Browsing by Subject "Compact modeling"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Device modeling and circuit design for ZTO based amorphous metal oxide TFTs(2011-05) Joshi, Tanvi Dhananjay; Viswanathan, T. R., doctor of electrical engineering; Dodabalapur, Ananth, 1963-Amorphous Oxide semiconductors have gained large interest in the display industry owing to their high carrier mobilities and low fabrication costs. In this thesis, n-channel solution based zinc-tin oxide (ZTO) thin-film transistors (TFTs) are studied from a circuit design perspective. The study includes an iterative process of circuit design, layout and test procedure of the fabricated devices in the lab. The device models used in circuit simulations are refined following the data fed back from each of these iterations which has enabled more accurate design of complex circuits using ZTO devices. The requirement and development of a physical compact model for performing accurate and predictive circuit simulations has been presented. The use of ZTO devices in low cost, transparent and flexible electronic applications has been investigated through the study of basic circuit blocks such as amplifiers, ring oscillators, inverters and a four stage Operational Amplifier.Item Nanoscale graphene for RF circuits and systems(2013-08) Parrish, Kristen Nguyen; Akinwande, DejiIncreased challenges in CMOS scaling have motivated the development of alternatives to silicon circuit technologies, including graphene transistor development. In this work, we present a circuit simulator model for graphene FETs, developed to both fit measured data and predict new behaviors, motivating future research. The model is implemented in Agilent ADS, a circuit level simulator that is commonly used for non-standard transistor technologies, for use with parameter variation analyses, as well as easy integration with CMOS design kits. We present conclusions drawn from the model, including analyses on the effects of contact resistance and oxide scaling. We have also derived a quantum-capacitance limited model, used to intuit intrinsic behaviors of graphene transistors, as well as outline upper bounds on performance. Additionally, the ideal frequency doubler has been examined and compared with graphene, and performance limits for graphene frequency multipliers are elucidated. Performance as a demodulator is also discussed. We leverage this advancement in modeling research to advance circuit- and system-level research using graphene transistor technology. We first explore the development of a GHz planar carbon antenna for use on an RF frontend. This research is further developed in work towards the first standalone carbon radio on flexible plastics. A front end receiver, comprised of an integrated carbon antenna, transmission lines, and a graphene transistor for demodulation, are all fabricated onto one plastic substrate, to be interfaced with speakers for a full radio demo. This complete system will motivate further research on graphene-on-plastic systems.