Browsing by Subject "Deflection"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Characterization of Unbound Granular Layers in Flexible Pavements(2001-12) Adu-Osei, AlexThe mathematical characterization of unbound granular materials should ideally be based on the behavior of the individual constituent elements and their interaction. Until particulate mechanics are developed to a level where it can easily be applied to characterize unbound granular materials, a nonlinear and cross-anisotropic model must be used to characterize the behavior of granular materials in pavements. Existing pavement design and analysis methods have generally taken a very conservative view of the relative strength properties of granular materials used as base and subbase layers in conventional flexible pavements. The mechanical properties of unbound granular layers in flexible pavements are important to the overall structural integrity of the pavement structure. Linear elastic analysis can be used with reasonable confidence for pavements with full depth asphalt layers, but it is inappropriate for unsurfaced or thinly surfaced flexible pavements unless the nonlinear behavior of unbound granular materials are properly taken into account. Work done by several researchers suggest that incorporating a cross-anisotropic elastic model significantly improves isotropic models and drastically reduces the tensile stresses computed within granular layers. This is due to the fact that the behavior of granular materials depends on particle arrangement. The laboratory determination of cross-anisotropic properties of granular materials has been a difficult task for researchers. In this study, a new laboratory testing protocol has been developed based on the theories of elasticity to determine cross-anisotropic properties of granular materials. The testing protocol is efficient and precise. The test is also an excellent tool for comparative analysis of compacted materials. The behavior of four unbound granular materials was studied. The resilient responses of the materials obey the Uzan type nonlinear model. It was observed that under low stress levels accumulation of permanent strain could stabilize in granular layers. However, at high stress levels, permanent strain will continuously accumulate. A finite element program was modified to incorporate the cross-anisotropic material model. Pavement sections were analyzed with the finite element program. It was observed that cross-anisotropic modeling eliminates the presence of tension zones predicted by isotropic resilient models. Deflection bowls predicted by nonlinear resilient models agree with field deflection bowls.Item Experimental investigation of geomechanical aspects of hydraulic fracturing unconventional formations(2014-08) Alabbad, Emad Abbad; Olson, Jon E.Understanding the mechanisms that govern hydraulic fracturing applications in unconventional formations, such as gas-bearing shales, is of increasing interest to the petroleum upstream industry. Among such mechanisms, the geomechanical interactions between hydraulic fractures and pre-existing fractures on one hand, and simultaneous multiple hydraulic fractures on the other hand are seen of high importance. Although the petroleum engineering and related literature contains a number of studies that discusses such topics of hydraulic fracture interactions, there still remain some aspects that require answers, validations, or further supporting data. Particularly, experimental evidence is fairly scarce and keenly needed to solidify the understanding of such complex applications. In this work, the investigation methodology uses a series of hydraulic fracturing laboratory tests performed on synthetic rocks made of gypsum-based cements such as hydrostone and plaster in various experimental set ups. Those laboratory tests aim to closely investigate hydraulic fracture intersection with pre-existing fractures by assessing some factors that govern its outcomes. Specifically, the roles of the pre-existing fracture cementation, aperture, and relative height on the intersection mode are examined. The results show dominant effect of the cement-fill type relative to the host-rock matrix in determining whether hydraulic fracture crossing the pre-existing interface may occur. Similarly, hydraulic fracture height relative to the height of the pre-existing fracture may dictate the intersection results. However, the intersection mode seems to be insensitive of the pre-existing fracture aperture. Moreover, simultaneous multi-fracture propagation is examined and found to be impacted by the interference of the stresses induced from each fracturing source on neighboring fracturing sources. Such stress interference increases as the number of the propagating hydraulic fractures increase. While hydraulic fractures initiating from fracturing sources located in the middle of the fracturing stage seem to have inhibited propagation, outer hydraulic fractures may continue propagating with outward curvatures. Overall, the experimental results and analyses offer more insights for understanding hydraulic fracture complexity in unconventional formations.Item Field Validation of the Cross-Anisotropic Behavior of Unbound Aggregate Bases(2001-03) Tutumluer, Erol; Adu-Osei, Alex; Little, Dallas N.; Lytton, Robert L.The ICAR Research Project 502 has focused on determining structural considerations of unbound aggregate pavement layers for a proper representation in the new AASHTO Pavement Design Guide 2002. The research team developed models for the resilient and permanent deformation behavior from the results of triaxial tests conducted at the Texas Transportation Institute (TTI) and at the University of Illinois. The studies have mainly indicated that the unbound aggregate base (UAB) material should be modeled as nonlinear and cross-anisotropic to account for stress sensitivity and the significant differences between vertical and horizontal moduli and Poisson's ratios. UABs were constructed at the TTI Riverside research facility and tested for response and performance using the one-third scale model of the Texas Mobile Loading Simulator. The resilient responses of the test sections were modeled. The nonlinear cross-anisotropic material models used in the base layer predicted vertical deflections that are close to field deflections in the analyzed TTI pavements. Field validation data were also collected from a full-scale pavement test study conducted at Georgia Tech. The test sections had extensive instrumentation and the pavement response variables, such as stresses, strains, and deformations, were measured in all pavement layers including the UABs. The validation of the anisotropic modeling approach was accomplished by analyzing these test sections using GT-PAVE finite element program, predicting UAB responses, and comparing them to the measured ones. Laboratory testing of the aggregate samples was conducted at the University of Illinois and the characterization models were developed for the stress sensitive, cross-anisotropic aggregate behavior. With nonlinear anisotropic modeling of the UAB, the resilient behavior of pavement test sections was successfully predicted at the same time for a number of response variables. In addition, the stress sensitive, cross-anisotropic representation of the base was shown to greatly reduce the horizontal tension computed in the granular base when compared to a linear isotropic representation.