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Time-resolved Third Harmonic Generation (THG) from expanding argon gas clus-

ters has been studied. A 400 nm pump (Ipump ∼ 1 x 1015 W/cm2) beam ionizes a

gas jet composed of atomic clusters and residual gases. An 800 nm, 100 fs probe

then generates third harmonic radiation from expanding clusters with controlled de-

lays. The measured THG is sharply peaked at earlier delays than broad absorption

resonances. Simulations show that the nonlinear susceptibility χ(3) of the individual

clusters and the THG coherence length of the clustered plasma medium are opti-

mized nearly simultaneously as the pre-heated clusters expand, and both contribute

to the observed THG enhancement.

We also measured THG anisotropy from expanding clusters. When reso-
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nantly enhanced, THG becomes temporarily anisotropic – i.e. a probe polarized

perpendicular to the pump generates third-harmonic more efficiently than one po-

larized parallel – thereby characterizing the anisotropy of cluster expansion. By

contrast, the linear optical response was isotropic.

The physical mechanisms contributing to enhanced THG are scalable to rel-

ativistic probe intensity (limited only by pre-pulses in the laser system) and to

high-order harmonic generation extending to the soft x-ray regime.
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Chapter 1

Introduction

High-order Harmonic generation (HHG) has been an active research area because it

provides a source of ultrafast coherent radiation from near ultraviolet to soft x-ray

pulses. High-order harmonics can be generated from monomer gases [1, 2, 3], solid

surfaces [4, 5], and atomic clusters [6].

Monomer gas targets have been widely used to produce coherent, collimated

odd-harmonic radiation [7, 8] with pulse durations as short as 100 attoseconds [9].

Harmonic generation in gas targets occurs when ionized electrons, oscillating for a

fraction of an optical cycle in an intense laser field, collide with the parent ion during

their return motion [10, 11]. The low conversion efficiency below 30 nm (≤ 10−7)

[3], however, has inhibited widespread applications and spurred continuing research

into methods to improve conversion efficiency. Harmonics from a solid target plasma

have been generated with relatively high efficiency (10−4−10−5) at lower energies (∼
200 nm) [4]. In this case, harmonic generation is caused by strong nonlinear electron

motion near the critical surface where the driving laser frequency (ω) matches the

plasma frequency (ωp) [5]. The incident laser pulse penetrates the sharp surface

density gradient, created by its leading edge or a pre-pulse, then reaches the critical

surface where it resonantly drives electrons [12] (Figure 1.1). But the solid target
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Figure 1.1: Plasma density gradient at the solid surface. Resonantly enhanced field
drives strong nonlinear electron motion near the critical surface.

leaves debris which can potentially damage optics in the target chamber. Moreover

HHG from it has limited spatial coherence [4]. Finally, interaction is limited to a

skin depth, thus precluding any possibility of harmonic growth over an extended

interaction length.

Atomic clusters can form in subsonic and supersonic gas jets backed by

high pressure following adiabatic expansion into a vacuum chamber and subsequent

cooling and condensation [13]. These Van der Waals bonded clusters, containing

102 − 107 atoms, provide clean targets with local solid density, but leave negligible

debris after laser interaction and enable extended interaction length. Donnelly et

al. [6] first observed that harmonics from atomic clusters could be generated to

higher order, and with less saturation, than from a monomer gas plasma. They

attributed these properties to the local solid (multiple-well) potential experienced

by an electron in a cluster. However, overall efficiency of harmonic generation by a

single short laser pulse was no greater than from the corresponding monomer gas of

equivalent average density. Moreover a single pulse provides no means of controlling

the harmonic generation process.

In subsequent research, the expansion dynamics of clusters following laser

2
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Figure 1.2: Electric field inside of a dipole cluster.

excitation was explored using two pulse pump-probe experiments. In part to in-

terpret such experiments, Ditmire et al. [14] developed the uniformly expanding

nano-plasma model in which the cluster is treated as a spherical dipole plasma be-

cause its radius is smaller than a laser wavelength. For a uniform cluster, the field

inside is then given by [15],

Ec =
3EL

|εc + 2| , (1.1)

where EL is the driving laser field and εc ' 1 − ω2
p/ω2 is the dielectric constant of

the ionized cluster (see Figure 1.2). Upon ionization, the plasma frequency initially

exceeds the optical frequency because of the high electron density, so, the interior of

the cluster is shielded from the laser field by a large dielectric constant. As the clus-

ter expands by Coulomb explosion (for fully-ionized clusters) and/or hydrodynamic

pressure (for slightly-ionized clusters), the plasma frequency decreases and eventu-

ally passes through a Mie resonance (εc ' −2). Instead of ωp ' ω as in an extended

solid target, the resonance of a dipole cluster occurs when ωp '
√

3ω because of the

spherical geometry (Figure 1.3). This model has successfully explained resonances

of linear absorption, scattering [16, 17] and production of high energy ions [18] and

3
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electrons [19] in expanding clusters. However, a shortcoming of the model is that

it predicts a much shorter duration absorption and scattering resonance than is

observed. In addition, prior to the present work, no pump-probe measurements of

nonlinear optical dynamics were available to compare with this model.

Later, a more sophisticated hydrodynamic model by Milchberg et al. [20]

showed that cluster expansion is nonuniform. In particular, an electron density gra-

dient forms inside the cluster during expansion. Then, the Mie resonance resembles

the case of a solid surface (ω ' ωp). The electric field inside the cluster is also

nonuniform, and particularly sharply enhanced near the critical surface. A pon-

deromotive force in the cluster pushes the electron and ion plasma away from the

resonance region and slows cluster expansion. As a result, the resonance lasts longer

than predicted by the uniformly expanding model. This model explained the linear

optical properties of hydrodynamically expanding clusters more accurately than the

4



uniform density model [21, 22].

Despite shortcomings, the uniformly expanding nano-plasma model remains

attractive because of its simplicity. Recently, a modified model that retains uni-

form density, but modifies the electron-ion collisonal frequency and the cluster ion

mass empirically to fit the cluster polarizability data, was proposed [23, 24]. This

model correctly yields a slow Mie resonance, consistent with observations and with

the hydrodynamic model of Milchberg et al. [20]. Because of its computational

simplicity, this model more easily analyzes experiments that involve extended time

delays (several ps) and/or modifications (focusing, defocusing) to pulse propagation

through the clustered plasma than the fully hydrodynamic model.

Meanwhile, the theory of nonlinear optical response of clustered plasmas has

recently advanced significantly. Clustered plasmas were proposed theoretically as

a unique nonlinear medium in which both phase-matching [25, 26] and resonantly-

enhanced odd-order (n = 3, 5, ... ) nonlinear susceptibility χ(n) [27, 28] (nonlinear

Mie resonance) could be achieved at selected cluster sizes and densities. Ion and/or

electron density nonuniformity must develop for the nonlinear resonance to occur.

Moreover to achieve phase-matching, residual monomer gas plasma must accompany

the clustered plasma. Controlled resonance enhancement of the complex linear

susceptibility χ(1) (linear resonance) was demonstrated [16, 21] by pre-expanding

clusters with an ionizing/heating pulse, and explained using models of exploding

clustered plasma [14, 20]. However, experiments that achieved nonlinear resonance

and/or phase-matching have not yet been realized.

The motivation of this research is to verify the third harmonic Mie resonance

in the expanding nano-clusters and to check the possible phase-matching of THG

from a gas jet plasma composed of ionized clusters and residual gas. This study will

suggest a path to controlled enhancement of nth-order harmonic generation, since

χ(n) undergoes an analogous resonant enhancement during cluster expansion, while

5



simultaneous variations in χ(1) can potentially optimize phase-matching. We also

report that, while resonantly enhanced, THG becomes temporarily anisotropic, –

i.e. a probe polarized perpendicular to the pump generates third-harmonic more

efficiently than one polarized parallel – thus demonstrating the anisotropy of clus-

ter expansion [29]. The linear optical response, by contrast, is isotropic within

experimental error. This THG anisotropy suggests that perpendicular pump and

probe polarizations will also generate more efficient high harmonics from exploding

clusters.
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Chapter 2

Theory and simulation of third

harmonic generation from a

clustered jet

In this chapter, I discuss the theory and simulation of laser-cluster interaction based

on the uniformly expanding nano-plasma model [14] and empirically modified nano-

plasma model [23]. I developed a self-consistent THG computer code using the

Runge-Kutta method with an adaptive stepsize control [30] based on these models.

Gas jet measurements and simulations discussed in Chapter 4 show that the jet

plume is composed of mostly unclustered Ar gases (∼ 80 %) [31]. Therefore, I

included the THG contribution from unclustered monomers in the code.

2.1 Uniformly expanding nano-plasma model

The uniformly expanding nano-plasma model first proposed by Ditmire et al. [14]

has successfully explained several experimental results [16, 17, 18, 19, 32]. There

are three key mechanisms in this model : (1) Ionization (Optical field and collisional

7



ionization), (2) Cluster heating (Inverse Bremsstrahlung) and (3) Cluster expansion

(hydrodynamic expansion and Coulomb explosion).

2.1.1 Cluster ionization mechanism

The first mechanism is optical field ionization which generates seed electrons for

further collisional ionization. With our experimental condition (Ipump ∼ 1 x 1015

W/cm2), tunneling ionization is important and takes place at the cycle-averaged

tunneling rate derived by Ammosov, Delone and Krainov (ADK) [33, 14],

WADK =
ωa

2
(2l + 1)(l + |m|)!
2|m||m|!(l + |m|)!

(
2e

n∗

)2n∗ 1
2πn∗

Ip

Ih

[
2(

Ip

Ih
)1.5 Ea

E0

]2n∗−|m|−1

× exp

[
−2

3

(
Ip

Ih

)1.5 Ea

E0

]
, (2.1)

where ωa is the atomic frequency (4.1 × 1016 s−1), l is the angular momentum

and m the magnetic quantum numbers of electronic state from which the electron

is removed, Ip is the ionization potential in eV , Ih is the ionization potential of

hydrogen (13.6 eV ), n∗ is the effective principal number (n∗ = Z(Ip/Ih)−0.5), Z is

the charge state of an ionized ion, Ea is the atomic electric field (5.1 × 109 V/m),

and E0 is the laser electric field.

Once seed electrons are formed by field ionization, collisional ionization grows

because of local solid density in the cluster. There are two collisional ionization

mechanisms. First, inelastic collisions between ions and thermalized electrons induce

ionization. The impact ionization rate is given by Lotz’ formula [34]

Wthermal = (3× 10−6) ne
qi

Ip(kTe)1/2

∫ ∞

Ip/kTe

e−x

x
dx, (2.2)

where ne is the electron density in cm−3, qi is the number of electrons in the outer

shell of ions, and kTe is the electron temperature. Second, electrons driven by the
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intense laser pulse collide with ions and ionize them. This cycle-averaged rate is

Wlaser = ne
aiqi

2πIp(meUp)1/2

[(
3 +

Ip

Up
+

3
32

(
Ip

Up

)2
)

ln

(
1 +

√
1− Ip/2Up

1−√
1− Ip/2Up

)

−
(

7
2

+
3Ip

8Up

) √
1− Ip/2Up

]
, (2.3)

where ai is an experimentally determined constant equal to 4.5 × 10−14 cm2 eV2,

me is the electron mass, and Up = e2Ec
2/4meω

2 is the ponderomotive energy of

the laser. The formula is valid only for 2Up > Ip. These collisional ionization

mechanisms quickly produce an overdense clustered plasma even with modest laser

intensity (& 1014 W/cm2).

2.1.2 Cluster heating mechanism

Electron heating by the laser is dominated by inverse Bremsstrahlung (collisional

heating). The cycle averaged heating rate per unit volume for the cluster is

∂U

∂t
=

ω

8π
Im(εc)|Ec|2, (2.4)

where ω is the driving laser frequency, εc is the cluster dielectric constant, and Ec is

the laser field in the cluster (Eq. 1.1) For the dielectric constant, the Drude model

for a plasma was used

εc = 1− ω2
p

ω(ω + iν)
, (2.5)

where ωp is the cluster plasma frequency (ωp =
√

4πnee2/me), and ν is the electron-

ion collisional frequency. Then, the heating rate becomes

∂U

∂t
=

9ω2ω2
pν

8π

E2
L

9ω2(ω2 + ν2) + ω2
p(ω2

p − ν2)

=
9
8π

E2
L

(ωp/ω)2 ν(
(ωp/ω)2 − 3

)2
+ (3ν/ω)2

. (2.6)
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The equation shows that the resonance occurs when ωp =
√

3ω. Here, the electron-

ion collisional frequency (ν) is an important parameter because it determines the

rate of heating of electrons and the temporal width of the resonance. For example,

near the resonance, the Eq. 2.6 is proportional to 1/ν, therefore, a larger collisional

frequency gives a smaller and broader resonance curve.

