Browsing by Subject "1st hydrostatic core"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item The Luminosities Of Protostars In The Spitzer c2d And Gould Belt Legacy Clouds(2013-04) Dunham, Michael M.; Arce, Hector G.; Allen, Lori E.; Evans, Neal J.; Broekhoven-Fiene, Hannah; Chapman, Nicholas L.; Cieza, Lucas A.; Gutermuth, Robert A.; Harvey, Paul M.; Hatchell, Jennifer; Huard, Tracy L.; Kirk, Jason M.; Matthews, Brenda C.; Merin, Bruno; Miller, Jennifer F.; Peterson, Dawn E.; Spezzi, Loredana; Evans, Neal J.Motivated by the long-standing >luminosity problem> in low-mass star formation whereby protostars are underluminous compared to theoretical expectations, we identify 230 protostars in 18 molecular clouds observed by two Spitzer Space Telescope Legacy surveys of nearby star-forming regions. We compile complete spectral energy distributions, calculate L-bol for each source, and study the protostellar luminosity distribution. This distribution extends over three orders of magnitude, from 0.01 L-circle dot to 69 L-circle dot, and has a mean and median of 4.3 L-circle dot and 1.3 L-circle dot, respectively. The distributions are very similar for Class 0 and Class I sources except for an excess of low luminosity (L-bol <= 0.5 L-circle dot) Class I sources compared to Class 0. 100 out of the 230 protostars (43%) lack any available data in the far-infrared and submillimeter (70 mu m < lambda < 850 mu m) and have L-bol underestimated by factors of 2.5 on average, and up to factors of 8-10 in extreme cases. Correcting these underestimates for each source individually once additional data becomes available will likely increase both the mean and median of the sample by 35%-40%. We discuss and compare our results to several recent theoretical studies of protostellar luminosities and show that our new results do not invalidate the conclusions of any of these studies. As these studies demonstrate that there is more than one plausible accretion scenario that can match observations, future attention is clearly needed. The better statistics provided by our increased data set should aid such future work.Item Revealing The Millimeter Environment Of The New FU Orionis Candidate HBC722 With The Submillimeter Array(2012-08) Dunham, Michael M.; Arce, Hector G.; Bourke, Tyler L.; Chen, Xuepeng; van Kempen, Tim A.; Green, Joel D.; Green, Joel D.We present 230 GHz Submillimeter Array continuum and molecular line observations of the newly discovered FU Orionis candidate HBC722. We report the detection of seven 1.3 mm continuum sources in the vicinity of HBC722, none of which corresponds to HBC722 itself. We compile infrared and submillimeter continuum photometry of each source from previous studies and conclude that three are Class 0 embedded protostars, one is a Class I embedded protostar, one is a Class I/II transition object, and two are either starless cores or very young, very low luminosity protostars or first hydrostatic cores. We detect a northwest-southeast outflow, consistent with the previous detection of such an outflow in low-resolution, single-dish observations, and note that its axis may be precessing. We show that this outflow is centered on and driven by one of the nearby Class 0 sources rather than HBC722, and find no conclusive evidence that HBC722 itself is driving an outflow. The non-detection of HBC722 in the 1.3 mm continuum observations suggests an upper limit of 0.02 M-circle dot for the mass of the circumstellar disk. This limit is consistent with typical T Tauri disks and with a disk that provides sufficient mass to power the burst.Item The Spitzer c2d Survey Of Nearby Dense Cores. XI. Infrared And Submillimeter Observations Of CB130(2011-03) Kim, Hyo Jeong; Evans, Neal J.; Dunham, Michael M.; Chen, Jo-Hsin; Lee, Jeong-Eun; Bourke, Tyler L.; Huard, Tracy L.; Shirley, Yancy L.; De Vries, Christopher; Kim, Hyo Jeong; Evans, Neal J.; Dunham, Michael M.; Chen, Jo-HsinWe present new observations of the CB130 region composed of three separate cores. Using the Spitzer Space Telescope, we detected a Class 0 and a Class II object in one of these, CB130-1. The observed photometric data from Spitzer and ground-based telescopes are used to establish the physical parameters of the Class 0 object. Spectral energy distribution fitting with a radiative transfer model shows that the luminosity of the Class 0 object is 0.14-0.16 L-circle dot, which is low for a protostellar object. In order to constrain the chemical characteristics of the core having the low-luminosity object, we compare our molecular line observations to models of lines including abundance variations. We tested both ad hoc step function abundance models and a series of self-consistent chemical evolution models. In the chemical evolution models, we consider a continuous accretion model and an episodic accretion model to explore how variable luminosity affects the chemistry. The step function abundance models can match observed lines reasonably well. The best-fitting chemical evolution model requires episodic accretion and the formation of CO2 ice from CO ice during the low-luminosity periods. This process removes C from the gas phase, providing a much improved fit to the observed gas-phase molecular lines and the CO2 ice absorption feature. Based on the chemical model result, the low luminosity of CB130-1 is explained better as a quiescent stage between episodic accretion bursts rather than being at the first hydrostatic core stage.