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Probabilistic models which infer the strength and direction of natu-

ral selection from protein-coding sequences are among the most widely-used

tools in comparative sequence analysis. A variety of phylogenetic models of

coding-sequence evolution have been developed. However, these models have

been produced independently from one another. As a consequence, it has

been entirely unknown whether inferences from different models reveal similar

or incompatible information about the evolutionary process. In this disserta-

tion, I derive and study the mathematical relationship between two probabilis-

tic models of protein-coding sequence evolution: dN/dS-based models, which

estimate evolutionary rates, and mutation–selection models, which estimate

site-specific amino-acid fitnesses. I demonstrate how this relationship reveals

the behavioral properties, limitations, and applicabilities of different inference
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frameworks, which leads to concrete recommendations for how these models

should best be employed in evolutionary sequence analysis. In Chapter 2, I

develop a flexible and extendable software, implemented as a module in the

Python programming langauge, for simulating sequences along phylogenies

according to standard evolutionary models. This software platform provides

an independent and user-friendly platform for testing model behavior, or in-

deed developing novel evolutionary models, thus enabling robust comparisons

of modeling frameworks. In Chapter 3, I derive a mathematical relationship

between dN/dS and amino-acid fitness values, and I show that mutation–

selection models fully encompass information encoded in dN/dS models, pro-

vided that sequences are evolving under purifying selection. I further use this

relationship to show that certain commonly-used dN/dS-based models are

strongly and systematically biased. I additionally show that standard metrics

used for model selection in phylogenetics (e.g. Akaike Information Criterion)

may be positively misleading and indicate strong support for incorrect mod-

els. Finally, in Chapter 4, I apply the mathematical relationship developed

in Chapter 3 to study the accuracy of two competing mutation–selection in-

ference implementations, whose relative merits have been heavily debated in

the literature. My approach demonstrates that mutation–selection inference

platforms that treat amino-acid fitnesses as fixed-effect variables precisely es-

timate site-specific evolutionary constraints. By contrast, inference platforms

that treat fitnesses as random-effect variables systematically underestimate the

strength of natural selection across sites. Taken together, the work presented
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in this dissertation yields novel insights into how these popular evolutionary

models can best be applied to sequence data, how their results should be in-

terpreted, and finally how future model development should be conducted in

order to yield robust and reliable inference methods.
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Chapter 1

Introduction

Comparative sequence analysis has taken a central role in modern bi-

ological research. With a wealth of sequence data being generated on a daily

basis, it is critically important that the scientific community have powerful,

verified tools to extract biologically relevant information from this data. For

this purpose, probabilistic models that characterize the evolutionary dynamics

of protein-coding sequences along a phylogeny have been particularly valuable.

Such methods have seen wide-ranging applications, in basic biological research

and medical and epidemiological fields. For instance, studies of retroviral se-

quences using evolutionary models have revealed mechanisms of increased vir-

ulence in West Nile Virus [19] and evolved drug resistance in HIV [18, 76].

Moreover, evolutionary sequence analysis has greatly facilitated vaccine de-

velopment and therapeutic target identification by revealing genetic signa-

tures of viral immune escape and antigenic shifts, particular in the influenza

virus [31, 61,69,120].
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1.1 Background: Markov Models

Today, the molecular evolution of protein-coding sequences is most

commonly studied using continuous-time Markov models [6, 126]. Analysis is

performed on a multiple sequence alignment and a corresponding phylogeny,

and the substitution process at each alignment position is modeled as an in-

dependent Markov chain. Markov chains are memoryless processes, meaning

that probability of transitioning to a new state depends only on the current

state, not the past states. In the context of coding-sequence evolution, the 61

sense codons represent the states in each Markov chain.

The substitution rates between states are given by an instantaneous

rate matrix (also known as the transition matrix) Q, describing the probabil-

ity with which each state transitions to each other state in an infinitesimally

small amount of time. In codon models, it is commonly assumed that instan-

taneous changes only occur between codons with a single nucleotide differ-

ence [6]. In other words, the instantaneous rate of change from codon ATT

to AGC, for example, would be 0. For computational feasibility, models of

sequence evolution are often assumed to be time-reversible, formally indicated

as πiQij = πjQji, where πi represents the equilibrium frequency (also known as

stationary or steady-state frequency) of state (codon) i, and Qij is the entry

in the transition matrix Q giving the probability of changing from codon i to

j.

To incorporate time into this process, a transition-probability matrix

is calculated P = exp(Qt), indicating the substitution probability between
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states over a certain time, represented by the parameter t. In the context of

phylogenetic data, t is conveniently interpreted as the branch length along a

given edge of a phylogenetic tree. To ensure that t is meaningful with respect

to physical time, the rate matrix Q is usually scaled such that the mean

substitution rate is 1: −
∑

i=1 πiQii = 1 [42, 125], where Qii represents the

diagonal elements of the rate matrix. Through this procedure, the t parameter

for each branch explicitly represents the expected number of substitutions per

unit (in this case, codon).

An important property of the matrix P is that it takes into considera-

tion the possibility of “hidden” changes along a given branch, thus accounting

for multiple and/or convergent substitutions. It is also important to note that,

when t→∞, the distribution of states in the Markov chain will precisely equal

the stationary frequencies π, indicating the limiting behavior of the process.

For any model of sequence evolution, the matrix Q will be populated by

certain parameters, for example a rate of change r, which must be calculated.

Obtaining analytical solutions for these parameters is not usually possible,

and hence numerical approaches are used to optimize parameter values for a

given model. As such, parameters for these models are commonly estimated

using maximum-likelihood (ML). The likelihood is the probability of observing

the data (e.g. a multiple sequence alignment) under an assumed model of

sequence evolution. Specifically, the likelihood is given by L = P (D|T ; θ),

where D represents the data (a multiple sequence alignment), θ are the model

parameters, and T represents the phylogeny (including both topology and

3



branch lengths) which, for computational tractability, is often assumed to

be fixed. As stated, most Markov models of sequence evolution treat each

alignment site as independent, and hence the likelihood for a full dataset is

the product of individual-site likelihoods:
M∏
k=1

L = P (D(k)|T ; θ), where k is

an alignment site, D(k) is the data at alignment site k, and the product sums

over all sites M (note that “site”, in the case of codon models, refers to a

codon site comprised of a nucleotide triplet). The likelihood is calculated along

the phylogeny using Felsenstein’s pruning algorithm [40], and it is optimized

using numerical methods. This procedure provides estimates of the model

parameters which best describe the data D.

As an alternative to ML, some Bayesian approaches have addition-

ally been popularized. Rather than optimizing the likelihood function, the

Bayesian approach seeks to optimize the posterior probability P (θ|X), or in

other words the model given the observed data. This probability can be cal-

culated with Bayes Theorem:

P (θ|D) =
P (D|θ)P (θ)

P (D)
. (1.1)

P (D|θ) is the likelihood function, P (θ) represents the prior probability of this

model, and P (D) is the marginal likelihood of the data. The marginal like-

lihood is notoriously difficult to calculate, which has precluded the use of

Bayesian approaches for many years. Modern applications estimate this prob-

ability using Markov Chain Monte Carlo (MCMC) approaches that integrate

over the parameter space. Again, this process is assumed to be independent at

4



each site. Although Bayesian approaches have been well-developed for phylo-

genetic reconstruction [35,64], they are not yet widely used to model selection

pressures in coding sequences (with the notable exception of ref. [98]). Future

algorithmic developments may facilitate more widespread use in the coming

years.

1.2 Markov Models of coding-sequence evolution

Traditionally, codon substitution models have been used to identify sig-

natures of natural selection in protein-coding sequences [6]. First introduced

in the 1990s, codon substitution models estimate dN/dS, the ratio of nonsyn-

onymous to synonymous substitution rates. This metric indicates how quickly

a protein’s constituent amino acids change [42, 79, 81], allowing for the iden-

tification of positively-selected regions or sites in protein sequences [81, 131].

Various transition matrices have been proposed for codon substitution models,

with the simplest one being either the Goldman-Yang (GY) matrix [42] or the

Muse-Gaut (MG) matrix [79]. The GY transition matrix, as an example, is

given by,

Qij =


πj synonymous transversion
κπj synonymous transition
ωπj nonsynonymous transversion
ωκπj nonsynonymous transition

0 multiple nucleotide changes

, (1.2)

where πj is the equilibrium frequency of codon j, κ is the ratio of transition-to-

transversion mutation rates, and ω is the rate of nonsynonymous change. The

focal parameter of this model is ω, which represents dN/dS (dS is implicitly

5



assumed to equal 1 in this model).

In recent years, a complementary model of coding-sequence evolution,

known as the mutation–selection (MutSel) model, has gained popularity [33,

46, 96, 100, 115, 116, 130]. The MutSel model describes how the presence of

different amino acids across protein sites affects overall protein fitness. In

particular, MutSel models consider the substitution process using fundamen-

tal population genetics principles [46, 53]. At each site, MutSel models infer

the mutation rate (i.e. the rate of nucleotide change) as well as the fixation

probability of that particular mutation. In this way, MutSel models estimate

site-specific amino acid fitnesses, which is directly related to the probability of

observing each amino acid at a given protein position [106]. This information

indicates selective response to different mutations across sites. The transition

matrix for the MutSel model is given by,

qij =


µij

Sij

1−exp(Sji)
single nucleotide change

0 multiple nucleotide changes

, (1.3)

for a substitution from codon i to j, where µij is the nucleotide-level mutation

rate, and Sij is the scaled selection coefficient, which represents the fitness

difference between codons j and i.

While first introduced in a seminal 1998 paper by Halpern and Bruno

[46], the MutSel model has rarely been used due to its extremely high com-

putational expense. Recent advancements in high-performance computing,

however, have allowed for the development of two inference platforms for ana-

lyzing phylogenetic sequence data with this model [98,116]. Thus, for the first
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time, the molecular evolution community now has the opportunity to apply

the mutation–selection platform.

Although both the codon substitution and mutation–selection frame-

works provide meaningful information about the evolutionary process at sites

in protein-coding sequences, how these modeling frameworks relate to one an-

other has been entirely unstudied. Indeed, codon substitution models and

MutSel models have distinct focal parameters: Codon substitution models fo-

cus primarily on the evolutionary rate ratio dN/dS, and MutSel models focus

on amino-acid fitness values. How dN/dS inferences and amino-acid fitness

inferences relate to each other, however, is not immediately clear. Whether

the inferences from these models will contain overlapping, opposing, or entirely

distinct information about the strength and direction of natural selection is,

therefore, an open question.