Ditmire et al. [14] used the collisional frequency with the Standard Coulomb

formulas of Silin [35]

ν =
4
9

√
2π

3
Z2 e4 ni

m
1/2
e (kTe)3/2

ln Λ, vosc ¿ vkTe

ν =
16Z2 e ni me ω3

E3
0

(
ln

[
eE0

2me ω vkTe

]
+ 1

)
lnΛ, vosc À vkTe (2.7)

where ni is the ion density in the cluster, vosc is the quiver velocity of electrons,

vkTe is the thermal velocity of electrons, and ln Λ is the Coulomb logarithm. For

the intermediate case when vosc ≈ vkTe , the numerical integration of the general

equation in Ref [35] was used. Zweiback et al. [17] used the weak field limit of

Silin’s formula (i.e. Spitzer’s formula) [36]

ν = 2× 10−6 Z ne lnΛ
(kTe)3/2

, (2.8)

in the uniformly expanding plasma model. The shortcoming of this formula is that

it predicts somewhat narrowly-peaked resonances, which are not observed in large

clusters. I will discuss this further when I present the empirically modified nano-

plasma model and simulation [23] in the Section 2.2 and 2.3.
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2.1.3 Cluster expansion mechanism

There are two mechanisms for cluster expansion. First, hydrodynamic expansion is

driven by hot electron pressure in the cluster. The heated electrons start to expand,

then pull the heavy ions. The ideal gas equation gives electron pressure

Pe = nekTe, (2.9)

where ne is the electron density in the cluster, and kTe is the electron temperature of

the cluster electrons. Second, Coulomb explosion is driven by charge build-up in the

cluster. After ionization, some hot electrons escape the Coulomb barrier formed by

ions, leaving a net positive charge in the cluster. The resulting repulsive Coulomb

force cause the cluster to expand. The Coulomb pressure is

PCoul =
Q2e2

8πr4
c

, (2.10)

where rc is the cluster radius, and Q is the built-up charge in the cluster due to

electron escape. Then, the cluster radius equation becomes

∂2rc

∂2t
= 3

(
Pe + PCoul

nimi

)
1
rc

, (2.11)

where ni is the ion density in the cluster, mi is the ion mass.

To calculate the accumulated charge (Q) in the cluster, the free stream rate

of electrons was calculated using [14]

WFS = ne
2
√

2π√
mekTe

(Kesc + kTe) exp
(
−Kesc

kTe

)

×





λe
4rc

(12r2
c − λ2

e) for λe < 2rc

4r2
c for λe > 2rc,

(2.12)
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where λe is the mean free path

λe =
(kTe)2

4πne e4 (Z + 1) lnΛ
, (2.13)

Kesc is the minimum kinetic energy for the electron to escape from the cluster:

Kesc =
(Q + 1) e2

rc
. (2.14)

During cluster expansion, the electron thermal energy is converted to kinetic

energy. As a result, electron temperature decreases at the rate

∂Te

∂t
= −2

Te

rc

∂rc

∂t
. (2.15)

2.2 Fluid model and empirically modified nano-plasma

model

After the nano-plasma was proposed by Ditmire et al. [14] and successfully applied

to experiments, Milchberg et al. [20] developed the hydrodynamic fluid model in

which electron density becomes nonuniform in the cluster during expansion. Ac-

cording to the fluid model, the optical field inside an expanding cluster like that at

a solid surface, becomes resonantly enhanced only at the critical surface (ω ' ωp)

(see Fig. 1.1), not uniform throughout the cluster. In this case, the nonlinear

ponderomotive force (FP )

FP = − e2

4meω2

∂|Ec(r)|2
∂r

, (2.16)

where Ec(r) is the spatially varying electric field inside the cluster, and r is the radial

coordinate, becomes important. This force does not depend on the sign of charge

because of the e2 term and, therefore, pushes both electrons and ions away from
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the resonance region [20, 12]. As a result, expansion is slower and resonance longer-

lasting than predicted by the nano-plasma model. Experimental results [21, 22] were

quantitatively analyzed using this model.

Nevertheless, the hydrodynamic fluid model is computationally intensive.

Therefore, as an intermediate approach, Gupta et al. [23] developed the empirically

modified nano-plasma model which maintained uniform density inside the cluster,

but compensated for errors in the time scale of Mie resonances by empirically ad-

justing the electron-ion collisional frequency (ν) and the ion mass (mi) to match the

linear polarizability predicted by the fluid code. The empirically found electron-ion

collisional frequency is

ν = 15
ω

T
1/4
e

, (2.17)

where Te is the electron temperature in the cluster in eV , and ω is the optical

frequency of the driving laser pulse. Upon laser excitation, the electron temperature

rises sharply (Te ≥ 1keV ) because of the efficient absorption of laser energy by the

clusters. The Spitzer collision frequency (Eq. 2.8) used in the nano-plasma model

depends more strongly than Eq. 2.17 on the electron temperature (ν ∝ T−1.5
e ). As a

result, the dielectric function (Eq. 2.5) sweeps more quickly through Mie resonances

than observed as the clusters evolve. However the modified collision frequency (Eq.

2.17) slows the sweep through Mie resonances, in better agreement with experiments

and the fluid model.

I varied Eq. 2.17 by changing the temperature dependence and ran a sim-

ulation to check the effect (Simulation results are discussed in detail in Section

2.2). Fig. 2.1 is an example calculation of imaginary linear polarizability of a 30nm

cluster related to laser absorption (see Eq. 2.23) when it is irradiated by a sin-

gle 800 nm, 100 fs pulse with intensity 1015 W/cm2. The collision frequency with

stronger dependence on the electron temperature (e.g. ν = 15 ω

T
1/2
e

) shows larger

polarizability and more delayed linear Mie resonance. However small variation in
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collisional frequency 

Figure 2.1: Effect of electron temperature dependence on imaginary linear polariz-
ability in calculation of the modified nano-plasma model when a 30 nm radius Ar
cluster is irradiated by a single 800nm, 100 fs with intensity 1015 W/cm2.

the temperature dependence (e.g. T−0.3
e instead of T−0.25

e ) should equally work and

simulation results would not deviate much from those of the hydrodynamic model.

Finally, Gupta et al. modified the cluster radius expansion equation Eq. 2.11 to

∂2rc

∂2t
= 5

(
Pe

nimi

)
1
rc

, (2.18)

dropping the Coulomb pressure PCoul, as appropriate for a quasi-neutral cluster.

Except for the modification in the collisional frequency, their empirical adjustments

only affect the time a Mie resonance occurs and the resonance width, not the mag-

nitude of cluster polarizability.
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2.3 Laser-cluster interaction simulation

Here I present self-consistent simulation results using the nano-plasma and modified

nano-plasma models. The ionization equations are

∂Ni

∂t
= −WiNi + Wi−1Ni−1, (2.19)

∂Ne

∂t
=

∑

i

i
∂Ni

∂t
−WFS , (2.20)

Z =
∑

i i Ni∑
i Ni

, (2.21)

where Ni is the number of ions of the ith charge state in the cluster, Wi = WADK +

Wthermal + Wlaser is the ionization rate from the ith charge state to the (i + 1)th

charge state, Ne is the electron number in the cluster, WFS is the electron escape

rate (see Eq. 2.12), and Z is the average charge state of the cluster ions.

The electron temperature equation is [14, 37]

∂Te

∂t
=

2
3

1
ne

ω

8π
Im(εc)|Ec|2 − 2

Te

rc

∂rc

∂t
− Te − Ti

τeq
− WFS Te

Ne
, (2.22)

where ne is the electron density in the expanding cluster, Ti is the ion temperature,

and τeq is the electron-ion equilibrium time (τeq = 3memi

8
√

2 ni Z2 e2 lnΛ

(
kTe
me

+ kTi
mi

)3/2
).

Here, the first term is inverse Bremsstrahlung (Eq. 2.4), the second term is loss

from cluster expansion, the most important cooling mechanism, the third term is

the heat transfer from electrons to ions, and the last term is energy loss from hot

electron escape. The cluster radius expansion term is evaluated using Eq. 2.11.

I solved the coupled differential equations numerically using the Runge-Kutta

adaptive step size control method for computational accuracy and efficiency [30].

For the nano-plasma model, I used the Spitzer formula (see Eq. 2.8) and put the

upper limit at twice the laser frequency (ν ≤ 2ω) because electrons in the cluster

collectively oscillate in the strong laser field, therefore it is not reasonable to have
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collisional frequency much larger than the driving laser frequency [14]. For the

modified model, I used Eq. 2.17 for the electron-ion collision frequency and 100

a.m.u. for the ion mass to match our absorption data, which will be presented in

Chapter 4. I assumed Te = 10 eV and Ti = 0 eV for the initial electron and ion

temperatures.

Fig. 2.2 shows a sample calculation of several cluster parameters. A 10 nm

radius cluster was irradiated by a single 100 fs, 800 nm laser pulse with peak intensity

1 × 1016 W/cm2. Black solid curves show the calculation from the nano-plasma

model and red dotted curves show calculation from the modified nano-plasma model.

As is shown in Fig. 2.2(b), the clustered plasma forms quickly as the laser intensity

exceeds the Ar ionization threshold (Ith ∼ 1 × 1014 W/cm2). When ionization

saturates and the cluster expands (Fig. 2.2(c)), the electron density (ne) reaches

the resonance condition ne/ncrit ' 3 with critical density ncrit = meω
2/4πe2. At

this point, the coupling between the cluster and the laser becomes strong, and inverse

Bremsstrahlung generates hot electrons in the cluster (Fig. 2.2(d)). As discussed,

the nano-plasma model predicts a sharper and narrower resonance than the modified

model.

Because of strong collisional ionization, the average ion charge state inside

the cluster (Z ≥ 10) greatly exceeds that predicted only by ADK field ionization

(Z ∼ 6) at peak intensity 1 × 1016 W/cm2 (Fig. 2.3).

Fig. 2.4 shows the imaginary part of cluster polarizability

γ(1) = Im(
εc − 1
εc + 2

)rc
3, (2.23)

which determines the laser absorption by clusters in the jet. The nano-plasma model

calculation shows a very narrow resonance peak like the electron temperature, which

is not observed in experiments. By contrast, the modified model correctly yields a

much broader resonance.
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(a) (b)

(c) (d)

resonance

Figure 2.2: Nano-plasma and modified nano-plasma simulation results of 10 nm Ar
cluster subject to 100 fs, 800nm laser with peak intensity 1 × 1016 W/cm2 (a) Laser
temporal profile. (b) Electron density. (c) Cluster radius. (d) Electron temperature.
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(a) ADK + collision (b) ADK 

Figure 2.3: Average charge state of cluster ions. (a) Cluster case which is subject
to field ionization + collisional ionization. (b) Gas Ar charge state.

γ
( 

c
m

3
)

Figure 2.4: Time evolution of imaginary polarizability of the 10nm cluster.
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(a) (b)

(c)

resonance

( 
cm

3
)

Figure 2.5: Simulation results of 30 nm Ar cluster subject to 100 fs, 800nm laser
with peak intensity 1 × 1016 W/cm2 (a) Electron density. (b) Electron temperature.
(c) cluster imaginary polarizability.
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For large slowly-expanding clusters (30 nm radius), resonance is delayed until

most of the heating laser pulse is past, resulting in a weak coupling between the laser

and cluster. Therefore, the maximum electron temperature is smaller (≤ 1 keV )

than for smaller clusters. Using Eq. 2.5, Eq. 2.23 becomes

γ(1) ' 3ω2
pων

(3ω2 − ω2
p)2 + 9(ων)2

r3
c , (2.24)

which shows that the imaginary part of the cluster polarizability is proportional to

1/ν near resonance (ωp =
√

3ω). For the low electron temperature (< 100eV ), the

modified collisional frequency (Eq. 2.17) (> 5ω) is larger than the upper limit for

the nano-plasma model (2ω). Therefore, the cluster polarizability calculated from

the nano-plasma model is overall bigger than the one calculated by the modified

model (Fig. 2.5(c)).

