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This report presents the descriptive data analysis and failure time modeling that can be 

used to find out the characteristics and pattern of failure time. Descriptive data analysis 

includes the mean, median, 1
st
 quartile, 3

rd
 quartile, frequency, standard deviation, 

skewness, kurtosis, minimum, maximum and range. Models like exponential distribution, 

gamma distribution, normal distribution, lognormal distribution, Weibull distribution and 

log-logistic distribution have been studied for failure time data. The data in this report 

comes from the South Texas Project that was collected during the last 40 years. We 

generated more than 1000 groups for STP failure time data based on Mfg Part Number.  

In all, the top twelve groups of failure time data have been selected as the study group.   

For each group, we were able to perform different models and obtain the parameters. The 

significant level and p-value were gained by Kolmogorov-Smirnov test, which is a 

method of goodness of fit test that represents how well the distribution fits the data.  The 

In this report, Weibull distribution has been proved as the most appropriate model for 

STP dataset.  Among twelve groups, eight groups come from Weibull distribution. In 

general, Weibull distribution is powerful in failure time modeling.  
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1. Introduction 

Reliability study is a field that deals with the quality, safety and availability of a system. 

It has been widely applied in risk analysis, environmental protection, optimization of 

maintenance and operation, quality control and engineering design. The time between 

failures, failure frequencies, the probability of failure are the major object of reliability 

study. Norman came up with that the failure time analysis is a critical part in the study of 

the system reliability (Knight 1991). Leslie, Timothy, Frank, Halima and Ramon (2008) 

pointed out that failure time data analysis  

Failure time analysis is a method of data analysis which aims to discover the 

cause of for the failure of a component or a device. In failure time analysis, the response 

is the time between two failures. It is always compared to the survival analysis which is 

defined as the method to analyze survival time such as after a certain time, how many 

people or systems will survival. There are two basic problems in failure time analysis. 

One problem involves the assessment of the dependence between the failure time and the 

explanatory variables. The other one is how to model and estimate the distribution of the 

failure time. Some other problems that arise in the failure time analysis include 

assessment of failure frequency (Kalbfleish and Prentice 2011). 

 In our data, the time between two failures can be really short which increase the 

repair cost and thus increase the total cost. It is important to analyze the failure time and 

find out the pattern. In this report, we conducted the preliminary data analysis of the 

failure time and failure time modeling. We presented a wide range of models that can be 

used to solve the failure time distribution fitting problem. But we only focused on the six 

most popular distributions used in the failure time study that is normal, exponential, log-

logistic, gamma, Weibull and lognormal. Because of the properties of failure time data, 

there will be some individuals that do not fail during the time being observed. Especially 

sometimes the experiment has an upper test duration limit. This kind of specimen being 

taken from the tested is categorized as right censored data. In our dataset, the failure time 

is collected by the mechanical-dynamical testing method, which means there are only a 

few specimen being tested thus it is completely uncensored data(Jurgen and Filip 2011).  
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In the second section, we review the literature related to failure time analysis and 

reliability study. A description of failure time analysis is given in Section3 that includes 

distribution fitting and failure time properties. In Section4 we provide the specific 

problem statement and models. In Section 5, we give an example and present our 

computational results obtained with R12.1 and South Texas project data sets tested. 

Dataset includes twelve groups of data collected during the past 40 years with different 

attributes. We close with a summary of the work and suggestions for future research. 
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2. Literature Review 

Failure time analysis is commonly used in the field of industrial life testing. But it is not 

unique to that industry. Actually the failure time problem is a part of reliability problem. 

There is a vast majority of literature on the study of reliability. Gilbert and Sun (2005) 

has introduced one kind of failure time analysis which can apply to HIV vaccine effect on 

antiretroviral therapy. They consider methods of using a surrogate endpoint that can be 

assessed by standard survival analysis techniques.  

In the study of failure time analysis on time models, Johnson and Kotz (1970) 

introduce some certain parametric models such as exponential and Weibull models.  Log-

normal and gamma distribution are mentioned by Mantel, N and Byar, D.P. (1974). 

