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Spaced retrieval practice is known to benefit both long-term retention

and transfer of learning, two important goals of education. However, most

classes are not designed in a way that facilitates frequent quizzing or revis-

iting previously covered topics; this is particularly true in higher education,

where a small number of exams typically account for the bulk of a student’s

grade. Recently, a large undergraduate course at the University of Texas has

implemented a new class structure that replaces high-stakes tests with daily

quizzes administered during class via computer; furthermore, quiz items previ-

ously answered incorrectly can appear at random on future quizzes. Together,

these innovations are an excellent first step toward bringing spaced retrieval

practice into the college classroom. However, I propose that technology can be

further leveraged in classes such as these to more optimally choose repeated
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items. Given graded student quiz data from one semester of this course, I

use Multidimensional Item Response Theory (MIRT) and Sparse Factor Anal-

ysis (SPARFA) to jointly estimate concepts underlying the items and each

students’ mastery of these concepts. After comparing these factor-analytic

methods, I also explore free-response and student chat data using basic natu-

ral language processing. It is concluded that techniques from learning analytics

can help realize the full potential of spaced retrieval practice in the classroom

by optimizing the selection of repeated items so as to target remediation. Fur-

thermore, such techniques can be used to introduce variability into retrieval

practice, encouraging a deeper understanding of the content which is more

likely to transfer to novel problems.
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Chapter 1

Introduction

Any system of education makes many assumptions about how people

learn. While some of these assumptions may be grounded in scientific research,

far more are products of political decision-making, results of practical compro-

mise, or pieces of received tradition handed down through the generations. In

particular, the structural features of schooling are often heavily dependent on

political considerations, practical expedients, and accidents of history.

Things like the length of a standard school-year, a semester, a school-

day, or a class-period; things like the division of students into different schools

based on grade-level and the division of students into different grade-levels

based on age. Assumptions are made about which subjects are to be taught,

when, and in what sequence; about whether subjects should comprise multi-

ple courses, and if so, which should be taught, when, and in what sequence.

Within a given course, there are assumptions about the progression through

distinct units of material. Within a unit, which activities and exercises are

best, and in what sequence? Traversing levels of granularity in this way, we

see an exponential growth of decision points that underlie the way learning is

structured. In the face of such a daunting chain of dependencies, it is easy to
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see why the traditional and efficient approaches persist, often unquestioned.

Perhaps the most crucial of these assumptions are those made about

assessing what students have learned and when they can be said to have learned

it. Implicit in the structure of schooling—with its teaching and testing—is

the notion that if the weighted average of graded student work is above a

given level, they “pass” the class. If students pass all of their classes, they

advance to the next grade; if they pass enough grades, they graduate. Within

a given course, subject matter is typically broken down into several stand-

alone units of material. Students are taught the material and then tested over

it soon or immediately thereafter; then the class moves on to the next unit

and repeats the process. Tests are often weighted more heavily than other

assignments and thus account for the greatest proportion of the final course

grade, largely determining advancement. Notice in all of this that learning has

been implicitly equated with passing: in general, students are considered to

have “learned” the material if they have “passed” each unit in a given course;

if they have “passed” enough courses, then they are assumed to have learned

enough to graduate.

As I see it, the goal of schooling is to teach students knowledge and

skills that can be flexibly applied outside of the classroom and that remain

accessible to them over time. Grades given for coursework are at best indicative

of only short-term knowledge gains, yet there is a widespread belief that this

learning will persist over time and transfer usefully into the “real-world.” To

begin this report, I would like to point out three common assumptions made
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about student learning that are incorrect and ultimately detrimental. The

first is the assumption that testing is for assessment purposes only: that a

test is a learning-neutral event for measuring what a given student knows.

The second assumption is that learning, as measured by tests, will persist

over time. The third assumption is that learning, as measured by tests, will

transfer out of the classroom and be widely applicable across situations. We

will see that these misguided assumptions are actually quite closely related.

After describing each in some detail, I will introduce a college course that

has challenged some of these assumptions and is reaping the benefits. Finally,

I will explore how courses like this can avoid the negative effects of these

assumptions and maximize their students long-term learning outcomes given

the constraints of a semester-long college course. I will look at data generated

from this course and employ several techniques from learning analytics in order

to make further recommendations for improving students’ learning outcomes,

specifically long-term retention and transfer.

1.1 Testing and Spacing

The idea that testing could have beneficial effects on learning is grad-

ually making inroads into our modern educational practice, but it is still far

from universally embraced. Notwithstanding this lukewarm reception, a long

history of research (e.g., Gates, 1917) has shown that retrieving information

from memory increases the likelihood that the information will be retrievable

in the future, a robust finding known as the testing effect (Carrier & Pashler,
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1992; see Roediger & Butler, 2011 for review). Thus, the memory retrieval

required by testing is thought to enhance learning by directly modifying the

retrieved content (e.g., elaborating upon the representation of this content in

memory, increasing its availability and accessibility; Bjork & Bjork, 1992).

What this means is that, after initial learning, being tested over the

material produces better memory for that material than does an equivalent

amount of time spent restudying the material. The relative benefit of test-

ing over restudy becomes larger as the delay before the final recall test grows

longer: relative to restudying, retrieving information results in slower forget-

ting over time and thus better long-term retention (for discussion of possible

mechanisms, see Kornell, Bjork, & Garcia 2011). These benefits are observed

both in the laboratory and in the classroom (e.g., McDaniel et al. 2015).

What’s more, the benefits of testing extend beyond just retention of informa-

tion: recent research suggests that testing leads to a deeper understanding of

the material than does restudying, thus facilitating transfer of learning (But-

ler, 2010). This topic is of particular importance to the present report and

will be given a fuller treatment in an upcoming section (see Section 1.3).

Despite its potential to enhance student learning in the classroom, test-

ing still comes under fire largely because frequent assessments have the ap-

pearance of being learning-neutral and thus a poor use of school-time and

resources. Worse still, it’s not only those outside the education system who

are discounting this important effect: many students fail to understand the

power of testing to enhance learning; when college students were asked what
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kind of strategies they used when studying, repeatedly restudying the mate-

rial was the favored approach, while only 11% reported self-testing (Karpicke,

Butler, & Roediger, 2009). Thus, to bring the benefits of the testing effect into

real educational settings, it has been recommended by leaders in the field that

frequent quizzes be employed in the classroom to engage students in retrieval

practice (Bjork, Dunlosky, & Kornell 2013).

Related to the testing effect—and perhaps even more well known—is

the spacing effect: the finding that spacing out one’s studying or testing ses-

sions produces superior learning relative to an equivalent amount of studying

or testing in a single sitting or in sessions occurring closer together in time

(Cepeda et al., 2006 for review). That is, those who spread their practice

out over time enjoy greater long-term retention of that information than those

who practice for the same amount of time but do not space it out. The benefit

of spaced practice over massed practice on retention holds across learners of

all ages and subject-matter of all kinds, including learning grammar, spelling,

reading skills, advanced mathematics, motor skills, foreign language vocabu-

lary, history, and more (Carpenter et al, 2012).

While teachers often admonish their students to study a little every

day instead of cramming right before the test—and thus have some intuitive

understanding that spaced-out is better than massed together— this principle

is seldom reflected in the structure of their courses. At the college level, for

example, the standard course format is still such that 2 or 3 high-stakes tests

determine the bulk of students’ grades. If cramming right before the exam
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results in just as good (if not better) performance, then students have little

reason to space out their studying. If it is also true that spacing results in

superior long-term retention, then instructors are unwittingly creating a per-

verse incentive structure: one which rewards behaviors that lead to transitory

learning while penalizing those leading to durable learning. Depressingly, this

turns out to be the case. Cramming, though it results in much poorer long-

term retention, can produce equivalent—indeed sometimes better—recall on

an immediate test (or a test after a short retention interval) than does spacing

out study sessions (e.g., Rawson & Kintsch, 2005). Thus, cramming is an ef-

fective way to get good grades but a terrible way to achieve durable learning,

and it is therefore incumbent on educators to incentivize long-term retention

with things like cumulative assignments. In view of the foregoing discussion

about the testing effect and the spacing effect, it seems that the most effective

assignment scheme would be one in which students took daily quizzes (for

retrieval practice) that were cumulative, revisiting previously learned mate-

rial (for the benefits of spacing). Additional concerns for instructors relate

to educational materials such as textbooks: many texts present information

in a non-distributed (i.e., massed) way, by having self-contained chapters and

practice problems which pertain only to the material just presented.

How do we know that spaced retrieval practice is so good for long-term

retention? And just how long is long-term retention? Can we achieve indef-

inite retention and if not, what’s the best we can hope for? Harry Bahrick’s

pioneering research into long-term retention has offered many exciting answers
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to these questions. With respect to the first question posed, he conducted a

9-year longitudinal study using his own family as participants (Bahrick et al.,

1993). They learned and relearned 300 English-foreign language word pairs,

varying both the number of relearning sessions (13 vs. 26) and the interval

between sessions (14, 28, or 56 days) within subjects. After the training, re-

tention was tested 1, 2, 3, and 5 years later. He found strong main effects

both for the additional sessions and for longer spacing intervals on retention.

In fact, 13 retraining sessions spaced 56 days apart resulted in retention ben-

efits comparable to 26 sessions spaced 14 days apart. But while the longer

intervals resulted in much better retention 5 years later, they hindered initial

learning during the training sessions. Thus, we are again cautioned against

the dangers of judging learning from performance on tests given soon after-

wards. As Schmidt and Bjork (1992) put it, “manipulations that maximize

performance during training can be detrimental in the long term; conversely,

manipulations that degrade the speed of acquisition can support the long-term

goals of training” (p. 207).

1.2 The Forgetting Curve and The “Permastore”

Analysis of people’s memory for things like Spanish and algebra years

after they took their last course in the subject has provided many important

insights about maximizing long-term retention (Bahrick, 1983, 1984a; Bahrick,

Bahrick, & Wittinger, 1975). These cross-sectional studies survey hundreds

of people about their background in a given subject—when was their most
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recent course in it, how many classes total they took in it, what grades did

they receive, and to what extent have they used the material since they quit

learning it. This results in a sample of participants with varying spans of

time since content acquisition (the “retention interval”) and varying degrees

of initial learning, all naturalistically acquired. Then, these participants are

tested over their retention of the subject (e.g., an introductory-level Spanish

language test of reading comprehension, vocabulary, and grammar).

Figure 1.1: Retention of Spanish-English vocabulary (recall) by level of ini-
tial learning. Figure adapted Bahrick’s (1984a) Fig. 6, using the regression
equation given in Table 8, transformed back to linear from a logarithmic scale
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From this data, researchers can generate memory curves by plotting

retention over time for different degrees of initial learning (see Figures 1.1 and

1.2). For example, a retention function of constant slope would indicate that

a constant number of things are forgotten per unit time. One extremely in-

teresting finding from these analyses is that in general, memory curves decline

exponentially for the first 3 to 6 years after learning has ceased, but that after

this time retention almost asymptotes, remaining largely unchanged even after

periods of up to 50 years. Concretely, 3 years after taking a single semester

of Spanish, almost all of the Spanish-English vocabulary covered in the course

was lost. However, those who took five semesters of Spanish recalled 60% of

their original recall score more than 25 years later (Bahrick, 1984a). Still more

robust findings are observed with retention of basic math: it has been shown

that people who take several mathematics courses in college show no signif-

icant declines in their retention of high school algebra or geometry content

during a 50-year retention interval, even if they have not used or in any way

rehearsed the material during that time (Bahrick & Hall, 1991; see Figure 1.2).

In general, if your initial learning was high (i.e., multiple learning ses-

sions spaced out over time), your long-term retention stabilizes at a higher

level than would be the case if your initial learning was low. With more initial

learning comes an increased portion of content remaining accessible over an

extremely long time period: the information in this so-called “permastore” is

content that is destined to survive for 25+ years in the absence of rehearsal

(Bahrick, 2000). “The most important predictors of the rate of performance
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loss pertain to the conditions of original exposure or practice. When rehearsals

or exposures are extended over several years, performance levels remain stable

for half a century without the benefit of further practice. When the same

content is acquired over a shorter period, performance tends to decline rapidly

and continuously.” (Bahrick & Hall, 1991, p. 30).

Figure 1.2: Percent decline of Algebra I knowledge for different numbers of
college mathematics courses taken. Figure adapted Bahrick & Hall’s (1991)
Fig. 2, using the regression equation and settings given in their Tables 7 and
8, transformed back to linear from a logarithmic scale.

As an authorial aside, I am currently in my 7th year of post-secondary

education and during this time I have never been in a class that gave weekly
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(to say nothing of daily) quizzes. Only very rarely were tests cumulative,

homework was sporadic at best, and I can’t recall spending any significant class

time revisiting previous material. This is regrettable, because these are some

of the simplest things educators can do to implement spacing and retrieval

practice into their classes!

Not only would restructuring courses in this way benefit students’ long-

term retention, it appears also to be more egalitarian. While individual-

difference variables such as SAT scores and course grades (in traditional courses)

predict acquisition and therefore final test performance in studies of long-term

retention, these variables do not significantly affect the rate of decline of per-

formance over time. Bahrick & Hall (1991) found no significant interaction

between standardized test scores or grades and the rate of decline in reten-

tion. What this means is that, since aptitude predicts acquisition, the standard

course model (where units are covered in isolation and a couple high-stakes ex-

ams determine your final grade), which incentivizes cramming, benefits high-

aptitude students. However, if learning was structured differently in these

courses—allowing spaced retrieval practice to bring all students up to a high

level of initial learning—then retention over time appears to be equally good,

irrespective of ability. Though this hypothesis hasn’t been formally evaluated,

it appears that a curriculum based on spaced retrieval practice could serve to

reduce the grade disparity between low and high ability students by equalizing

levels of initial learning and avoiding the illusory learning gotten by cramming

that differentially favors high-ability students.
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1.3 Transfer of Learning

“The effectiveness of a training program should be measured not

by the speed of acquisition of a task during training or by the

level of performance reached at the end of training, but rather by

the learner’s performance in the post-training tasks and real-world

settings that are the target of training.”

–Robert Bjork (1991, p. 47)

Before delving into the present study, I want to describe some exciting research

indicating that retrieval practice benefits more than just retention of informa-

tion: it appears to also facilitate a deeper understanding of the material so

practiced, resulting in the increased ability to transfer one’s learning to new

problems and in different situations (Butler, 2010; Carpenter, 2012). Butler

(2010) demonstrated that, relative to repeated studying, repeated retrieval

of material via testing promoted transfer by increasing performance on new

inferential questions in different knowledge domains.

Indeed, it appears that even very simple spaced-practice interventions

can have a large impact on both knowledge retention and transfer into real-

world context, as evidenced by Dolan et al. (2015). These authors conducted a

randomized controlled study with medical students who were completing their

residency. After receiving a 1-hour case-based lesson on osteoporosis care and

fracture prevention, students in the control group received one email containing

a 25-item multiple choice self-assessment. Students in the intervention group

received the same 25 multiple choice items, but instead of being delivered all

at once, 1-3 questions were emailed over a 3-6 month period. Items answered
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correctly were repeated 1 time 28 days later, while items answered incorrectly

were repeated twice at 14 day intervals (the variability in the length of time for

treatment was due to differences in the number of incorrect responses among

students). Ten months after the start of the intervention, the treatment group

significantly outperformed the control not only on a bone-health knowledge

assessment, but also on real clinical outcome measures: they screened more

patients for low bone density, screened them more accurately, and effectively

treated more who were at risk for fracture. Studies like this are especially

important, given that medical students have been shown to forget a substantial

portion of basic knowledge by the time they begin clinical rotations (Butler &

Raley, 2015).

Up to this point, “retrieval practice” has signified repeated opportu-

nities to retrieve some information from memory, typically when prompted

to do so by test questions. Both the questions and the information retrieved

has been assumed to be the same, or at least very similar, for each retrieval

attempt. But what would happen if students were asked different questions

tapping the same underlying concept. Instead of being prompted by the same

question three times, what if students had to answer three different questions

about the same concept? Recent research is revealing that retrieval practice

with variable examples of a concept results in greater retention and transfer

of learning than does retrieval practice with the same questions (Butler et

al. in press). This has important implications for structuring learning in the

classroom; typically, teachers have access to large test-banks and item pools
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for assessment purposes, with many different items that measure the same

concepts. These items with conceptual redundancies can be used not just to

create alternate forms of a test but to give students variable retrieval prac-

tice. By providing spaced retrieval practice with varying examples, teachers

may be able to boost student performance above and beyond the benefits

of testing and spacing alone. All of this is to drive home the vastly under-

appreciated finding that retrieval practice through frequent testing facilitates

both long-term retention and transfer of learning, thus calling into question

several unstated assumptions made by our education system. We now turn to

learning analytics and how technology can be used to leverage these findings

from cognitive psychology and implement them seamlessly in the classroom.

1.4 Learning Analytics

This report uses techniques from learning analytics to study data gen-

erated in a college course that has recently implemented spacing and retrieval

practice into their curriculum, doing away with their previous high-stakes

testing format. According to the 1st International Conference on Learning

Analytics and Knowledge, “learning analytics is the measurement, collection,

analysis and reporting of data about learners and their contexts, for purposes

of understanding and optimising learning and the environments in which it

occurs.”

