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Abstract 

 

 Laser Metal Deposition LMD is a hybrid manufacturing process consist of a laser 

deposition system combined with a 5-axis CNC milling system. During laser deposition many 

parameters and their interaction affect the dimensional accuracy of the part produced, powder flow 

rate, laser power and travel speed are some of these parameters. Sensing the acoustic emission 

during milling marching gives feedback information regarding depth of metal being cut subsequent 

part dimensions, if an error in dimensions is found certain actions, such as remaching, close loop 

control, or laser remelting can be carried out to correct it.  Thus a reliable hybrid manufacturing 

management system requires that a depth-of-cut detection system be integrated with the milling 

machine architecture. This work establishes, first a methodology to detect an acoustic emission 

signal, so that the acoustic emission characteristics of the milling could be analyzed. Second, it 

sought to relate these acoustic data to machining parameters to detect depth-of-cut. 
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INTRODUCTION 

 

 One of the difficulties in using an adaptive control and tool monitoring system is accurate 

representation of the variation in machining variables such as cutting speed, feed rate, and depth-

of-cut. In the end-milling process, particular changes in depth-of-cut must be carefully considered 

to ensure the effectiveness of the control system. 

 

 Many researchers have sought to control surface errors and radial and axial depth-of-cut 

using analytical models, simulation, force sensors, and other sensors. Choi [1] suggested an 

algorithm to estimate the cutting depth based on the pattern of cutting force. He found that the 

cutting force pattern is more useful for this purpose than its magnitude because its pattern reflects 

the change in cutting depth. However, magnitude is affected by a number of cutting variables, but 

not by the depth-of-cut.  

 

 Yang [2] suggested an analytical method to identify depth-of-cut variations based on 

cutting force profile features detected during end milling. Based on the profile characteristics of a 

single-flute, he studied end mill cutting forces and categorized them into three types. The same 

study categorized the cutting forces signals of both the single-flute end mill cutting and the 

multiple-flute end mill cutting based on the cutting process.  
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 Wan [3] predicted the cutting forces and the surface dimensional errors using iteration 

schemes. Using the finite element method, he devolved a general method to calculate static form 

errors in peripheral milling of thin-walled structures, and his simulation tool considered the 

complexity of the workpiece. 

 

  Li [4] presented a comprehensive time domain model for general end milling processes. 

The model measures variations in depth-of-cut using mode forms. The model can also consider 

additional general conditions such as cutting with a large axial depth-of-cut or small discontinued 

radial depth-of-cut. In addition to simulating the end milling process this method predicts a number 

of results for surface profiles and chatter boundaries.  

 

 Yonggang [5] examined cutting forces and categorized them into six classes according to 

a combination of cutting depths, and he proposed a finite-element model to study surface 

dimensional errors in peripheral milling of thin-walled workpieces for aerospace application. Such 

error prediction keeps the number of surface errors within permissible bounds.  

 

 To forecast a surface form error with the greatest efficiency and accuracy, Yonggang’s 

model relies on a set of flexible iterative rules with a double iterative algorithm. Prickett [6] 

presented an approach that uses ultrasonic sensors for online monitoring of depth-of-cut during the 

end milling processes. The proposed monitoring process tried to contribute to the development of 

more efficient tool management procedures and supporting infrastructure. However, sensor 

resolution is an important factor limiting performance. 

 

 This work used a fitting model with a Neural Network to represent the relationship between 

the acoustic emission signal and depth-of-cut. The output of the sensor and data of cutting 

conditions and tool status are fed to a neural network to measure operation quality during 

machining. After the network was trained, the inference system estimated the depth-of-cut in real 

time from the experimental sensor signal and the cutting conditions. The results of the monitoring 

algorithm can warn the operator to take the corrective actions to reach the required depth-of-cut. 

The difference between the desired depth-of-cut and the actual depth-of-cut may be a result of 

incorrect workpiece set-up, tool length offset change (tool wear), or irregularity of workpiece 

dimensions. Previous manufacturing processes may also lead to errors in depth-of-cut. For 

example, when a workpiece is manufactured by laser deposition, forging, or casting, the 

dimensions are not always accurate and uniform. 