Lawless (1982) gives a more detailed explanation about those various models. He 

illustrates the exponential, gamma, lognormal, log-logistics, log-location-scale and 

Weibull distribution and how they work in the lifetime data. In his literature, he also 

mentions mixture models which are not frequently used, however, sometimes can be 

really efficient. The other parametric models for failure time study such as log F is 

mentioned by Kalbfleisch and Prentice (2011). In recent years, compound distribution 

has been widely used.  David D. Hanagal (2010) comes up with using compound passion 

distribution to model bivariate survival data. 

Weibull distribution has demonstrated its usefulness in a wide range of situations 

in failure time study. In terms of the univariate models, Weibull is the most widely used 

in failure time model. Dodson (2006) aims at introducing two- parameter Weibull model 

into fatigue and reliability analysis. He focus on predict failure times of products by using 

Weibull distribution and point out that Weibull distribution is powerful in terms of 

widely application. Chi (1997) said that unless it has strong evidence that the life time 

data fit in another distribution, Weibull distribution should be considered as the principal 

fitting distribution. In the recent years, there are a growing number of lifetime data 

studies that focus on combining Weibull and other distribution together. K.W.Fertig 

(1972) conducts the Bayesian Weibull analysis for lifetime data. In the study, instead of 
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using the constant failure rate, it describe a time varying one by modeling the time 

between failures as Weibull random variables.  

Some other literature focuses on the study of logmormal and gamma distribution. 

It has been proved that lognormal distribution works well on the nonconstant 

instantaneous failure rates, which also implies that the logarithms of lifetime are normally 

distributed. Eckhard, Werner and Markus (2001) give a clear explanation about the 

application of lognormal distribution. It is useful when we analyze the reliability if the 

devices.  Gamma distribution has been applied on the cluster lifetime data.  Joanna and 

Thomas (1994) refer that gamma frailty model is a good way to model clustered failure 

time data.   
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3. Problem Statement  

In this report, we focus on the preliminary data analysis and lifetime modeling. There is a 

vast range of statistic knowledge applied in failure data analysis. The basic quantitative 

measures are failure time distribution and failure rate function, through which scientists 

inspect the reliability of systems (John and Ross 2011). Several standard parametric 

models for homogeneous lifetime data analysis has been constantly used including 

exponential distribution, Weibull distribution, gamma distribution, normal distribution, 

lognormal distribution and log-logistic distribution (Lawless, Jerald F.1982). 

 

3.1 Failure time distribution 

Unless stated, the time to failure T is defined as a continuously variable. Let  ( ) denote 

the probability density function. The following function is the distribution function of T.  

 ( )    (     )  ∫   ( )
 

 

           

The probability of an item dose not fail to time t is defined by  

 ( )     ( )     (     )  ∫   ( )
∞

 

             

The failure rate function is defined as  

   
    

  (            |    )    

This function is also called hazard function. It specifies the event rate on the condition 

that an item has survived at least until time T (Willis Jackie 2005).  

 

3.2 The Exponential Distribution 

If the time between failures has the probability density function   

 ( )  {  
                  

                          
 

We call this one parameter distribution as exponential distribution with parameter . It 

also implies that the hazard function is constant over the time interval. Thus the event rate 

is independent of t. The failure rate is  
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 ( )   
 ( )

 ( )
 

       

      
  

 

3.3 The Gamma Distribution 

When the time intervals are independent and exponentially distributed with parameter , 

and the total failure time is the sum of the time intervals. We would define T as gamma 

distribution.  

 ( )  
 

 ( )
(  )                  

And the event rate is  

 ( )   
 ( )

 ( )
 

 (  )          ( )

∑ (  )    
            

 

If k=1 the gamma distribution reduces to exponential distribution. Gamma distribution is 

a two parameter model with     as a scale parameter and k as a shape parameter.  

Gamma distribution is not used as much as Weibull and lognormal distribution in failure 

time analysis.  

 

3.4 The Weibull Distribution 

The Weibull distribution is very flexible and powerful which could model different types 

of failure times. It can apply to dataset with extremely small sample size. If the time 

between failures has the following probability density function, it can be claimed to be 

Weibull distributed.  

 ( )  {          (  )         
                                      

 

The distribution density function is  

 ( )    (   )  {    (  )            
                               

 

The failure rate is  

 ( )   
 ( )

 ( )
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In Weibull distribution,   affects the location of the pattern and   affect the scale of the 

distribution. If     the failure rate is constant, if     event rate function is increasing 

and if      , it is decreasing.  