Thus, learning analytics examines the relationship between learners,

content, institution, and educators. Long and Siemens (2011) propose that it
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comprises at least five distinct endeavors, generally progressing in the following

order:

1. Course-level: learning trails, social network analysis, discourse analysis

2. Educational data-mining: predictive modeling, clustering, pattern mining

3. Intelligent curriculum: the development of semantically defined curricular
resources

4. Adaptive content: adaptive sequence of content based on learner behavior,
recommender systems

5. Adaptive learning: adaptive learning process (social interactions, learning
activity, learner support)

The focus of the present report will be focused on #1 and #2 (course-

level and educational data-mining) in order to make general recommendations

about #3, 4, and 5. To make use of a common analogy, we are performing an

autopsy after learning has taken place rather than a biopsy to insure healthy

learning continues in real time.

1.4.1 Background for the Present Study

The Department of Psychology at the University of Texas at Austin has

been developing an innovative online learning platform called TOWER (Texas

Online World of Educational Research) which, among other features, is able to

implement daily “in-class” quizzes and to provide immediate feedback on quiz

performance (Pennebaker, Gosling, & Ferrell, 2013). In 2011-2012, two large

Introductory Psychology courses were taught using TOWER; these courses

were taught by two instructors who had previously taught the same course
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every year from 2006-2011 using traditional approaches. In the traditional

course approach, four in-class exams of 40-45 multiple choice items were given

across the semester; these exams accounted for 86% of the final grade, while

writing assignments accounted for the remaining 14%. The TOWER-based

course differed from the traditional course model in that there were no ex-

ams at all; instead, students were required to take an 8-item online quiz at

the beginning of each class period. These 26 quizzes accounted for 86% of

students’ final grade, thus replacing the exams. The only other substantive

difference between the two courses was that, unlike the traditional course, the

TOWER-based course assigned weekly readings from online sources instead of

from a textbook. Things like lecture format and sequencing of material were

intentionally kept constant.

Results

The authors compared performance in the TOWER group (Fall 2011,

n = 901) to that in the traditionally taught Comparison group (Fall 2008,

n = 935). The Comparison group semester was chosen because Fall 2008 was

the most recent year in which they had used the same demographic survey.

This survey included items about parental education, which were used as a

proxy for socio-economic status (SES). They evaluated student performance

in several ways, the simplest of which was computing overall course grades for

each student. The authors found that the mean course grade for the TOWER-

based group was significantly lower than that for the Comparison group, even
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after controlling for parental education and year of course (t = 2.5, p =

.01, d = .12). But they cautioned that, because the Comparison group had

their exam grades curved upwards, these findings are perhaps misleading.

The second performance measure compared performance on specific

items used for the TOWER-based daily quizzes that had previously been used

in Comparison classes’ exams. An item that had previously appeared on exams

in years past was included in 17 of the 26 quizzes; on these 17 items, the

TOWER group performed better (77.1% vs. 71.2%), albeit with marginal

significance (t = 2.01, p = .06, d = 1.01).

The authors also wanted to compare student performance in other

classes taken concurrently as well as performance in classes taken in the follow-

ing semester, hypothesizing that the TOWER-based quizzes could encourage

self-regulatory skills and good study habits which would then generalize to

other courses. They ran a 2(Course: TOWER vs. Comparison)×3(Grade:

Fall−Psychology, Fall−other, Spring−all) repeated measures ANOVA and

found a Course-by-Grade interaction (F (2, 1756) = 23.6, p < .001, d = 0.33).

Examination of this interaction effect revealed that TOWER students’ grades

were higher in their other concurrent courses (3.07 vs. 2.96 for the Comparison

students) as well as in the following Spring semester (3.10 vs. 2.98).

Finally, the authors examined SES disparities and class performance.

Though this has little direct bearing on the present report, their findings are

worth reporting for completeness and general interest. In brief, they regressed

course performance on SES, Course (TOWER vs. Comparison), and the inter-

17



action, while controlling for standing (years of college completed). They found

a significant interaction (B = −.05, t = 2.25, p = 0.03, d = .10) indicating

that grade differences between SES levels were greater in the Comparison

courses than in the TOWER courses.

1.5 The Present Study

In the Fall of 2013, the TOWER-based version of this Introductory

Psychology course was transformed into a Synchronous Massive Online Course

(SMOC), a class taught entirely online to large numbers of students who par-

ticipate remotely but in real time as the class occurs. All of the important as-

pects of the TOWER course discussed above remained the same in the SMOC:

instead of exams, all students took one 10-minute benchmark quiz (BM) at

beginning of each class, for a total of 28 BMs that account for 85% of their

grade in the course. Of these 28, 26 featured 8 questions; on the 8-item BMs,

7 of the items addressed readings and lectures from the previous class, and

the remaining item was one that the student had previously answered incor-

rectly. In rare cases where students had not previously missed any questions,

the 8th item was randomly selected from material earlier in the course. The

penultimate BM quiz in the course had only 6 questions (5 new, 1 repeated),

while the final BM quiz had only 2 items and was unrelated to course content.

This last BM was excluded from the analysis, leaving a total of 27 BMs in the

data (26 8-item BMs and 1 6-item BM). In an effort to combat cheating on

the BMs, new items on each BM were drawn from a pool of items covering
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that day’s material (see Figure 3.7). Note that giving students different items

on quizzes poses issues from an test-equating perspective, and precautions

should be taken to insure fairness in grading when different people answer

different questions. However, this procedure results in multiple items about

a given concept, which enables the introduction of variability during retrieval

practice. See Section 2.1 for a detailed description of the data.

In this particular semester of the course, no textbook was assigned

and all course readings were from outside/online sources. The main difference

between this course and its previous instantiation (see Section 1.4.1) is that

students “come to class” remotely via the internet, logging on at the same

time watch a live, interactive video lecture delivered by the instructors. These

are the same instructors described above, teaching the same course described

above, and the lecture content was similar to that of years past. However,

the format of the lecture itself was different: the live-streamed class has a

TV talk-show feel, with the instructors sitting behind a desk discussing course

content with engaging banter, interspersing demonstrations and video clips.

An additional difference is that students were assigned to small groups and

required to participate in online chats to discuss various topics covered in class.

The data generated from this course and the methods used to analyze them

are discussed at length in the next chapter (Section 2.1).
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Chapter 2

Data and Methods

2.1 Overview of Data

I have been granted anonymous access to the data generated during

the Fall 2013 Synchronous Massive Online Course (SMOC) version of Psy-

chology 301. This dataset includes each student’s response to each benchmark

quiz item, their free-response output on 4 writing assignments, and their con-

tributions to online discussions. Initially, 939 students were registered for the

course, of which 845 took at least 1 benchmark quiz (BM). Of these 845, 5 had

only a single incorrect response (and no correct responses) while 3 had only

a single correct response (and no incorrect responses); these were dropped

from the analysis in order to compare IRT and SPARFA (see Section 2.2),

thus bringing the effective sample size to 838 (see Figure 2.1 for histogram of

students by number of items attempted).

Each student was assigned 27 benchmark quizzes (BMs) that related to

material covered in the course, 26 of which contained 8 questions and 1 of which

contained 6 questions, for a total of 214 questions per student. All but one

of the items on each quiz were new items relating to the lecture and assigned

readings; the other item was one that had been answered incorrectly by the
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Figure 2.1: Cumulative histogram of students by number of benchmark items
completed

student on a previous quiz (i.e., 7 “new” items and 1 “old” item). Each time

students answered an item incorrectly, it was put into a pool of missed items

associated with that student and from which items were drawn at random to

appear in later quizzes (see Figure 2.2). In the rare event that students had

not yet missed any items, a past item was simply chosen at random. Thus,

students were exposed to a maximum of 7×27 = 187 unique items; 27 of those

items repeated, making 214 items total as noted above (27 benchmarks with 8

items plus 1 benchmark with 6 items). This maximum was not attained; even

the best student in the class missed 11 of their 214 attempts.

The size of the item pool from which BM questions were drawn—the to-

tal number of unique questions across all students—was 540. With our sample
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of 845 students, there are 540×845 = 456, 300 possible student-question tuples,

and thus the same number of potential responses. However, as noted above,

students each answered a maximum of 187 unique items, and so the maximum

of possible observed student-question tuples was only 187 × 845 = 158, 015.

That is, if students answered every item they were assigned, they would have

answered at most 34.6% of the items in the item pool. In practice, because of

student absences and students who dropped the course, the number of observed

student-item tuples was 142,390 or 31.2% of the possible item-student tuples,

meaning that the “gradebook” matrix of graded responses of all students to

all items was 68.8% unobserved, and thus somewhat sparse (see Section 2.2).

Three datasets were created for use in these analyses (see Figure 2.3 for

corresponding histograms). First, the full data for all students who completed

at least a single question on a single assignment (n = 845). Second, a subset

of this data consisting of students who “completed” the course (n = 677; see

description of this subset below). Finally, a third subset was created consisting

of only those students who completed all 27 quizzes (n = 381). Most of the

following analyses were conducted on the largest of these datasets; unless it

is specified to be otherwise, the dataset should be assumed to be the most

inclusive of the three (n = 845).

The last time to officially drop an undergraduate course or change to

a pass/fail basis at the university occurred during the tenth week of class; as

there were 2 benchmarks per week, this would happen after the 20th bench-

mark. Therefore, if students did not complete any more work after this dead-
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Figure 2.2: Cumulative histogram of items given to students on each BM.
From left to right, the first appearance of a color indicates the BM of origin of
those items. Note the regularity of repeated items in the bottom 1/8th of each
bar produced by the random sampling procedure. Note also the three “blip”
BMs (17,19,and 20), which depart from this regularity.

line, it was assumed that they had dropped the course and their data was not

included in the “completed” subset. As an additional qualification, students’

overall class grade was computed by taking (0.85)(bm score)+(0.15). If this to-

tal was lower than 60, these students were also removed from the “completed”

subset. This total represents the highest possible score given their benchmark

performance, assuming perfect performance on the writing activities. Perfect

performance was assumed because I did not have access to students’ writing
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grades or their final course grades, but only their final benchmark grades; thus,

I am choosing to err on the side of inclusivity by using this generous criterion.

Figure 2.3: Histogram of approximate final grade in PSY 301, Fall 2013.
Note the difference in y-axis scale for the top histogram
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2.2 Methods: Estimating Student Knowledge

2.2.1 Sparse Factor Analysis (SPARFA)

Sparse Factor Analysis, or SPARFA, describes a set of machine learn-

ing techniques being developed for learning analytics by a research team based

largely at Rice University (www.sparfa.com). I was granted permission by

these researchers to look at their source code for the original instantiation of

the SPARFA algorithms and to adapt it to the PSY 301 dataset as needed.

SPARFA is currently an important component of several personalized learn-

ing systems being used in classrooms nationwide, where it is used to analyze

student interactions (such as responses to quiz items) in order to assess their

understanding on the fly so that student-specific feedback, remediation, en-

richment, and sequencing decisions can be made optimally and in real time.

Within this framework, the probability that a student gives a correct re-

sponse to an item is decomposed into three educationally relevant factors: the

intrinsic difficulty of the item, the student’s knowledge of a set of underlying

concepts, and the degree to which a given item involves each concept. These

three factors are estimated from gradebook formatted data: an Q×N matrix

where each row i represents an item, each column j represents a student, and

each entry Yi,j corresponds to whether question i was answered correctly (1) or

incorrectly (0), or left unanswered (?) by student j (see Figure 2.4(a)). Thus,

given a matrix of graded learner responses to questions, SPARFA provides

estimates of (1) each student’s knowledge of each concept, (2) each question’s

association with each concept, and (3) each question’s intrinsic difficulty.
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Figure 2.4: High-level SPARFA schematic. SPARFA fits a structural model
to student “gradebook” data (binary, sparse), resulting in (b) a concept-
mastery profile for each student (how well student j has mastered each concept
k, indicated by smiley-faces), a concept-question association profile (how im-
portant each concept k is for each question i, indicated by the line-thickness)
and estimates of how difficult each question is. Figure adapted from Lan et
al. (2014).

SPARFA is one in a long tradition of machine learning algorithms that

have been applied in educational settings. Other approaches to modeling stu-

dent knowledge and analyzing response data have included Bayesian belief

networks; these have the drawback of relying on prespecified item-concept

dependencies, and typically only estimate one underlying concept. Indeed,

most intelligent tutoring systems that are capable of probabilistically mod-

eling concept-item associations, including Khan Academy, are only able to

deal with a single latent concept (e.g., Dijksman & Khan 2011). In contrast,

SPARFA estimates multi-concept question dependencies solely from graded

student response data. I will provide a detailed overview of solving SPARFA
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with maximum likelihood, including a description of the model and algorithms,

but for complete details, as well as other SPARFA models and algorithms, see

the authors’ original paper (Lan et al., 2014)

More formally, their model assumes that questions (1, . . . , i, . . . , Q) are

related to a relatively small number of underlying concepts (1, . . . , k, . . . , K).

The goal is to use the responses of students (1, . . . , j, . . . , N) to theQ questions—

aQ×N gradebook data matrix—to generate estimates of the three other, much

more informative matrices W,C, and M. The first, W ∈ RQ×K is the question-

concept association matrix W whose entries wi,k represent the degree to which

question i involves concept k, large positive values indicating a higher degree

of involvement. The second, C ∈ RK×N is the concept knowledge matrix C

whose entries ck,j represent the degree to which student j understands concept

k, large positive entries indicating a higher degree of understanding. And the

third, a conformal M ∈ RQ×N intrinsic difficulty matrix M with the intrinsic

difficulty of question i, µi repeated N times along row i. In Figure 2.4 (b),

questions and concepts are represented by rectangles and circles, respectively,

and the degree to which question i involves concept k, wi,k, is represented by

the line connecting them.

WQ,K =


w1,1 w1,2 · · · w1,K

w2,1 w2,2 · · · w2,K
...

...
. . .

...
wQ,1 wQ,2 · · · wQ,K

 ,CK,N =


c1,1 c1,2 · · · c1,N

c2,1 c2,2 · · · c2,N
...

...
. . .

...
cK,1 cK,2 · · · cK,N

 ,
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MQ,M =


µ1

µ2
...
µQ




1
1
...
1


T

=


µ1 µ1 · · · µ1

µ2 µ2 · · · µ2
...

...
. . .

...
µQ µQ · · · µQ


Notice that each Zi,j = ŵT

i cj + µi, is a factor analysis with sparse

vectors which poses an inverse problem. To regularize this problem, prevent

overfitting, and improve identifiability of the factor solution, the authors Lan et

al. (2014) lay out three fundamental assumptions of SPARFA: (1) the number

of underlying concepts K is small compared to the number of students N

and the number of questions Q Therefore, W will have many more rows than

columns, and C will have many more rows than columns. Note that choice of

K is important, with smaller values of K extracting just a few broad concepts

and larger values of K extracting more fine-grain concepts. (2) Each question

will involve only a few of the abstract concepts, rendering matrix W sparse.

And (3), it is assumed that having more knowledge of a concept will not

negatively impact a student’s probability of answering a question correctly;

that is, the question-concept association matrix W has no negative entries.

These assumptions are reasonable in most real-world educational settings and

they help alleviate the identifiability issue inherent to factor analysis. Given

these constraints (low-dimensionality, sparsity of W and non-negativity of

W), the authors define SPARse Factor Analysis (SPARFA) as the estimation

of W, C, and M given observations Y. They have approached the estimation

of these matrices in several ways, but in the present study I make use of a

matrix factorization method using bi-convex optimization described below.
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The probability that the students answer questions correctly is calcu-

lated by WC+M, transformed via a probit or logit link function (Rasmussen

& Williams, 2006). Specifically, let matrices W ∈ RQ×K , C ∈ RK×N , and

M ∈ RQ×N be defined as they are above. The authors model the binary-

valued graded response (correct = 1, incorrect = 0) variable Yi,j ∈ 0, 1 for

student j on question i as

Yi,j ∼ Ber(Φ(Zi,j)), (i, j) ∈ Ωobs with Z = WC + M (2.1)

where Ber(z) is the Bernoulli distribution with probability of success z, and

Φ(z) is the inverse link function that takes the real value z and outputs the

success probability of a binary random variable. Thus, Φ(Zi,j) gives the prob-

ability of student j answering question i correctly. In the following discussion,

the inverse link function Φ(x) will either be the inverse-probit or the inverse-

logit function. The inverse-probit function Φpro(x) is essentially the CDF of

the standard normal distribution: it gives the area under the curve of a stan-

dard normal distribution up to x.

Φpro(x) =

∫ x

−∞
N(t|0, 1) dt =

1√
2π

∫ x

−∞
et

2/2

The inverse-logit function Φlog(x), also called the logistic function, is closely

related to the inverse-probit function.

Φlog(x) =
1

1 + e−x

Both are cumulative density functions which map (−∞,∞)→ [0, 1].
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2.2.2 Maximum Likelihood for Sparse Factor Analysis

To estimate W, C, and M given observations Y, it is helpful to parti-

tion matrix C into columns (c1, . . . cN) so that each column cj ∈ RK represents

student j’s concept knowledge. Likewise, partition W into rows (ŵ1, . . . ŵQ)T

so that each row ŵi ∈ RK represents question i’s concept associations.

From 2.1, the likelihood of observing Yi,j ∈ 0, 1 given the question i’s

concept associations ŵi and student j’s concept knowledge cj is given as

∏
(i,j)∈Ωobs

p(Yi,j|ŵi, cj) =
∏

(i,j)∈Ωobs

Φ(ŵT
i cj)

Yi,j(1−Φ(ŵT
i cj))

1−Yi,j

The goal is to maximize the likelihood of the observed data Yi,j ∈ Ωobs over

W and C. The important constraints are that the concept associations vector

ŵi is sparse and (2) that concept knowledge will not negatively impact the

probability of answering a given question correctly, so all entries Wi,j must be

non-negative. To achieve constraint (2), they authors use the zero-norm of

ŵi, ‖ŵi‖0 (which has the effect of counting non-zero entries and thus indexing

sparsity). They also constrain the lengths of the ŵis for their proof of con-

vergence and normalize matrix C by taking its Frobenius norm to suppress

arbitrary scalings between entries in W and C.