2.4 Extension to Third Harmonic Generation

2.4.1 Theory

Fomyts’kyi et al. [27] recently proposed a model of third harmonic generation from

a small cluster, in which a cold confined electron core oscillates nonlinearly against

a nonuniform ion background in the strong laser field, generating third harmonic

light (Fig. 2.6). Fomyts’kyi et al. treated the collective core oscillation as a non-

linear, anharmonic oscillator, in which the anharmonic potential arose from ion

density nonuniformity growth produced during cluster expansion. The model pre-

dicts a strong resonant enhancement (nonlinear Mie resonance) of third harmonic

generation when the frequency of the applied field equals to one third of the core

eigenfrequency. Although this model over-simplifies the laser-cluster interaction,

ignoring the electron density gradient and electron-ion collisions, I will follow its

basic concept in my cluster jet simulation. In particular, I included the ion-electron
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(a) (b)

Figure 2.6: Third harmonic generation mechanism from clusters proposed by
Fomyts’kyi et al. [27]. (a) Ion nonuniformity and anharmonic potential growth
in the expanding cluster (b) Third harmonic generation from cold electron core
oscillation in the cluster.

collisional frequency (ν) and adjusted a constant factor in the anharmonic strength

term to fit the experimental data. I will discuss this adjustment in Chapter 4.

To calculate χ(3), individual clusters were modeled as anharmonic oscillators

with anharmonic strength

b = ς
ω2

p

r2
, (2.25)

where ωp is the plasma frequency in the cluster, r is a scale length (≤ cluster radius

rc) of ion density nonuniformity responsible for THG and ς is a geometrical constant

of order unity or less [27, 38]. The electron equation of a motion is

ẍ + νẋ +
ω2

p

3
x− bx3 = −eEl(ω)

me
, (2.26)

where ν is the electron-ion collisional frequency, e is the electron charge, El is the

applied electric field with frequency ω, and me is the electron mass. Here, the factor
1
3 in the resonance term (ω2

p

3 ) originates from the spherical geometry of the cluster.
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The TH dipole moment of one cluster is then

p
(3)
plasma = −Neex

(3)(3ω) =

Ne
e4

m3
e

ς
ω2

p

r2

E3
l

(ω2 − ω2
p

3 + iνω)3((3ω)2 − ω2
p

3 + iν3ω)
, (2.27)

where Ne is the ionized electron number in the cluster. The formula shows that

the χ(3) resonance is the product of the ω resonance (ω2 − ω2
p

3 + iνω) and the 3ω

resonance ((3ω)2 − ω2
p

3 + iν3ω).

We also included the contribution of un-ionized monomer gas, clusters and

ions, which were neglected in Ref. [27]. Then, χ(3) for the gas jet is

χ(3) = nc(p
(3)
plasma +

∑

i=0

p
(3)
atom−ion.cluster)/E3

l +
∑

i=0

(nmi p
(3)
gasi)/E3

l

= ncNe
e4

m3
e

ς
ω2

p

r2

1

(ω2 − ω2
p

3 + iνω)3((3ω)2 − ω2
p

3 + iν3ω)

+ nc

∑

i=0

Niα
(3)
i (

3
εc + 2

)
3
+

∑

i=0

(nmi α
(3)
i ), (2.28)

where nc is the cluster density in the gas jet, Ni is the number of neutral atoms or

ions in the cluster, εc is the dielectric constant of the cluster, nmi is the monomer

ion density (i = 0 neutral atom) in the jet and α
(3)
i is the THG hyperpolarizability

of Ar from Ref [39]. However, only i = 0 (unionized atoms) contributed significantly

to χ(3) . The second term is the bound electron cluster contribution. The cluster

dielectric constant (εc) is

εc = εc.atomic + εc.plasma =
4πn0α

(1)
0

1− 4πn0α
(1)
0

3

+ 1− ωp
2

ω(ω + iν)
, (2.29)

where n0 is the neutral atomic density in the cluster, and α
(1)
0 is the Ar atom

polarizability. For nonrelativistic probe intensity, the contribution of the electron
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plasma ionized from unclustered gas to χ(3) can be neglected [40]. To evaluate

THG coherence length, we calculated the refractive index of the gas jet for both

800 nm (fundamental) and 266 nm (third harmonic) using njet(ω) ≈ 1 + 2πncγ
ω +

2πnmα
(1)
0 − ω2

p.coro/2ω2. Here γω is the cluster polarizability, α
(1)
0 is the atomic

polarizability of the monomers and ωp.coro is the ionized coronal plasma frequency

of unclustered ionized monomers. The coronal plasma is generated solely by ADK

optical field ionization [33]. Empirical fits to optical absorption discussed in Chapter

4 and gas jet measurements by Dorchies et al. [31] demonstrate that approximately

15 % of Ar atoms condensed into clusters out of 1018 cm−3 total atomic density.

Cluster/monomer ratio 0.15/0.85 was then used in the calculations. The modi-

fied nano-plasma model was used because it correctly describes the linear cluster

polarizability.

2.4.2 Simulation

Fig. 2.7 shows the calculated time evolution of |χ(3)| and imaginary cluster polar-

izability when the gas jet is interacting with 400 nm, 100 fs laser pulse with peak

intensity 1 × 1015 W/cm2 (our pump condition) . For simplicity, we put ς = 1

and r = rc. Independent of this assumption, the calculated |χ(3)| reaches an ear-

lier, sharper resonant enhancement than the imaginary linear polarizability which

is related to the laser absorption. However, the “enhanced” |χ(3)| is weaker than

|χ(3)(∆t < 0)| of the unexcited clusters by several orders of magnitude, suggesting

that the relevant scale length r may be, in fact, much less than the cluster size based

on our experiments. I will discuss this in Chapter 4 when I analyze the data.

According to the Fig. 2.7(a), smaller clusters yield stronger, sharper reso-

nances for equivalent atomic density. This is because small clusters expand faster,

so the ω resonance and the 3ω resonance (see Eq. 2.27) overlap more strongly in

time, creating a double enhancement. However, smaller clusters are produced with
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Figure 2.7: Calculated time evolution of |χ(3)| and Im(γ(800nm) of the gas jet with
different clusters, irradiated by 100 fs, 400 nm laser with peak intensity 1 × 1015

W/cm2.
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Figure 2.8: Time evolution of the THG coherence length

smaller backing pressure, which in turn produces smaller gas jet density (see Eq.

4.1) [13] and according to Ref. [31], a smaller fraction of Ar gas forming clusters.

Therefore, I expect that in practice, the |χ(3)| resonances of small clusters should be

relatively less pronounced than indicated by the calculation. The calculated time

scale shown in Fig. 2.7(a) is correct, but the absolute magnitude of the third order

susceptibility of the gas jet will have to be re-scaled significantly when analyzing

data. Fig. 2.7(b) shows that bigger clusters reach absorption resonances later than

smaller clusters and the overall optical absorption is larger for bigger clusters.

Fig. 2.8 shows the THG coherence length which is defined by lc = π/∆k =

cπ/3ω|njet(3ω)−njet(ω)|. As ionization takes place, the coherence length decreases

quickly, suggesting that the unionized medium is more phase–matched than the

ionized gas jet plasma. However, surprisingly, the coherence length increases again
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Figure 2.9: Real refractive index of 800nm and 266nm for the 20nm clustered jet.

and the local peak of lc occurs almost simultaneously with the χ(3) resonance. This

temporally local, phase matching enhancement is related to the separate temporal

evolution of njet(3ω) and njet(ω), shown in Fig. 2.9. A local increase in njet(ω)

at ∆t ∼ 200 fs coincides with a local decrease in njet(3ω), thereby decreasing

|njet(3ω) − njet(ω)| and increasing lc. Further increase of the coherence length

should be possible by increasing the cluster fraction using cryo-cooling techniques

[41, 42] or Xe (better clustering) gas [13].
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Chapter 3

Terawatt laser system

Ultrafast, high-power laser technology has progressed remarkably over the last 20

years using the Chirped-Pulse Amplification (CPA) technique [43, 44, 45, 46]. In

CPA, a weak (∼ 10−9 J), short (∼ 10−14 s) laser pulse is first generated from a

modelocked oscillator, then chirped to several hundreds ps or even ns by a stretcher

composed of optical gratings or fibers. The low-power stretched pulse is then safely

amplified by factors of 106-109 in several stages. Finally, the amplified pulse is

compressed back to ultrashort duration using a second set of gratings [47].

Our 1 TW (1012 W) system has been upgraded to 3 TW. In this chapter,

I will mainly discuss a multi-pass amplifier which we built as part of this upgrade.

Other stages (oscillator, stretcher, regenerative amplifier, compressor), described in

Ref. [48], remain nearly unchanged except for minor modifications.

3.1 Oscillator, Stretcher, and Regenerative amplifier

Fig. 3.1 shows the our home-built Kerr Lens Modelocked (KLM) [49] Ti:Sapphire

oscillator. A 532 nm CW laser (Millenia V from Spectra Physics) pumps a 10

mm long Brewster-cut Ti:Sapphire crystal. Two prisms compensate for the positive
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Figure 3.1: Kerr-lens modelocked Ti:Sapphire oscillator.

dispersion of the crystal [50, 51] and an output coupler (OC) transmits about 12% of

the energy. A photodiode and a fiber-optic spectrometer diagnose the modelocking

status and the spectrum, which is adjustable (from 10 nm to 60 nm bandwidth).

During the laser upgrade, we renovated the oscillator by simulating its operation

theoretically (see Appendix A) and modifying intracavity configuration for more

stable modelocking experimentally. The pulse repetition rate is about 76 MHz and

the energy of each pulse is about 9 nJ. We normally operate with a 30 nm bandwidth

(30 fs transform-limited pulse).

The oscillator pulse is, then, expanded to 400-500 ps in the grating stretcher

first designed by Lemoff and Barty [52]. A pair of antiparallel gratings (1200

lines/mm) and a telescope of two gold cylindrical mirrors (1 m curvature) give

a positive dispersion (Fig. 3.2). The incidence angle is 61.90 and the beam after the

first round trip is reflected back by an image inverter. The image inverter not only

doubles the pulse expansion but also reduces spatial chirp and spectral divergence.

A regenerative amplifier (see Fig. 3.3) reduces repetition rate to 10 Hz by

selecting an individual pulse from the 76 MHz pulse train. The gain is about 106,

therefore the energy increase to≥ 1 mJ after about 30 round trips in the regen cavity.
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This high gain regenerative amplifier has the advantage of filtering out higher-order

transverse modes caused by abberation in the stretcher because the regen cavity

selects a lowest order mode and stabilizes it by operating near gain saturation. A

p-polarized (parallel to an optical table) seed pulse passes through a broadband

Thin Film Polarizer (TFP1), a λ/2 waveplate and a Faraday rotator, and is rotated

to s-polarization. Then, the beam reflects from TFP2 and double passes through a

Pockels cell operated as a λ/4 plate, thereby rotating its polarization by 900 back to

p-polarization so that it transmits through TFP2. During its first gain pass through

a Ti:Sapphire crystal, the Pockels cell is switched to a λ/2 waveplate and the pulse

is trapped in the cavity without polarization change. After about 30 round trips,

the Pockels cell is returned to a λ/4 plate, so the trapped pulse again becomes

s-polarized, reflects from TFP2, and exits the cavity. Because the combination of

λ/2 waveplate and Faraday rotator does not change the polarization for the output

path [53], TFP1 also reflects the s-polarized output and the beam proceeds to a

pre-amplifier stage.

3.2 Pre-amplifier and Power-amplifier

Fig. 3.4 shows a 6 pass pre-amplifier and a 4 pass power-amplifier. A 600 mJ,

532nm Q-switched laser (∼ 100 mJ Surelite from Continuum and ∼ 500 mJ GCR4

from Spectra Physics) pumps a 1 cm long pre-amplifier crystal. The output energy

after 6 pass is about 200 mJ, which was used after compression for the laser-cluster

interaction experiment. After passing through a spatial filter, the beam can be

further amplified, generating about 600-700 mJ, in a 4 pass power-amplifier. A 1

cm long crystal is pumped by a PRO350 Nd:YAG laser from Spectra Physics (pump

energy ∼ 1.1 J). To design the pre-amplifier and power-amplifier, we used simple

models [54, 55, 56, 57] to analyze: (1) how much energy we can extract for a given

pump energy, (2) how much a thermal lensing occurs during beam propagation
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through temperature gradients in the pumped crystal.

