
Copyright

by

Anand Kumar Rajaram

2008

The Dissertation Committee for Anand Kumar Rajaram
certifies that this is the approved version of the following dissertation:

Synthesis of Variation Tolerant Clock Distribution

Networks

Committee:

David Z. Pan, Supervisor

Joydeep Ghosh

Leon S. Lasdon

Michael Orshansky

Nur A. Touba

Synthesis of Variation Tolerant Clock Distribution

Networks

by

Anand Kumar Rajaram, B.E., M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2008

To my family - my parents, wife and brother.

Acknowledgments

First and foremost, I wish to thank my adviser Prof. David Z. Pan for all

his help and support to me since Fall 2004. Without his constant encouragement,

this dissertation would not have been possible. Though this is usually true for

most graduate students and their advisers, it is especially true for me since I

pursued my Ph.D. along with an out-of-town full-time job. It was Prof. Pan’s

empathy for my unique situation and his constant encouragement that helped

me complete this dissertation. I have no words to thank him for all the help,

encouragement and advice. I thank my committee members (in alphabetical or-

der) – Prof. Joydeep Ghosh, Prof. Leon S. Lasdon, Prof. Michael Orshansky

and Prof. Nur A. Touba – for being on my committee and for their insightful

comments and questions. I thank my fellow UTDA group members (in alpha-

betical order) – Ashutosh Chakraborty, Minsik Cho, Tao Luo, Joydeep Mitra,

Anand Ramalingam, Sean Shi, Peng Yu and Kun Yuan – who have helped me

with many questions last few years. I thank the ECE Graduate Program Coordi-

nator Melanie Gulick who helped me wade through all the necessary paper work

related to my Ph.D. during the last few years.

I thank Texas Instruments for agreeing to let me pursue my Ph.D. in

Austin while working full-time with them in Dallas. My special thanks to the

Dallas DSP group members (in alphabetical order) – Sanjive Agarwala, Rajesh

Annapillai, Raguram Damodaran, Anthony Hill, Arjun Rajagopal, Paul Wiley

and others – who encouraged me both in work and in my research. I especially

v

thank Sanjive and Raguram who let me to work three days a week from Austin

during Spring 2007 that enabled me to complete my course work. I am always

grateful to them for their timely help.

I thank my parents who have been a source of inspiration and comfort to

me throughout my life. It is their constant advice, blessings and good wishes that

have made me what I am today and I can never hope to repay my infinite debt

to them. I would also like to thank my younger brother Gokul for his numerous

help to my work and research when we stayed together in Dallas. Though he is

younger to me by a few years, he is much wiser in many ways and I have a lot

to learn from him. I also wish to thank my in-laws for their blessings and good

wishes for my studies last few years.

Last, but definitely not the least, I thank my wife Shanthi who has made it

all worthwhile. Without her support and encouragement I would not have made

it to the finish line. It was she who made the most personal sacrifices to help me

complete my dissertation and I cannot thank her enough.

Anand Rajaram

University of Texas, Austin.

vi

Synthesis of Variation Tolerant Clock Distribution

Networks

Publication No.

Anand Kumar Rajaram, Ph.D.

The University of Texas at Austin, 2008

Supervisor: David Z. Pan

In the sub-65nm VLSI technology, the variation effects like manufacturing

variation, power supply noise and temperature variation become very significant.

As one of the most vital components in any synchronous VLSI chip, the Clock

Distribution Network (CDN) is especially sensitive to these variations. The un-

wanted clock skews caused by the variation effects consume increasing proportion

of the clock cycle, thereby limiting chip performance and yield. Thus, making the

clock network variation-tolerant is a key objective in the chip designs of today.

In this dissertation, we propose several techniques that can be used to syn-

thesize variation-tolerant clock networks. Our contributions can be broadly clas-

sified into following four categories: (i) Efficient algorithms for synthesizing link

based non-tree clock networks. (ii) A methodology for synthesizing a balanced,

variation tolerant, buffered clock network with cross-links. (iii) A comprehensive

framework for planning, synthesis and optimization of clock mesh networks. (iv)

A chip-level clock tree synthesis technique to address issues unique to hierarchi-

cal System-On-a-Chip (SOC) designs that are becoming more and more frequent

today.

vii

Depending on the performance requirements and resource constraints of

a given chip, the above techniques can be used separately or in combination to

synthesize a variation tolerant clock network.

viii

Table of Contents

Acknowledgments v

Abstract vii

List of Tables xiii

List of Figures xv

Chapter 1. Introduction 1

1.1 The Big Picture . 1

1.2 Clock Network Design Objectives and Clock Network Types . . . 3

1.3 Thesis Organization . 7

Chapter 2. Algorithms for Link Insertion in Clock Trees 9

2.1 Link Insertion in Clock Trees . 9

2.1.1 Effect of Link Insertion on Skew Variability 10

2.1.2 Skew Variability Between Arbitrary Nodes 11

2.1.3 Link Insertion Scheme Overview 12

2.2 Review of Existing Link Insertion Methodologies 13

2.2.1 Rule-based Node-pair Selection Algorithm 14

2.2.2 Min-matching Based Node-pair Selection Algorithm 16

2.2.3 Statistical Link Insertion 18

2.3 Rule-Delta Algorithm . 20

2.3.1 Parameter Determination 22

2.4 MST Based Link Insertion Algorithm with Rule Based Deletion . 27

2.4.1 Parameter selection . 31

2.5 Incremental Link Insertion . 33

2.5.1 Motivation for Incremental Link Insertion 33

2.5.2 Automatic Link Selection 35

2.5.3 The Algorithm . 37

2.6 Application of Link Insertion Algorithms to Non-zero Skew CDNs 41

ix

2.7 Experimental Results . 43

2.7.1 Experimental Setup . 43

2.7.2 Rule-Delta and MST Algorithms 44

2.7.3 Run-time Comparison . 47

2.7.4 Automatic Parameter Determination Results 48

2.7.5 Incremental Link Insertion Results 50

2.7.6 Skew reduction results for non-zero skew clock networks . . 51

2.8 A note on selecting the appropriate link insertion algorithm 52

Chapter 3. Link Insertion for Buffered Clock Trees 54

3.1 Why Link Insertion for Buffered Clock Trees? 54

3.1.1 Challenges in Buffered Clock Tree Link Insertion 55

3.1.1.1 Chicken-egg problem 56

3.1.1.2 Accuracy of delay model 56

3.1.1.3 Short-circuit Power and Waveform Quality 57

3.1.2 Existing clock tree synthesis algorithms 62

3.1.3 Requirements of a Link Insertion Friendly Buffered Clock
Tree Synthesis . 63

3.2 Iterative Delay Evaluation and Backward Slew Propagation 66

3.2.1 Iterative delay and slew evaluation 66

3.2.2 Backward propagation of slew 68

3.3 Link Insertion Friendly Clock Tree Synthesis 69

3.3.1 Subtree merging with backward slew
propagation . 70

3.3.2 Balanced CTS algorithm 73

3.4 Link insertion flow . 79

3.5 Sensitivity based Link Insertion 81

3.5.1 Drawbacks of the Existing Approaches 81

3.5.2 Sensitivity Based Algorithm 82

3.5.3 Sensitivity Vector . 83

3.5.4 α-Rule for Buffered Clock Tree 87

3.5.5 Sensitivity Based Link Insertion 89

3.5.6 Advantages of Sensitivity Based Link Addition 91

3.6 Experimental Results . 92

3.6.1 Results for Balanced CTS and Link Insertion 92

3.6.2 Results for Sensitivity Link Insertion 95

x

Chapter 4. Optimized Clock Mesh Network Synthesis 99

4.1 Clock Mesh Synthesis Problem . 99

4.2 Mesh Planning and Synthesis . 104

4.2.1 Terms and Definitions . 104

4.2.2 Total wire-length as a function of Mesh size 105

4.2.3 Skew as a function of Mesh size 107

4.2.4 Mesh Optimization Friendly Buffer Placement/Sizing 112

4.3 Network Sensitivity Based Mesh Optimization 115

4.3.1 Network Sensitivity Theory 115

4.3.2 Accurate Buffer Modeling For Mesh Optimization 117

4.3.3 Mesh Optimization Algorithm 119

4.3.4 Buffer-resizing for Mesh Optimization 124

4.4 Wire Sizing for Reliability . 124

4.5 Practical Considerations in the Use of MeshWorks 129

4.6 Experimental Results . 131

4.6.1 Experimental Setup . 131

4.6.2 Mesh Planning, Synthesis and Optimization Results 132

4.6.3 Results of Wire-sizing for EM 137

4.6.4 Results for Practical Issues in MeshWorks Usage 138

Chapter 5. Robust Multi-Corner Chip-level CTS 142

5.1 Chip-level Clock Tree Synthesis Problem 142

5.2 Motivation and Problem Formulation 145

5.2.1 Significance of Clock Divergence Reduction 146

5.2.2 Impact of Sub-block Clock Pin Location on Clock Divergence147

5.2.3 Multi-corner skew reduction problem 148

5.3 Clock Pin Assignment Algorithm for Clock Divergence Reduction 151

5.4 Multi-corner Skew Reduction Algorithm 154

5.5 Chip-Level CTS Algorithms . 160

5.5.1 Single-Corner DME based Approach 160

5.5.2 Multi-Corner DME based Approach 161

5.5.3 Greedy CCTS Algorithm 161

5.5.4 Dynamic programming Based CCTS Algorithm 162

5.6 Practical Considerations in CCTS 167

xi

5.6.1 Generalization of Pin Assignment Algorithm 167

5.6.2 Consideration of Blockages 168

5.6.3 Measuring Divergence . 169

5.7 Experimental Results . 169

5.7.1 Test-case Generation . 170

5.7.2 Experimental Setup, Results and Discussions 172

Chapter 6. Conclusion 178

Bibliography 179

Vita 193

xii

List of Tables

2.1 Maximum skew variation (MSV), standard deviation (SD) and to-
tal wire-length (WL) of trees. The CPU time is the time for gen-
erating the tree using BST [17] code. 44

2.2 Skew variations and wire-length in terms of tree results shown in
Table 2.1. Size of a tree+link network is the # of links. 46

2.3 Results for automatic parameter determination procedures. The
HSPICE Skew variability and wire-length values are w.r.t. the tree
values of Table 2.1. 49

2.4 Incremental link insertion results w.r.t. the tree values of Table 2.1. 51

2.5 Skew reduction for non-zero skew clock networks. The nominal
skew (NS), maximum skew variation (MSV), standard deviation
(SD) values for non-zero skew CDNs. The delay values given for
the trees are absolute values (ps) and the values given for the non-
trees are w.r.t. the corresponding tree. 52

3.1 Average power and sink skew for different values of skews between
signals A and B in Figure 3.2 . 58

3.2 Skew variation and resource consumption results for the algorithm
in [11] . 95

3.3 Skew variation and resource consumption results for our new al-
gorithms and algorithms in [14] w.r.t. results of [11] in Table 3.2 . 96

3.4 Size and skew variability information for buffered clock trees. WCS
and SD in pico-seconds . 97

3.5 Skew variation information for link based non-trees w.r.t. the re-
sults of trees shown in Table 3.4 97

4.1 Comparison of the different mesh optimization approaches – ab-
solute values of buffer area (BA), wirelength(WL), power (PWR)
and frequency (Fmax). 134

4.2 Comparison of the different mesh optimization approaches – per-
centage value w.r.t. MM method. 135

4.3 Summary of optimization results from Table 4.1 and 4.2 for all test
cases. 135

4.4 Results of EM violation fixed by wire-sizing. BA and WA (Wire-
Area) are % reduction w.r.t. MM row in Table 4.1 and 4.2. #Vem
denote number of EM violations. #itr denotes the number of EM
fixing iterations. 137

xiii

5.1 Key test-case Generation Parameters. 171

5.2 Multi-corner delay, skew and clock divergence results for the dif-
ferent CCTS approaches. 176

5.3 Average & normalized delay, skew, clock divergence information
along with Buffer Area(BA) and Wire Length(WL) results for the
test-cases in Table 5.2. All normalization done w.r.t. results of
1-corner DME approach. 177

xiv

List of Figures

1.1 Working of a Synchronous Chip. 2

1.2 Different type of clock networks have progressively higher quality,
robustness and cost. 5

2.1 An example of cross link based non-tree. 10

2.2 An example in which the rule based link-insertion algorithm might
fail. 16

2.3 A bipartite graph model for selecting node pairs between two sub-
trees. Each subtree is further divided into a number of sub-subtrees
for link insertion. An edge weight between two nodes is the short-
est rectilinear distance between leaf(sink) nodes of two sub-subtrees. 17

2.4 An example of The Law of Diminishing Returns for link addition.
As more links are added to a given tree, the extra skew reduction
is limited . 23

2.5 Effect of α on skew reduction and wire-length increase. Parameter
β also exhibits similar behavior 24

2.6 An example of a new approach that might be better than the min-
matching based link insertion. 28

2.7 The top-level algorithm of selecting node pairs for link insertion. . 29

2.8 MST based algorithm of selecting node pairs for link insertion. . . 30

2.9 A simple nontree where incremental approach might help. 34

2.10 The top-level incremental link insertion algorithm. 38

2.11 The method of picking the best link based in α value of the non-tree. 39

2.12 Illustration of link addition for non-zero skew clock trees. Link is
added between equi-delay nodes A and P. 43

2.13 Run-time comparison between the different link insertion methods
as a function of number of links inserted at γ = 1 level. 48

3.1 An example of link-based non-tree. (a) Unbuffered case. (b)
Buffered case. 56

3.2 A simple example of link insertion in buffered clock trees. 57

3.3 Sink voltage waveform with 0ps skew between input signals A and
B in Figure 3.2. 59

xv

3.4 Sink voltage waveform with 50ps skew between input signals A
and B in Figure 3.2. 59

3.5 Sink voltage waveform with 100ps skew between input signals A
and B in Figure 3.2. 60

3.6 Sink voltage waveform with 150ps skew between input signals A
and B in Figure 3.2. 60

3.7 Sink voltage waveform with 200ps skew between input signals A
and B in Figure 3.2. 61

3.8 (a) An example of an unbalanced buffered clock tree; (b) An ex-
ample of a balanced buffered clock tree. 64

3.9 (a) Definitions of transition times for nodes v and a. (b) A simple
example of RC network. 67

3.10 Plot of x (ratio of RC and input slew) versus y (ratio of RC and
output slew) of Equation (3.4). 70

3.11 An example of subtree merger using effective downstream capaci-
tance . 71

3.12 Procedure to evaluate the signal transition values of a node given
the transition values of the child nodes. 73

3.13 The procedure to evaluate the effective downstream capacitance
recursively. 74

3.14 The algorithm for selecting the subtrees to be merged. 76

3.15 The Merging cost for two subtrees. 78

3.16 Clock Tree with Variations on Each Segment 84

3.17 Node Pair Selection. 91

4.1 (a) A clock network with leaf-level mesh. (b) Leaf-level mesh driv-
ing clock sinks. 100

4.2 Examples of sparse and dense clock meshes. A dense mesh is likely
to have shorter stubs. 106

4.3 Determining the right mesh size. 106

4.4 Three dominant skew components in a mesh - skew due to buffer
delay imbalance, skew due to difference in distance from closest
buffer and skew due to different stub length and load capacitance. 109

4.5 Plot showing the fidelity of the skew bound Equation(4.2). Though
skew bound is not perfectly linear of actual worst case skew, it is
monotonic. 110

4.6 The top-level algorithm of selecting the initial mesh size. 111

4.7 An example where the buffer insertion algorithm of [77] might not
take the better choice. The shaded circles represent buffers of
proportional size. 113

xvi

4.8 Network sensitivity theory can be applied for clock mesh optimiza-
tion. 115

4.9 Accurate buffer used for clock mesh optimization. S is the size of
a given buffer . 118

4.10 Comparison of sink delays in SPICE obtained using buffers and
the buffer model for a clock mesh test-case. 119

4.11 Simple example of network sensitivity based mesh optimization. . 120

4.12 Iterative wire-sizing flow to fix EM violations. 128

4.13 MeshWorks can be seamlessly applied for chips with blockages. . . 129

4.14 Mesh optimization result on a testcase with blockage. 139

4.15 Mesh optimization done on a testcase with two clocks on same
floorplan. Clock-A is shown. 139

4.16 Mesh optimization done on a testcase with two clocks on same
floorplan. Clock-B is shown. 140

5.1 A simple chip-level CTS example. The black circles represent the
clock root for each sub-block. 146

5.2 Even for identical nominal skews, Case A is better than Case B
because of lesser clock divergence and hence lesser skew variation. 147

5.3 Importance of clock pin assignment for sub-blocks. Case A and
Case B differ in the clock pin location for block B, which affects
CTS. If blocks A and B have critical paths between them, Case
B will result in better yield because of reduced clock divergence
between A and B. 148

5.4 Simple example illustrating difficulty of balancing two different
IPs. The clock tree delays of the two blocks will scale differently
across different corners due to different buffer sizes and intercon-
nect lengths. 149

5.5 Buffer configuration used for multi-corner delay characterization. . 155

5.6 Multi-corner skew balancing heuristic. 158

5.7 Dynamic Programming based approach to chip-level CTS. The
sub-steps are explained separately in Figures 5.8, 5.9, 5.10. . . . 163

5.8 Procedure to pick valid pairs for merger from a given set of sub-trees.164

5.9 Pre-eliminate procedure to eliminate very bad merging choices. . . 165

5.10 Post-eliminate procedure used to eliminate dominated sub-trees. . 166

xvii

Chapter 1

Introduction

1.1 The Big Picture

Electronic Design Automation (EDA) has been one of the key drivers of

the remarkable cost reduction and performance improvements of VLSI chips in

the last few decades. The focus of EDA is to build tools and algorithms that

can be used to automate the design of complex electronic systems like computer

processors and cell-phone chips. Physical Design Automation is one of the im-

portant steps of EDA in which the logical description of a chip is converted to the

actual physical design that can then be manufactured to create the actual chips

used in the electronic systems. This dissertation belongs to the area of Physical

Design Automation.

Any VLSI chip can be divided into three logical component types. The

first type of components do the computing that represent the actual work that

needs to be done by the VLSI chip. Examples of this type include adders, multi-

pliers etc. and are called data elements in general. The second component type

stores both the input data for the data elements and also the result from them.

Examples of this type include registers, latches and memory. The final compo-

nent type synchronizes the overall operation of the chip such that the chip as a

whole completes the necessary tasks in the expected amount of time. This third

component is the focus of this dissertation.

1

In most VLSI chips, the synchronization is done using a clock signal. An

ideal clock signal is a periodic binary signal that is either 0 or 1 at any given

time. The clock signal is used as a reference with respect to which the data

transfer between the individual registers in the chip takes place. An example is

shown in Figure 1.1 in which the data from Register1 is available for use at the

launch clock signal. This data is used to do the necessary computation by the

data elements between Register1 and Register2 before the capture signal reaches

the Register2. At that point, the data computed by the data elements get stored

in Register2. This operation repeats every clock cycle. In most VLSI chips,

there are hundreds of thousands of such registers interacting in a complex way

to complete the required operations of the chip.

Figure 1.1: Working of a Synchronous Chip.

Clock Distribution Networks (CDNs) are the means by which the clock

signals are transferred to every sequential element (registers, latches etc.) in

the chip. Ideally, the clock signal that is transferred to every register will be

2

identical. However, in reality the clock signals reaching the different registers

will be different from each other due to many factors1. As a result, the quality of

the clock signal is measured by the maximum time difference or skew between any

two clock signals reaching any two registers in the chip. Since the complete chip

depends on the clock signal as the reference, a higher clock skew means worse

reference and thus worse overall chip performance. As a result, synthesis of high

quality clock distribution networks is one of the most important steps in Physical

Design Automation.

1.2 Clock Network Design Objectives and Clock Network
Types

Due to the fact that CDN is one of the biggest and fastest switching

nets in most VLSI chips, the quality of CDN can have tremendous influence

on the overall operations of a chip[21]. This is especially true in the sub-65nm

VLSI technology used today in which the variation effects like manufacturing

variation [47], power supply noise [65], temperature variations [15] become very

significant. The unwanted clock skews caused by these variation effects consume

increasing proportion of the clock cycle, thereby limiting chip performance and

yield. It is to be noted here that the skew variation can be a very significant

portion of the nominal skew. For example, according to [42], just the interconnect

variations can contribute to as much as 25% skew variation. Such a significant

impact makes the traditional method of applying margins for variation both

inefficient and risky. Thus, making the clock network variation-tolerant is a key

1Details discussed in the next sub-section

3

objective in the chip designs of today. Needless to say, variation tolerance should

come at as little a cost as possible in terms of traditional metrics like delay,

buffering/routing resources and power.

Though it is important for all synchronous chips to have a variation tol-

erant and low skew clock network with the use of minimum possible resources,

the exact requirements for different chips differ drastically depending on the type

of chip and its potential application. For example, for a chip that is designed

to be used in a high performance computer, speed is the most important metric

while power, though important, is secondary. However, for chips used in mo-

bile devices, power is the key metric, while performance is secondary. Of course,

there are various chips (and applications) that fall somewhere in-between the two

extreme characterizations.

Figure 1.2 shows some of the existing types of CDNs. The irregular tree

show in Figure 1.2-a is typically used in low power, low performance designs

that do not require variation tolerant clock networks. Because of this, the main

focus in their design is to keep both power and buffer/routing resources low.

The regular trees or balanced trees in Figure 1.2-b is typically used in medium

power/performance chips in which a reasonable variation tolerance is needed. As

a result, it uses more power and resources compared to the irregular tree. The

clock network type shown in Figure 1.2-c was used in Intel-PentiumTMin which

three spines were laid along the length of the chip and each was driven at multiple

points, making it a non-tree clock network. This can significantly reduce the skew

variation between the registers connected to a given spine. However, the power

and resources used is likely to be higher than a balanced tree because of the

4

presence of multi-driver nets and thick spines. The sparse top-level mesh shown

in Figure 1.2-d was proposed in [67] in which a top-level sparse mesh drives a

number of trees at the leak-level. The presence of redundancy at the top-level due

to the mesh structure reduces the skew variation between the roots of the clock

trees driven by the mesh. However, the skew within each tree driven by the mesh

is still present. Finally, the type shown in Figure 1.2-e uses a complete leaf-level

mesh that is driven at multiple points by a carefully tuned tree at the top-level.

This type of clock network structure is used in high performance microprocessors

like [64]. Because of the significant amount of redundancy in the clock network,

the skew variation is drastically reduced. However, the redundancy implies a

significantly higher power and resource requirement compared to the other types

of clock networks.

Figure 1.2: Different type of clock networks have progressively higher quality,
robustness and cost.

5

It may be noted that each of the five types of clock network structures

discussed above has progressively higher performance at the cost of progressively

higher power and resource requirements. The exact type of clock structure that

is picked depends of the type of application. For example, for chips used in

electronic toys, the irregular trees are sufficient as the performance requirement

is very low. However, in the case of a processor used in supercomputers, the

performance is the main goal and the power/resource requirements are secondary.

This broad range of power vs. performance trade-off in different VLSI chips

gets translated to a wide-range of requirements for different clock distribution

networks. In broad terms, these requirements can be classified under the following

four major types of clock networks:

• Small clock networks with strict low power/resources requirements

• Medium sized clock networks that can afford a small power increase

• High performance designs that have strict variation tolerance requirements.

These designs can typically tolerate small losses in performance for signifi-

cant gains in power.

• Hierarchical chip-level clock networks for System-On-a-Chip designs. SOC

chips are built by integrating a number of different sub-chips together to

form a big chip that can perform a vast array of tasks. For this type of clock

networks, the focus is on integration of different components such that the

complete system meets the performance requirements under all the extreme

variation conditions.

6

1.3 Thesis Organization

In this work, we propose four categories of techniques that can be used to

synthesize variation-tolerant clock networks. These four techniques correspond

to the four major types of clock networks discussed above. They are:

• Efficient algorithms for synthesizing link based non-tree clock networks that

can be used in small designs with strict resource constraints. Our algorithms

can obtain clock networks that are significantly more variation-tolerant with

little extra resources compared to the original clock trees.

• A methodology for synthesizing a balanced, variation tolerant, buffered

clock network with cross-links. Our approach improves skew variability by

50% with small increase in buffer-area and wire-length. This method can

be used in medium sized designs with strict resource constraints.

• A comprehensive framework for planning, synthesis and optimization of

clock mesh networks. Clock meshes are typically used in high performance

chips, such as microprocessors. Though they are variation tolerant, they are

very resource intensive. Using our framework, we can achieve reductions of

26%, 19% and 18% in buffer area, wire-length and power respectively, with-

out sacrificing variation tolerance. This makes clock meshes an attractive

choice in high-performance ASIC designs, such as DSP cores, that cannot

afford the same resources as a microprocessor.

• A chip-level clock tree synthesis (CTS) technique for System-On-a-Chip

(SOC) chips. We specifically address issues that assume added importance

in SOC-designs compared to traditional designs, like multi-corner skew and

7

clock divergence. Our methods can achieve 14%-26%(19% on an average)

reduction in the clock path divergence, 46% reduction in average multi-

corner skews at the cost of 0.4% increase in buffer area and 0.2% increase

in wire-length compared to existing methods.

Depending on the performance requirements and resource constraints of a given

chip, any one of the above techniques can be used, either by itself or in combina-

tion with other techniques to synthesize a variation tolerant clock network. The

rest of the dissertation is organized as follows: in Chapter-2, we present several

novel link insertion algorithms that can be used to convert any given clock tree

into a link-based non-tree clock network. The algorithms related to synthesis

of link-based buffered clock networks are presented in Chapter-3. We propose

our clock mesh network synthesis and optimization framework in Chapter-4. In

Chapter-5, we present our multi-corner, chip-level clock tree synthesis algorithms.

We conclude the dissertation in Chapter-6.

8

Chapter 2

Algorithms for Link Insertion in Clock Trees

In this chapter, we will first review the concept of link insertion in clock

trees, followed by a brief review of previous link insertion algorithms. Next, we

propose three different link insertion algorithms and discuss their results. We

also discuss how the link insertion scheme can be used for non-zero skew clock

networks. We conclude the chapter with a discussion on the use of the different

link-insertion schemes under different contexts.

2.1 Link Insertion in Clock Trees

Systematic link insertion in clock trees for reducing skew variation was

first proposed in [54] in which cross links were added in an existing clock tree,

thereby making it a non-tree clock network. By suitably choosing the correct

locations of the links, it was shown that significant reduction in skew variability

can be achieved with very small increase in wire-length when compared to the

original clock tree. An example of link-based non-tree is shown in Figure 2.1. The

vital aspect of the link-based methodology is to determine the proper location of

the cross links.

9

Clock Source

b

h

f
g

u w

r Cross Links

Depth = 1

Depth = 2
d

p
Nearest Common

 Ancestor

Figure 2.1: An example of cross link based non-tree.

2.1.1 Effect of Link Insertion on Skew Variability

The effect of inserting a link on skew between any two arbitrary points

has been analyzed in detail in [54]. Here, we will review some of the important

conclusions of [54] for the sake of clarity.

Skew Variability Between Link Endpoints: If a link is inserted

between nodes u and w, then according to [54], the skew between u and w after

link insertion is given by:

q̂u,w =
Rl

Rl + ru − rw

(qu,w +
Cl

2
(Ru,u −Rw,w)) (2.1)

where, qu,w is the original skew between nodes u and w, q̂u,w the final

skew after the link insertion, Cl the link capacitance, Rl the link resistance, Ru,u

and Rw,w the transfer resistances of nodes u and w. The above equation can be

rewritten as:
q̂u,w = (αqu,w + αβ) (2.2)

where α = Rl

Rl+ru−rw
and β = Cl

2
(Ru,u −Rw,w).

10

Since the effect of capacitance can be easily estimated and removed [54],

Equation (2.1) gets reduced to:

q̂u,w =
Rl

Rl + ru − rw

qu,w (2.3)

Thus, from Equation (2.3), we can see that the final skew is a scaled value

of the original skew with the scaling factor of Rl

Rl+ru−rw
. It has been proved in

[54] that the scaling factor is always less than 1, thereby proving that the skew

between nodes u and w is always reduced as a result of link insertion. It has

also been proved in [54] that inserting a link as close to sink nodes as possible is

better in terms of skew variability reduction. For example, in Figure 2.1, when

we want to reduce the skew between nodes r and b, then it is better for the link

to be as close to the nodes r and b as possible.

2.1.2 Skew Variability Between Arbitrary Nodes

The effect of inserting a link between nodes w and u on skew between any

two arbitrary nodes i and j (ignoring the effect of link capacitance, which can be

considered separately) is given in [54] as:

q̂i,j = qi,j − ri − rj

Rl + ru − rw

qu,w (2.4)

Consider a clock tree T = (V, ET) as shown in Figure 2.1 with ET being

the solid lines. Let Ti denote the subtree rooted at node i . The node u is in a

subtree Tf ⊂ T and the node w is in another subtree Tg ⊂ T . The root nodes

of Tf and Tg are the two child nodes of the node p. Node p is called the Nearest

Common Ancestor (NCA) for the nodes u and w. According to [54], when a link

is inserted between the nodes u and w the following three scenarios can arise:

11

Scenario 1: One of i and j is in subtree Tf and the other is in subtree

Tg, for example, i ∈ Tf and j ∈ Tg. In this case, the link addition introduces a

correlation between the delays of nodes i and j, which results in reduced skew

variability.

Scenario 2: Both i and j are in the same subtree Tf or Tg. In this

scenario, the skew variability might increase. Since i and j are in the same

subtree, their skew variation in original tree is usually not that considerable.

Scenario 3: One of i and j is in the subnetwork Tp rooted at the NCA

node p for nodes u and w and the other node is disjoint with Tp. For example,

i is in Tp like b and j is not in Tp like d in Figure 2.1. In this case, there is no

predictable correlation between the delays of nodes i and j and so the skew might

or might not get reduced.

Therefore, any link insertion scheme must be such that it increases the

number of occurrences of scenario 1 while the number of occurrences of scenarios

2 and 3 must be reduced.

2.1.3 Link Insertion Scheme Overview

For a given link insertion algorithm, the overall approach taken in [54]

towards building a non-tree clock distribution network is as follows.

1. Obtain initial clock tree from any of the available clock tree routing algo-

rithms in the literature like [10, 17, 74].

2. Given the clock tree, select node pairs where cross links are to be inserted.

The node-pairs must be selected in such a way that the scenario 1 discussed

12

in Section 2.1.2 is maximized and scenarios 2 and 3 minimized. This will

make sure that the cross-link addition reduces the skew variability.

3. Since the addition of link capacitance might change the original skew of the

clock tree, we need to tune the nodes of the clock tree such that the original

skew is not altered. This can be done by considering only the effect of link

capacitance on the link end points and tuning the nodes in a bottom-up

fashion similar to the method in [75] so as to obtain the original skew after

the addition of link capacitance.

4. Finally, the links are added to the selected node pairs. Since the effect of

link capacitance has been already removed by bottom-up tuning, only the

effect of link resistances will be present, which is very likely to reduce the

skew variability.

In the above procedure, step 2 is the key step and has a tremendous influ-

ence on the quality of the final non-tree since selecting the wrong node pairs might

result in worse skew variability. In the next section, we discuss the drawbacks of

the existing link selection algorithms.

2.2 Review of Existing Link Insertion Methodologies

We will briefly review existing methods of [35, 54] and discuss their lim-

itations. A more detailed explanation of the existing methods can be obtained

from the corresponding papers.

13

2.2.1 Rule-based Node-pair Selection Algorithm

The rule based approach of [54] is derived directly from the Equation (2.1).

In this method, three rules are defined for node pairs selection, which are given

below:

α rule: The α value of any link is defined as α = Rl

Rloop
, where Rloop =

Rl + ru − rw is the total resistance along the loop of p Ã u Ã w Ã p. Only the

links that have α value less than an upper bound value of αmax are allowed to be

added. The lower the value of α, the lower the scaling of the original skew and

the better the link for skew reduction.

β rule: The β value of any link is defined as β = |Cl

2
(Ru,u − Rw,w)|. An

upper bound of βmax is placed on the β value of links that can be added. The

β value determines the extra skew introduced into the original clock tree due to

the link capacitance. The lower the value of β, the lesser the tuning required in

the original tree.

γ rule: The γ value of a link is defined as the depth of the NCA of the

linked nodes w.r.t the clock source. For the example in Figure 2.1, the NCA p of

nodes r and b has depth 2 from the clock source. We call this depth of the NCA

from the clock root as the level of the node pair and denote it using γ. While

adding links, an upper bound γmax is placed on the value of γ and only links

with values lesser than γmax is added. This rule is intended to make sure that

the links added does not worsen the skew variation between any two pairs in the

clock network significantly.

In this method, any link that has α, β, γ values less than the maximum

value set by the user will be added to the tree. The lesser the value of α, β

14

and γ, the better the effectiveness of the link in skew variation reduction [54].

But choosing too low values for these variables will result in fewer links, thereby

reducing the effectiveness of link insertion.

Merits: The rule based algorithm has the main advantage that the phys-

ical characteristics of the links to be inserted are considered before inserting the

link in the clock network. Moreover, the run-time does not increase drastically

as the number of links to be inserted and the clock tree size increases. Since a

lengthy link will usually have high values of α and β, shorter links will be pre-

ferred. Shorter links will be much better in terms of the routability of the final

non-tree. Also, when dealing with non-symmetric clock networks, the method

will still work because the rules used does not assume any symmetry in the clock

network.

Demerits: The rule based technique does not have any explicit control

over the distribution of the links across the clock network. Generally speaking, we

would like the links to be distributed across all the regions of the clock network so

that the skew variation of all subtrees in the clock network is reduced. In the case

of rule-based method, there is a possibility that the links are added only between

a few subtrees thereby not controlling the skew variation in other subtrees. For

example, in Figure 2.2, there are four different subtrees represented by A,B, C

and D. It may happen that all the links might get added between the subtrees B

and C only, leaving the skew between subtrees A and D completely uncontrolled.

This situation can be avoided by making sure that links get added uniformly

across all regions of the clock network.

15

Figure 2.2: An example in which the rule based link-insertion algorithm might
fail.