For convenience, the natural logarithm of the likelihood function is

maximized, because the logarithm of a function increases monotonically and

attains its maximum at the same points as the function it modifies. Thus, the
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goal of SPARFA can be summarized by the following problem:

max
W,C

log

 ∏
(i,j)∈Ωobs

p(Yi,j|ŵi, cj)

 = max
W,C

∑
(i,j)∈Ωobs

log p(Yi,j|ŵi, cj) (2.2)

subject to ‖ŵi‖0 ≤ s∀i, ‖ŵi‖2 ≤ κ∀i, Wi,k ≥ 0∀i, k, ‖C‖F = ξ. (2.3)

To achieve a working maximum-likelihood algorithm with minimal compu-

tational complexity, the authors relax the sparsity constraints to the vector

1-norm, the sum of the absolute values of the entries. Lan et al. (2014) then

take the constraints and move them into the objective function and restate

the problem as minimization, giving

min
W,C:Wi,k≥0∀i,k

∑
(i,j)∈Ωobs

-log p(Yi,j|ŵi, cj) + λ
∑
i

‖ŵi‖1 +
µ

2

∑
i

‖ŵi‖2
2 +

γ

2
‖C‖2

F .

Here, λ
∑

i ‖ŵi‖1 maintains the sparsity constraint with parameter λ ≥ 0 con-

trolling degree of sparsity, and all other terms and their respective parameters

being for regularization of scaling, as before.

In brief, the algorithm the authors develop depends on the nature of

the problem being biconvex. Looking at the minimization problem statement

above, we can see that the first term, the negative log-likelihood, is convex

in WC for both probit and logit link functions, while the rest of the terms

are convex with respect to either W or C. Their SPARFA-M (for maxim-

imum likelihood) algorithm iteratively optimizes the function by alternating

between holding W constant while optimizing C and holding C constant while
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optimizing W. Specifically the two subproblems are as follows:

(1)
minimize

ŵi : Wi,k ≥ 0

∑
(i,j)∈Ωobs

-log p(Yi,j|ŵi, cj) + λ
∑
i

‖ŵi‖1 +
µ

2

∑
i

‖ŵi‖2
2

(2)
minimize

ĉj

∑
(i,j)∈Ωobs

-log p(Yi,j|ŵi, cj) +
γ

2
‖C‖2

F

The authors solve these optimization subproblems in using the FISTA

framework, an iterative method that breaks each objective function into two

functions, at least one of which is continuously differentiable. Each iteration

uses a gradient descent step for the smooth part and a shrinkage step (non-

negative soft-thesholding) for the potentially unsmooth part of the objective

function (Beck & Teboulle, 2009). For algorithmic details, proofs, and conver-

gence analysis, see Lan et al. (2014). In the present study, the algorithm suite

was implementing using Python.

2.2.3 Item Response Theory

Item response theory (IRT) describes a group of latent variable tech-

niques that have been developed specifically to model the interaction between

participants’ ability (or other latent traits) and the characteristics of test items

(indexed by parameters like difficulty, discrimination, and guessing; see Reck-

ase, 2009 for overview). IRT can be used to obtain estimates of these item

parameters as well as estimates of latent ability for individual participants.

Indeed, these models were originally developed to model how latent ability

θ was related to answering a test item (1=correct, 0=incorrect), given item

parameters such as difficulty d. IRT models are usually based on the logistic
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function Φlog(x) = 1
1+e−x , described above as the inverse-logit link function

(note again that its domain is R while its range is 0 to 1). Item parameters

are added to the logistic function and change its shape accordingly: parame-

ter b shifts the horizontal scale, while parameter a stretches the vertical scale.

A pseudo-guessing parameter c will compress the vertical scale from (0,1) to

(c,1), thus acting as an asymptotic minimum.

These parameters are immediately interpretable: b represents the abil-

ity level at which there is a 50% chance of answering the question correctly,

thus indexing item difficulty. Parameter a is the maximum slope of the curve,

or the slope of the line tangent to the point on the curve where θ = b; it

indexes how much the probability of a correct answer increases as ability level

increases, or equivalently, how well performance on the item discriminates be-

tween ability levels. Finally, c is used to account for guessing by raising the

lower bound to the probability of a correct response from 0 to the probability

of a correct response due to chance. For example, if the item is a five-option

multiple choice test, then guessing randomly results in a 1/5 chance of getting

the item correct. Thus, even students with very low ability still have at least

a 20% chance of responding correctly, so c = 0.2. IRT models that estimate

only the single parameter b are called 1-parameter logistic (1PL) while models

that estimate parameters b, a or b, a, c are called 2-parameter logistic (2PL)

and 3-parameter logistic (3PL) models, respectively. The 1PL, 2PL, and 3PL

models are shown below (Equations 2.4, 2.5, and 2.6 respectively). Notice that

the 3PL reduces to the 2PL when c = 0, which itself reduces to the 1PL when
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a = 1. Indeed, more general cases such as the 4PL do exist, but we will not

go into them here. For item i and person j,

P (y = 1|θj, bi) =
1

1 + e−(θj−bi)
(2.4)

P (y = 1|θj, ai, bi) =
1

1 + e−ai(θj−bi)
(2.5)

P (y = 1|θj, ai, bi, c) = c+
1− c

1 + e−ai(θj−bi)
(2.6)

As functions of θ, these functions are often referred to as item-response func-

tions or item characteristic curves (ICCs).

As with SPARFA, IRT uses the responses of a set of people to a set

of items (scored correct=1, incorrect=0) as its input information source. Es-

timating the person and item parameters entails some strong assumptions,

including the assumption of a unidimensional latent trait θ and that item

responses are uncorrelated after controlling for this latent trait (local indepen-

dence).

Multidimentional IRT (MIRT)

For the sake of simplicity, we will only be dealing with the 2PL model

in this report. Let P (θj, φi) = P (y = 1|θj, ai, bi) = (1 + e−ai(θj−bi))−1 as

before. Note that we are positing and estimating a single underlying trait

θj per student and single discrimination parameter ai per item. But what if

there are multiple traits which additively determine a students performance

on question i? We can simply replace the single values θj and ai with vectors
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θi = θi,1, θi,2, ..., θi,K and ai = ai,1, ai,2, ..., ai,K , giving us

P (θj, φi) = P (y = 1|θj, ai, bi) = (1 + e−ai
T (θj−Ibi))−1

Where I is a vector of ones of length N . Thus, this is the probability that

student i responds correctly to question j given their θj, and so 1 − P (θj, φi)

is the probability that student i answers question j incorrectly.

Estimating IRT/MIRT parameters

Proceeding with θ and a without loss of generality, IRT/MIRT models

the observed response variable Yi,j ∈ 0, 1 (the score of person j on item i) as

Yi,j ∼ Ber(P (θj, φi)), (i, j) ∈ Ωobs (2.7)

For clarity, note that this means each person-item combination is a

different Bernoulli random variable. Let the set of all j people’s responses to

all i items, Yi,j∀(i, j) ∈ Ωobs, be the M ×N matrix Y. Further, let the set of

all ability parameters θi and the set of all item parameters φj be vectors Θ

of length M and Φ of length N respectively, where M is the total number of

items and N is the total number of participants as before. Then the value of

the parameters ai and bi for each item (i.e., Φ) are chosen so as to maximize

the probability of observing all Yi,j ∈ Ωobs. That is,

max
Φ

P (Y|θ,Φ) = max
φ=(ai,bi)

∏
(i,j)∈Ωobs

P (θj, φi)
Yi,j(1− P (θj, φi))

1−Yi,j
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Which is equivalent to

max
Φ

log (P (Y|θ,Φ)) = max
φi=(ai,bi)

log

 ∏
(i,j)∈Ωobs

P (θj, φi)
Yi,j(1− P (θj, φi))

1−Yi,j


(2.8)

= max
φi

∑
(i,j)∈Ωobs

(Yi,jlogP (θj, φi) + (1− Yi,j)log(1− P (θj, φi))

(2.9)

This second function is the log-likelihood function which we maximize

to determine the parameters of interest. We have Y, and if we knew Θ we

could simply take the partial derivatives of the log-likelihood with respect to

ai and bi for each item, set each equal to zero, and solve the resulting system

of equations (checking to be sure we have found maxima). But unfortunately

we do not; both the latent trait values and the item parameters must be

estimated from the observed pattern of responses. One way around this is

to assume some distribution g(θ) for θ and then integrate it out, resulting in

what’s know as the “mariginal likelihood” in a Bayesian framework. That is,

P (Y|Φ) =

∫
θ

P (Y|θ,Φ)g(θ)dθ

By maximizing this marginal likelihood we get our parameter estimates, but

as the number of items grows this maximization can get ugly.

One improvement on this idea makes use of the expectation-maximization

(EM) algorithm, an iterative method for finding maximum likelihood estimates

of parameters of models in which there are latent variables. As its name sug-

gests, the algorithm alternates between two calculation steps: (1) the expected
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values of (E) of the log-likelihood at the current parameter estimate, and the

maximization (M) of this expected log-likelihood, yielding new parameter es-

timates which are used to determine the distribution of the latent variables

in the subsequent expectation step. Here, the trick is to consider θ a latent

variable. Thus, the likelihood function is now logP (Y, θ|Φ(t)). Nothing has

changed except our interpretation of θ, which is now considered to be unob-

served, latent data. The EM algorithm alternates back and forth between (1)

calculating the expected value of the log-likelihood with respect to θ (given the

observed data Y and the current parameter estimate Φ(t)) giving us a guess

at a probability distribution over θ, and (2) taking the result and finding the

parameters Φ that maximize it, thus becoming the new parameter estimates

Φ(t+1). In steps,

• Initialize an estimate/guess for the parameters Φ(t)

• E Step: compute Eθ|Y,Φ(t) logP (θ,Y|Φ(t))

• M Step: pick Φ(t+1) to be the Φ that maximize the expectation

• Continue with E Step until stopping criterion is met or the algorithm

fails to converge

Another way to think of this is that each expectation step results in a poste-

rior likelihood, which is then maximized, etc. The EM algorithm is the default

method used in most software packages for IRT parameter estimation. In what

follows, I make use of the R package mirt which defaults to EM estimation but
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supports other estimation techniques including Metropolis-Hastings in con-

junction with standard numerical optimization. For the higher-dimensional

models, I use the “quasi-monte carlo” version of the EM algorithm as recom-

mended by the package developer.

2.2.4 Comparing SPARFA and MIRT

From the PSY 301 data I have created a subset consisting of all student

responses to items on their first presentation (i.e., no repeated items). I will

compare SPARFA to MIRT by fitting each to this data given a different num-

ber of underlying traits/concepts K and comparing their parameter estimates

predicted probabilites. In the original SPARFA paper, the authors acknowl-

edge similarity to MIRT models but note that “the design of these algorithms

leads to poor interpretability of the resulting parameter estimates” (Lan et

al., 2014, p. 34). Assessing this claim and comparing the two models is one

goal of the present report. As described above, the SPARFA algorithm was

written in Python and implemented using iPython through a command-line

interface. MIRT was performed using the mirt package in R (Chalmers, 2012),

implemented through the R-studio graphical user interface.

2.3 Content-level Methods: Chats & Free-Response

Chats

Students participated in 25 small-group online chats during class through-

out the semester, each consisting of 2-5 participants and each lasting 5-10
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minutes in duration. Several chats were about material that was previously

featured on that day’s benchmark quiz. I will examine the overall relationship

between the total number of chat contributions across all chats and overall

score across all 27 benchmarks (irrespective of content overlap). I will then

examine the relationship between performance specific benchmark quizzes and

subsequent chats about relevant material.

Text Mining Student Free-Response

Approximately 15% of students’ grades came from their performance

on 4 free-response writing exercises. In these assignments, students were re-

quired to write a narrative about an ambiguous picture (Thematic Appercep-

tion Test activity), to describe a recent dream in detail, or to type in a stream-

of-consciousness fashion for 20 minutes, the latter task being repeated twice in

the semester. One of the instructors of the course whence this data comes is a

leading expert on text analysis and has even invented his own software pack-

age to perform such tasks (LIWC; Pennebaker & Francis, 1999). Accordingly,

there is very little I could do with students’ text output that hasn’t already

been thought of by him and his team of researchers. They have used things

like the Categorical Dynamic Thinking Index (CDI; Pennebaker et al., 2014),

Language Style Matching (LSM), etc. However, I wanted to explore these tech-

niques a bit myself in this report using a lexical measure that their team has

never examined: idea density. Idea density (also called proposition density) is

“the number of propositions divided by the number of words,” where a propo-
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sition is anything in speech that can be true or false. So, for example, “the

quick brown fox jumps over the lazy dog” has five propositions: (1) quick, (2)

brown, (3) jumped, (4) over, (5) lazy. Thus, propositions correspond roughly

to verbs, adjectives, prepositions, and subordinating conjunctions. The theory

is that each proposition entails a certain amount of mental processing effort,

and high idea density—by packing in the propositions—makes for slower pro-

cessing by increasing the amount of work the reader must do to understand

the text. Covington (2008) showed that “popular” texts (e.g., magazines, pulp

fiction) and “introductory” texts (addressed to serious nonspecialists) always

have an idea density below 0.5, while technical documents are always above

0.5.

I was introduced to this construct by the “nun study”, an influential

research project done to assess whether linguistic ability in early life was associ-

ated with cognitive impairments in old age and the development of Alzheimer’s

disease (Snowdon et al, 1996). These authors measured both the idea density

and the grammatical complexity of autobiographical essays that 93 nuns had

written as an entrance requirement upon first taking their monastic vows at

a mean age of 22 years. They found that both measures were associated with

low cognitive performance in late life, but that idea density was a stronger and

more consistent predictor. Most strikingly, Alzheimer’s disease was present in

all of the nuns whose essays exhibited low idea density in early life and none

of those with high idea density.

Though this college sample is comparable in age range, the text submis-
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sions differ in important ways from an autobiographical essay. I chose to apply

measures of idea density to the two stream-of-consciousness exercises and to

see if idea density scores were predictive of students total grade across all of

the BM quizzes. This was purely exploratory, though I hypothesized that idea

density in a stream-of-consciousness writing exercise would be associated with

higher grades on the BM quizzes, perhaps due to individual differences in text

processing for the class reading assignments upon which many BM questions

were based.

I used the program CPIDR (version 5.1) to calculate idea density; it

uses a part-of-speech tagger to count true propositions in text, and it achieves

very high interrater reliability with human raters (Brown et al., 2008). CPIDR

was developed by Michael Covington at the University of Georgia and the

software is free for non-commercial use. I then regressed total BM grade

(proportion of BM items answered correctly) on idea density score for the

stream-of-consciousness assignment. I used several regression techniques and

I also examined the correlation between idea density on the first and second

of these assignments.
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Chapter 3

Results and Discussion

3.1 Post-Processing and Analysis of SPARFA Output

3.1.1 Tagging Items

After running SPARFA on the student-item response data Y, we have

estimated the question-concept association matrix W (with wi,k representing

the degree to which question i involves concept k), the concept knowledge

matrix C (with ck,j representing the degree to which student j understands

concept k), and the intrinsic difficulty matrix M, with the estimated difficulty

of item i repeated along row i.

The next question of interest becomes how to interpret the latent con-

cepts given by wi,k and ck,j. One fruitful way of doing this incorporates user-

generated “tags” that describe or classify each item a priori. Given a set of tags

for our items, we then need to find the association between the latent concepts

and the tags, so that the latent concepts are more readily interpretable.

Though the syllabus for this course was not available for the year 2013,

I was able to use the syllabi from 2012 and 2014 to triangulate in order to

find the sequence of broad sections covered in the course (n = 8) as well as

the daily lecture topic as defined by the instructors (n = 27). Furthermore, I
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individually considered each item and its associated answer choices to develop

my own finer-grain tags for all 540 unique items, resulting in 110 such tags.

See Appendix B for sample items and their tags, topics, and sections.

Tag algorithm (not used)

In general, let M be the number of tags associated with the Q items.

To incorporate tag information, we create a tag matrix T ∈ RQ×M of zeroes

and ones, where each column of T is associated with a tag, and each entry

Ti,m = 1 if the tag m is associated with question i and Ti,m = 0 otherwise. Lan

et al. (2014) show that the item-concept association matrix W can itself be

factored into TA, where A is an M × K matrix representing tag-to-concept

mapping. The same non-negativity and sparsity assumptions apply in this

second factorization as they did to the first.

To estimate the tag-concept association matrix, as well as student-tag

knowledge. The authors use a 1-norm regularized least-squares minimization

method to obtain each column of A, where η controls the sparsity level. The

FISTA framework described above is then used to solve for A as desired.

min
ak

1

2
‖wk −Tak‖2

2 + η‖ak‖1

The resulting matrix A contains the tag-concept associations; normalizing the

entries of each column so they sum to one lets us interpret the entries as the

proportion of each tag m contributing to a given concept k. To calculate

each student’s knowledge of each tag, we simply multiply the the concept
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knowledge matrix C by the tag-concept matrix A to get U = AC Since âTm

contains the contributions of tag m to all concepts k, and cj contains the

concept knowledge for all concepts k for student j, Um,j = âTmcj represents the

knowledge of student j of tag m.