For calculations of gain, I used measured pump parameters as follows: Fit

the imaged pump beams with a super-Gaussian intensity function

I(r) = I0 exp[−(r/b)c] , (3.1)

where I0 is the peak intensity, b is the 1/e radius, and c is the super-Gaussian order,

showed that they have about 2.8 mm radius with the super-Gaussian order 4. It

corresponds to about 3 J/cm2 fluence and approxiamtely 88 % of the pump beam

was absorbed by the pre-amplifier crystal. For a 1-D gain model (i.e. neglecting

focusing), we first calculated the number of atoms excited by pump absorption as

a function of pump radius. Then, after considering both fluorescence loss from

the crystal and the measured loss per pass (∼ 3 %) from the optics, the extracted

energy was calculated using a Franz-Nodvik model [54, 55]. I assumed that the seed
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Figure 3.5: Calculated pre-amp energy for each pass

Gaussian beam (super-Gaussian order 2) had 1.2 mJ energy with 2.35 mm radius

and was collimated during its propagation. Fig. 3.5 shows the calculated energy

per pass from the pre-amplifier. For the power-amplifier, the seed Gaussian beam

(5 mm radius) energy was put at 150 mJ because of loss in the spatial filter. The

pump beam radius was 5 mm with super-Gaussian order 7, which corresponds to

1.55 J/cm2 fluence. The loss per each pass was 5 %. The calculated energy (∼
160 (570) mJ for the pre(power)-amplifier) somewhat underestimates the measured

energy (∼ 180-200 (600-700) mJ). We think that the discrepancy results from beam

size changes caused by thermal lensing.

To remove heat from a Ti:Sapphire rod which is pumped by an intense Q-

switched laser, cooling water flows along the cylindrical rod surface. As a result, a

radial temperature gradient forms in the crystal. The steady-state radial tempera-

ture equation is [56]
d2T

dr2
+

1
r

dT

dr
+

Q

K
= 0, (3.2)

where Q is the heat generated per unit volume, and K is the thermal conductivity
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(35 W/m 0C for Ti:Sapphire). Assuming Q is uniform, the solution is

T (r) = T (r0) +
Q

4K
(r0

2 − r 2), (3.3)

where T (r0) is the surface temperature of the rod. Because of the temperature

gradient, the refractive index also varies radially as

n(r) = n(0) + (T (r)− T (0))
(

dn

dT

)
= n(0)− Q

4K

dn

dT
r2, (3.4)

where n(0) is the refractive index at the rod center, and dn
dT is the thermal refractive

coefficient (13 × 10−6 K−1 for Ti:Sapphire). A quadratic variation in index makes

the medium function as a spherical lens [58]. More specifically, for the case of a

nonuniform heating using the Q-swtched laser pumping, the focal length of the

thermal lens can be expressed by [56]

fth =
πKwp

2

PH(dn/dT )

(
1

1− exp(αl)

)
, (3.5)
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where wp is the 1/e2 radius of the Gaussian pump beam, PH is the fraction of the

pump power involved in heating, and α is the absorption coefficient of the crystal.

For the pre-amplifier, the pump beam (532 nm) has about 3J/cm2 fluence, 10 Hz

repetition rate, and 3 mm radius. Therefore, PH is

PH ' (3 J/cm2)(10 s−1)(π (3mm)2 )(1− 532nm/800nm) ' 2.84Watts, (3.6)

and the focal length is about 30 m, which can affect the 6 pass pre-amplifier.

To conterbalance the thermal lensing, two lens (f= -20cm, f= 50cm) (see

Fig. 3.4) were placed to diverge the regen output beam slowly as it enters the

pre-amplifier. First, by measuring the regen beam propagation and adjusting the

separation of two lenses (32.8 cm), the beam was collimated (Fig. 3.7 (a)). Then, we

made the beam slowly diverging by moving the focusing lens (f= 50cm) closer to the

first lens (f= -20cm) to reduce the thermal lensing effect (f= 35m) (Fig. 3.7 (b) and

(c)). This method worked well enough that we were able to produce a pre-amplified

beam of high energy (∼ 200 mJ) and good collimation (slowly converging beam).

For the power-amplifier, we did not use the conterbalancing lens set because the

focal length of the thermal lens is more than 80 m due to the lower pump fluence

(∼ 1 J/cm2) and it is only a 4 pass amplifier.

3.3 Compressor

The pre-amplifier beam was expanded to reduce the peak intensity and collimated,

using a diverging lens (f= -20 cm) and a converging lens (f= +75 cm) set (× 3.75

expansion) without a spatial filter. The diameter of the expanded beam is about

1.5 inches (πw0, 99 % of total energy) with a near Gaussian profile (Fig. 3.8).

The pulse is re-compressed in a compressor (Fig. 3.9) in which two parallel gold-

coated gratings (1200 lines/mm) are used with an incidence angle 690. By adjusting
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Figure 3.7: Thermal lens compensation calculation in the pre-amplifier. The red
lines represent the crystal position. (a) collimated regenerative amplifier output. A
diverging lens (f= -20cm) is located at 104.5 cm and a focusing lens (f= 50cm) at
137.3 cm. (b) slowly diverging beam to compensate for the thermal lensing. The
focusing lens was moved closer to the diversing lens by 6.8 cm. (c) beam propagation
with 35 m focal length thermal lenses in the 6 pass pre-amplifier.
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Figure 3.8: Expanded and collimated pre-amplifier mode. 1/e2 diameters are shown
in the horizontal and vertical lineout.

separation of two gratings, we can minimize the pulse temporal width. A single-shot

autocorrelation measurement shows that ∼ 80 fs (FWHM) minimum pulse length

can be achieved routinely(Fig. 3.10). The throughput of the compressor is about

40 %, yielding final energy ∼ 80 mJ.

For expansion and collimation of the power-amplifier, a telescope of f=

+1.5m, f= +4m lens set (× 2.7 expansion) combined with a spatial filter was used

to reduce the diffraction pattern caused by a small power-amplifier crystal. The

expanded beam diameter is about 1.3 inches (πw0) with a flattop profile (see Fig.

3.11) and the energy is about 300 mJ. The minimum pulse width was measured as

∼ 120 fs with the same incidence angle (690) (Fig. 3.12).
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Figure 3.10: Single-shot autocorrelation trace for the pre-amplifier.
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Figure 3.12: Single-shot autocorrelation trace for the power-amplifier.
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Chapter 4

Time-resolved experiment in a

clustered jet

4.1 Characterization of a supersonic gas jet

We used Mach-Zehnder interferometry and 900 Rayleigh scattering to characterize

the atomic density and cluster size, respectively, of our supersonic gas jet. The

second harmonic (532 nm) of a Q-switched Nd:YAG laser (PRO-350 from Spectra

Physics), about 10 ns long, was used for these measurements. We maintained nozzle

opening time at 1.5 ms for maximum scattered signal and low chamber pressure.

Further increase of the opening time till 4 ms did not increase the scattered signal.

We adjusted the delay of nozzle opening time with respect to the pulsed laser to

obtain the optimal signal.

4.1.1 Empirical parametrization of cluster size

Clusters were formed by a Series-9 pulsed solenoid valve from Parker Hannifin (Gen-

eral Valve division) and a supersonic conical nozzle with 750 µm orifice and 110 half

expansion angle backed by high pressure Ar gas. An empirical parameter for cluster
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formation is the Hagena parameter [13, 41]

Γ∗ = k
(0.74d/ tanα)0.85

T 2.29
0

P0, (4.1)

where k is a parameter depending on gas species (k=1650 for argon), d is the nozzle

orifice diameter, α is half expansion angle, T0 is gas temperature in Kelvin, and

P0 is the backing pressure in mbar. For our experimental condition (P0 ≥ (200 psi

= 13.6 bar) and Γ∗ > 4000 ), Hagena predicts that the number of monomers per

cluster (N#) scales as

N# = 33
(

Γ∗

1000

)2.35

, (4.2)

and it was assumed that almost 100 % of the atoms condensed into clusters [59,

60, 14]. However, the Hagena’s formula was proposed based on measurements in

continuous (CW) jet operation. Keto et al. [61] showed that the cluster size can be

smaller than Hagena’s prediction in pulsed jet operation with short nozzle opening

time (< 1ms) and if the nozzle diameter is larger than maximum displacement of

the nozzle plunger (∼ 400 µm). The lower condensation rate was also measured

using Xe by Keto et al. [61].

Recent experiments, using a more complete gas jet characterization [31, 24],

show that a larger portion (∼ 80 %) of the Ar gas jet is left unclustered. Based

on those measurements and analysis, Dorchies et al. [31] proposed a new scaling

formula for Ar clusters under conditions similar to our jet:

N# = 100
(

Γ∗

1000

)1.8

. (4.3)

This formula predicts a smaller number of atoms in the cluster than Hagena’s

prediction. As a result, the cluster radius rc is smaller because N# = 4
3πr3

cnAr.s,

where nAr.s is the solid Ar density (∼ 2 × 1022 cm−3). Table 4.1 compares Ar

cluster radii predicted by Eq. 4.2 and Eq. 4.3 at the given backing pressure and
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room temperature.

Table 4.1: Ar cluster radius vs backing pressure at T0 = 293 K.

Backing pressure (psi) Radius by Hagena (nm) Radius by Dorchies (nm)
200 14 10
400 24 16
600 34 20
800 42 24

According to the analysis by Dorchies et al., more atoms condense into clus-

ters with higher backing pressure (Table 4.2). However there is no general empirical

relation between the Hagena parameter (Eq. 4.1) and the condensation rate (η).

Table 4.2: Ar cluster parameters with the backing pressure P0 from 20 to 60 bars
using a conical nozzle (620 µm orifice and ∼ 50 half expansion angle)(Ref.[31]). η
is the condensation rate, R is the average cluster radius, δR/R is the relative width
of radius statistical distribution and N# is the number of atoms per cluster.

Backing pressure (bar) η R (nm) δR/R (%) N#

20 (300psi) 0.207 18.3 14 6.14 × 105

40 (600psi) 0.235 27.5 12 1.97 × 106

60 (900psi) 0.253 34.8 11 3.87 × 106

4.1.2 Rayleigh scattering measurement

The Rayleigh scattering signal scales as the product of the density of clusters (Nc)

and the scattering cross section of a cluster. The Rayleigh scattering cross section

for a dipole sphere is [15]

σ =
8π

3
r6
c

λ4

(
εc − 1
εc + 2

)2

, (4.4)

where λ is the probing laser wavelength, and εc is the cluster dielectric constant.

Therefore, the scattered signal scales as ∼ Ncr
6
c ∼ NcN

2
#. Using the relation Nc =
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Figure 4.1: Backing pressure vs the condensation rate from Table 4.2 [31].

N0/N# = ηNtotal/N#, where N0 is the average density of atoms contained in clusters

(excluding unclustered monomers), η is the condensation rate, and Ntotal is the total

atomic (clustered atoms+monomers) density. If η ∼1 [59, 60, 14], the signal should

scale as ∼ N0N# ∼ ηP0N# ∼ P 3.35
0 for Hagena’s prediction assuming constant

temperature for different backing pressures. Fig. 4.1 shows that the condensation

rate (η) from Table 4.2 scales as P 0.17
0 , therefore the scattering signal for Dorchies’

prediction should scale as ∼ ηP0N# ∼ P 2.97
0 , which is weaker than the scaling (P 3.35

0 )

predicted by Hagena.

The 532 nm beam with ∼ 200 µJ energy was focused by a 1 m focal length

lens after passing through a 5 mm aperture. The 900 scattering signal was collected

by a f/2 lens and imaged onto a CCD camera (Figure 4.2). We took the data by
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Figure 4.2: 900 Rayleigh scattering set-up and scattering CCD image.

integrating the scattered image spatially. Figure 4.3 shows that the scattered signal

scales as P 2.77
0 , which suggests that the Dorchies’ prediction is more appropriate for

our jet conditions.

4.1.3 Gas jet atomic density measurement

Figure 4.4 shows the Mach-Zehnder interferometry set-up. After dividing the input

beam using a 50/50 beamspliiter (BS), a transmitted beam passed through the

jet plume and a reflected beam passed through vacuum. Then, two beams were

combined by another BS. We imaged the exit of the jet using a 16 cm focal length

Achromat lens and a microscope objective (× 10) onto a CCD camera. Fringe shifts

were measured by comparing when the jet was turned on and when it was turned

off (Figure 4.5).

The standard Abel inversion [63, 64, 65] was used to extract the refractive

index of the gas jet from the measured phase shift. To minimize error caused by

defects of imaging optics in the Abel inversion process, I used super-Gaussian fitting

for the measured phase. This smooth, fitted data (red curve in Fig. 4.6) was used

for calculating the refractive index of the jet.
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Figure 4.3: Backing pressure vs 900 scattering signal. Fit (Red solid curve ) scales
as P 2.77

0 and blue dotted curve is the Hagena’s prediction
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Figure 4.4: Mach-Zehnder interferometry set-up.
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Figure 4.5: Fringe shift at 600 psi backing pressure using Mach-Zehnder interferom-
etry .