In this dissertation, I examine the relationship between these two mod-

eling frameworks. In particular, this work is motivated by the concept that we

can gain a more precise and nuanced understanding of how molecular evolution

inference frameworks behave by considering how distinct models interpret the

same data. In Chapter 2, I develop Pyvolve, a flexible and user-friendly Python

module which simulates sequences along phylogenies according to continuous-

time Markov models of sequence evolution [108]. This simulation platform

provides one of the first open-source platforms for simulating sequences ac-

cording to the mutation–selection modeling framework, thus enabling the work

performed in Chapters 3 and 4. In Chapter 3, I present a mathematical rela-
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tionship between dN/dS and codon fitness values, which allows me to directly

compare dN/dS-based and MutSel model inferences. I use this framework to

compare the relative performance of distinct dN/dS model parameterizations,

and I uncover biases inherent to a commonly-used class of dN/dS models.

Finally, in Chapter 4, I use the mathematical framework developed in 3 to

compare performance between the two aforementioned mutation–selection in-

ference platforms [96,98,115,116]. I find that fixed-effects modeling frameworks

strongly outperform random-effects frameworks, which systematically under-

estimate the strength of selective constraint at individual sites. Together, this

research represents a significant step towards integrating distinct modeling

frameworks to develop a more unified approach to uncovering the signatures

of natural selection from sequence data.
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Chapter 2

Pyvolve: A Flexible Python Module for

Simulating Sequences along Phylogenies

2.1 Introduction

This work has been previously published in the journal PLOS ONE.1

The Python programming language has become a staple in biological comput-

ing. In particular, the molecular evolution community has widely embraced

Python as standard tool, in part due to the development of powerful bioinfor-

matics modules such as Biopython [25] and DendroPy [111]. However, Python

lacks a robust platform for evolutionary sequence simulation.

In computational molecular evolution and phylogenetics, sequence sim-

ulation represents a fundamental aspect of model development and testing.

Through simulating genetic data according to a particular evolutionary model,

one can rigorously test hypotheses about the model, examine the utility of an-

alytical methods or tools in a controlled setting, and assess the interactions of

different biological processes [7].

1S. J. Spielman and C. O. Wilke. Pyvolve: A Flexible Python Module for Simulating
Sequences along Phylogenies. PLOS ONE, 10(9):e0139047, 2015. C. O. Wilke helped to
write the manuscript.
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To this end, we introduce Pyvolve, a sequence simulation Python mod-

ule (with dependencies Biopython [25], SciPy, and NumPy [82]). Pyvolve

simulates sequences along a phylogeny using continuous-time Markov models

of sequence evolution for nucleotides, amino acids, and codons, according to

standard approaches [126]. The primary purpose of Pyvolve is to provide a

user-friendly and flexible sequence simulation platform that can easily be in-

tegrated into Python bioinformatics pipelines without necessitating the use of

third-party software. Furthermore, Pyvolve allows users to specify and evolve

custom evolutionary models and/or states, making Pyvolve an ideal engine for

novel model development and testing.

2.2 Substitution models and frameworks in Pyvolve

Pyvolve is specifically intended to simulate gene sequences along phylo-

genies according to Markov models of sequence evolution. Therefore, Pyvolve

requires users to provide a fixed phylogeny along which sequences will evolve.

Modeling frameworks which are included in Pyvolve are detailed in Table 2.1.

Table 2.1: Substitution models included in Pyvolve.

Modeling Framework Available Models
Nucleotide GTR [117] and all nested variants (e.g. HKY85 [47] and TN93 [114])
Amino acid JTT [51], WAG [121], LG [66], mtMAM [124], mtREV24 [3], DAYHOFF [29], AB [74]
Mechanistic codon GY-style [42, 81] and MG-style [79]
Empirical codon ECM (restricted and unrestricted) [62]
Mutation–selection Halpern-Bruno model [46], for both nucleotides and codons

Pyvolve supports both site-wise and branch (temporal) heterogeneity.
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Site-wise heterogeneity can be modeled with Γ or Γ+I rates, or users can

specify a custom rate-distribution. Further, users can specify a custom rate

matrix for a given simulation, and thus they can evolve sequences according

to substitution models other than those shown in Table 2.1. Similarly, users

have the option to specify a custom set of states to evolve, rather than being

limited to nucleotide, amino-acid, or codon data. Therefore, it is possible to

specify arbitrary models with corresponding custom states, e.g. states 0, 1,

and 2. This general framework will enable users to evolve, for instance, states

according to models of character evolution, such as the Mk model [67].

Similar to other simulation platforms (e.g. Seq-Gen [89], indel-Seq-Gen

[110], and INDELible [41]), Pyvolve simulates sequences in groups of partitions,

such that different partitions can have unique evolutionary models and/or pa-

rameters. Although Pyvolve enforces that all partitions within a single simu-

lation evolve according to the same model family (e.g. nucleotide, amino-acid,

or codon), Python’s flexible scripting environment allows for straight-forward

alignment concatenation. Therefore, it is readily possible to embed a series of

Pyvolve simulations within a Python script to produce highly-heterogeneous

alignments, for instance where coding sequences are interspersed with non-

coding DNA sequences. Moreover, Pyvolve allows users to specify, for a given

partition, the ancestral sequence (MRCA) to evolve.

In addition, we highlight that Pyvolve is among the first open-source

simulation tools to include the mutation–selection modeling framework in-

troduced by Halpern and Bruno in ref. [46] (we note that the simulation
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software SGWE [10] also includes this model). Importantly, although these

models were originally developed for codon evolution [46, 130], Pyvolve im-

plements mutation–selection models for both codons and nucleotides. We ex-

pect that this implementation will foster the continued development and use

of this modeling framework, which has seen a surge of popularity in recent

years [33,49,98,100,109,115,116].

2.3 Basic Usage of Pyvolve

The basic framework for a simple simulation with the Pyvolve module

is shown in Figure 2.1. To simulate sequences, users should input the phy-

logeny along which sequences will evolve, define evolutionary model(s), and

assign model(s) to partition(s). Pyvolve implements all evolutionary models

in their most general forms, such that any parameter in the model may be cus-

tomized. This behavior stands in contrast to several other simulation platforms

of comparable scope to Pyvolve. For example, some of the most commonly

used simulation tools that implement codon models, including INDELible [41],

EVOLVER [127], and PhyloSim [107], do not allow users to specify dS rate

variation in codon models. Pyvolve provides this option, among many others.
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# Import the Pyvolve module
import pyvolve

# Read in phylogeny along which Pyvolve should simulate
my_tree = pyvolve.read_tree(file = "tree.tre")

# Define a mechanistic codon evolutionary model with the Model class
parameters = {"omega": 0.75, "kappa": 3.25}
my_model = pyvolve.Model("codon", parameters)

# Define partition(s) with the Partition class
my_partition = pyvolve.Partition(models = my_model, size = 100)

# Evolve partition(s) with the callable Evolver class
my_evolver = pyvolve.Evolver(tree = my_tree, partitions = my_partition)
my_evolver() # By default, the simulated alignment is saved to a file here

1

Figure 2.1: Example code for a simple codon simulation in Pyvolve. This
example will simulate an alignment of 100 codons with a dN/dS of 0.75 and a
κ (transition-tranversion mutational bias) of 3.25. By default, sequences will
be output to a file called “simulated alignment.fasta”, although this file name
can be changed, as described in Pyvolve’s user manual.

In the example shown in Figure 2.1, stationary frequencies are not ex-

plicitly specified. Under this circumstance, Pyvolve will assume equal frequen-

cies, although they would normally be provided using the key "state freqs"

in the dictionary of parameters. Furthermore, Pyvolve contains a convenient

module to help specify state frequencies. This module can read in frequen-

cies from an existing sequence and/or alignment file (either globally or from

specified alignment columns), generate random frequencies, or constrain fre-

quencies to a given list of allowed states. In addition, this module will convert

frequencies between alphabets, which is useful, for example, if one wishes to

simulate amino-acid data using the state frequencies as read from a file of

codon sequence data.
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2.4 Validating Pyvolve

We carefully assessed that Pyvolve accurately simulates sequences. To

this end, we simulated several data sets under a variety of evolutionary models

and conditions and compared the observed substitution rates with the simu-

lated parameters.

To evaluate Pyvolve under the most basic of conditions, site-homogeneity,

we simulated both nucleotide and codon data sets. We evolved nucleotide se-

quences under the JC69 model [52] across several phylogenies with varying

branch lengths (representing the substitution rate), and we evolved codon se-

quences under a MG94-style model [79] with varying values of dN/dS. All

alignments were simulated along a two-taxon tree and contained 100,000 po-

sitions. We simulated 50 replicates for each branch length and/or dN/dS

parameterization. As shown in Figures 2.2A and B, the observed number of

changes agreed precisely with the specified parameters.

We additionally validated Pyvolve’s implementation of site-wise rate

heterogeneity. We simulated an alignment of 400 codon positions, again under

an MG94-style model [79], along a balanced tree of 214 taxa with all branch

lengths set to 0.01. This large number of taxa was necessary to achieve accu-

rate estimates for site-specific measurements. To incorporate site-specific rate

heterogeneity, we specified four dN/dS values of 0.2, 0.4, 0.6, and 0.8, to be

assigned in equal proportions to sites across this alignment. We counted the

observed dN/dS values for each resulting alignment column using a version of

the Suzuki-Gojobori algorithm [113] adapted for phylogenetic data [57]. Fig-
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ure 2.2C demonstrates that Pyvolve accurately implements site-specific rate

heterogeneity. The high variance seen in Figure 2.2C is an expected result of

enumerating substitutions on a site-specific basis, which, as a relatively small

data set, produces substantial noise.

Finally, we confirmed that Pyvolve accurately simulates branch het-

erogeneity. Using a four-taxon tree, we evolved codon sequences under an

MG94-style model [79] and specified a distinct dN/dS ratio for each branch.

We simulated 50 replicate alignments of 100,000 positions, and we computed

the observed dN/dS value along each branch. Figure 2.2D shows that observed

branch dN/dS values agreed with the simulated values.
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Figure 2.2: Pyvolve accurately evolves sequences under homogenous, site-wise
rate heterogeneity, and branch-specific rate heterogeneity. A) Nucleotide align-
ments simulated under the JC69 [52] model along two-taxon trees with vary-
ing branch lengths, which represent the substitution rate. Points represent
the mean observed substitution rate for the 50 alignment replicates simulated
under the given value, and error bars represent standard deviations. The
red line indicates the x = y line. B) Codon alignments simulated under an
MG94-style [79] model with varying values for the dN/dS parameter. Points
represent the mean dN/dS inferred from the 50 alignment replicates simulated
under the given dN/dS value, and error bars represent standard deviations.
The red line indicates the x = y line. C) Site-wise heterogeneity simulated
with an MG94-style [79] model with varying dN/dS values across sites. Hori-
zontal lines indicate the simulated dN/dS value for each dN/dS category. D)
Branch-wise heterogeneity simulated with an MG94-style [79] model with each
branch evolving according to a distinct dN/dS value. Horizontal lines indicate
the simulated dN/d value for each branch, as shown in the inset phylogeny.
The lowest dN/dS category (dN/dS = 0.1) was applied to the internal branch
(shown in gray).
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2.5 Conclusions

Because Pyvolve focuses on simulating the substitution processes using

continuous-time Markov models along a fixed phylogeny, it is most suitable for

simulating gene sequences, benchmarking inference frameworks, and for devel-

oping and testing novel Markov models of sequence evolution. For example,

we see a primary application of Pyvolve as a convenient simulation platform to

benchmark dN/dS and mutation–selection model inference frameworks such

as the ones provided by PAML [127], HyPhy [58], Phylobayes [98], or swMut-

Sel [116]. Indeed, the Pyvolve engine has already successfully been applied to

investigate the relationship between mutation–selection and dN/dS modeling

frameworks and to identify estimation biases in certain dN/dS models [109].