 

3.5 The Normal Distribution 

The normal distribution is the most commonly used model in statistical study.  

A variable T is normally distributed as    (    ) if it has the probability density 

function  

 ( )   
 

 √  
  (   )     

                  

The hazard function is 

 ( )    
  ( )

 ( )
  

 

 
 

 (
   

 )

   (
   

 )
 

Normal distribution is not as popular as lognormal and log-logistic distribution in failure 

time analysis.  

 

3.6 The Lognormal Distribution 

Scientists have used lognormal distribution in diverse fields such as engineering and 

medicine. In this report, lognormal is one of the main measures for the failure time study. 

The time between failures has the probability density function  

 ( )   {

 

  √  
  (     )     

           

                                              

 

It is said to be lognormally distributed with parameters   and   . We can get        

that is normally distributed with mean   and variance   .   

The hazard function for lognormal distribution is  

 ( )   
 ((     )  )   

 ((     )  )  )
 

where  ( ) denotes the probability density of the standard normal distribution.  
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3.7 The Log-Logistic Distribution  

The log-logistic distribution comes from the fact that          is logistically 

distributed.  It has similar shape with normal distribution. When the lifetime data has the 

probability density function  

 ( )   
(
 
 )(

 
 )   

   (
 
 )

 

  
           

The failure rate function is  

 ( )   
(
 
 )(

 
 )   

   (
 
 )
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4. Solution Methodologies and Analysis  

For this failure time dataset, one of our objectives is to perform the preliminary data 

analysis to find out the characteristics of data. Scientists have pointed out different 

methods that are efficient to study the pattern.  The preliminary data analysis is a basic 

but useful tool. After we conducted preliminary data analysis, we obtained the parameter 

of the distribution using maximum likelihood estimation method and conducted the 

goodness of fit test. 

4.1 Preliminary data analysis  

Preliminary data analysis provides a way for scientists to learn the basic statistical 

properties of the dataset.  And it includes a vast range of statistic methodologies, which 

allows analysts find out the pattern of data and thus narrow down the scope of the 

research.  The most powerful and widely used method is descriptive data analysis 

(Werner and Reinhard 1996). 

Descriptive analysis summarizes the data from our studies. It is used to give a 

description of the data including measuring the location and variability. In the aspect of 

measuring the location, it offers median, mode and mean whose properties are used to 

identify the outliers, the general information about data.  Median is an indication of the 

value in the central location.  Mean is the average of the data. Because it is sensitive to 

individual observation, one extreme large data can contribute to a lot to the mean. 

Sometimes we use median and mean together to detect outliers of the dataset. Variation is 

a measure of data spread.  It will give us how data has been spread out around the mean. 

Maximum and minimum are basic information about the dataset range. Kurtosis 

compares the shape of the distribution to the normal one. If the kurtosis value is high, the 

data is peaked and if the value is low, the data is flat.  Skewness gives the information 

about whether this data is symmetric or not.  Value of skewness equals to zero means this 

data are symmetrical (Willis Jackie 2005). 

The frequency distribution has been introduced to catch some characteristics of 

the population. Frequency distribution could be obtained by grouping data in terms of 

their levels and forming the distribution of different groups. It often uses bar charts 
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(histogram) to represent the frequency of data and we will draw a line that connects the 

midpoints of bars. More bars can lead to more accurate and smooth curve which is an 

easy way to find out the distribution characteristics visually. Thus, through the histogram, 

first, it gives the frequency of each group. Second we can get the basic assumption of the 

data distribution and then use other techniques to test it. In this report, we study the 

failure time pattern by modeling its frequency distribution. There are some basic 

concerns about distribution fitting. For example, which distribution the data comes from, 

how to determine the parameters, if the data fits more than one distribution, which one is 

the best.  To solve these problems, we introduce the maximum likelihood estimation and 

goodness of fit test in the following paragraphs.  

4.2 Maximum Likelihood Estimation  

Maximum Likelihood Parameter Estimation (MLE) is one of the most popular parameter 

estimation methods. The basic idea of MLE is to find out parameters that can maximize 

the probability of obtaining a specific group of data given the chosen probability 

distribution model.   (In Jae Myung 2003) 

The likelihood is the probability of the sample data. For each variable, it has a probability 

density function as bellow: 

 (                ) 

Here               are unknown parameters that need to be estimated. And the 

likelihood function is : 

 (          |             )  ∏ (                )

 

   

 

The MLE is then to get the value of estimators by maximizing the likelihood function by 

deriving the estimators for parameters.   