Unfortunately, I could not get the tagging functionality to work prop-

erly. In the interest of time, I decided to stick with interpreting the question-

concept associations given as entries in matrix W instead.

3.2 Analysis of MIRT Output

3.2.1 Model Fit

Five 2PL IRT models with θj of different dimension were fit to the

full-student dataset. These 1-, 2-, 3-, 8-, and 27-dimensional models were

identical except for the number of θjs estimated. Likelihood ratio tests were

all significant when comparing a model with fewer parameters to a model

with more parameters, indicating that additional θ parameters result in bet-

ter fit, even up to K = 27. However, using a penalized likelihood ratio

criterion tempers this interpretation. For K = 1 vs K = 2, the ∆AIC

(AICfull−AICconstrained) was -265.9 while the ∆BIC (BICfull−BICconstrained)

was 2260.5; For K = 2 vs K = 3, the ∆AIC was 133.2 while the ∆BIC was

2654.7; For K = 3 vs K = 8, the ∆AIC was 200.6 while the ∆BIC was 12738.2;

For K = 8 vs K = 27, the ∆AIC was 7226.2 while the ∆BIC was 53789.4.

The only equivocal evidence that a model with K > 1 is appropriate comes

from the initial comparison of AIC for K = 1 vs K = 2; we will proceed
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with the unidimensional model on the full data for the remainder of the IRT

discussion, but we will return to higher-dimensional models when comparing

IRT to SPARFA in the next section.

The best fit by all accounts was obtained by fitting a unidimensional

model to the dataset consisting of item responses for students who completed

the course only (n = 677). This model fit better than the unidimensional with

full-student data: ∆AIC = 16603.6, ∆BIC = 16850. It also fit better than the 8-

dimensional model on the constrained data (∆AIC = 114.5, ∆BIC = 16843.5),

which in turn fit better than the 27-dimensional model on the constrained data

(∆AIC = 6058.7, ∆BIC = 50350). Thus, the unidimensional model provides

the best fit with the constrained data (correcting for overfitting). We will

return to higher-dimensional models on this constrained data-set when we

compare IRT to SPARFA in the next section.

3.2.2 Parameter Estimates

The test characteristic curve plotted in Figure 3.1 gives the expected

total score across all benchmark quizzes as a function of θ; this can be thought

of as adding together all of the 540 unique item characteristic curves (ICCs) or,

equivalently, as adding up the probability of a correct response on each item

for each θ). Recall that each student only received 187 of these 540 items;

thus, this curve represents the expected total score on the entire item pool

as a function of θ, or what would be expected if every student had answered

every question.

45



Figure 3.1: Test characteristic curve combining all 540 items over all 27
benchmark quizzes to give a predicted total score if a student were to answer
all items.

(a) Good Item (b) Bad Item (c) Ugly Item

Figure 3.2: Good, Bad, and Ugly ICCs corresponding to items 206, 169, and
327 respectively for the full-student data (n = 838). See Appendix A for ICCs
and item fit statistics.
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Item characteristic curves (ICCs) for all 540 items are pictured thumbnail-

size in Appendix A for the full student data. The three ICCs pictured in

Figure 3.2, the “good” item had a = 1.983, d = 1.18, the “bad” item had

a = 0.358, d = −0.179, and the “ugly” item had a = −0.147, d = −0.042.

Indeed, six of the 540 items had negative discrimination parameters. For these

items, students with higher θ scores had a lower probability of answering the

item correctly; such items should be checked for accidental miscoding and

eliminated from the item pool. Notice that the bad item has a relatively flat

slope parameter a; thus, the probability of answering that item correctly does

not go up very much as θ increases, and thus whether or not the student gets

the item correct does not give strong evidence about their θ score.

Figure 3.3: Histogram and boxplot of item discrimination parameters for all
540 items. Items with low discrimination indicated by cutoff at a = 0.5
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As shown in Figure 3.3, the mean discrimination for the items was

0.920, the median was 0.882, and the first and third quartiles were 0.593 and

1.168 respectively. Of all the items, 97 had discrimination parameters between

0 and 0.5 and 27 items had discriminations between 0 and 0.25. This sort of

analysis could be used to alert instructors to problems with their items so that

they can be rewritten or discarded.

3.3 Comparison of SPARFA & IRT/MIRT

SPARFA and IRT/MIRT were run on two datasets: the full student

data (n = 848) and the data consisting only of students who finished the

course (n = 677). These data did not include repeated items, only items

given to each student for the first time. Estimated question-concept associa-

tions (SPARFA’s W matrix), concept-knowledge associations (SPARFA’s C

matrix), and intrinsic difficulty (SPARFA’s M matrix) were obtained by run-

ning SPARFA with the number of concepts K = 1, 2, 3, 8, and 27. The same

procedure was repeated using the mirt package in R, where K is the number

of dimensions modelled. Thus, for each student j there were θj,1, θj,2, ..., θj,K

latent trait scores, and for each item i there were ai,1, ai,2, ...ai,K discrimina-

tion parameters estimated. A given item’s ai,k represents how well that item

discriminates among students with different scores on θk.

It is instructive to compare the SPARFA likelihood (Eq. 2.1) and

the MIRT likelihood (Eq. 2.7) explicitly. Note that the MIRT equation

p(Yi,j|θj, ai, bi) = (1+e−ai
T (θj−Ibi))−1 can be reparameterized as (1+e−(ai

T θj+di))−1,
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where di = −bi × ai. Here we can see that ai
T θj is analogous to ŵT

i cj, so es-

timates of ai,k should be similar to the elements of W, wi,k, which represent

the strength of association between item i and concept k. MIRT and SPARFA

are at heart quite similar, representing observations as linear combinations of

latent factors; the main differences are in (1) the assumptions, and (2) the

optimization algorithm. To be able to handle sparse data, SPARFA assumes

that the number of concepts is small and that W is sparse and non-negative;

these constraints limit the quality of our comparisons. Furthermore, SPARFA

breaks log-likelihood into sub-problems with terms regulated by sparsity pa-

rameters before optimizing with the FISTA algorithm, while MIRT uses an

EM algorithm to maximize the likelihood function. In essence, both are per-

forming factor analyses using slightly different algorithms and under different

assumptions.

Picking 1, 8, and 27 for the number of concepts/dimensions/latent traits

was pre-specified because there were 8 sections in the course and 27 weekly

quizzes with minimal content overlap. Picking 2 and 3 for the number of

concepts/dimensions was done to better assess the divergence between the

estimates generated by SPARFA and IRT.
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(a) wi,1s (top), ais (bottom) (b) c1,js (top), θjs (bottom) (c) µis (top), dis, (bottom)

Figure 3.4: Back-to-back histograms of SPARFA/MIRT parameter esti-
mates. Y-axis scale is the same for each plot (note different x-axes).

For the full-student data (n = 838), running SPARFA and IRT with 1

concept resulted in a concept-knowledge matrix C that correlated r = .9834

with IRT theta estimates θj. SPARFA question-concept association matrix

W correlated r = .9536 with IRT discrimination parameter estimates ai.

SPARFA difficulty estimates correlated r = .9959 with IRT difficulty param-

eter estimates. The predicted probability of a correct answer for student i on

question j for both SPARFA and IRT correlated r = .9927. See histograms

in Figure 3.5 for a visual comparison of unidimensional SPARFA and IRT

“parameters”.

Running SPARFA and MIRT with 8 concepts on the full-student data

yielded a concept-knowledge matrix C that correlated r = .0293 with MIRT
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theta estimates θj. SPARFA question-concept association matrix W corre-

lated r = .0101 with MIRT discrimination parameter estimates ai. SPARFA

difficulty estimates correlated r = .4442 with MIRT difficulty estimates. The

predicted probability of a correct answer for student i on question j for both

SPARFA and MIRT correlated r = .4712.

(a) Question-concept graph (K = 8) (b) Question-concept graph (K = 27)

Figure 3.5: Graphical representation of question-concept associations wi,k
for full data (540 questions) with K = 8 (a) and K = 27 (b) concepts.

Running SPARFA and MIRT with 27 concepts on the full-student data

yielded a concept-knowledge matrix C that correlated r = −.0162 with MIRT

theta estimates θj. SPARFA question-concept association matrix W corre-

lated r = .0163 with MIRT discrimination parameter estimates ai. SPARFA

difficulty estimates correlated r = .4602 with MIRT difficulty estimates. The

predicted probability of a correct answer for student i on question j for both

SPARFA and MIRT correlated r = .1176.
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For completeness, SPARFA and MIRT were run with K = 2 and K = 3

so that the parameter and probability correlations could be examined more

closely. With K = 2 concepts on the full-student data, the correlation between

entries of C and estimated θj was r = 0.2212, the correlation between W and

estimated ai was r = .1768, and the correlation between SPARFA and MIRT

difficulty estimates was r = .9387. Moreover, with K = 2 the correlation

between predicted probability of a correct response was r = .8732. With

K = 3 concepts, the correlation between entries of C and estimated θj was

r = −0.0028, the correlation between W and estimated ai was r = .0787, the

correlation between SPARFA and MIRT difficulty estimates was r = .7971,

and the correlation between predicted probability of a correct response was

r = .7851. The above analyses were all re-run using only data from students

who had completed the course (n = 677) to observe how this chance would

affect the estimates. All correlations are reported in Table 3.1.

It was speculated that the lack of parameter estimate correlations with

increasing K was due both to SPARFA’s sparsity constraints on the W and

C matrices (see Section 2.2.1) and to the extraction of non-existent factors.

Determination of the “correct” number of factors to use for adequate repre-

sentation of our data’s intercorrelations required that an ordinary exploratory

factor analysis be performed; however, the sparse response matrix Y would

preclude such analysis (hence the development of SPARFA). One way around

this problem is to impute the missing data. To this end and assuming pairwise

independence the R package missForest was used, which iteratively fits a ran-
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Table 3.1: SPARFA/MIRT estimate correlations, computed by stacking all
estimates into vectors and computing Pearson’s r on them. Note that W/a
and C/θ correlations drop off steeply as K increases, while probability correct
and difficulty correlations decline more gradually.

SPARFA/MIRT Correlations
p(y = 1|...) W/a C/θ M/d

N=838

K=1 .993 .954 .983 .996
K=2 .873 .177 .221 .939
K=3 .785 .079 .003 .797
K=8 .471 .010 .029 .444
K=27 .118 .016 -.016 .460

N=677
K=1 .997 .844 .997 .972
K=8 .451 .017 .118 .522
K=27 .133 .007 .003 .494

dom forest on the observed data to predict the missing part. After imputation,

factor analysis was performed using principal axis factoring without rotation;

using parallel analysis and very-simple-structure criteria, a 3-factor solution

was found to be best. Using less robust extraction criteria like Kaiser’s rule

(all eigenvalues > 1) results in a 2-factor solution, while examination of the

scree plot results in a 3-factor solution. Regardless, it is clear that both 8 and

27 are too many, yielding noisy factors that therefore fail to correlate.

3.3.1 Sparfa Proof of Concept

SPARFA was run on the first week’s scored benchmark quiz (BM 1)

data which consisting of eight questions; I chose 4 concepts (k=4) because I

had assigned 4 unique tags to these questions a priori (see Appendix B). This

analysis was conducted with full student data (n = 838); below are presented
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the 8 × 4 question-concept association matrix W, a portion of the 838 × 4

student concept-student matrix C, and the 8 intrinsic difficulty estimates M.

We can visualize the question-concept association matrix W from Table 3.4

using a graph with edge weights corresponding to the strength of the question-

concept association (Figure 3.6).

Figure 3.6: Graphical representation of question-concept associations. Nodes
C1 through C4 represent Concepts 1 through 4 respectively (see Table 3.4).
Nodes 1 through 8 represent Items 1 through 8 respectively. Edge thickness
between item i and concept k is proportional to wi,k

Looking at Table 3.5, we see the estimated concept knowledge for 12

of the 838 students; on the far left of the table, we have the average concept

knowledge for all students. Thus, instead of giving students a question they

previously missed at random, SPARFA’s C matrix lets you know which con-

cepts most urgently need remediation for a given student. For example, we see
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Table 3.2: Benchmark 1 tags and questions

Tag Question Prompt
1 needs “...According to the principles of Maslow’s heirarchy of needs...”
2 psych perspectives “...What kind of psychologsts are they most likely to be?”
3 class protocol “If you do not participate in... what will happen?”
4 psych perspectives “...How would a developmental psychologist explain this behavior?”
5 psych perspectives “...Neither is wrong; they’re just using different:”
6 psych perspectives “...Her therapist is taking which of the following psychological perspectives?”
7 conditioning “Which of the following is the best example of the classical conditioning?
8 class protocol “Which of these is NEVER permitted when you take a benchmark?

Table 3.3: Student responses to BM 1 items (first 12 of 838)

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 ...

0 1 1 1 1 1 1 1 1 1 0 1 ...
1 1 1 1 1 1 1 0 0 1 0 1 ...
1 1 1 1 1 1 1 1 1 1 0 1 ...
1 1 1 1 1 1 1 1 1 1 0 1 ...
0 1 1 0 0 0 1 0 0 1 1 1 ...
1 1 1 0 0 0 1 1 1 1 0 0 ...
1 1 1 1 1 1 1 1 1 1 1 1 ...
1 1 1 1 1 1 1 1 1 1 1 1 ...

in Table 3.3 that student S1 missed the first question and the fifth question.

The first question is highly associated with Concept 2, while the fifth question

is highly associated with Concept 1 (see Table 3.3). The student has missed

two questions; given the chance to repeat only one of these questions on the

next quiz, which should be repeated? Table 3.5 (top) tells us that student

S1’s Concept 1 knowledge estimate is low (-1.77) and their Concept 2 estimate

is low (-1.16), but compared to the mean scores on both concepts, it can be

quickly determined that Concept 2 should take priority: the student’s z-score

for Concept 1 was -0.70 while their z-score for Concept 2 was -1.27 (Table 3.5,

bottom), indicating that their understanding of Concept 2 is in near lowest
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Table 3.4: Benchmark 1 question-concept (W) matrix; difficulty estimates
appended (right)

Concept 1 Concept 2 Concept 3 Concept 4 Difficulty
Question 1 0 10.13 0 0.73 3.10
Question 2 8.94 4.39 6.77 6.20 -1.16
Question 3 1.80 6.51 4.96 0 7.06
Question 4 3.88 0.24 0 9.95 -0.55
Question 5 9.73 0 0 0 4.16
Question 6 0 0 1.97 1.14 0.94
Question 7 0 1.06 0 1.49 1.08
Question 8 0 0.04 1.44 2.21 8.42

Table 3.5: Benchmark 1 concept-knowledge (C) matrix for the first 12 stu-
dents; raw (top), standardized (bottom)

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 AVG SD
C1 -1.77 3.00 3.00 -0.77 -0.77 -0.77 3.00 -3.00 -3.00 3.00 -0.06 2.50 -0.31 2.09
C2 -1.16 3.00 3.00 3.00 3.00 3.00 3.00 0.83 0.83 3.00 -0.60 2.53 1.16 1.83
C3 3.00 1.72 1.73 -3.00 -3.00 -3.00 1.71 0.45 0.45 1.71 -2.71 -3.00 0.78 2.08
C4 3.00 3.00 3.00 2.96 2.96 2.96 3.00 2.40 2.40 3.00 -0.17 0.73 0.47 1.85

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 AVG SD
C1 -0.70 1.58 1.58 -0.22 -0.22 -0.22 1.58 -1.29 -1.29 1.58 0.12 1.34 0 1
C2 -1.26 1.00 1.00 1.00 1.00 1.00 1.00 -0.18 -0.18 1.00 -0.96 0.75 0 1
C3 1.07 0.46 0.46 -1.82 -1.82 -1.82 0.45 -0.16 -0.16 0.45 -1.68 -1.82 0 1
C4 1.36 1.36 1.36 1.34 1.34 1.34 1.36 1.04 1.04 1.36 -0.35 0.14 0 1

decile and thus questions tapping this Concept 2 should take priority upon

repetition in order to optimize remediation.

As described earlier, the course whence this data originated imple-

mented the selection of repeated questions in an uninformed way by using

the following rule: pick a repeat question at random from the set of all ques-

tions a student has previously missed at least once. As it happens, question

number 5 was randomly chosen to repeat on the next quiz, and this student

did not see question 1 again until BM 5.
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Another unfortunate side-effect of drawing repeat questions at random

from the pool of all items a student has missed at least once is that all items

have an equal probability of reappearing, even those that have already reap-

peared multiple times; no correction is made based on the students perfor-

mance with the repeated item. To take an extreme example, say a student

only misses one question on the first BM quiz, misses none of the second, none

on the third, none on the fourth, etc.; even if this student answers the previ-

ously missed item correct when it is repeated on quiz 2, it will repeat again on

quiz 3, again on quiz 4, and so on. To take an striking example from the data,

one student had to repeat the same 10 times throughout the course, despite

answering it correctly on each of the ten repeats. Furthermore, even if a given

student has missed multiple items, there is still a chance that an item will

keep repeating. If a student misses only two items, there’s still a 1
32

chance

that they will only see one of those items on the next five benchmark quizzes.

Though this random selection procedure is a simple way to implement spaced

practice, it is certainly suboptimal.

It is of interest, then, to compare the repeated items that were actually

given to students on the second benchmark with the items that SPARFA would

have given (those tapping the concept most in need of remediation for a given

student). To achieve this, each concept-knowledge estimate (each entry in

the concept-knowledge matrix C) was centered and scaled by row, yielding

z-scores for each student for each of the 4 concepts (bottom of Table 3.5).