Moreover, we believe that Pyvolve provides a convenient tool for easy incorpo-

ration of complex simulations, for instance those used in approximate Bayesian

computation (ABC) or MCMC methods [8], into Python pipelines.

Importantly, Pyvolve is meant primarily as a convenient Python li-

brary for simulating simple Markov models of sequence evolution. For more

complex evolutionary scenarios, including the simulation of entire genomes,

population processes, or protein folding and energetics, we refer the reader to

several more suitable platforms. For example, genomic process such as recom-

bination, coalescent-based models, gene duplication, and migration, may be

best simulated with softwares such as ALF [28], CoalEvol and SGWE [10],

or EvolSimulator [12]. Simulators which consider the influence of structural

and/or biophysical constraints in protein sequence evolution include CASS [43]
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or ProteinEvolver [9]. Similarly, the software REvolver [54] simulates pro-

tein sequences with structural domain constraints by recruiting profile hidden

Markov models (pHMMs) to model site-specific substitution processes.

We additionally note that Pyvolve does not currently include the simu-

lation of insertions and deletions (indels), although this functionality is planned

for a future release. We refer readers to the softwares indel-Seq-Gen [110] and

Dawg [22] for simulating nucleotide sequences, and we suggest platforms such

as INDELible [41], phyloSim [107], or πBuss [14] for simulating coding se-

quences with indels.

In sum, we believe that Pyvolve’s flexible platform and user-friendly in-

terface will provide a helpful and convenient tool for the biocomputing Python

community. Pyvolve is freely available from

https://github.com/sjspielman/pyvolve, conveniently packaged with a com-

prehensive user manual and several example scripts demonstrating various

simulation conditions. In addition, Pyvolve is distributed with two helpful

Python scripts that complement Pyvolve simulations: one which implements

the Suzuki-Gojobori [113] dN/dS counting algorithm adapted for phylogenetic

data [57], and one which calculates dN/dS from a given set of mutation–

selection model parameters as described in ref. [109]. Pyvolve is additionally

available for download from the Python Package Index.
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Chapter 3

The relationship between dN/dS and scaled

selection coefficients

3.1 Introduction

This work was published previously in the journal Molecular Biology

and Evolution.1

The oldest and most-widely used method to infer selection pressure

in protein-coding genes calculates the evolutionary rate ratio dN/dS, which

represents the ratio of non-synonymous to synonymous substitution rates.

This metric indicates how quickly a protein’s constituent amino acids change,

relative to synonymous changes, and it is commonly used to identify pro-

tein sites that experience purifying selection (dN/dS < 1), evolve neutrally

(dN/dS ≈ 1), or experience positive, diversifying selection (dN/dS > 1)

[50, 57, 81, 131]. In phylogenetic contexts, dN/dS is typically calculated us-

ing a maximum likelihood (ML) approach [42, 79, 81, 126]. ML methods as-

sume a continuous time Markov model of sequence evolution, and since the

introduction of Markov codon models in the 1990s, they have become a sta-

1S. J. Spielman and C. O. Wilke. The relationship between dN/dS and scaled selection
coefficients. Mol. Biol. Evol., 32(4):1097-1108, 2015. C. O. Wilke helped to design the
project and write the manuscript.
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ple of comparative sequence analysis [see ref. [6] for a comprehensive review].

Throughout this paper, we will refer to these models as dN/dS-based models.

A second class of Markov models, known as mutation–selection (Mut-

Sel) models, are increasingly being viewed as a viable alternative to the dN/dS

framework. While dN/dS-based models describe how quickly a protein’s con-

stituent amino acids change, MutSel models assess the strength of natural

selection acting on specific mutations. Couched firmly in population-genetic

theory, the MutSel framework estimates site-specific scaled selection coeffi-

cients S = 2Nes, which indicate the extent to which natural selection favors,

or disfavors, particular codon and/or amino acid changes [46, 100, 115, 130].

Although first introduced over 15 years ago [46], MutSel models have seen

little use due to their high computational expense. Recently, however, sev-

eral computationally tractable model implementations have emerged [98,116],

allowing for the first time the potential for widespread adoption.

Over the course of twenty years development, dN/dS-based models

have advanced to a high level of sophistication. These models can accommo-

date a variety of evolutionary scenarios, including synonymous rate variation

[60,79,101] and episodic [59,78] and/or lineage-specific selection [56,129,134],

and they can also incorporate information regarding protein structure and

epistatic interactions [72,94,97,104,118]. This flexibility, along with accessible

software implementations [30, 58, 127], makes dN/dS-based models an attrac-

tive analysis choice. On the other hand, some have argued that MutSel models,

given their explicit basis in population-genetics theory and attention to site-
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specific amino-acid fitness differences, offer a more mechanistically realistic

approach to studying coding-sequence evolution [46, 100, 115, 119]. Moreover,

a growing body of literature has demonstrated that dN/dS estimates are par-

ticularly sensitive to violations in model assumptions, calling into question the

general utility of dN/dS-based models [63,75,92,95].

Although both MutSel and dN/dS-based models describe the same

fundamental process of coding-sequence evolution along a phylogeny, it is un-

known how these two modeling frameworks relate to one another. In particu-

lar, as these inference methods have been developed independently, it remains

an open question whether or not parameter estimates from one model are

comparable to those of the other model. As a consequence, although certain

rhetorical arguments may be made in favor of using one method over an-

other, there is currently no formalized, concrete rationale to guide researchers

in their methodological choices. Elucidating the relationship between these

complementary modeling frameworks will more precisely reveal under which

circumstances the use of these models is justified and has great potential to

reveal previously unrecognized model behaviors, limitations, and capabilities.

Here, we formalize the relationship between these two modeling frame-

works by examining the extent to which their respective focal parameters,

dN/dS and scaled selection coefficients, yield overlapping information about

the evolutionary process. To this end, we derive a mathematical relation-

ship between dN/dS and scaled selection coefficients. We find that dN/dS

values can be precisely calculated from scaled selection coefficients, and that
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dN/dS accurately captures the selective pressures indicated by a given dis-

tribution of scaled selection coefficients. Furthermore, we prove that, when

synonymous mutations are neutral, it is only possible to recover dN/dS ≤ 1

from scaled selection coefficients, demonstrating that MutSel models, which

commonly assume a static fitness landscape, are inherently only able to model

purifying selection. Therefore, these models would be an inappropriate analy-

sis method if positive selection is expected. However, we also find that, when

synonymous codons have different fitnesses and hence purifying selection acts

on synonymous changes, it is possible to recover dN/dS values above 1, even

though classical positive, diversifying selection is not occurring. Therefore, the

dN/dS framework cannot distinguish between positive, diversifying selection

on amino acids and purifying selection on synonymous changes.

Finally, this relationship provides a uniquely rigorous platform to exam-

ine the performance of dN/dS-based models. Typically, researchers evaluate

performance of a given inference framework through simulations that adhere

to the underlying model’s assumptions [but see refs. [49, 73, 101, 105, 132]]. In

particular, simulated data is usually generated according to the same model as

the inference framework, allowing for a direct comparison between the true and

estimated parameter values. While this strategy is critical for testing whether

a model implementation behaves as expected, it cannot assess model perfor-

mance when the data are generated under a different process than the one

modeled in the inference framework. However, in real-world sequence anal-

ysis, the inference framework will never exactly match the data-generation
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process. Therefore, a more sensitive test of model performance would exam-

ine how a given method performs when data are simulated under different

mechanistic processes, and how sensitive the method is to violations of its

assumptions. Unfortunately, such an approach is typically infeasible, because

the relationships between parameters of interest among distinct model classes

are generally not known.

The relationship we establish here between dN/dS and selection coef-

ficients allows us to overcome this limitation, as we can determine the true

dN/dS value directly from MutSel model parameters. Thus, we can assess

performance of dN/dS-based inference frameworks by simulating data with a

MutSel model and then comparing inferred dN/dS ML estimates (MLEs) to

dN/dS values computed from selection coefficients. Using this strategy, we

find, for sequences evolved under a symmetric mutation model, that dN/dS

values inferred in an ML framework agreed precisely with those calculated from

scaled selection coefficients. However, as mutational asymmetry increases,

dN/dS MLEs become increasingly biased away from their true values, under

a variety of ML model parameterizations. Surprisingly, the ML model pa-

rameterization which produced the most accurate dN/dS estimates was never

the model which exhibited the best fit to the data (measured by AIC and

BIC), ultimately revealing that relying on model fit as a litmus-test for model

performance can be an ineffective and misleading strategy.
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3.2 Results and Discussion

3.2.1 Theoretical model

This section contains a re-derivation of results presented in ref. [46],

reproduced here to introduce notation and to place the remainder of our work

into context. We model sequence evolution using the Halpern-Bruno Mut-

Sel modeling framework under the assumptions of a fixed effective popula-

tion size Ne and constant selection pressure over time [46, 115, 119, 130]. This

continuous-time reversible Markov process is governed by the 61×61 transition

matrix T (t) = eQt, where the matrix Q = qij gives the instantaneous substi-

tution probabilities between all 61 sense codons, and diagonal elements of Q

satisfy qii = −
∑

i 6=j qij. We assume that only single-nucleotide substitutions

occur instantaneously.

Let f codon
i be the fitness of codon i, and let the selection coefficient

acting on a mutation from codon i to codon j be sij = f codon
j −f codon

i [106,130].

The fixation probability for this mutation is [46,53]

uij ≈
2sij

1− e−2Nesij
=

1

Ne

2Nesij
1− e−2Nesij

. (3.1)

We further define Sij = 2Nesij (although note that this value would equal

4Nesij in diploids) as the scaled selection coefficient for this change [130]. The

probability of a substitution from codon i to j is therefore

qij = Nemijuij = mij
Sij

1− e−Sij
, (3.2)

where mij is the codon mutation rate, which represents the rate at which

codon i transitions to codon j [46, 106]. If we assume that mij only has non-
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zero entries for single-nucleotide changes, we can write it as mij = µoitj , where

µkl is the per-nucleotide mutation rate, oi is the origin (i.e., before mutation)

nucleotide in codon i, and tj is the target (i.e., after mutation) nucleotide in

codon j.

