more time consuming. In contrast to most other numerical methods, the discontinuous Petrov-Galerkin finite element method retains exceptional stability on extremely coarse meshes. DPG is also inherently very adaptive. It is possible to compute the residual error without knowledge of the exact solution, which can be used to robustly drive adaptivity. This results in a very automated technology, as the user can initialize a computation on the coarsest mesh which adequately represents the geometry then step back and let the program solve and adapt iteratively until it resolves the solution features. A common complaint of minimum residual methods by computational fluid dynamics practitioners is that they are not locally conservative. In this thesis, this concern is addressed by developing a locally conservative DPG formulation by augmenting the system with Lagrange multipliers. The resulting DPG formulation is then proved to be robust and shown to produce superior numerical results over standard DPG on a selection of test problems. Adaptive convergence to steady incompressible and compressible Navier-Stokes solutions was explored in Jesse Chan's and Nathan Roberts' dissertations. Space-time offers a natural extension to transient problems as it preserves the stability and adaptivity properties of DPG in the time dimension. Space-time also offers more extensive parallelization capability than problems treated with traditional time stepping as it allows multigrid concurrently in both space and time. A proof of concept space-time DPG formulation is developed for transient convection-diffusion. The robust test norms derived for steady convection-diffusion are extended to the space-time case and proofs of robustness are provided. Numerical results verify the robust behavior and near $L^2$ optimality of the resulting solutions. The space-time formulation for convection-diffusion is then extended to transient incompressible and compressible Navier-Stokes by analogy. Several numerical experiments are performed, but a mathematical analysis is not attempted for these nonlinear problems. Several side topics are explored such as a study of the compressible Navier-Stokes equations under various variable transformations and the development of consistent test norms through the concept of physical entropy.