Then, taking the concept with the lowest z-score for each student, we can see
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whether the repeated question on BM 2 was one that was strongly associated

with their weakest concept. We ask whether the repeated question was one

that SPARFA found to have significant association with their weakest concept

estimate (Table 3.4); performing this comparison for the first repeated items

reveals that the random procedure assigned repeated items that tapped a

student’s weakest concept only 33.2% of the time. Thus, there is definitely

something to be gained by using SPARFA to inform decisions about which

items to repeat for which students and when.

As discussed in the introduction, introducing variability during retrieval

appears to enhance the transfer of learning to novel problems above and be-

yond the benefits of retrieval practice (e.g., Butler, 2010). Specifically, prac-

ticing retrieval with different questions that tap the same underlying concept

results in an increased ability to apply one’s knowledge of the underlying con-

cept to novel questions relative to retrieval practice with the same question.

Given these observations, it would be interesting to know how often “repeated”

items tap the same underlying concept without being repeated verbatim. In

the present course, the number of possible new items for each benchmark was

variable: some weeks, there were only 7 new items and thus all students re-

ceived the same 7 items; other weeks, there were as many as 36 new items,

from which 7 were drawn at random to make up 7 of the 8 BM items for each

student (Figure 3.7). Using SPARFA’s esimates of students’ weakest concepts,

and given the items students have already seen which tap that concept, then

instead of just repeating those items, it may indeed be more beneficial to give
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Figure 3.7: Size of new item-pool per benchmark; colors indicate a priori
tagged concepts

students a new, previously unseen item tapping that concept. Looking at the

figure, we can see the concepts broken down by benchmark (the colors of the

stacked bars; items tapping the same concept are all the same color); thus, by

capitalizing on the size of each benchmark’s item pool, we can use SPARFA

to introduce variability into retrieval practice by giving students new ques-

tions that tap previous concepts. Additionally, if a student is really struggling

with a particular concept, item-difficulty estimates can be used to select an
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easier item tapping that concept to help scaffold their learning (e.g., Murray

& Arroyo, 2002).

3.4 Natural Language Processing: Chats and Writing
Assignments

As described in the methods section, CPIDR was used to calculate

idea density scores for each of the 4 writing assignments completed by each

student during the course of the semester. The first was a 20 minute stream-

of-consciousness exercise; the second was a projective writing exercise wherein

students had to compose a narrative about an ambiguous stimulus picture of

two scientists; the third was an exercise where students wrote in detail about

a recent dream; the fourth was a second 20 minute stream-of-consciousness

exercise. The idea density variables are denoted ID.93, ID.211, ID.232, and

ID.442 for the 1st, 2nd, 3rd and 4th writing assignments, respectively. The least

inclusive data subset was used for these analyses (n = 677) in order to restrict

our subset to data from students who completed the entire course (who there-

fore have a predicted course grade of more than 60 and who generated data

for most of the writing exercises; see pages 21-22 for inclusion criteria). The

figure below shows pairwise scatterplots for the benchmark grade (“Grade”)

and idea density scores for each assignment.

First, I was curious whether idea density differed across the different

writing tasks. For this step, I further subsetted the data to include only

those who had completed all 4 writing assignments (n = 425). Idea density
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Figure 3.8: Pairwise scatterplots across assignments

scores were calculated for all assignments; I skipped the omnibus F-test and

performed all pairwise paired t-tests, adjusting the p-value with the Bonfer-

roni correction. The α-corrected p-values and associated effect sizes for each

test are given in Table 3.6 below; we can see that idea density scores were

significantly different across all writing exercises except with Thematic Ap-

perception Test (TAT) vs. Describe a Dream and the first vs. second stream-

of-consciousness (SOC) exercises. While in the latter case the lack of difference

is to be expected given that the demands of the task were the same, the first
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difference is curious because the nature of the assignments are quite different.

Note that this procedure and the large sample result in very powerful tests: the

probability of detecting a standardized mean difference of 0.2 given it exists—a

“small” effect (Cohen, 1988)—using a paired t-test with n = 425 and α = .05

is .98, or 98%. Take note of the mean differences for each comparison to

determine practical significance.

Table 3.6: Paired t-tests and effect sizes for differences in idea density across
writing assignments. P-values are p = Pr(T > |t∗| | H0) where T follows a
t-distribution with 424 degress of freedom under the null, and the alternative
hypothesis of non-equality of means is non-directional. Effect sizes are Cohen’s
d for dependent samples. Means (m) and standard deviations (sd) given in
the margins.

Writing Assignment
2 (TAT story) 3 (Dreams) 4 (2nd SOC)

3 (Dreams) p = 0.5, d = .084 – – m = .529, sd = .066

4 (2nd SOC) p < .000, d = .975 p < .000, d = .402 – m = .557, sd = .029

1 (1st SOC) p < .000, d = 1.00 p < .000, d = .436 p = 0.81, d = .073 m = .559, sd = .029

m = .523, sd = .029 m = .529, sd = .066 m = .557, sd = .0291

To compare visually across writing assignments, frequency wordclouds

were generated for each of the four free-response submissions. For each, these

consisted of the 150 words that appeared most frequently in students’ writing

assignments after removing stopwords, numbers, and punctuation. This was

performed using R packages tm and wordcloud. Wordclouds are presented in

Appendix C to save space in this section.

62



Benchmark Performance and Chats

I was also interested in the degree to which performance on the bench-

mark quizzes was related to behavior in the ungraded online small-group chats.

I tried to regress overall benchmark score on total number of chat contributions

but model checking revealed that the fit was no good; though robust against

non-normality, the equal-variance assumption was clearly being violated and

there were several outliers with high leverage. Instead of messing with trans-

formations and omitting outliers, I decided to use a non-parametric kernel

regression here (chances are a parametric model wouldn’t have been correct

in the first place). The specific technique I used estimates the regression func-

tion by fitting a “moving-average” smoother known as the Nadaraya-Watson

estimator:

f̂λ(X) =

∑n
i=1 YiK(X−Xi

λ
)∑n

i=1K(X−Xi

λ
)

Here, bandwidth λ > 0 depends on the size of the sample and the kernel

function K, where
∫
K = 1 (in all analyses, a normal/gaussian kernel function

was used). All analyses were performed using the npreg package in R. The

optimal bandwidth (λ = 53.604 in this case) was selected automatically by

choosing the one with the smallest error under k-fold cross-validation. Sig-

nificance testing was done bootstrapping to determine the null distribution of

the test statistic (see Racine, 2007). The above procedure was followed in all

subsequent analyses of this type.
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Figure 3.9: Non-parametric regression function predicting overall benchmark
grade from total chat contributions

The number of chat contributions was found to significantly predict

overall benchmark grade for all students who completed the course (λ =

53.604, p = 0.0275); the non-parametric regression function is shown in Figure

3.9. I also examined the relationship between performance on a benchmark

quiz and the number of chat contributions made later that class period in a

chat over material related to material covered by the benchmark. There were

three benchmarks and three relevant chats: a BM about personality and the

“big 5” followed by a chat about the personality and the “big 5”, a BM about

correlations/experiments followed by a chat about correlations/experiments,

and a BM about learning/conditioning followed by a chat about learning/-

conditioning. The total number of BM items correct was regressed on the

total number of chat contributions for each topic using nonparametric kernel

regression. Results are shown in Figure 3.10. Predicting Chat from BM scores
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was significant for the correlations/experiments topic using a bootstrap kernel

regression significance test (λ = 0.9707, p < 0.0000) Predicting Chat from BM

scores was also significant for the personality/“big 5” topic using a bootstrap

kernel regression significance test (λ = 0.0590, p = 0.0100). Predicting Chat

from BM scores was not significant for the learning/conditioning topic using

a bootstrap kernel significance test (λ = 0.2642, p = 0.3408).

(a) Correlations/Experiments (b) Personality/”Big 5” (c) Learning/Conditioning

Figure 3.10: Non-parametric regression function predicting number of chat
contributions about various topics (Experimental Design, Personality/“Big 5”,
Learning/Conditioning) from score on benchmark covering same topic. Boot-
strapped errors.

3.5 Discussion and Future Directions

Including SPARFA in the classroom appears to be a very promising

way to maximize gains from spaced repetition during retrieval practice (e.g.,

weekly quizzes). Not only does it give interpretable estimates of what topics
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need extra attention (both in general and on an individual-student basis) based

on quiz performance, but it can make optimal item-choice recommendations

in a spaced retrieval practice paradigm by leveraging retrieval variability. Im-

portantly, it can achieve these things based on only a small number of student

responses to items, setting it apart from other methods.

With the present class data, SPARFA’s student-concept estimates would

have resulted in a much better use of the repeated question slot during bench-

mark quizzes by accounting for their correct re-answers and avoiding unneces-

sary repetitions. Another way in which the course’s quizzing-with-repetition

structure could be improved upon is by interleaving some form of restudy be-

tween the repetitions. It is known that, after initial learning, test-study-test

sequences result in better retention than test-test-test sequences, which are

in turn better than study-study-study sequences (Karpicke & Roediger, 2007;

McDaniel et al. 2015). One way of achieving this could be through elaborated

feedback, possibly given after a delay. In the present course design, feedback

to students told them only whether their answer was right or wrong; elabo-

rating upon the correct answer and why it is correct in a feedback message

given after some delay could introduce a “restudy” element before the item or

a related item appears again on a later quiz.

While SPARFA and MIRT can be used in the classroom to improve the

efficacy of spaced retrieval practice, they do have several limitations. Impor-

tantly, they assume that learners’ concept knowledge states remain constant

over time, an assumption which is violated when these techniques are ap-
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plied to student responses from different points in time (during which much

learning and forgetting may occur). Also, these frameworks deal only with

student-item interactions and thus have no means of accounting for the effects

of other learning events that students encounter (reading a textbook, viewing

a lecture, interacting with other students, etc.).

The SPARFA framework has recently been extended to overcome these

limitations by including a latent state transition model based on Kalman fil-

tering that traces students’ concept-knowledge states over time using incoming

data about questions students have answered and activities they have engaged

in (Lan et al. 2014b). This new SPARFA-Trace framework takes the same

graded learner-response matrix as input, but it additionally requires a student-

resource interaction matrix that indicates whether or not a student has used

certain learning resources between consecutive responses. Not only does this

new framework estimate all of the original SPARFA parameters, but it cap-

tures learning concept knowledge evolution over time, and it also estimates

parameters dealing with the organization and quality of the learning resource

content. SPARFA-Trace seems able to provide more accurate assessments of

students’ concept knowledge while providing feedback to instructors about the

efficacy of the learning resources (eg., chats, lectures, readings) used in their

classrooms.
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Appendix A

Item characteristic curves for all items
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Appendix B

Table of tags for two BMs

Section Unit Tag Question Prompt
Background in Psychology Philosophy & correlations bias Tom decides to study the...
Background in Psychology Philosophy & correlations correlation Which of the following is...
Background in Psychology Philosophy & correlations correlation You read in a newspaper that...
Background in Psychology Philosophy & correlations random assignment Dr. Martin is running an...
Background in Psychology Philosophy & correlations experimental design Jamie interviewed dog owners...
Background in Psychology Philosophy & correlations bias Sue wants to investigate...
Background in Psychology Philosophy & correlations correlation Which of the following is...
Background in Psychology Philosophy & correlations correlation Your friend tells you that...
Background in Psychology Philosophy & correlations experimental design For a class project about...
Background in Psychology Philosophy & correlations experimental design Gina’s lab conducts a study...
Background in Psychology Philosophy & correlations experimental design Dr. House surveys individuals...
Background in Psychology Philosophy & correlations experimental design While in the cafeteria at...
Background in Psychology Philosophy & correlations experimental design Yann visits a foreign...
Background in Psychology Philosophy & correlations historical Who is credited with starting...

Background in Psychology Experimental & causal thinking variables Bill ran a study to see if...
Background in Psychology Experimental & causal thinking test an intervention Dr. Jones is teaching a...
Background in Psychology Experimental & causal thinking experimental design Dr. Vale wants to know if...
Background in Psychology Experimental & causal thinking validity Harriet asked a large group...
Background in Psychology Experimental & causal thinking variables S&y is head chef at a...
Background in Psychology Experimental & causal thinking broad/narrow Sarah’s husb& travels...
Background in Psychology Experimental & causal thinking bias Which of the following is...
Background in Psychology Experimental & causal thinking variables In order to assess the...
Background in Psychology Experimental & causal thinking test an intervention Pedro, Cindy, & Christie...
Background in Psychology Experimental & causal thinking broad/narrow Tyler saw on the news that...
Background in Psychology Experimental & causal thinking bias Which of the following is...
Background in Psychology Experimental & causal thinking variables Bill ran a study to see...
Background in Psychology Experimental & causal thinking validity Harriet asked a group of...
Background in Psychology Experimental & causal thinking validity In class, Dr. Shine described...
Background in Psychology Experimental & causal thinking control group Ted works at a hospital...
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Appendix C

Wordclouds for all free-response assignments

(a) First 20-min SOC wordcloud (b) Second 20-min SOC wordcloud

(c) Thematic Apperception wordcloud (d) Dream description wordcloud
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Appendix D

R and Python code

1 dataset <-read.csv("answer_data_working.csv")

2

3 #general info

4 dim(dataset)

5 str(dataset)

6

7 #what are all of the column names?

8 colnames(dataset)

9 #how many variables so far?

10 length(colnames(dataset))

11

12 #number of unique eids

13 length(unique(dataset$eid))

14 #number of unique student ids

15 length(unique(dataset$student_id))

16 #number of unique quiz_answer_ids

17 length(unique(dataset$quiz_answer_id))

18 #number of unique activity_ids

19 length(unique(dataset$activity_id))

20 #histogram of

21 #unique prompts for each benchmark (including repeats from previous bms)

22

23 qs46 <-unique(dataset$prompt[dataset$activity_id ==46])

24 numqs46=length(unique(dataset$prompt[dataset$activity_id ==46]))

25 qs57 <-unique(dataset$prompt[dataset$activity_id ==57])

26 numqs57 <-length(unique(dataset$prompt[dataset$activity_id ==57]))

27 qs69 <-unique(dataset$prompt[dataset$activity_id ==69])

28 numqs69 <-length(unique(dataset$prompt[dataset$activity_id ==69]))

29 qs81 <-unique(dataset$prompt[dataset$activity_id ==81])

30 numqs81 <-length(unique(dataset$prompt[dataset$activity_id ==81]))

31 qs84 <-unique(dataset$prompt[dataset$activity_id ==84])

32 numqs84 <-length(unique(dataset$prompt[dataset$activity_id ==84]))

33 qs96 <-unique(dataset$prompt[dataset$activity_id ==96])

34 numqs96 <-length(unique(dataset$prompt[dataset$activity_id ==96]))

35 qs147 <-unique(dataset$prompt[dataset$activity_id ==147])

36 numqs147 <-length(unique(dataset$prompt[dataset$activity_id ==147]))

37 qs165 <-unique(dataset$prompt[dataset$activity_id ==165])

38 numqs165 <-length(unique(dataset$prompt[dataset$activity_id ==165]))

39 qs181 <-unique(dataset$prompt[dataset$activity_id ==181])

40 numqs181 <-length(unique(dataset$prompt[dataset$activity_id ==181]))

41 qs192 <-unique(dataset$prompt[dataset$activity_id ==192])

42 numqs192 <-length(unique(dataset$prompt[dataset$activity_id ==192]))

43 qs210 <-unique(dataset$prompt[dataset$activity_id ==210])

44 numqs210 <-length(unique(dataset$prompt[dataset$activity_id ==210]))
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45 qs223 <-unique(dataset$prompt[dataset$activity_id ==223])

46 numqs223 <-length(unique(dataset$prompt[dataset$activity_id ==223]))

47 qs241 <-unique(dataset$prompt[dataset$activity_id ==241])

48 numqs241 <-length(unique(dataset$prompt[dataset$activity_id ==241]))

49 qs259 <-unique(dataset$prompt[dataset$activity_id ==259])

50 numqs259 <-length(unique(dataset$prompt[dataset$activity_id ==259]))

51 qs269 <-unique(dataset$prompt[dataset$activity_id ==269])

52 numqs269 <-length(unique(dataset$prompt[dataset$activity_id ==269]))

53 qs289 <-unique(dataset$prompt[dataset$activity_id ==289])

54 numqs289 <-length(unique(dataset$prompt[dataset$activity_id ==289]))

55 qs306 <-unique(dataset$prompt[dataset$activity_id ==306])

56 numqs306 <-length(unique(dataset$prompt[dataset$activity_id ==306]))

57 qs330 <-unique(dataset$prompt[dataset$activity_id ==330])

58 numqs330 <-length(unique(dataset$prompt[dataset$activity_id ==330]))

59 qs344 <-unique(dataset$prompt[dataset$activity_id ==344])

60 numqs344 <-length(unique(dataset$prompt[dataset$activity_id ==344]))

61 qs360 <-unique(dataset$prompt[dataset$activity_id ==360])

62 numqs360 <-length(unique(dataset$prompt[dataset$activity_id ==360]))

63 qs379 <-unique(dataset$prompt[dataset$activity_id ==379])

64 numqs379 <-length(unique(dataset$prompt[dataset$activity_id ==379]))

65 qs391 <-unique(dataset$prompt[dataset$activity_id ==391])

66 numqs391 <-length(unique(dataset$prompt[dataset$activity_id ==391]))

67 qs403 <-unique(dataset$prompt[dataset$activity_id ==403])

68 numqs403 <-length(unique(dataset$prompt[dataset$activity_id ==403]))