 

 

 

EXPERIMENTAL SETUP 

 

Figure 1 shows a schematic diagram of the experimental set-up. The milling process was 

carried out on a Fadal vertical 5-Axis computer numerical control machine (3016L) using a carbide 

flat-end mill (0.5 in) to cut deposited stainless steel 316 workpieces. The control interface 

(National Instrument PXI 7240 and PXI 1250) provided the control and data acquisition.  An 

acoustic emission sensor (Kistler 8152B211) captured a high-frequency signal. The bandwidth of 

the AE sensor was 10 to 1000 kHz. The RMS signals were first fed through the data acquisition 

system and then recoded and processed using Labview software. A 500X digital microscopic 
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camera was used to detect tool status without disengaging the tool from the tool holder. The tool 

condition was documented from the bottom edge radius, which was measured in place with the aid 

of the vision system.  

 

Figure 1. Experimental Setup 

 

TOOL STATUS CATEGORIZATION 

 

This study classified tool status according to tool life or tool wear, which is caused by 

progressive loss of tool material during cutting and which thus changes the shape of the cutting 

edge. Image J software was used to convert tool wear from a pixel scale to micrometer scale.  Once 

the measuring scale was calibrated, tool wear was measured by counting pixels from the vision 

system and comparing the number with the scale on the reticle Figure 2.  

 

The international organization for standardization [7] recommends that the tool be 

considered worn-out and reached its end point at  300 µm. Here, the output was assigned a value 

of 1 (for a fresh tool with wear less than 130 µm), 2 (for an average tool between 130 µm and 300 

µm), or 3 (for a worn-out tool with wear greater than 300 µm). Figure 3 shows a fresh tool with 

10 µm tool wear and Figure 4 shows a worn-out tool with 320 µm tool wear. In both cases, the 

tool has four flutes with a different level of wear, so the tool wear value represents an average.  
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Figure 2. Tool Wear for 0.5 Inch End Mill 
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(a) 

 

(b) 

Figure 3. Tool Status (a) The Wear = 10 µm (b) The Wear = 320µm 

 

DESIGN OF EXPERIMENTS 

 

Most research has focused on the use of a force signal to detect, model, and control radial 

depth-of-cut and chip thickness [1-5], but this study used an acoustic emission sensor to predict 

axial depth-of-cut during end milling. The experiments described here were designed to use the 

most significant factors affecting the acoustic emission signal during the end milling process. 

Therefore, their outcomes are significant for the computation of depth-of-cut, and the model 

considers the cutting tool condition and the cutting variables. These factors include depth-of-cut, 

spindle speed, feed rate, and tool status. 

 

A four factor-three level (34) full factorial experimental design with three replications, a 

total of 243 cutting tests were run randomly, and a range of cutting conditions were collected. 
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Table 1. Factors and Levels Defined for Experimentation 

Depth of cut (mm) Cutting Speed (RPM) Feed Rate (mm/min) Tool Status 

0.5 1500 40 ≤130 µm 

1 3000 70 > 130 µm and ≤ 300 µm 

2 5000 100 >300 µm 

 

PREDICTION USING ARTIFICIAL NEURAL NETWORK MODELING 

 

              Artificial neural network is statistical machine learning tool established based on the idea 

of how neurons in human brain work. The neural network consists of layers and nodes called 

neurons the number of layers and neurons depends on the difficultly of the problem being modeled. 

The input and output layers have neurons equal to the number of the inputs and the outputs 

respectively. The neurons connected by synapses which take a value from an input neuron and 

multiply it by specific weight and output the results, neurons have more complicated purpose, they 

add together all outputs from all synapses and apply activation function. 

 

 An artificial neural network at least has three layers; input layer, hidden layer, and output 

layer. If X is the input data vector which in this work is 1 by 4 vector Figure 4, W(1) is weight 

matrix which is 4 by N matrix , where N is the number of neurons in the hidden layer, and Z(2) is 

the transfer function of second layer. 