 ( )

   
                    

MLE can apply to either censored or multicensored data. And it is useful when the 

dataset is large. It has the properties as following: 
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MLE is approximately normally distributed.MLE is approximately minimum variance 

and as sample size grows, the variance becomes smaller.  MLE is approximately 

unbiased. (George and Roger 2001) 

 

4.3 Goodness of Fit Test  

The goodness of fit is a statistical model describes how well it fits a set of observations 

(Wikipedia). The goodness of fit test starts to calculate the distance between the null 

hypothesis and the alternative hypothesis. It will give a probability (p value) which is the 

probability of observing data at least as extreme as what we did in the direction predicted 

by   , assuming that the null hypothesis    is true. Sometimes, the p value is too high to 

happen in that way which indicates there are some mistakes like the distribution is over 

fitting. There are three methods that are applied very often in the goodness of fit test.  

Kolmogorov-Smirnov Test 

It is used to test whether the sample fits the specific hypothesized distribution.  

Kolmogorov-Smirnov test is based on the difference between the empirical cumulative 

distribution function and the hypothesized cumulative distribution function. The 

empirical function is: 

  ( )   
 

 
  ∑   

 

 
     

Here     represents the ith observation and this function calculates the average of the 

number of observations that less than or equal to x.  

The Kolmogorov-Smirnov statistic (D) is defined as the largest difference between the 

empirical continuous distribution and continuous distribution. 

        |  ( )    ( )| 

It conducts the hypothesis test with null hypothesis (  ) that the data comes from a 

specific distribution and the alternative hypothesis (  ) that the data doesn’t come from 

the specific distribution. (Hans Riedwyl 1967) 

Anderson-Darling Test 
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Anderson-Darling test is used to compare the observed cumulative distribution function 

with an expected cumulative distribution function.   

        
 

 
 ∑(    )     

 

   

 (  )     (   (      ))  

It conducts the hypothesis test with null hypothesis (  ) that the data comes from 

a specific distribution and the alternative hypothesis (  ) that the data doesn’t come from 

the specific distribution. 
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5. Computational Results 

5.1 Date preparation and description 

The South Texas project file contains 132056 records and 25 variables. Table 1 gives the 

data dictionary and representative records. Mfg Part No is one of the most important 

properties to identify machines. In order to find out the characteristics of different 

machines, we grouped the data by their Mfg Part No. First, we sorted the data using Mfg 

Part No as a key. In this report, we only study the top twelve groups which include most 

of records of the dataset. Table 2 shows the Mfg Part No of the top twelve groups and the 

number of records in each group. Then we created a new variable called failure time to 

represent the interval time between two failure times for a specific record.  Excel 

provides a way to calculate the days between two dates. It will transfer the start date and 

the end date to days to a system specific date. Thus it is not important what date is 

defined as a system specific date since we calculate the interval time. Table 3 provides 

the preliminary data analysis of twelve groups.  

 

Table 1. South Texas Project Data Dictionary 

Column name Records  

Tpns Cost Seq No 501,600  502,288 

Tagtpns   1HDSYSTEM  8S172XHD0675  N1HDHS7350 

System Code HD CC EW 

Source WO 

Cr No 08-9005-2 

Wo No 360280 

Surveillance Seq No 87000098 

Request Type CRWO 

Unit 1 

Gqa Risk NRS 

Pg Risk NRS  LOW 

Psa Risk LOW 

Mfg Part No CR2940US203E 

Mdmfr Mfr Name DIETERICH STANDARD 

Start Date 05/28/08 01:21 PM 
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Table 1. South Texas Project Data Dictionary 

End Date 05/19/08 12:00 AM 

Labor Cost 4020 

Material Cost 1116.98 

Total Cost 2300 

Service Desc HEATER DRIP SYSTEM 

Created By IMPACT 

Created Ts 02/15/12 04:57 AM 

Last Updated By 

 Last Updated Ts 02/15/12 04:57 AM 

Pm No 943922 

 

  