69 qs421 <-unique(dataset$prompt[dataset$activity_id ==421])

70 numqs421 <-length(unique(dataset$prompt[dataset$activity_id ==421]))

71 qs434 <-unique(dataset$prompt[dataset$activity_id ==434])

72 numqs434 <-length(unique(dataset$prompt[dataset$activity_id ==434]))

73 qs450 <-unique(dataset$prompt[dataset$activity_id ==450])

74 numqs450 <-length(unique(dataset$prompt[dataset$activity_id ==450]))

75 qs467 <-unique(dataset$prompt[dataset$activity_id ==467])

76 numqs467 <-length(unique(dataset$prompt[dataset$activity_id ==467]))

77

78 #average number of new questions per student for a given activity

79 sum(dataset$X1st.pres[dataset$activity_id ==96])/length(unique(dataset$student_id[dataset$

activity_id ==96]))

80 #number of new unique prompts for a given activity

81 length(unique(dataset$prompt[dataset$activity_id==69 & dataset$X1st.pres ==1]))

82

83 length(unique(dataset$prompt[dataset$activity_id ==101 & dataset$X1st.pres ==1]))

84 length(unique(dataset$prompt[dataset$activity_id ==101]))

85 length(unique(dataset$student_id[dataset$activity_id ==101]))

86

87 bm1 <-dataset[dataset$activity_id==46,]

88 bm2 <-dataset[dataset$activity_id==57,]

89 bm3 <-dataset[dataset$activity_id==69,]

90 bm4 <-dataset[dataset$activity_id==81,]

91 bm5 <-dataset[dataset$activity_id==84,]

92 bm6 <-dataset[dataset$activity_id==96,]

93 bm7 <-dataset[dataset$activity_id==147 ,]

94 bm8 <-dataset[dataset$activity_id==165 ,]

95 bm9 <-dataset[dataset$activity_id==181 ,]

96 bm10 <-dataset[dataset$activity_id==192 ,]

97 bm11 <-dataset[dataset$activity_id==210 ,]

98 bm12 <-dataset[dataset$activity_id==223 ,]

99 bm13 <-dataset[dataset$activity_id==241 ,]
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100 bm14 <-dataset[dataset$activity_id==259 ,]

101 bm15 <-dataset[dataset$activity_id==269 ,]

102 bm16 <-dataset[dataset$activity_id==289 ,]

103 bm17 <-dataset[dataset$activity_id==306 ,]

104 bm18 <-dataset[dataset$activity_id==330 ,]

105 bm19 <-dataset[dataset$activity_id==344 ,]

106 bm20 <-dataset[dataset$activity_id==360 ,]

107 bm21 <-dataset[dataset$activity_id==379 ,]

108 bm22 <-dataset[dataset$activity_id==391 ,]

109 bm23 <-dataset[dataset$activity_id==403 ,]

110 bm24 <-dataset[dataset$activity_id==421 ,]

111 bm25 <-dataset[dataset$activity_id==434 ,]

112 bm26 <-dataset[dataset$activity_id==450 ,]

113 bm27 <-dataset[dataset$activity_id==467 ,]

114

115 bmdata <-rbind(bm1 ,bm2 ,bm3 ,bm4 ,bm5 ,bm6 ,bm7 ,bm8 ,bm9 ,bm10 ,bm11 ,bm12 ,bm13 ,bm14 ,bm15 ,bm16 ,bm17

,bm18 ,bm19 ,bm20 ,bm21 ,bm22 ,bm23 ,bm24 ,bm25 ,bm26 ,bm27)

116 bmdata <-data.frame(bmdata)

117

118 #how many unique bm prompts total?

119 length(unique(bmdata$prompt))

120 #540

121 length(unique(bmdata$response))

122 #2000 unique responses

123

124 #assign question id to first appearance of question; indicates what unit it comes from

125 bmdata$qid[is.element(bmdata$prompt ,qs46)]<-1

126 bmdata$qid[is.element(bmdata$prompt ,qs57[!is.element(qs57 ,qs46)])]<-2

127 bmdata$qid[is.element(bmdata$prompt ,qs69[!is.element(qs69 ,tmp1 <-union(qs46 ,qs57))])]<-3

128 bmdata$qid[is.element(bmdata$prompt ,qs81[!is.element(qs81 ,tmp2 <-union(tmp1 ,qs69))])]<-4

129 bmdata$qid[is.element(bmdata$prompt ,qs84[!is.element(qs84 ,tmp1 <-union(tmp2 ,qs81))])]<-5

130 bmdata$qid[is.element(bmdata$prompt ,qs96[!is.element(qs96 ,tmp2 <-union(tmp1 ,qs84))])]<-6

131 bmdata$qid[is.element(bmdata$prompt ,qs147[!is.element(qs147 ,tmp1 <-union(tmp2 ,qs96))])]<-7

132 bmdata$qid[is.element(bmdata$prompt ,qs165[!is.element(qs165 ,tmp2 <-union(tmp1 ,qs147))])]<-

8

133 bmdata$qid[is.element(bmdata$prompt ,qs181[!is.element(qs181 ,tmp1 <-union(tmp2 ,qs165))])]<-

9

134 bmdata$qid[is.element(bmdata$prompt ,qs192[!is.element(qs192 ,tmp2 <-union(tmp1 ,qs181))])]<-

10

135 bmdata$qid[is.element(bmdata$prompt ,qs210[!is.element(qs210 ,tmp1 <-union(tmp2 ,qs192))])]<-

11

136 bmdata$qid[is.element(bmdata$prompt ,qs223[!is.element(qs223 ,tmp2 <-union(tmp1 ,qs210))])]<-

12

137 bmdata$qid[is.element(bmdata$prompt ,qs241[!is.element(qs241 ,tmp1 <-union(tmp2 ,qs223))])]<-

13

138 bmdata$qid[is.element(bmdata$prompt ,qs259[!is.element(qs259 ,tmp2 <-union(tmp1 ,qs241))])]<-

14

139 bmdata$qid[is.element(bmdata$prompt ,qs269[!is.element(qs269 ,tmp1 <-union(tmp2 ,qs259))])]<-

15

140 bmdata$qid[is.element(bmdata$prompt ,qs289[!is.element(qs289 ,tmp2 <-union(tmp1 ,qs269))])]<-

16

141 bmdata$qid[is.element(bmdata$prompt ,qs306[!is.element(qs306 ,tmp1 <-union(tmp2 ,qs289))])]<-

17

142 bmdata$qid[is.element(bmdata$prompt ,qs330[!is.element(qs330 ,tmp2 <-union(tmp1 ,qs306))])]<-

18
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143 bmdata$qid[is.element(bmdata$prompt ,qs344[!is.element(qs344 ,tmp1 <-union(tmp2 ,qs330))])]<-

19

144 bmdata$qid[is.element(bmdata$prompt ,qs360[!is.element(qs360 ,tmp2 <-union(tmp1 ,qs344))])]<-

20

145 bmdata$qid[is.element(bmdata$prompt ,qs379[!is.element(qs379 ,tmp1 <-union(tmp2 ,qs360))])]<-

21

146 bmdata$qid[is.element(bmdata$prompt ,qs391[!is.element(qs391 ,tmp2 <-union(tmp1 ,qs379))])]<-

22

147 bmdata$qid[is.element(bmdata$prompt ,qs403[!is.element(qs403 ,tmp1 <-union(tmp2 ,qs391))])]<-

23

148 bmdata$qid[is.element(bmdata$prompt ,qs421[!is.element(qs421 ,tmp2 <-union(tmp1 ,qs403))])]<-

24

149 bmdata$qid[is.element(bmdata$prompt ,qs434[!is.element(qs434 ,tmp1 <-union(tmp2 ,qs421))])]<-

25

150 bmdata$qid[is.element(bmdata$prompt ,qs450[!is.element(qs450 ,tmp2 <-union(tmp1 ,qs434))])]<-

26

151 bmdata$qid[is.element(bmdata$prompt ,qs467[!is.element(qs467 ,tmp1 <-union(tmp2 ,qs450))])]<-

27

152

153 #questions unique to each unit

154 un1 <-unique(bmdata$prompt[bmdata$qid ==1])

155 un2 <-unique(bmdata$prompt[bmdata$qid ==2])

156 un3 <-unique(bmdata$prompt[bmdata$qid ==3])

157 un4 <-unique(bmdata$prompt[bmdata$qid ==4])

158 un5 <-unique(bmdata$prompt[bmdata$qid ==5])

159 un6 <-unique(bmdata$prompt[bmdata$qid ==6])

160 un7 <-unique(bmdata$prompt[bmdata$qid ==7])

161 un8 <-unique(bmdata$prompt[bmdata$qid ==8])

162 un9 <-unique(bmdata$prompt[bmdata$qid ==9])

163 un10 <-unique(bmdata$prompt[bmdata$qid ==10])

164 un11 <-unique(bmdata$prompt[bmdata$qid ==11])

165 un12 <-unique(bmdata$prompt[bmdata$qid ==12])

166 un13 <-unique(bmdata$prompt[bmdata$qid ==13])

167 un14 <-unique(bmdata$prompt[bmdata$qid ==14])

168 un15 <-unique(bmdata$prompt[bmdata$qid ==15])

169 un16 <-unique(bmdata$prompt[bmdata$qid ==16])

170 un17 <-unique(bmdata$prompt[bmdata$qid ==17])

171 un18 <-unique(bmdata$prompt[bmdata$qid ==18])

172 un19 <-unique(bmdata$prompt[bmdata$qid ==19])

173 un20 <-unique(bmdata$prompt[bmdata$qid ==20])

174 un21 <-unique(bmdata$prompt[bmdata$qid ==21])

175 un22 <-unique(bmdata$prompt[bmdata$qid ==22])

176 un23 <-unique(bmdata$prompt[bmdata$qid ==23])

177 un24 <-unique(bmdata$prompt[bmdata$qid ==24])

178 un25 <-unique(bmdata$prompt[bmdata$qid ==25])

179 un26 <-unique(bmdata$prompt[bmdata$qid ==26])

180 un27 <-unique(bmdata$prompt[bmdata$qid ==27])

181

182 AllUniqueQs <-list(un1 ,un2 ,un3 ,un4 ,un5 ,un6 ,un7 ,un8 ,un9 ,un10 ,un11 ,un12 ,un13 ,un14 ,un15 ,un16 ,

un17 ,un18 ,un19 ,un20 ,un21 ,un22 ,un23 ,un24 ,un25 ,un26 ,un27)

183

184 sink("AllUniQuestions")

185 lapply(AllUniqueQs ,print)

186 sink()

187 lapply(AllUniqueQs , function(x) write.table( data.frame(x), ’test.csv’ , append= T, sep=

’,’ ))
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188

189 #going to write a few things to file:

190 write.csv(bmdata , file="bmdata.csv")

191 write.csv(uniquedf ,file="allQuestions.csv")

192

193 #get only first -presentation data , remove students who were absent

194 #ie , answers not graded 1 or 0

195 bmdata1n <-subset(bmdata , X1st.pres==’1’ & correct!=’NA’)

196

197 #create unique ids for items

198 bmdata1n <-transform(bmdata1n ,item_id=as.numeric(factor(prompt)))

199 #unique response id

200 bmdata1n <-transform(bmdata1n ,resp_id=as.numeric(factor(response)))

201

202 ################### new bmdata with respLab fixed , plus corresp and corresplab!!!!!!!!!!!!

203 bmdata1n <-read.csv("bmdata1n.csv")

204

205 #func <-function(x){

206 # as.numeric(factor(x))

207 #}

208 #respLab <-by(bmdata1n$response , bmdata1n$prompt , func)

209 #head(respLab)

210 #unlist(respLab ,use.names=F)

211

212 write.csv(bmdata1n ,"bmdata1n.csv")

213

214 #allresp <-list()

215 #for(i in 1:27){

216 #allresp[i]<-bmdata1n$response[bmdata1n$resplab ==c(1,2,3,4,5) & bmdata1n$qid==i]

217 #}

218

219 #histogram of qids

220 hist(bmdata1n$qid ,breaks =1000)

221

222 #new bm

223 bmdata2 <-read.csv("bmdata2.csv",header=T,sep="\t")

224

225 #PLOTS

226 barplot(lis ,main="Number of new unique questions per benchmark", xlab="Benchmark",names.

arg=seq (1:27))

227

228 barplot(tab <-table(bmdata2$qid ,bmdata2$activity_id),col=rainbow (27),names.arg=seq (1:27) ,

main="Questions per Benchmark Colored -coded by Original Presentation",xlab="Benchmark

", ylim=c(0 ,7000))

229

230 #barplot(table(bmdata$activity_id,bmdata$qid),col=rainbow (27),names.arg=seq (1:27))

231

232 #item origin per benchmark

233 table(bmdata2$qid[bmdata2$BM ==17])

234 table(bmdata2$qid[bmdata2$BM ==19])

235 table(bmdata2$qid[bmdata2$BM==3])/sum(table(bmdata2$qid[bmdata2$BM==3]))

236

237 #students per benchmark

238 table(bmdata2$eid[bmdata2$BM ==17])

239

240 ####################################################################################
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241 #compare sparfa ’s predicts on bm1 to repeated items on bm2:

242 firsts <-subset(bmdata2 ,BM_2==’1’ & X1st.pres==’1’)

243 repqs <-subset(bmdata2 , BM_2==’2’ & X2nd.pres==’1’)

244

245 Cscal <-scale(t(C),center=T,scale=T)

246 Cscal <-as.data.frame(Cscal)

247 names(Cscal)<-c("F1","F2","F3","F4")

248

249 minfs <-as.matrix(apply(Cscal ,1,which.min))

250

251 newv <-vector ()

252

253 for(i in 1: length(minfs)){

254 if(minfs[i]==1){if(repqs$item_id[i] %in% c(228 ,55) == T){newv[i]<-1}else{newv[i]<-0}}

255 else if(minfs[i]==2){if(repqs$item_id[i] %in% c(54 ,190 ,55) == T){newv[i]<-1}else{newv[i]

<-0}}

256 else if(minfs[i]==3){if(repqs$item_id[i] %in% c(55 ,190) == T){newv[i]<-1}else{newv[i]<-

0}}

257 else if(minfs[i]==4){if(repqs$item_id[i] %in% c(203 ,55) ==T){newv[i]<-1}else{newv[i]<-0}}

258 }

259 #################################################################################

260

261 eid_grades <-read.csv("bm_grade_byEID.csv",header=T)

262

263 par(mfrow=c(3,1))

264 hist(eid_grades$grade ,breaks=c(seq(0,1,.01)), axes=F, main="",ylab="Count",xlab="Percent

of BM items answered correctly (all students , n=939)",col="grey")

265 axis(1,at=c(seq(0,1,.05) ,1))

266 axis(2,at=c(seq (0 ,100 ,10) ,100))

267

268 hist(eid_grades$grade[eid_grades$total >0], breaks=c(seq(0,1,.01)), axes=F, main="",ylab="

Count",xlab="Percent of BM items answered correctly (students attempting at least one

BM, n=845)",col="grey")

269 axis(1,at=c(seq(0,1,.05) ,1))

270 axis(2,at=c(seq(0,50 ,10) ,50))

271

272 hist(eid_grades$grade[(eid_grades$grade*.85+.15) >=.6], breaks=c(seq (0 ,1 ,.01)), axes=F,

main="",ylab="Count",xlab="Percent of BM items answered correctly (students

completeing the course , n=677)",col="grey")

273 axis(1,at=c(seq(0,1,.05) ,1))

274 axis(2,at=c(seq(0,50 ,10) ,50))

275

276 #cumulative histogram of answered questions

277 h<-hist(eid_grades$total ,breaks=seq(0,216,8))

278 h$counts <-cumsum(h$counts)

279

280 barplot(eid_grades$total ,names.arg=seq(1,27,1),ylim=c(0 ,1100))

281 barplot(h$counts ,names.arg=seq(0,208,8),ylim=c(0 ,1100))

282 barplot(h$counts)

283

284 plot(ecdf(eid_grades$total),verticals=T,do.points=F)

285 abline(h=949,lty=2)

286

287 plot(h,main="Cumulative histogram of students by BM items attempted",axes=F,xlab="Number

of BM items attempted",xlim=c(0 ,214),col="grey")

288 axis(1,at=c(seq(0,208,by=8) ,214),lwd=1,lwd.ticks=1,las=2)
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289 axis(2,at=seq(0,950,by=50),las=2)

290 abline(h=939,lty=2)

291 abline(v=)

292 totAns <-eid_grades$total

293

294 ###wide data for sparfa etc

295 #create unique ids for items

296 bmdata2 <-transform(bmdata2 ,item_id=as.numeric(factor(prompt)))

297 #unique response id

298 bmdata2 <-transform(bmdata2 ,resp_id=as.numeric(factor(response)))

299 write.csv(bmdata2 ,"bmdata2new.csv")

300 bmdata2 <-read.csv("bmdata2new.csv")

301 responses=subset(bmdata2[,c(5 ,26,29,30 ,31,32,33)], bmdata2$X1st.pres=="1" )

302

303 #remove items given only to one person

304 which(rowSums(table(responses$item_id ,responses$student_id))==1)

305 responses=subset(responses , item_id!=159 & item_id!=279 & item_id!=382 & item_id!=401)

306 wideresp=reshape(responses ,timevar="eid",idvar=c("item_id", "correct", "resp_id"),

direction="wide")

307 write.csv(wideresp ,"responses.csv")

308

309 itembystudent <-subset(responses[,c(1,5,6)])

310

311 itembystudent <-reshape(itembystudent , timevar="student_id", idvar="item_id",direction="

wide")

312 irtdata <-reshape(itembystudent , timevar="item_id", idvar="student_id",direction="wide")

313 irtdata <-reshape(itembystudent , timevar="item_id", idvar="student_id",direction="wide")

314 write.csv(itembystudent , "itembystudent.csv")

315

316 #qid by student to code as incorrect unattempted quizzes

317 # cut responses up into separate files by benchmark

318 for(i in 1:27){

319 abc <-subset(responses[responses$qid==i,c(1,5,6)])

320 abc <-reshape(abc ,timevar="student_id", idvar="item_id", direction="wide")

321 filename <- paste(i, ".csv", sep="")

322 write.csv(abc ,filename)

323 }

324 ####################### PCA on all questions?