2.2.2 Min-matching Based Node-pair Selection Algorithm

The min-matching based link insertion algorithm of [54] uses the bipartite

min-matching algorithm for selecting the node pairs for link insertion. The main

idea of this method is to divide the clock network into several regions and making

sure that links are added to every region. This is done by dividing the clock

network into two subtrees - the left subtree and the right subtree. Each subtree

is further divided into k subtrees (denoted as sub-subtrees in the paper). The

clock network is represented by a bipartite graph with the two main subtrees as

the two sides and the sub-subtrees on either side as the nodes of the bipartite

graph with total of 2k nodes. The edge weight of the bipartite graph between

two nodes is fixed as the minimum rectilinear distance between any two pairs of

sinks of those sub-subtrees. For example, in Figure 2.3, the edge weight between

nodes 2 and b is the shortest rectilinear distance between any two pairs of sinks

of the sub-subtrees 2 and b. Solving the min-matching of this bipartite graph will

give us k links with minimum total wire-length. This will also make sure that

every sub-subtree in the clock network is linked to another by a cross link. This

idea is illustrated in Figure 2.3.

16

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

1

2

8

7

6

5

4

3

a

b

c

d

e

f

g

h

Figure 2.3: A bipartite graph model for selecting node pairs between two subtrees.
Each subtree is further divided into a number of sub-subtrees for link insertion.
An edge weight between two nodes is the shortest rectilinear distance between
leaf(sink) nodes of two sub-subtrees.

Merits: The key advantage of the min-matching algorithm is that it

guarantees even distribution of links across the clock network. As a result, this

method out-performs the rule-based method in skew variation reduction. Also,

because of the min-matching nature of the algorithm, it generally gives lesser

total wire-length when compared to the rule-based method.

Demerits: The complexity of the min-matching algorithm (including the

construction of bi-partite graph) is O(n3 +n2m2) where n is the number of nodes

in bipartite graph and m is the maximum number of sinks within a sub-graph.

This is an important disadvantage because the run-time will drastically increase

as the size of the clock network increases. Also, since min-matching does not

control the length of individual links, there is high probability of adding lengthy

links. This might make the chip difficult to route. For example, in Figure 2.3,

the links between the nodes 6 and a and nodes 1 and e may be very long. The

main reason for lengthy links is that the min-matching algorithm allows a given

subtree to be connected to exactly one subtree only. This problem will get worse

as the number of links that we want to add increases. Thus, this method will hit

17

a brick-wall in terms of the number of links that can be inserted at a particular

level.

Another disadvantage in having lengthy links is that any problem in even

one of the links will drastically affect the effectiveness of the non-tree for skew

variability reduction. Possible situations in which this can happen are manu-

facturing defects in the links and unroutability of a link because of the initial

clock tree routing. In such cases, having several small links is better than a few

lengthy links. Another demerit of the min-matching algorithm is that it inher-

ently assumes a reasonable amount of symmetry in the structure of the clock

tree. Otherwise, it might not be very effective in reducing the skew variation.

For example, when there are two subtrees on one side of the bipartite graph and

five on the other side, then the min-matching algorithm will result in only two

links, thereby leaving some of the subtrees without any cross links.

2.2.3 Statistical Link Insertion

The statistical link insertion method of [35] adds the links incrementally

by updating the statistical values of the sink delays and using the information

of the latest non-tree to select the next link to be inserted. This method has

the advantage that every link insertion considers the effects of all the previously

inserted links, unlike the methods of [54]. Another important advantage is that

it does not require the user to select any empirical parameters for link insertion.

However, the method of [35] suffers from the disadvantage that the run-time is

very high even for clock networks of relatively small size. Also, the increase in

run-time as a function of the clock network size is exponential. For example,

clock networks with 74, 179 and 597 sinks take roughly 3, 50 and 655 minutes

18

respectively[35]. As a result, the method of [35] cannot be used for bigger clock

networks. Another point to be noted here is that the skew variation reduction

as a result of link insertion is independent of the source of skew. This can be

easily verified from Equation(2.2) in which the skew qu,w gets scaled down by the

value of α irrespective of the source of qu,w. Thus, considering all the independent

variables like wire widths, load capacitance etc. (as is done in [35]) for every

link insertion might be an overkill.

Based on the discussion in the above paragraphs, the requirements of an

ideal node pair selection algorithm are:

• The algorithm must efficiently distribute the links across all the sections of

the clock network. If an algorithm fails to achieve this, it might lead to high

skew for the sinks in the region where links are not added. This is mainly

because, an even distribution of links across all regions of the clock tree is

likely to perform better when there is random variations across all parts of

the clock tree. Also, an even distribution of links will have a better chance

of evenly distributing the negative effects of any links that might result in

scenarios 2 and 3.

• It must have a low complexity w.r.t. both the number of links added and

the size of the initial clock tree.

• It must make sure that very lengthy links are avoided and the total wire-

length is reduced. Reduction in the link length might be useful in easily

routing the clock network and a low total wire-length will help reduce both

area and power. We wish to point out here that we use the average link

19

length as an estimate of the routability of the link-based non-trees. Though

this assumption need not be true always, shorter links are easier to add in

general. Moreover, since we consider link addition as a post-detailed-routing

step to reduce variation, we believe that it is better to have fewer, shorter

links for a given skew variability reduction.

• The algorithm should be capable of handling asymmetric clock trees as well.

• The algorithm should avoid use of empirically chosen parameters to obtain

a good non-tree.

• The effect of the previously selected links must be considered before select-

ing the subsequent links for insertion.

In the following sections, we present our “Rule Delta” algorithm , “MST

with Rule Based Deletion” algorithm, and “Incremental Link Insertion” algo-

rithms in which the drawbacks of the existing algorithms are addressed.

2.3 Rule-Delta Algorithm

The rule-delta algorithm is an improvement of the rule based node pair

selection algorithm proposed in [54]. The key drawback of the rule-based algo-

rithm is that it cannot guarantee an even distribution of links across all subtrees

of the clock network. To overcome this drawback, we propose a new rule called

δ rule in addition to the original α, β and γ rules. The δ rule is explained below.

δ rule: Let δ be a valid node level (level = depth of the node) from the

clock source. According to the δ rule, no two links should have the same pair of

20

ancestors at the δ level from the clock source. When this condition is added to

the above rule-based link addition, we can control the distribution of the links

among the different sub-trees of the clock tree. For example, in Figure 2.2, the

problem that we would like to avoid is the crowding of the links between the

subtrees B and C which leaves the subtrees A and D unconnected. When we

apply the δ rule here with the value of δ = 2, then no more than one link will be

inserted between the subtrees B and C.

An important fact to be noted regarding the δ rule is that the value of δ

must be greater than the γ value used. Otherwise, the number of links added will

be significantly reduced, thereby reducing the effectiveness of the link insertion.

When the value of δ is increased, more links will be added because of the increase

in the number of permitted ancestor node-pairs for link insertion. This will allow

the addition of sufficient number of links in a way that they get distributed across

all sections of the clock network.

The advantages of Rule-Delta method are listed below:

• The ‘rule-delta’ algorithm can make sure that the links do not get crowded

in the same regions of the clock network. By choosing a proper selection of

the α, β, γ, and δ values, we can make sure that sufficient number of links

get added across all sections of the clock network.

• Since the algorithm just performs a sweep for the different possible links

based on the rule values, it is very efficient in terms of the run-time.

• The effectiveness of the links are assessed by the rules before adding it.

21

As a result, the situation of addition of lengthy links does not happen in

practice. This is because the lengthy links will have a very high value of

both α and β, which can be removed by using the appropriate bounds for

the values of α and β.

• Since the rules are independent of the structure of the initial clock tree, it

can handle even highly unbalanced clock trees.

It might be noted here that the last three advantages are shared by both the

rule-based and the rule-delta algorithms. The rule-delta algorithm inherits all

the advantages of the rule-based algorithm while overcoming the shortcomings.

2.3.1 Parameter Determination

Parameters α and β: An important observation we made from our

experiments is that, when only one among the parameters α, β is changed, the

skew variability reduction tends to follow the Law of Diminishing Returns w.r.t.

the amount of extra wire-length added. In other words as more links are added

to a given tree by changing only one parameter, the amount of extra reduction in

skew variability diminishes. Figure 2.4 illustrates this fact for test case r3. The

plot is obtained by varying only the parameter α, keeping all the other parameters

constant, to increase the number of links added. We observe this behavior in all

our test cases.

In order to determine the effect of α in reducing the skew variability, we

obtain several link based non-trees and their skew variability by varying the value

of α for a fixed set of values of other parameters like β, γ etc. We repeat this

experiment for several sets of parameters. Figure 2.5 shows plots of relative skew

22

Figure 2.4: An example of The Law of Diminishing Returns for link addition. As
more links are added to a given tree, the extra skew reduction is limited

reduction and wire-length increase (w.r.t. the values of tree) for three different

sets of parameters. As seen from Figure 2.5, irrespective of the values of other

parameters like β, γ and δ, the Law of Diminishing Returns holds. The only

difference between the different sets of parameters is the point of attainment of

the saturation value of skew reduction.

Thus, given the values of other parameters, we can obtain a good value of

α based on the skew vs. wire-length trade-off of a particular design by obtaining

a few non-trees with different α values and determining their skew variability.

Theoretically, the value of α is always between 0 and 1. In practice, we found

that the maximum value of α can be fixed at 0.3 irrespective of the clock tree

size. This is because for links with alpha greater than 0.3 the length of the link

becomes very comparable to the total length of the source to sink path. This

statement can be easily verified from the definition of α in Section 2.2.1.

The parameter β also obeys the Law of Diminishing Returns. However,

23

unlike α, the value of β can theoretically take any value. From the definition

of β in Section 2.2.1, we can see that the value of β can be considered as the

skew introduced by adding only the link capacitance in the original tree. From

our experiments, we found that links with value of β of greater than 5% of the

nominal delay never gets inserted because such links usually have very high value

of α also. Also, a β value of more than 5% means that a lot of wire snaking

might get introduced in the tuning step (step 3) of Section 2.1.3. In general, the

maximum value of β can be selected as a fixed percentage of nominal delay by

the user.

Figure 2.5: Effect of α on skew reduction and wire-length increase. Parameter β
also exhibits similar behavior

Parameters γ and δ: Unlike the α and β parameters, the γ and δ

parameters are integers. This is because these two parameters always denote the

depth of some node in the original clock tree w.r.t. the clock source. Another

key observation is that the total number of possible values of γ and δ parameters

is finite because the depth of any node in a given clock tree is finite and is also

known for a given clock tree. Thus, it is relatively easier to obtain the values of

24

γ and δ than α and β.

In order to get a good set of links, we found that the maximum value of γ

should be much less than half the depth of the clock tree. This can be explained

by the fact that lesser values of γ, more the probability of scenario 1 and lesser

the chances the scenarios 2 and 3 discussed in Section 2.1.2. Thus, we can fix

the value of γ to be from 0 to CDN Max Depth
2

, where CDN Max Depth is the

maximum depth of any node in the original clock tree from the clock source.

As explained in Section 2.3, the value of δ should be greater than the value

of γ. Thus, the value of δ is also bounded between γ and CDN Max Depth.

Based on the above discussions, we can conclude that the values of the

different parameters are bounded for all practical purposes. Also, the parameters

α ans β obey the Law of Diminishing Returns, and parameters γ and δ are

bounded integers with a small range. These properties can be used to perform

an intelligent search of the solution space instead of a blind brute force search

based on the theoretical bounds. At each step of the search, Elmore delay Monte

Carlo analysis can be used to guide the selection of parameters. Since our non-

trees are tree like, evaluating their delays and skews can be done efficiently using

the delay evaluation procedures of [7]. As a result, the Elmore Monte Carlo

analysis can be done quickly.

We have implemented a Perl routine that performs the intelligent search

outlined above. The routine uses the Elmore delay Monte Carlo analysis with

fewer trials to obtain the skew variability information of a given non-tree. This

information is used to guide the parameter selection process. Using fewer Monte

Carlo trials helps in reducing the overall run-time in selecting the parameters.

25

However, it might increase the probability of selecting a non-tree that is far from

optimality when a full fledged HSPICE based Monte Carlo analysis is done. To

overcome this disadvantage, we first select the top few non-trees based on the

Elmore Monte Carlo results. HSPICE Monte Carlo simulations are performed on

these selected non-trees to select the final non-tree to be used. This procedure

is much faster than running lots of Elmore Monte Carlo trials to select a single

non-tree and typically result in the same or very similar non-tree.

The different inputs required by this procedure are:

• Minimal Skew Gradient: It is defined as the minimum reduction in the

value of skew per unit wire-length increase that is acceptable. This param-

eter can be set based on the wire-length cost vs. skew benefit requirements

of the clock network. This parameter gives the user a direct control over

when to stop adding links.

• The maximum values for the parameters α, β , γ and δ: the value of α is

set at 0.3, the maximum value of β is set at a user defined percentage of

the nominal delay. The limits of γ and δ are automatically obtained by the

script based on the value of CDN Max Depth.

The procedure first constructs the non-tree with the minimal value of α, β,

γ and δ parameters. The skew variability of this non-tree is obtained using Elmore

Monte Carlo analysis. Next, the value of α is increased by a small value and a

new non-tree and its skew variability are obtained. Since the parameter α obeys

the Law of Diminishing Returns, we can use the steepest descent method [30]

and the value of Minimal Skew Gradient to determine the point at which an

26

increase in alpha results in minimal skew variability reduction. The results of the

non-tree at this point is stored and the procedure is repeated by changing the

other parameters. This process is repeated until all the values of the parameters

reach their maximum values. Since this procedure searches the entire solution

space in an efficient manner, it is possible to automatically obtain a good nontree

with reduced skew variability in a reasonable amount of time. The experimental

validation for this procedure is presented in Section 2.7. Please note that this

procedure is a lot faster than both manual tuning and also exhaustive search in

the parameter space using only their theoretical bounds.

2.4 MST Based Link Insertion Algorithm with Rule Based
Deletion

The MST based node pair selection algorithm is an alternative graph

theoretical approach to the min-matching based node pair selection algorithm

proposed in [54]. As pointed out in Section 2.2.2, one of the key demerits of

the min-matching algorithm is the addition of lengthy links. One way to avoid

adding lengthy links is to allow a given node to be connected to more than one

node on the opposite side of the bipartite graph. Also, not more than one link

should be allowed between any given pair of nodes to avoid crowding of links.

When these two conditions are satisfied, it is likely that the selected links will

not be too lengthy and at the same time, all the sub-subtrees are linked. This is

illustrated in Figure 2.6 in which there are no extremely lengthy links, unlike in

Figure 2.3.

To satisfy both these conditions, we propose to construct a MST in the

complete bipartite graph. As in [54], the edge weight between any two nodes

27

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

1

2

8

7

6

5

4

3

a

b

c

d

e

f

g

h

Figure 2.6: An example of a new approach that might be better than the min-
matching based link insertion.

in the bipartite graph is given as the minimum rectilinear distance between any

two pairs of sinks of those two sub-subtrees in the clock network. Constructing

a MST from a complete bipartite graph will invariably allow multiple links for

a few nodes in the graph. It will also avoid crowding of links between any two

nodes. One possible problem that we might encounter in constructing a complete

MST is that the total wire-length might become very high. To solve this problem,

we selectively remove links from the selected MST edges based on values of the

rules of α and β used in the rule based node pair selection algorithms.

Now, we will consider the complete flow of the MST-based link insertion

algorithm. From the conclusions in Section 2.1.2, we know that we need to avoid

scenario 3 so as to reduce the skew variability. Scenario 3 can be avoided by

choosing node pairs between left child subtree and right child subtree of a node

of depth 1 from the clock source. For example, in Figure 2.1, the links between

subtree Tp and subtree Td of depth 1 can avoid scenario 3, since there is no sinks

outside of Th. Node pairs for these links can be characterized by the depth of

their NCA node h, which can be called γ level as in [54]. Therefore, node pairs

with γ = 1 must be present to effectively reduce the skew variability.

28

Procedure: Select Node Pairs(Tv)
Input: Subtree Tv rooted at node v
Output: Node pair set P
1. l← left child node of v
2. r ← right child node of v
3. P ← Pair Between Trees(Tl, Tr)
4. If Depth(v) == Max Depth, return P
5. P ← P ∪ Select Node Pairs(Tl)
6. P ← P ∪ Select Node Pairs(Tr)
7. Return P

Figure 2.7: The top-level algorithm of selecting node pairs for link insertion.

The links inserted between subtrees Td and Tp will improve skew variability

between most sink pairs of those subtrees according to analysis of scenario 1.

However, these links might worsen the skew variability between sinks pairs within

Td or Tp as discussed in scenario 2. This might harm the overall skew variability.

This situation can be avoided by inserting links between sub-subtrees within

subtree Td or Tp. In other words, node pairs of γ = 2 need to be considered for

link insertion. This procedure can be repeated recursively till γ is sufficiently

large. The subtrees that correspond to large γ are mostly small and usually

the skew variability inside is negligible. The main algorithm description on this

recursive procedure is given in Figure 2.7.

The most important of all the steps in the algorithm in Figure 2.7 is step

3 in which the node pairs are selected between the two given subtrees. This step

is illustrated in Figure 2.8.

The advantages of MST based link pair selection method are:

• Since the MST based method divides the clock network into subtrees, it

can guarantee an even distribution of links across all the regions of the

29

Subroutine: Pair Between Trees(Tl, Tr)
Input: Two subtrees Tl and Tr

Output: Node pair set P
A. Decompose Tl into sub-subtrees Sl = {Tl1, Tl2....Tlk}
B. Decompose Tr into sub-subtrees Sr = {Tr1, Tr2....Trk}
C. For every pair (Tli, Trj) between Sl and Sr

D. Weight(Tli, Trj) = Min distance between leaf
pairs in Tli and Trj

E. Find the MST of the complete bipartite graph
between Sl and Sr.

F. Selectively remove the edges that have α and β
values higher than the set limits of αmax and βmax

G. P ← Selected links of MST.
H. Return P

Figure 2.8: MST based algorithm of selecting node pairs for link insertion.

clock network. This advantage is shared by both MST algorithm and the

min-matching algorithm, unlike the rule-based algorithms.

• The overall complexity of the algorithm is O(nlogn + n2m2) where n is

the number of nodes in bipartite graph and m is the maximum number

of sinks within a sub-graph. This is an important improvement over the

O(n3 + n2m2) complexity of the min-matching based algorithm, especially

for large clock networks.

• Since multiple links are allowed to be connected to a given node in the

bipartite graph, the chances of adding a lengthy link is greatly reduced

when compared to the min-matching algorithm.

• The MST based algorithm will work better than the min-matching based

algorithm in the case of an unbalanced clock tree. This is because, when the

two sides of the bipartite graph have unequal number of nodes, then some

30

nodes will not be linked while using the min-matching algorithm. But in

the case of the MST algorithm, all the nodes are guaranteed to be connected

to at least one node on the opposite side of the bipartite graph.

• The use of rule based deletion makes sure that the physical characteristics

of the links are taken into account before the addition of the link. This will

make sure that bad links do not get added to the clock network.

2.4.1 Parameter selection

From the MST based algorithm described in Section 2.4, we see that the

value of Max Depth (used in Figure 2.7) for a given clock network must be

specified. Also, for each of the levels, the value of k (used in Figure 2.8) that

determines the number of nodes in the MST (and the number of links added)

should be specified. One straightforward fact regarding these parameters is that

all of them are integers. Also, the value of Max Depth is bounded by the value

of CDN Max Depth. Also, the value of Max Depth determines the trade-off

between the number of links and the occurrences of scenarios 1, 2 and 3 of Sec-

tion 2.1.2. For higher values of Max Depth, the links added increase the likeli-

hood of occurrences of scenarios 2 and 3. However, selecting a very low values of

Max Depth will add too few links. In practice, the value of Max Depth can be

varied between 0 and CDN Max Depth
2

. In all our test cases, the extra skew reduction

was almost negligible for using any value close to or greater than CDN Max Depth
2

with an exponential increase in the additional cost. The exponential increase in

cost can be explained by the fact that, for each level increase in the value of

Max Depth, the number of eligible links doubles.

31

In addition to selecting the value of Max Depth, the value of parameter

k at each level is to be determined. The total number of different values of the

parameter k at each level is bounded by the value of CDN Max Depth. This

is because, in order to obtain similar sub-subtrees for constructing the bipartite

graph, it is easier to sub-divide the clock tree according to the existing topology

of the clock tree. For example, lets us consider a complete binary tree without

any loss of generality. For such a tree, it is easier to divide the left or right sub-

tree into 4 sub-subtrees each instead of 5 sub-subtrees each. Thus, the different

values that the parameter k can take at the topmost level is all possible values

of 2i where i is an integer value from 0 to CDN Max Depth− 1 (assuming that

sink level is not considered for sub-sub tree generation). Thus, there are only

CDN Max Depth different values of k at the topmost level. In general, for any

given level Depth, the different values that k can take is given by 2i where i is an

integer value from 0 to CDN Max Depth − Depth. It maybe noted here that,

the above conclusion of a fixed number of possible values of k is valid even for

incomplete binary trees. The only difference is that the values of k need not be

exact powers of 2.

Another useful observation is the relation between the k values of different

levels. In general, it is better to have the highest value of k at the topmost

level (Depth = 0) because, the links added at the topmost level maximize the

probability of scenario 1 of Section 2.1.2. Similarly, for every successive level, the

value of k can be fixed such that it is not more than the value of k used in the

previous level. Thus, for the entire clock network, the different values of k forms

a non-increasing series as the value of Depth increases. The above observations

can be used to automatically determine the parameters for the MST based link

32

insertion algorithm.

Based on the above discussion, we can see that for a given clock tree with

known depth, the different set of possible non-trees using MST based link inser-

tion algorithm is finite because all the parameters are tightly bounded integers.

As a result, it is possible to quickly obtain a good set of parameters for a non-

tree using a guided search similar to the one discussed in Section 2.3.1, with the

changes only in the parameter determination part. The parameter determination

for MST algorithm is much easier and quicker when compared to that of the rule-

based algorithm. The experimental validation for this method is also presented

in Section 2.7.

A note on choosing α, β for MST algorithm: We would like to point out

here that in the case of the MST based algorithm, the values of parameters αmax

and βmax are usually set to a very loose bounds to avoid very bad links. Unlike

the rule-delta algorithm in which these parameters are used to select the links,

in MST algorithm, their main purpose is to filter out very bad links.

2.5 Incremental Link Insertion

2.5.1 Motivation for Incremental Link Insertion

Though the two link insertion algorithms presented in Sections 2.3 and 2.4

address several drawbacks of the two algorithms of [54], all four of these algo-

rithms have an important drawback in common. The drawback is that the effect

of the links on each other is not considered. For example, in Figure 2.9, let us

assume that link a is already selected for insertion and that before the insertion

of link a, the link c had a lower α value when compared to link d. As a result,

33

the rule-based algorithms will choose link c over link d. However, after inserting

link a, the delays of all the nodes become correlated and the delay of every sink

in the clock network is at least loosely correlated with the delays of every other

sink. This is because, after inserting the first link link a, the values of ru and

Ru,u used in Equation (2.2) will change for every sink, resulting in changed the

values of the α and β for all possible links. Hence, the new values of α for link d

might be lower than that of link c as a result of which it might be better to

choose link d. In other words, even though link c is better than link d for the

initial clock tree, link d might become better after the insertion of the first link.

Similarly, in the case of the graph theory based methods, the only physical

characteristic of the link considered is the length of the link. However, for similar

reasons as outlined in the previous paragraph, the link with minimal size might

not be the best link to be added after an initial set of links have been inserted. As

a result, any methodology that considers the effect of the previously selected links

before selecting the next link might perform better in skew variability reduction.

It can be noted here that though the algorithm of [35] does consider the effect of

previously inserted links, it is extremely slow even for small test cases.

Link a Link b
Link d

Clock Source S

B

C Level 2D

A Level 1

FE

G H I J LK M N

6 8
1 2

4
3

Link c
15 161413121110

5
9

7

Figure 2.9: A simple nontree where incremental approach might help.

Another drawback shared by all four algorithms is that they require the

user to empirically select the values of different parameters. Though the methods

34

described in Sections 2.3 and 2.4 automates the parameter determination, a link

insertion method without any empirical parameter selection might be better in

terms of run time and efficiency. In summary, our objectives are:

1. The effect of previously inserted links on variability reduction must be

considered before selecting the next link. This might help in selecting better

places for link insertion.

2. Automatic link selection without requiring the users to empirically select the

parameters is required. This will allow for a complete automation of link

insertion and save the time spent in selecting the appropriate parameters.

3. Fast and Efficient incremental link insertion method will be required. This

will allow us to insert links even in bigger clock networks.

Next, we present the details of our incremental link insertion algorithm,

which satisfies the above three objectives.

2.5.2 Automatic Link Selection

Consider the Figure 2.9. The dashed lines represent the links and the solid

lines represent the given clock tree. In the original tree, the nominal Elmore delay

(w.r.t. the output node of buffer S) of sinks 1 and 16 are practically independent

of each other. However, if the link a is added between the sinks 8 and 9, even

the nominal delays of sinks 1 and 16 become somewhat correlated due to the fact

that both the sinks now have more than one source to sink paths and both sinks

share the S → A and S → B paths. It is because of this correlation that the

skews of a link based non-tree due to random variation gets reduced.

35

Among the links shown in Figure 2.9, link a is usually the best because it

links two sinks that are hierarchically farthest apart and physically closest. After

the insertion of link a, the delays of all sinks are correlated with the delays of

all the other sinks. The best position to insert a link will be in such a place

where the correlation between the sink delays further increases. To the best of

our knowledge, the only known way to reliably identify the correlation between

the different sink delays is to perform Monte Carlo Analysis. This is because

of the absence of any closed form solution to obtain the correlation between the

delays of the sinks of a general (non-tree) RC structure. However, using Monte

Carlo analysis to select each link incrementally might be very time consuming.

We propose to overcome this problem as follows. From the definition of α

in Equation (2.2), we can observe that a link with the least value of α is usually

among the best links to insert because α measures the scale by which the original

skew gets reduced. Because of this, α value can be used as a measure of selecting

the links. However, obtaining the α value for all possible links for a given non-

tree is non-trivial and will require the computation of Elmore Delay for each sink

pair (u,w) with Cu = +1 and Cw = −1. Thus, for n sinks, O(n2) evaluation of

Elmore delays is necessary. Though the methods in [54, 60] make use of the α

parameter, they obtain the α values only for the initial clock tree and they never

update the values of ru and rw used in Equation (2.1). The initial values of ri

for any node i will be equal to the sum of all the resistance in the source→ i

path. After inserting the first link, because of the existence of multiple source to

sink paths, there is no closed form expression to obtain the correct values of ri.

Thus, [54, 60] uses only the initial α values of the links which might be different

from the values after inserting even the first link. If we can find a method to

36

efficiently update the values of α for all possible links after each link insertion

and select the next link based on the latest clock network structure, it will solve

our objective 1. We describe such a method in Section 2.5.3 in which we make

use of equivalent ri, denoted by E ri which we use to evaluate the value of α

defined in Equation (2.2).

It may be noted here that we update only the nominal values of circuit

parameters, unlike [35] in which the statistical values like mean, variance are

updated. By using only the nominal circuit delay values, we make use of the fact

that skew reduction due to link addition is independent of the source of skew.

Hence, we avoid time consuming steps such as the statistical method of [35] or

Monte Carlo simulations to select links. Our objective 2 can be met by adding

only the link with the least value of α each time and the stopping criterion can

be based on the maximum wire-length increase that the user can accept.

2.5.3 The Algorithm

Figure 2.10 shows our top-level algorithm, which is an incremental equiv-

alent to the one-step algorithms of [54, 60]. The key subroutines of the algorithm

are Pick Best Link, Node Tune and Update Equivalent ri V alues. The proce-

dure Pick Best Link picks the best link for a given non-tree (or the initial tree)

based on the latest values of α. The Update Equivalent ri V alues procedure ef-

ficiently obtain the correct values of α parameter of the latest non-tree. A point

that may be noted here is that the method of [35] does not eliminate the adverse

effect of the link capacitance after selecting a particular link. In this work, we

use the Node Tune procedure to efficiently eliminate the negative effect of link

capacitance. As a result, the scaling effect of each link on unwanted skew can be

37

expected to be much higher when compared to the method of [35]. This fact can

be verified from Equation (2.1) in which the link capacitance might increase the

final skew.

Procedure: Insert Links(CDNs)
Inputs: Clock Network CDNs rooted at source s,

MLC = Max Link Cost.
Initialization: Set L = {}, Link Cost = 0.
Output: Link node pair set L.
1. link = Pick Best Link(CDNs).
2. If Link Cost + len(link) > MLC Go To 8.
3. L← L + link; Link Cost+ = len(link).
4. Add link capacitance to selected node-pair n1,n2.
5. Node Tune(CDNs, n1, n2) to restore skew.
6. Add link resistance between nodes n1, n2.
7. Update Equivalent ri V alues(CDNs, link).

Go To step 1.
8. Return L

Figure 2.10: The top-level incremental link insertion algorithm.

The Pick Best Link procedure used in step 1 of Figure 2.10 is described

in Figure 2.11. The best link picked by the Pick Best Link procedure is added

only when adding it does not increase the wire-length consumption of the clock

network beyond a user-set wire-length bound. This is shown in the steps 2 and 3

of the Figure 2.10. In the step 4 of Figure 2.10, the link capacitances are added

to the two sink nodes after which the Node Tune step adjusts the locations of

the internal nodes to restore the original skew. The Node Tune procedure used

in this method is slightly different from the similar method used in [54]. The

difference comes because of the fact that only one link is added at a given point

of time in the incremental link insertion. As a result, only the nodes in the source

to sink path for the selected sink nodes need to be tuned. Also, since addition of

38

link resistance between equi-delay nodes does not affect the nominal delays, the

presence of link resistance can be ignored during this step.

Procedure: Pick Best Link(CDNs).
Input: Clock Network CDNs rooted at source s.
Output: The best link based on updated α value
of the non-tree(or the initial tree)
1. l← left child node of s.
2. r ← right child node of s.
3. For all pairs (i, j), i ∈ sinks(l) and j ∈sinks(r).

link = Link node pair (i, j) with min value of α.
4. Return link

Figure 2.11: The method of picking the best link based in α value of the non-tree.

After the internal nodes have been tuned in the step 5 of the top-level

algorithm, steps 6 and 7 add the link resistance and then update the values of E ri

for each node i using the Update Equivalent ri V alues subroutine. The different

steps of the Update Equivalent ri V alues subroutine are described below.

1. Remove all link resistances from the CDNS, including the previously added

links. This will make the structure a tree with only the link capacitances.

2. Set the values of all sink node capacitances to be +1 and all the internal

node capacitances to be zero.

3. Evaluate the Elmore delays for all the sink nodes in the clock tree.

4. Using this initial Elmore delay values and the iterative procedure of [7],

evaluate the final Elmore delays by iteratively adding all the link resistances.

The final value of the Elmore delays of the sink nodes i gives the value of

the equivalent ri, denoted by E ri for each sink i.

39

The key idea in the above procedure is in the step 2 in which we set the

values of all the sink capacitance to be +1 and all other internal node capacitance

to be 0. Please note that the values of resistances are still maintained at their

original values. The reasoning behind this procedure is explained below. We

know that, for a tree structure, the value of ri (used in Equation (2.1)) for any

node i equals the total value of resistance of the source → i path. However,

such a simple evaluation is not possible for a non-tree and we would like to get

a similar parameter that captures the effect of equivalent resistance between the

source and the sink node i for any given non-tree. One possible parameter that

satisfies this requirement is the value of Elmore delay to a sink node i with all the

sink capacitances values set to 1 and other capacitances set to zero. The Elmore

delay so evaluated will be a weighted sum of terms involving the resistances of all

the source → i paths. This value of Elmore delay will enable us to capture the

effect of equivalent resistance between the source and the node i in an efficient

manner.

The main advantage of the above procedure is that, for a given non-tree, a

single evaluation of Elmore delays using the method of [7] will enable us to obtain

the values equivalent to that of E ri value of every sink. Once we have the E ri

values for all the sink nodes i, we can evaluate the α value of each possible link

quickly using the E ri values instead of ri values. This advantage is made use of

in the Pick Best Link procedure. Thus, we can efficiently obtain the values of

α for all possible links in a given clock network.

Given an initial clock tree and an upper bound on the total wire-length

that the user wants to add, our top-level procedure incrementally chooses the best

40

link based on the α value, tunes the locations of the internal nodes to eliminate

the adverse effects of the link capacitance, obtains the values of E ri for all nodes

i and uses them in the next iteration to choose the next best link. Thus we

see that our incremental approach has addressed all the three objectives that we

discussed in Section 2.5.1.

2.6 Application of Link Insertion Algorithms to Non-zero
Skew CDNs

In this section, we demonstrate the use of the link insertion algorithms

for reducing the skew variability of non-zero skew clock networks. Let us assume

that the clock network shown in Figure 2.12 is a non-zero skew clock network.

Without any loss of generality, we can assume that the required nominal delays at

the nodes A and B are different from each other and that the nominal delay of B

is higher than that of node A. In this case, the clock network has been designed

to have a particular nominal skew between the two nodes A and B. If the nodes

A and B are sequentially adjacent to each other, then this skew is called as useful

skew [74]. A general requirement for the useful skew clock networks is that the

skew between the sinks must remain very close to the nominal useful skew even

under variation effects to avoid race conditions [21]. However, in a useful skew

clock tree such as the one shown in Figure 2.12, the skew between sinks such as

A and B might be high due to variation effects and might cause a race condition.

This problem can be addressed effectively by adding a link between node A and

a node P in the root→B path such that nodes A and P have the same nominal

delays after the link insertion. Such a link addition is likely to keep the skew

between nodes A and P as close to the nominal value of zero as possible. This is

41

because the functioning of the link between nodes A and P is similar to the links

between two zero skew sinks. Also, in most cases the length of path from node

P to node B is small when compared to the root→B path. Because of this, the

variation in the P→B path will be considerably less than the original variation

in the root→B path. Thus, the skew between nodes A and B is likely to be close

to the nominal skew after link insertion when compared to the tree.

