Browsing by Subject "Additive"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Simulation and characterization of nanoparticle thermal conductivity for a microscale selective laser sintering system(2021-05-17) Grose, Joshua David; Cullinan, MichaelAdditive Manufacturing (AM) technologies are often restricted by the minimum feature size of parts they can repeatably build. The microscale selective laser sintering (μ-SLS) process, which is capable of producing single micron resolution parts, addresses this issue directly. However, the unwanted dissipation of heat within the powder bed of a μ-SLS device during laser sintering is a primary source of error that limits the minimum feature size of the producible parts. A particle scale thermal model is needed to characterize the thermal properties of the nanoparticles undergoing sintering and allow for the prediction of heat affected zones (HAZ) and the improvement of final part quality. Thus, this thesis presents a method for the determination of the effective thermal conductivity of metal nanoparticle beds in a microscale selective laser sintering process using finite element simulations in ANSYS. CAD models of nanoparticle groups at various timesteps during sintering are developed from Phase Field Modeling (PFM) output data, and steady state thermal simulations are performed on each group. The complete simulation framework developed in this work is adaptable to particle groups of variable sizes and geometric arrangements. Results from the thermal models are used to estimate the thermal conductivity of the copper nanoparticles as a function of sintering duration.