We now show how Sij can be written in terms of mutation rates and

stationary (equilibrium) codon frequencies Pi. As this system satisfies detailed

balance (reversibility) [46], we have

qijPi = qjiPj. (3.3)

From equations (3.2) and (3.3), we can write the ratio of substitution proba-

bilities as

Pi
Pj

=
mjiSji(1− e−Sij)

mijSij(1− e−Sji)
. (3.4)

Using Sij = −Sji, we find that

Sij = ln

(
Pjmji

Pimij

)
. (3.5)

This equation, previously derived in ref. [46], establishes a relationship between

scaled selection coefficients and the stationary codon frequencies of the Markov

chain. Moreover, in the specific case of symmetric mutation rates mij = mji,

we have Sij = ln
(
Pj/Pi

)
[106].

3.2.2 Predicting dN/dS from scaled selection coefficients

We now derive respective expressions for average nonsynonymous and

synonymous evolutionary rates, which we can divide to obtain the evolutionary
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rate ratio dN/dS. We write the mean nonsynonymous rate KN as

KN =
∑
i

∑
j∈Ni

Piqij , (3.6)

where Ni is the set of codons that are nonsynonymous to codon i and dif-

fer from it by one nucleotide, and the substitution probability qij is defined

in equation (3.2). To normalize KN, we divide it by the number of nonsyn-

onymous sites, which we calculate according to the mutational opportunity

definition of a site [42,126] as

LN =
∑
i

∑
j∈Ni

Pimij . (3.7)

Thus, we find that

dN =
KN

LN

=

∑
i

∑
j∈Ni

Piqij∑
i

∑
j∈Ni

Pimij

. (3.8)

Similarly, for dS, the mean synonymous evolutionary rate KS per synonymous

site LS, we find

dS =
KS

LS

=

∑
i

∑
j∈Si Piqij∑

i

∑
j∈Si Pimij

, (3.9)

where Si is the set of codons that are synonymous to codon i and differ from

it by one nucleotide substitution. The quantities KS and LS are defined as in

Eqs. (3.6) and (3.7) but sum over j ∈ Si instead of j ∈ Ni.

Moreover, under certain simplifying conditions, we can simplify the

ratio given by equations (3.8) and (3.9) to a more intuitive interpretation. If

we assume that all synonymous codons have equal fitness (i.e. synonymous

mutations are neutral), the synonymous fixation rate satisfies uij|j∈Si = 1/Ne

[26], and hence the synonymous substitution probability becomes qij = mij.
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If we further assume symmetric mutation rates, the value for dS reduces to 1,

and dN/dS thus reduces to the mean nonsynonymous substitution rate. We

additionally note that, if we further assume uniform mutation rates, dN/dS

becomes simply the average nonsynonymous fixation rate.

3.2.3 MutSel models specifically describe purifying selection

We examined the relationship between dN/dS and scaled selection co-

efficients by simulating 200 distributions of amino acid scaled fitness values,

F aa
a = 2Nf aa

a , from a normal distribution N (0, σ2). We drew a unique σ2

for each fitness distribution from a uniform distribution U(0, 4). Higher val-

ues for σ2 correspond to larger fitness differences among amino acids, causing

selection to act more strongly against nonsynonymous changes. Thus, high

σ2 values indicate strong purifying selection, low values indicate weak purify-

ing selection, and σ2 = 0 indicates that all amino acids are equally fit. We

note that these F aa
a quantities correspond exactly to the amino-acid propen-

sity parameters estimated by currently available site-specific MutSel inference

methods [98,116].

We then converted each amino-acid fitness distribution to a correspond-

ing set of codon fitnesses, as described in Methods. Briefly, for 100 of the dis-

tributions, we assumed that all synonymous codons had the same fitness, but

for the other 100 distributions we allowed synonymous codons to have different

fitnesses. In other words, the former 100 distributions do not incorporate pu-

rifying selection on synonymous changes whereas the latter 100 distributions
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do. Using equations (3.6) – (3.9), we computed dN/dS for each distribution

of codon fitnesses. For these calculations, we assumed the symmetric muta-

tion model HKY85 [47], which is specified by the parameters µ, the nucleotide

mutation rate, and κ, the ratio of transitions to tranversions. Specifically,

transitions occur at a rate µκ and tranversions at a rate µ. We used µ = 10−6

for all simulations, while we selected a unique value for κ for each simulation

from U(1, 6).

Under neutral evolution, we expect that dN/dS = 1, and as purify-

ing selection increases in strength, dN/dS should correspondingly decrease.

Therefore, we expect that dN/dS will decline with the variance (σ2) of the

distribution of amino acid fitness values. Indeed, we observed a strong, nega-

tive correlation between these quantities (Figure 3.1). The larger the fitness

differences among amino acids (higher σ2), the lower dN/dS, properly reflect-

ing increased purifying selection. This correlation was much stronger for fitness

distributions without synonymous selection (Figure 3.1A) than for those with

synonymous selection (Figure 3.1B). This difference emerged because fitness

differences among synonymous codons obscured underlying amino-acid fitness

differences. Even so, selection on synonymous codons did not negate the sig-

nificant correlation between dN/dS and overall selection strength.
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Figure 3.1: dN/dS decreases in proportion to amino-acid level selection
strength. dN/dS is plotted against the variance (σ2) of the simulated dis-
tribution of amino-acid scaled fitness values. Higher variances indicate larger
fitness differences among amino acids, whereas the limiting value of σ2 = 0
indicates that all amino acids have the same fitness. (A) Synonymous codons
have equal fitness values (r2 = 0.83, P < 2−16). (B) Synonymous codons have
different fitness values (r2 = 0.45, P < 2−16). Note that panel B, but not A,
shows dN/dS values greater than 1, in spite of the steady-state evolutionary
process. In each panel, the dashed line indicates the y = 1 line, and the solid
line indicates the regression line.

Importantly, Figure 3.1A demonstrates that, in the limiting case when

σ2 approaches 0, and thus all codons have virtually the same fitness, dN/dS

converges to 1. In other words, when the protein-coding sequence evolved neu-

trally, selection coefficients correctly yielded a dN/dS ≈ 1. Furthermore, we

never recovered dN/dS > 1 when synonymous changes were neutral, revealing

a key property of Halpern-Bruno style MutSel models: they inherently cannot

describe positive, diversifying selection. Indeed, in Appendix 1, we prove that,

under the assumptions that synonymous changes are neutral and mutation is

symmetric, scaled selection coefficients strictly yield dN/dS ≤ 1. This proof
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formalizes this MutSel model’s underlying assumption that selection pressure

is constant over the phylogeny and that the protein evolves under equilibrium

conditions. Although this proof assumes symmetric mutation rates, we have

found numerically that dN/dS remains bounded from above by 1 even when

mutations rates are asymmetric (Figure 3.4).

3.2.4 Purifying selection on synonymous changes can produce dN/dS
> 1

The restriction dN/dS ≤ 1 does not hold when synonymous changes are

not neutral, as seen in Figure 3.1B. Even though the Halpern-Bruno model

explicitly assumes that the system is at equilibrium [46, 119], we find that

dN/dS can readily be greater than 1 under strong synonymous selection. In

fact, it is theoretically possible to achieve arbitrarily high dN/dS values when

synonymous codon substitutions carry fitness changes. In the most extreme

case of synonymous selection, where only a single codon per amino acid is

selectively tolerated, the number of synonymous changes becomes KS = 0,

and thus the value for dN/dS approaches infinity. Therefore, we find that

dN/dS > 1 may indicate either positive, diversifying selection on amino acids

or strong purifying selection on synonymous codons.

Given that the MutSel model framework assumes an overarching regime

of purifying selection, this finding might seem paradoxical. However, the log-

ical argument that dN/dS > 1 represents positive, diversifying selection as-

sumes that the rate of synonymous change may be used as a neutral bench-
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mark, an assumption clearly violated when selection acts on synonymous

changes. Thus, the traditional signal of positive, diversifying selection, a

dN/dS value in excess of one, can result simply from strong synonymous fitness

differences.

That sequences evolving under purifying selection can spuriously bear

the hallmark of positive, diversifying selection highlights the pitfalls of naively

interpreting dN/dS values. Indeed, evolutionary constraints which induce syn-

onymous selection are pervasive and affect virtually all domains of life [45],

from viruses [27, 133, 136] to plants [44] to Metazoa [24, 38, 48, 65, 85]. Recent

work has shown that synonymous rate variation is common across myriad

proteins, and contributing to evolutionary rate heterogeneity in up to 42% of

known protein families [32]. For example, exonic splicing enhancers [83, 84,

102], regions contributing to mRNA secondary structure such as translation-

initiation sites [23, 27, 45, 102, 133], and DNA- and RNA-binding sites [83]

all experience moderate to strong synonymous selection. It has additionally

been suggested that up to 18% of mutational fitness effects in RNA viruses,

whose genomes frequently feature sites with dN/dS > 1 [13, 21, 71, 72, 112],

are caused by selection acting on synonymous changes [27]. Finally, both

selection against protein mis-folding and for translation efficiency tend to in-

duce synonymous selection in a gene-specific manner [4,123], most notably in

highly expressed genes [36, 65]. Therefore, while synonymous selection may

not dominate genomes in organisms with relatively small effective population

sizes [24, 85], it certainly acts strongly at specific sites and/or small, local re-
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gions. As dN/dS ratios are typically measured on a per-site basis, we expect

that some sites with dN/dS > 1 are false positives in the detection of positive

selection and instead represent cases of strong purifying selection on synony-

mous changes. We offer several approaches to ease this concern in Conclusions.

3.2.5 Relationship between dN/dS and scaled selection coefficients
provides a novel benchmarking approach

The relationship we have established between dN/dS and scaled selec-

tion coefficients offers a unique opportunity to assess the robustness of dN/dS-

based inference methods. It is conventional practice in model development to

benchmark models against data simulated according to the model itself. While

crucial for testing whether a given model has been correctly implemented, this

strategy inherently cannot discern how the model behaves when data arose

from a different mechanistic process. To overcome this limitation, we ap-

plied a novel benchmarking approach which used the theoretical relationship

among modeling frameworks to assess the accuracy and specific utility of those

models. Outlined in Figure 3.2A, this approach entails comparing dN/dS val-

ues calculated from selection coefficients to those inferred by a dN/dS-based

model. Through this approach, we are able to simulate data which explicitly

does not conform to the model used for inference, but we can still compare

inferred parameter values to their true, simulated values using the relationship

derived in the present work.
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Figure 3.2: Combined modeling approach to assess performance of dN/dS
inference frameworks. (A) Protein-coding alignments are simulated in the
MutSel modeling framework. dN/dS can then be calculated (“predict”) from
scaled selection coefficients as well as through an ML inference framework
(“infer”). Comparing resulting quantities reveals the accuracy of the chosen
inference framework. (B) Regression between predicted dN/dS values and
inferred ω MLEs. Each point corresponds to a single simulated alignment,
and the solid line is the x = y line. (C) Convergence of ω MLEs to the true
dN/dS value. The y-axis indicates the relative error of the ω MLE, and the
x-axis indicates the number of positions in the simulated alignment. As the
number of positions and hence the size of the data set increases, ω converges
to the predicted dN/dS value. The solid line is the y = 0 line, indicating no
error.