The post link-selection steps for the non-zero skew CDNs are the same as

the zero-skew clock networks, but for a minor, but important change. The change

is in the tuning step in which the internal nodes are adjusted to restore the original

skew considering the effect of link capacitance. For example, in Figure 2.12, let

P ′ be the node in the original clock tree such that it has the identical delay as

node A. Adding a link directly between nodes A and P ′ will change the delay

values at both P ′ and B, thus changing the original skew between nodes A and B.

However, the delay between the nodes P ′ and B will be the same as the original

skew between A and B. Thus, to restore the original useful skew, the nodes

in the root→ P ′ path much be tuned such that the node P ′ achieves the same

delay as node A, without changing the location of node P ′. This step is similar to

the procedure employed in [12] to build non-zero skew trees. At the end of the

tuning, the node P ′ will have the same delay as A and is the required node P .

Please note that all our link insertion algorithms, including the ones proposed

in [54], can be used to select node pairs for non-zero skew clock networks. We

present the experimental verification for our approach in Section 2.7.

42

A

P

C

B

Figure 2.12: Illustration of link addition for non-zero skew clock trees. Link is
added between equi-delay nodes A and P.

2.7 Experimental Results

In this section, we present the comprehensive experimental results for all

the algorithms proposed in the paper. For the sake for clarity, the order of

the results is the same as the order of presentation of the different algorithms.

First, we discuss the common experimental setup for all the algorithms. Next

we present the results of the rule-delta and MST based link insertion algorithms

which is followed by results of our automatic parameter-selection schemes. This

is followed by results of the incremental link insertion algorithm. Finally the

results for link insertion in non-zero skew clock networks are presented.

2.7.1 Experimental Setup

To facilitate the comparison between the proposed algorithms and the

algorithms of [54], we made sure that our experimental setup is identical to

that of [54], i.e., r1-r5 benchmarks obtained from GSRC Bookshelf [26]. The

variation factors considered in our experiments are also identical to [54] namely,

the clock driver resistance, wire width and the load capacitance of all sinks.

The driver resistance, wire width and the sink capacitance have ±15% variation

43

following a normal distribution. This corresponds to a normal distribution with

standard deviation of 5%. For all the clock networks, a Monte Carlo simulation

of 1000 trials is performed using HSPICE. The maximum skew variation in the

simulations is denoted by MSV and the standard deviation is denoted by SD.

These values, along with values of wire-length and run-time are compared among

clock trees, tree+links with algorithms of [54] and trees+links with our proposed

algorithms. The size of benchmark circuits, skew variations and wire-length of

clock trees are given in Table 2.1.

TC # sinks MSV SD WL CPU(s)
r1 267 131 31 1320665 1
r2 598 406 79 2602908 3
r3 862 457 109 3388951 4
r4 1903 1390 380 6828510 12
r5 3101 3270 798 10242660 18

Table 2.1: Maximum skew variation (MSV), standard deviation (SD) and total
wire-length (WL) of trees. The CPU time is the time for generating the tree
using BST [17] code.

2.7.2 Rule-Delta and MST Algorithms

It has been shown in [54] that the min-matching algorithm performs better

than the rule-based algorithm for all the test cases r1-r5. So, we compare our

results only with the min-matching based link insertion from [54]. Table 2.2

compares the min-matching algorithm of [54] with the different link insertion

algorithms. In the table, MM denotes the min-matching based link insertion

of [54], RD denotes the rule-delta algorithm and MST denotes the MST based

algorithm. It may be noted here that all the values of MSV, SD and WL are

reported in Table 2.2 are ratios with respect to the results of the clock trees.

44

The results for the MM method in Table 2.2 are the best results of the

min-matching algorithm in terms of skew variability reduction which we obtained

from the algorithms of [54]1. The RD rows gives the results for the “rule-delta”

link insertion method for each test-case. The values of the parameters α, β ,

γ and δ are chosen empirically so as to obtain minimum skew variability. The

values of α, β , γ and δ for the test-case r1 are 0.1, 21, 3 and 4 respectively.

For all other test cases, namely r2 to r5, the values of α, β, γ and δ are 0.06,

100, 3, 5 respectively. The MST rows give the results of the “MST based link

insertion” algorithm. We perform selective deletion of links from MST using the

values of parameters α = 0.1 and β = 100 for all the clock networks. The last but

one column gives the Average Link Length (ALL) for all the three link insertion

schemes.

The important observations from Table 2.2 are as follows:

• The new algorithms, RD and MST are able to achieve comparable or better

skew variability reduction when compared to the min-matching algorithm

of [54] with significantly lower wire-length. In all test cases, the average

wire-length increase for the new algorithms was 5%, compared to the 15%

cost increase of the min-matching algorithm of [54]. This can be observed

from the ’WL’ column.

• The decrease in the link-cost becomes more significant as the size of the

clock network increases. For the test cases of r1 to r5, the wire-length costs

1In [1], the MM insertion algorithm was run on a given small number of links, but better
MSV and SD may be obtained using the MM method if more links are allowed with more
wire-length penalty.

45

Test-case size MSV SD WL ALL CPU(s)
MM-r1 22 0.14 0.15 1.15 9004 0.069
RD-r1 22 0.18 0.15 1.07 4688 0.007

MST-r1 24 0.13 0.14 1.07 4127 0.047
MM-r2 48 0.15 0.20 1.15 8296 0.095
RD-r2 40 0.12 0.11 1.07 4555 0.032

MST-r2 21 0.15 0.16 1.04 5701 0.075
MM-r3 64 0.16 0.19 1.14 7625 0.021
RD-r3 51 0.15 0.12 1.06 3987 0.067

MST-r3 41 0.18 0.13 1.05 4380 0.017
MM-r4 40 0.11 0.10 1.15 26289 0.860
RD-r4 71 0.13 0.10 1.04 4616 0.411

MST-r4 62 0.12 0.10 1.04 4956 0.79
MM-r5 72 0.09 0.08 1.15 22334 3.050
RD-r5 66 0.08 0.08 1.01 1862 1.945

MST-r5 94 0.09 0.08 1.01 1743 2.91
Avg.MM 49 0.13 0.14 1.15 14709 0.81
Avg.RD 50 0.13 0.11 1.05 3941 0.49

Avg.MST 48 0.13 0.12 1.04 4181 0.76

Table 2.2: Skew variations and wire-length in terms of tree results shown in
Table 2.1. Size of a tree+link network is the # of links.

due to link insertion in our new algorithms (RD and MST) are reduced from

around 7-8% to only 1.2% as the number of clock sinks increases from 267

to 3101. However, the previous best algorithm MM [1] has a 15% increase.

This is mainly because of a drastic reduction in the average link length in

the new algorithms. This in turn allows us to insert more links in the clock

network, thereby reducing the skew variability more.

• The average length of link (ALL) for each of the three link insertion meth-

ods is given in the ALL column. In the case of the min-matching method,

for bigger clock networks (r4, r5), the average size of the links becomes

significantly higher when compared to the smaller clock networks(r1− r3).

46

But in the case of the rule-delta algorithm and the MST based algorithm,

there is no such significant increase in the average link size. Even in the

case of smaller clock networks, the average link length for the proposed al-

gorithms has significantly lower values when compared to the min-matching

algorithm.

2.7.3 Run-time Comparison

One way of comparing the speed of the different algorithms is to find out

how the run-times scale with the number of links inserted at the highest level

(the links with γ = 1). This comparison is useful because, generally speaking, the

more the number of highest level links, the better the skew variability reduction

(because of increasing the occurrence of scenario 1). Figure 2.13 shows the run-

time values of different algorithms as a function of number of links inserted at

the highest level. From Figure 2.13 we can clearly see that the run-time of the

min-matching algorithm increases drastically after a point when compared to the

other two algorithms. This behavior can be explained as follows. In order to add k

number of γ = 1 links, the number of nodes in the bi-partite graph required by the

MST algorithm is k+1 while the min-matching requires 2k nodes. Thus, in terms

of the number of links that needs to be added, the complexity of MST algorithm

is O(klog(k) + k2m2), while the complexity of min-matching is O(k3 + k2m2),

where m is the maximum number of sinks within a sub-graph. Thus, we see that,

for a given number of links to be added at a given level, the complexity of min-

matching algorithm is considerably higher. Note that the non-trees of Table 2.2

are not restricted to a single γ level, unlike in this experiment.

Another way of comparing speed is to get the run-times of the different

47

algorithms for nearly equal skew. This information can be obtained from the

Table 2.2. From the Table 2.2, we see that the run-time for the MST algorithm

is lesser than the min-matching algorithm for all the test cases. It can be noted

here that since the algorithms might have to be run several times before a desired

non-tree is obtained, the difference in the run-time per run might be important

for large clock networks.

Figure 2.13: Run-time comparison between the different link insertion methods
as a function of number of links inserted at γ = 1 level.

2.7.4 Automatic Parameter Determination Results

In order to verify the efficacy of our automatic parameter determination

methods discussed in Sections 2.3 and 2.4, we use the same set of benchmark

trees as used in Table 2.1. We compare the results of our automatic parameter

determination with the best results obtained by us by manual tuning shown in

Table 2.2. Table 2.3 shows the results of HSPICE Monte Carlo analysis for the

non-trees obtained using our automatic parameter determination scripts for both

rule-delta approach and MST based approach. The results are w.r.t. the trees

shown in Table 2.1 and the skew reduction can be directly compared with the

results of RD and MST given in Table 2.2. From the Table 2.3 we can see that

48

the skew reductions obtained by our automatic parameter determination method

are very close to that of the best results that we were able to get by manual

parameter selection. The ’# Trials’ column in Table 2.3 shows the number of

Elmore Monte Carlo trials required by our script to select the final non-tree.

From the Table 2.3, it is clear that determining a good set of parameters

for the MST based approach is much quicker than for rule-delta approach. It may

be noted here that, though the automatic parameter determination is much slower

when compared to link addition algorithms, it is usually much faster than manual

tuning. Also, for a given clock tree, link addition is only intended as a post-

processing step aimed at reducing skew variability. As a result, the automatic

parameter selection needs to be run only once.

Test-case MSV SD WL #Trials CPU(s)
Auto-RD-r1 0.12 0.11 1.11 120 180

Auto-MST-r1 0.12 0.11 1.08 16 24
Auto-RD-r2 0.14 0.12 1.04 180 1260

Auto-MST-r2 0.14 0.12 1.06 16 112
Auto-RD-r3 0.12 0.13 1.09 150 3750

Auto-MST-r3 0.13 0.13 1.05 18 450
Auto-RD-r4 0.11 0.12 1.05 170 10540

Auto-MST-r4 0.10 0.12 1.02 24 1488
Auto-RD-r5 0.09 0.07 1.03 360 86400

Auto-MST-r5 0.07 0.07 1.03 36 8640
Auto-RD-Avg 0.116 0.11 1.075 196 20426

Auto-MST-Avg 0.112 0.11 1.073 22 2142

Table 2.3: Results for automatic parameter determination procedures. The
HSPICE Skew variability and wire-length values are w.r.t. the tree values of
Table 2.1.

49

2.7.5 Incremental Link Insertion Results

Table 2.4 shows the skew variability reduction of our incremental link

insertion w.r.t. the variation results of the trees in Table 2.1. The important

observations from Table 2.4 are as follows:

• The incremental link insertion achieves comparable reduction in skew vari-

ability to that of the existing algorithms with comparable increase in wire-

length consumption.

• The incremental link insertion is very fast even for the biggest benchmark

with 3100 sinks. Thus, our method is more efficient that the statistical link

insertion of [35]. It is also much faster when compared to the automated

version of the algorithms of [60] discussed in Sections 2.3 and 2.4.

• Since the incremental link insertion is a one-shot approach, a good non-

tree is obtained in a single trial, thus avoiding the time consuming manual

parameter selection and statistical methods of [35]. The amount of time

saved by incremental link insertion can be seen by comparing the run-times

of the Auto-MST and Auto-RD methods of Table 2.3 and the run-time of

incremental link insertion of Table 2.4. For the biggest test case r5, the

incremental link insertion selects a good non-tree in just 70 seconds when

compared to the 8640 seconds taken by the Auto-MST method with a very

similar variation reduction and wire-length increase.

50

Test-case MSV SD WL CPU(s)
Incremental-r1 0.18 0.17 1.10 0.5
Incremental-r2 0.18 0.2 1.06 3.0
Incremental-r3 0.12 0.13 1.05 6.0
Incremental-r4 0.13 0.14 1.02 12.0
Incremental-r5 0.09 0.07 1.02 70.0

Incremental-Avg 0.14 0.142 1.05 18.3

Table 2.4: Incremental link insertion results w.r.t. the tree values of Table 2.1.

2.7.6 Skew reduction results for non-zero skew clock networks

To verify our procedure of adding links to non-zero-skew clock networks

discussed in Section 2.6, we modified our MST algorithm code so as to insert

links in a nonzero skew clock network using the method described in Section 2.6.

We used the BST [17] code from GSRC Bookshelf [26] with non-zero maximum

skew of 200 ps to obtain the trees nzs-r1 to nzs-r5. These trees have a maximum

skew of 200 ps between the different sinks and have non-zero skew for most sink

pairs. As a result, we can treat them as useful skew trees for the purpose of

our experiments. The sizes of these clock networks in terms of number of sinks

is identical to that of the r1-r5 benchmarks that we have used for zero-skew

link addition experiments. We run our MST algorithm on each of the trees and

compare the skew variability and wire-length between the original trees and the

corresponding non-trees. The results are summarized in Table 2.5. Please note

that the delay values given for the trees are absolute values and the values given

for the non-trees are w.r.t. the corresponding tree. We measure the skews for

non-zero skew clock networks as the amount of deviation from the nominal skew.

For example, for the test case nzs-r1, the value of 245 ps of MSV is the unwanted

and extra skew due to variations, in addition to the nominal skew.

51

From Table 2.5, we can see that link insertion reduces the skew variation to

a good extent in the non-zero-skew clock networks (roughly, by an average of more

than 80%). However, the results are slightly less impressive when compared to

the skew reduction for zero-skew clock networks. This can probably be explained

by the fact that, in zero skew clock networks, since the links are directly added

at the sinks, the skew due to load variation is controlled to an extent. However,

for the non-zero-skew case, the loads of one of the sinks is not connected to the

link directly. As a result, the variation of this load is not reduced even after link

addition.

Test-case NS MSV SD WL # Links
nzs-r1 200 245 70 307513 -
r1-NT 1.00 0.36 0.25 1.08 13
nzs-r2 200 693 195 638248 -
r2-NT 1.00 0.34 0.25 1.09 21
nzs-r3 200 958 241 833937 -
r3-NT 1.00 0.15 0.14 1.09 33
nzs-r4 200 3390 746 1904623 -
r4-NT 1.00 0.21 0.17 1.09 64
nzs-r5 200 5837 1503 2932095 -
r5-NT 1.00 0.11 0.09 1.09 68

Table 2.5: Skew reduction for non-zero skew clock networks. The nominal skew
(NS), maximum skew variation (MSV), standard deviation (SD) values for non-
zero skew CDNs. The delay values given for the trees are absolute values (ps)
and the values given for the non-trees are w.r.t. the corresponding tree.

2.8 A note on selecting the appropriate link insertion al-
gorithm

Since we have presented three different link insertion techniques in this

chapter, a natural question that arises is how to choose between these methods.

In this section, we give a few pointers on selecting the appropriate method. One

52

conclusion that we can come to based on the experimental results is that, for large

clock trees, incremental link insertion achieves good skew variability reduction

while requiring very less run time compared to the other two methods. Also,

the incremental approach does not require any parameter selection, making this

a good choice for fully automated link insertion. Thus, the incremental link

insertion method can be used when good results are required in a very short

amount of time without much effort from the user. However, the best results in

terms of skew standard deviation reduction are obtained by the RD and MST

algorithms. But the runtime associated with choosing good parameters are much

higher. Thus, these methods can be employed when skew variation reduction

of 1-2% is critical, as is the case in very high speed designs and when higher

computational cost is acceptable so as to gain a small increase in skew variability

reduction.

53

Chapter 3

Link Insertion for Buffered Clock Trees

The main focus of this chapter is synthesis of buffered clock networks with

cross-links. First, we will discuss why the link-insertion methods of the last chap-

ter cannot be directly used for buffered clock network synthesis problem. This is

followed by description of the method we propose to address this problem. We

then propose a new sensitivity based link insertion scheme that is more suitable

for use in buffered clock trees compared to methods discussed in last chapter. We

conclude the chapter with experimental results that demonstrate the effectiveness

of our methods.

3.1 Why Link Insertion for Buffered Clock Trees?

Link-based clock network [54, 60, 78] has been proposed as a possible

method to reduce skew variability. However, [54, 60] address only unbuffered

clock networks, making them impractical for even medium sized designs. The

work of [78] attempts to solve the problem of constructing a link based buffered

clock network in which special tunable buffers are used to obtain a low-skew (in

SPICE) buffered clock network. Once a good low-skew buffered clock network

is obtained, [78] uses the algorithms of [60] to select the links to be inserted.

Finally, SPICE simulations are used to tune the buffers and internal node lo-

cations. However, the use of tunable buffers might result in increased area and

54

power consumption. Moreover, the tunable buffers might not be available in all

design libraries. Also, because of the use of SPICE for tuning, [78] is slow for even

clock network of a few hundred sinks. In this work, we propose an efficient algo-

rithm for synthesizing a link-based clock network in which we have attempted to

overcome the above mentioned drawbacks of [78]. The important contributions

of this work are:

• Our methodology uses ordinary buffer cells and does not require any special

tunable buffer cells unlike [78].

• We adapt and modify the efficient & accurate delay evaluation method of

[53] to consider the slew and resistive shielding effects during clock network

synthesis, thereby avoiding the use of SPICE for constructing the clock net-

work. This also helps us to overcome the inaccuracy of the simple Elmore

delay model, which is used by most clock tree synthesis algorithms includ-

ing the recent ones like [11, 73, 85]. Thus, our algorithm is both fast and

accurate.

• We propose a new merging scheme for clock tree synthesis to obtain a link

insertion friendly balanced clock tree.

Monte Carlo simulations in SPICE show that our algorithm can reduce skew

variability by 50% on an average with no penalty in resources or runtime.

3.1.1 Challenges in Buffered Clock Tree Link Insertion

The algorithms used in [54, 60] is applicable only to unbuffered clock net-

works and cannot be applied to buffered case because of the reasons discussed

55

S

1 2 3 4 5 876

(b)

N1 N2

A B

N4N3

1 2 3 4 55 6 7 8

S

A B

N1
N4N2 N3

(a)

Figure 3.1: An example of link-based non-tree. (a) Unbuffered case. (b) Buffered
case.

next.

3.1.1.1 Chicken-egg problem

Inserting a link in a buffered clock tree introduces a chicken-egg problem

between the location of buffer driving the linked nodes, the input slew of the

buffers and the downstream delays. For example, in Figure 3.1 (b), the link

between nodes 4 and 5 increases the loads driven by the buffers A and B, which

affects the locations and input slews to the buffers, which in-turn affects the

delays from buffer A(B) to sink node 4(5). But, the skew between sink nodes

4 and 5 needs to be evaluated in order to select them for link insertion, thus

completing the cyclic dependency. This fact has also been noted in [78].

3.1.1.2 Accuracy of delay model

Accurate delay models must be considered while inserting links in a buffered

clock tree because of the following reasons:

• As shown in [54], a link will be beneficial only when it is inserted between

56

two sink nodes with zero or near-zero skew . While Elmore delay has been

shown to have good fidelity for the unbuffered clock trees w.r.t SPICE in

[54, 60], the fidelity is poor for a buffered clock tree as demonstrated in [82].

• Adding links between two sinks driven by different buffers introduces the

problem of multi-driver nets. For example, in Figure 3.1 (b), the link be-

tween nodes 4 and 5 has two drivers, namely buffers A and B. If the links are

not selected considering accurate delays, then it is possible to insert links

between nodes whose delay values are quite different. This might increase

the nominal short circuit power of the clock network because of the virtual

shorting of Vdd and Vss (Source and Ground) that might occur when one

of the drivers gets turned much ahead of others or vice versa.

Figure 3.2: A simple example of link insertion in buffered clock trees.

3.1.1.3 Short-circuit Power and Waveform Quality

A key reason why link insertion in buffered clock trees is much more chal-

lenging than in unbuffered clock trees is the potential for significant increase in

57

short-circuit power and for degradation of the waveform quality at the clock sinks.

This problem can be easily understood using the following example. Consider the

simplest case of one link between two buffers that were originally driving one sink

each. After a link is added, the equivalent circuit can be represented as shown in

Figure 3.2. Depending on the skew between the input signals A and B to the two

buffers, the quality and power of the system can change drastically. To test this

assertion, we picked sample values of R1 = R2 = 100 Ohms to represent the

resistance between buffers and the sinks, R3 = 2 Ohms to represent the link

resistance, C1 = C3 = 5fF and C2 = C4 = 6fF to represent the interconnect

and sink capacitances. We then varied the skew between the two input signals

A and B between 0ps to 200ps and analyzed the resulting waveforms and power

using HSPICE. These results are presented in Figures 3.3, 3.4, 3.5, 3.6, 3.7 and

in Table 3.1.

A to B Skew (ps) Avg. Power (uW) Sink Skew (ps)
0 71.085 0.019
10 75.334 0.014
20 75.563 0.008
30 82.373 0.004
40 92.533 0.019
50 102.42 0.03
75 126.49 0.121
100 155.86 0.31
125 187.59 1.12
150 219.84 0.83
175 250.31 0.49
200 283.26 0.71

Table 3.1: Average power and sink skew for different values of skews between
signals A and B in Figure 3.2

From the Figures 3.3, 3.4, 3.5, 3.6, 3.7, we can see that the quality of

the voltage waveform is degrading progressively. This is because of the fact that

58

Figure 3.3: Sink voltage waveform with 0ps skew between input signals A and B
in Figure 3.2.

Figure 3.4: Sink voltage waveform with 50ps skew between input signals A and
B in Figure 3.2.

59

Figure 3.5: Sink voltage waveform with 100ps skew between input signals A and
B in Figure 3.2.

Figure 3.6: Sink voltage waveform with 150ps skew between input signals A and
B in Figure 3.2.

60

Figure 3.7: Sink voltage waveform with 200ps skew between input signals A and
B in Figure 3.2.

when skew between the input signals increase, the two buffers are out of sync and

so will not be on or off at the same time. This results in overloading of the buffer

that has switched first and slowing the transition. This also results in significant

increase in short-circuit power consumed over the same period of time as the two

buffers will be in opposite states for longer period of time compared to the zero

skew case. This can be verified from the average power numbers from Table 3.1.

It may be noted here that in spite of the increase in power, the skew between the

two sinks remains small due to the small value of link resistance. From this, we

can conclude that a bad link addition between buffers that can potentially have

high skews between them will result in both significant power increase and also

waveform degradation that might result in unreliable operation of flops/registers.

Thus, it is clear from the above points that link insertion for buffered clock

61

tree is a non-trivial problem. In order to insert links in a buffered clock tree, we

required the buffered clock tree to have a good nominal skew in an accurate

delay model. By making sure that the nodes have very similar accurate delay

values, we not only make the skew variability better, but also reduce the nominal

short-circuit power consumption.

3.1.2 Existing clock tree synthesis algorithms

One of the pioneering algorithms for clock routing was proposed in [75], in

which a zero skew clock routing was obtained by recursively merging a pair of zero

skew subtrees until a single clock tree is obtained. The zero-skew principle in [75]

was extended in the DME algorithm [10] for wire length minimization. However,

[10, 75] addressed only the problem of an unbuffered clock tree. The problem of

constructing a zero skew buffered clock tree under Elmore delay model was solved

in [14, 52]. The optimal clock buffering for a given topology and buffer library

was solved in [16]. A heuristic for synthesizing a low-power buffered clock tree

using the Elmore delay model was proposed in [80]. Buffer and wire sizing were

done so as to reduce power and maintain the zero skew property under Elmore

delay. None of the above clock tree synthesis algorithms consider clock signal

slew during the synthesis of the clock tree.

To our best knowledge, [70] was the first work that explicitly considered

slew during buffer insertion. But it assumes a given unbuffered clock tree, which

may result in very sub-optimal solution compared to simultaneous buffering and

clock routing as shown in [14]. In [82], a SPICE based, time domain based

buffer/wire sizing has been proposed which results in greatly reduced skew in

SPICE. To the best of our knowledge, [82] is the only work that aims to reduce

62

the actual clock skew in SPICE. However, since it directly uses SPICE for tuning

the clock network, the runtime may be prohibitively high. In [45], the important

problem of clock buffer load imbalance is addressed. In the previous algorithms

like [14], different clock buffers at a given level from the clock source may drive

different loads. The methodology in [45] attempts to solve this problem by using

a clustering approach. But such a clustering and load balancing approach usually

results in excessive wire length due to wire snaking when the two clusters to be

merged do not have similar target delays.

In the recent works of [73, 85], the problem for optimal buffer/wire sizing

in clock network has been studied under the Elmore delay model. In [11], a new

merging scheme has been proposed for prescribed skews which usually results

in considerably less wire-length compared to the other algorithms. However,

this algorithm results in highly unbalanced clock structure. The balanced clock

structure issue has been addressed in [14, 45] at the cost of excessive total wire

lengths compared to [11].

3.1.3 Requirements of a Link Insertion Friendly Buffered Clock Tree
Synthesis

Based on our discussions in section 3.1.1, the requirements of a link inser-

tion friendly clock tree synthesis algorithm are:

Accurate and fast delay model during synthesis: This requirement

implies that the effect of slew and resistive shielding are to be considered, which

will ensure that the sink node pairs are selected based on accurate skew values. It

also implies that SPICE should not be used for the clock tree synthesis as it may

increase the runtime considerably. However, as discussed in section 3.1.2, most of

63

the existing buffered CTS algorithms, including the recent ones like [11, 73, 85],

use Elmore delay or use SPICE for synthesis like [82].

Balanced clock tree without excessive wire snaking: We define a

balanced clock tree as one in which identical buffers are inserted at a given level

from the clock source. Also, a balanced buffered clock tree will have the same

number of buffer levels from the source to each clock sink. Figure 3.8 (a) and (b)

shows an example of unbalanced and balanced buffered clock tree respectively.

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
���
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���
���
���
���

���
���
���
���
���
���
���

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

DA B C A B C D

S S

B1
B1 B2

(a) (b)

Figure 3.8: (a) An example of an unbalanced buffered clock tree; (b) An example
of a balanced buffered clock tree.

A key advantage in having a balanced clock structure is that it will be

much more tolerant to variation. For example, if the nominal delays from source

to sinks in both Figure 3.8 (a) and (b) is 100 ps and if the nominal gate delay is

20ps. Under nominal conditions, both Figure 3.8 (a) and (b) will have identical

skews. However, when variation effects become more and more severe, the scaling

of the device delays and interconnect delays need not match. For example, due to

certain change in operating temperature or voltage, the device delay doubles and

interconnect delay becomes one half of the nominal values. Then the balanced

structure is much more tolerant to the variation. In the UDSM technologies, it is

becoming increasingly difficult to capture all the different variation effects. This

64

further motivates us to use the balanced clock structure to improve tolerance to

variations. Many recent clock tree synthesis algorithms like [73, 82, 85] use buffers

of different sizes and tune them in such a way that the skew and delay targets

are met at the nominal values of device and interconnect parameters. However,

due to the PVT variations, significant skew can be generated in such clock trees.

Also, the total wire-length of the clock network should be as less as possible

in spite of maintaining a balanced structure. The reason for this requirement

is that most of the existing algorithms that obtain a balanced clock structure

like [14, 45] achieve load balancing by clustering methods, which often result in

excessive wire snaking. This is undesirable because excessive wire-length increases

the total power and resource consumption. It may be emphasized here that,

even thought the idea of a balanced clock tree is well known, to the best of our

knowledge, there is no work that guarantees the balanced nature of the resulting

clock tree without performing clustering.

A fact to be noted here is that none of the existing clock tree synthesis

algorithms satisfy all the above requirements. Though each of the above require-

ments have been addressed in bits and pieces, to the best of our knowledge, there

is no unified clock tree synthesis algorithm that addresses all the above issues in

a systematic way. In this work, we propose such a unified clock tree synthesis

methodology, which will result in a link insertion friendly buffered clock tree.

65

3.2 Iterative Delay Evaluation and Backward Slew Prop-
agation

The work of [53] introduces a fast, accurate and iterative delay evaluation

procedure which has the elegance and simplicity of Elmore delay with much

improved accuracy. The method of [53] is mainly for delay analysis and cannot

be directly applied for clock tree synthesis. This is because [53] uses a technique

called slew propagation in which the slew is propagated from the signal source

to the sinks. But, during bottom-up clock tree synthesis, the slew at the source

in unknown and hence the method of [53] cannot be used. To overcome this,

we solve the inverse of the slew propagation called backward slew propagation in

which we propagate the slew targets in a bottom-up fashion, which can be applied

during clock tree synthesis. In this section, we briefly review the iterative delay

evaluation of [53] followed by the explanation of our backward slew propagation

method.

3.2.1 Iterative delay and slew evaluation

Ideally, we would like to have a delay evaluation procedure that is as

efficient and elegant as Elmore delay while accounting for resistive shielding and

signal slew effects. The iterative delay estimation procedure of [53] is such a

delay model, used in IBM’s physical design closure tool. The procedure explicitly

considers the signal slew in delay evaluation and accounts for the interdependence

between the input signal slew of a node and the effective load seen by the node.

However, the procedure is mainly for delay evaluation. In this paper, we extend

it for the purpose of clock tree synthesis by introducing the notion of required

slew similar to the concept of required skew.

66

Consider the Figure 3.9 of a simple RC network connecting nodes v and

a. An input ramp voltage with a signal transition time of tv is applied at the

node v. The transition time at the output node of the RC segment, namely node

a is given by ta. According to Elmore delay, the total down stream capacitance

seen by the node v is C. However, because of the resistive shielding effect of the

resistance R, only a fraction of the capacitance C is actually seen by the node v,

which is usually referred to by the name effective capacitance [53]. According to

[53], the value of this effective capacitance is give as:

Ceff = K ∗ C (3.1)

where K is the scaling factor defined as:

K = 1− 2x(1− e−
1
2x), where x =

RC

tv
(3.2)

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��

(a) (b)

t v

t a

V
ol

ta
ge

time

R

C

v aVv(t)

Va(t)

Vdd

Figure 3.9: (a) Definitions of transition times for nodes v and a. (b) A simple
example of RC network.

It should noted that the value of the effective capacitance seen by node v

and the slew rate at v are interdependent. The output slew rate of the CMOS

67

buffer depends on both the input slew and the load capacitance [53]. From

Equations (3.1) and (3.2), the effective load capacitance seen by the buffer output

depends on the slew at the buffer output. This factor introduces a chicken-egg

problem which is addressed in [53] using an iterative delay evaluation technique.

3.2.2 Backward propagation of slew

In order to consider the node slews during the clock tree synthesis, we

need to calculate the signal slew rate during the bottom-up topology generation

phase of the DME [10, 11] algorithm. However, by definition, the slew rate at

a child node can be calculated only when the slew rate at the parent node is

known. For example, in Figure 3.9, the slew rate at node a can be obtained only

when the slew rate at node v is known. An efficient method for obtaining the

transition times at the nodes of the clock tree for a given transition time at the

source node has been proposed in [53]. Considering the Figure 3.9, the transition

time at node v is given as tv. Given tv and the R, C values, the transition time

time at node a can be obtained using the method of [53] as:

ta =
tv

1− x(1− e−
1
x)

, where x =
RC

tv
(3.3)

In order to consider the slew during clock tree synthesis, we would like to

get an inverse of Equation (3.3). That is, we would like to get the value of tv

for a given value of ta. Such an inverse expression will enable us to consider slew

during the bottom up phase of clock tree synthesis. Such an inverse expression

can be obtained as follows: define a new variable called y and using 3.3, we have:

68

y =
RC

ta
=

RC(1− x(1− e−
1
x))

tv

which can be simplified to

y = x(1− x(1− e−
1
x)) (3.4)

The plot of Equation (3.4) is shown in Figure 3.10. As it can be seen from

the plot, the value of y reaches a saturation point after the value of x reaches a

value of roughly 20. The saturation value of y is 0.5, which can also be verified by

applying the Taylor series approximation for the term e−
1
x as 1− 1

x
+ 1

2x2 . Using

this approximation in Equation (3.4) will reduce the value of y to 0.5. A key use

of the above observation is that for a given value of x, there is an unique value of

y and vice versa. Thus, when we are given the required slew value at output node,

we can obtain the value of y, which can be used to uniquely determine the value

of x, which in turn can be used to obtain the required input slew. In other words,

if we have a slew requirement at the child node a in Figure 3.9, using that we

can uniquely obtain the required slew value at the parent node v. This technique

can be used to build a buffered clock tree with simultaneous slew considerations

in a bottom-up fashion.

3.3 Link Insertion Friendly Clock Tree Synthesis

In this section, we introduce our link insertion friendly clock tree synthesis

algorithm in which we have attempted to simultaneously consider all the require-

ments outlined in section 3.1.3. To the best of our knowledge, this is the first work

in which all these factors are considered in a unified and systematic way. First, we

69

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 3.10: Plot of x (ratio of RC and input slew) versus y (ratio of RC and
output slew) of Equation (3.4).

will consider the problem of merging two subtrees using the backward slew prop-

agation algorithm of the previous section. Then we introduce our novel merging

scheme which guarantees the construction of a perfectly balanced buffered clock

tree while simultaneously reducing the wire-length and maintaining load balance.

The high level framework of our algorithm is similar to the DME based

algorithms like [11, 14] in which the first step is the topology generation phase in

which different subtrees are merged recursively based on a merging cost. After

all the subtrees are merged into a single tree, a top down embedding is done to

finalize the locations of the clock tree nodes.

3.3.1 Subtree merging with backward slew
propagation

Consider Figure 3.11 in which two subtrees Ti and Tj (rooted at nodes

i and j respectively) are to be merged to form a new subtree Tp with node p

as the root. In the traditional merging, the lengths of segments lp,i and lp,j are

determined in such a way that the Elmore delay from v to the sinks of both Ti and

70

Tj are identical. During this step, the entire downstream capacitance at nodes

i and j are considered. However, the delay evaluation method of [53] considers

only the effective capacitance at the subtrees Ti and Tj while determining the

edge lengths. The delay from node p to nodes i and j are given as [53]:

D(p, i) =
1

2
rcl2p,i + rlp,iCeff1 (3.5)

D(p, j) =
1

2
rcl2p,j + rlp,jCeff2

where, r and c are the unit length resistance and capacitance, respectively. Ceff1

and Ceff2 are the effective downstream capacitance of nodes i and j respectively.