Table 2. Data groups based on Mfg Part No  

Group Mfg Part No Records  

1 KSV-20-T 11362.00 

2 52769-D-226  9280.00 

3  9002.00 

4 N/A 2849.00 

5 16-536-168-406-PUMP 2710.00 

6 PD91854-500 2304.00 

7 SMB-0-25-HBC-3 1716.00 

8 300-VN49752 1364.00 

9 SB-1-60 1319.00 

10 01-600-230 1288.00 

11 300-VN49754 1259.00 

12 01-400-012 1210.00 

  

 

5.2 Descriptive data analysis  

Then we conducted the preliminary data analysis for the interval time between two 

failure times, which includes the sum of the failure days for each group, mean failure 

time, median, standard deviation, 1
st
 Qu., 3

rd
 Qu., min, max, range, skewness, kurtosis. 
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Table 3. Descriptive data analysis for failure time of twelve groups  

Group Sum Mean Median St.Deviation 1
st
 Qu 3

rd
 Qu. Min Max Range Skewness Kurtosis 

1 3901653 343.8 164.00 560.5039 36.92 368.70 1 4372 4371 3.50382 17.2098 

2 1984900 213.9 48.24 393.8428 35.92 364.8 1 4198 4197 5.4261 40.3891 

3 2754494 306.0 78.95 598.5372 19.36 286.7 1 5749 5748 3.4585 16.4807 

4 2152203 755.2 549.0 770.7545 166.4 1032 

 

1 4664 4663 1.69595 6.1823 

5 574589.2 211.9 40.0 514.4802 22.34 168.1 1 7050 7049 4.62899 30.5309 

6 343060.9 148.8 50.62 360.3563 8.765 129.5 1 3625 3624 5.74345 41.8807 

7 755171.4 439.8 359.9 605.3985 91.15 372.9 1 4012 4011 3.06317 13.4906 

8 493898.3 361.8 163 597.8398 38.91 368.8 1 4224 4223 3.10439 13.5654 

9 582939.3 441.6 347.8 597.3751 84 493.2 1 5747 5746 3.44758 18.9842 

10 585447.9 454.2 264 670.2445 41.92 546 1 4635 4634 2.86416 12.2962 

11 457330.2 363.0 165 618.2659 39.91 368.9 1 4379 4378 3.38589 15.5600 

12 442706.9 157 365.6 607.9821 30.15 371.4 1 4077 4076 3.26529 14.9576 
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It can be seen from the preliminary data analysis table, the failure time of group 5, group 

7, group8, group9 and group10 is large. And the medians of these twelve groups are 

much less than their means. Especially the medians of the group2, group5 and group6 are 

less than half of their means, which indicates that the data shows a tendency to the y axis.  

Group 4 has a large mean comparing to other groups. And the standard deviation for 

these twelve groups is pretty large. Group 4 shows a more symmetrical and flat 

distribution shape than the other groups. Group 2 and group 6 have high kurtosis value 

which indicates the patterns of the data are peaked.  

 

5.3 Failure time model  

We assumed that the data comes from different distributions with parameters obtained by 

maximum likelihood estimation and then the Kolmogorov-Smirnov test would yield p-

values. If the p-value is greater than .5 (we use .5 as the significance level), we would 

decide that the data comes from this specific distribution and the distribution performs 

well for the data. Table4 -Table15 give the results of the distribution fitting and 

Kolmogorov-Sminrnov test for twelve groups  

  

Table 4. Distribution fitting results for Group1  

Distribution  P-Value 

Parameters  

Parameter  Estimate Std.Error 

Normal 0.072 Mean 344.0772 5.2608 

 

Lognormal 

 

0.439 

sd 

meanlog 

560.4689 

4.7439 

3.1799 

0.0167 

 

 sdlog 1.7785 0.0118 

Gamma 0.368 shape 0.3768 0.0321 

 

Weibull 

 

0.547 

rate 

shape 

0.0011 

0.7357 

0.2235 

0.0049 

 

Exponential 

 

0.131 

scale 

rate 

251.7966 

0.0029 

3.7942 

2.343e-5 

 

Logistic 

 

0.089 

 

Location 

 

239.4458 

 

3.2459 

 

 scale 212.0740 1.7553 
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Table 5. Distribution fitting results for Group2  

Distribution  P-Value 

Parameters  

Parameter  Estimate Std.Error 

Normal 0.284 Mean 213.9361 4.0888 

 