Using the selection coefficients and symmetric mutation rates from

the previous two subsections, we simulated alignments using standard meth-
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ods [126] according to the Halpern-Bruno MutSel model [46]. We then inferred

a dN/dS value for each alignment using the GY94 matrix [42,81], which esti-

mates dN/dS with the parameter ω. Throughout the remaining text, we refer

to dN/dS inferred using ML as ω or ω maximum likelihood estimate (MLE),

and to dN/dS computed using equations (3.6) – (3.9) simply as dN/dS.

We found that dN/dS values agree nearly perfectly with ω MLEs (Fig-

ure 3.2B), and indeed is relationship was robust to both synonymous selection

and uneven nucleotide composition (simulated alignments featured GC con-

tents ranging from 0.21 – 0.89). Additionally, Figure 3.2C demonstrates that

ω converged to the true dN/dS value as the size of the data set (i.e., sim-

ulated alignment length) increased. These results unequivocally show that,

when nucleotide mutation is symmetric, dN/dS-based model-inference meth-

ods behave exactly as expected, yielding precisely accurate dN/dS estimates.

This finding has important implications for modeling choices; although the

MutSel framework might model the sequence evolution in a way that more

mechanistically matches the evolutionary process, dN/dS-based models may

suffice to model selective forces in phylogenetic data.

3.2.6 Biased dN/dS estimates under asymmetric mutation models

We next sought to test the accuracy of dN/dS-based models using more

realistic parameter values. To this end, we determined codon fitness distri-

butions from 498 unique distributions of experimentally-derived, site-specific

amino-acid fitnesses for H3N2 influenza nucleoprotein (NP) [16]. We combined
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each of these fitness distributions with three sets of experimentally-determined

mutation rates, either for NP [16], yeast [137], or polio virus [2], to determine

498 × 3 = 1494 distinct distributions of steady-state codon frequencies (see

Methods for details). While all three mutation matrices were asymmetric,

each featured a differing degree of mutational bias; specifically, the mean ra-

tios µij/µji for NP, yeast, and polio mutation rates are 1.03, 1.69, and 5.25,

respectively. For each resulting set of stationary codon frequencies, in com-

bination with its respective set of mutation rates, we calculated dN/dS and

simulated alignments from which we inferred ω. Note that we assumed no

selection on synonymous codons for these calculations.

dN/dS-based model matrices account for nucleotide mutational bias

by incorporating either target codon [42] or target nucleotide [79] frequen-

cies; these frameworks are known, respectively, as GY-style and MG-style

models [55]. For example, the instantaneous rate matrix element giving the

substitution probability from codon AAA to AAG would contain the target

codon frequency PAAG in GY-style models but the target nucleotide frequency

πG in MG-style models. Moreover, the GY-style models conform explicitly

to a general-time reversible (GTR) form, whereas MG-style matrices do not,

at first glance, appear to follow the same framework. However, as we show

in Appendix 2, it is indeed posible to write MG-style matrices such that

they conform to the GTR framework. This insight explicitly justifies using

a time-reversible Markov process to describe these models, and it addition-

ally demonstrates that the F1x4 codon frequency estimator [79] represents the
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state frequencies of the MG-style framework.

Previous works have suggested that MG-style and GY-style models

yield different ω estimates [60, 132], so we inferred ω according to both GY-

and MG-style frameworks. For GY-style models, we used the frequency estima-

tors F61 [42], F3x4 [42], CF3x4 [55], and F1x4 [79]. For MG-style models, we

considered both a parameterization with four global nucleotide frequency pa-

rameters and a parameterization which employed twelve nucleotide frequency

parameters to allow for different frequencies at each codon position. We term

the former framework MG1 and the latter MG3. Note that our MG1 corre-

sponds to the original MG-style model [79], whereas our MG3 corresponds to

the so-called MG94×HKY85 model [60].

Figure 3.3 shows the resulting relationships between dN/dS and ω

MLEs for each set of mutation rates (NP, yeast, and polio), across model

frequency parameterizations. Figure 3.3A displays the estimator bias, defined

as the average difference between the true dN/dS value and the ω MLEs. Fig-

ure 3.3B displays the precision in this relationship, measured by the squared

correlation coefficient r2 between dN/dS and ω. The exact bias and r2 val-

ues are given in Tables 3.1 and 3.2, respectively, and full regression plots for

dN/dS vs. ω are shown in Figure 3.4.
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Figure 3.3: Estimator bias and precision of ω estimates for various model
frequency parameterizations. (A) Estimator bias and (B) Precision (r2) values
between dN/dS and ω MLEs across model frequency parameterizations, for
each set of nucleotide mutation rates. To calculate bias, we fit a linear model
with ω as the response and dN/dS as the predictor, with a fixed slope of 1,
and the resulting intercept value represents the bias. Negative biases indicate
ω MLEs that are, on average, lower than dN/dS. Note that all standard errors
for bias are smaller than the symbol size.

Two distinct trends emerge from Figure 3.3. First, asymmetry in the

mutational process consistently induced significant bias in ω estimates. Most

often, the model underestimated ω relative to the true dN/dS value. Based

on simulations without any selection (dN/dS = 1), ref. [132] had previously

suggested that GY-style models produce negatively biased ω estimates. Our

results generalize this finding and show that this bias is pervasive, remains ap-

proximately constant through a wide range of dN/dS values, and is not limited

to the GY-style framework (Figure 3.3A, Table 3.1, Figure 3.4). Furthermore,

this bias systematically increased in magnitude as the underlying mutational

process became more asymmetric. Indeed, for all frequency parameterizations,

ω MLEs were most accurate under NP mutation rates, and both accuracy and
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precision tended to decrease as mutational bias progressed from yeast to polio

mutation rates.
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from scaled selection coefficients, for datasets simulated using experimental
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Table 3.1: Estimator bias of ω MLEs and the true dN/dS values, for all
nucleotide mutation rates and model frequency parameterizations examined.
All biases are statistically significant (different from 0), with all P < 2×10−16

except for the estimator bias associated with yeast mutation rates for MG3,
where P = 5.4× 10−5.

Mutation rate MG1 F1x4 MG3 CF3x4 F3x4 F61

NP -0.014 -0.02 -0.007 -0.009 -0.007 0.019
Yeast 0.025 0.007 -0.063 -0.084 -0.076 -0.068
Polio -0.049 -0.103 -0.088 -0.148 -0.161 -0.136

Table 3.2: Precision, measured as the squared correlation coefficient r2, of ω
MLEs relative to the true dN/dS values, for all nucleotide mutation rates and
model frequency parameterizations examined. All values shown are statisti-
cally significant, with all P < 2× 10−16.

Mutation rate MG1 F1x4 MG3 CF3x4 F3x4 F61

NP 0.988 0.989 0.985 0.986 0.977 0.902
Yeast 0.943 0.917 0.905 0.897 0.864 0.889
Polio 0.842 0.811 0.777 0.754 0.781 0.752

Second, frequency parameterizations which more closely matched the

mechanistic process that generated the data (MG1 and MG3) generally out-

performed all other frequency estimators. In particular, MG1 clearly per-

formed the best of all frequency estimators considered, featuring by far the

least amount of estimator bias for the highly asymmetric polio mutation rates.

This result makes intuitive sense, as the MG-style framework most mechanis-

tically matches the MutSel framework among all dN/dS-based frameworks

examined here. Indeed, in the case of neutral evolution, ω = 1 in an MG-style
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matrix, and the ratio of fixation probabilities in the MutSel matrix will also

equal 1. Therefore, nucleotide mutation rates alone comprise each model’s

rate matrix, demonstrating that MG-style and MutSel models are virtually

identical under neutral evolution. Importantly, this correspondence does not

hold for GY-style matrices which, as they incorporate target codon frequen-

cies, do not explicitly consider nucleotide mutation rates. Thus, we highly

recommend that researchers employ MG-style matrices in their dN/dS infer-

ences to minimize bias. We note that this modeling framework is available

through HyPhy [58] and/or the Datamonkey server [30].

3.2.7 Model with best fit is not the model that yields the most
accurate parameter estimates

Strikingly, when we examined model fit using AIC scores [5,20] for the

different frequency parameterizations, we found that the F61 parameterization

was unequivocally the best-performing model, on average, for all datasets (Ta-

ble 3.3). This result dramatically juxtaposed the substantial inaccuracy and

imprecision in ω that F61 frequently yielded. In particular, F61 had the most

estimator bias for NP datasets as well as the least precision for both NP and

polio datasets (Figure 3.3). Thus, we found AIC could not identify the model

which produced the most accurate estimates for the parameter of interest.

40



Table 3.3: Mean ∆AIC for datasets simulated with NP, yeast, or polio virus
mutation rates. The order of frequency models shown in the table corresponds
to the model ranking for NP, and the ranking differs somewhat for yeast and
polio datasets. AIC is computed as AIC = 2(k−lnL), where k is the number of
free parameters of the model, and lnL is the log-likelihood [5,20]. Number of
free parameters for each model is F61, 63; CF3x4, 12; MG1, 6; F1x4, 6; MG3,
12; and F3x4, 12. Note that, for each model, 3 of the parameters are ω, κ,
and a global branch-length scaling parameter, and the remaining parameters
are either empirical codon or nucleotide frequencies.

Frequencies NP Yeast Polio

F61 0 0 0
CF3x4 -9519.53 -7843.77 -7975.94
MG1 -13207.5 -9924.05 -5147.57
F1x4 -13410.54 -13544.47 -15468.29
MG3 -14287.28 -12737.57 -8624.87
F3x4 -14699.22 -17277.3 -19384.58

Although this result may seem counterintuitive, it is important to

note that AIC measures goodness-of-fit by approximating the Kullback-Leibler

(KL) distance between a given candidate model and the true model. As the

MutSel framework defines selection coefficients in terms of stationary frequen-

cies, it indeed follows that the F61 estimator, which explicitly incorporates

empirical codon frequencies into the rate matrix, should be selected as the

best-fitting model, in spite of its biased parameter estimates. Therefore, we

additionally assessed whether BIC might provide a more accurate indication

of model performance. However, BIC scores, shown in Table 3.4, yielded the

same overarching trend as did AIC scores in which F61 dramatically outper-
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formed all other frequency parameterizations.