It may be noted that for clock sinks, the value of effective capacitance is equal

to the load capacitance.

jT i T

eff1C C eff2
i j

p

ll p,i p,j

Figure 3.11: An example of subtree merger using effective downstream capaci-
tance

In order to balance the effective delays of the two subtrees, the following

equation must be satisfied:

Di + D(p, i) = Dj + D(p, j) (3.6)

71

where Di and Dj are the delays from nodes i and j to their respective sink nodes.

The edge lengths lp,i and lp,j can be obtained by solving Equation (3.6) with the

condition that lp,i + lp,j = L, where L is the Manhattan distance between the

nodes (or the merging segment of the nodes) i and j. Wire snaking can be used

to match the delays if wire-lengths greater than L is required [11]. Once the

appropriate segment lengths have determined, the required slew at the parent

node p can be calculated using Equations (3.3) to (3.4).

Figure 3.12 explains this step in detail. A point to be noted regarding

bottom-up transition time limit propagation is that, during merging of two sub-

trees with different transition time limits, two independent transition limits (one

for each child node) can be obtained for the new root p, denoted by tip and tjp

in the Figure 3.12. Since the transition time limits are defined as the maximum

signal rise time acceptable at a particular node, we pick only the tighter require-

ment of the two. Also, selecting the lesser transition time might impact the zero

skew property within the subtree that has bigger transition time. However the

effect of this is minimal based on our experimental experience.

Once the required slew information at the root node p is available, the ef-

fective downstream capacitance at node p can also be calculated as demonstrated

in Figure 3.13.

Thus, using the algorithms of Figures 3.12 and (3.13), we can merge a give

pair of subtrees and obtain the values of slew and effective downstream capaci-

tance of the new subtree. In order for this method to be applied in a recursive

fashion, the slew requirements at the clock sink nodes must be predefined by the

user. This can be used during the bottom-up clock tree construction as shown in

72

Procedure: FindSlew(Tp)
Input: A subtree rooted at node p
Output: The signal transition time limit at p.
1. If p is a sink

tp = Transition time limit set by user.
return.

2. i = LeftChild(p); j = RightChild(p).
3. ti, tj ← Transition time limit at nodes i and j.
4. R1 = rlp,i; R2 = rlp,j.
5. C1 = Ceff1 + 0.5clp,i; C2 = Ceff2 + 0.5clp,j.
6. y1 = R1C1

ti
; y2 = R2C2

tj
(Similar to eqn.2)

7. For y1 and y2, obtain the corresponding unique
values of x1 and x2 using eqn.(3.4).

8. Using x1 and x2, obtain transition time limits
at node p w.r.t nodes i and j as:
tip = R1C1

x1
; tjp = R2C2

x2

9. return min(tip, t
j
p)

Figure 3.12: Procedure to evaluate the signal transition values of a node given
the transition values of the child nodes.

the next section.

3.3.2 Balanced CTS algorithm

As discussed in section 3.1.3, one of the key disadvantages of several ex-

isting algorithms is the difficulty in getting a balanced clock tree without a wire-

length penalty. We propose to address this key problem using a novel merging

scheme, which is explained below.

In any merging scheme, node pairs to be merged are selected as per a

cost function. In most of the traditional merging schemes like [10], node pairs

that are physically closest are merged together with the intention of reducing the

total wire length. But, as noted in [11], this might result in excessive wire snaking

when the nodes to be merged do not have similar delays. The algorithm in [14]

73

Procedure: FindEffectiveCapacitance(Tp)
Input: A subtree rooted at node p
Output: The effective downstream capacitance at node p.

1. If p is a sink
Ceff = Sink load capacitance
return.

2. i = LeftChild(p); j = RightChild(p)
3. Ceff1, Ceff2 ← Effective downstream capacitance of i, j
4. R1 = rlp,i; R2 = rlp,j.
5. C1 = Ceff1 + 0.5clp,i; C2 = Ceff2 + 0.5clp,j.
6. tp = transition time limit of node p
7. K1 = R1C1

tp
; K2 = R2C2

tp
;

8. Ceff = K1C1 + K2C2 + 0.5c(lp,i + lp,j); return.

Figure 3.13: The procedure to evaluate the effective downstream capacitance
recursively.

selects the node pairs that result in the smallest delay after the merger. This

generally results in a more balanced tree. However, the wire-length consumed is

generally more. In [11], the pair that results in the minimal merging wire-length

are merged. Since this is in some ways similar to the minimum spanning tree

algorithm (which at each step selects the new edge with minimal cost), it results

in much a lower wire-length when compared to the approaches of [10] and [14].

However, as noted in [11], it might result in an highly unbalanced clock tree. In

our work, we modify the cost function of [11] such that a balanced structure is

obtained while wire-length is also reduced.

Top level algorithm: The top-level steps involved in our buffer insertion

flow are given below:

1. Initialize a list F as an empty list. This list will contain all the flagged, un-

merged nodes. A flagged node is one that cannot be merged with any of the

74

other unmerged nodes without violating the limit on effective downstream

capacitance (which is the maximum driving capability of the buffer used).

2. Initialize a list U with the set of all the sink nodes. This list will store all

the unmerged, unflagged nodes.

3. While (Sizeof(U) + Sizeof(F) > 1) Do

(a) (Ti, Tj) = GetSubTreesToBeMerged(U) using steps in Figure 3.14.

(b) If (Ti, Tj) 6= NULL

i. Merge the subtrees to get a new subtree Tk. Obtain the values of

required slew and Ceffk for node k using Figures 3.12 and 3.13.

ii. Remove Ti, Tj from U .

iii. Add Tk to list U .

(c) else if ((Ti, Tj) = NULL) AND (Sizeof(U) + Sizeof(F) > 1)

i. Insert buffers at all the nodes of F .

ii. Update the values of delay, slew and effective downstream capac-

itance for all nodes ∈ F using the delay characteristics of the

buffer.

iii. Move all the nodes in list F to list U and empty list F .

4. Perform top down embedding.

The key step in the above procedure is the step 3(a) which selects the node

pairs to be merged. This step is explained in Figure 3.14. For node-pair selection,

75

Procedure: GetSubTreesToBeMerged(U)
Input: Set of all unmerged subtrees
Output: The two subtrees to be merged
1. PairsFound = 0
2. While (PairsFound 6= 1) AND (Sizeof(U) > 1) Do

(a) Ti = subtree with min root-sink delay in U
(b) MergingCost =∞
(c) For each subtree Tk ∈ U and Tk 6= Ti

i. cost = MergingCost(Ti, Tk) defined in Fig. 3.15
ii. if cost < MergingCost

MergingCost = cost; Tj = Tk.
(d) if MergingCost 6=∞

PairsFound = 1
else

Remove Ti from U ; Add Ti to F .
3. if MergingCost 6=∞

return (Ti, Tj)
else

Transfer the possible single node ∈ U to list F .
return NULL.

Figure 3.14: The algorithm for selecting the subtrees to be merged.

76

we use similar cost function as in [11] with an important change. In [11], a buffer

will be inserted in a node as and when the node downstream capacitance exceeds

a certain limit. But such an approach will result in an highly unbalanced clock

tree.

In our algorithm, we insert buffers only when there is no node pair that

can be merged without violating the effective downstream capacitance limit. To

enforce this requirement, we maintain two separate lists - one called F which

will have a list of flagged nodes and another list called U in which we will store

the list of unflagged nodes. For node pair selection, we consider only the list

U . If, for a particular node i ∈ U , we are not able to identify a suitable node

pair for merger without exceeding the capacitance limit, we add that node to the

list of flagged nodes F and remove i from U . We repeat the node-pair selection

process until the list U becomes empty or contains a single element that cannot

be merged with any other node. At that stage, we add buffers to all the unmerged

nodes of F , update their delays, slews and effective downstream capacitance and

transfer all the nodes to the list U . This cycle continues till there is only a single

clock tree.

A point that may be noted here is that the MergingCost algorithm of

Figure 3.15 returns a value of ∞ when a possible merger of two node pairs i and

j causes the effective capacitance limit to be violated. Thus, only node pairs that

result in a node with lesser effective capacitance than the preset limit are merged.

Merits of our algorithm: An obvious advantage of the above procedure

is that it will, by construction, result in a perfectly balanced clock tree. This is

77

Procedure: MergingCost(Ti, Tj)
Input: A pair of subtrees
Output: The merging cost of the subtree pair
1. Cost = Total wire length required to merge Ti and Tj

2. EDSC = Effective downstream capacitance of the
parent node assuming the merging of subtrees
Ti and Tj using steps of Figure (3.13)

3. If EDSC < Capacitance Limit
return Cost

else
return ∞
Figure 3.15: The Merging cost for two subtrees.

because buffers are added only in the step 3(c) of the top-level algorithm in which

all the unmerged nodes are buffered. As a result, the number of buffers from the

clock source to every sink will be the same, thus satisfying one of the important

objectives of our work.

A less obvious advantage of the proposed merging scheme is that, on the

average, all the nodes to be flagged are mostly in the same ballpark as 1/2 times

the effective capacitance limit used in the Figure 3.15. This results in similar

equivalent capacitance loads for all the buffers at a given level. This helps to a

great extent in reducing the actual SPICE skew. It may be noted here that works

of [14, 45] also target the objective of balancing the loads for buffers at a given

level. However, they obtain the balancing by adding excessive wire capacitance,

which results in a big increase in total wire-length. In our scheme, since we

merge nodes considering the wire length cost, our algorithm generally results

in considerably lesser wire-length that [14, 45]. Our top-down embedding after

obtaining the topology is identical to the DME algorithm [10].

78

3.4 Link insertion flow

We adopt the following approach to address the challenges discussed in

section 3.1.1:

• The problem of inaccurate delay model and the chicken-egg relationship be-

tween link and buffer slew is addressed by using the iterative delay evalua-

tion procedure of [53] and the bottom-up clock tree synthesis flow described

in section 3.3.2.

• The problem of excessive nominal short-circuit power is addressed by con-

sidering both the spatial proximity of the nodes and the proximity in terms

of delays during link node pair selection. This approach also makes sure

that link addition does not affect the skew between other sink pairs ad-

versely. More specifically, we use a modified cost function for the MST

algorithm of [60] by making the link insertion cost as a weighted function

of both link length and accurate delays (obtained using the algorithm of

[53]) of the clock tree end points before link insertion.

The top-level algorithm of our link insertion for buffered clock tree is

similar to the top-level algorithm for the unbuffered case with certain important

differences like the use of accurate delay models and the use of link insertion

friendly clock tree synthesis methodology. The major steps in constructing a

linked buffered clock tree are:

1. Construct a balanced buffered clock tree using the flow described in Sec-

tion 3.3.

79

2. Select the sink node pairs for link insertion using a modified form of al-

gorithm in [60] with the cost function as weighted function of link length

and proximity of accurate delays for the node pairs. The accurate endpoint

delays are obtained using the algorithm of [53] for delay evaluation.

3. Since the endpoint locations are fixed, the capacitance value of each link

can be calculated once the node pairs have been selected. Using the link

capacitance values as extra load capacitance at the selected sinks, construct

another buffered clock tree with the same topology as the one constructed in

step(1). This new buffered clock tree will be equivalent to the first buffered

clock tree plus the link capacitance.

4. Add the link resistances to the new clock tree built in step (3). The final

result will be equivalent to the buffered clock tree constructed in the first

step plus the link capacitance and link resistances. This is our final buffered,

linked clock network.

It may be noted here that, even though the work of [78] has a similar

objective of obtaining a link based buffered clock network, our approach differs

from that of [78] in the following aspects:

• We use ordinary buffer cells unlike [78] which requires special tunable buffer

cells.

• We use the iterative delay evaluation procedure of [53] during clock tree

synthesis instead of SPICE. This makes our algorithm both fast and accu-

rate.

80

• We propose a new merging scheme that results in a balanced buffered clock

network that is inherently friendly for link insertion.

3.5 Sensitivity based Link Insertion

In this section, we propose our sensitivity based link insertion scheme

that is very suitable for link insertion in buffered clock trees. The important

contributions of this work are:

• We introduce the concept of delay sensitivity vector for the sink pairs. We

use this to identify the sink pairs that are most susceptible to variation

effects and insert links only between such sink pairs. This makes our algo-

rithm very efficient and results in a robust, variation tolerant clock network.

• Our methodology is compatible to higher order delay models. Though we

use Elmore delay in this paper to explain our algorithm, the same method-

ology can be easily extended to any higher order delay model.

• Any given variation model, like the systematic and random power supply

variation, temperature variation etc. can be seamlessly integrated with our

algorithm. In this work, we use random interconnect width variation as an

example.

3.5.1 Drawbacks of the Existing Approaches

Sensitivity based link insertion is more suitable for buffered clock trees

because of the following drawbacks of the existing algorithms:

• Most of the exiting works, except [35], do not use either delay or skew varia-

81

tion information while choosing links. Therefore, they might add ineffective

links.

• The current methods are not compatible with the use of higher order delay

models because all the parameters used for selecting the links are based on

nominal Elmore delays.

• Also, the current algorithms cannot be modified for use with a given varia-

tion model. For example, if the IR drop variation information or the metal

thickness variation information is available, the current methods cannot use

them to choose between links that have similar parameter values, but are

different only because of their variation context.

• Though the method of [35] does not suffer from some of the above draw-

backs, it has very high run-time and complexity. For example, the method

takes 2 minutes to add 10 links in a 74 pin clock network and more than

10 hours to add 20 links to a 597 sink clock network.

3.5.2 Sensitivity Based Algorithm

In this section, we propose the delay sensitivity based algorithm that ad-

dresses all the drawbacks of the existing algorithms. The basic idea behind sen-

sitivity based link insertion is to insert links between the node pairs that are

most susceptible to variation. This is motivated by the fact that a given link has

the maximum beneficial effect on the node pairs between which it is inserted.

The rest of this section presents the details of the algorithm. First, we introduce

the concept of delay sensitivity vector for a given process variation model. This

concept helps us to identify the link pairs that are the most susceptible to the

82

variation effects. Following this, we prove that the α-rule proposed for unbuffered

clock trees in [54] is also true for buffered clock tree case. Finally, we present our

sensitivity based link selection method.

3.5.3 Sensitivity Vector

Consider Fig.3.16 which shows a typical clock tree. Let the variables x1,

x2,. . . , xn denote process variation variables that affect the delays and skew of

the clock tree. Without any loss of generality, we can assume that these variables

are independent from each other. If the variables are not independent from each

other, then we can employ the method of [37] to create independent process

variation variables. Let Ti denote the root to sink delay of any sink i. This can

be expressed in terms of the process variation variables x1, x2,. . . , xn as follows:

Ti = fi(x0, x1, x2, . . . , xn)

The first order Taylor expansion of Ti can be written as

T̂i ≈ Ti,0 +
∂Ti

∂x0

∆x0 +
∂Ti

∂x1

∆x1 +
∂Ti

∂x2

∆x2 + . . .

+
∂Ti

∂xi

∆xi + · · ·+ ∂Ti

∂xn

∆xn

= Ti,0 +
n∑

k=0

∂Ti

∂xk

∆xk

where Ti,0 is the nominal delay of node i and ∆xk = xk−xk nominal(k ∈ (0 . . . n)).

It may be noted here that, expressing the delay variation as a linear func-

tion of the random variables is quite accurate for all practical purposes [22]. In

83

Figure 3.16: Clock Tree with Variations on Each Segment

other words, though the delay might be a non-linear function of the variables xi,

the variation in delay w.r.t. its nominal value can be treated as a linear function

of changes in the random variables.

Assuming a zero nominal skew clock tree, Ti,0 is equal to Tj,0 for any two

sinks i and j. Therefore, the skew between sinks i and node j in the presence of

process variation can be expressed as:

qi,j = Ti − Tj ≈ T̂i − T̂j

=
[

∆x0∆x1∆x2 . . . ∆xn

]




∂Ti

∂x0
− ∂Tj

∂x0

∂Ti

∂x1
− ∂Tj

∂x1
...

∂Ti

∂xn
− ∂Tj

∂xn




(3.7)

Let us define the sensitivity vector for the skew between nodes i and j as:

Si,j =




∂Ti

∂x0
− ∂Tj

∂x0

∂Ti

∂x1
− ∂Tj

∂x1
...

∂Ti

∂xn
− ∂Tj

∂xn




(3.8)

84

Let Mi,j be the Magnitude of Si,j, we have

Mi,j =

√√√√
n∑

k=0

(
∂Ti

∂xk

− ∂Tj

∂xk

)2

Thus, the skew between any two sink nodes i and j can be expressed in

terms of the sensitivity vector as:

qi,j =
[

∆x0∆x1∆x2 . . . ∆xn

]
Si,j

An important point to be noted here is that each element of the vector

Si,j in equation (3.8) represents effect of one process related variable on the skew

between sink nodes i and j. Similar to the work of [35], we also assume that the

variables have a Gaussian distribution. Based on this assumption, we can regard

the ∆xk (k = 0, 1, . . . , n) as zero mean random variables with a known variance

σk. Since a weighted sum of several independent Gaussian random variable is also

Gaussian, the skew between sink nodes i and j, qi,j is also a Gaussian random

variable. qi,j has a range of E(qi,j)− 3σi,j ∼ E(qi,j) + 3σi,j, where the σi,j is the

standard deviation of the qi,j. For a zero nominal skew clock tree, the expected

value of skew is given as:

E(qi,j) = (E(
n∑

k=0

(
∂Ti

∂xk

− ∂Tj

∂xk

)∆xk)) = 0 (3.9)

The range of qi,j is −3σi,j ∼ +3σi,j. Similarly, the standard deviation of

skew is calculated as

σi,j =

√√√√
n∑

k=0

(
∂Ti

∂xk

− ∂Tj

∂xk

)2σ2
k (3.10)

85

where σk is the standard deviation of the independent Gaussian distribution vari-

able ∆xk. Assuming that ∆xk(k = 0, 1, . . . , n) have the same standard deviation

σ, we can rewrite the above equation as

σi,j =

√√√√
n∑

k=0

(
∂Ti

∂xk

− ∂Tj

∂xk

)2 · σ = Mi,j · σ (3.11)

The magnitude of standard deviation of skew between sinks i and j is

indicative of how sensitive the skew between nodes i and j is to the variation

effects. Therefore, we can conclude that the sink pairs that have higher value

of Mi,j are more sensitive to variation. Thus, by adding link only between sinks

pairs that have the maximum value of Mi,j, we can greatly reduce the sensitivity

to variations.

Obtaining Sensitivity Vector for a Generic Case: In the above

derivation, we have assumed that the random variables ∆xk as Gaussian random

variables with the same σ just for illustrative purpose. The concept of using

the magnitude of sensitivity vector as a measure of skew sensitivity to variation

is still applicable even if the random variables ∆xk had different non-Gaussian

distributions.

Similarly, the same concept can also be applied with higher order delay

models, including SPICE, by employing a method similar to the work of [81] to

obtain the delay sensitivities. For example, we can obtain the sensitivity vector

considering the effect of power-supply noise as follows. For a given buffer in the

clock tree, any changes in the power-supply voltage on that buffer directly affects

buffer delay and the delay of the segment directly driven by it. Also, it can have

an effect on the input slews of next stage, thereby affecting the delay of the next

86

stage slightly. In most practical cases, the effect of slews on delays can be ignored

after one stage of buffers. The key point is that, for all practical purposes, we can

bound the effect of small changes in power-supply voltage on a given buffer to a

few segments near the buffer. Thus, we need not evaluate the delay sensitivities

of all the segments in the clock tree for a given power-supply noise in a single

buffer as most segment sensitivities can be assumed to be zero for all practical

purposes. By extension, we can state that we can obtain the delay sensitivities

of all the segments of a given clock tree w.r.t. the power-supply noise for all

the clock buffers in an efficient manner. Once we know the delay sensitivities

of each segment of the clock network, we can trivially obtain the sensitivities of

the sink delays and thereby the sensitivities of skew between any two sinks. This

method can be similarly extended to consider variation effects like Leff , Tox,

interconnect thickness, etc. Also, the above method of obtaining sensitivities

inherently considers the path sharing between different sinks. For example, when

a given segment is common for two sinks, its effect will be cancelled out while

obtaining the values of Si,j in Equation 3.8.

3.5.4 α-Rule for Buffered Clock Tree

The α rule that was proposed in [54] was motivated by the fact that it

scales down the original skew as shown in equation 2.2. Further, it was shown in

[54] that the value of α is always less than 1 for any link added between nodes

driven by the same buffer. However, it was not clear whether the same α rule

could be extended for links that connect nodes driven by different clock buffers.

This situation can happen in a buffered clock network. In this section, we prove

that the same rule is also valid for buffered clock networks where a given link can

87

have two drivers.

The motivation for extending the α-rule for buffered clock tree is explained

below. The magnitude of sensitivity vector, Mi,j, is a good measure of how

much a the skew between a given sink pairs i, j is susceptible to variation effects.

However, the value of Mi,j does not measure how close two sink pairs are in terms

of physical proximity. For example, two sets of sink pairs might have the same

value of Mi,j, but one of the sink pairs might be physically close to each other

while the other pair might be far apart. In such cases, we need to be able to add

link between the sink pair that are close to each other to reduce the wire-length

consumption. From the work of [54], we can conclude that lengthy link will have

a high value of α. Thus, if we are able to choose links with low value of α, we

will be able to have a good control over the increase in wire-length due to link

insertion.

It is worth noting here that equation 2.2 was derived in [54] based on the

following equation from [7]:

v̂ = v − vi − vj

R + ri − rj

r (3.12)

The above equation gives the new voltage in all the nodes of any RC

network when a resistance R is added between nodes i and j of the RC network.

The v̂ is the vector of new node voltages and v is the original node voltages

before adding the resistance R, vi and vj are the initial node voltages of i and j.

The r vector gives the Elmore delays of all the nodes of the RC network when the

capacitance at node i is +1 and at node j is -1 and all other capacitance values

set at 0. vi and vj are the entries in the r for the nodes i and j.

88

The work of [7] also deals with situations when there are more than one

voltage source by chopping up the network into sub-networks such that the

each sub-network has only one source. After this, the different sub-networks

are stitched together considering the fact that the final settling voltages of the

different nodes at t =∞ can be different from what it was when it was driven by

only one source. However, in the case of a link driven by two different buffers,

since the entire clock tree can be assumed to be on the same voltage domain, we

can directly apply equation (3.12) for delay calculation purposes. As a result, the

same α rule proposed in [54] for non-buffered clock trees is also valid for buffered

clock trees. From [54], we know that lower the value of α, better the link is.

Since the value of α is always less than 1, we can also state that a higher value

of (1− α) denotes a better link.

3.5.5 Sensitivity Based Link Insertion

Based on the last two sections, we can conclude that the effectiveness of

a link between nodes i and j is proportional to Mi,j and (1-α) where Mi,j is the

magnitude of the sensitivity vector and α is as defined in equation 2.2. Hence,

we define the link sensitivity cost as follows:

SensitivityCosti,j = (1− αi,j)Mi,j (3.13)

Any node pair with large value of eq (3.13) can be regarded as a good

candidate for link insertion. This is because if Mi,j is high, it means that the

sink pair i,j is very sensitive to variations. Similarly, if the value of α is low (or

89

a high value of 1-α), the link can significantly reduce the final skew. Thus, we

use the SensitivityCost as a measure of effectiveness of each link.

In this paper, as in [78], we follow the set of guidelines listed below for

link insertion:

• Links are always inserted between zero nominal skew nodes.

• Node pairs are selected such that the buffers driving the links are not over-

loaded. Therefore, the selected sink nodes are relatively close to each other.

This also makes sure that the links are not concentrated in a single place.

• Since the magnitude of the sensitivity vector is higher for sink pairs that do

not share any common element, the method inherently selects pairs with

considerably different source to sink paths.

• Short circuit risk in multi-driver nets is avoided by the method of [78].

The overall flow of the sensitivity based link insertion for buffered clock

trees is shown below.

As shown in the algorithm, we first obtain the delay sensitivity of each

clock segment under the given variation model. This step enables us to quickly

get the skew sensitivities for all the sink pairs. Next, for every feasible node pair,

we evaluate the value of the SensitivityCost. Finally, we select the top N links

based on the value of SensitivityCost such that the total wire-length does not

exceed the user specified maximum wire-length increase.

90

Procedure: Sensitivity based link insertion
Input: Buffered Clock Tree Node-List.
Output: Final link-based non-tree clock network.

1. Calculate delay sensitivity for all segments of the clock network.
2. For Each sink pair i, j do

If Link distance ¡ Max link length AND no short circuit problem then
Generate sensitivity vector’s magnitude Mi,j

Compute (1− α)M
SensCosti,j = Mi,j · (1− α)

3. Sort (1− α)M and find the top N links subject to wire-length constraint.
4. Add all link capacitance to the sink nodes.
5. Tune the locations of the internal nodes to restore original skew.
6. Add link resistances.

Figure 3.17: Node Pair Selection.

3.5.6 Advantages of Sensitivity Based Link Addition

The sensitivity based link insertion algorithm has the following merits

when compared to the other existing algorithms:

• Because of the use of delay sensitivity, this method identifies the sink pairs

that are most prone to the effects of variations.

• Links insertion can be modified based on a given variation model. For

example, if the power-supply noise model is available, the works of [54, 56,

57, 60, 78] cannot use that information while choosing the links. However,

since our scheme directly uses the variation information in the form of delay

sensitivity, the links selected will be more effective.

• The work of [35], though can make use of given variation information, is

extremely slow. This is mainly because [35] updates the values of mean

91

and variance for all sink delays after every single link addition while con-

sidering all possible variation parameters simultaneously. However, since

our method of obtaining the sensitivity information is a one-time process,

our overall approach is much faster than the approach of [35].

• The calculation of delay sensitivity is compatible with higher order models

including SPICE. Hence our algorithm can be applied even when high ac-

curacy is required. In the case of using SPICE, we can employ a method

very similar to the one used in [81] to obtain the delay sensitivities.

• Our algorithm does not involve the use of any empirical parameters such

as α, β, γ, etc., as in [54, 57, 60, 78].

3.6 Experimental Results

3.6.1 Results for Balanced CTS and Link Insertion

In order to verify the variation tolerance of our new buffered clock tree

and the linked buffered clock tree approaches, we run SPICE based Monte Carlo

simulations (500 trials) considering both interconnect and device variations. We

assume that interconnect width, load capacitance, device channel length and

oxide thickness vary with a Gaussian distribution with σ = 5%. We implemented

our algorithms in C++ and experiments were run with a 3.25GHz, 2Gb memory

Linux system. We use the same benchmarks as in [75].

It will be apt to compare our results with the results of [78] because of

near-identical objective of our work and the work of [78]. However, the exact

details of the tunable buffers in [78] were unavailable to us for direct comparison.

As a result, we compare our results with the algorithms in [14] and [11]. We chose

92

these two algorithms for comparison because the algorithm in [11] will result in a

clock tree with greatly reduced wire length consumption because it is very similar

to minimum spanning tree construction. So it can be a good benchmark to do

the wire-length comparisons. The algorithm in [14], due to its balanced nature,

is likely to yield a good and balanced clock tree with reduced skew variability.

Thus, comparing our results with these two algorithms will give us appropriate

benchmarks for both wire-length and skew. It may be noted that, for the major

part, the code for our algorithms and our implementation for [11, 14] are identical

except the merging schemes used. So the difference in runtime and results can

be directly attributed to the different merging schemes and delay model.

Since the results of [11] are expected to yield the minimum wire length and

worst skew (because of its unbalanced clock trees), we use [11] as the baseline for

comparing our results. The skew variation and resource consumption for [11] are

shown in Table 3.2. While selecting the clock trees for different algorithms, we

made sure that all of them meet the slew requirement of 100ps on the clock tree

points. As a result, the skew across benchmarks of different sizes are comparable

for a given algorithm. We also made sure that the clock tree with minimal

resources that met the slew criterion was selected for each algorithm so as to

ensure a fair comparison between the different algorithms.

Table 3.3 shows the results of our new algorithms and the algorithm in [14]

scaled in terms of the results of [11] (All the columns except the # Buf and CPU

have been scaled). The Method column specifies the method for which results

have been given. We have identified the algorithm of [14] and [11] as CTS-[14]

and CTS-[11] respectively. We identify our algorithms as CTS and Link+CTS.

93

The wire length consumption is shown under the column titled WL. The ‘# Buf’

column gives the number of buffers for the particular clock tree. The NS, WCS

and AS denote the ‘Nominal Skew’, ‘Worst Case Skew’ and ‘Average Skew’ in

SPICE, the last two values obtained for 500 trials of Monte Carlo simulations in

SPICE. The important observations from Table 3.3 are as follows:

• From column 2 of Table 3.3, it can be observed that our buffered clock tree

results in comparable wire-length to that of [11] and much less wire-length

than [14].

• As expected, the skew values for [11] is the worst among all the algorithms.

Also, it can be observed that our buffer insertion algorithm produces con-

sistently better results than [14] in terms of skew variability reduction.

• The linked, buffered clock network has the best skew variability reduction

among all the algorithms. Also, the percentage of extra wire-length con-

sumed for link insertion is small and drops heavily as the size of the clock

tree increases. This proves the effectiveness of link insertion for buffered

clock trees.

• The CPU time consumed for the algorithm [11] is the lowest while our algo-

rithms yields comparable CPU times. When compared to the run times of

[14], the run times of our buffer insertion algorithm and the linked buffered

clock network algorithm are much faster. Most notably, our runtimes are

much lower compared to those reported in [78] because [78] uses SPICE.

94

TC WL # Buf NS WCS AS CPU(s)
r1 25937 16 100 190 76 0.06
r2 34110 28 96 222 60 0.36
r3 34353 36 101 196 52 0.71
r4 55115 78 176 362 76 3.46
r5 109722 163 110 226 56 9.4

Table 3.2: Skew variation and resource consumption results for the algorithm in
[11]

3.6.2 Results for Sensitivity Link Insertion

In order to verify the effectiveness of the sensitivity based link insertion,

we should ideally compare our results with that of the works [35, 54, 56, 57, 60, 78].

Since the skew reduction in [35] was lesser than the works of [54, 56, 57, 60, 78]

and also the benchmarks used were smaller, it is sufficient to compare our results

with the best from the works of [54, 56, 57, 60, 78]. However, the work of [78]

uses special tunable buffers and the work does not give details about the buffer.

The works of [54, 56, 60] mainly focus on unbuffered clock trees as opposed to the

focus on buffered clock trees in this work. Because of these reasons, we compare

our results only with the work of [57].

Similar to [57], we use the benchmarks r1-r5 downloaded from GSRC

Bookshelf [26]. We run SPICE based Monte Carlo simulations with 500 trials

with interconnect width as a source of variation. We assume that the interconnect

widths are Gaussian random variables with a σ value of of 5%. Please note that

we use this process variation model only as an example. Any other variation can

also be used in our method. We use the 180nm technology parameters for the

buffers and interconnect parameters. We implemented our algorithm in C++

and all the experiments were run on a 3.25GHz, 2GB Linux system. Table 3.4

95

TC Method WL # Buf NS WCS AS CPU
r1 CTS-[11] 1.0 16 1.0 1.0 1.0 0.06

CTS-[14] 5.2 18 0.57 0.72 0.46 1.1
Our CTS 0.8 18 0.37 0.49 0.23 0.08

Link+CTS 1.1 18 0.41 0.45 0.16 0.18
r2 CTS-[11] 1.0 28 1.0 1.0 1.0 0.36

CTS-[14] 7.5 36 0.91 0.95 0.91 14
Our CTS 1.8 40 0.62 0.60 0.59 0.42

Link+CTS 1.8 40 0.65 0.39 0.37 0.52
r3 CTS-[11] 1.0 36 1.0 1.0 1.0 0.71

CTS-[14] 9.6 41 0.59 0.57 0.61 44
Our CTS 1.1 45 0.49 0.54 0.51 0.78

Link+CTS 1.3 45 0.51 0.40 0.32 0.88
r4 CTS-[11] 1.0 78 1.0 1.0 1.0 3.46

CTS-[14] 12.4 85 0.56 0.55 0.47 509
Our CTS 2.1 83 0.34 0.42 0.36 3.94

Link+CTS 2.1 83 0.41 0.33 0.25 4.41
r5 CTS-[11] 1.0 163 1.0 1.0 1.0 9.4

CTS-[14] 9.1 174 0.79 0.55 0.49 2009
Our CTS 1.5 183 0.46 0.38 0.35 10.12

Link+CTS 1.5 183 0.48 0.30 0.28 11.62

Table 3.3: Skew variation and resource consumption results for our new algo-
rithms and algorithms in [14] w.r.t. results of [11] in Table 3.2

shows the details of the buffered clock trees used in our experiments. The clock

trees were obtained using the algorithm of [14], which was also implemented using

C++. The column denoted by WL gives the wire-length of the trees. The worst

case skew and the standard deviation values for each of the clock trees is given

under the columns of WCS and SD respectively.

Table 3.5 presents the skew variability information for the link-based non-

trees obtained using the sensitivity based link insertion method. Please note that

all the values given in Table 3.5 are in terms of the values of the trees shown in

Table 3.4.

From Table 3.5, we can see that the sensitivity based link insertion has

96

TC # of Sinks # of Buf WL WCS SD
r1 267 32 1632666 183.4 86.2
r2 598 66 3257889 343.0 69.2
r3 862 85 3949749 293.0 63.0
r4 1903 184 8243951 360.7 88.5
r5 3101 281 12281280 361.0 91.6

Table 3.4: Size and skew variability information for buffered clock trees. WCS
and SD in pico-seconds

TC WL SD WCS CPU(s)
r1 1.07 0.55 0.61 0.04
r2 1.03 0.76 0.86 0.12
r3 1.10 0.59 0.70 0.18
r4 1.11 0.60 0.82 0.74
r5 1.07 0.64 0.74 2.23

Average 1.076 0.62 0.74 0.662
% Change +7.6 -38.0 -26.0 -

Table 3.5: Skew variation information for link based non-trees w.r.t. the results
of trees shown in Table 3.4

achieved a 26% reduction in worst case skew, 38% reduction in standard deviation

at the cost of 7.6% increase in the total wire length when compared with the

buffered clock trees. In comparison, the method of [57] has achieved a 22%

reduction in worst case skew, 30% reduction in standard deviation at the cost

of 15% increase in wire-length. Thus, the sensitivity based method has achieved

higher skew variability reduction while reducing the total wire-length increase by

7% compared to [57]. This indicates that the sensitivity based method is able to

insert links much more efficiently than the method of [57].