Lognormal 

 

0.276 

sd 

meanlog 

393.8215 

4.3939 

2.8911 

0.0161 

 

 sdlog 1.5443 0.0113 

Gamma 0.416 shape 0.6312 7.2257e-03 

 

Weibull 

 

0.322 

rate 

shape 

0.0029 

0.8681 

4.2412e-05 

0.0055 

 

Exponential 

 

0.104 

scale 

rate 

157.4582 

0.0047 

2.5588 

4.6174e-05 

 

Logistic 

 

0.128 

 

Location 

 

153.5818 

 

2.3089 

 

 scale 134.1052 1.1895 

 

 

 

Table 6. Distribution fitting results for Group3  

Distribution  P-Value 

Parameters  

Parameter  Estimate Std.Error 

Normal 0.375 Mean 307.5395 6.3273 

 

Lognormal 

 

0.371 

sd 

meanlog 

599.2602 

4.1714 

4.4741 

0.0219 

 

 sdlog 2.0750 0.0155 

Gamma 0.438 shape 0.2634 0.0011 

 

Weibull 

 

0.620 

rate 

shape 

0.0009 

0.6394 

0.0020 

0.0045 

 

Exponential 

 

0.001 

scale 

rate 

159.912 

0.0033 

3.5403 

3.0627e-05 

 

Logistic 

 

0.020 

 

Location 

 

182.6048 

 

3.7414 

 

 scale 220.0343 2.1125 
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Table 7. Distribution fitting results for Group4  

Distribution  P-Value 

Parameters  

Parameter  Estimate Std.Error 

Normal 0.263 Mean 755.7690 14.4360 

 

Lognormal 

 

0.318 

sd 

meanlog 

770.5699 

5.8752 

10.2078 

0.0308 

 

 sdlog 1.6419 0.0218 

Gamma 0.585 shape 0.9619 0.0517 

 

Weibull 

 

0.741 

rate 

shape 

0.0013 

0.7926 

0.1853 

0.0133 

 

Exponential 

 

0.063 

scale 

rate 

737.3989 

0.0013 

15.8875 

1.357e-06 

 

Logistic 

 

0.194 

 

Location 

 

635.0610 

 

12.5359 

 

 scale 391.4013 6.2716 

 

 

 

Table 8. Distribution fitting results for Group5  

Distribution  P-Value 

Parameters  

Parameter  Estimate Std.Error 

Normal 0.248 Mean 212.5802 9.8782 

 

Lognormal 

 

0.211 

sd 

meanlog 

514.3319 

3.7313 

6.9851 

0.0392 

 

 sdlog 2.0400 0.0277 

Gamma 0.303 shape 0.1708 0.0420 

 

Weibull 

 

0.296 

rate 

shape 

0.0008 

0.6644 

0.1414 

0.0078 

 

Exponential 

 

0.027 

scale 

rate 

99.4157 

0.0047 

4.1516 

8.6024e-05 

 

Logistic 

 

0.085 

 

Location 

 

108.2301 

 

4.5998 

 

 scale 154.0262 2.7773 
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Table 9. Distribution fitting results for Group6  

Distribution  P-Value 

Parameters  

Parameter  Estimate Std.Error 

Normal 0.129 Mean 149.3701 7.5036 

 

Lognormal 

 

0.198 

sd 

meanlog 

360.2581 

3.4812 

5.3059 

0.0427 

 

 sdlog 2.0489 0.0302 

Gamma 0.475 shape 0.4269 9.6851e-03 

 

Weibull 

 

0.462 

rate 

shape 

0.0029 

0.6651 

9.2140e-05 

0.0089 

 

Exponential 

 

0.107 

scale 

rate 

77.3424 

0.0067 

3.3504 

0.00014 

 

Logistic 

 

0.059 

 

Location 

 

87.1414 

 

3.3674 

 

 scale 102.0466 1.9252 

 

 

 

Table 10. Distribution fitting results for Group7  

Distribution  P-Value 

Parameters  

Parameter  Estimate Std.Error 

Normal 0.186 Mean 440.8775 14.6243 

 

Lognormal 

 

0.231 

sd 

meanlog 

605.4549 

5.2916 

10.3409 

0.0367 

 

 sdlog 1.5193 0.0259 

Gamma 0.304 shape 0.5302 0.0156 

 