According to Fig. 4.7, the phase shift in the interferometry is given by [63]

∆φ(x) = 2
(

2π

λ

)∫ y0

0
(n(r)− 1)dy, (4.5)

where λ is the wavelength of the probe laser, and n(r) is the refractive index of the

gas jet. After using the cylindrical coordinates and Abel’s inversion, the refractive

index can be written as

∆φ(x) = 2
(

2π

λ

)∫ r0

0

(n(r)− 1)r√
r2 − x2

dr, (4.6)

2
(

2π

λ

)
(n(r)− 1) = − 1

π

∫ r0

r

φ(x)√
r2 − x2

dx. (4.7)

Dividing axes into small equidistant values such that xi = ir0/n and rj = jr0/n for

i, j = 0, 1, ..., n− 1, the refractive index (nj) can be expressed by

nj ≡ n(r = jr0/n) = 1 +
λ

2πr0

i=n−1∑

i=0

ajiφi, (4.8)

where aji is the coefficient from Ref. [65].
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Figure 4.6: (a) Raw phase shift before fitting for 600 psi Ar. (b) Super-Gaussian
fitted phase shift for 600 psi Ar. (c) Example super-Gaussian fit for the phase shift.
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Both clusters and unclustered monomers contribute to the phase shift. Then,

the real refractive index change by the jet is

∆njet(r) = njet(r)− 1 = 2πNgαg + 2πNcγc, (4.9)

where Ng the Ar gas density, αg is the atomic Ar polarizability, Nc is the cluster

density, and γc is one cluster polarizability. Simple algebra (See Appendix B) shows

that the total atomic density defined by Ntotal = Ng + NcN# is

Ntotal(r) =
∆njet(r)

2παg
=

(njet(r)− 1)
2παg

. (4.10)

Therefore, measured interferometry yields total atomic density information in the

jet plume from the refractive index and the gas polarizability (αg ∼ 1.663 × 10−24

cm−3 for 532 nm) (Fig. 4.8). The maximum gas jet density was about 8 × 1018
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Figure 4.8: Gas jet density profile 2.5 mm downstream from the nozzle at various
backing pressures.

cm−3 for 800 psi backing pressure and the minimum was about 2 × 1018 cm−3 for

200 psi backing pressure.

4.1.4 Conclusion

To determine the atomic density of the jet, cluster density and cluster size simulta-

neously, we need one more experiment or analysis. Dorchies et al. [31] performed a

Rayleigh scattering measurement using a high pressure gas cell in which no clusters

were formed as a reference to the cluster Rayleigh scattering. Then, they combined

measurements (interferometry+Rayleigh scattering) with numerical simulations. To

maintain a stationary regime, Dorchies et al. used few ms nozzle opening time like

our case. Their analysis showed ∼ 80 % of the gas jet is nonclustered with conditions

similar to our jet.
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Kim et al. [66] also tried to determine the average sizes and density of clusters

in a supersonic gas jet, using only two experiments (interferometry + Rayleigh

scattering). For an incident laser beam propagating from r to r+∆r in a clustered

jet, one can obtain from Rayleigh scattering [15, 66]

r6
c Nc =

1
πk4

(
εc + 2
εc − 1

)2 ∆Esca

Einc

1
∆r(α2 − α4/4)

, (4.11)

where k is the wavenumber for an incident laser, Esca is the scattered energy into

a collecting lens (see Fig. 4.2), Einc is the incident laser energy, α is the collection

half-angle of the lens. From Eq. 4.9 and Eq. B.3, we get

r3
c Nc =

∆njet(r)− δnm

2π

(
εc + 2
εc − 1

)
, (4.12)

where δnm = 2πNgαg is the index contribution of monomers. Assuming δnm=0

and dividing Eq. 4.11 by Eq. 4.12, Kim et al. was able to predict average sizes

of Ar clusters from rc.ave ≡ [r6
c/r3

c ]
1/3. However, their radius prediction based on

measurements was too small (4 nm < rc.ave <7 nm) between 100 and 560 psi backing

pressures. It is because dominant monomer contribution to the index change was

neglected (δnm=0 ). For example, if the index contribution of monomers is 90%,

7 nm radius for 560 psi becomes 15 nm, which reasonably agrees with Dorchies’

prediction (see Table 4.1). Their measurements also indirectly confirms that most

of Ar gases remain unclustered.

In our case, we used the probe absorption data and the modified nanoplasma

model [23] which correctly quantifies the linear absorption by clusters. Single cluster

dynamics (γc(t)) being determined by the model, we were able to determine the

cluster density and residual gas density by analyzing the probe absorption data.

I did not consider the size distribution of clusters [67, 68] specifically because the

modified model can incorporate the distribution due to its empirical property. Our
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analysis with 20 nm radius clusters (600 psi backing pressure) confirmed that > 80

% of the gas jet is composed of residual monomer gases, which I will discuss later.

4.2 Pump-probe absorption and third harmonic gener-

ation experiment

B.S.(70/30) 800nm

< 50mJ, 100 fs

KDP type І

800nm dumped

1.5” λ/2 plate

1.5” polarizer

400 nm pump

100 fs
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100 fs

Dichroic

beamsplitter

Ar cluster

Detector

*absorption

and THG of 

the  probe

Delay

f=39cm f=77cm

1” λ/2 plate

Delay

Figure 4.9: Two color pump-probe experimental set-up.

Time-resolved experiments have been performed with the Ti:Sapphire ter-

awatt pre-amplifier is described in Chapter 3. Pump and probe beams were gener-

ated by beamsplitting the 800 nm pulse (100 fs, 1.5 inch πw0 diameter). 400 nm,

100 fs pump pulses were generated by an 1 mm thick, type-I KDP crystal, and the

remaining 800 nm served as the probe. In the probe line, we included a λ/2 plate

and a thin polarizer to adjust the energy and polarization of the probe. However,

all data discussed in this section were taken with parallel pump and probe polariza-

tion. I will discuss the case of perpendicular polarization in the next section. An

adjustable delay consisting of two retro-reflecting mirrors mounted on a translational

stage was added in the probe line. In the pump line, we inserted a 1 inch λ/2 plate
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Figure 4.10: Measured pump mode.

as a polarization adjustment and as a soft aperture to generate a larger pump focus

than probe focus in the interaction region. Clusters formed in the pulsed supersonic

Ar gas jet described in the previous section, backed with 600 psi argon. Under these

conditions, ∼ 20 % of the Ar atoms condensed into clusters of 20 nm average radius

(see Table 4.1), while the rest remained as unclustered monomers [31]. Pump and

probe beams were focused into the jet by separate singlet lenses and combined by a

dichroic beamsplitter (Fig. 4.9). Focused beam diameters (1/e2) are approximately

40 µm for the pump and 30 µm for the probe (Figs. 4.10 and 4.11).

Peak pump intensity was maintained at Ipump = 1015 W/cm2, while probe

intensity was varied over the range 2 × 1013 ≤ Iprobe ≤ 8 × 1015 W/cm2. Non-

linear interactions in the jet generated the third-harmonic E3ω
THG ∝ χ(3)(Eω

probe)
3

of the probe at all delays (∆t), and a Four-Wave Mixing (FWM) signal E3ω
FWM ∝

χ(3)(Eω
probe)

∗(E2ω
pump)

2 at the same frequency when the pump and the probe over-

lapped in time (Fig. 4.12) (see Appendix C). To separate these signals spatially, we

intersected pump and probe beams at a small angle (∼ 20), so that THG and FWM
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Figure 4.11: Measured probe mode.

signals propagated in different directions governed by momentum conservation. The

FWM signal was then blocked after the interaction region. Pump and probe passed

through an off-center chord (about 2 mm away from the jet center) of the circular gas

jet profile 2.5 mm from the nozzle, with path length ∼ 1 mm matched to the length

of the pump-probe overlap (see Fig. 4.13). In this configuration probe defocusing

by its self-created plasma lens and pump-induced probe refraction [21, 22, 69], were

both negligible. A Mach-Zehnder interferometer (see Fig. 4.8 and 4.13) measured

average atomic density ∼ 1018 cm−3 at about 2 mm away from the jet center. The

THG light was collected and focused onto a spectrometer slit using an f/4 lens.

A large aperture (∼ 1 cm) photo-multiplier tube (PMT - 1P28B from Burle) with

quantum efficiency 13 % at 266nm collected all the dispersed light at the output of

the spectrometer. A 265 nm bandpass filter placed in front of the PMT helped dis-

criminate other colors. The PMT signal was amplified (×5) in a fast pre-amplifier,

then averaged using a digitizing oscilloscope. In addition to THG, we measured the

time-resolved probe absorption using a f/4 probe collecting lens, a red glass filter,
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Figure 4.12: (a) THG: three probe (ω) photons are absorbed and one 3ω photon
is generated. (b) FWM: two pump (2ω) photons are absorbed and one ω probe
photon, one 3ω photon are created.

and energy meter. We also imaged probe modes from the gas jet exit onto a CCD

camera (see Fig. 4.19) to check for self-focusing or defocusing.

Figure 4.14(a) shows the THG and probe absorption measurement when the

probe was weak ( 2 × 1013 W/cm2 ). There is a short duration enhancement of

the THG when the pump starts to ionize the clusters and residual gases (∆tdelay

∼ -150 fs), compared with a broad absorption resonance at later delays. After the

early delay enhancement, the THG from the clustered plasmas is smaller than from

the non-ionized medium. The signal was averaged over 300 shots. To check the sig-

nals near ∆t=0 were cluster-related, we performed a control experiment with same

geometry using He (unclustering gas). No time-dependent 3ω signal was observed

within experimental error (Fig. 4.14(b)). In contrast, He FWM signal was clearly

observed in a collinear geometry (Fig. 4.14(c)).

We performed a probe intensity scan with the fixed pump intensity (1015

W/cm2) (Fig. 4.15 (a)). As Iprobe increased, the peak at ∆t < 0 saturated (Fig. 4.15

(a), left), and another short duration peak at ∆t ∼ 260 fs appeared and rapidly grew
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(Fig. 4.15 (a), right). The former peak scaled as I3
probe when Iprobe < 1014 W/cm2

(Ar ionization threshold), but saturated as probe self-ionization occured (Fig. 4.15

(b)). The delayed peak, on the other hand, scaled as I3
probe without saturation up

to Iprobe = 1015 W/cm2 (Fig. 4.15 (c)) because of fast ionization completion by

the pump [14, 20] and began to saturate only at higher probe intensities. Abrupt

termination of the delayed THG peak at ∆t > 300 fs is evidently caused by the

sharp rise of probe absorption (Fig. 4.16).

We tried the pump-probe experiment at the center of the jet where the jet

thickness ∼ 4 mm, determined by interferometry and Rayleigh scattering measure-

ments (see Fig. 4.2 and 4.8), greatly exceeds the length (∼ 1mm) of the pump-probe

overlap region. Here the pump intensity was 1.5×1015 W/cm2 and the probe inten-

sity was 2.6 × 1014 W/cm2. The probe-generated TH signals quickly decreased as

ionization in the gas jet started (∆t ≈ - 100 fs) (Fig. 4.17 and 4.18), then reached

a minimum when the maximum of the probe absorption occurred, then slowly in-

creased as the probe absorption decreased. Clearly the THG signal simply tracks

absorption. Strikingly, we could not see any TH signal enhancement in this config-

uration. We believe that probe propagation in the 3 mm long region of unpumped

gas may have been significantly disturbed by self-focusing or defocusing. We did not

check this hypothesis directly for the experiments performed at jet center. However,

we did check carefully for probe self-focusing in the off-jet-center geometry, in which

strong resonant enhancement of THG was discovered. This was done by imaging

the probe from the output of the gas jet onto a CCD (Fig. 4.19). Pump-induced

probe focusing in the gas jet could contribute to probe intensity increase and thus to

an enhancement of the third harmonic signal unrelated to nonlinear Mie resonance..

According to time-resolved beam size analysis (Fig. 4.20(a)), there is a small probe

focusing effect (∼ 10 % decrease) between 0 fs and 300 fs, followed by gradual de-

focusing. Here W y is the spot size in the direction of pump polarization. Overall,
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Figure 4.17: Pump-probe THG vs absorption with 20nm argon clusters (600 psi
backing pressure) at the jet center.
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Figure 4.18: Pump-probe THG vs absorption with 10nm argon clusters (200 psi
backing pressure) at the jet center.
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Figure 4.19: Probe mode measurement set-up.

the time scale agrees with the data taken by other groups [22, 69] even though the

effect was small because of the short path length (∼ 1mm) at the edge of the jet

plume. Although defocusing (Fig. 4.20(a)) partially contributes to the drop in THG

for ∆t > 300 fs, the strong THG enhancement at ∆t ' 260 fs cannot be explained

by the 10 % probe focusing. This slight focusing is more than compensated by the

absorption increase during the same time. As a result, probe intensity ∆t ' 260

fs is actually weaker than for ∆t ≤ 0 fs. THG enhancement is clearly caused by a

nonlinear Mie resonance, increased coherence length, or both.