Another important fact to be noted in Table 3.5 is that our sensitivity

based algorithm is orders of magnitude faster when compared with the work of

[35]. The work of [35] is a good comparison for run-time because it is the only

work among [35, 54, 56, 57, 60, 78] which can potentially make use of any given

97

process variation model. Even for our biggest benchmark, the run time is in

a few seconds when compared to several hours of run-time for the method of

[35]. Thus, our sensitivity based algorithm is very fast and achieves better skew

variability reduction using lesser routing resources.

98

Chapter 4

Optimized Clock Mesh Network Synthesis

4.1 Clock Mesh Synthesis Problem

Among different methods suggested for clock skew variation reduction,

a leaf-level mesh with a top-level tree has been shown to be very effective in

reducing skew variation in several commercial chips as noted in [49, 64]. The

variation tolerance of a leaf-level mesh is a direct result of its high redundancy,

with multiple source to sink paths for every sink. Figure 4.1 shows an example

of a clock network with top-level tree and leaf-level mesh.

The high buffer area, routing resource and power requirements of a leaf-

level clock mesh have historically restricted its use to a few high-end products like

microprocessors [19, 25, 34, 48, 64]. However, with variation becoming a bigger is-

sue at 65nm technology and below, even non-microprocessor chips might consider

the use of a clock mesh to improve yield. Nevertheless, most non-microprocessor

chips still cannot use a leaf-level mesh because of two reasons. First, as noted

above, the resource requirements (wirelength, buffers and power) might be pro-

hibitively high. Second, there is a lack of automatic mesh planning/synthesis

and optimization tools to help achieve the design objectives without manual

effort [63]. Since ASICs typically have much shorter turn-around times than mi-

croprocessor chips, they cannot afford to have a manually planned and optimized

clock mesh. In fact, the lack of research on automated clock mesh synthesis was

99

noted as early as in 2001 [21]. However, no comprehensive work has been done

on this practically important topic in the literature, to our best knowledge. Even

in the recent tutorial on clock distribution networks [49], no systematic method

has been presented for mesh planning1 or optimization. Thus, to make clock

mesh a viable option for non-microprocessor chips, a fully automated framework

for mesh planning, synthesis and optimizations is needed. Such a framework can

enable chip teams to achieve a smooth tradeoff between performance (skew) and

power (area).

Bounding Box A

Bounding Box B

��������
��������
��������

��������
��������
��������

����������������
(b)

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��
��

(a)

Figure 4.1: (a) A clock network with leaf-level mesh. (b) Leaf-level mesh driving
clock sinks.

It may be noted that fully automated clock mesh planning/synthesis and

optimization will be very useful to microprocessor chips as well. For example, au-

tomated mesh planning/synthesis can be used to get the preliminary clock mesh

after which finer adjustments can be made manually. Similarly, mesh optimiza-

tion can be performed on the individual grid zones2 [49] to reduce power/resources

used. The potential difference on the use of such automated methods between

1It is called grid floor-planning in [49].
2The individual sub-grids driving small zones of a chip.

100

microprocessor and other chips lies in their respective “resource vs. skew” trade-

off. While microprocessors might opt for maximum power reduction with a

strict skew requirement, other chips might opt for minimum skew with a strict

power/resource target.

Review of Existing Works: Next, we briefly review the existing works

on clock mesh. The works of [25, 34, 48, 64] deal with custom/semi-custom mesh

design and do not address the problem of automatic mesh synthesis/optimization.

The works of [19, 77] perform optimizations on a given clock mesh. However the

problem of obtaining a good initial clock mesh that can be optimized has not been

addressed. The work of [67] deals with the synthesis of hybrid clock network with

a top-level mesh and bottom-level tree. Since the size of the bottom-level trees

are not negligible, they will still have considerable skew variation. The work of

[19] performs clock mesh sizing considering only the nominal skew targets and

ignores variation. Recent works [13, 62] present efficient methods for clock mesh

analysis and they do not deal with clock mesh synthesis.

To the best of our knowledge, [77] is the first work that aims to achieve a

“variation tolerance vs. wirelength” tradeoff in a clock mesh. Given a clock mesh

and buffer library, [77] uses a set-cover formulation to obtain the minimum buffer

resource to drive the mesh under slew constraints. Using this buffered mesh,

[77] applies network survivability theory (used in computer networks) to remove

some of the mesh segments without significantly affecting variation tolerance.

The heuristic in [77] makes sure that every sink has at least a certain number of

paths from certain number of buffers within a given distance in the clock mesh.

The edges not present in short paths of any sink are removed, resulting in an

101

optimized clock network. Though the work of [77] is efficient, it has a few key

drawbacks as summarized below:

• It does not consider the problem of initial mesh planning/synthesis and

relies on manually selected mesh for performing optimizations.

• The network survivability formulation ignores the non-uniform sink distri-

bution and hence the effect of differential loading on buffer delays. However,

non-uniform sink distribution is common in most designs [49, 64]. Also, the

computer network model ignores the delay characteristics of a clock mesh

which might result in incorrect optimizations.

• Electrical characteristics of mesh buffers, irrespective of their sizes, are ig-

nored during the mesh optimization and all buffers are treated identically.

Moreover the interaction between mesh reduction and buffering is ignored.

• It does not consider the reliability requirements of the clock tree after re-

moving some of the edges in the initial mesh. As a result, the final mesh

might have Electromigration (EM) violations. It may be noted that the

work of [19] considers EM requirements as a constraint during mesh siz-

ing. In the context of mesh optimization by removing mesh segments, the

inverse problem of solving existing EM violation with minimum additional

wire-area is needed.

In this work, we attempt to address all these drawbacks. The key compo-

nents of our MeshWorks framework are:

102

• Mesh Planning and Synthesis: We propose a simple yet effective

method that can aid in fast planning & synthesis of a buffered clock mesh

for a given set of design constraints. Our method can help choose a good

initial buffered mesh, which can be further optimized for power/resource

reduction during refinement stage. The initial mesh so obtained can be

further optimized either based on our algorithms or the existing algorithms

of [19, 77].

• Mesh Optimization: We propose an efficient algorithm using network

sensitivity theory to select the mesh edges that can be safely removed with

little impact on skew variability. This formulation is more accurate than

the work of [77] because the mesh delay sensitivities are directly considered

during optimization.

• Buffer Modeling for Mesh Optimization: We propose an efficient

buffer modeling method that is especially suitable for use during clock mesh

optimization. We also present an efficient technique to resize the buffers

after mesh optimization to reduce buffer area and power consumption.

• Wire Sizing for Reliability: For a given optimized mesh, we propose

an effective heuristic that sizes relatively few mesh segments to meet the

EM constraints.

The above contributions make MeshWorks the first comprehensive frame-

work for complete automation of clock mesh networks synthesis and optimization.

Experimental results suggest that MeshWorks can achieve significant resource re-

duction compared to the already optimized results of the work of [77] with similar

103

worst case maximum operational frequency under variation. A preliminary ver-

sion of this work was published in [58].

4.2 Mesh Planning and Synthesis

The mesh planning and synthesis problem can be stated as follows.

Given: Sink locations and load capacitance, buffer library, interconnect param-

eters, variation models, nominal/variational skew targets.

Problem: Obtain an initial clock mesh with minimum routing and buffering re-

sources such that the given design constraints are likely to be satisfied. It shall be

noted that our objective is not to get a final clock mesh, but to quickly get a good

mesh that can further be optimized using the algorithm presented in Section 4.3.

4.2.1 Terms and Definitions

Here, we define a few common terms to facilitate our discussions.

• S = {s1, s2, ...sN} is the set of all N clock sinks, where si denotes the ith

sink.

• B = {b1, b2, ...bT} is the set of all T buffer sizes in the library with the

buffers numbered in non-decreasing order of size/drive strength. For each

buffer size bp, the maximum load that can be driven under a given max-slew

constraint Max Slew is denoted by CLmax
p .

• Let Dq(Cap) be the delay at the output of a buffer of size q (1 ≤ q ≤ T)

when it drives a load cap of value Cap.

104

• Let IntDel(l, C) denote the delay when an interconnect of length l drives

a load capacitance of value C.

• The leaf-level mesh, by definition, covers the entire chip area spanned by all

the sinks. The X,Y dimensions of the chip area are given by Xbound,Ybound.

Mesh size is defined by the number of horizontal, vertical segments denoted

by m,n. Such a mesh will have m ∗ n nodes, numbered sequentially from 1

to m ∗ n. Each clock sink si is attached to the nearest mesh node using an

interconnect called stub of length Li
stub.

• The buffers directly driving the mesh are called mesh buffers.

4.2.2 Total wire-length as a function of Mesh size

The total wire-length of the clock mesh along with the stubs can be written

as :

Ltot = Lmesh + Lstub = m ∗Xbound + n ∗ Ybound +
N∑

i=1

Li
stub (4.1)

The wire-length of the mesh itself is a linear function of mesh size. Let us

now consider the effect of increasing the mesh size on the sum of wire-lengths of

all the stubs. As either m or n increases, a randomly chosen sink is more likely

to have closer horizontal or vertical mesh segment. Since the number of stubs is

constant, it is very likely that the total stub length decreases. In a sparse mesh,

the mesh wire-length is less when compared to the dense mesh. However, the

total stub wire-length is likely to be more for a sparse mesh than a dense mesh

105

because each sink needs to be connected to the nearby mesh point using a longer

interconnect. Figure 4.2 illustrates this fact with a simple example.

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�

�
�
��

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

����

�
�
�

�
�
�

������ ����

�
�
�
�

��
��
��
��

����

�
�
�
�
�

�
�
�
�
�

(a)

�
�
�
�

�
�
�
�
��

�
�
�
�

��

��

����

�
�
�

�
�
�

���
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�

�
�
��

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

(b)

Figure 4.2: Examples of sparse and dense clock meshes. A dense mesh is likely
to have shorter stubs.

Figure 4.3 shows how the wire-length changes as a function of mesh size

in one of our test cases. The key point to be noted is that it is easy to get a plot

similar to Figure 4.3 for a given set of sinks even though the shape of wire-length

function might differ. From such a plot, choosing an appropriate mesh size or size

range that fits our “wire-length vs. mesh-size” trade-off requirement is trivial.

Figure 4.3: Determining the right mesh size.

106

4.2.3 Skew as a function of Mesh size

Skew variation is typically a decreasing function of mesh size because

of two factors. First, the mesh itself becomes more dense, resulting in more

redundancy, making it more tolerant to variations. Second, the length of the

stub also decreases, resulting in reduction of the maximum possible uncontrolled

delay variation. In general, skew in a given mesh can be expressed as a sum of

three components as follows:

Skbound = [Max(Dp(CLmax
p))−Min(Dq(CLmax

q−1))] + Delay(Dmax) (4.2)

+ IntDel(Lmax
stub , C

max
L); ∀p, q : 1 ≤ p, q ≤ T

where, Lmax
stub = Min(Xbound

2n
, Ybound

2m
) gives the maximum length of any stub when

the chip area of dimension Xbound, Ybound is divided equally into m rows and n

columns, Cmax
L gives the maximum value of sink load capacitance for the given

set of sinks and Dmax is the maximum distance between a sink and the nearest

mesh buffer.

The first component in Equation(4.2) is the skew due to the differential

loading/sizing of the mesh buffers. This is the difference between the maximum

delay of any buffer in the library under its maximum loading condition and the

minimum delay of any buffer in the library under the maximum loading condition

of the previous sized buffer (q − 1). We can consider a load of CLmax
q−1 to be a

lower bound of the load for buffer bq because the use of bigger sized buffer bq

when a smaller buffer bq−1 can be used will waste resources3. Thus, this term

3Refer to end of Section 4.2.3 on assumptions made in this regard.

107

gives a tight upper bound for the maximum skew that can be introduced in the

mesh due to differential buffer loading. As stated in [64], uneven buffer loading

is one of the most important reasons for the skew in a clock mesh and is typically

the most dominant part of the skew.

The second component in Equation(4.2) is because of the difference in

proximity of each sink to the buffer that is closest to it. Due to the redundancy of

the mesh, this component will be usually small for a well driven mesh satisfying

the slew requirements. If Dmax is the maximum distance for a given buffered

clock mesh, then maximum skew is equal to the delay in the segment itself. This

corresponds to the worst case situation where a sink is located right next to a

mesh buffer, while another is located at a distance of Dmax from the same buffer

with all other components being identical.

The third component in Equation(4.2) is due to the difference in the stub

lengths and load capacitance. This component can be significant because it is

uncontrolled by the redundancy of the mesh. It represents the worst case skew

that can be caused when one of the sinks is located on the mesh itself and the

other sink with maximum load capacitance is connected to the mesh using a stub

of maximum length. Figure 4.4 illustrates the situation in which all the three

factors discussed above might combine, resulting in maximum skew between two

sinks shown. For the first case, a big buffer drives a big load capacitance that is

located at a distance Dmax from the buffer. For the second case, a small buffer

drives a small capacitance located right next to it.

Among the skew components, the first component depends only on the

buffer library and sets a practical limit on the skew obtainable using the given

108

Cmax

Cmin

A B

Dmax

Figure 4.4: Three dominant skew components in a mesh - skew due to buffer
delay imbalance, skew due to difference in distance from closest buffer and skew
due to different stub length and load capacitance.

set of library buffers. The third component depends only on the mesh size and

hence can be obtained for a given mesh size once we get the plots in Figure 4.3.

However, to accurately evaluate the second skew component, the precise location

of mesh buffers should be known. But buffer locations cannot be known unless

we choose the mesh size. Thus, there is a chicken and egg problem in accurate

estimation of the second component.

For a given set of library buffers and slew requirements, as the mesh is

made denser, there will be addition of more mesh buffers to satisfy the slew

requirements. Thus, for a randomly selected sink, the location of the nearest

buffer is likely to be proportionately closer as we increase the mesh density.

Another useful observation is that the value of Lmax
stub scales in the same general

way as the value of Dmax as the size of the mesh is increased. Thus, we can

approximate the value of Dmax by a scaled factor of Lmax
stub where the scaling factor

is a function of the buffer library and the mesh buffer placement/sizing algorithm.

The value of scaling factor can be estimated based on a few experiments and

used for estimating the skew bound subsequently. Though this approach is an

109

approximation and we can find corner cases where this observation need not be

true, our experiments on several benchmark circuits show that this assumption is

valid in practice. Also, the choice of buffer placement/sizing algorithm influences

the accuracy of this approximation. For example, if the buffer placement/sizing

is done in such a way that buffers are placed close to sinks, then the second factor

can even be neglected from skew bound analysis. Our buffer placement/sizing

algorithm, discussed in Section 4.2.4, enables us to achieve that.

Figure 4.5 shows the plot between the skew bound estimated using the

above approximation and the accurate skew obtained by running SPICE Monte

Carlo analysis on one of our benchmark circuits. As we can see, the skew bound,

though not perfectly linear, is still monotonic w.r.t. the changes in the actual

worst case skew and hence has high fidelity. We observe similar curves for all our

other benchmark circuits.

Figure 4.5: Plot showing the fidelity of the skew bound Equation(4.2). Though
skew bound is not perfectly linear of actual worst case skew, it is monotonic.

Thus, Equation(4.2) can be used to get a high fidelity estimation of skew

110

bound for a mesh of given size. Because of the closed form nature of this equation,

skew bounds for a given mesh size can be estimated quickly under the assumptions

discussed above. The steps to obtain the size of the initial mesh are summarized

in Figure 4.6.

Procedure: Obtain Initial Mesh Size

Input: Lmax, Lmin, Smax ⇒ Min, Max wire-length & Skew target.
1. Get m,n such that total wire-length from Equation(4.1) is ' Lmin.
2. Using the current m,n, obtain Ltot using Equation(4.1).
3. If (Ltot ≥ Lmax)

Print ”Relax design constraints”
Quit.

4. Obtain value of Skbound from Equation(4.2)
5. If (Skbound ≤ Smax)

Return m, n. Stop.
Else

Increment values of m,n by 1 and go to step 2.

Figure 4.6: The top-level algorithm of selecting the initial mesh size.

In practice, the value of Smax parameter used as input to Figure 4.6 should

be chosen such that it is not too tight. This is because the value of Skbound

obtained from Equation(4.1) is always pessimistic since it is a bound for the

worst possible skew for a given mesh size.

A note on Equation(4.2): It may be noted that Equation(4.2) inher-

ently makes the following assumptions:

• Several buffers of incrementally different sizes/drive strengths are available

to make the target skew physically possible. As noted in [3], most practical

libraries will have hundreds of different buffer sizes to choose from. Hence

this assumption is valid in practice.

111

• The buffer placement/sizing is done such that the smallest buffer that can

drive a given set of loads will be used. In other words, we assume that all

the buffers in the library have a valid capacitance range, which is used to

choose the smallest buffer for a given load. This assumption is also valid

in practice as power/area reduction is a key objective of any clock network

synthesis algorithm.

4.2.4 Mesh Optimization Friendly Buffer Placement/Sizing

The buffer insertion heuristic of [77] has two main drawbacks. First, the

potential impact of buffer insertion on mesh optimization is not considered. This

might result in buffer insertion at nodes that could have been optimized if the

buffer were not present. Second, the cost function used in the set-cover formu-

lation of [77] ignores the low-pass filter characteristics of an RC mesh[13, 62].

For an RC mesh, the attenuation of a ramp signal applied at a given node in-

creases exponentially as a function of distance from the node. This attenuation

is constant for a given clock frequency. Hence, inserting several small buffers

distributed throughout the clock mesh instead of fewer big buffers might result

in lesser buffer area and improve slew at the clock sinks. This is illustrated in

Figure 4.7. The solution in Figure 4.7-a uses two smaller buffers to drive the

same amount of load instead of one big buffer in Figure 4.7-b. Considering the

attenuation characteristics of an RC mesh, the solution in Figure 4.7-a will re-

sult in lesser slew rate for a given buffer area. In other words, for a given slew

requirement at the clock sinks, the solution in Figure 4.7-a will result in lesser

buffer area. However, the work of [77] might randomly pick one of them.

To address the above drawbacks, we propose the following cost function

112

���
���
���
���
���

���
���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

(b)(a)

Figure 4.7: An example where the buffer insertion algorithm of [77] might not
take the better choice. The shaded circles represent buffers of proportional size.

for the greedy set-cover algorithm of [77]. The cost of inserting a buffer of size p

at node i of the clock mesh is given as:

Costpi =
bp

2

bT
2 ∗

1

Nuncov

∗ 1

Ci
Load

(4.3)

where, bT is the biggest buffer in the given library, Nuncov is the number of

uncovered nodes that can be covered by the buffer under consideration, Ci
Load is

the value of capacitance at the mesh node i, including the capacitance of all the

sink nodes attached to it. The advantages of using the above cost function are:

• Use of bp
2

bT
2 term instead of bp term of [77] forces the cost of several small

buffers to be less than the cost of one big buffer even if the two solutions

have the same total area. Thus, this cost function indirectly considers the

RC attenuation effect of the mesh.

• The 1
Ci

Load
term lowers the cost of adding a given buffer closer to the sinks

even if coverage can be done from a farther node. This reduces the RC

attenuation by placing the buffers closer to the sinks. Also, this makes

the buffer locations optimization friendly as the edges connected to buffers

are less likely to be removed because of the close proximity to the sinks.

Section 4.3.4 has more details on this.

113

• Similar to the work of [77], the cost function is inversely proportional to the

number of new, uncovered mesh nodes that can be covered by the buffer

under consideration.

The other aspects of the set-cover formulation are same as in [77] and are

omitted here due to page limit.

Impact of mesh buffer placement on top-level clock tree: The

increased number of mesh buffer from the above buffer placement method might

increase the wire-length of the top-level clock tree. However, this effect is compen-

sated by two opposite effects, which is explained next. Comparing the situations

in Figure 4.7 a and b, case-b will have fewer mesh buffers and hence lesser top-

level wire-length. However, the capacitance of the single end point will be high

because of bigger buffer. Also, the mesh optimization cannot remove the edges

that connect the big buffer to the two clusters of sinks on either side, increasing

the wire-length of the mesh. In contrast, the situation in case-a has more end

points in the top-level, which can increase the top-level wire-length. However,

the total pin capacitance is lower than in the first case because, to achieve com-

parable slew rates at the sinks, case-a can use smaller buffers with lesser total

area. Also, several extra mesh edges can be optimized away, resulting in lesser

mesh wire-length. Thus, case-a reduces both the top-level pin capacitance and

the mesh wire-length at the cost of increasing the top-level mesh wire-length.

Since the top-level wire-length addition is only a tree (which can be represented

by sum of distances from the single big buffer to the small buffers that replace

the big buffer) and since the potential optimization that can be done in the mesh

can result in removal of several mesh edges, the above approach typically results

114

in an overall reduction in total capacitance of the clock network.

4.3 Network Sensitivity Based Mesh Optimization

In this section, we will first review the concepts of network sensitivity

theory that is at the root of our mesh optimization approach. Next, we present

our efficient buffer model that is used during the mesh optimization. Finally,

using these concepts, we present our network sensitivity based mesh optimization

algorithm.

4.3.1 Network Sensitivity Theory

Given a RC network, network sensitivity theory aims to efficiently evalu-

ate sensitivities of a given output parameter (voltage or current) to changes in

the circuit parameters. A straight forward and inefficient method to obtain the

sensitivities is to perturb each circuit parameter and observe the changes in the

output. However, in the case of RC networks with no active elements, the sensi-

tivities of a given output can be obtained w.r.t. every parameter in the network

using the method of [36] without perturbing any circuit parameters.

A

B

Ib

Ea

I = 1
Vin

A

B

Ib

Ia

(b)(a)

Figure 4.8: Network sensitivity theory can be applied for clock mesh optimization.

115

Consider the Figure 4.8 (from [36]) which shows a generic electrical net-

work with 3 identified elements for illustrative purposes. The elements can be

any of the passive components like R, C and L. Let IA, IB, IC be the currents

through these elements in the nominal circuit. The element Vin represents all the

sources in the RC network. Let the voltage across element B be considered as

the output of this network. According to [36], to obtain the sensitivities of the

output voltage w.r.t. all the parameters of the circuit, irrespective of the number

of circuit parameters, we need to construct an auxiliary network for the origi-

nal network as follows: all the independent current sources are opened, voltage

sources are shorted, a unit current source is applied across the element B and the

voltages across all the components in the network are measured. According to

[36], the relationship between the currents of the original network, element values

and voltages in the auxiliary network is given as:

Ea =
∂Eb

∂A
∗ A

IA

(4.4)

where, Ea is the voltage across any element in the auxiliary network, ∂Eb

∂A
is of

sensitivity of the output voltage Eb w.r.t. parameter A (the required value),

and IA is the current flowing through the element A in the original network.

Thus, using only two simulations, the sensitivities of a given output w.r.t. all the

network parameters can be obtained, irrespective of the number of parameters.

Though the method of [36] is efficient when compared to the perturbation method,

it still requires one simulation for each output. Thus, a direct application of this

method is not practical for multi output networks, like clock networks. Our

method to overcome this drawback is explained in Section 4.3.3.

116

4.3.2 Accurate Buffer Modeling For Mesh Optimization

The sensitivity calculation method of [36] can be applied only for a pas-

sive network. To apply the concepts of sensitivity theory to a clock mesh, all the

clock buffer must be modeled using a combination of voltage/current sources and

passive elements like resistors and capacitors. The typical switch resistance mod-

eling of buffers is becoming increasingly inadequate to approximate the buffers

in the sub 100nm technologies. This inadequacy is compounded by the inherent

difficulty in modeling the effective capacitance of a mesh because of its multiple

paths and multiple drivers that can possibly interact in highly non-linear fash-

ion. Thus, we need a buffer model that is accurate, independent of the load

and also captures the non-linear behavior of the buffers. The buffer model pro-

posed in [66] satisfies all these requirements. The basic idea behind the work

of [66] is the use of a two-pole approximation for modeling a buffer instead of

the single pole approximation of a switched resistance modeling. As a result, it

can be characterized almost independent of the load that it drives and captures

the non-linear behavior of the buffers. An example of this model is shown in

Figure 4.9 where S is the size of the buffer. The values of R1, R2, C1, C2 are

obtained by using the OPTIMIZE function in HSPICE[29] to approximate the

delay characteristics of a given buffer. In this work, we adapt the work of [66] to

make it suitable for the problem approximating a library of buffers.

The work of [66] concentrates on modeling a single buffer. Though this

can be trivially extended for a library of buffers, the values of the parameters

R1, R2, C1, C2 can differ drastically based on the initial values used in the OP-

TIMIZE function of HSPICE. Ideally, we would want monotonic changes in the

117

values of R1, R2, C1, C2 for monotonic changes in buffer sizes. This requirement

is feasible under the assumption that a bigger buffer is used to drive proportionally

bigger load under a given slew target. The monotonic property of R1, R2, C1, C2

parameters ensures that the any buffer resizing done with these models will be

accurate. The monotonic characteristic of the RC parameters can be guaranteed

by first obtaining a good approximation for either the smallest or the biggest

buffer size in the library using large search space. For all the other buffers, the

approximations are obtained by constraining the maximum or minimum values

of R1, R2, C1, C2 to the values of the previous or next sized buffers using the

OPTIMIZE function in HSPICE. From our experiments, we observed that this

always preserves the monotonic nature of the parameters while resulting in ac-

curate approximations.

To(S)

R1(S) R2(S)

C1(S) C2(S)

Vo(t)
Vi(t)

Figure 4.9: Accurate buffer used for clock mesh optimization. S is the size of a
given buffer

Accuracy of the buffer model: Figure 4.10 compares the clock sink

delays for one of our mesh test cases with original buffers and the buffer models.

As seen from this figure, the two delay curves track well across the clock sinks.

We observe similar results for all our test-cases. For all the test-cases, the error

because of our buffer models is around 4% for delays and 1% for skews. Thus,

any optimization done using our buffer models is likely to be accurate.

118

Figure 4.10: Comparison of sink delays in SPICE obtained using buffers and the
buffer model for a clock mesh test-case.

4.3.3 Mesh Optimization Algorithm

To minimize the mesh wire-length without significantly affecting the vari-

ation tolerance, the mesh segments that are not critical for variation tolerance

should be removed. Consider Figure (4.11) where a mesh drives several clock

sinks. In this case, the edges shown in dashed lines can be safely removed with-

out significantly affecting the skew characteristics of the original mesh because

they are far away from all the clock sinks. Similarly, we would like to have a

dense mesh in places where the clock sink distribution is high and a sparse mesh

in locations where the density is much lower.

In this work, we attempt to achieve the above objectives using network

sensitivity theory as explained below. Let Deli denote the delay of a sink si

and let a mesh segment connected between mesh nodes p and q be denoted by

Seg(p, q). The delay sensitivity for the sink si w.r.t. width W (p, q) of the mesh

segment Seg(p, q) can be expressed as:

∂Deli
∂W (p, q)

=
∂Deli

∂R(p, q)
∗ ∂R(p, q)

∂Wp, q
+

∂Deli
∂C(p, q)

∗ ∂C(p, q)

∂Wp, q
(4.5)

119

Figure 4.11: Simple example of network sensitivity based mesh optimization.

In the above equation, the terms ∂Deli
∂R(p,q)

and ∂Deli
∂C(p,q)

are the values of delay

sensitivity w.r.t. the resistance and capacitance of the mesh segment. There is no

closed form expression for evaluating these terms. The terms ∂R(p,q)
∂Wp,q

and ∂C(p,q)
∂Wp,q

are

the changes in resistance and capacitance values of the mesh segment as a function

of width. These terms can be easily obtained though the relationship between

interconnect width and resistance/capacitance values. For the simple case of

R(p, q) = R0(p,q)
W

, and C(p, q) = C0(p, q) ∗W , these expressions are −R0(p,q)
W 2 and

C0(p, q) respectively. In order to select mesh edges for removal, we first quantify

the effect of removing each edge by defining the following cost function for each

mesh segment Seg(p, q):

Cost(p, q) = Max

(
∂Delj

∂W (p, q)
− ∂Delk

∂W (p, q)

)
∗W (p, q) (4.6)

∀j, k ∈ sinks S.

The above cost function approximates the maximum change in skew in the

entire mesh when a given segment is removed. The criticality of each mesh seg-

120

ment w.r.t. variation tolerance will be proportional to the value of cost function.

The basic idea of our approach is to remove the segments that have a low cost

function, resulting in an optimized mesh. However, the following sub-problems

must be solved for efficient application of network sensitivity towards solving

mesh optimization problem:

• As stated in Section 4.3.1, the method of [36] is inefficient for clock network

which has many output (sink) nodes.

• The method of [36] can be used only to obtain voltage sensitivities and

cannot be directly used to obtain delay sensitivity.

• The sensitivities for a given segment assumes that all the other mesh seg-

ments are held constant.

The above sub-problems can be easily solved when the following key ob-

servations are considered:

• The RC mesh network behaves as a low-pass filter [13, 62], in which the

attenuation of a ramp input signal applied at a given node increases expo-

nentially as a function of distance from the source node. As a result, the

delay sensitivities of a given set of closely located sinks will be almost the

same w.r.t. most clock segments. This assumption is not valid for mesh

segments located close to the sinks. However, such mesh segments are less

likely to be optimized out. We can use this observation to drastically reduce

the number of output nodes (sinks) for which delay sensitivity needs to be

121

evaluated.

• According to [22], the effects of most variation can be modeled using linear

approximation without any significant effect on the accuracy. As a result,

we can obtain the delay sensitivity terms of Equation(4.5) using Elmore

delay without accuracy loss.

• The Elmore delay sensitivities can be obtained efficiently by evaluating the

voltage sensitivities of the DC equivalent network of the original mesh net-

work. The DC equivalent circuit can be obtained by shorting all voltage

sources and replacing all the capacitances by current sources of equal mag-

nitude [6]. The node voltages in this circuit represent the Elmore delays of

the original mesh networks and the voltage sensitivities are the sensitivities

of the Elmore delays.

• The sensitivities of several output voltages in the DC equivalent circuit can

be evaluated efficiently by reusing the results of LU factorization. This is

because the only change made in solving the different auxiliary networks

for different output nodes is the location of the unit current source [6].

• The analysis efficiency can be further improved by exploiting the sparse

nature of the nodal admittance matrix for most RC mesh networks [6].

122

Using the above observations, the value of cost function of Equation(4.6) can be

evaluated for each mesh edge efficiently.

Overall Mesh Optimization Algorithm:

1. Identify the different sink clusters such that sinks in each cluster are closely

located.

2. Obtain an approximate circuit by merging all the sinks in each cluster into

a single merged sink with capacitance equal to the total capacitance of all

the merged sinks. The resulting mesh will be a good approximation of the

initial mesh as far as sensitivity calculations are concerned and will have

far fewer end points compared to the original mesh.

3. Replace all the mesh buffers with the accurate buffer model values presented

in Section 4.3.2.

4. Obtain Elmore delay sensitivities of every merged sink w.r.t. all the mesh

segments by efficient reuse of the results of LU factorization and making

use of sparse matrix methods. Using the delay sensitivities, obtain the

Cost(p, q) for each mesh segment as defined in Equation(4.6).

5. Sort mesh segments in increasing order of Cost(p, q) value and remove the

required number of segments to satisfy the wire-length reduction target.

The mesh segments are selected such that no two removed mesh segments

are at a distance of N nodes from each other. This requirement makes sure

that any interactions between the mesh segments removed is negligible. A

higher N implies fewer edge removal and lesser modeling error because of

the interactions between the mesh edges.

123

4.3.4 Buffer-resizing for Mesh Optimization

A key drawback of [77] is that the optimized mesh uses the same buffer

placement/sizing as the initial mesh. This can result in buffer area and power

wastage. In this work, we propose an efficient buffer resizing heuristic to reduce

the buffer area/power for a given optimized mesh. The main steps in our approach

are:

1. For each clock buffer, obtain the rectangular covering region in the mesh

where the total capacitance (including sink capacitance) is less than buffer

load limit under the given slew constraint.

2. For each buffer that has an overlap with another buffer, consider resizing

to the previous sized buffer such that the total covering region for all clock

buffers is maintained.

3. Repeat this process till there exists no buffer that can be sized down without

reducing the total coverage.

The amount of buffer area reduction obtained by the above heuristic is

proportional to the reduction in mesh wire-length. However, the proportional re-

duction in power is likely to be less because the redundant buffers in the optimized

mesh were driving light loads.

4.4 Wire Sizing for Reliability

As noted in [8, 38, 39, 68, 69, 71], electromigration (EM) is increasingly

becoming a significant issue in the deep sub-micron IC designs. In general, EM is

124

relevant to clock mesh because of the significant current flowing in it. EM is es-

pecially relevant to clock mesh optimization because removing any mesh segment

can potentially increase the current density in a nearby segment. This problem

has been implicitly addressed in our framework to a partial extent. During mesh

optimization, we make sure that no two removed mesh segments are at a distance

of N nodes from each other. This was primarily done for making sure that the

interactions between mesh segments is negligible in terms of variation tolerance.

The same step also helps in reducing potential EM violations because the edges

removed are not very close to each other. As a result, any increase in current den-

sity because of mesh optimization will not be concentrated in a small region of the

mesh. However, new EM violations can still happen because the above method

does not directly measure current density. Thus, we need a systematic approach

to address any EM violations that might occur due to mesh optimization. This

section proposes an efficient method to address this issue systematically.