Weibull 

 

0.517 

rate 

shape 

0.0012 

0.8562 

0.4725 

0.0149 

 

Exponential 

 

0.019 

scale 

rate 

389.5107 

0.0023 

12.2118 

3.9407e-05 

 

Logistic 

 

0.006 

 

Location 

 

325.2677 

 

9.4769 

 

 scale 240.5290 5.1631 
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Table 11. Distribution fitting results for Group8  

Distribution  P-Value 

Parameters  

Parameter  Estimate Std.Error 

Normal 0.083 Mean 362.6860 16.1953 

 

Lognormal 

 

0.272 

sd 

meanlog 

597.8837 

4.7626 

11.4511 

0.0474 

 

 sdlog 1.7495 0.0335 

Gamma 0.415 shape 0.3679 0.0135 

 

Weibull 

 

0.658 

rate 

shape 

0.0010 

0.7475 

0.1378 

0.0138 

 

Exponential 

 

0.097 

scale 

rate 

253.2664 

0.0029 

11.4421 

2.343e-5 

 

Logistic 

 

0.020 

 

Location 

 

241.1684 

 

10.0845 

 

 scale 230.3225 5.6099 

 

 

 

Table 12. Distribution fitting results for Group9  

Distribution  P-Value 

Parameters  

Parameter  Estimate Std.Error 

Normal 0.133 Mean 441.9689 16.4342 

 

Lognormal 

 

0.208 

sd 

meanlog 

597.1167 

5.2646 

11.6208 

0.0443 

 

 sdlog 1.6079 0.0313 

Gamma 0.457 shape 0.5479 0.2206 

 

Weibull 

 

0.779 

rate 

shape 

0.0012 

0.8086 

0.2615 

0.0171 

 

Exponential 

 

0.111 

scale 

rate 

394.4956 

0.0023 

14.0221 

4.4646e-05 

 

Logistic 

 

0.085 

 

Location 

 

335.5094 

 

10.9036 

 

 scale 240.4056 5.8147 
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Table 13. Distribution fitting results for Group10  

Distribution  P-Value 

Parameters  

Parameter  Estimate Std.Error 

Normal 0.132 Mean 455.2106 18.6829 

 

Lognormal 

 

0.316 

sd 

meanlog 

670.2423 

5.0068 

13.2108 

0.0521 

 

 sdlog 1.8694 0.0368 

Gamma 0.585 shape 0.4613 0.0128 

 

Weibull 

 

0.508 

rate 

shape 

0.0010 

0.6941 

0.1322 

0.0149 

 

Exponential 

 

0.074 

scale 

rate 

342.8794 

0.0022 

15.1278 

4.1959e-05 

 

Logistic 

 

0.001 

 

Location 

 

325.6705 12.7231 

 

 scale 277.5968 6.8464 

 

 

 

Table 14. Distribution fitting results for Group11  

Distribution  P-Value 

Parameters  

Parameter  Estimate Std.Error 

Normal 0.281 Mean 365.0295 17.4932 

 

Lognormal 

 

0.197 

sd 

meanlog 

619.1537 

4.8311 

12.3688 

0.0468 

 

 sdlog 1.6549 0.0330 

Gamma 0.496 shape 0.3475 0.0251 

 

Weibull 

 

0.502 

rate 

shape 

0.0009 

0.7906 

0.3172 

0.0146 

 

Exponential 

 

0.021 

scale 

rate 

259.8981 

0.0027 

11.949 

6.4751e-5 

 

Logistic 

 

0.039 

 

Location 

 

242.0100 

 

10.2915 

 

 scale 226.7971 5.7518 
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Table 15. Distribution fitting results for Group12  

Distribution  P-Value 

Parameters  

Parameter  Estimate Std.Error 

Normal 0.144 Mean 367.1839 17.5103 

 

Lognormal 

 

0.238 

sd 

meanlog 

608.3117 

4.6531 

12.3813 

0.0551 

 

 sdlog 1.9149 0.0389 

Gamma 0.271 shape 0.3643 0.0009 

 

Weibull 

 

0.473 

rate 

shape 

0.0011 

0.6844 

0.2235 

0.0141 

 

Exponential 

 

0.182 

scale 

rate 

243.5660 

0.0027 

12.3878 

6.5392e-05 

 

Logistic 

 

0.099 

 

Location 

 

250.3729 

 

11.0494 

 

 scale 235.4435 6.0001 

 

 

The group 1, 3, 4, 7, 8, 9, 10, 11 come from Weibull distribution. We also built the 

histogram for twelve groups. They are shown in Figure 1-12. The results of Weibull 

distribution fitting, Failure time vs. unreliability and Goodness of fit for each group are in 

Figure13- 48.  
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6. Conclusions 

In this report, we used South Texas Project data set to evaluate the failure time model. 