Table 3.4: Mean ∆BIC for datasets simulated with NP, yeast, or polio virus
mutation rates. Note that the order of frequency models shown here corre-
sponds to the model ranking for NP, and the ranking differs somewhat for
yeast and polio datasets. BIC is computed as BIC = −2 lnL+ k lnn, where k
is the number of free parameters of the model, lnL is the log-likelihood, and
n is the sample size [20]. For all models, n = 500000, which corresponds to
the number of alignment columns. The number of free parameters for each
model is F61, 63; CF3x4, 12; MG1, 6; F1x4, 6; MG3, 12; and F3x4, 12. Note
that, for each model, 3 of the parameters are ω, κ, and a global branch-length
scaling parameter, and the remaining parameters are either empirical codon
or nucleotide frequencies.

Frequencies NP Yeast Polio

F61 0 0 0
CF3x4 -8918.92 -7243.16 -7306.7
MG1 -12551.28 -9267.83 -4399.6
F1x4 -12776.56 -12910.5 -14720.32
MG3 -13653.31 -12103.59 -7955.63
F3x4 -14098.61 -16676.69 -18715.34

This finding has broad implications for practices in model selection.

In particular, it appears that model fit can be confounded with model accu-

racy, such that the model with better model fit may produce less accurate

parameter estimates. We find that, if the data are generated by a process

distinct from the inference model, standard model selection quantities cannot

necessarily identify which model produces the most precise and least biased

parameter estimates. Good model fit, therefore, may not have any bearing
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on whether using that model is mechanistically justified, and selecting models

based solely on fit may not guard effectively against spurious inferences but

instead prove misleading. We suggest that the mechanism producing the data

should be carefully considered, and an appropriate inference method which

best approximates this process should then be selected.

Finally, these results provide a concrete example of previous theoretical

suggestions that AIC might fail in phylogenetic model selection [68]. Indeed,

previous work has suggested that Bayes Factors might serve as a better in-

dication of model performance than AIC, albeit results were obtained in a

Bayesian rather than frequentist framework [99]. Further investigation into

the performance of various model fit criteria for model selection is strongly

warranted.

3.3 Conclusions

By elucidating the relationship between dN/dS and scaled selection

coefficients, we have shown that dN/dS-based and MutSel models convey con-

sistent information regarding the strength of natural selection. Importantly,

our proof that dN/dS ≤ 1 (assuming symmetric mutation and no synony-

mous selection) indicates that the use of the Halpern-Bruno MutSel modeling

framework is only justified under purifying selection. This restriction is in

part indicated by this model’s assumption of constant selection pressures over

time, or in other words a static fitness landscape [46, 100, 118, 119]. Thus, if

the aim is to identify positive, diversifying selection, of the two frameworks
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examined here, only dN/dS-based models are appropriate. However, different

MutSel frameworks not examined here, which allow fitnesses to fluctuate over

time, should serve as a promising avenue for future research extending the

applicability of this modeling framework [80,122].

We have also found that dN/dS values can readily be greater than

1 when selection acts on synonymous mutations, even though the protein

sequence is evolving solely under purifying selection. This seemingly para-

doxical finding actually reflects an assumption violation; the assertion that

dN/dS > 1 necessarily corresponds to positive, diversifying selection requires

that synonymous changes are neutral, which clearly does not hold if there are

fitness differences among synonymous codons. This result contributes to a

growing body of literature which has found that purifying selection can yield

dN/dS > 1 if model assumptions are not met. For instance, dN/dS can be

greater than 1, even under purifying selection, if sequences contain segregating

polymorphisms [63,75,95] or when GC-biased gene conversion is pervasive [92].

Thus, it is becoming increasingly clear that the dN/dS = 1 neutral threshold

typically used to distinguish purifying and positive selection is highly sensitive

to violations in model assumptions. We emphasize that it is crucial to verify

that data adhere to model assumptions before conclusions from dN/dS are

drawn.

We suggest several strategies to limit such false positive results under

synonymous selection. For one, certain formulations of dN/dS-based methods

consider dN and dS rate variation separately [60,70,77,79] rather than using
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a single parameter to represent dN/dS. These kinds of methods, and indeed

others which explicitly model nucleotide-level selection in conjunction with

codon-level selection [101] or correct dS for synonymous selection [135], may

be able to distinguish situations in which dN/dS > 1 because dN is unusually

large (positive selection) or dS is unusually small (purifying selection). Fur-

ther, our benchmarking approach, in which we simulate sequences according

to MutSel models and infer dN/dS both from MutSel parameters directly and

using ML, may be used to benchmark these kinds of models and may help to

identify circumstances under which synonymous selection confounds dN/dS

interpretations.

Finally, we emphasize the utility of establishing relationships among

distinct modeling frameworks to probe model behavior and evaluate model

performance. Such an approach is uniquely able to reveal unrecognized be-

haviors and/or limitations of different modeling frameworks and can precisely

reveal the circumstances in which different models are best suited. We hope

that further studies in this spirit will ensure robust model development in

future studies.

3.4 Methods

3.4.1 Simulation of scaled selection coefficients

To examine the relationship between dN/dS and scaled selection co-

efficients, we simulated 200 distributions of amino-acid scaled fitness values,

F aa
a = 2Nf aa

a , from a normal distribution N (0, σ2), where a unique σ2 for each
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fitness distribution was drawn from a uniform distribution U(0, 4). We con-

verted these amino-acid fitnesses to codon fitnesses as follows. For 100 of the

fitness distributions, we directly assigned all codons within a given amino acid

family the fitness F codon
i = F aa

a , so that all synonymous codons had the same

fitness. For the other 100 fitness distributions, we assigned synonymous codons

different fitnesses by randomly drawing a preferred codon for each amino acid.

This preferred codon was assigned the fitness of F codon
i = F aa

a +λ, and all non-

preferred codons were given the fitness F codon
j = F aa

a −λ. We drew a unique λ

for each fitness distribution from U(0, 2). We then computed stationary codon

frequencies as

Pi =
eF

codon
i∑

k e
F codon
k

, (3.10)

where the sum in the denominator runs over all 61 sense codons [106]. Equation

(3.10) gives the analytically precise stationary frequencies for a MutSel model,

under the assumption of symmetric mutation rates [106]. We used equations

(3.6) – (3.9) to compute dN/dS for each resulting set of stationary codon

frequencies. For these calculations, we assumed the HKY85 [47] nucleotide

mutation model, and accordingly we set the transition mutation rate as µκ

and the transversion rate as µ. We used the value µ = 10−6 for all dN/dS

calculations, and we drew a unique value for κ from U(1, 6) for each set of

codon frequencies.
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3.4.2 Alignment simulations

We simulated protein-coding sequences as a continuous-time Markov

process using standard methods [126] according to the Halpern-Bruno Mut-

Sel model [46]. In brief, this model’s instantaneous rate matrix Q = qij is

populated by elements

qij =


µij

Sij

1−exp(Sji)
single nucleotide change

0 multiple nucleotide changes

, (3.11)

for a mutation from codon i to j, where mij is the mutation rate, and the

scaled selection coefficient Sij is defined in equation (3.5). All alignments

presented here were simulated along a symmetric 4-taxon phylogeny with all

branch lengths equal to 0.01, beginning with a root sequence generated in

proportion to stationary codon frequencies [126]. Unless otherwise stated, all

simulated alignments contained 500,000 codon positions. A single evolutionary

model was applied to all positions in the simulated sequences. While this lack

of site-wise heterogeneity is unrealistic for real sequence evolution, it allowed

us to verify our derived relationship between scaled selection coefficients and

dN/dS with a sufficiently sized data set.

3.4.3 Computation of stationary frequencies for experimental data
sets

We used experimentally-determined site-specific amino-acid fitness pa-

rameters F aa
a for influenza nucleoprotein (NP), from ref. [16], in combination

with experimental nucleotide mutation rates for either NP [16], yeast [137], or
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polio virus [2], to derive realistic distributions of stationary codon frequencies.

We combined each of the 498 site-wise amino-acid preference sets reported by

ref. [16] with each of the three mutation-rate matrices to construct a total of

498×3 = 1494 unique experimental evolutionary Markov models, using the ap-

proach in refs. [16,17]. The instantaneous rate matrix Q for each experimental

model is populated by elements

qij =

{
max(1, F codon

j

/
F codon
i )mij single nucleotide change

0 multiple nucleotide changes
(3.12)

for a substitution from codon i to codon j, where F codon
i is the fitness of codon

i [16,17]. We calculated F codon
i values by simply assigning a given amino acid’s

experimental fitness F aa
a to each of its constituent codons; thus, all synonymous

changes were neutral. We determined the stationary codon frequencies for each

resulting experimental model from the matrix’s eigenvector corresponding to

the eigenvalue 0. Finally, we simulated alignments for each set of stationary

frequencies and corresponding mutation rates according to the Halpern-Bruno

model (equation (3.11)).

3.4.4 Maximum likelihood inference of dN/dS

For the 200 alignments simulated with symmetric mutation rates, we

inferred dN/dS using the M0 model [131], as implemented in the HyPhy batch

language [58]. The M0 model uses the GY94 instantaneous rate matrix, which
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is populated by elements

qij =


Pj synonymous transversion
κPj synonymous transition
ωPj nonsynonymous transversion
ωκPj nonsynonymous transition

0 multiple nucleotide changes

, (3.13)

for a substitution from codon i to codon j, where κ is the transition-transversion

bias, Pj is the equilibrium frequency of the target codon j, and ω represents

dN/dS [42, 81]. The Pi parameters are intended to represent those codon

frequencies which would exist in absence of selection pressure generated by

mutation alone [42, 79, 126, 128]. Thus, when inferring ω on datasets which

used symmetric mutation rates, we assigned the value 1/61 to all parameters

Pi, as all codons are equally probable under unbiased mutation.

Alternatively, when inferring ω for alignments simulated with experi-

mental fitness and mutation rates, we used several different model parameter-

izations, including GY-style [42] (target codon frequency) and MG-style [79]

(target nucleotide frequency) parameterizations. We considered the GY-style

parameterizations F61 [42], F3x4 [42], CF3x4 [55], and F1x4 [79]. We imple-

mented two varieties of MG-style models; the first, MG1, employs four pa-

rameters for nucleotide frequencies (one per nucleotide) [79], and the second,

MG3, employs twelve nucleotide frequency parameters, with four nucleotide

frequency parameters for each of the three codon positions [60]. All frequency

parameters were estimated from the data. Note that we used the state fre-

quencies of F1x4 for the MG1 framework and F3x4 for the MG3 framework.
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In addition to frequency parameter, all models included the parameters κ and

ω.

3.4.5 Availability

All code is freely available from

https://github.com/clauswilke/Omega MutSel. Simulated alignments are

available from the Data Dryad repository at

http://doi.org/10.5061/dryad.51sq0.

3.5 Appendix 1

We prove that dN/dS ≤ 1 when calculated from scaled selection coef-

ficients. We assume that mutation rates are symmetric (mij = mji) and that

synonymous codons have the same fitness (synonymous changes are neutral).