According to the empirical model developed in [4], the Mean Time To

Failure (MTTF) of a wire considering EM issue is given as:

MTTF =
C

Jn
∗ exp(

Ea

k.T
) (4.7)

where C and n are empirical constants, J is the average current density, Ea is

the activation energy for the electromigration mechanism, k is the Boltzmann

constant, and T is the temperature. Thus, the only parameter that can be

adjusted during mesh optimization is the current density. The current density

can be adjusted either by controlling the mesh edges that are removed during

optimization or by wire-sizing after mesh optimization. Accurate implementation

125

of the first method requires analysis of the mesh for EM violations after removing

every mesh segment and hence is very costly in terms of run-time. The second

method of wire-sizing is better because only mesh segments with EM issues in

the optimized mesh need to be sized. As a result, we choose the second strategy.

The complete details are described next.

The central fact used in our wire-sizing scheme is based on the observation

that EM depends primarily on the asymmetric bidirectional currents as described

in [71]. Thus, to a large extent, the value of current density J in a given mesh

segment can be derived from the average DC current in it. This fact is also used

in the work of [19] in which the average DC current can be easily computed

from node voltages of the equivalent RI network of the mesh RC network. The

equivalent RI network of a given RC network is obtained by replacing all capaci-

tors with current sources of equal value and retaining the same resistance values.

Thus, from [19], for a given pair of nodes i and j, the average current in the mesh

segment between nodes i and j is given as:

Iij =
2VDD

Tclk

∗ (
Ti − Tj

Rij

) (4.8)

where i, j are the two nodes connected by the mesh segment under consideration,

the factor 2 assumes a 50% duty cycle clock, VDD is the supply voltage, Tclk is

the time period of the clock signal, Ti and Tj are the first order (single pole)

approximations of voltage at nodes i and j respectively and Rij is the value

of resistance of the mesh segment. The values of first order approximations of

voltages at the mesh nodes can be obtained [19] as:

126

T = [T0 T1 . . . Tn]T = G−1C (4.9)

where G is the N X N admittance matrix of the mesh network and C is

[C0 C1 . . . Cn]T is the vector of node capacitances. Thus, the average current

and hence the current density of a given mesh segment can be efficiently obtained

from Equations (4.8) and (4.9).

We wish to point out here that the main difference between our work and

the work of [19] is in the way we use Equation (4.8). The work of [19] uses

the equation to identify the minimum sizes for mesh segments while down-sizing

mesh segments to save area. However, we use the equation to guide our up-

sizing of mesh segments to solve the EM issues in the optimized mesh. In other

words, [19] uses the equation to prevent EM issues while recovering area, while

we use it to solve EM issues that arise after our mesh optimization. Since our

mesh optimization ensures that the optimized mesh itself is variation tolerant,

any increase in mesh widths for fixing EM violations is likely to make the mesh

more variation tolerant. However, in [19], variation tolerance is not considered.

Our overall wire-sizing scheme for solving EM violations is shown in Fig-

ure 4.12. In essence, we iteratively identify all the mesh segments with current

density issues using Equation (4.8) and then increase the widths in linear propor-

tion to the magnitude of violation. The linear increase is motivated by the fact

that, for a given current, the current density reduction is directly proportional

to the width increase. The iterations continue till all the violations are fixed.

Since all the mesh segments with EM problems are sized-up in each iteration,

the number of mesh segments with more EM violations after a given iteration

127

is usually very small. Hence the total number of iterations for a given optimize

mesh is also very small. This is also confirmed by our experimental results.

Procedure: Fix EM V iolations

Input: Optimized mesh, Max. Current Density Jmax.
Output: Final mesh with EM violations fixed.
1. Get Javg for each mesh segment using Eqn. (4.8), (4.9)
2. N violators = # mesh segments with Javg > Jmax

3. while(N violators > 0)
(a) For (all segments with violations)

(i) scale = Javg

Jmax

(ii) Widthnew = Widthold ∗ scale
(b) Get Javg for all mesh segments using Eqn. (4.8), (4.9)
(c) N violators = # mesh segments with Javg > Jmax

4. Output optimized mesh with new widths

Figure 4.12: Iterative wire-sizing flow to fix EM violations.

Integration in MeshWorks Flow: The wire-sizing based solution for

solving EM violations is a natural addition to the rest of the MeshWorks flow

since the input to this step is the optimized mesh from mesh optimization step.

One potential issue that might arise because of the wire-sizing is that the increase

in mesh capacitance might result in slew violations due to overloading of the mesh

buffers. As a result, we might need one more round of mesh buffer sizing, which

might in turn trigger new EM violations. Thus, in theory, the loop between wire-

sizing and buffer sizing might not be closed. However, this does not happen in

practice. The main reason is that the mesh buffering/sizing problem, which is

based on set-cover problem, is an NP-complete problem. Thus the actual solution

from the greedy mesh buffering/sizing is always sub-optimal and hence results in

buffer sizes such that mesh is slightly over driven. Thus, as long as the increase

in capacitance of mesh segments due to wire-sizing is small, buffer sizing will not

be required. This analysis is confirmed by our experimental results presented in

128

Section 4.6.3.

4.5 Practical Considerations in the Use of MeshWorks

In this section, we discuss some additional issues and extensions of Mesh-

Works.

Blockages: An important issue to be considered during clock network

synthesis of most designs is the presence of blockages. When clock trees are

used, using a synthesis algorithm that is blockage aware is absolutely essential.

Otherwise, a buffer or an internal clock node might be moved significantly after

clock tree synthesis, thereby potentially changing the intended skews significantly.

However, the MeshWorks framework can work seamlessly even for chips with

blockages. For example, consider the Figure 4.13 that shows a simple example

of a chip with a single blockage with a full clock mesh laid on the top. The

semi-circular pin shown represents the location of the clock pin of the blockage.

Here, we are assuming that the blockage is a hard-macro that has a clock pin.

The analysis that follows is equally valid when it is any other type of blockage

and when there are multiple blockages.

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����Pin

BLOCAGE

Case a

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����Pin

BLOCAGE

Case b

Figure 4.13: MeshWorks can be seamlessly applied for chips with blockages.

129

In this case, the mesh optimization problem is identical to the one obtained

by replacing the blockage with its clock pins to be connected to the mesh. Since

the area of the blockage will not have any other clock sinks, the mesh segments

within this area will naturally get optimized away. This is shown in case-b of

Figure 4.13 where the dashed lines indicate that the corresponding mesh segments

have been removed. Another simple way to address this issue is by using a

pre-processing step in which any clock mesh segment that is overlapping with

the blockages can be simply deleted. One caveat to be noted while doing this

step is that the blockage edges need not overlap exactly with the mesh edge

locations. In such a situation, a simple modification of the local mesh segments

to avoid overlaps can be undertaken without impacting the overall applicability

of MeshWorks optimization framework.

Multi-Clock Floorplans: One of the main reasons why clock meshes

are not used even in high performance ASICs is that they typically require mul-

tiple clocks to interact heavily and so they will have sinks of multiple clocks

interspersed in the same floorplan. As a result, using a mesh structure for the

clocks will require two separate meshes covering the entire floorplan, which is ob-

viously unaffordable due to power/resource constraints. However, our clock mesh

optimization scheme can recover most of the unnecessary clock mesh segments

even if starting from complete meshes. This can make the use of clock meshes in

multi-clock floorplans a viable option.

Highly uneven load distribution: The practically significant issue of

uneven load distribution in different parts of a large chip can be addressed effec-

tively using the MeshWorks framework. Such a situation can happen in reality

130

when different IPs from different vendors are merged to create large System-On-

a-Chip designs. Even in situations like this, the MeshWorks framework can be

used effectively. One straightforward method is to start the mesh optimization

with a dense mesh that will work for the most dense region of the chip. Since

our method will automatically optimize away unnecessary edges that do not con-

tribute to skew variation tolerance, the mesh segments in the regions with light

load distribution will be optimized away naturally. Another method is to divide

the entire chip area into several regions of vastly different flop densities and use

mesh works independently on each of them. Finally, each of the optimized sub-

meshes can be connected with each other using the minimum number of mesh

segments. This last approach is similar to the method described in the recent

tutorials on clock distribution networks [49] in which the chip area is divided into

several grid zones which differ in loading and density.

Experimental results to verify the working of our mesh optimization scheme

under each of the above issues are presented in Section 4.6.4.

4.6 Experimental Results

4.6.1 Experimental Setup

We use the results of the recent work of [77] as it has the closest objective to

that of ours. To make a valid comparison, we obtained the results of the method

of [77] from the authors for our buffer library and slew constraints. The number

of buffer types used in [77] was 4, much lesser than what is available/used in most

practical libraries/designs [3]. Also, the nominal slew constraint used in [77] was

150ps, which is 15% of even a GHz clock frequency. As mentioned in [64], a

131

slew of around 10% of the clock frequency is common considering all process

corners. Also, clock nets are typically well buffered to maintain tighter slews

than signal nets. Considering these facts, we used 12 different buffer sizes with

max-capacitance limit ranging from 60fF to 300fF and a nominal slew constraint

of 75 ps for all the different methods. All other experimental conditions are

identical to [77]. In particular, we use the same 65-nm technology parameters

and transistor models from bptm [27] and same set of benchmark circuits. Also,

we modeled the effects of variation on the top-level clock tree in the same way

as in [77] by modeling the input arrival time for the mesh buffers by a random

variable with a maximum variation range of 50ps. Other variation parameters

considered are buffer channel lengths, interconnect width, power supply variation

and sink load capacitance variation. The above parameters are varied with 5%

standard deviation around the nominal value. The spatial correlation in variation

is accounted by the method of Principal Component Analysis [9].

4.6.2 Mesh Planning, Synthesis and Optimization Results

The complete results of different mesh optimizations are shown in the

Table 4.1 and 4.2. Table 4.3 shows the average improvement for all 6 test cases

in Table 4.1. The different mesh optimization approaches of our work and that

of [77] are compared w.r.t. the manually selected mesh used in [77]. According

to the authors of [77], the mesh sizes were chosen in such a way that a target

nominal skew is obtained with minimum mesh wire-length. This manual mesh

is denoted by “MM” in our tables. We directly compare the effectiveness of our

optimization algorithms with the method of [77] by performing optimizations on

132

this initial mesh 4. The mesh optimization method of [77] is denoted by “MO[77]”

and our network sensitivity based approach, along with buffer resizing is denoted

by “NSMO” (Network Sensitivity Mesh Optimization). In order to measure the

effectiveness of our mesh planning & synthesis approach, we obtain the best mesh

chosen by the algorithm in Figure 4.6 for the same set of benchmark circuits and

design constraints. This approach is denoted by “MP&S” (Mesh Planning and

Synthesis) in the tables. Finally, we run our optimization algorithm on the mesh

obtained from our mesh planning and synthesis algorithm. This approach is

denoted by “MPSO” in our tables. The columns under “%Red” are the relative

reductions w.r.t. “MM”.

The different parameters in Table 4.1 are buffer area (BA), total wire-

length (WL), power (PWR) and mean/standard deviations of skew (µsk, σsk)

considering variations (obtained by SPICE Monte Carlo simulations). The last

column in Table 4.1 gives the worst case maximum frequency, Fmax, at which the

clock network can be run in the presence of µsk + 3σsk skew variation assuming

the ideal target frequency to be 1GHz. Similar to [77], we also use the percentage

reduction in max frequency under variation as the measure of variation tolerance

instead of changes in skew. This enables us to directly compare the power/area

vs. frequency trade-off. Instead, if we directly consider the increase in skew, even

a change from a skew of 1ps to 2ps will be a 100% change but it does not convey

the actual trade-off between frequency of operation and resources.

The key observations from the Tables 4.1, 4.2 and 4.3 are:

4Only the mesh itself is identical to the one used in published results of [77] and not the
buffer placement, buffers and slew constraint used. Also, the wire-length reported in [77] did
not include the stub wire-lengths.

133

Case Method Size BA WL PWR µsk σsk Fmax

(#Sinks) µm2 mm (mW) (ps) (ps) MHz
s9234 MM 9X9 36.5 44.1 9.8 8.8 2.3 984
(135) MO[77] 9X9 36.5 40.9 9.2 15.7 4.4 971

NSMO 9X9 35.2 32.1 8.3 14.5 2.6 977
MP&S 7X7 35.0 42.0 9.3 18.1 4.0 970
MPSO 7X7 31.4 33.6 8.0 29.8 5.5 955

s5378 MM 10X10 38.6 46.8 10.4 7.0 2.0 987
(165) MO[77] 10X10 38.6 39.4 8.9 19.5 6.1 963

NSMO 10X10 38.2 32.6 7.9 30.8 2.1 964
MP&S 8X8 36.7 44.2 9.9 11.1 2.8 980
MPSO 8X8 30.1 31.0 6.7 35.2 5.8 949

s13207 MM 30X30 155.9 175.5 39.7 7.7 1.7 987
(500) MO[77] 30X30 155.9 131.6 31.1 13.7 2.6 978

NSMO 30X30 115.0 122.9 30.3 17.0 3.2 974
MP&S 13X13 98.3 116.7 26.2 12.9 2.3 980
MPSO 13X13 90.2 82.8 20.6 27.1 2.3 966

s15850 MM 30X30 167.4 191.5 43.2 7.6 1.6 987
(566) MO[77] 30X30 167.4 127.6 31.1 24.5 3.9 964

NSMO 30X30 123.5 109.2 27.1 17.2 2.8 974
MP&S 15X15 113.9 137.2 30.7 10.4 2.1 983
MPSO 15X15 101.2 84.0 22.0 23.5 4.0 965

s38584 MM 40X40 381.4 455.3 101.6 8.6 1.5 986
(1426) MO[77] 40X40 381.4 345.9 79.3 15.3 1.9 979

NSMO 40X40 342.6 318.7 77.3 21.7 3.5 968
MP&S 25X25 303.5 367.5 82.0 12.4 2.2 981
MPSO 25X25 295.8 256.5 65.2 37.2 4.9 950

s35932 MM 40X40 449.9 543.8 121.0 9.1 1.3 986
(1728) MO[77] 40X40 449.9 437.2 97.3 19.6 3.0 971

NSMO 40X40 400.2 380.6 80.7 26.7 1.2 970
MP&S 26X26 387.3 459.7 103.0 13.5 1.8 981
MPSO 26X26 350.1 349.4 73.5 31.0 3.5 960

Table 4.1: Comparison of the different mesh optimization approaches – absolute
values of buffer area (BA), wirelength(WL), power (PWR) and frequency (Fmax).

Mesh Optimization: Our network sensitivity based optimization (NSMO)

yields consistently better results than the approach of [77] for identical start-

ing mesh. On an average, our approach yields 14.25%, 8.69% and 7.78% extra

reduction in buffer area, wire-length and power respectively with 0.01% improve-

ment in Fmax. This proves the effectiveness of our mesh optimization approach.

Mesh Planning: Our mesh planning and synthesis algorithm (MP&S) is effec-

134

Case Method Size BA WL PWR Fmax CPU
(#Sinks) % % % % (s)

s9234 MM 9X9 0.0 0.0 0.0 NA NA
(135) MO[77] 9X9 0.0 7.2 6.1 1.2 0.4

NSMO 9X9 3.7 27.2 14.7 0.6 6.2
MP&S 7X7 4.3 4.8 4.5 1.3 0.1
MPSO 7X7 14.0 23.8 18.4 2.9 5.8

s5378 MM 10X10 0.0 0.0 0.0 NA NA
(165) MO[77] 10X10 0.0 15.7 14.0 2.3 0.4

NSMO 10X10 1.0 30.2 23.6 2.3 9.0
MP&S 8X8 4.8 5.4 5.0 0.6 0.1
MPSO 8X8 22.1 33.8 35.4 3.7 7.0

s13207 MM 30X30 0.0 0.0 0.0 NA NA
(500) MO[77] 30X30 0.0 25.0 21.4 0.8 3.0

NSMO 30X30 26.2 29.9 23.6 1.3 26.1
MP&S 13X13 36.9 33.5 34.0 0.7 0.1
MPSO 13X13 42.1 52.7 47.8 2.0 22.0

s15850 MM 30X30 0.0 0.0 0.0 NA NA
(566) MO[77] 30X30 0.0 33.3 28.1 2.3 3.0

NSMO 30X30 26.2 42.9 37.2 1.2 32.1
MP&S 15X15 31.9 28.3 29.0 0.4 0.1
MPSO 15X15 39.5 56.1 48.9 2.2 28.9

s38584 MM 40X40 0.0 0.0 0.0 NA NA
(1426) MO[77] 40X40 0.0 24.0 21.9 0.7 8.6

NSMO 40X40 10.1 30.0 23.9 1.8 100.2
MP&S 25X25 20.4 19.2 19.2 0.5 0.2
MPSO 25X25 22.4 43.6 35.8 3.7 81.6

s35932 MM 40X40 0.0 0.0 0.0 NA NA
(1728) MO[77] 40X40 0.0 19.6 19.5 1.5 9.4

NSMO 40X40 11.0 30.0 33.3 1.6 120.1
MP&S 26X26 13.9 15.4 14.8 0.5 0.2
MPSO 26X26 22.1 35.7 39.2 2.7 98.5

Table 4.2: Comparison of the different mesh optimization approaches – percent-
age value w.r.t. MM method.

Method % BA % WL % PR µskew σskew Fmax % Fmax

Red Red Red Avg. Avg. MHz Red
MO[77] 0.00 22.94 21.11 18.09 3.72 971.58 1.53
NSMO 14.25 31.63 28.89 21.35 2.60 971.65 1.52
MP&S 20.74 19.88 19.84 13.13 2.58 979.55 0.72
MPSO 26.92 42.53 39.80 30.66 4.38 958.05 2.90

Table 4.3: Summary of optimization results from Table 4.1 and 4.2 for all test
cases.

135

tive in choosing a good initial mesh. In most cases, the quality of this initial mesh

is close to the final, optimized results of [77]. Also, the size of the initial mesh ob-

tained from our mesh planning approach is significantly smaller when compared

to the manually obtained mesh of[77] for the bigger test-cases. This illustrates

the importance of having a good methodology to obtain an initial mesh.

Combined Mesh Planning and Optimization: By performing our net-

work sensitivity based optimizations on the mesh selected by our mesh planning

algorithm (MPSO), we are able to achieve, on an average, 26.90% buffer area

reduction, 19.59% wire-length reduction and 18.69% power reduction with less

than 1.5% reduction in the worst case maximum frequency.

Run times: The runtimes for our mesh planning and synthesis algorithm are

negligible even for our biggest test case. This can help in quick selection of a

good mesh avoiding manual selection of initial mesh. Our mesh optimization ap-

proach has longer run time compared to the approach of [77]. However, since our

optimization is to be done only on a good mesh obtained by the mesh planning

algorithm, the overall time taken for getting an optimized mesh is considerably

reduced because of the elimination of manual mesh size selection process.

Resources vs. Frequency trade-off: From Table 4.3, we see that the big-

ger the reduction in power, buffer area and wire-length, the higher is the skew

degradation, which is expected. But what is noteworthy is that the degradation

in skew is insignificant because it results in less than 3% reduction in Fmax (w.r.t.

the original mesh of [77]) while achieving significant reduction in power and area.

136

Case Before EM Fix After EM Fix Difference #itr
#Vem %BA %WA #Vem %BA %WA %Vem %BA %WA

s9234 1 14.0 23.8 0 14.0 23.24 100 0 0.56 1
s5378 0 22.1 33.8 0 22.1 33.8 100 0 0.00 0
s13207 11 42.1 52.7 0 42.1 51.09 100 0 1.60 2
s15850 7 39.5 56.1 0 39.5 55.36 100 0 0.73 1
s38584 11 22.4 43.6 0 22.4 42.95 100 0 0.64 2
s35932 33 22.1 35.7 0 22.1 33.78 100 0 1.91 4

Table 4.4: Results of EM violation fixed by wire-sizing. BA and WA (Wire-Area)
are % reduction w.r.t. MM row in Table 4.1 and 4.2. #Vem denote number of
EM violations. #itr denotes the number of EM fixing iterations.

4.6.3 Results of Wire-sizing for EM

To demonstrate the effectiveness of our wire-sizing scheme for meeting

EM requirements, we first obtain the target current density value. The existing

literature [8, 39, 68, 69] has a wide range of values for the current density that

can be used for copper interconnects. For example, the works of [69],[39],[68] and

[8] recommend values of 90mA/µm2, 16mA/µm2, 8mA/µm2 and 160mA/µm2

respectively. In order to be conservative, we set 90% of the most aggressive

value of 8mA/µm2 as our current density target. Thus, any mesh segment with a

current density value above 7.2mA/µm2 is treated as a single EM violation. Thus,

the goal is to ensure that no mesh segment in the final optimized mesh exceeds

this current density requirement. Next, we use the methodology described in

Section 4.4 to identify and fix the violations found in the optimized mesh from

the MPSO rows of Table 4.1 and 4.2. The complete results for this procedure is

shown in Table 4.4.

From the results of Table 4.4, we can see that our method is able to fix all

EM violations with an average 1% increase in total wire-area. Please note that

all the results in Table 4.1, 4.2 uses minimum wire-widths and the increase in

137

wire-area in Table 4.4 is from the wire-sizing.

It may be noted here that we do attempt to resize mesh buffers after mesh

segment sizing to ensure we do not overload the mesh buffers. However, in all

our testcases, we found this to be unnecessary as the amount of extra loading on

the mesh buffers was very small. As a result, there was no change in the buffer

area even after fixing all the EM violations.

4.6.4 Results for Practical Issues in MeshWorks Usage

Next, we will discuss the testcase generation and experimental results re-

lated to the issues discussed in Section 4.5.

Blockages: In order to test if our mesh optimization works as expected

on a testcase with blockage, we first created a testcase as described next. We

picked a rectangular floorplan and randomly generated the sink locations in it.

The center of the floorplan was assumed to have a rectangular blockage and so any

random sinks located in the smaller square was removed. A complete 10X10 mesh

was selected arbitrarily for this floorplan. Buffering & mesh optimization were

done on this complete mesh without giving any explicit information about the

presence of the blockage to them. The final mesh edges post mesh optimization

are shown in Figure 4.14. Visual inspection on the Figure confirms that all mesh

segments that were present in the blockage area have been optimized away. This

demonstrates that our mesh optimization scheme can be directly applied in the

presence of blockages.

138

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

Figure 4.14: Mesh optimization result on a testcase with blockage.

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

Figure 4.15: Mesh optimization done on a testcase with two clocks on same
floorplan. Clock-A is shown.

139

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

Figure 4.16: Mesh optimization done on a testcase with two clocks on same
floorplan. Clock-B is shown.

Multiple Clocks: We generated our multi-clock testcase as follows. A

rectangular floorplan was selected and clock sinks were randomly generated with

constraints such that sinks on the left side of the square were assigned to Clock-A

and the sinks on the right side of the square were assigned to Clock-B. Exceptions

to this rule were allowed with a small probability when the Y-coordinate of the

sinks was between a selected band (between 30% and 50% of the maximum Y

distance). This setup enabled us to get a floorplan such that majority of sinks

belonging to Clock-A were located on the left-side with a few on the right side

of the block and vice-versa. This imitates the conditions in many ASIC designs

where registers belonging multiple clocks interact.

Given this testcase, two sets of buffering and mesh-optimization were done

on a 10X10 mesh, one for Clock-A and another for Clock-B. The final mesh edges

140

after mesh optimization for these clocks are shown in Figures 4.16 and 4.15. As

expected, the mesh for Clock-A has most of the mesh segments on the right side

removed, except for the segments attached to the few Clock-A sinks on the right

side and vice-versa for Clock-B. This demonstrates that our mesh optimization

can reduce resource utilizations on multi-clock floorplans even if the initial mesh

covers the entire floorplan.

Highly Uneven Load Distribution: As the results from the previous

experiment demonstrated, our mesh optimization scheme works as expected even

when the clock sinks are distributed to one side of the chip predominantly over the

other. This can be directly inferred from both Figures 4.16 and 4.15 considering

as individual testcases. Thus, our mesh optimization scheme can be used even in

cases with highly uneven distribution of clock sinks.

141

Chapter 5

Robust Multi-Corner Chip-level CTS

5.1 Chip-level Clock Tree Synthesis Problem

A System-on-a-Chip (SOC) design can be defined as “an IC, designed by

stitching together multiple stand-alone VLSI designs to provide full functionality

for an application” [61]. In today’s 65nm/45nm VLSI technologies, SOC designs

have become increasingly common and the trend is expected to continue in the

future [32]. An attractive feature of SOC designs is the ability to reuse a given

sub-component in multiple chips. The level of reuse can be different from IP1 to

IP. At one extreme of the reuse spectrum are hard-IPs where the exact transistor-

level layout is reused in several designs. At the other end are the soft-IPs which go

through the physical design/timing closure process from scratch so as to integrate

the sub-block with the rest of the chip.

Most SOC physical design closure is done in a hierarchical fashion [61]. In

such a methodology, the chip consists of several logical and physical partitions

that are timing closed independently [1, 2, 32, 61]. This trend is only expected

to accelerate as SOC chips become bigger and more functionality gets added

to them. To complete the full chip, different sub-blocks should be integrated

along with the glue logic and chip-level timing closure should be done. This

1We use the word IP or sub-block to denote the individual sub-component used in SOC
designs. They are also referred to as core in some literature [61].

142

chip-level timing closure includes the chip-level CTS (CCTS) step in which a

chip-level clock tree is synthesized to drive all the block-level clock trees. CCTS

is driven by two main objectives. The primary objective is that the full clock

tree, which includes the chip-level and all the block-level clock trees, should be

balanced and have less skew. This requirement is an absolute necessity in SOC

design as it avoids data mismatch as well as the use of data lock-up latches [61].

Satisfying this requirement is relatively easy when considering only the nominal

delay corner. However, timing closure in most practical chips involve verifying

timing across several corners (referred to as design corners) that represent several

global variation effects such as fab-to-fab, wafer-to-wafer, die-to-die variation,

global voltage and temperature variations [1, 2, 61]. This implies that the clock

trees should also be balanced with small skews across all the design corners. The

different sub-blocks of an SOC typically include several hard IPs as well as soft-

IPs that are timing-closed independently by different individuals/teams, possibly

using different methodologies, tools, and library cells. In such cases, achieving

good skews for the entire clock tree of the chip across all the design corners

is a very challenging task. This is primarily because of the possible difference

in the way the delays and skews of the different sub-clock-trees scale, either

because of difference in the clock structures or the relative significance of cell and

interconnect delays.

Another important objective for chip-level CTS is to minimize the clock

divergence (see Section 5.2.1 for detailed explanation) for the IPs that interact

significantly with each other. This helps to minimize the maximum possible skew

variation between the critical timing paths between the IPs and thus improves the

overall yield. The clock divergence reduction also helps in faster timing closure

143

in real designs as most clock tree analysis algorithms [83] consider the fact that

process variations in common part of the clock tree do not affect the skew between

a given register pair. Reducing the clock divergence between IPs can be a trivial

problem when either the number of IPs are very small or when they do not

interact significantly. Unfortunately, both these conditions do not apply to the

SOC designs of today which have a significant number of IPs which interact in a

complex way [32, 61]. Thus, clock divergence reduction between interacting IPs

is a difficult problem to solve in today’s SOC designs.

In many complex chips, CCTS work is completely custom/manual [1, 2]

so as to achieve the precise skew and divergence objectives. Though a custom

tree has the advantage of achieving the exact results intended, it is often very

time consuming. Also, as the complexity and size of SOC designs increase, cus-

tom/manual chip-level CTS will become increasingly difficult. Thus, fully auto-

mated methods to address the CCTS problem in today’s SOC designs are needed.

In this work, we attempt to address the CCTS problem. The key contributions

of our work are:

• A 0-1 Quadratic Programming based clock pin relocation scheme for soft-

IPs to reduce chip-level clock divergence.

• An effective method to reduce the chip-level clock tree skews simultaneously

across different PVT corners.

• A dynamic programming based CCTS algorithm that simultaneously re-

duces clock divergence and multi-corner skew.

144

To our best knowledge, the above contributions make the first compre-

hensive solution to the CCTS problem for complex SOC designs. Experimental

results on several test-cases indicate that our methods achieve 10%-31% (20% on

average) reduction in the clock path divergence compared to existing CTS works.

This clock divergence reduction directly translates to an increase in timing yield

(for a given chip) or a reduction in chip power and area (for a given target yield).

Our methods achieve these significant clock divergence reduction with as little as

0.5% increase in overall clock buffer area and wire-length.

The rest of the chapter is organized as follows: in the next section, we

present the problem definition and also give some simple examples as to why

the chip-level CTS problem is complicated compared to a CTS on a flat block.

The main algorithms of our work is presented in Sections 5.3, 5.4 and 5.5. In

Section 5.6, we discuss a few practical issues related to the application of our

CCTS algorithms. Finally, Section 5.7 describes the experimental setup that we

have used to verify the effectiveness of our approach.

5.2 Motivation and Problem Formulation

In this section, we will first discuss the significance of clock divergence,

the effect of clock pin assignment on clock divergence and multi-corner skew

reduction using a few simple examples after which we will formulate the chip-

level CTS problem.

Figure 5.1 shows a simple example of a chip-level CTS problem. The sub-

blocks shown might be either hard-IPs or soft-IPs. In the case of hard IPs, the

clock pin location and the clock tree itself will be fixed. For soft-IPs, CTS will be

145

done as a separate step along with block-level timing closure and then integrated

at the chip-level.

Block G
Block E

Block A
Block B

Block F

Block C

Block D

CLOCK ENTRY POINT

Figure 5.1: A simple chip-level CTS example. The black circles represent the
clock root for each sub-block.

5.2.1 Significance of Clock Divergence Reduction

The significance of reducing clock divergence between registers in timing-

critical paths is well known [21]. For a given overall delay, the lesser the divergent

delay between the such register-pairs, the lesser is the value of maximum skew

that can be seen between them. This is because any variation in the common

clock path will not impact the skew between the register pair. This is illustrated

in Figure 5.2. In this example, assuming all other conditions are same, Case A is

better for timing yield in the presence of variation because skew variation in Case

A is limited only to the variations in last clock net. However, in case B, since

the last buffer is not shared, the magnitude of possible skew variations increases,

thereby impacting the timing yield in the presence of variations.

Significance of clock divergence reduction in CCTS: The same

principle of clock divergence reduction discussed above is also applicable at the

chip-level where different sub-blocks interact with each other instead of register

pairs. In some cases, clock divergence reduction between specific sub-blocks might

146

������
������
������

������
������
������

������
������
������

������
������
������

Case A Case B

Data Path Data Path
Flops

Figure 5.2: Even for identical nominal skews, Case A is better than Case B
because of lesser clock divergence and hence lesser skew variation.

be extremely important to ensure good timing yield. For example, when the clock

tree divergence between two heavily interacting IPs is high, it might result in

significant skew variation between all the register pairs between the IPs. If some

of these register pairs were already timing-critical, the increased skew variation

will only exacerbate the situation, thereby affecting the timing yield.

5.2.2 Impact of Sub-block Clock Pin Location on Clock Divergence

Unlike hard IPs, the clock pins of the soft-IPs can be changed specific to a

given chip and floorplan. This additional flexibility for the soft-IPs can be effec-

tively used towards clock divergence reduction between critical IPs. Figure 5.3

shows a simple example where the clock pin assignment might make a difference

in clock divergence reducing. In this example, blocks A and B are assumed to

have critical paths between them. Thus, the pin assignment in Case B is better

since it reduces the clock divergence (and hence the maximum clock skew under

variation) between the flops in the critical path.

147

Case B

A

B

C

A

B

C

Critical Paths

Case A

Critical Paths

Divergence point
between A,B

Figure 5.3: Importance of clock pin assignment for sub-blocks. Case A and Case
B differ in the clock pin location for block B, which affects CTS. If blocks A and
B have critical paths between them, Case B will result in better yield because of
reduced clock divergence between A and B.

5.2.3 Multi-corner skew reduction problem

Once the clock pin location for the soft-IPs are determined and CTS is

done on all sub-blocks, the next step is chip-level CTS. In the chip-level CTS

problem, each of the sub-trees shown in Figure 5.1 are assumed to have full

clock trees in them with fixed clock input pins. In addition, we also know the

delay/skew of each of the clock trees across all the PVT corners. This information

will be necessary for balancing the chip-level clock tree across all PVT corners. To

understand the difficulty in reducing the skews at the chip-level across multiple

design corners, consider Figure 5.4 where only two sub-blocks are present. The

squares in the sub-blocks represent clock sinks. The left-side block has bigger

buffers with longer interconnects and the right-side block has smaller buffers

with shorter interconnect. Let us assume that both sub-clock-trees have identical

delays in the nominal corner. However, their delays across different design corners

will be different, mainly because of the difference in the interconnect lengths and

buffer sizes. To balance these two sub-clock-trees across all corners, the chip-

148

level clock tree should be built such that the differences in the delays, across all

corners, between the sub-clock-trees gets exactly (or nearly) compensated at the

chip-level. In our example, we can attempt to do this by driving the left-side block

with small buffers and short interconnect and the right-side block with bigger

buffer and longer interconnect as shown in Figure 5.42. However, even in this

case, non-zero skew across corners will still exist unless the structure is completely

symmetric, which is rarely possible in real designs. In most SOC designs, there

will be several sub-blocks having clock trees with significant differences in their

size, structure, buffer sizes used and interconnect lengths. Thus, synthesizing a

chip-level clock tree that can simultaneously reduce the skew across all corners

by accounting for these differences while not significantly increasing the overall

delay is a challenging problem.

Figure 5.4: Simple example illustrating difficulty of balancing two different IPs.
The clock tree delays of the two blocks will scale differently across different corners
due to different buffer sizes and interconnect lengths.

2Please note that the figure is illustrative in nature and assumes that all buffers have load
capacitance according to their drive strengths.

149

Problem Formulation: We formulate the overall CCTS problem into

the following two sub-problems:

1. Given: Chip-level floorplan and criticality of clock divergence between all

block pairs.

Problem: Select the clock pin locations of all soft-IPs to reduce clock

divergence between critical IP pairs.

2. Given: All information from the previous step and also information on

sub-clock-tree delays/skews across all corners for each sub-block.

Problem: Obtain a chip-level clock tree such that the skews and delays

across all corners are reduced, while simultaneously reducing the weighted

sum of clock divergence between all the IP pairs. The value of weight for

a given IP pair is directly obtained from the number and timing criticality

of paths between them. In general, the more paths a given IP pair and the

higher the criticality of those paths, the higher the value of the weight for

that pair.