325 pcadata <-subset(responses , correct!=’NA’)

326 pcafit1 <-princomp(cbind(pcadata$item_id[q],pcadata$correct))

327 princomp(subset(pcadata$correct , pcadata$qid=="1"))

328

329 ##########################################################################

330 #impute data #might need to go long to wide to long to get NAs

331

332 library(missForest)

333 dat.imp <-missForest(itembystudent [,-1])

334 impute2 <-as.matrix(dat.imp$ximp)

335

336 pca1 <-princomp(t(impute2))

337 paf8 <-fa(t(impute2),8,,fm="pa",rotate="none")

338 eigs <-pca1$sdev^2

339 percentvar <-eigs*100/sum(eigs)

340

341 ##number of NAs

342 sum(is.na(itembystudent))
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343 #[1] 313910

344 #percent of data unobserved for n=845

345 313910/(845*540)

346 #0.6879% of the data is unobserved

347

348

349 library(qgraph)

350 barplot(table(tagdata$V13 ,tagdata$numbs),col=rainbow(length(unique(tagdata$V13))))

351 par(mfrow=c(1,3))

352 ## W/a hist:

353 h1 = hist(scale(W), plot=FALSE , breaks =50)

354 h2 = hist(scale(disc), plot=FALSE ,breaks =70)

355 h2$counts = - h2$counts

356 hmax = max(h1$counts)

357 hmin = min(h2$counts)

358 X = c(h1$breaks , h2$breaks)

359 xmax = max(X)

360 xmin = min(X)

361 plot(h1 , ylim=c(-40,40), col="grey", xlim=c(-4,4), main="",xlab="W/a")

362 lines(h2, col="white")

363 legend("topright", c("SPARFA", "MIRT"), fill=c("grey","white"))

364

365 # C/theta hist:

366 h1 = hist(scale(t(C)), plot=FALSE , breaks =50)

367 h2 = hist(scale(thet), plot=FALSE ,breaks =50)

368 h2$counts = - h2$counts

369 hmax = max(h1$counts)

370 hmin = min(h2$counts)

371 X = c(h1$breaks , h2$breaks)

372 xmax = max(X)

373 xmin = min(X)

374 plot(h1 , ylim=c(-45, 45), col="grey", xlim=c(xmin , xmax),main="", xlab=expression(C/paste

(theta)),yaxt="n", ylab=NA)

375 lines(h2, col="white")

376

377 #diff/M hist:

378 h1 = hist(M, plot=FALSE , breaks =60)

379 h2 = hist(difs , plot=FALSE ,breaks =60)

380 h2$counts = - h2$counts

381 hmax = max(h1$counts)

382 hmin = min(h2$counts)

383 X = c(h1$breaks , h2$breaks)

384 xmax = max(X)

385 xmin = min(X)

386 plot(h1 , ylim=c(hmin , hmax), col="grey", xlim=c(-4,6), main="", xlab="M/d", yaxt="n",

ylab=NA)

387 lines(h2, col="white")

388 legend("topright", c("SPARFA", "MIRT"), fill=c("grey","white"))

389 #text(5,20," SPARFA (top)")

390 #text(5,-20,"MIRT (bottom)")

391

392 hist(difs ,breaks =40,col="grey",main="",xlab="a (discrimination)",ylab="Item frequency")

393 abline(v=0.5,col="red")

394 boxplot(disc ,add=T,boxwex=5, staplewex=3,ylim=c(-1,4),horizontal=T, outline=F, at=2)

395

396 #########################################
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397 # SPARFA STUFF

398 rm(C,W,M,est ,probs ,probsv ,probab ,as ,theta ,probabv)

399

400 C<-read.csv("new_sparfac1.csv",header=F)

401 W<-read.csv("new_sparfaw1.csv",header=F)

402 M<-W[,ncol(W)]

403 W<-W[,-ncol(W)]

404 C<-as.matrix(C)

405 W<-as.matrix(W)

406 M<-as.matrix(M)

407 M<-matrix(rep(M,ncol(C)),nrow=nrow(W))

408

409 est <-(W%*%C)+M

410

411 #Csd <-apply(C,1,sd)

412 #Cmean <-apply(C,1,mean)

413 #Cstd <-(C-Cmean)/Csd

414

415 logistic <-function(x){1/(1+exp(-x))}

416 rbern <-function(p,n=1){sims <-sample (0:1, size=n, replace=TRUE ,prob=c(1-p,p))

417 return(sims)}

418

419 probs <-logistic(est)

420 probsv <-matrix(probs ,ncol=1,byrow=FALSE)

421 predict <-sapply(probs ,rbern)

422

423 as<-read.csv("mirt2_coefs_formatted.csv",sep="\t",header=F)

424 theta <-read.csv("mirt2_fscores_formatted.csv",sep=’\t’,header=F)

425 fls <-read.csv("small_mirt3_summary.csv",sep=’\t’,header=F)

426

427 as<-read.csv("small_mirt3_coefs.csv", sep=’\t’,header=F)

428 theta <-read.csv("small_mirt3fscores.csv",sep=’\t’, header=F)

429 fls <-read.csv("small_mirt3_summary.csv",sep=’\t’,header=F)

430

431 as<-read.csv("mirtk2_coefs.csv",sep=’\t’,header=F)

432 theta <-read.csv("mirtk2fscores.csv",sep=’\t’,header=F)

433 d<-as.matrix(as[,ncol(as)])

434 as<-as.matrix(as[,-ncol(as)])

435 theta <-as.matrix(theta)

436 fls <-as.matrix(fls)

437

438 Tsd <-apply(theta ,2,sd)

439 Tmean <-apply(theta ,2,mean)

440 Tstd <-(theta -Tmean)/Tsd

441

442 twopl <-function(as,theta){

443 probs1 <-matrix(0,nrow(as),nrow(theta))

444 for(i in 1:535){

445 for(j in 1:838){

446 probs1[i,j]<-as.numeric ((1/(1+exp(-1*(as[i,-1]*theta[j,1]+as[i,2])))))}}

447 return(probs1);

448 }

449

450 probab <-matrix(twopl(as,theta),nrow=nrow(as),ncol=nrow(theta),byrow=T)

451

452 probab <-logistic ((as[,-ncol(as)]%*%t(theta))+rep(as[,ncol(as)],nrow(theta)))
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453

454 xx<-((as%*%t(theta))+rep(d,nrow(theta)))

455 probab <-logistic(xx)

456 probabv <-matrix(probab ,ncol=1,byrow=FALSE)

457

458 cor(probabv ,probsv)

459 cor(as.vector(C),as.vector(t(theta)))

460 cor(as.vector(W),as.vector(as))

461 cor(M[,1],d)

462

463 cor(probs ,probab)

464

465 itemplot(mirt2 ,8)

466 ##########################################################################

467 #IRT?

468

469 #gbook <-cbind(bmdata1n[,c(2,22 ,26)])

470 #gbook <-gbook[which(gbook$item_id!=448 & gbook$item_id!=399 & gbook$item_id!=278) ,]

471 #remove items only given to one person

472 #edit(gbook)

473 #library(ltm)

474 #or

475 library(mirt)

476

477 #reshape data to wide format with just id by item (for irt)

478 #gbook_wide <-reshape(gbook , idvar=" student_id", timevar ="item_id", direction ="wide")

479 #lots of missing data because everyone hasn ’t seen the same questions

480 #dim(gbook_wide)

481 #descript(gbook_wide)

482

483 #remove student column

484 #gbw <-gbook_wide[,-1]

485 #write.csv(gbw , "responses.csv")

486

487 #determine how many NAs in each column

488 which(sapply(itembystudent , function(y)sum(length(which(is.na(y))))/length(y))==1)

489 #plain irt

490 irtdata <-itembystudent

491 irtdata$correct_na.1842 <-NULL

492 irtdata$correct_na.1385 <-NULL

493 irtdata$correct_na.1391 <-NULL

494 irtdata$correct_na.1622 <-NULL

495 irtdata$correct_na.1580 <-NULL

496 irtdata$correct_na.221 <-NULL

497 irtdata$correct_na.1162 <-NULL

498 irtdata$correct_na.1812 <-NULL

499 ##super annoying bc wants student by item , not item by student

500 ##remove missing rows

501 irtdata <-as.data.frame(t(as.matrix(irtdata)))

502 irtdata$"81771"<-NULL

503 irtdata$"83044"<-NULL

504 irtdata$"155758"<-NULL

505 irtdata$"83830"<-NULL

506 irtdata$"66662"<-NULL

507

508 ##############################
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509 #items with no score

510 irtdata$Q.159 <-NULL

511 irtdata$Q.382 <-NULL

512

513 #items with only NAs

514 irtdata$Q.279 <-NULL

515 irtdata$Q.450 <-NULL

516 irtdata$Q.401 <-NULL

517

518 #how many zero rows?

519 irtdata <-irtdata[-(which(rowSums(irtdata[,-1],na.rm=T) <=1)),]

520 irtdata$correct_na.450 <-NULL

521

522 which(colSums(irtdata[,-1],na.rm=T)==0)

523 #761 5497 5793 24769 111473 111505

524 #96 688 725 838 842 843

525 studentlist <-irtdata [,1]

526

527 irtdata2 <-irtdata[which ((( rowSums(irtdata[,-1],na.rm=T)/214)*.85+.15) >.57) ,]

528 irtdata2$correct_na.508 <-NULL

529 irtdata2$correct_na.140 <-NULL

530 irtdata3 <-irtdata[which ((( rowSums(irtdata[,-1],na.rm=T)/214)*.85+.15) >.80,]

531 irtdata3 <-t(irtdata2)

532 write.csv(irtdata3 , "irtdata3.csv")

533

534 #mirt1 <-mirt(irtdata[,-1],1, technical = list(removeEmptyRows=T), SE=T)

535

536 mirt2 <-mirt(irtdata[,-1],2, method="QMCEM")

537 mirt3 <-mirt(irtdata[,-1],3, method="QMCEM")

538

539 mirt31 <-mirt(irtdata[,-1],8,method="QMCEM")

540 mirt4 <-mirt(irtdata [,-1],27, method="QMCEM")

541 mirt5 <-confmirt(irtdata [,-1],27)

542 plot(mirt2 , type="trace")

543

544 mirt1s <-mirt(irtdata2 [,-1],1, method="QMCEM")

545 mirt2s <-mirt(irtdata2 [,-1],8,method="QMCEM")

546 mirt3s <-mirt(irtdata2 [,-1],27,method="QMCEM")

547

548 #summary

549 summary(mirt1)

550 #latent trait estimates

551 fscores(mirt1)

552

553 #withimputeddata

554 mirt_imp <-mirt(itembystudent.imp$ximp ,1)

555

556 #polytomous

557 mirt_pol <-mirt()

558

559 cat(capture.output(coef(mirt2 , QMC=T)),file="mirtk2_coefs.txt",sep="\n")

560 cat(capture.output(summary(mirt2)),file="mirtk2_summary.txt",sep="\n")

561 cat(capture.output(fscores(mirt2 , QMC=T)),file="mirtk2fscores.txt",sep="\n")

562 cat(capture.output(fscores(mirt4 ,method="MAP"),file="small_mirt1fscores.txt",sep="\n")

563

564 fitmirt3 <-mirt(gbw ,1 ,...)
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565

566 ItemResponseTheoryData <-gbook

567 names(ItemResponseTheoryData)<-c("Subj","Correct","Item")

568 write.csv(ItemResponseTheoryData , file="ItemResponseTheoryData.csv")

569

570 ########## make IRT figures

571 par(mfrow=c(1,3))

572

573 curve ((1/(1+ exp(-(x-.5)))),main="1PL (Rasch)",from=-4,to=4, ylim=c(0,1), yaxt="n",xaxt="n

",xlab=expression(paste(theta)), ylab="P( y= 1 | b= .5)")

574 axis(2,at=seq(0,1,.1))

575 axis(1,at=seq(-4,4,1))

576 segments (.5,0,.5,.5, lty =2)

577 segments (-5,.5,.5,.5,lty=2)

578 text(-2,.8, expression(paste(frac (1,1+e^{-(theta -.5)}))))

579

580 curve ((1/(1+ exp(-2*(x-.5)))),main="2PL",from=-4,to=4, ylim=c(0,1), yaxt="n",xaxt="n",xlab

=expression(paste(theta)), ylab="P( y=1 | b=.5, a=2 )")

581 axis(2,at=seq(0,1,.1))

582 axis(1,at=seq(-4,4,1))

583 segments (.5,0,.5,.5, lty =2)

584 segments (-5,.5,.5,.5,lty=2)

585 text(-2,.8, expression(paste(frac (1,1+e^{ -2(theta -.5)}))))

586

587 curve (.2+((1 -.2)/(1+exp(-2*(x-.5)))),main="3PL", from=-4,to=4, ylim=c(0,1), yaxt="n",xaxt

="n",xlab=expression(paste(theta)), ylab="P( y=1 | b=.5, a=2, c=.2 )")

588 axis(2,at=seq(0,1,.1))

589 axis(1,at=seq(-4,4,1))

590 abline(h=.2,lty=2)

591 segments (.5,0,.5,.6, lty =2)

592 segments (-5,.6,.5,.6,lty=2)

593 text(-2,.8, expression(paste (.2+ frac (1-.2,1+e^{-2(theta -.5)}))))

594 ###############################################

595

596 #number of total responses

597 length(dataset$correct)

598 #number of total correct responses

599 sum(dataset$correct ,na.rm=T)

600

601 #number of first tries

602 num1 <-sum(dataset$X1st.pres)

603 #number of second tries

604 num2 <-sum(dataset$X2nd.pres)

605 #number of third tries

606 num3 <-sum(dataset$X3rd.pres)

607 #etc

608 num4 <-sum(dataset$X4th.pres)

609 num5 <-sum(dataset$X5th.pres)

610 num6 <-sum(dataset$X6th.pres)

611 num7 <-sum(dataset$X7th.pres)

612 num8 <-sum(dataset$X8th.pres)

613 num9 <-sum(dataset$X9th.pres)

614 num10 <-sum(dataset$X10th.pres)

615 #concatenate

616 attempts <-c(num1 ,num2 ,num3 ,num4 ,num5 ,num6 ,num7 ,num8 ,num9 ,num10)

617 #show plot
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618 plot (1:10, attempts ,type="l")

619 ###################################################################################

620

621 #only mcqs

622 dataset_mcq <-subset(dataset , type=="choice")

623 #only certain columns

624

625 length(unique(dataset_mcq$prompt))

626 length(unique(dataset_mcq$quiz_answer_id))

627

628 table3=table(dataset_mcq$activity_id ,dataset_mcq$prompt)

629 #total pool of items for each activity?

630 rowSums(table3 !=0)

631

632 table4=table(dataset_mcq$prompt ,dataset_mcq$student_id)

633 #items per student

634 colSums(table4 !=0)

635 summary(colSums(table4 !=0))

636

637 ###########################################################################

638 #data for first attempts only , and for MCQ

639 firstdata <-subset(dataset , X1st.pres==’1’ & type==’choice ’)

640 firstdata <-firstdata[-c(6 ,7 ,8 ,9 ,13:21 ,24:35)]

641 #what represents unique questions?

642 length(unique(firstdata$prompt))

643 length(unique(firstdata$quiz_answer_id))

644 #create unique ids for items

645 firstdata <-transform(firstdata ,item_id=as.numeric(factor(prompt)))

646

647 #remove rows with NA prompts

648

649 #get rid of answers that are not graded 1 or 0

650 firstdata <-firstdata[-which(is.na(firstdata$correct)),]

651 firstdata1 <-firstdata[c(1,2,3,4,9,11)]

652

653 #plot item frequency

654 hist(firstdata$item_id,breaks=length(firstdata$item_id))

655 hist(firstdata$activity_id ,breaks =100)

656

657 length(unique(firstdata$item_id))

658 #544

659 length(unique(firstdata$student_id))

660 #844

661 length(unique(firstdata$activity_id))

662 #28

663

664 #how many questions for each activity id?

665 plot(firstdata$activity_id ,firstdata$item_id)

666 table1 <-table(firstdata$activity_id ,firstdata$item_id)

667 margin.table(table1 ,1)

668 #number of unique questions per activity_id

669 rowSums(table1 !=0)

670

671 table2 <-table(firstdata$item_id ,firstdata$student_id)

672

673 #students per item
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674 rowSums(table2 !=0)

675 #items per student

676 colSums(table2 !=0)

677

678 #reshape data to wide format with just id by item (for irt)

679 firstdata_wide <-reshape(firstdata1[order(firstdata$student_id),], timevar="item_id",

idvar=c("eid","student_id","activity_id","quiz_answer_id"),direction="wide")

680 #lots of missing data because everyone hasn ’t seen the same questions

681

682 library(ltm)

683 descript(firstdata_wide)

684

685 ###########################################################################

686 #time to deal with time; first convert to POSIX

687 dataset$graded_at<-strptime(dataset$graded_at , "%m/%d/%y %H:%M")

688 dataset$created_at<-strptime(dataset$created_at, "%m/%d/%y %H:%M")

689 dataset$updated_at<-strptime(dataset$updated_at, "%m/%d/%y %H:%M")

690 #I think graded_at and updated_at are the same , but let ’s check

691 x<-dataset$updated_at== dataset$graded_at

692 table(x)

693 #not quite , got 8 false , 159754 true; where are those falses?