As described in the main text, these assumptions yield dS = 1, and hence we

have to show that dN = KN

/
LN ≤ 1. To this end, we note that the sums

in KN and LN can be reordered such that the substitution probability from

codon i to j is always added to the substitution probability from codon j to

i. We can then show that the sum of each of these pairs in the expression for

KN is smaller than the corresponding term in LN, and hence dN/dS ≤ 1.

Without loss of generality, we consider a pair of nonsynonymous codons

i and j whose respective stationary frequencies Pi and Pj satisfy Pi ≤ Pj and

Pi, Pj ≥ 0. As follows from equations (3.2) and (3.5), the sum of the probability
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weights of evolving from codon i to j and from codon j to i is

Nemijuij +Nemjiuji =
2PiPj[log(Pi)− log(Pj)]

Pi − Pj
. (3.14)

This quantity represents KN in the dN calculation. To prove dN ≤ 1, we must

show that this quantity is less than or equal to Pi + Pj, which represents LN

in the dN calculation. To this end, we introduce the function

F (x, y) = x+ y − 2xy[log(x)− log(y)]

x− y
, (3.15)

and we will now show that F (x, y) ≥ 0 for x ≤ y and y ≥ 0. Using l’Hôpital’s

rule, it is straightforward to show that lim|x−y|→0 F (x, y) = 0. Thus, we can

define F (x, x) ≡ 0. For x < y, we show that the first derivative of equation

(3.15) is negative throughout x ∈ (0, y), which proves that the function mono-

tonically decreases, and thus F (x, y) > 0, in this interval. We calculate the

first derivative as

∂F (x, y)

∂x
=

[
(x− 3y)(x− y)− 2y2(log x− log y)

]
(x− y)2

. (3.16)

We now replace the expression log x − log y by its Taylor series expansion,

yielding

∂F (x, y)

∂x
=

[
(x− 3y)(x− y)− 2y2

(
∞∑
n=1

1
n
(1− x/y)n

)]
(x− y)2

. (3.17)

We note that the first two terms of the Taylor series equal (x − 3y)(x − y),

and thus expression (3.17) simplifies to

∂F (x, y)

∂x
=

−2y2
∞∑
n=3

1
n

(
1− x

y

)n
(x− y)2

, (3.18)

which is clearly negative. This concludes the proof.
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3.6 Appendix 2

GY-style matrices may be expressed in the framework of the general-

time reversible (GTR) model, in which the instantaneous matrix Q can be

decomposed into a 61 × 61 symmetric substitution rate matrix and a 61-

dimensional vector containing the equilibrium codon frequencies. The latter

corresponds to the stationary distribution of the Markov chain. By contrast,

MG-style rate matrices are written in terms of nucleotide frequencies rather

than codon frequencies. Therefore, whether these models fit into the GTR

framework is unclear a priori. We now describe how the MG-style matrix

can be rewritten in terms of a symmetric matrix and a vector of equilibrium

codon frequencies, thus demonstrating that these matrices also fit into the

GTR framework.

MG-style matrix elements, for a the substitution from codon i to j, are

generally given by

qij =


θoitjπtj synonymous change

ωθoitjπtj nonsynonymous change
0 multiple nucleotide changes

, (3.19)

where ω is the ratio of nonsynonymous to synonymous substitution rates and

the product θoitjπtj corresponds to a nucleotide-level mutation rate µoitj , where

oi is the origin nucleotide in codon i, and tj is the target nucleotide in codon

j. Note that the matrix θoitj is symmetric in oi and tj.

For a given codon i, the matrix of Eq. (3.19) yields the stationary fre-

quency Pi = πi1πi2πi3C, where C = 1−Πstop and Πstop = πTπAπG +πTπGπA +
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πTπAπA [79]. Therefore, we can rewrite the term θoitjπtj as θoitjPjC/(πmπn),

where m and n are the nucleotides which do not change in a given instan-

taneous codon substitution. This allows us to rewrite the rate instantaneous

matrix as

qij =



Cθoitj
πmπn

Pj synonymous change from i to j

ω
Cθoitj
πmπn

Pj nonsynonymous change from i to j

0 multiple nucleotide changes

(3.20)

for a substitution from codon i to codon j, and this matrix clearly conforms

to the GTR framework.
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Chapter 4

Extensively-parameterized mutation–selection

models reliably capture site-specific selective

constraint

4.1 Introduction

Proteins are subject to a variety of structural, functional, and physio-

chemical constraints that influence their evolutionary trajectories. A growing

body of research has demonstrated that these constraints lead individual pro-

tein sites to have distinct tolerances to different amino acids [1,11,16,17,34,39,

86,87,91,93]. Recent experimental studies have further demonstrated that, for

essential house-keeping proteins, site-wise amino-acid preferences are broadly

conserved over evolutionary time [11,34,93].

To achieve a complete picture of protein evolutionary dynamics, it is

critical that we employ robust sequence evolution frameworks which explicitly

incorporate site-specific amino acid propensities. One such evolutionary model

that achieves this goal, known as the mutation–selection model, is based on

fundamental population-genetics principles [26] and models the joint forces of

selection and mutation in protein-coding sequences along a phylogeny. This

model considers site-specific amino-acid and/or codon propensities, or fitness
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values, as its focal parameters [46, 118, 119, 130]. Specifically, the mutation–

selection model estimates the scaled fitness, F = 2Nef (or F = Nef for

haploid organisms), where Ne is the effective population size and f is the

Malthusian fitness, of each amino acid at a given position in a protein-coding

sequence. These fitnesses are often used to infer the distribution of scaled

selection coefficients Sij = Fj − Fi, where Fi and Fj are the scaled fitnesses

of amino acids i and j. The distribution of S values indicates the range of

selective responses to new mutations across a given protein sequence.

Recently, two alternative implementations of site-specific mutation–

selection models have been released. The first implementation, known as

swMutSel, estimates site-specific fitness parameters as fixed-effect variables

through a maximum penalized-likelihood (MPL) approach [115, 116]. The

second implementation, available in the PhyloBayes software package, instead

employs a Dirichlet Process (DP) Bayesian framework and models site-specific

fitness parameters as random effects [98, 100]. For simplicity, we will refer to

the latter implementation as “pbMutSel” throughout this paper. Both plat-

forms are based on the mutation–selection models introduced by ref.

[46] and ref. [130], and they make nearly identical assumptions about the evolu-

tionary process. For instance, both swMutSel and pbMutSel assume that sites

evolve independently, that there is no selection on synonymous codons (i.e.

all synonymous codons have the same fitness), and that nucleotide mutation

rates are shared across all sites.

Although the mutation–selection model provides a promising frame-
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work for modeling protein sequence evolution in a mechanistic context, it is

not yet clear how one might use its estimates to gain insight into the evolution-

ary process. Whether the amino-acid fitnesses estimated by either swMutSel

or pbMutSel truly reflect evolutionary constraint remains an open question, in

particular because these two implementations produce seemingly-incompatible

results: swMutSel infers S distributions with two peaks representing nearly-

neutral (centered at S = 0) and highly deleterious changes, commonly defined

as S < −10 in the context of mutation–selection models [96, 115, 116]. In

contrast, pbMutSel infers unimodal distributions centered at S = 0, without

a peak of highly deleterious changes.

The relative accuracy between these two distinct approaches has sparked

a lively debate in the literature [96,98,103,116]. Specifically, ref. [96] critiqued

early swMutSel implementations as suffering from overparameterization, as

swMutSel’s fixed-effects framework requires estimating 19 parameters per site.

He argued that the characteristic peak at S < −10 in swMutSel-inferred scaled

selection-coefficient distributions is an erroneous artifact of model overparam-

eterization. ref. [96] additionally contended that, by modeling fitnesses as

random effects, pbMutSel avoids overfitting and certain statistical inconsisten-

cies that extensive parameterization might introduce. In response, ref. [116]

argued that experimental evidence from population genetics literature sup-

ports swMutSel’s recovery of a prominent peak of highly deleterious S < −10

changes. To ameliorate potential overfitting artifacts, swMutSel has been up-

dated with several likelihood penalty functions that regularize extreme amino-
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acid fitness estimates [116].

Importantly, quantitative comparisons of swMutSel and pbMutSel in-

ferences have focused nearly exclusively on asking how well they recapitulate

the gene-wide distribution of S, or similarly the gene-wide proportions of dele-

terious and beneficial substitutions [96, 98, 100, 115, 116]. In spite of these ef-

forts, however, there remains no conclusive evidence supporting either swMut-

Sel or pbMutSel as the more reliable inference approach. Indeed, support

for either approach currently rests on theoretical arguments regarding either

pbMutSel’s more desirable statistical properties, or swMutSel’s general agree-

ment with population-genetics literature. However, statistical consistency does

not necessarily correspond to empirical accuracy, and phylogenetic data may

not be directly comparable to population data. As such, neither argument

presents strong evidence in favor of either pbMutSel or swMutSel.

We posit that no consensus regarding mutation–selection implementa-

tion accuracy has emerged specifically because performance has been assessed

using whole-gene S distributions. Pooling all site-specific S values into a single

distribution makes it impossible to conduct a systematic analysis of differences

between inference methods, especially given that these methods were imple-

mented to estimate amino-acid fitness values at individual sites. As a con-

sequence of this approach, it remains unknown how well inferred parameters

capture site-specific evolutionary processes.

Therefore, in this study, we have investigated the relative performance

of mutation–selection model implementations by directly comparing how well
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each infers evolutionary constraints across individual sites, rather than focus-

ing primarily on S distributions. We have found that swMutSel, specifically

run as either unpenalized or with a weak likelihood penalty function, consis-

tently estimates the most accurate site-specific fitness values. By contrast,

pbMutSel and strongly-penalized swMutSel parameterizations systematically

underestimates the strength of natural selection across sites.

4.2 Results

4.2.1 Simulation and Inference Approach

We simulated eleven coding-sequence alignments wherein each position

evolved according to a distinct mutation–selection model parameterization.

We derived site-specific codon fitness parameters from a set of structurally-

curated yeast amino-acid alignments from ref. [91], as described in Methods

and Materials. Each simulation was performed using parameters derived from

a specific yeast alignment, and thus the number of codon positions across

simulated alignments ranged from 115–291. This approach ensured that the

evolutionary heterogeneity across each simulated alignment was directly com-

parable to that seen in real protein alignments. We assumed that all codons

for a given amino acid had the same fitness, and we assumed globally equal

mutation rates. All simulations were performed along a balanced 512-taxon

tree with branch lengths of 0.5 so that that each dataset contained sufficient in-

formation to discern the underlying stationary amino-acid fitnesses (Spielman

et al. 2015).
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We processed each simulated alignment with both swMutSel and pb-

MutSel. For swMutSel, we processed each alignment both without a penalty

and under six penalty functions [116]. Penalty functions examined included

the multivariate normal penalty function with the σ parameter equal to either

1, 10, or 100 (referred to as mvn1, mvn10, and mvn100, respectively), as well

as the Dirichlet-based penalty function with the α parameter equal to either

1.0, 0.1, or 0.01 (referred to as d1.0, d0.1, and d0.01, respectively). Each set

of penalty-function parameterizations represents stronger to weaker penalties,

i.e. mvn1 is a strong penalty, mvn10 is a moderate penalty, and mvn100 is a

weak penalty. Similarly, d1.0 is a strong penalty, d0.1 is a moderate penalty,

and d0.01 is a weak penalty. Unless otherwise stated, we refer to swMutSel

inferences using their penalty specification and to swMutSel run without a

penalty function as “unpenalized.”