Trade-off between divergence reduction and delay reduction: In

some cases, we might be able to achieve lesser clock divergence by increasing the

overall delay of the clock tree and vice-versa. One simple way to quantify this

Trade-off is to use a scaling factor that will determine the percentage of delay

increase that can be tolerated for a given reduction in clock divergence. Using

this scaling factor, we can define the overall cost as follows:

Cost = x ∗Max Delay + (1− x) ∗DIV COST, (5.1)

150

where DIV COST =
∑
∀i,j Wi,j ∗

(
Di

F + Dj
F − 2 ∗Di,j

C
)
;

In the above equations,

• x: variable with value between 0 to 1 to quantify delay and divergence

Trade-off.

• Max Delay: maximum delay to any sink in the entire clock tree.

• DIV COST : Clock divergence cost between all IPs pairs.

• i,j: The block numbers, with 1 ≤ i, j ≤ N, i 6= j;.

• Wi,j: Criticality of clock divergence between blocks i,j.

• Di
F : Avg. delay from clock root to the flops in block i.

• Di,j
C : The maximum shared or common delay between any two block pair

i, j.

• All the delay information are w.r.t. the nominal corner values.

Thus, the objective of the CCTS problem is to get a chip-level clock tree

that can minimize the above cost function while simultaneously reducing the

skews across all corners.

5.3 Clock Pin Assignment Algorithm for Clock Diver-
gence Reduction

Given a floorplan and criticality of clock divergence between all sub-block

pairs, the clock pin assignment aims to identify the location of all the clock pins

151

of each soft-IP even before any CTS is done on them 3. We restrict the possible

clock pin locations to the mid points of one of the four sides of each block. This

minimizes the distance between the clock pin and the farthest register and can

result in reduced clock tree delay. When the flop distribution is not uniform

within a given block or when there are multiple clocks present in a given block,

we locate each clock pin such that it divides the sink distribution it drives into

roughly two equal halves, either in the horizontal or vertical direction. Under

this assumption, clock pin assignment problem can be formulated as follows:

Let Bi denote the sub-block number i where 1 ≤ i ≤ N . Let Wi,j denote

the criticality of the paths between blocks i and j. Also, let all the four possible

clock pin assignments for a given block be denoted by Bi
1, Bi

2, Bi
3, Bi

4 where

the pin locations are numbered starting from bottom point and proceeds in the

clockwise direction. Let the pin selection for a given block be denoted by a set

of four variables: xi
1, xi

2, xi
3, xi

4. Each of these variables can be either 0 or

a 1 and the sum of the four will always be 1 to make sure exactly one of the

four locations are selected. Using these definitions, the problem of clock pin

assignment for clock divergence reduction can be formulated as:

Minimize :
∑

xi
p ∗ xj

q ∗Wi,j ∗ Top Level Dist(Bi
p, Bj

q) (5.2)

s.t :
∑

xi
p = 1, xi

p ∈ {0, 1}
where : 1 ≤ i, j ≤ N, i 6= j; 1 ≤ p ≤ 4; 1 ≤ q ≤ 4;

In the above equations,

3This step needs to be done during the floor-planning stage of the chip design and before
the timing closure of the individual sub-blocks starts

152

• i and j denote block numbers.

• p and q denote one of the four pin locations on a given block.

• Top Level Dist(Bi
p, Bj

q) represents the Manhattan distance between pin

location p of Bi and q of Bj.

The conditions that each of the variables xi
p should be either 0 or 1 and

that the sum of all the variables for a given block should exactly be 1 makes

sure that exactly one pin location is selected for each block. The cost function

being minimized is the weighted sum of distances between all the clock pins of

all block pairs where the weight is the criticality of the paths between a given

block pair. Minimizing the distance between two pins will directly increase the

chances of clock delay sharing between the two blocks. The only variables in the

above optimization problem are xi
p and since they can only take values of either

0 or 1, the above problem is a 0-1 Quadratic Programming problem. Though this

problem is NP-hard, efficient heuristics are available to solve this problem [28].

Impact of pin assignment on block-level delay: The above formu-

lation ignores the impact of clock pin assignment on the block-level clock tree

delays. For example, if all the registers are concentrated on one side of the sub-

block4, then having the clock pin on that side will reduce the block-level clock

tree delay. Since the above formulation does not consider this effect, it might end

up increasing the overall delay or even clock divergence. However, the formula-

tion can be made to account for block-level clock tree delays by introducing an

4This can happen in real designs when the block has multiple input clocks.

153

additional weighting term of the form Ki
p that denotes the criticality of assign-

ing the pin location p for block i with regards to the block-level clock tree. For

example, if all four sides are equally acceptable for the block-level CTS of block

i, then the value of Ki
p will be identical for all four values of p. If on the other

hand, we want to make a particular pin location more likely, we can increase

the corresponding scaling factor. The relative values for these factors may be

obtained by a weighted sum of distances of all the registers from each of the four

pin locations.

5.4 Multi-corner Skew Reduction Algorithm

In this section, we will address the problem of merging any two sub-clock-

trees such that their combined skews across all the corners are reduced. This

problem can be divided into two categories. In the first, the clock pins are located

very close to each other and their delays across all corners are very similar. In

this case, the multi-corner skew balancing is trivial since it is possible to merge

the clock pins with just interconnect without adding an extra buffer level. In the

second case, the clock pins are far apart and/or they have significantly different

delays across the corners. In such situations, we need to add one or more single-

fanout 5 buffer stages (with appropriate buffer sizes/interconnect lengths) to the

root of the sub-trees to reduce their combined skews across corners. In summary,

to reduce the multi-corner skew between any two sub-trees for the non-trivial

situation, we need a method to select the appropriate number of buffer stages and

the size/lengths of the buffers/interconnects to be used to merge the clock pins

5Single-fanout because we are merging only the two sub-trees. A two fanout buffer will mean
a successful merger!

154

of the two sub-blocks. In future discussions, we call the selection of appropriate

buffer size/interconnect length as selection of an appropriate buffer configuration.

Figure 5.5 shows an example of a buffer configuration.

Buf1 Buf2 Cap

Len
Slew

Figure 5.5: Buffer configuration used for multi-corner delay characterization.

Special Properties of CCTS Problem: To solve the problem of pick-

ing the right buffer configurations for multi-corner skew reduction, following spe-

cial properties of CCTS problem can be exploited:

• Unlike CTS on a flat design, the CCTS problem will have just a hand full

of end points (clock pins of sub-blocks) that are much more spread apart in

distance than typical registers. This is because the number of sub-blocks in

a typical SOC will be orders of magnitude lesser than the number of flops

in the whole design.

• As a result, the typical fanout for a buffers in the chip-level clock tree will be

considerably less compared to the block-level clock trees. In most practical

cases, this can be as low as 1 or 2.

Steps to Choose Buffer Configurations for Multi-Corner Skew

Reduction: In order to distinguish between the different buffer configurations

and select the right set of configurations to achieve multi-corner skew reduction,

we can follow the following steps:

155

• Restrict the maximum fanout for any chip-level clock buffer to just 1 or

2. The clock power/area penalty due to this restriction will be negligible

because the fanout of most buffers is expected to be small anyway. Also,

the number of chip-level clock buffers will be small compared to the total

number of buffers of all the sub-blocks combined.

• The fanout restriction drastically reduces the number of possible buffer

configurations, enabling us to do the multi-corner delay characterization

for each configuration quite easily. For example, in Figure 5.5, the input

slew (in 5ps increments), buffer type of the driver, interconnect lengths

(in 25um increments) and the load buffer type are the variables. Since

this is a simple circuit, the complete multi-corner delay characterization of

all possible configurations and across all corners typically takes just a few

minutes. This is similar to the typical cell delay characterizations used in

ASIC designs, with the added explicit variables of interconnect length and

load cell being driven.

• The next step is to get what we define as cross-corner delay ratios (CCDR)

for every buffer configuration as described here. For each buffer config-

uration, we normalize (divide) the delays across all N corners with the

nominal-corner delay of that configuration. After the normalization, each

buffer configuration will have a vector of N numbers, corresponding to N

corners, called its CCDR. Obviously, the ratio number corresponding to the

nominal corner will always be 1. This normalization helps us to compare

the relative cross-corner scaling of different buffer configurations and choose

the appropriate one for merging any given sub-tree pair. For example, if a

156

buffer driving a 500um interconnect has delays of 50, 100 and 200 ps in the

fast, nominal and slow corners respectively, then the delay ratios for this

configuration will be (0.5, 1.0, 2.0). If another buffer driving a 300um load

has a delay ratio of (0.4, 1.0, 1.8) in the fast, nom and slow corners, then

we can conclude that the second configuration relatively speeds up the fast

and slow corners than the first configuration.

The concept of CCDR described above is used in our multi-corner sub-tree

merging heuristic shown in Figure 5.6. The basic idea behind this heuristic can

be explained by a simple example. Lets A and B be two sub-trees that we want

to balance across three corners - fast, nominal and slow. Let the delays for the

two blocks in the three corners be A(50,100,200) and B(40,100,220) respectively6.

If the two clock trees are merged using a zero-nominal-skew chip-level clock tree,

then the merged tree will have zero skew at nominal corner, but higher skews at

the fast and slow corners. In order to achieve good skews across all three corners,

we should build the chip-level tree such that del to(A, nom) ' del to(B, nom) and

del to(A, fast) < del to(B, fast) and del to(A, slow) > del to(B, slow), where

del to(A, nom) etc. represent the chip-level clock-tree delay to the clock pin of A

in the nominal corner. Chip-level clock trees with such precise cross-corner delay

scaling requirements can be constructed by selecting the buffer configurations

with appropriate CCDR. This is the key idea behind our multi-corner sub-tree

balancing heuristic shown in Figure 5.6.

6Such differences in delay scaling across corners can happen when different clock buffer
types, CTS tools/methodologies are used in the two blocks.

157

Procedure: Multi Corner Subtree Balance(SA, SB)
Input: Location and delay information for both sub-trees SA & SB.
Output: New sub-tree SC combining SA & SB.
1. Get CCDRs of SA, SB w.r.t. nominal corner.
2. Set Sub trees not close = 1
3. While (Sub trees not close == 1)

(i) Pick sub-tree with min nom-corner delay, denoted by SP .
Let SQ be the sub-tree with max nom-corner delay.

(ii) Select the best buffer config. to be added to SP such that the CCDR
of SP after adding the buffer config. moves closest to the
CCDR value of the max-nom delay sub-tree without exceeding its delay
significantly(i.e. by more than biggest buffer delay). Since CCDRs are
vectors, the closeness is defined by L2 norm between them.

(iii) Update delay and CCDR information for SP .
(iv) If skew across corners between sub-trees less than limit

Sub trees not close = 0
4. Using selected buffer configurations, identify the Manhattan ring

within which each sub-tree’s new root can be located.
5. If (Two Manhattan rings intersect)

Any point within intersecting area can be the new root.
Do wire-snaking to ensure preservation of skews/delays.

Else
Select closest points on the rings to reduce wire-length.
Merge them by constructing a simple symmetric (0 skew) tree.

6. Name the new sub-tree as SC and return SC .

Figure 5.6: Multi-corner skew balancing heuristic.

158

In the above procedure, we first pick the sub-tree, denoted by SP , with

lesser nominal corner delay and recursively add buffer configurations at its root

such that the CCDR of the new sub-tree moves closer to the other sub-tree. This

process is repeated till the delays of both the sub-trees are fairly close to each

other across all corners. At this point, the exact configurations to be added at the

roots of both sub-trees A and B to minimize their cross-corner skew are available.

However, the location of the merging point of the two sub-trees is still not yet

fixed. For a given sub-tree, the total lengths of all the interconnects added with

buffer configuration gives the radius of the Manhattan ring within which its root

pin is to be located. If the Manhattan rings of both sub-trees intersect, then

any point within the intersection can be selected as the root with appropriate

wire-snaking. If the Manhattan rings do not overlap, it means that though the

two sub-trees have similar delays, we need to add more buffer levels to physically

merge them. To achieve this, we identify the closest points/segments on the two

Manhattan rings and merge them with a perfectly symmetric tree. This will

ensure that the multi-corner skew balancing already completed between the two

sub-trees is not affected. It may be added here that exact location of the parent

node after merger can be deferred in the same manner as in the DME algorithm.

It shall be noted that the above multi-corner sub-tree balancing procedure

inherently assumes the following:

• The skew targets across corners are bigger than at least a buffer delay across

corners. Otherwise, the skew condition in line 3-(iv) of the algorithm will

never be met and the loop will go on indefinitely.

• All the buffer sizes used at the block-level CTS are available for use at

159

the chip-level CTS. Otherwise, there might be some buffer sizes that scale

differently from others across corners which can not be compensated at the

chip-level.

It may be noted here that the above procedure is suitable only in the

limited context of chip-level CTS and is inefficient in terms of buffer resources

for CTS on a sea-of-gates design. Since the number of sub-blocks will be several

orders of magnitude less than the number of flops in the design, the chip-level

CTS can afford to adopt the above approach.

5.5 Chip-Level CTS Algorithms

In this section, we discuss four different chip-level CTS algorithms with

varying degrees of complexity. Please note that only the dynamic programming

based algorithm is newly proposed in this work. The other three algorithms are

simple modifications of existing CTS works used for comparison. We discuss

all four CCTS algorithms here for the sake of completeness. Please note that

except for the first algorithm (Single-Corner DME) the other three algorithms use

the multi-corner skew balancing method of Figure 5.6. Also, the pin-assignment

scheme proposed in Section 5.3 may or may not be used with the following CCTS

algorithms.

5.5.1 Single-Corner DME based Approach

This algorithm is a direct application of existing CTS algorithms to the

CCTS problem in which only nominal corner delays are used. The algorithm

recursively merges sub-tree nodes which are the nearest neighbors in a manner

160

similar to that of well known CTS algorithms [10, 17, 20, 75]. If a given node

cannot be merged with any other sub-tree without violating the slew limits, a

buffer is added on top of the node to extend the possible merging region for the

sub-tree. The buffer sizes for merging two sub-trees are chosen in such a manner

to reduce the total amount of interconnect added. For example, if a given delay

can be achieved using buffers of different sizes and interconnect lengths, then

the option that uses the minimum interconnect length is chosen. This approach

simultaneously reduces both the wire-length and clock buffer area. The results

from this approach will be used as the baseline for rest of the algorithms.

5.5.2 Multi-Corner DME based Approach

This approach is identical to the single-corner approach with one key dif-

ference: the consideration of multi-corner skews. During the process of merging

two sub-trees, the method described in Figure 5.6 is used instead of using only

the nominal corner delay. At each step, the sub-trees that are closest to each

other are merged recursively till only one node remains. The results from this

approach will be used to do the cost Vs. benefit analysis of multi-corner skew

reduction.

5.5.3 Greedy CCTS Algorithm

This algorithm is a simple modification of the work of [11] in which ev-

ery sub-tree merger is done to minimize the cost (wire-length/buffer area) of

that merger. In our modification, the merging cost as defined by Equation(5.1)

instead of wire-length. During each iteration, the merging cost of all possible

pairs are evaluated and only the best pair is selected for the actual merger. The

161

selected pair is then merged using the multi-corner skew reduction method of

Figure 5.6. This is done repeatedly till all the different sub-trees are merged.

This is a classic greedy approach to reduce both clock tree delay and divergence.

As with most greedy approaches, this method might not result in the best tree

possible. However, it is typically fast. Since [11] is one of the best algorithms

for prescribed-skew CTS, the results from this approach will help us determine if

existing prescribed skew (useful skew) CTS algorithms can be modified for solving

the CCTS problem.

5.5.4 Dynamic programming Based CCTS Algorithm

Our dynamic programming based CCTS algorithm, shown in Figure 5.7,

follows the same general outline of typical dynamic programming solutions[18].

As with any dynamic programming based approach, two key aspects of our al-

gorithm are optimal solution of sub-problems and effective pruning of inferior

sub-solutions to avoid exponential run-time.

For subsequent discussions, we use the following terminologies. An active

sub-tree is one that has not yet been eliminated/pruned from subsequent merging

operations. The list of active sub-trees represent the current list of sub-solutions

to CCTS problem. A new sub-tree in the list of active sub-trees is one that has

not gone through even a single round of mergers with other active sub-trees.

During initialization phase shown in step 1 of Figure 5.7, all the clock pins

of sub-blocks are marked as new and active sub-trees. Step 2 of Figure 5.7 is the

core part of our algorithm in which we iteratively combine existing sub-trees to

progressively get bigger sub-trees, eventually getting one or more solutions that

162

Procedure: Dynamic Programming Top Level CTS
Input: Location and delay information for all blocks.
Output: Chip-level clock tree with min delay & clock divergence.
1. Initialize

a. Mergers Completed = 0
b. Active SubTrees = Clock Pins of all blocks
c. For each subtree ∈ Active SubTrees

Status(subtree) = new.
2. While (Mergers Completed == 0)

a. Valid Pairs = Pick Valid Pairs(Active SubTrees)
b. Eliminated Pairs = Pre Eliminate(Valid Pairs)
c. Valid Pairs = Valid Pairs - Eliminated Pairs
d. Generate Cost for merger of each Valid Pairs using Eq.(5.1)
e. Potential SubTrees = Active SubTrees + Valid Pairs
f. Eliminated SubTrees = Post Eliminate(Potential SubTrees)
g. New Additions = Potential SubTrees - Eliminated SubTrees

- Active SubTrees
h. For each subtree ∈ Active SubTrees

Status(subtree) = old.
i. For each subtree ∈ New Additions

Status(subtree) = new.
j. Active SubTrees = Potential SubTrees - Eliminated SubTrees
k. if (No. of New Additions == 0)

Mergers Completed = 1
3. Pick sub-tree in Active SubTrees with all
blocks and min delay and clock divergence.

Figure 5.7: Dynamic Programming based approach to chip-level CTS. The sub-
steps are explained separately in Figures 5.8, 5.9, 5.10.

163

drive all target clock pins. In each iteration of step 2, we pick the set of valid

sub-tree pairs that can be merged to create new sub-trees that have not been

considered so far. It is essential from run-time perspective that we consider only

the new sub-tree pairs that we have not yet eliminated or created. The steps

to ensure this are outlined in Figure 5.8. Essentially, we mark sub-trees that

have gone through one round of merging with each other as old as in step 2-h in

Figure 5.7. As a result, any merger between two old nodes is invalid as it would

have happened in one of the previous iterations. Also, any merger between two

solutions that have overlapping list of target clock pins is also invalid as it is

physically infeasible. For example, if the clock pin of a particular block A is

present in two sub-solutions, merging them will mean that the same pin should

be merged first with two nodes at the same time. So any such merger is invalid.

Thus, the procedure of Figure 5.8 returns the complete list of valid new sub-trees

pairs that can be considered for merging.

Procedure: Pick V alid Pairs(Active SubTrees)
Input: All active sub-trees.
Output: All pairs of sub-trees that are valid for merger.
1. Valid Pairs = {}; Number sub-trees from 1 to N .
2. For i = 1 to N

For j = i to N
Sub-tree pair considered: Si and Sj

If (Status(Si) == new OR Status(Sj) == new) AND
If (No overlap between Si and Sj on block clock-pins driven)

Valid Pairs → Valid Pairs + (Si, Sj)
3. Return Valid Pairs

Figure 5.8: Procedure to pick valid pairs for merger from a given set of sub-trees.

Once the full list of valid sub-tree pairs is available, the pre-elimination

procedure shown in Figure 5.9 weeds out sub-trees that can be safely removed

164

from consideration even before actually merging them. For example, if roots of

two sub-trees are located very far away from each other or when their delays

differ significantly, then it is probably a good choice to eliminate the pair because

merging them will cause a significant increase in overall delay of the clock tree. A

caveat is that a subtree-pair cannot be eliminated if there are no other alternative

merging for the two subtrees involved.

Procedure: Pre Eliminate(V alid Pairs)
Input: All Valid Pairs of sub-trees.
Output: All very bad merging choices.
1. Eliminated Pairs = {}. Number Valid Pairs 1 to V .
2. For i = 1 to V

Let SA and SB be sub-trees of the pair i.
If (dist(SA, SB) > Dist Threshold) OR
If (delay diff(SA, SB) > Delay Threshold)

Mark Pair i for potential elimination.
3. For each Pair i marked for potential elimination

Let SA and SB be sub-trees of the pair i.
If (SA and SB have merging pairs not marked for elimination)

Eliminated Pairs → Eliminated Pairs + Pair i
3. Return Eliminated Pairs

Figure 5.9: Pre-eliminate procedure to eliminate very bad merging choices.

After the pre-elimination step, the procedure in Figure 5.7 updates the

list of valid pairs by removing the eliminated pairs. Next, each of the eligible

sub-tree pairs are merged using the multi-corner sub-tree balancing algorithm

of Figure 5.6 at the end of which, each sub-tree will have a specific cost as de-

fined by Equation(5.1). The clock pins not driven by a given sub-tree is ignored

for the purpose of cost evaluation and the sub-tree root is treated as the clock

root. This is because only sub-trees that drive the same set (or a full sub-set) of

clock pins are compared in their cost for the purpose of subsequent elimination.

165

Two sub-trees that drive different sets of clock pins will never be directly com-

pared for elimination and so they having different roots for the cost evaluation

does not matter. After the cost generation step is complete, a new set, called

Potential SubTrees, is created by merging the existing active sub-trees and the

valid pairs for which merging cost is available. The post elimination step done

on this set of sub-trees is explained in Figure 5.10.

Procedure: Post Eliminate(Potential SubTrees)
Input: Full list of potentially valid subtrees.
Output: Sub-treesPairs that can be pruned because of existence of

other dominating sub-trees.
1. Eliminated SubTrees = {};

Number Potential SubTrees sub-trees from 1 to N .
2. For i = 1 to N

For j = i to N
P → List of all sub-block clock pins driven by sub-tree i.
Q → List of all sub-block clock pins driven by sub-tree j.
If (P ⊆ Q AND cost(P) ≥ cost(Q))

Eliminated SubTrees → Eliminated SubTrees + P;
If (Q ⊂ P AND cost(Q) > cost(P))

Eliminated SubTrees → Eliminated SubTrees + Q;
3. Return Eliminated SubTrees

Figure 5.10: Post-eliminate procedure used to eliminate dominated sub-trees.

In the post elimination procedure of Figure 5.10, all the existing sub-trees

are compared with each other to check for inferior solution. A sub-tree P is

inferior if there exist another sub-tree Q that covers the same set (or a super-set)

of clock pins covered by sub-tree P , but has same or lower merging cost. Once the

inferior solutions are identified, they are removed from the list of active sub-trees

that will be considered for the next round of sub-tree mergers. This is similar to

the classic pruning condition used in dynamic programming approaches. After

the post elimination step, the next step is to mark the existing active sub-trees

166

as old (Step 2-h in Figure 5.7). This is because all possible valid sub-tree pairs

from these have been evaluated already and they should not be repeated again.

However, the newly created sub-trees should be allowed to merge, with each

other and also with old sub-trees. So the newly created sub-trees are marked as

new (Step 2-i in Figure 5.7). The termination of the iterations in Figure 5.7 occurs

when there are no new sub-trees that were added in any given loop. When this

happens, it implies that there are no two sub-trees that can be merged to form

a valid pair. The final step of the algorithm involves picking the best solution in

terms of merging cost that drives all the clock pins.

5.6 Practical Considerations in CCTS

In this section, we address some of the key practical issues that might

arise during the application of our CCTS algorithms.

5.6.1 Generalization of Pin Assignment Algorithm

In Section 5.3, the 0-1 Quadratic Programming problem was formulated

assuming that the clock pins can be located in only the mid-points of the four

sides. However, in many situations, this assumption might not be valid. For

example, the clock pin can be located at the mid point of the block and can be

reached by using top metal layers at the chip-level. Further, there is no need for

the clock pin to be at the center of the block or at the mid-points of the sides.

The location might be skewed away from the midpoint to either reduce the block-

level delay or to locate the clock pin closer to other sub-block clock pins that have

timing critical paths with the sub-block. In the most generic case, a given sub-

block can have multiple candidate clock-pin locations on each of the four sides and

167

also candidate locations on the top of block. This situation can be easily handled

by introducing two constant weight factors for each candidate location. One new

factor should account for the estimated sub-block clock delay for each candidate

location. This factor should increase proportionally w.r.t. the estimated delay

of sub-block clock tree for the candidate pin location. The second factor should

consider the potential routing layer difference that might arise when clock-pin

locations on top of the sub-block are considered. Also, another straightforward

modification to be done in 5.2 is that the variables p and q that represent the

number of candidate pin locations should be changed to account for the new

candidate pin locations. Thus, the original formulation in Section 5.3 can still be

applied even under such general situation.

5.6.2 Consideration of Blockages

A key requirement of any chip-level CTS algorithm is that it works in

the presence of blockages. For example, the chip might have several modes with

different clocks. In such cases, the sub-blocks for one clock are to be treated as

blockages while synthesizing the clock trees for the other clocks.

We would like to note here that all algorithms presented in our approach

to the CCTS problem can be applied even for chips with blockages. For example,

the clock pin assignment algorithm can be made blockage aware by measuring

the distance between any two candidate pin locations using a blockage aware

global router instead of a Manhattan estimate. Similarly, the multi-corner sub-

tree balancing heuristic presented in Figure 5.6 can be modified by using the

global router based distance instead of Manhattan distance. Since the dynamic

programming algorithm internally uses the multi-corner heuristic, that can also

168

be used in the presence of blockages. Thus, we see that all the components of

our CCTS approach are generic in nature and can be used even in the presence

of blockages.

5.6.3 Measuring Divergence

Reducing the clock divergence is one of the primary focus of this work.

However, measuring clock divergence is not as clearly defined as some of the other

clock metrics like skew and delay. In this section, we would like explain briefly as

to how clock divergence can be measured for a given clock tree. In simple cases

such as the one in Figure 5.2, clock divergence is measured simply by the amount

of clock delay that is not shared by the two clock sinks. If an additional clock

sink is added to this two-sink example and a new timing path is introduced, then

we have to consider the clock divergence for the new timing path also. Since

the original and new timing paths might not have the same timing criticality, we

can introduce relative weights between them so that the total clock divergence

is a weighted sum of the two separate clock divergence values. This concept can

be easily extended as more clock sinks and timing paths are added. Similarly,

clock divergence at the chip-level can be measured as the weighted sum of clock

divergence between the sub-clock trees. The weight used for a pair of sub-clock-

trees will be proportional to the timing criticality of all the paths between the

pair.

5.7 Experimental Results

In this section, we first discuss the details of our test-case generation

process. This is followed by detailed explanation of our experimental setup and

169

discussion of our results.

5.7.1 Test-case Generation

To test the effectiveness of our algorithms, we need several chip-level SOC

test-cases. Since obtaining test-cases from actual SOC chips is not feasible for us

and since there are no known CCTS work in the literature, we generate random

test-cases using the data available on SOC chips in the literature [1, 2, 32, 61].

Defining SOC Chip’s Physical Attributes: First, we define reason-

able ranges for the following variables: chip size, number of sub-blocks, size range

of the blocks, aspect ratio range for block/chip and chip density. Using these, we

generate random chip-level floorplans such that the chip size, number of blocks

etc. are all within the selected ranges. We also make sure that the chip density

(the ratio of the chip covered by the all blocks) is within limits and that there

are no overlaps between the blocks. Each sub-block is marked as a hard or soft

IP randomly with probabilities of 0.2 and 0.8 respectively.

Generating Timing Criticality Data: To generate a realistic timing

criticality information between block pairs, we consider how the chip-level floor-

plan is done. A key objective of floorplanning step is to ensure blocks that have a

lot of interaction with each other are located close to each other. However, when

the interaction between the IPs become complex, placing all the blocks that in-

teract right next to each other becomes impossible. Also, blocks that are very far

away from each other rarely have a significant number of critical paths between

them. To closely resemble this, we generate the criticality information randomly

such that the maximum value on the random number generated remains constant

170

till a certain distance, after which it reduces gradually. Thus, the probability of

having a highly critical pair close to each other is higher than having them on

the opposite ends of the chip. This process enables us to maintain an important

flavor of realistic designs even in randomly generated test-cases.

Parameter Value
Chip Size 0.5x0.5cm2 to 2.5x2.5cm2

Chip Utilization 70% to 90%
Aspect Ratio 0.7 to 1.3

Hard-IP Probability 0.2
Slew Limit Range 90ps to 110ps

Technology 65nm

Table 5.1: Key test-case Generation Parameters.

Generating Sub-block Pin Assignments: The next step in test-case

generation is to obtain clock pin assignment and . This is done in two ways

to produce two flavors of test-cases. First, we use the pin assignment step of

Section 5.3 to get one set of test-cases. Next, we randomly pick the clock pin

location for all sub-blocks to get a second set of test-cases with identical floor-

plan as first set, the only difference being the clock pin locations. The result

comparison between these two sets will tell us the effectiveness of our clock pin

assignment step.

Generating Sub-block CTS Data: The final step in test-case genera-

tion is to mimic the block-level CTS done on the different IPs. This should be

done in such a way as to account for the potential differences in the sub-clock-

trees due to the difference in the individuals/teams, methodology, cell libraries,

etc. We accomplish this by randomly selecting the clock sink density for each

block within a pre-selected range, thereby selecting the number of sinks. This

171

number is rounded off to the nearest power of 2 and the number of H-tree levels

to drive these flops is obtained. Next, we select a random slew range from a tight

range of valid slew. Finally, we recursively choose a random buffer size and use

that to drive the H-Tree in a bottom-up fashion to meet the selected slew limit.

The procedure stops at the clock root of the block. Because of the use of different

buffer sizes and slightly different slew limits, the above procedure mimics, to a

good extent, the situation that arises commonly in most SOC designs. Hence

testing our chip-level algorithms on these test-cases will verify the effectiveness

of our approach. Table-5.1 shows some of the key parameters for our test-case

generation script.

5.7.2 Experimental Setup, Results and Discussions

We use the 65nm model cards from [27] for generation of delays across

corners. We use three device corners (Nom, FF, SS) to generate the nominal, fast

and slow corners. For simplicity, we did not consider other global variations like

Voltage, Temperature and Interconnect. As more and more corners are added, the

single-corner CTS will be even worse compared to our multi-corner algorithms.

In summary, the skew reduction results that we are presenting here are very

conservative gains by using our algorithm. The improvements can be expected to

be much higher when more variations are considered. Also, adding these variation

effects will not change the nature of results on clock divergence reduction as it

uses only the nominal corner delay as a guidance for minimizing the divergence.

The four algorithms described in Section 5.5 are run on both sets of test-

cases generated above – the ones with random pin placement as well as the ones

with pin placement from the Quadratic Programming based approach. Since

172

the two test-case sets are identical in all manner other than the pin locations,

a direct comparison of the results from these two sets will indicate the effec-

tiveness of clock pin placement method in reducing clock divergence. Also, we

run each of the four CCTS algorithms on all test-cases irrespective of their clock

pin placement method. This will be used to compare the effectiveness of the

four CCTS algorithms. We generate 5 random test-cases with unique floorplans

and different sizes within the ranges given in Table 5.1. Each of these test-cases

will have two flavors depending on the pin assignment strategy. Some of the

acronyms used in Table 5.2 and Table 5.3 are explained next. TC denotes the

Test Case for the results. PAM denotes the Pin Assignment Method used in the

test-case. This can either be the Quadratic-Programming (QP) based method

or random pin assignment method (RND). The four CCTS algorithms described

earlier are abbreviated as: 1C-DME (Singe-Corner DME approach), MC-DME

(Multi-corner DME approach), MC-GRD (Multi-corner Greedy algorithm) and

MC-DyP (Multi-corner Dynamic Programming algorithm). The divergence val-

ues given are weighted sum of clock divergence between all IP pairs. The weights

are proportional to the timing criticality of all the paths between the sub-block

pairs. The multi-corner delay, skew and divergence results in Table 5.2 have been

averaged and normalized in Table 5.3 along with the data on buffer area and

wire-length for each test-case and algorithm. Based on the results in Table 5.2

and 5.3, we observe the following:

• Skew across corners using our multi-corner skew reduction algorithm is

significantly better than the single corner approach. Though the nominal

skew itself is comparable in many cases, the skews in other corners are

173

lesser in the multi-corner CTS methods. The average reduction in skew in

fast/slow corner ranges from 16ps to as much as 64 ps in some cases. This

is 1.6 % to 6.4% of cycle time even for a 1GHz clock and will be much more

crucial for faster clocks. This proves the effectiveness of out multi-corner

skew reduction method.

• Comparing the normalized average results of Table 5.3, we see that QP pin

assignment method gives better clock divergence and skew reduction com-

pared to the random pin placement for all the different CCTS algorithms.

This demonstrates the effectiveness of our pin-assignment method.

• For a given pin assignment method, our dynamic programming based CCTS

algorithm achieves an average 19% divergent delay reduction and almost

halves the multi-corner average slew. This has been achieved with with less

than 0.4% increase in buffer area and wire-length.

• Overall, when compared to a single-corner DME based approach with ran-

dom pin placement, the dynamic programming based approach with QP

based approach achieves an average clock divergence reduction of more

than 20% with negligible impact on buffer area, wire-length and overall

delay.

It may be noted that we have measured the effectiveness of our algorithms

using divergent delay reduction and not yield improvement or skew variation re-

duction between critical paths. Both the latter metrics require precise timing path

information between all IP pairs, which is not available for our randomly gener-

ated test-cases. Nevertheless, since our final clock skew divergence number is a

174

weighted sum of pair-wise divergent clock delays, with weights being proportional

to timing criticality of IP pairs, clock divergence reduction directly translates to

a increase in timing yield for a given chip. Similarly, for a given yield, clock di-

vergence reduction translates into reduction in closure time/effort and resources

(people/buffer/interconnect/power) used to achieve the target yield.