694 falses <-dataset[which(dataset$graded_at!=dataset$updated_at),]

695

696 #"created at" appears to be when students started , while "updated at" appears to be when

they stopped

697 length(unique(dataset$graded_at))

698 #2245

699 length(unique(dataset$updated_at))

700 #3611

701 length(unique(dataset$created_at))

702 #3611

703

704 table(dataset$type)

705 #choice text

706 #166493 3380

707 sum(is.na(dataset$type))

708 #[1] 1906

709

710 #there are 14151 rows with correct = NA

711 sum(is.na(dataset$correct))

712 #[1] 14151

713 length(dataset$correct)

714 #[1] 171779

715

716 #create an assignment duration variable

717 dataset$duration <-dataset$updated_at -dataset$created_at

718 head(dataset$duration)

719 str(dataset$duration)

720 table(dataset$duration)

721

722 #calculate time difference between presentations

723 timebtw12 <-dataset$duration

724 for(i in 1: length(dataset$eid)){

725 if(dataset[i ,13]== ’1’){timebtw12[i]<-dataset[i,26]- dataset[i-1 ,26]} else {timebtw12[i]<-

’NA’}}

726 timebtw23 <-dataset$duration
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727 for(i in 1: length(dataset$eid)){

728 if(dataset[i ,14]== ’1’){timebtw23[i]<-dataset[i,26]- dataset[i-1 ,26]} else timebtw23[i]<-’

NA’}

729 timebtw34 <-dataset$duration

730 for(i in 1: length(dataset$eid)){

731 if(dataset[i ,15]== ’1’){timebtw34[i]<-dataset[i,26]- dataset[i-1 ,26]} else timebtw34[i]<-’

NA’}

732 timebtw45 <-dataset$duration

733 for(i in 1: length(dataset$eid)){

734 if(dataset[i ,16]== ’1’){timebtw45[i]<-dataset[i,26]- dataset[i-1 ,26]} else timebtw45[i]<-’

NA’}

735 timebtw56 <-dataset$duration

736 for(i in 1: length(dataset$eid)){

737 if(dataset[i ,17]== ’1’){timebtw56[i]<-dataset[i,26]- dataset[i-1 ,26]} else timebtw56[i]<-’

NA’}

738 timebtw67 <-dataset$duration

739 for(i in 1: length(dataset$eid)){

740 if(dataset[i ,18]== ’1’){timebtw67[i]<-dataset[i,26]- dataset[i-1 ,26]} else timebtw67[i]<-’

NA’}

741 timebtw78 <-dataset$duration

742 for(i in 1: length(dataset$eid)){

743 if(dataset[i ,19]== ’1’){timebtw78[i]<-dataset[i,26]- dataset[i-1 ,26]} else timebtw78[i]<-’

NA’}

744 timebtw89 <-dataset$duration

745 for(i in 1: length(dataset$eid)){

746 if(dataset[i ,20]== ’1’){timebtw89[i]<-dataset[i,26]- dataset[i-1 ,26]} else timebtw89[i]<-’

NA’}

747 timebtw910 <-dataset$duration

748 for(i in 1: length(dataset$eid)){

749 if(dataset[i ,21]== ’1’){timebtw910[i]<-dataset[i,26]- dataset[i-1 ,26]} else timebtw910[i]

<-’NA’}

750 dataset <-cbind(dataset ,timebtw12 , timebtw23 , timebtw34 , timebtw45 , timebtw56 , timebtw67 ,

timebtw78 , timebtw89 , timebtw910)

751 ##########################################################################

752

753 sp8 <-read.csv("bm1k4w.csv",header=F)

754 sp8 <-read.csv("new_sparfaw8.csv",header=F)

755 dad8 <-cbind(rep(c("C1","C2","C3","C4"),rep(8,4)), rep(seq(1,8,1) ,4))

756 dad8 <-cbind(rep(c("F1","F2","F3","F4","F5","F6","F7","F8"),rep (535 ,8)), rep(seq(1,535,1)

,8))

757 dad8 <-cbind(rep(c("F1","F2","F3","F4","F5","F6","F7","F8","F9","F10","F11","F12","F13","

F14","F15","F16","F17","F18","F19","F20","F21","F22","F23","F24","F25","F26","F27"),

rep (535 ,27)), rep(seq (1 ,535,1) ,27))

758 sp8d <-sp8[,ncol(sp8)]

759 sp8 <-sp8[,-ncol(sp8)]

760 sp8 <-as.matrix(sp8)

761 sp8v <-matrix(sp8 ,ncol=1,byrow=F)

762 dad8 <-cbind(dad8 ,sp8v)

763

764 library(qgraph)

765 library(igraph)

766

767 g<-graph.edgelist(dad8[,1:2], directed=F)

768 E(g)$weight=as.numeric(dad8 [,3])

769 plot(g,layout=layout.fruchterman.reingold ,edge.width=E(g)$weight)

770 tkplot(g,edge.width=E(g)$weight/15,vertex.size =1)
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771

772 GradeIdea <-read.csv("GradesAndIdeaDensity2.csv", sep="\t",header=T)

773 bmdata2 <-read.csv("bmdata2new.csv")

774 bms <-bmdata2[,c("eid","BM_2","correct")]

775

776 detach(GradeIdea)

777 attach(GradeIdea)

778 GradeIdea <-GradeIdea [( GradeIdea$grade*.85+.15) >.6,]

779 GradeIdea <-GradeIdea [( GradeIdea$Density93 >.1 & GradeIdea$Density211 >.1 & GradeIdea$

Density232 >.2 & GradeIdea$Density442 >.1) ,]

780 GradeIdea_nona <-missForest(GradeIdea)

781

782 pairwise.t.test(x=adat$Density ,g=adat$Assignment , p.adjust.method="bonf",paired=T)

783

784 adata <-GradeIdea[,c(2,6,9,15,21,27)]

785 adat <-reshape(adata ,varying=c("Density93","Density211","Density232","Density442"),v.names

="Density",timevar="Assignment",times=c("Density93","Density211","Density232","

Density442"),direction="long")

786 adat$Assignment <-as.factor(adat$Assignment)

787

788 names(adata)[names(adata)=="grade"]<-"Grade"

789 names(adata)<-c("EID", "Grade", "ID.93", "ID.211","ID.232","ID.442")

790

791 aov.out=aov(Density~Assignment+ Error(EID/Assignment),data=adat)

792 summary(aov.out)

793

794 fit93 <-lm(GradeIdea$grade~GradeIdea$Density93)

795 #363, 315, 784, 773, 637

796 fit211 <-lm(GradeIdea$grade~GradeIdea$Density211)

797 #428, 785, 741 (542 ,243)

798 fit232 <-lm(GradeIdea$grade~GradeIdea$Density232)

799 #325,674, 406 (406 ,16 ,818)

800 fit442 <-lm(GradeIdea$grade~GradeIdea$Density442)

801 #637 ,815 ,212 ,730 601

802 fitall <-lm(GradeIdea$grade~GradeIdea$Density442+GradeIdea$Density93+GradeIdea$Density232+

GradeIdea$Density211)

803

804 adat$Assignment <-as.factor(adat$Assignment)

805 library(lme4)

806 library(missForest)

807

808 adat_nona <-missForest(adat)

809 m1<-lmer(grade~Density +(1+ Density|EID),adat)

810 m2<-lmer(grade~Density +(1| EID),adat)

811 m1<-lmer(grade~Density +(1| Assignment),adat_sc)

812 adat_sc<-adat

813 adat_sc$grade <-scale(adat_sc$grade)

814 adat_sc$Density <-scale(adat_sc$Density)

815

816 library(np)

817 fitnp93 <-npreg(GradeIdea$grade~GradeIdea$Density93)

818 fitnp211 <-npreg(GradeIdea$grade~GradeIdea$Density211)

819 fitnp232 <-npreg(GradeIdea$grade~GradeIdea$Density232)

820 fitnp442 <-npreg(GradeIdea$grade~GradeIdea$Density442)

821

822 plot(GradeIdea$grade~GradeIdea$Density93)
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823 abline(fitnp93)

824 par(mfrow=c(1,4))

825 plot(fitnp93 ,ylim=c(0,1),plot.errors.method="bootstrap")

826 points(GradeIdea$grade~GradeIdea$Density442)

827

828 fitw93 <-lm(GradeIdea$grade~GradeIdea$Words93)

829 fitw211 <-lm(GradeIdea$grade~GradeIdea$Words211)

830 fitw232 <-lm(GradeIdea$grade~GradeIdea$Words232)

831 fitw442 <-lm(GradeIdea$grade~GradeIdea$Words442)

832 plot(GradeIdea$grade~GradeIdea$Words93)

833

834 ChatData <-read.csv("chat_data.csv",header=T,sep="\t")

835 #calculate the number of contributions

836 numContribsTot <-as.data.frame(table(ChatData$eid[ChatData$role=="Student"]))

837

838 exptd <-as.data.frame(table(ChatData$eid[ChatData$role=="Student"& ChatData$topic_id ==64])

)

839 exptd <-exptd[exptd$Freq >0,]

840 exptdq <-as.data.frame(table(bms$eid[bms$correct =="1" & (bms$BM_2==2 | bms$BM_2==3) ]))

841 exptd <-merge(exptd ,exptdq ,by="Var1")

842 names(exptd)<-c("eid","Chats","BM_score")

843 plot(exptd$BM_score ,exptd$Chats)

844 big5$BM_score <-big5$BM_score/max(big5$BM_score)

845

846 expnp <-npreg(Chats~BM_score ,data=exptd ,gradients=TRUE)

847 plot(expnp ,plot.errors.method="bootstrap",xaxt=’n’)

848 npsigtest(expnp)

849

850 big5 <-as.data.frame(table(ChatData$eid[ChatData$role=="Student"& ChatData$topic_id ==311])

)

851 big5 <-big5[big5$Freq >0,]

852 big5q <-as.data.frame(table(bms$eid[bms$correct =="1" & (bms$BM_2==18) ]))

853 big5 <-merge(big5 ,big5q ,by="Var1")

854 names(big5)<-c("eid","Chats","BM_score")

855 big5$BM_score <-big5$BM_score/max(big5$BM_score)

856

857 expnp <-npreg(Chats~BM_score ,data=big5 ,gradients=TRUE)

858 plot(expnp ,plot.errors.method="bootstrap",xaxt=’n’)

859 npsigtest(expnp)

860

861 learning <-as.data.frame(table(ChatData$eid[ChatData$role=="Student"& (ChatData$topic_id

==256 | ChatData$channel_name=="classChat -4-760" | ChatData$channel_name=="classChat

-4-746")]))

862 learning <-learning[learning$Freq >0,]

863 learning <-merge(GradeIdea [,1:6],learning ,by,x="EID",by.y="Var1")

864 plot(learning$Freq ,learning$grade)

865 learningq <-as.data.frame(table(bms$eid[bms$correct =="1" & (bms$BM_2==15) ]))

866 learning <-merge(learning ,learningq ,by="Var1")

867 plot(learning$Freq.y,learning$Freq.x)

868

869 expnp <-npreg(Chats~BM_score ,data=learning ,gradients=TRUE)

870 plot(expnp ,plot.errors.method="bootstrap",xaxt=’n’)

871 npsigtest(expnp)

872

873 chatlm <-lm(grade~Freq ,data=bigd)

874 chatnp <-npreg(Grade~Freq ,data=bigd ,gradients=TRUE)
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875 plot(chatnp ,plot.errors.method="bootstrap",xaxt=’n’)

876 npsigtest(chatnp)

877

878 phobia <-as.data.frame(table(ChatData$eid[ChatData$role=="Student"& (ChatData$channel_name

=="classChat -4 -2236" | ChatData$channel_name=="classChat -4 -2223")]))

879 phobia <-phobia[phobia$Freq >0,]

880 therapy <-as.data.frame(table(ChatData$eid[ChatData$role=="Student"& ChatData$channel_name

=="classChat -4 -2223"]))

881 therapy <-therapy[therapy$Freq >0,]

882

883 bigd <-merge(GradeIdea ,numContribsTot ,by.x="EID",by.y="Var1")

884 names(bigd)[names(bigd)=="grade"]<-"Grade"

885 names(bigd)[names(bigd)=="Number of Chat Contributions"]<-"Freq"

886

887 plot(bigd$Grade ,bigd$Freq ,xlab="Number of Chat Contributions")

888

889 chatlm <-lm(grade~Freq ,data=bigd)

890 chatnp <-npreg(Grade~Freq ,data=bigd ,gradients=TRUE)

891 plot(chatnp ,plot.errors.method="bootstrap",xaxt=’n’)

892 npsigtest(chatnp)

893

894 #crosstabs for number of contributions per topic per person

895 bigtable <-table(ChatData$topic_id , ChatData$eid)

896 freqChatEid <-data.frame(bigtable)

897

898 plot(freqChatEid)

899 #wordclouds #notworking ...

900

901 library(tm)

902 library(wordcloud)

903 library(psych)

904 source93 <-VectorSource(GradeIdea$resp442)

905 corpus93=Corpus(source93)

906 corpus93=tm_map(corpus93 ,content_transformer(tolower))

907 corpus93=tm_map(corpus93 ,removeWords ,stopwords("english"))

908 corpus93=tm_map(corpus93 ,removePunctuation)

909 corpus93=tm_map(corpus93 ,removeNumbers)

910 corpus93=tm_map(corpus93 ,removeWords ,stopwords("english"))

911 corpus93=tm_map(corpus93 ,removeWords ,c("just","really"))

912 #corpus93=tm_map(corpus93 ,stemDocument)

913 dtm <-DocumentTermMatrix(corpus93)

914 dtm <-as.matrix(dtm)

915 wfreq <-colSums(dtm)

916 wfreq <-sort(wfreq ,decreasing=T)

917 words <-names(wfreq)

918 wordcloud(words [1:150] , wfreq [1:150])

919

920 ##############################################################

921 #creating images from Bahrick articles

922 y<-function(x){6.30+0.94*x-6.09*x*x+2.96*x*x*x-.41*x*x*x*x+3.88*lvl -.14*lvl*lvl -5.86*grd

+1.55*grd*grd +0.15*1.41}

923

924 lvl =5; grd =2.0

925 pcol <-c("red","blue","forestgreen")

926 x<-seq(0,log (40),by=log (40)/8)

927 lvl =5;
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928 plot(exp(x),y(x), type=’o’, ylim=c(0 ,20), col=pcol[1],pch=19, xlab="Retention interval (

years)", ylab="# of original items recalled")

929 lvl =3;

930 points(exp(x),y(x),type="o",pch=15,col=pcol [2])

931 lvl =1;

932 points(exp(x[exp(x) <=15]),y(x[exp(x) <=15]), col=pcol[3],type="o",pch=17,xlim=c(0 ,10))

933 legend("topright",legend=c("5 semesters", "3 semesters", "1 semester"), pch=c(19 ,15 ,17),

col=pcol ,title="Initial learning:")

934

935 #created from figure

936 y2<-function(x){ -6.751+.187*x -1.058*x*x-.023*x*x*x+algnum*9.525+ hsmnum*4.825 -4.922*canum

+0.852*cmnum +1.103*relnum +14.360*malev +9.181*grade +0.874*(relnum ^2) -3.356*(malev ^2)+

rscale*2.174- rtime*3.48+ gender*.392

937 -2.046*algnum*atime +.899*hsmnum*atime +1.751*cmnum*atime +0.528*relnum*atime +2.688*malev*

atime -1.134*grade*atime -0.446*rscale*atime -0.315*rtime*atime -2.011*gender*atime}

938

939 rscale =0; rtime =1; canum =0

940 hsmnum =1; algnum =1; cmnum =1; relnum =1; grade =4.0; malev =1; gender =0

941 atime=seq(0,log (50),by=log (50)/8)

942 plot(exp(atime),y2(atime),ylim=c(-100,0),type="o", col=pcol[1],pch=16,xlab="Retention

interval (years)",ylab="% decline on Algebra I retention test")

943

944 #rscale =0; rtime =1; canum =0

945 #hsmnum =2; algnum =2; cmnum =0; relnum =0; grade =4.0; malev=-3; gender =0

946 #atime=seq(0,log (50),by=log (50)/8)

947 #points(exp(atime),y2(atime),pch=18,type="o")

948

949 rscale =0; rtime =1; canum =0

950 hsmnum =1; algnum =1; cmnum =0; relnum =0; grade =4.0; malev=-3; gender =0

951 atime=seq(0,log (50),by=log (50)/8)

952 points(exp(atime),y2(atime),pch=17,col=pcol[3],type="o")

953

954 rscale =0; rtime =1; canum =0

955 hsmnum =1; algnum =1; cmnum =1; relnum =1; grade =4.0; malev =0; gender =0

956 atime=seq(0,log (50),by=log (50)/8)

957 points(exp(atime),y2(atime),pch=15,col=pcol[2],type="o")

958

959 legend("bottomleft",col=pcol ,legend=c("above calculus", "calculus", "1 below calculus"),

pch=c(16 ,15 ,17))

960 #created from Figure 2 on Bahrick and Hall , 1991
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