Browsing by Subject "Bacterial group behaviors"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Characterization and microfabrication of environmentally sensitive materials for studying bacterial group behaviors(2012-08) Connell, Jodi Lynn; Shear, Jason B.; Ellington, Andrew D.This dissertation describes the development and application of an approach for creating multiphoton crosslinked protein microchambers to characterize bacterial group behaviors in small populations (~10¹ - 10⁵ cells). Porous protein cavities of desired size and geometry are made with sub-micrometer three-dimensional (3D) resolution using a dynamic mask-based multiphoton lithography (MPL) technique previously developed in the Shear Group. One aspect of this dissertation focuses on basic characterizations of properties of these materials key to their utility in studying entrapped bacteria. Studies are presented on the mass transport across microcavity walls (important for growth and signaling), and the temperature- and light-induced volume response (used to open/close microchamber apertures for cell entry/exit). Fabrication parameters are optimized to trap and manipulate small populations under in vitro conditions that are relevant to in vivo environments. The ability to culture bacteria at physiologic growth rates within protein microstructures has provided a unique platform to study the group behaviors of quorum sensing (QS) and antibiotic resistance in biologically relevant population sizes, a platform I have exploited to study group behaviors in the opportunistic pathogen, Pseudomonas aeruginosa. This work presents the first experimental evidence supporting the efficiency sensing QS model by showing that QS-dependent gene expression is affected by both the population size and density, as well the external flow rate in the surrounding environment. The onset of antibiotic resistance is observed in as few as ~150 P. aeruginosa cells, and is shown to increase with cell density. Lastly, the development of a gelatin-based MPL approach that is demonstrated in situ to create confined populations of non-motile cells, free-floating 3D cultures, nested colonies, and spatially patterned polymicrobial communities of P. aeruginosa and Staphylococcus aureus.