Although we used a large aperture (∼ 1 cm) PMT, there is a possibility of

not collecting all the generated THG if ionization-induced frequency shifts occur.

Fig. 4.21 shows a normalized THG spectrum at different delays. When the jet

medium underwent ionization (∆t = -66 fs), there was induced a small blue shift
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radius change. (b) Examples of probe modes.
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(∆λ ∼ 1 nm) in the third harmonic spectrum, caused by the rapid decrease in index

of refraction [70]. Assuming a uniform medium, the transient wavelength shift in

the clustered jet ionization is [24]

dλ = (cLλ)
d

dt

(
2πncγc(t)− 1

2
np.coro(t)

ncr

)
, (4.13)

where c is the speed of light, L is the medium length, np.coro is the coronal plasma

density from unclustered monomer gases, and ncr = meω
2/4πe2 is the critical plasma

density. In an unclustered gas, a blue-shift occurs only during ionization (nc=0,

dnp.coro(t)/dt > 0). However, the increase of cluster polarizability (γc) during clus-

ter expansion (see Chapter 2) induces a red-shift in the probe-generated THG spec-

trum (∆t = 200 fs). At longer delays, the spectrum shifts back toward the original

wavelength, indicating a slowing of γc dynamics (see ∆t = 600 fs spectrum). The

spectral red-shift is, therefore, an unique property of expanding clusters.

4.3 Analysis: comparison with simulation results

To analyze the experimental data, we performed cluster jet simulations using the

modified nanoplasma model [23] which predicts the linear cluster polarizability cor-

rectly (see Chapter 2). First, in order to determine the ratio of clusters and monomer

gases, I calculated the probe absorption after excitation by the pump (400 nm, 100

fs, Ipump = 1× 1015W/cm2) by

A = 1− exp(−α L), (4.14)

where α is the absorption coefficient by

α = 2
ω

c

(
2πnc Im(

εc − 1
εc + 2

)rc
3

)
, (4.15)
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Figure 4.21: Time-resolved THG spectrum from the 20nm clustered jet. The pump
and the probe peak intensity was 1.0× 1015 W/cm2.

and L =1 mm is the gas jet length. Therefore, ignoring the small absorption from

the monomer gases, the cluster density (nc) determines the probe absorption. Fig.

4.22 compares the probe absorption data with 20 nm radius clusters when the probe

was weak ( Iprobe = 2 × 1013 W/cm2) (open squares) with the absorption calculation

using the model (red solid curve) when the ratio of monomer/cluster density was

92 % monomers, 8 % clusters. Here I assigned 100 a.m.u for the ion mass. The

calculation shows a good fit of the observed data for ∆t ≤ 1 ps. Considering

that the power-meter measurement underestimated the absorption compared with

the CCD measurement (compare the power-meter measurement (Fig. 4.16) and

CCD measurement (Fig. 4.27)), we expect that the fraction of clusters in the jet

is approximately between 10 and 20%, which confirms that the gas jet is mostly

composed of unclustered gas and matches well with the measurement by Dorchies
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Figure 4.22: Probe absorption data (open squares) and calculation (red solid curve)
when the ratio of monomer/cluster density was 92 % monomers, 8 % clusters.

et al. [31]. I will calculate the third harmonics, assuming 15% of clusters in the jet.

For probe-generated THG calculation, we included heating and ionization by

both pump and probe [71]. In the two color calculation, the laser electric field is

given

E(t) = Epump(t)+Eprobe(t) = E1(t) exp(iω1t)+E2(t+∆t) exp(iω2(t+∆t)), (4.16)

where ω1 (ω2) is the pump (probe) laser frequency, and ∆t is the delay between the

pump and probe. The cluster electric field is then calculated by

Ec = Ec.pump(t) + Ec.probe(t) =
3Epump(t)
|εc.pump + 2| +

3Eprobe(t)
|εc.probe + 2| . (4.17)

Here εc.pump, c.probe are calculated for each frequency (see Eq. 2.29). In particular, I
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used a weighted collisional frequency which can be written

ν(t) =
15

T
1/4
e (t)

(
ω1Ipump(t) + ω2Iprobe(t)

Ipump(t) + Iprobe(t)

)
, (4.18)

where Ipump(t) (Iprobe(t)) is the pump (probe) laser intensity. The Bremsstrahlung

heating was calculated by

∂U

∂t
=

ω1

8π
Im(εc.pump)|Ec.pump|2 +

ω2

8π
Im(εc.probe)|Ec.probe|2. (4.19)

The probe generated THG field due to χ(3) in the jet (see Eq. 2.28), then,

is [72]

J3ω(L) ≡ (ei∆kL−3βωL − e−β3ωL)
(i∆k − (3βω − β3ω))

, (4.20)

E3ω(L) =
i2π(3ω)2

c2k3ω
χ(3)J3ω(L)E3

probe, (4.21)

where L is the gas jet length (1 mm), ∆k is the phase mismatch between 800 nm

and 266 nm, and βω and β3ω are imaginary wavenumbers for 800 nm and 266 nm.

Here we defined J3ω(L) as the phase matching function including absorption, which

becomes the phase matching function for a loose focusing case (
[

exp(i∆kL)−1
i∆k

]
) if the

absorption is neglected (βω = β3ω = 0) [38, 72].

Before evaluating Eq. 4.21, I briefly consider another source of THG, not

included explicitly in Eq. 4.21, introduced by Brunel [73]: the current from electrons

undergoing tunneling ionization from unclustered gas atoms. Because tunneling

ionization peaks sharply twice in each laser cycle (Fig. 4.23), the electron density

(ne) has second-harmonic content. Since the quiver velocity ve oscillates at the laser

frequency, the free electron current density J = −neeve has third-harmonic content.

The wave equation for the third-harmonic field E3ω
ic generated by this ionization
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current is then

∇× (∇× E3ω
ic ) +

1
c2

∂2E3ω
ic

∂2t
+

4π

c2

∂J

∂t︸ ︷︷ ︸
harmonic source

= 0. (4.22)

Brunel showed that E3ω
ic is

E3ω
ic = −P kL

24π
ng

nc

[
exp(i∆ki.cL)− 1

i∆ki.c

]

×
[
exp

(
−3

ζ

)
+ 0.5 exp

(
−12

ζ

)]
E0, (4.23)

Here kL is the ionizing laser wave number, P is the probability of ionization over one

laser cycle (P ≈ ∫ 2π/ωL

0 w(t) dt) with w(t) the ionization rate, ng is the monomer

gas density, nc is the laser critical density, ∆ki.c is the ionization current phase

mismatch ∆ki.c ≈ −kLnp/nc with np plasma density, and ζ=Ea/E0 with Ea the

atomic electric field (5.1 × 109 V/m) and E0 the incident probe field. I included

ionization currents from all charge states using an adiabatic approximation of ADK
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ionization rates [74]. In that case,

P = 2
√

3π
ωa

ωL

(
4eZ3

n∗

)β (
eZ 2

2πn∗

)(
Ea

E0

)β

ζ−
1
2 exp(−2

3
ζ), (4.24)

where ωa is the atomic frequency (4.1 × 1016 s−1), ωL is the laser frequency, e is

exp(1), Z is the charge state of the ion, n∗ is the effective principal quantum number

(n∗ = Z(Ip/Ih)−0.5), Ip is the ionization potential in eV , Ih is the ionization potential

of hydrogen (13.6 eV ), and β is 2n∗ − 1. I used the phase matching function Eq.

4.20, replacing ∆k with the ionization current phase mismatch (∆ki.c). Fig. 4.24

shows that calculated THG energy of ionization currents from the gas jet irradiated

by a single 800 nm, 100 fs laser pulse with different intensities. Above Ar ionization

threshold (∼ 1014W/cm2), the THG energy from the ionization currents quickly

increases but saturates at higher intensity. The overall efficiency of THG from

ionization currents is very low (< 10−7). We can therefore conclude that THG from

ionization currents is small compared to THG from clusters described by Eq. 4.21

(see Fig. 4.15).

The total TH field is the sum of E3ω (Eq. 4.21) and E3ω
ic (Eq.4.23). They

were calculated as follows. First, given pump and probe intensities and delay, I sim-

ulated the gas jet-two (pump+probe) color interaction self-consistently using the

Runge-Kutta step size control method [30] to evaluate the linear optical properties

βω,3ω, ∆k, etc. Then, from these numbers, I calculated the third harmonic generated

by the probe in each time-step using Eqs. 4.21 and 4.23. The microscopic nonlinear-

ity parameter ς/r2 (see Eq. 2.25) that enters χ(3) was held constant for simplicity as

time was stepped, and was adjusted empirically for best overall fit to the delay peak.

Then, I used the Trapezoidal rule [30] to integrate the probe-generated THG. Fig.

4.25(a) shows the result of the calculation of probe-generated THG energy vs. delay

(∆t) for the experimental range of probe intensity. The result is hardly changed

if the ionization currents contribution is neglected as discuss. The simulation cor-
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Figure 4.24: Calculation of ionization currents of monomer gases from the gas jet
(0.85 × 1018 cm−3 monomer + 0.15 × 1018 cm−3 clustered gas) irradiated by a
single 800 nm, 100 fs laser pulse with different intensities.
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rectly reproduces the nearly unsaturated growth of the delayed THG peak (see Fig.

4.25(b)), showing weak saturation with Iprobe ≥ 4× 1015W/cm2. The high intensity

probe (Iprobe ≥ 4× 1015W/cm2 > Ipump) ionizes residual gas ions left unionized by

the pump, and thus increases phase mismatch. The resulting decreased coherence

length accounts for partial THG saturation. Additional saturation is caused by

the increased ionization-induced defocusing of the probe, but this was not included

in the calculation. The weak saturation observed as Iprobe → 1016W/cm2 may be

fundamental to THG of expanding clusters. However we have not ruled out the pos-

sibility that it is an artifact caused by pre-expansion of clusters by weak pre-pulses

in the laser system.

Heating by the probe makes the linear polarizability and the χ(3) of the clus-

tered jet increase slowly as the probe intensity increases. Therefore, the calculated

THG grows as I3.72
probe (see Fig. 4.25(b)) instead of I3

probe. Here, to reproduce the

observed THG, we put ς/r2 ≈ 50r−2
c , which is a much bigger anharmonic constant

compared with the theoretical predictions based on the uniformly expanding clus-

ters [28, 27]. This shows that the scale length r of electron and/or ion density

nonuniformity responsible for THG is much less than the cluster radius rc. The

ponderomotive force effect due to a non-uniform electron density gradient for large

clusters [20, 75] can be an important factor reducing this scale length. Near res-

onance, the ponderomotive force, which is not considered in this model or in Ref.

[27], becomes significant at a local critical surface and produces nonlinear electron

motion with strong harmonic components. Although we assumed the anharmonic

strength being constant in the calculation, if the ponderomotive force of the probe

involves, it can also vary for different probe intensities.

In Chapter 2 , I discussed that the coherence length of the jet increases almost

simultaneously with the third harmonic resonance of the cluster. Fig. 4.26 shows

that |J3ω(L)|2 decreases sharply from 0.01 cm2 (square of the interaction length)
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Figure 4.25: THG simulation considering both ionization and heating by the probe.
(a) Time dependent THG by 800nm probe pulses of indicated intensities. (b) Probe
intensity dependence of calculated THG at ∆t = 300 fs.
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Figure 4.26: Time dependent |J3ω(L)|2 (dashed curve) and |χ(3)| (solid curve)
with Iprobe = 1015W/cm2 and ∆t = 300 fs after the pump excitation (Ipump =
1015W/cm2, 400 nm), considering ionization and heating by both pump and probe.

upon ionization. Thus, the ionized medium is less phase-matched than unionized

gas jet. However, |J3ω(L)|2 increases locally near at ∆ ' 200 fs, when njet(3ω) and

njet(ω) reconverge. This increase thus contributes to the delayed THG enhancement

combined with the |χ(3)| resonance. The calculations show that njet(3ω) and njet(ω)

can be equal near at ∆ ' 200 fs, resulting in perfect phase-matching, with higher

cluster/monomer gas ratio, possibly in a cryogenic argon jet [41, 42], which will be

discussed briefly in the final chapter.

As shown in Figs. 4.15 and 4.25, the model predicts about 2 orders of

magnitude smaller THG than the experimental data at negative delays when only

the probe affected the jet medium. We think that one of the possible reasons is due

to the early THG resonance enhancement which was observed with the weak probe

(see Fig. 4.14). Although the model cannot predicts the χ(3) resonance at ∆t ' -

100 fs, it seems that there is an additional resonance when ionization starts to occur
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and the cluster electron density sweeps quickly through ω and 3ω resonances. The

enhancement with the weak probe is about 2 orders of magnitude compared with

the unionized medium, which would contribute to the probe generated THG with

higher intensities (Iprobe > 1014W/cm2) in ∆t ≤ -100 fs - i.e.- the early resonance

occurs within the probe pulse temporal profile, which generate more THG than the

calculation.