175

Delay(ns) Skew(ps) Divergence(ps)
TC PAM meth. Nom Slow Fast Nom Slow Fast Nom Slow Fast

1C-DME 2.47 3.10 1.98 3.46 114.21 75.81 40.74 51.17 32.76
MC-DME 2.49 3.08 2.04 64.50 80.36 52.59 38.33 47.43 31.34

RND MC-GRD 2.44 3.03 2.00 47.21 53.23 68.46 36.06 40.44 32.66
TC1 MC-DyP 2.46 3.04 2.01 43.43 52.49 28.58 35.39 43.80 28.94

1C-DME 2.51 3.17 2.02 17.97 110.71 88.13 41.17 51.81 33.01
MC-DME 2.56 3.17 2.10 33.64 49.69 28.53 39.43 48.72 32.29

QP MC-GRD 2.44 3.03 2.00 47.21 53.23 68.46 35.57 39.84 32.26
MC-DyP 2.51 3.11 2.06 19.61 13.55 17.70 35.05 43.40 28.72
1C-DME 3.04 3.84 2.43 55.58 128.53 158.65 530.69 667.43 425.47
MC-DME 3.09 3.83 2.53 88.03 129.90 65.57 525.98 651.59 429.31

RND MC-GRD 3.03 3.76 2.46 111.13 163.36 122.69 567.45 643.83 509.32
TC2 MC-DyP 3.01 3.72 2.47 93.52 127.87 91.77 427.66 526.09 347.61

1C-DME 3.02 3.82 2.43 57.92 126.21 157.03 536.63 673.94 430.24
MC-DME 3.12 3.87 2.57 104.84 143.90 82.39 538.35 666.54 440.58

QP MC-GRD 3.02 3.73 2.46 95.71 136.70 134.66 550.14 623.01 494.70
MC-DyP 3.01 3.73 2.47 83.13 102.05 77.65 398.11 489.95 323.53
1C-DME 1.45 1.82 1.16 33.22 84.95 52.88 238.11 297.24 191.20
MC-DME 1.45 1.78 1.17 82.53 78.48 66.07 234.28 287.93 189.85

RND MC-GRD 1.44 1.77 1.16 82.39 89.17 82.10 226.30 255.95 201.70
TC3 MC-DyP 1.43 1.75 1.15 68.52 89.42 82.53 183.36 225.31 148.40

1C-DME 1.44 1.80 1.14 48.02 77.41 70.17 213.28 266.79 170.61
MC-DME 1.42 1.74 1.14 87.80 115.26 77.92 214.84 265.11 174.04

QP MC-GRD 1.45 1.78 1.17 67.79 83.40 48.85 216.33 243.49 193.72
MC-DyP 1.45 1.79 1.17 56.68 92.32 36.40 166.53 205.05 135.55
1C-DME 2.10 2.66 1.66 20.48 125.17 73.80 96.69 121.73 76.93
MC-DME 2.07 2.56 1.67 68.48 80.75 56.35 99.07 122.39 79.86

RND MC-GRD 2.07 2.55 1.65 80.09 93.74 57.34 94.04 105.90 84.01
TC4 MC-DyP 2.15 2.65 1.73 29.37 29.89 32.08 87.05 107.45 70.02

1C-DME 2.10 2.65 1.66 19.49 118.84 66.63 103.26 130.36 82.06
MC-DME 2.13 2.63 1.71 53.42 67.24 36.70 98.47 121.52 79.08

QP MC-GRD 2.07 2.55 1.65 80.09 93.74 57.34 92.46 103.95 82.72
MC-DyP 2.15 2.65 1.73 24.74 27.29 25.52 86.58 106.90 69.65
1C-DME 2.40 3.02 1.93 21.34 154.38 136.90 383.75 480.56 307.99
MC-DME 2.38 2.95 1.94 67.18 121.11 118.53 382.86 472.86 312.27

RND MC-GRD 2.39 2.96 1.95 57.24 88.74 99.22 386.62 438.88 346.09
TC5 MC-DyP 2.38 2.95 1.95 89.76 113.12 94.04 311.94 385.59 255.20

1C-DME 2.40 3.02 1.92 29.69 147.85 142.73 374.87 469.92 300.69
MC-DME 2.43 3.01 1.99 79.31 131.16 106.97 376.63 465.00 306.87

QP MC-GRD 2.39 2.96 1.95 57.24 88.74 99.22 370.88 419.40 333.25
MC-DyP 2.45 3.05 2.02 22.03 50.71 41.45 322.09 399.00 263.64

Table 5.2: Multi-corner delay, skew and clock divergence results for the different
CCTS approaches.

176

Delay(ps) Skew(ps) Div. (ps) BA WL
TC PAM Meth. Avg Nor. Avg Nor. Avg Nor. um2 Nor. m Nor.

1C-DME 2.52 1.00 64.50 1.00 41.5 1.00 1.49 1.000 7.3 1.000
MC-DME 2.54 1.00 65.82 1.02 39.0 0.93 1.49 1.001 7.3 1.001

RND MC-GRD 2.49 0.98 56.30 0.87 36.3 0.87 1.50 1.003 7.3 1.002
TC1 MC-DyP 2.50 0.99 41.50 0.64 36.0 0.86 1.49 1.002 7.3 1.001

1C-DME 2.57 1.00 72.27 1.00 42.0 1.00 1.49 1.000 7.3 1.000
MC-DME 2.61 1.01 37.29 0.51 40.1 0.95 1.49 1.002 7.3 1.002

QP MC-GRD 2.49 0.97 56.30 0.77 35.8 0.85 1.49 1.003 7.3 1.002
MC-DyP 2.56 0.99 16.95 0.23 35.7 0.85 1.49 1.002 7.3 1.001
1C-DME 3.11 1.00 114.25 1.00 541.2 1.00 5.05 1.000 26.4 1.000
MC-DME 3.15 1.01 94.50 0.82 535.6 0.99 5.06 1.001 26.5 1.001

RND MC-GRD 3.09 0.99 132.39 1.15 573.5 1.06 5.08 1.007 26.6 1.004
TC2 MC-DyP 3.07 0.98 104.39 0.91 433.7 0.80 5.07 1.003 26.5 1.002

1C-DME 3.09 1.00 113.72 1.00 546.9 1.00 5.04 1.000 26.4 1.000
MC-DME 3.19 1.03 110.38 0.97 548.4 1.00 5.06 1.002 26.5 1.001

QP MC-GRD 3.07 0.99 122.36 1.07 555.9 1.01 5.07 1.005 26.5 1.003
MC-DyP 3.07 0.99 87.61 0.77 403.8 0.73 5.06 1.002 26.5 1.001
1C-DME 1.48 1.00 57.02 1.00 242.1 1.00 1.01 1.000 5.3 1.000
MC-DME 1.46 0.98 75.69 1.32 237.3 0.98 1.01 1.002 5.3 1.001

RND MC-GRD 1.45 0.98 85.63 1.50 227.9 0.94 1.02 1.009 5.3 1.005
TC3 MC-DyP 1.44 0.97 80.16 1.40 185.6 0.76 1.02 1.007 5.3 1.003

1C-DME 1.46 1.00 65.20 1.00 216.9 1.00 1.00 1.000 5.3 1.000
MC-DME 1.43 0.98 93.66 1.43 218.0 1.00 1.01 1.003 5.3 1.001

QP MC-GRD 1.47 1.00 66.68 1.02 217.8 1.00 1.01 1.009 5.3 1.004
MC-DyP 1.47 1.00 61.80 0.94 169.0 0.77 1.01 1.006 5.3 1.002
1C-DME 2.14 1.00 73.15 1.00 98.4 1.00 0.84 1.000 4.1 1.000
MC-DME 2.10 0.98 68.53 0.93 100.4 1.02 0.84 1.004 4.1 1.002

RND MC-GRD 2.09 0.97 77.06 1.05 94.6 0.96 0.85 1.013 4.1 1.007
TC4 MC-DyP 2.18 1.01 30.44 0.41 88.1 0.89 0.84 1.007 4.1 1.005

1C-DME 2.14 1.00 68.32 1.00 105.2 1.00 0.84 1.000 4.1 1.000
MC-DME 2.16 1.01 52.45 0.76 99.6 0.94 0.84 1.005 4.1 1.001

QP MC-GRD 2.09 0.97 77.06 1.12 93.0 0.88 0.84 1.010 4.1 1.005
MC-DyP 2.18 1.01 25.85 0.37 87.7 0.83 0.84 1.005 4.1 1.003
1C-DME 2.45 1.00 104.21 1.00 390.7 1.00 2.86 1.000 14.5 1.000
MC-DME 2.42 0.98 102.27 0.98 389.3 0.99 2.87 1.003 14.5 1.002

RND MC-GRD 2.43 0.99 81.73 0.78 390.5 0.99 2.89 1.010 14.6 1.006
TC5 MC-DyP 2.43 0.99 98.97 0.95 317.5 0.81 2.88 1.008 14.6 1.004

1C-DME 2.45 1.00 106.76 1.00 381.8 1.00 2.86 1.000 14.5 1.000
MC-DME 2.48 1.01 105.81 0.99 382.8 1.00 2.87 1.004 14.5 1.002

QP MC-GRD 2.43 0.99 81.73 0.76 374.5 0.98 2.88 1.009 14.6 1.005
MC-DyP 2.51 1.02 38.07 0.35 328.2 0.86 2.87 1.005 14.5 1.002
1C-DME -. 1.00 - 1.00 - 1.00 - 1.000 - 1.000
MC-DME - 0.99 - 1.01 - 0.98 - 1.002 - 1.001

RND MC-GRD - 0.98 - 1.07 - 0.96 - 1.008 - 1.005
Avg MC-DyP - 0.99 - 0.86 - 0.82 - 1.005 - 1.003

1C-DME - 1.00 - 1.00 - 1.00 - 1.000 - 1.000
MC-DME - 1.00 - 0.93 - 0.98 - 1.003 - 1.001

QP MC-GRD - 0.98 - 0.95 - 0.94 - 1.007 - 1.004
MC-DyP - 1.00 - 0.53 - 0.81 - 1.004 - 1.002

Table 5.3: Average & normalized delay, skew, clock divergence information along
with Buffer Area(BA) and Wire Length(WL) results for the test-cases in Ta-
ble 5.2. All normalization done w.r.t. results of 1-corner DME approach.

177

Chapter 6

Conclusion

In this dissertation, we have proposed several effective methods of ob-

taining variation tolerant clock networks for different types of VLSI chips. The

various link insertion algorithms presented in Chapter-2 can be used effectively

for small ASIC chips that have strict area and power requirements, thereby gain-

ing significant skew variability reduction with a negligible increase in wire-length

and power. The link-based buffered clock network synthesis algorithms presented

in Chapter-3 can be used in medium size/performance ASIC chips that can afford

to increase power to a small extent to gain significant skew variation reduction.

Both high performance ASICs and power constrained microprocessors can use

the MeshWorks methodology presented in Chapter-4 to significantly reduce the

power and resources needed by a leaf-level clock mesh without sacrificing the

variation tolerant nature of the mesh. Finally, large SOC designs can use the

algorithms in Chapter-5 to obtain a robust, multi-corner chip-level clock tree

that can significantly reduce the impact of variation on chip performance/yield

by reducing the clock divergence between critical sub-chips. Thus, each of the

methods proposed in this work can be used in different contexts towards the goal

of synthesizing variation tolerant clock distribution networks.

178

Bibliography

[1] S. Agarwala, A. Rajagopal, A. Hill, M. Joshi, S. Mullinnix, T. Ander-

son, R. Damodaran, L. Nardini, P. Wiley, P. Groves, J. Apostol, M. Gill,

J. Flores, A. Chachad, A. Hales, K. Chirca, K. Panda, R. Venkatasub-

ramanian, P. Eyres, R. Veiamuri, A. Rajaram, M. Krishnan, J. Nelson,

J. Frade, M. Rahman, N. Mahmood, U. Narasimha, S. Sinha, S. Krishnan,

W. Webster, Due Bui, S. Moharii, N. Common, R. Nair, R. Ramanujam,

and M. Ryan. A 65nm c64x+ multi-core dsp platform for communications

infrastructure. Solid-State Circuits Conference, 2007. ISSCC 2007. Digest

of Technical Papers. IEEE International, pages 262–601, Feb. 2007.

[2] S. Agarwala, P. Wiley, A. Rajagopal, A. Hill, R. Damodaran, L. Nardini,

T. Anderson, S. Mullinnix, J. Flores, H. Yue, A. Chachad, J. Apostol,

K. Castille, U. Narasimha, T. Wolf, NS. Nagaraj, M. Krishnan, L. Nguyen,

T. Kroeger, M. Gill, P. Groves, B. Webster, J. Graber, and C. Karlovich. A

800 mhz system-on-chip for wireless infrastructure applications. In VLSID

’04: Proceedings of the 17th International Conference on VLSI Design, page

381, Washington, DC, USA, 2004. IEEE Computer Society.

[3] C.J. Alpert, R.G. Gandham, J.L. Neves, and S.T. Quay. Buffer library selec-

tion. Computer Design, 2000. Proceedings. 2000 International Conference

on, pages 221–226, 2000.

[4] I. A. Blech. Electromigration in thin aluminum films on titanium nitride.

179

Journal of Applied Physics, 47(4):1203–1208, 1976.

[5] K.D. Boese, A.B. Kahng, B.A. McCoy, and G. Robins. Near-optimal crit-

ical sink routing tree constructions. Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on, 14(12):1417–1436, Dec 1995.

[6] M. Celik, L. Pileggi, and A. Odabasioglu. IC Interconnect Analysis. Springer

Publishers, 2002.

[7] P.K. Chan and K. Karplus. Computing signal delay in general rc networks

by tree/link partitioning. Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, 9(8):898–902, Aug 1990.

[8] C.W. Chang, C.L. Gan, C.V. Thompson, K.L. Pey, W.K. Choi, and M.H.

Chua. Joule heating-assisted electromigration failure mechanisms for dual

damascene cu/sio2 interconnects. Physical and Failure Analysis of Inte-

grated Circuits, 2003. IPFA 2003. Proceedings of the 10th International

Symposium on the, pages 69–74, July 2003.

[9] H. Chang and S. S. Sapatnekar. Statistical timing analysis considering spa-

tial correlations using a single pert-like traversal. In ICCAD ’03: Proceed-

ings of the 2003 IEEE/ACM international conference on Computer-aided

design, page 621, Washington, DC, USA, 2003. IEEE Computer Society.

[10] T. H. Chao, Y. C. Hsu, J. . Ho, and A.B. Kahng. Zero skew clock routing

with minimum wirelength. Circuits and Systems II: Analog and Digital

Signal Processing, IEEE Transactions on, 39(11):799–814, Nov 1992.

180

[11] R. Chaturvedi and J. Hu. Buffered clock tree for high quality ic design.

In ISQED ’04: Proceedings of the 5th International Symposium on Qual-

ity Electronic Design, pages 381–386, Washington, DC, USA, 2004. IEEE

Computer Society.

[12] R. Chaturvedi and J. Hu. An efficient merging scheme for prescribed skew

clock routing. Very Large Scale Integration (VLSI) Systems, IEEE Trans-

actions on, 13(6):750–754, June 2005.

[13] H. Chen, C. Yeh, G. Wilke, S. Reddy, H. Nguyen, W. Walker, and R. Murgai.

A sliding window scheme for accurate clock mesh analysis. In ICCAD ’05:

Proceedings of the 2005 IEEE/ACM International conference on Computer-

aided design, pages 939–946, Washington, DC, USA, 2005. IEEE Computer

Society.

[14] Y. Chen and M. D. F. Wong. An algorithm for zero-skew clock tree routing

with buffer insertion. Technical report, Austin, TX, USA, 1995.

[15] M. Cho, S. Ahmedtt, and D. Z. Pan. Taco: temperature aware clock-tree

optimization. In ICCAD ’05: Proceedings of the 2005 IEEE/ACM Inter-

national conference on Computer-aided design, pages 582–587, Washington,

DC, USA, 2005. IEEE Computer Society.

[16] J. Chung and C. K. Cheng. Optimal buffered clock tree synthesis. ASIC

Conference and Exhibit, 1994. Proceedings., Seventh Annual IEEE Interna-

tional, pages 130–133, Sep 1994.

[17] J. Cong, A. B. Kahng, C. K Koh, and C.-W. A. Tsao. Bounded-skew clock

181

and steiner routing. ACM Trans. Des. Autom. Electron. Syst., 3(3):341–

388, 1998.

[18] T. T. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algorithms.

MIT Press, Cambridge, MA, USA, 1990.

[19] M. P. Desai, R. Cvijetic, and J. Jensen. Sizing of clock distribution networks

for high performance cpu chips. In DAC ’96: Proceedings of the 33rd annual

conference on Design automation, pages 389–394, New York, NY, USA, 1996.

ACM.

[20] M. Edahiro. A clustering-based optimization algorithm in zero-skew rout-

ings. In DAC ’93: Proceedings of the 30th international conference on

Design automation, pages 612–616, New York, NY, USA, 1993. ACM.

[21] E.G. Friedman. Clock distribution networks in synchronous digital inte-

grated circuits. Proceedings of the IEEE, 89(5):665–692, May 2001.

[22] A. Gattiker, S. Nassif, R. Dinakar, and C. Long. Timing yield estimation

from static timing analysis. Quality Electronic Design, 2001 International

Symposium on, pages 437–442, 2001.

[23] M. R. Guthaus, D. Sylvester, and R. B. Brown. Clock buffer and wire sizing

using sequential programming. In DAC ’06: Proceedings of the 43rd annual

conference on Design automation, pages 1041–1046, New York, NY, USA,

2006. ACM.

[24] D. Harris and S. Naffziger. Statistical clock skew modeling with data delay

variations. IEEE Trans. Very Large Scale Integr. Syst., 9(6):888–898, 2001.

182

[25] R. Heald, K. Aingaran, C. Amir, M. Ang, M. Boland, A. Das, P. Dixit,

G. Gouldsberry, J. Hart, T. Horel, Wen-Jay Hsu, J. Kaku, Chin Kim, Song

Kim, F. Klass, Hang Kwan, Roger Lo, H. McIntyre, A. Mehta, D. Murata,

S. Nguyen, Yet-Ping Pai, S. Patel, K. Shin, Kenway Tam, S. Vishwanthaiah,

J. Wu, Gin Yee, and Hong You. Implementation of a 3rd-generation sparc

v9 64 b microprocessor. Solid-State Circuits Conference, 2000. Digest of

Technical Papers. ISSCC. 2000 IEEE International, pages 412–413, 2000.

[26] http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/BST/.

[27] http://www.eas.asu.edu/ptm.

[28] http://www.mathworks.com/products/optimization/description5.html.

[29] http://www.synopsys.com/products/mixedsignal/hspice/hspice.html.

[30] H. Th. Jongen, K. Meer, and E. Tries. Optimization Theory. Springer

Publishers, 2004.

[31] A. Kapoor, N. Jayakumar, and S. P. Khatri. A novel clock distribution

and dynamic de-skewing methodology. In ICCAD ’04: Proceedings of the

2004 IEEE/ACM International conference on Computer-aided design, pages

626–631, Washington, DC, USA, 2004. IEEE Computer Society.

[32] M. Keating and P. Bricaud. Reuse methodology manual: for system-on-a-

chip designs. Kluwer Academic Publishers, Norwell, MA, USA, 1998.

[33] C.-K. Koh. Power supply noise suppression via clock skew scheduling. In

ISQED ’02: Proceedings of the 3rd International Symposium on Quality

183

Electronic Design, page 355, Washington, DC, USA, 2002. IEEE Computer

Society.

[34] N.A. Kurd, J.S. Barkarullah, R.O. Dizon, T.D. Fletcher, and P.D. Mad-

land. A multigigahertz clocking scheme for the pentium(r) 4 microprocessor.

Solid-State Circuits, IEEE Journal of, 36(11):1647–1653, Nov 2001.

[35] W.-C. D. Lam, J. Jam, C.-K. Koh, V. Balakrishnan, and Y. Chen. Statis-

tical based link insertion for robust clock network design. In ICCAD ’05:

Proceedings of the 2005 IEEE/ACM International conference on Computer-

aided design, pages 588–591, Washington, DC, USA, 2005. IEEE Computer

Society.

[36] J. Leeds and G. Ugron. Simplified multiple parameter sensitivity calculation

and continuously equivalent networks. Circuit Theory, IEEE Transactions

on, 14(2):188–191, Jun 1967.

[37] Z. Li, X. Lu, and W. Shi. Process variation dimension reduction based on

svd [circuit simulation]. Circuits and Systems, 2003. ISCAS ’03. Proceed-

ings of the 2003 International Symposium on, 4:IV–672–IV–675 vol.4, May

2003.

[38] J. Lienig and G. Jerke. Electromigration-aware physical design of integrated

circuits. In VLSID ’05: Proceedings of the 18th International Conference

on VLSI Design held jointly with 4th International Conference on Embedded

Systems Design, pages 77–82, Washington, DC, USA, 2005. IEEE Computer

Society.

184

[39] M.H. Lin, Y.L. Lin, G.S. Yang, M.-S. Yeh, K.P. Chang, K.C. Su, and Tahui

Wang. Comparison of copper interconnect electromigration behaviors in

various structures for advanced beol technology. Physical and Failure Anal-

ysis of Integrated Circuits, 2004. IPFA 2004. Proceedings of the 11th Inter-

national Symposium on the, pages 177–180, July 2004.

[40] S. Lin and C. K. Wong. Process-variation-tolerant clock skew minimization.

In ICCAD ’94: Proceedings of the 1994 IEEE/ACM international conference

on Computer-aided design, pages 284–288, Los Alamitos, CA, USA, 1994.

IEEE Computer Society Press.

[41] Y. Liu, X. Hong, Y. Cai, and X. Wei. Reliable buffered clock tree routing

algorithm with process variation tolerance. ASIC, 2003. Proceedings. 5th

International Conference on, 1:344–347 Vol.1, Oct. 2003.

[42] Y. Liu, S. R. Nassif, L. T. Pileggi, and A. J. Strojwas. Impact of interconnect

variations on the clock skew of a gigahertz microprocessor. In DAC ’00:

Proceedings of the 37th conference on Design automation, pages 168–171,

New York, NY, USA, 2000. ACM.

[43] B. Lu, J. Hu, G. Ellis, and H. Su. Process variation aware clock tree routing.

In ISPD ’03: Proceedings of the 2003 international symposium on Physical

design, pages 174–181, New York, NY, USA, 2003. ACM.

[44] E. Malavasi, S. Zanella, Min Cao, J. Uschersohn, M. Misheloff, and C. Guardiani.

Impact analysis of process variability on clock skew. Quality Electronic De-

sign, 2002. Proceedings. International Symposium on, pages 129–132, 2002.

185

[45] A.D. Mehta, Y-P. Chen, N. Menezes, D.F. Wong, and L.T. Pilegg. Cluster-

ing and load balancing for buffered clock tree synthesis. Computer Design:

VLSI in Computers and Processors, 1997. ICCD ’97. Proceedings., 1997

IEEE International Conference on, pages 217–223, Oct 1997.

[46] M. Mori, H. Chen, B. Yao, and C. K. Cheng. A multiple level network

approach for clock skew minimization with process variations. In ASP-

DAC ’04: Proceedings of the 2004 conference on Asia South Pacific design

automation, pages 263–268, Piscataway, NJ, USA, 2004. IEEE Press.

[47] S.R. Nassif. Modeling and analysis of manufacturing variations. Custom

Integrated Circuits, 2001, IEEE Conference on., pages 223–228, 2001.

[48] G. Northrop, R. Averill, K. Barkley, S. Carey, Y. Chan, Y.H. Chan, M. Check,

D. Hoffman, W. Huott, B. Krumm, C. Krygowski, J. Liptay, M. Mayo,

T. McNamara, T. McPherson, E. Schwarz, L.S.T. Siegel, C. Webb, D. Web-

ber, and P. Williams. 609 mhz g5 s/399 microprocessor. Solid-State Cir-

cuits Conference, 1999. Digest of Technical Papers. ISSCC. 1999 IEEE

International, pages 88–89, 1999.

[49] D. Z. Pan and S. Tam. Tutorials on dfm routing and clock distribution.

2007.

[50] L. T. Pillage, R. A. Rohrer, and C. Visweswariah. Electronic Circuit and

System Simulation Methods. Mcgraw-Hill Publishers, 1998.

[51] S. Pullela, N. Menezes, and L.T. Pillage. Reliable non-zero skew clock trees

using wire width optimization. Design Automation, 1993. 30th Conference

on, pages 165–170, June 1993.

186

[52] S. Pullela, N. Menezes, and L.T. Pillage. Low power ic clock tree design.

Custom Integrated Circuits Conference, 1995., Proceedings of the IEEE 1995,

pages 263–266, May 1995.

[53] R. Puri, D. S. Kung, and A. D. Drumm. Fast and accurate wire delay

estimation for physical synthesis of large asics. In GLSVLSI ’02: Proceedings

of the 12th ACM Great Lakes symposium on VLSI, pages 30–36, New York,

NY, USA, 2002. ACM.

[54] A. Rajaram, J. Hu, and R. Mahapatra. Reducing clock skew variability

via cross links. In DAC ’04: Proceedings of the 41st annual conference on

Design automation, pages 18–23, New York, NY, USA, 2004. ACM.

[55] A. Rajaram, B. Lu, W. Guo, R. Mahapatra, and J. Hu. Analytical bound for

unwanted clock skew due to wire width variation. In ICCAD ’03: Proceed-

ings of the 2003 IEEE/ACM international conference on Computer-aided

design, page 401, Washington, DC, USA, 2003. IEEE Computer Society.

[56] A. Rajaram and D. Z. Pan. Fast incremental link insertion in clock networks

for skew variability reduction. In ISQED ’06: Proceedings of the 7th Inter-

national Symposium on Quality Electronic Design, pages 79–84, Washington,

DC, USA, 2006. IEEE Computer Society.

[57] A. Rajaram and D. Z. Pan. Variation tolerant buffered clock network syn-

thesis with cross links. In ISPD ’06: Proceedings of the 2006 international

symposium on Physical design, pages 157–164, New York, NY, USA, 2006.

ACM.

187

[58] A. Rajaram and D. Z. Pan. Meshworks: an efficient framework for plan-

ning, synthesis and optimization of clock mesh networks. In ASP-DAC

’08: Proceedings of the 2008 conference on Asia and South Pacific design

automation, pages 250–257, Los Alamitos, CA, USA, 2008. IEEE Computer

Society Press.

[59] A. Rajaram and D. Z. Pan. Robust chip-level clock tree synthesis for soc

designs. In DAC ’08: Proceedings of the 45th annual conference on Design

automation, pages 720–723, New York, NY, USA, 2008. ACM.

[60] A. Rajaram, D. Z. Pan, and J. Hu. Improved algorithms for link-based non-

tree clock networks for skew variability reduction. In ISPD ’05: Proceedings

of the 2005 international symposium on Physical design, pages 55–62, New

York, NY, USA, 2005. ACM.

[61] R. Rajsuman. System-on-a-Chip: Design and Test. Artech House, Inc.,

Norwood, MA, USA, 2000.

[62] S. M. Reddy, G. R. Wilke, and R. Murgai. Analyzing timing uncertainty in

mesh-based clock architectures. In DATE ’06: Proceedings of the conference

on Design, automation and test in Europe, pages 1097–1102, 3001 Leuven,

Belgium, Belgium, 2006. European Design and Automation Association.

[63] P. J. Restle. Personal communication.

[64] P.J. Restle, T.G. McNamara, D.A. Webber, P.J. Camporese, K.F. Eng,

K.A. Jenkins, D.H. Allen, M.J. Rohn, M.P. Quaranta, D.W. Boerstler, C.J.

Alpert, C.A. Carter, R.N. Bailey, J.G. Petrovick, B.L. Krauter, and B.D.

188

McCredie. A clock distribution network for microprocessors. Solid-State

Circuits, IEEE Journal of, 36(5):792–799, May 2001.

[65] R. Saleh, S.Z. Hussain, S. Rochel, and D. Overhauser. Clock skew verifica-

tion in the presence of ir-drop in the power distribution network. Computer-

Aided Design of Integrated Circuits and Systems, IEEE Transactions on,

19(6):635–644, Jun 2000.

[66] M. Shao, M. D. F. Wong, H. Cao, Y. Gao, L-P. Yuan, L-D Huang, and

S. Lee. Explicit gate delay model for timing evaluation. In ISPD ’03:

Proceedings of the 2003 international symposium on Physical design, pages

32–38, New York, NY, USA, 2003. ACM.

[67] H. Su and S. S. Sapatnekar. Hybrid structured clock network construction.

In ICCAD ’01: Proceedings of the 2001 IEEE/ACM international confer-

ence on Computer-aided design, pages 333–336, Piscataway, NJ, USA, 2001.

IEEE Press.

[68] C. M. Tan, A. Roy, A.V. Vairagar, A. Krishnamoorthy, and S.G. Mhaisalkar.

Current crowding effect on copper dual damascene via bottom failure for

ulsi applications. Device and Materials Reliability, IEEE Transactions on,

5(2):198–205, June 2005.

[69] J. Tao, N.W. Cheung, and C. Hu. Electromigration characteristics of copper

interconnects. Electron Device Letters, IEEE, 14(5):249–251, May 1993.

[70] G.E. Tellez and M. Sarrafzadeh. Minimal buffer insertion in clock trees

with skew and slew rate constraints. Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on, 16(4):333–342, Apr 1997.

189

[71] A. Todri and M. Marek-Sadowska. A study of reliability issues in clock

distribution networks. In ICCD’08: Proceedings of the 26th International

Conference on Computer Design, pages 77–82, 2008.

[72] J. L. Tsai, D. Baik, C. C. P. Chen, and K. K. Saluja. A yield improvement

methodology using pre- and post-silicon statistical clock scheduling. In

ICCAD ’04: Proceedings of the 2004 IEEE/ACM International conference

on Computer-aided design, pages 611–618, Washington, DC, USA, 2004.

IEEE Computer Society.

[73] J. L. Tsai, T. H. Chen, and C.C.-P. Chen. Zero skew clock-tree optimiza-

tion with buffer insertion/sizing and wire sizing. Computer-Aided Design

of Integrated Circuits and Systems, IEEE Transactions on, 23(4):565–572,

April 2004.

[74] C. W. A. Tsao and C. K. Koh. Ust/dme: a clock tree router for general

skew constraints. ACM Trans. Des. Autom. Electron. Syst., 7(3):359–379,

2002.

[75] R.-S. Tsay. Exact zero skew. Computer-Aided Design, 1991. ICCAD-91.

Digest of Technical Papers., 1991 IEEE International Conference on, pages

336–339, Nov 1991.

[76] D. Velenis, E.G. Friedman, and M.C. Papaefthymiou. A clock tree topology

extraction algorithm for improving the tolerance of clock distribution net-

works to delay uncertainty. Circuits and Systems, 2001. ISCAS 2001. The

2001 IEEE International Symposium on, 4:422–425 vol. 4, May 2001.

190

[77] G. Venkataraman, Z. Feng, J. Hu, and P. Li. Combinatorial algorithms

for fast clock mesh optimization. In ICCAD ’06: Proceedings of the 2006

IEEE/ACM international conference on Computer-aided design, pages 563–

567, New York, NY, USA, 2006. ACM.

[78] G. Venkataraman, N. Jayakumar, J. Hu, P. Li, S. Khatri, A. Rajaram,

P. McGuinness, and C. Alpert. Practical techniques to reduce skew and its

variations in buffered clock networks. In ICCAD ’05: Proceedings of the

2005 IEEE/ACM International conference on Computer-aided design, pages

592–596, Washington, DC, USA, 2005. IEEE Computer Society.

[79] C. Visweswariah. Death, taxes and failing chips. In DAC ’03: Proceedings

of the 40th conference on Design automation, pages 343–347, New York, NY,

USA, 2003. ACM.

[80] A. Vittal and M. Marek-Sadowska. Low-power buffered clock tree design.

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transac-

tions on, 16(9):965–975, Sep 1997.

[81] K. Wang and M. Marek-Sadowska. Buffer sizing for clock power minimiza-

tion subject to general skew constraints. In DAC ’04: Proceedings of the

41st annual conference on Design automation, pages 159–164, New York,

NY, USA, 2004. ACM.

[82] K. Wang and M. Marek-Sadowska. Clock network sizing via sequential

linear programming with time-domain analysis. In ISPD ’04: Proceedings

of the 2004 international symposium on Physical design, pages 182–189, New

York, NY, USA, 2004. ACM.

191

[83] V. Wason, R. Murgai, and W. W. Walker. An efficient uncertainty- and

skew-aware methodology for clock tree synthesis and analysis. In VLSID

’07: Proceedings of the 20th International Conference on VLSI Design held

jointly with 6th International Conference, pages 271–277, Washington, DC,

USA, 2007. IEEE Computer Society.

[84] T. Xue and E. S. Kuh. Post routing performance optimization via multi-

link insertion and non-uniform wiresizing. In ICCAD ’95: Proceedings of

the 1995 IEEE/ACM international conference on Computer-aided design,

pages 575–580, Washington, DC, USA, 1995. IEEE Computer Society.

[85] J. T. Yan, C. W. Wu, K. P. Lin, Y. C. Lee, and T. Y. Wang. Iterative

convergence of optimal wire sizing and available buffer insertion for zero-

skew clock tree optimization. Circuits and Systems, 2004. Proceedings.

The 2004 IEEE Asia-Pacific Conference on, 1:529–532 vol.1, Dec. 2004.

192

Vita

Anand Kumar Rajaram was born in Pammal, a suburb of Chennai, India.

He completed his entire schooling in Sri Shankara Vidhyalaya, Pammal, and

later he joined the College of Engineering Guindy, Anna University in August

1998. He earned his Bachelor of Engineering degree in Electrical and Electronics

Engineering from Anna University with distinction in May 2002. He moved to

Texas A&M University, College Station, in the Fall of 2002 where he earned his

Master of Science degree in Electrical Engineering in August 2004. During the

Summer of 2004, Anand worked as an Intern in Zenasis Technologies Inc. Since

August 2004, he has been a Ph.D. student doing research on Variation Tolerant

Clock Networks under the guidance of Prof. David Pan in the Electrical and

Computer Engineering Department of University of Texas at Austin. Anand also

worked fulltime in the Dallas DSP group of Texas Instruments, Dallas, since

August 2004. He recently joined Magma Design Automation, Austin, Texas.

Anand has received two Best Paper Nominations, one in DAC 2004 and another

in ASP-DAC 2008.

Permanent address: 7 Babu Street, Krishna Nagar, Pammal,
Chennai-75, India 600075

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special version
of Donald Knuth’s TEX Program.

193

