Browsing by Subject "Cell binding assay"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Identification of Thioaptamer Ligand against E-Selectin: Potential Application for Inflamed Vasculature Targeting(Public Library of Science, 2010-09-30) Mann, Aman P.; Somasunderam, Anoma; Nieves-Alicea, René; Li, Xin; Hu, Austin; Sood, Anil K.; Ferrari, Mauro; Gorenstein, David G.; Tanaka, TakemiActive targeting of a drug carrier to a specific target site is crucial to provide a safe and efficient delivery of therapeutics and imaging contrast agents. E-selectin expression is induced on the endothelial cell surface of vessels in response to inflammatory stimuli but is absent in the normal vessels. Thus, E-selectin is an attractive molecular target, and high affinity ligands for E-selectin could be powerful tools for the delivery of therapeutics and/or imaging agents to inflamed vessels. In this study, we identified a thiophosphate modified aptamer (thioaptamer, TA) against E-selectin (ESTA-1) by employing a two-step selection strategy: a recombinant protein-based TA binding selection from a combinatorial library followed by a cell-based TA binding selection using E-selectin expressing human microvascular endothelial cells. ESTA-1 selectively bound to E-selectin with nanomolar binding affinity (KD = 47 nM) while exhibiting minimal cross reactivity to P- and L-selectin. Furthermore, ESTA-1 binding to E-selectin on the endothelial cells markedly antagonized the adhesion (over 75% inhibition) of sLex positive HL-60 cells at nanomolar concentration. ESTA-1 also bound specifically to the inflamed tumor-associated vasculature of human carcinomas derived from breast, ovarian, and skin but not to normal organs, and this binding was highly associated with the E-selectin expression level. Similarly, intravenously injected ESTA-1 demonstrated distinct binding to the tumor vasculature in a breast cancer xenograft model. Together, our data substantiates the discovery of a thioaptamer (ESTA-1) that binds to E-selectin with high affinity and specificity, thereby highlighting the potential application of ESTA-1 for E-selectin targeted delivery.Item Inhibition of Cell Proliferation by an Anti-EGFR Aptamer(Public Library of Science, 2011-06-08) Li, Na; Nguyen, Hong Hanh; Byrom, Michelle; Ellington, Andrew D.Aptamers continue to receive interest as potential therapeutic agents for the treatment of diseases, including cancer. In order to determine whether aptamers might eventually prove to be as useful as other clinical biopolymers, such as antibodies, we selected aptamers against an important clinical target, human epidermal growth factor receptor (hEGFR). The initial selection yielded only a single clone that could bind to hEGFR, but further mutation and optimization yielded a family of tight-binding aptamers. One of the selected aptamers, E07, bound tightly to the wild-type receptor (Kd = 2.4 nM). This aptamer can compete with EGF for binding, binds to a novel epitope on EGFR, and also binds a deletion mutant, EGFRvIII, that is commonly found in breast and lung cancers, and especially in grade IV glioblastoma multiforme, a cancer which has for the most part proved unresponsive to current therapies. The aptamer binds to cells expressing EGFR, blocks receptor autophosphorylation, and prevents proliferation of tumor cells in three-dimensional matrices. In short, the aptamer is a promising candidate for further development as an anti-tumor therapeutic. In addition, Aptamer E07 is readily internalized into EGFR-expressing cells, raising the possibility that it might be used to escort other anti-tumor or contrast agents.