Generally, even for a pure gaseous medium undergoing ionization, calculation

for high harmonics is very difficult [76]. For example, Liu et al. [77] measured the I3

power law dependence of THG, using laser pulses which completely ionized hydrogen

gases in a cell target. There, the contribution from the ionization current should be

saturated due to complete ionization of hydrogen at higher than saturation intensity

(Is ∼ 2 × 1014W/cm2) and it is not clear what factors contributed to the THG

enhancement with I > Is. Other experimental results [40] also indicate the difficulty

in theoretical predictions for the harmonic generation from the ionizing gases. A

very sophisticated THG model is needed to explain the data more correctly.

In summary, simulations show that the nonlinear susceptibility χ(3) of the

individual clusters and the coherence length of the clustered plasma medium are

optimized nearly simultaneously as the pre-heated clusters expand, and both con-

tribute to the observed THG enhancement.

4.4 Anisotropy of THG from a clustered plasma.

So far we have considered experiments and calculation only for co-polarized pump

and probe pulses. THG experiments with variable angle between pump and probe

polarization are excellent ways to detect transient anisotropy in the expansion of

the clusters. Fig. 4.27 clearly indicates that the perpendicular case shows more

enhancement of THG than the parallel case. The anisotropy in time-integrated

production of ions and electrons from Coulombically exploding (i.e. fully ionized)
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small clusters has been reported and theoretically analyzed [19, 78, 79]. But, to

our knowledge, this is the first measurement of harmonic generation anisotropy

from hydrodynamically expanding (weakly ionized, but strongly heated) clusters.

Femtosecond harmonic generation (HG) has the unique capability to time-resolve

transient anisotropy, and to characterize anisotropy in clustered plasmas that are

too dense for electrons and ions to escape [72]. In comparison, no anisotropy was

observed in time-resolved linear absorption (see Fig. 4.27) within experimental error.

Here, the absorption data was taken from the imaged probe modes by averaging 50

shots (see Fig. 4.19) and the anisotropy measurements were averaged over 100 shots.

The anisotropy in THG was observed at higher intensities (Fig. 4.28), too. This

illustrates a general principle of nonlinear optics that HG more sensitively probes

material anisotropy than linear optics [72]. The maximum conversion efficiency was

about 7 × 10−4 with probe peak intensity 4.0 × 1015 W/cm2 and the conversion

efficiency saturated at higher intensities as in the case of parallel polarization (see

Fig. 4.15(c)).

We also performed an optical Kerr effect (polarization rotation effect) [72] in

the clustered medium (Fig. 4.29). The input polarization was rotated by 450 with

respect to the pump polarization. We put a cube polarizer to separate two probe

polarization components (parallel and perpendicular to the pump polarization) and

measured transmitted probe signals using photodiodes. As shown in Fig. 4.30, no

visible probe polarization rotation was observed with experimental error.

Breizman et al. [29] suggested a physical mechanism for anisotropic hydro-

dynamic expansion of weakly ionized, laser-heated clusters: polarization-dependent

vacuum heating [80, 81] by the pump accompanied by collisional absorption should

generate an anisotropic electron pressure that is higher along the pump field axis.

As a result, ion acceleration driven by this pressure becomes anisotropic, causing

the expanding cluster to become ellipsoidal with major radius along the pump field.
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Figure 4.28: THG anisotropy in higher intensities.
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Electrons in the cluster will experience a stronger nonlinear force because of stronger

gradients along the minor axis with smaller radius (Eq. 2.25: b ∝ ω2
p/r2

c ). Therefore,

the perpendicularly-polarized probe will generate more THG. The ponderomotive

force should also be stronger along the minor axis because of a steeper electron

density gradient.
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Figure 4.30: Kerr effect data.
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Chapter 5

Conclusions and Future

experiments

In conclusion, we studied delayed enhancement of THG from a noble gas jet contain-

ing clusters that are expanding hydrodynamically in response to ultrashort pump

pulse excitation. THG polarization dependence shows the clusters expand anisotrop-

ically, while Iprobe dependence shows little saturation up to Iprobe ∼ 1016W/cm2.

Modeling shows transient increases of cluster χ(3) and phase-match factor J3ω(L)

including absorption both contribute to the delayed enhancement. To enhance the

phase-matching, the ratio of clusters/monomers should be higher as discussed briefly.

Xe clusters (better clustering gas) or cryogenically cooled Ar clusters [41, 42] are ex-

pected to achieve this goal. Figs. 5.1 and 5.2 show that the phase-matching can be

achieved with higher ratio clusters/monomers (≥ 70 %). I calculated assuming gas

jet density 1× 1018 cm−3. Generating 80 nm clusters is possible using the cryogenic

cooling. Although the increase of absorption because of higher cluster density may

inhibit the harmonic generation, phase-matching occurs before maximum absorp-

tion. Therefore, we may be able to see the perfectly phase-matched third harmonic

using the time-resolved technique.
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Figure 5.1: Phase matching calculation with 80 % of 20 nm radius clusters and 20
% of monomers in 1× 1018 cm−3 density argon gas jet.

We are currently exploring scalability of these effects to higher-order har-

monic generation. For n > 3, enhancements of χ(n) and Jnω(L) are expected at

slightly earlier ∆t, where probe absorption is weaker. Enhancement of Jnω(L) is

expected up to high order (n ∼ 100) [25, 26]. As with THG, fully phase-matched

high-order HG is also expected in jets with higher cluster/monomer ratio. Delayed

resonant enhancement of χ(n) is expected at least up to ωmax
p /

√
3 = nω [29] (i.e. n

∼ 10 for 800 nm fundamental), and possibly much higher, since resonant denomi-

nators of order < n contribute to χ(n). Indeed harmonics of order nω >> ωp are

observed from solid targets [82].
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Appendix A

Theory of Kerr-lens mode

locking

A.1 Introduction

Kerr-lens mode locking (KLM) occurs due to self-focusing effect that is produced

by the nonlinear index change in the Kerr medium (laser crystal) or an additional

loss modulation medium such as a hard aperture [49]. Especially, it was proposed

that an intra-cavity aperture is necessary to achieve the intensity dependent loss

modulation [83, 84]. However, several groups also showed experimentally that KLM

is even possible without the intra-cavity aperture [85, 86, 87, 88, 89]. Here I present

the theoretical calculation of KLM based on our homemade oscillator. In section

2, I will apply Ref. [84] to our oscillator to find a sub-resonator configuration in

which KLM stably occurs. In section 3, I will present the calculated beam size in

the cavity both for the continuous (CW) and KLM, using a numerical self-consistent

rule (NSCR) [84, 91]. Mode-size calculation for the mode-locked beam is important

to get a good quality TEM00 mode and to collimate the beam after output coupler

properly.
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Figure A.1: Typical Kerr-lens modelocking (KLM) oscillator configuration.

A.2 KLM zone

The most important parameter for KLM is so called Kerr-lens sensitivity which is

defined as the derivative of the beam size with respect to vanishing beam power [84]

δ =
(

1
2w

dw

dp

)

p→0

, (A.1)

where w is the spot size, p is the intracavity laser power. For KLM operation,

an aperture needs to be placed at the position where δ is negative and large in

magnitude. Figure A.1 shows a typical Brewster cut Ti:Sapphire laser cavity.

Due to astigmatism produced by the Brewster interface, elliptical Gaussian beam

propagation should be considered. According to Ref. [84], the Kerr-lens sensitivity

in a tangential plane (x: parallel to an optical table) at M1 (output coupler) can be

expressed,

δ1x = − 1
n

(
1− S2

y

1− S2
x

)1/4 ∫ l

0

∣∣∣∣
Bx

By

∣∣∣∣
1/2

B2xD2xSx + B1xD1x

Bx
2 dς , (A.2)
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Figure A.2: KLM resonator configuration and ABCD matrices for the formula A.2

where Sx = AxDx + BxCx, and other matrix elements are given in Fig. A.2. Here

the arrow indicates the direction to which ABCD matrices [90] are applied and L.

O. E represents linear optical elements in the cavity. For the sagittal plane (y), x

and y are simply exchanged.

I applied this formula to our oscillator (see Fig.A.3) to get the contour lines

of the Kerr-lens sensitivity at the output coupler both for the tangential plane

(Fig.A.4 (a)) and sagittal plane (Fig.A.4 (b)). As is shown in the graphs, the Kerr-

lens sensitivity in the tangential plane is generally larger than the one in the sagittal

plane, which means that a vertical slit to cut the beam in the horizontal direction

is preferable than a horizontal slit for KLM. And the Kerr-lens sensitivity is smaller

in other place than the end mirrors [83]. However, experimentally, we are not using
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Figure A.3: Distance measurement in the our KLM cavity.

Figure A.4: Kerr-Lens Sensitivity calculation for (a) tangential plane and (b) sagittal
plane.
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Figure A.5: (a) CW oval-shape mode (b) Modelocked round mode.

any kind of slit for KLM. We are following the method in Ref. [83]; we first align the

cavity for the maximum CW power, and then we move the M3 to see an vertically

oval-shaped CW mode. A slight perturbation in the prism initiates modelocking

with a TEM00 mode [85] (see Fig. A.5). The CW mode is oval-shaped because it is

the combination of TEM00 and TEM01 [88, 89]. In the cavity configuration in which

the KLM is possible, there is a competition between the CW mode and mode-locked

mode and by applying a small perturbation (tapping one of prims) in the cavity,

the KLM mode which overlaps more efficiently with the pump, survives eventually.

We realized that the prism pair plays a role of the aperture because it’s generally

difficult to get modelocking without clipping at the tips of prisms (It was possible

for some configurations, I will discuss it in the next section) .

A.3 Beam size calculation in the oscillator cavity

Mode-size calculation is critical for finding a beam that is well compensated against

astigmatism. To calculate the beam size in the cavity using NSCR, an astigmatic

beam is propagated through the linear section of the cavity according to ABCD

matrix relation and propagated through the Kerr-medium using a numerical solution

of coupled differential equations. I reasonably guessed initial beam spot sizes in the
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tangential and sagittal plane at the end mirror, and the beam was propagated back

and forth until a self-consistent solution is reached [84, 91]. For the differential

equations for the Kerr medium, I used the Refs. [83] and [92], in which the gain

guiding effect as well as the Kerr-lens effect are included. The differential equations

are expressed as

dρx/y

dz
+ ρ2

x/y −
(

λ

nπwx/y

)2

= −
(

λ

nπ

)
p
|αxαy|2 exp(2G)

w2
x/y wx wy

(A.3)

dwx/y

dz
− ρx/ywx/y =

g w3
x/y wpx wpy

2(w2
x/y + w2

px)
√

(w2
x + w2

px)(w2
y + w2

py)
(A.4)

dG

dz
=

g

2
wpx wpy√

(w2
x + w2

px)(w2
y + w2

py)

(
2w2

x + w2
px

w2
x + w2

px

+
2 w2

y + w2
py

w2
y + w2

py

)
(A.5)

dαx/y

dz
= −

(
1

Rx/y
+ i

λ

nπ w2
x/y

)
αx/y = −

(
ρx/y + i

λ

nπ w2
x/y

)
αx/y

, with
1

Rx/y
≡ ρx/y, (A.6)

where z, x and y are the axial, sagittal, and tangential coordinates inside the Kerr-

gain medium respectively, α = αxαy is the complex amplitude factor, wx, wy are

spot sizes, ρx, ρy are the inverse of the radii of curvatures of the beam, wp is the

pump beam size which is assumed as a constant in the medium, g is the saturated-

gain coefficient, p is the normalized power with respect to the critical power, G is

the averaged gain, k is the wave number, and κ = n2k/n is the Kerr coefficient.

To compare the gain effect and the Kerr-lens effect on the mode size, I first

ignored the gain (g = G = 0) with p= 0.55. I put a= 45.5 cm, b= 108 cm (see

Fig. A.1) and assumed αx = αy = 1, which is equivalent to the calculation in the

Ref. [84], in which the gain was ignored. Fig. A.6 and A.7 show the radii of the

continuous (CW) and modelocked (ML) beams in the cavity, considering only the
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Kerr-lens effect. As shown, the astigmatism is well compensated for modelocking

operation.