First we performed the descriptive data analysis for the overall dataset and second, we 

divided the data into groups and conducted the failure time modeling for the top twelve 

groups.  Among twelve groups, eight groups come from Weibull distribution. They are 

group 1, group3, group4, group 7, group8, group 9, group10 and group 11. The goodness 

of fit test shows how well the distribution fits the data.    

For future research, it would be worth investigating prior distributions on all 

parameter, which uses Bayesian analysis that regards parameters as random variables. 

The parameter comes from some specific prior distribution.  This needs more information 

of the dataset. The multi-normal distribution should also be considered since data from 

the industry is normally not from a classic well-known distribution but usually from a 

complex distribution that is a combination of several classic distributions. Though the 

most popular distribution of failure time is Weibull distribution, other possible models 

sometimes give better result. Nevertheless, more information about the data needs to be 

considered and it is an open question as to failure time distribution fitting.   
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Figure 1. Histogram for Group1  

 

 

Figure 2. Histogram for Group2 
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Figure 3. Histogram for Group3 

 

Figure 4. Histogram for Group4 
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Figure 5. Histogram for Group5 

 

 

Figure 6. Histogram for Group6 
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Figure 7. Histogram for Group7 

 

 

Figure 8. Histogram for Group8 



28 

 

 

Figure 9. Histogram for Group9 

 

 

Figure 10. Histogram for Group10 
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Figure 11. Histogram for Group11 

 

 

Figure 12. Histogram for Group12 
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Figure 13. Weibull distribution fitting for Group1 

 

  

Figure 14. Weibull distribution fitting for Group2 
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Figure 15. Weibull distribution fitting for Group3 

 

 

Figure 16. Weibull distribution fitting for Group4 
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Figure 17. Weibull distribution fitting for Group5 

 

 

Figure 18. Weibull distribution fitting for Group6 



33 

 

 

Figure 19. Weibull distribution fitting for Group7 

 

 

Figure 20. Weibull distribution fitting for Group8 
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Figure 21. Weibull distribution fitting for Group9 

 

 

Figure 22. Weibull distribution fitting for Group10 
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Figure 23. Weibull distribution fitting for Group11 

 

 

Figure 24. Weibull distribution fitting for Group12 
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Figure 25. Failure time vs. unreliability plot for Group1 

 

Figure 26. Failure time vs. unreliability plot for Group2 
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Figure 27. Failure time vs. unreliability plot for Group3 

 

Figure 28. Failure time vs. unreliability plot for Group4 
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Figure 29. Failure time vs. unreliability plot for Group5 

 

Figure 30. Failure time vs. unreliability plot for Group6 
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Figure 31. Failure time vs. unreliability plot for Group7 

 

Figure 32. Failure time vs. unreliability plot for Group8 
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Figure 33. Failure time vs. unreliability plot for Group9 

 

Figure 34. Failure time vs. unreliability plot for Group10 
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Figure 35. Failure time vs. unreliability plot for Group11 

 

Figure 36. Failure time vs. unreliability plot for Group12 
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Figure 37. Weibull GOF test for Group 1  

 

Figure 38. Weibull GOF test for Group 2  
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Figure 39. Weibull GOF test for Group 3  

 

Figure 40. Weibull GOF test for Group 4  
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Figure 41. Weibull GOF test for Group 5  

 

Figure 42. Weibull GOF test for Group 6  
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Figure 43. Weibull GOF test for Group 7  

 

Figure 44. Weibull GOF test for Group 8  
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Figure 45. Weibull GOF test for Group 9  

 

Figure 46. Weibull GOF test for Group 10  
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Figure 47. Weibull GOF test for Group 11  

 

Figure 48. Weibull GOF test for Group 12  
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