 

Figure 4. Neural Network Architecture 
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Z(2) =  X × W(1)   (1) 

 

By applying transfer function to each element in Z(2) , a(2) activation function of second layer can 

be obtained by 

 

a(2)  =  f(Z(2))   (2) 

 

a(2)   has the same size as Z(2).Now by multiplying weight matrix of second layer 𝑊(2)  which 

is N by 1 matrix where there is only one output in our artificial neural network which is depth of 

cut 

 

Z(3) =  a(2) × 𝑊(2)   (3) 

 

Z(3) is the transfer function of third layer. Finally activation function is applied to Z(3)in order to 

obtain the estimate for depth of cut  𝑦′ 

 

𝑦′ =  f(Z(3))   (4) 

 

Without training the network the estimation error will be very large, training is the process of 

updating the weight matrix to minimize the cost function 𝐽 

 

𝐽 =  ∑
1

2
(𝑦 − 𝑦′)2   (5) 

 

 One of training algorithms can be used to train the ANN is a supervised learning algorithm 

called Backpropagation algorithm which adjust two parameters learning rate and momentum 

coefficient and keep them between 0 and 1.Equation 5 can be written as 

 

𝐽 =  ∑
1

2
(𝑦 − f(f(X𝑊(1))𝑊(2))

2
    (6) 
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 In order to save time and reduce calculations Gradient Descent method is used to guarantee 

searching for J in the correct direction and stop searching when smallest J is reached (cost function 

stops decreasing) by taken the partial derivative of 𝐽 with respect of W (
𝜕𝐽

𝜕𝑊
), when  

𝜕𝐽

𝜕𝑊
 is positive 

then the cost function is increasing and vice versa. This method is useful especially in multi-

dimensional problems. Gradient descent can be performed either after using of all training data 

(batch gradient descent) or after each input–output pair (sequential gradient descent). 

 

 The neural network was trained with 147 data points (cutting conditions) to estimate the 

weights (includes biases) of candidate designs, and 48 data points was used to estimate the non- 

training performance error of candidate designs and also used to stop training once the non-training 

validation error estimate stops decreasing. Also 48 data points was used as testing data to obtain 

an unbiased estimate for the predicted error of unseen non-training data. Training, validation, and 

testing data were randomly chosen from different cutting conditions from the data set consists of 

243data points (cutting conditions). 

 Figure 5 illustrates the mean square error versus iteration (Epochs) number, while using 

the Bayesian regularization training algorithm. 25 neurons was used with in the hidden layer in 

this work. The network was trained for 90 iterations, at which time the performance was changing 

dramatically, the best performance was 1.81084 at epoch 65. 

 

 

Figure 5. Neural network performance 
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ESTIMATION OF DEPTH-OF-CUT 

 

  Figure 6 shows the depth-of-cut estimated at 2 mm, 1 mm, and 0.5 mm with a feed rate of 

40 mm/min and a cutting speed of 5000 rpm. Clearly, the system can detect the depth-of-cut with 

a maximum acceptable error. The accuracy of depth-of-cut estimation depends on the quality of 

the acquired signal.  

 

 This work tested the efficiency of the model in estimating depth-of-cut in an interrupted 

cutting process. As shown in Figure 7, a 25.2 mm slot was made in the workpiece perpendicular 

to the machining direction. The depth-of-cut was 1 mm, the cutting speed was 4000 rpm, the feed 

rate was 30 mm/min, and the tool was fresh. 51 second is the time required for the tool to cross the 

gap (25.2/30), and 25 second is both engagement and disengagement time subtracted from 51 

seconds. Figure 8 shows that the model is able to distinguish the slot; thus the system is capable 

of detecting the engagement and the disengagement of the tool with the workpiece as well as the 

depth-of-cut. 