However, in this configuration, we have almost no clipping at the tip of the

prism, which indicates no aperture is needed for KLM. There should be a Gaussian

soft aperture effect by the gain guiding in the crystal, which plays a role of the loss

modulation which is necessary for KLM operation. Due to the gain guiding, the

curvature of the Gaussian beam does not necessarily vanish at end mirrors which

are flat, and the beam size inside the cavity depends on the direction of propagation

[83]. Fig. A.8, A.9 and A.10 show the beam radii in the cavity including both the

Kerr-lensing and gain effects. The gain guiding effect is not so large with given

parameters (a= 45.5 cm, b= 108 cm, p= 0.55, wpx = wpy = 50 µ m, g = 0.015

mm−1) and the Kerr-lens effect seems to be more important, which does not fully

explain the loss modulation by the Gaussian soft aperture.

A.4 Conclusion

For KLM operation, it was discussed that the self-focusing combined with the gain

guiding plays an essential role. Consideration of not only these effects but also the

dispersion compensation [93, 94] by two prisms is needed for a complete design of

KLM oscillators.
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Figure A.6: Beam radii for CW and KLM without gain guiding; 0 is the outcoupler
position.
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Figure A.7: Beam radii inside the Kerr medium with the same parameter as in Fig.
A.6.
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Figure A.8: Beam radii for CW and KLM with gain guiding; 0 is the output coupler
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Appendix B

Atomic density and index of

refraction in a clustered jet

Clusters and monomers gases both contribute to the real refractive index of a gas

jet. Then, the index is

njet = 1 + 2πNgαg + 2πNcγc, (B.1)

where Ng the Ar gas density, αg is the atomic Ar polarizability, Nc is the cluster

density, and γc is the single cluster polarizability. The gas polarizability αg according

to the Clausius-Mossoti equation is [15]

αg =
3

4πN

(
εg − 1
εg + 2

)
, (B.2)

where N is the atomic density at standard temperature and pressure (2.69 × 1019

cm−3), and εg is the Ar gas dielectric constant. The cluster dipole polarizability γc

is [15]

γc = r3
c

(
εc − 1
εc + 2

)
, (B.3)
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where rc is the cluster radius, and εc is the cluster dielectric constant [15, 38]

εc =
8πNAr.sαg + 3
3− 4πNAr.sαg

, (B.4)

where NAr.s is the solid Ar density (∼ 2 × 1022 cm−3). Then, the cluster polariz-

ability γc becomes

γc = r3
c




8πNAr.sαg+3
3−4πNAr.sαg

− 1
8πNAr.sαg+3
3−4πNAr.sαg

+ 2


 = r3

c

12πNAr.sαg

9
=

4π

3
r3
cNAr.sαg = N#αg, (B.5)

where N# is the number of monomers in the cluster. Introducing the total atomic

density (Ntotal), the residual gas density (Ng) and the cluster density (Nc) can be

defined as

Ng = fgasNtotal, (B.6)

Nc = (1− fgas)Ntotal/N#, (B.7)

where fgas (0 ≤ fgas ≤ 1) is the gas fraction in the jet. Therefore, the refractive

index is

njet = 1 + 2πfgasNtotalαg + 2π
(1− fgas)Ntotal

N#
αgN#,

= 1 + 2πNtotalαg(1− fgas + fgas) = 1 + 2πNtotalαg, (B.8)

Therefore, Mach-Zehnder interferometry measurement gives the (total) atomic den-

sity (gas+cluster) in the jet.
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Appendix C

pump-probe experiments using

a different nozzle

During preamplifier upgrade, we performed a time-resolved experiments using a

nozzle with 750 µm orifice and 450 half expansion angle. We first measured probe

(800 nm, 100 fs) absorption of exploding clusters ionized by 400nm pump pulses.

The pump was generated by a 3 mm thick type-I KDP crystal and based on a group

velocity walk-off (∆t ∼ L/|v−1
2 −v−1

1 |, where v1,2 is the group velocity for (800, 400)

nm) in a thick crystal [49], we estimated the pump pulse about 210 fs. For subsonic

nozzles, the modified Hagena parameter is (compare Eq. 4.1) [14]

Γ∗ = k
(d/ tanα)0.85

T 2.29
0

P0. (C.1)

Then, using the cluster size equation (Eq. 4.2), cluster radii were estimated 12, 16,

20 nm for 400, 600, 800 psi backing pressures. The peak intensity was about 1 ×
1016 W/cm2 for pump and 2 × 1016 W/cm2 for probe. Fig. C.1 shows that larger

clusters (larger backing pressure) absorbed more probe energy and reached linear

Mie resonances later than smaller clusters as discussed in Chapter 2.

94



Figure C.1: Collinear pump (400nm)-probe (800nm) absorption using a subsonic
nozzle. The peak intensity was about 1 × 1016 W/cm2 for pump and 2 × 1016

W/cm2 for probe. Cluster radii were 12, 16, 20 nm for 400, 600, 800 psi backing
pressures.
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(a)

(b)

THG+FWM+SFG(?)

Figure C.2: Collinear pump (400nm)-probe (800nm) 3ω measurements. (a) Ar clus-
ter (800psi) 3ω measurement shows a wide temporal peak near at ∆t =0. The peak
is combination of Third Harmonic Generation (THG), Four Wave Mixing (FWM),
and Sum Frequency Generation (SFG). The peak intensity was 1.5× 1014 W/cm2 for
pump and 1.5 × 1013 W/cm2 for probe. (b) Reference Helium (800 psi-unclustering
gas) FWM signal near at ∆t =0. The peak intensity was 5 × 1013 W/cm2 for 400nm
and 1 × 1013 W/cm2 for 800nm.

When we extended the collinear pump-probe scheme to a third-harmonic

experiment, there was a temporally wide peak near at ∆t=0 (Fig. C.2(a)). The peak

is composed of three signals: (1) probe-generated THG signal E3ω
THG ∝ χ(3)(Eω

probe)
3

at all ∆t, (2) Four Wave Mixing (FWM) signal E3ω
FWM ∝ χ(3)(Eω

probe)
∗(E2ω

pump)
2 at

∆t ∼ 0, (3) Possible Sum Frequency Generation (SFG) E3ω
SFG ∝ χ(2)(Eω

probe)(E
2ω
pump)

at ∆t ∼ 0 because of ionization induced symmetry breaking in centrosymmetric

clusters. We used a helium gas (unclustering gas) as a reference for FWM as well

as finding a zero delay. Fig. C.2(b) confirms that there was contribution from the

FWM of Ar clusters. Therefore, we could not verify that there was a nonlinear Mie

resonance from exploding Ar clusters and/or phase matching from a clustered jet.

It was also unclear about SFG contribution from Ar clusters.

To separate three signals spatially, we used a noncollinear pump-probe geom-

etry at a small angle (∼ 1.70), so that THG, FWM and SFG signals propagated in

different directions by momentum conservation (Fig C.3). Most of the FWM signal
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was blocked not to be incident on a detector grating.

probe

pump
1

2

3

k2ω

kω

THG

SFG

Four wave mixing

Grating

Figure C.3: Noncollinear pump (400nm)-probe (800nm) geometry to separate FWM,
SFG, and THG signals spatially using momentum conservation.

Fig. C.4 shows results of pump intensity scan of the probe-generated THG

from Ar clusters (800psi). Surprisingly, there were two peaks near at ∆t=0 and

∆t= 250 fs when pump intensity was lower than Ar optical ionization threshold (∼
1 × 1014 W/cm2) (Figs. C.4(a) and (b)). We think that the zero delay peak is

from SFG and the second peak at ∆t= 250 fs is from the nonlinear Mie resonance

and/or phase matching enhancement. However, we cannot completely rule out the

possibility of the FWM signal leak at ∆t ∼ 0 from Ar clusters. When we increased

the pump intensity further, the peak at ∆t = 250 fs disappeared and the zero delay

peak became wider (Figs. C.4(c), (d) and (e)), suggesting that two peaks combined.

We attribute this effect to faster cluster expansion, therefore the earlier 3ω resonance

because of heating by higher pump intensity and/or phase matching change because

of optical ionization of Ar monomers.

However there was a reproducibility problem in this experiment. Two peaks

were temporally separated only with pump intensity that can hardly ionize Ar

monomer gases. By contrast, we expect that Ar clusters possibly ionized by the

multiphoton process [72] were ionized more due to local solid density and started
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Figure C.4: Noncollinear THG pump intensity scan results using Ar clusters (800
psi).
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to expand extremely slowly. Then, they could reach the nonlinear Mie resonance

and/or temporal phase matching. As discussed in Chapters 2 and 4, phase match-

ing condition is worse when dominant monomers in a gas jet are ionized and form

plasma. Therefore, by weakly ionizing clusters without or negligible monomer ion-

ization, we can expect the temporal THG enhancement because of cluster expansion

dynamics. Based on difficulty in reproducing the results and their variation depend-

ing on alignment, we think that phase matching was strongly involved. However we

don’t have a good model of laser-cluster interaction in this pump range.
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Appendix D

Two-beam second-harmonic

generation from a clustered gas

jet

Figliozzi et al. [95] demonstrated enhanced Second Harmonic Generation (SHG)

from centrosymmertic Si nanocrystals using two noncollinear, orthogonally polar-

ized fundamental beams. The enhancement is because of a nonlocal dipole term

which is proportional to (
−→
E · ∇)

−→
E . This two-beam method was successfully ap-

plied to generate enhanced quadrupolar SHG from isotropic glass samples [96]. We

performed the two-beam SHG experiment in a clustered gas jet. As a preliminary

check, we first reproduced experimental results by Sun et al. [96] using glass sam-

ples. Two orthogonally polarized 800 nm pulses with an intersection angle ∼ 250

were overlapped at approximately 3 cm away from each focus to increase an interac-

tion volume and to prevent damage of glass samples (Fig. D.1). The peak intensity

was 5 × 1011 W/cm2 for each beam and a two-beam interaction length was about

1.5 mm. We put a PMT with a 400nm bandpass filter to detect SHG. Fig. D.2

shows lateral position scan of two-beam SHG using a 0.9 mm Corning glass sample
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Figure D.1: Two-beam SHG experimental set-up using glass samples. Both funda-
mental beam (800 nm, 100 fs) intensity was 5 × 1011 W/cm2.

((a)) and a 3 mm unknown glass sample ((b)). In case of the 0.9 mm sample, the

SH signal was maximum when the two-beam overlap (1.5 mm length) is near the

center of the sample. By contrast, two local maxima existed for the thicker sample

(3 mm) when the overlap is near at the front surface and the back surface. It is

because of phase matching difference and the result matched well with the result of

Sun et.al [96] for a tight focusing case. We believe that SHG from the back surface

was stronger than from the front surface because of SHG absorption in the glass

sample.

SHG from individual spherical particles scales approximately as r6
c [97], there-

fore SHG intensity from a sample scales as N2
c r6

c I2
ω, where Nc is the cluster density,

rc is the cluster radius and Iω is the fundamental beam intensity. Then, using

relation Nc ∼ 1/r3
c , SHG should approximately scale as n2

atom I2
ω, where natom is

the average atomic density of the sample. To compensate for 3 orders of magni-

tude difference in density between the glass sample (∼ 1022cm−3) and the clustered

jet (< 1019cm−3 see Fig. 4.8) and detect observable numbers of SH photons (≥
10 photons/pulse) from a clustered gas jet, we should increase the laser intensity
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Figure D.2: Position scan of two-beam SHG using glass samples. (a) 0.9 mm corning
glass sample. (b) 3 mm unknown glass sample.
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Figure D.3: Two-beam SHG spectrum from a glass sample (blue curve) and 24 nm
radius argon clusters (red curve). Ar lamp emission lines (black curve) compares
fluorescence from Ar clusters. Both fundamental beam (800 nm, 100 fs) intensity
was 3 × 1013 W/cm2. For SHG from the glass sample, we used the fundamental
intensity at 5 × 1011 W/cm2
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by 3 orders of magnitude. However, we could not achieve that intensity (>1 ×
1014 W/cm2) because we increased the interaction volume by using enlarged beams

(Imax ∼ 3 × 1013 W/cm2). Therefore, we integrated signals for more than 100

shots using a spectrometer and a nitrogen-cooled CCD camera. As shown in Fig.

D.3, compared with SHG from the glass sample, there was no observable SHG from

clusters and fluorescence light always dominated. We opened an input slit of the

spectrometer more than 2 mm to collect weak SHG signals from the glass sample,

therefore wavelength resolution of the spectrometer became poor and a possible

fringe pattern in SHG due to phase matching was not clearly visible [95]. Although

we even ionized clusters using a pump pulse (Ipump ≤ 1 × 1014 W/cm2), then a

time-resolved two-beam method was used to achieve nonlinear Mie resonances from

expanding clusters, we could not see any SH signal because the strong fluorescence

and recombination light dominated from a clustered plasma. The density of the jet

medium was too low to see the enhanced SHG.
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