 

 

 

Figure 6. Shows the depth-of-cut estimated at 2 mm, 1 mm, and 0.5 mm with a feed rate of 40 

mm/min and a cutting speed of 5000 rpm 

 

 Figure 8 shows both the nominal and estimated depth of cut for inclined surface cutting. A 

10 mm ramp was created at the end of 60 mm cutting with 2 mm height as shown in the cutting 

geometry in the figure. The cutting speed was 4000 rpm, the feed rate was 30 mm/min, and the 

tool was fresh. 
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Figure 7.  Interrupted Cutting (a) Nominal Depth-of-cut of 1 mm and Estimated Depth-of-cut (b) 

Schematic Representation of Cutting Geometry 
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Figure 8.  Inclined Surface Cutting (a) Shows both the Nominal and Estimated Depth-of-cut for 

Inclined Surface Cutting (b) Schematic Representation of Cutting Geometry 

 

 As final test for the efficiency of the depth-of-cut detecting system, a free form surface was 

made from stainless steel 316 using laser deposition. The deposited part was first scanned using a 

3D scanner, then the part was machined and scanned again as shown in figure 9.  
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Figure 9.  Scanned Deposited Material (a) Machined (b) Original (c) Removed  

 

 The difference between the two scans is the machined material. The machined material 

was sliced to fifty sections as shown in figure 10 and the area of each section was calculated. In 

order to calculate the depth-of-cut, the area of each section was divided by the tool diameter (12.7 

mm).  
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Figure 10. The Difference between the Laser Scans of Deposited Part and Machined Part   

(a) First Section of Removed Material. (b) Fifteenth Section of Removed Material.  

 

 

 Figure 11 shows the measured depth-of-cut from the sections and detected depth-of-cut by 

the acoustic emission sensor. The feed rate was 60 mm/min, cutting speed 4000 rpm, cutting length 

about 52 mm and the tool was worn-out. There is some deference between the measured and 

detected depth-of-cut in several points. This error might be caused by the change in the shear 

strength of the deposited material where the depth-of-cut detection model was made with material 

deposited at 800 W laser energy and the material tested now was made at 1000 W laser enegy.  

 

 

Figure 11.  Measured Depth-of-cut from the Sections and Detected Depth-of-cut for a 

Deposited Material Detected by the Acoustic Emission Sensor 
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CONCLUSIONS 

 

 This research investigated experimentally the depth-of-cut and the acoustic emission 

variations during end-milling of deposited stainless steel 316 with an uncoated tungsten carbide 

tool under dry conditions, and it studied the correlation between the acoustic emission variation 

and the depth-of-cut. A full factorial experimental design was used to conduct experiments. As a 

result of this work, neural network model was developed to predict depth-of-cut in end milling.  

 

 The experimentally determined depth-of-cut values were compared with values predicted 

by the model, and the model is proved to be capable of predicting depth-of-cut with the acceptable 

margin of error. The results indicate that this model is robust and accurate. This study provides a 

depth-of-cut monitoring system for more efficient manufacturing in the future. 

 

 The Bayesian regularization training algorithm was used to train the network. 25 neurons 

was used with in the hidden layer in this work, the results obtained after training showed the 

effectiveness of this approach. 

 

 The model confirmed the effectiveness of estimating depth-of-cut for inclined surface 

cutting. The model is capable to distinguish the slot in an interrupted cutting process; therefore the 

system is capable of detecting the engagement and the disengagement of the tool with the 

workpiece as well as the depth-of-cut. 

 

 The main concern of this work was to detect the depth-of-cut for part made with Laser 

Metal Deposition, the model showed good agreement between measured depth-of-cut by using a 

3D scanner and the predicted depth-of-cut by the artificial neural network model. 

 

 Future work will investigate signal processing and feature extraction since the root mean 

square is provided by the coupler and there is no control on low-pass and high-pass filters. A raw 

signal can be acquired from the sensor, and this signal contains more information than the root 

mean square signal, which was already processed inside the coupler. Also, the neural network 

approach can also be used to estimate feed rate, cutting speed or tool wear when the other cutting 

parameters are given. 
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