4.2.2 No method can infer the true distribution of selection coeffi-
cients

We began our analysis by assessing how well each inference approach

estimated the true, simulated distribution of scaled selection coefficients, S.

Qualitatively, either unpenalized or weakly-penalized swMutSel (specifically

mvn100 or mvn10) best captured the shape of the underlying S distribution

(Figures 4.1). However, a more rigorous comparison of S distributions using

the Kolomogorov-Smirnov (KS) test revealed that no inference method could

precisely infer the S distribution (all P < 10−15), and therefore S distributions

were unable to unequivocally determine the relative merits of swMutSel and
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pbMutSel.
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Figure 4.1: True and inferred distributions of scaled selection coefficients across
inference methods, for a representative dataset. Scaled selection coefficients
have been binned at S ≥ 10 and S ≤ −10 for visualization. The text to
the right of each row indicates the yeast alignment in ref. [91] from which
simulation parameters were derived.
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4.2.3 Extensively-parameterized models show smallest distance be-
tween true and inferred parameters

We next assessed how the inferred site-specific fitness values compared

to the true fitness values. We derived, for each site-specific set of inferred

fitnesses, the corresponding equilibrium amino-acid frequencies [106,109]. We

calculated the Jensen-Shannon distance (JSD) between the inferred and true

equilibrium frequency distributions. JSD is defined as

JSD(P,Q) =

√
D(P,M) +D(Q,M)

2
, (4.1)

where P = (p1, . . . , p20) and Q = (q1, . . . , q20) are the amino-acid frequency

distributions to be compared, M = (P + Q)/2 is the element-wise average

between P and Q, and D(A,B) =
∑

i ai ln(ai/bi) is the Kullback-Leibler di-

vergence between distributions A = (a1, . . . , a20) and B = (b1, . . . , b20). JSD

values range from 0 for completely identical distributions to 1 for completely

dissimilar distributions.

Across all datasets, unpenalized swMutSel, mvn10, and mvn100 yielded

the lowest mean JSD value of roughly 0.09 (Figure 4.2). The JSD distribu-

tions inferred by these three approaches were statistically indistinguishable

(P > 0.95, mixed-effects linear model). The stringent mvn1 penalty, as well as

all swMutSel Dirichlet penalties, showed increasingly larger distances between

the inferred and true amino-acid frequencies. In general, swMutSel’s Dirichlet

penalty function appeared to influence JSD more strongly than did its multi-

variate normal penalty function. The JSD distributions from pbMutSel were
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comparable to an intermediate Dirichlet penalty (here, d0.1), consistent with

the mathematical equivalence between its use of a Dirichlet prior with the

Dirichlet-penalized maximum likelihood [116].
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Figure 4.2: Jensen-Shannon distance between true and inferred amino-acid
frequency distributions. (A) JSD for individual sites from a representative
simulation dataset. The simulation dataset shown was derived from the yeast
protein alignment in ref. [91] corresponding to PDB ID 1R6M, chain A. (B)
Average JSD for all eleven simulated datasets, where each point represents the
mean JSD across sites for a given simulation.

4.2.4 Extensively-parameterized models best infer evolutionary con-
straint

While JSD provided a useful metric for determining the distance be-

tween inferred and true frequency distributions, it is not an explicit evolu-
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tionary measure. For instance, while a large JSD indicates high dissimilarity,

it is neither possible to tell how this dissimilarity relates to selection pres-

sure, nor whether high JSD corresponds to systematically-biased or randomly-

distributed error in estimates.

Therefore, we next asked whether site-specific inferences from swMut-

Sel and pbMutSel corresponded to the true selective constraint at each site.

We measured selective constraint by predicting a dN/dS ratio for each site’s set

of mutation–selection parameters [108, 109]. In this context, dN/dS provides

an evolutionarily-aware summary statistic for the selection pressure acting

at a given site, incorporating both amino-acid fitness values and nucleotide

mutation rates. Moreover, dN/dS has a clear, widely-accepted interpreta-

tion: Lower ratios indicate stronger selective constraint, and higher ratios in-

dicate progressively weaker constraint. Importantly, because our simulations

assumed symmetric nucleotide mutation rates and no codon bias, all dN/dS

ratios are constrained to dN/dS ∈ [0, 1], as we have previously shown [109].

We derived a site-specific dN/dS ratio for each true and inferred distri-

bution of site-specific amino-acid fitnesses and nucleotide mutation rates [109],

and we compared the resulting true and predicted dN/dS ratios across infer-

ence methods. Results recovered from this analysis followed similar trends to

those seen in the JSD analysis (Figures 4.3 and 4.4). swMutSel, run either

as unpenalized or with the mvn100, mvn10, or d0.01 penalties, yielded the

strongest Pearson correlations (r ∼ 0.95) between true and predicted dN/dS

(Figure 4.4A). Furthermore, these four approaches tended to slightly under-
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estimate dN/dS across sites, indicating that the inferred selection constraint

was stronger than was the true level of constraint (Figure 4.4B). However, the

estimator bias observed for d0.01 was not statistically significant for any of

the eleven simulated datasets (all P > 0.01, test for intercept in linear model).
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Figure 4.3: Scatterplots of predicted vs. true dN/dS ratios, for all inference
methods, across simulated datasets, for simulations with strongly deleterious
changes. Each red line indicates the y = x line, and the text to the right
of each row indicates the yeast alignment in ref. [91] from which simulation
parameters were derived.
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Figure 4.4: Performance of mutation–selection model inference platforms. (A)
Pearson correlation coefficients between true and inferred dN/dS across in-
ference methods, for all simulated datasets. (B) Estimator bias of inference
methods relative to true dN/dS values, for all simulated datasets. Open points
indicate estimator biases that were not significantly different from 0 (P > 0.01,
test for intercept in linear model), and solid points indicate biases that were
significantly different from 0 (P ≤ 0.01, test for intercept in linear model).
The y = 0 line shown indicates a bias of 0, which would reflect an unbiased
estimator.

The four remaining approaches (mvn1, d0.1, d1.0, and pbMutSel) ad-

ditionally showed moderate-to-high correlations between true and predicted

dN/dS, but they all systematically overestimated dN/dS. In other words,

these approaches (particularly d1.0) consistently inferred much weaker selec-

tion pressure than was truly present. This trend was pronounced for highly-

constrained, i.e. low dN/dS, sites. Therefore, inferences from these approaches

did not capture underlying site-specific selection constraint with the same ac-
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curacy as did unpenalized or weakly-penalized swMutSel.

4.2.5 Direction of estimation error depends on parameterization

We next asked whether a given site’s underlying selective constraint,

as represented by dN/dS, influenced error in the inferred fitness values, as

represented by site-specific JSD. For the unpenalized and multivariate normal

swMutSel penalities, JSD increased with decreasing selective constraint (i.e.

increasing dN/dS), indicating that these approaches estimated fitness values

most precisely for highly conserved residues (Figure 4.5A). By contrast, the

swMutSel Dirichlet parameterizations and pbMutSel displayed the opposite

trend: These approaches estimated fitnesses most precisely for sites with weak

selective constraint (high dN/dS), and consequently JSD was highest for sites

with low dN/dS. Even so, the overall JSD remained lowest for unpenalized,

mvn100, and mvn10 (Figure 4.2).

68



Unpenalized mvn100 mvn10 mvn1 d0.01 d0.1 d1.0 pbMutSel

0.0

0.1

0.2

0.3

0.4

0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6

True dN/dS

S
ite

 J
S

D
A

−0.3

−0.2

−0.1

0.0

0.1

0.2

Unpenalized mvn100 mvn10 mvn1 d0.01 d0.1 d1.0 pbMutSel
Inference Method

S
lo

pe

B

Figure 4.5: The site-specific Jensen-Shannon distance between true and in-
ferred amino-acid frequencies depends both on selective constraint and infer-
ence method. (A) Site-specific JSD plotted against true dN/dS for a represen-
tative simulation dataset. The line in each panel indicates the linear regres-
sion line. The simulation dataset shown was derived from the yeast protein
alignment in ref. [91] corresponding to PDB ID 1R6M, chain A. (B) Slope of
relationship shown in panel (A) for all eleven simulated datasets. The straight
line indicates the y = 0 line, meaning no linear relationship between JSD and
dN/dS. Open points indicate slopes that were not significantly different from
0 (P > 0.01), and solid points indicate slopes that were significantly different
from 0 (all significant P < 10−3).

Interestingly, across all datasets (Figure 4.5B), mvn1 and d0.01, rep-

resenting the swMutSel’s strongest multivariate normal and weakest Dirichlet

penalty, respectively, displayed the weakest relationship between JSD and true

dN/dS. Of the eleven datasets analyzed, only four analyzed with mvn1 and

three analyzed with d0.01 showed a significant relationship (P < 0.01) between

dN/dS and JSD. These results, coupled with the strong agreement between

true and predicted dN/dS ratios (Figures 4.3 and 4.4), support the use of

swMutSel with a weak Dirichlet prior (d0.01) for the most reliable mutation–
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selection model inference. This swMutSel parameterization displayed the high-

est correlation for site-specific constraint without any significant estimator

bias, and the error in site-specific fitness estimation was the least influenced

by underlying selection pressure.

4.2.6 Results are robust to an absence of strongly deleterious sub-
stitutions

Taken together, our results pointed to the swMutSel implementation,

either unpenalized or weakly-penalized, as the most reliable mutation–selection

model inference platform. However, as seen in Figure 4.1, all true S distri-

butions contained relatively high proportions of strongly deleterious changes

(S < −10). Across datasets, an average 40.6 ± 1.3% of the possible substi-

tutions were considered strongly deleterious. Given that swMutSel is known

to estimate large proportions of strongly deleterious changes, our simulations

may have been biased towards favoring the extensively-parameterized swMut-

Sel platform over pbMutSel.

To address this potentially confounding factor, we simulated a sec-

ond set of eleven alignments, whose site-specific selective constraints were vir-

tually identical to those described earlier (average Pearson correlation r =

0.95±0.01), except that we re-assigned the scaled fitness values of all strongly

deleterious codons to a weakly deleterious fitness drawn from a uniform dis-

tribution F = U(−6,−4.5). Note that the maximally-fit codon, for all sites,

had a fitness of F = 0, and hence all resulting |S| ≤ 6. These new selec-
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tive pressures removed all strongly deleterious changes from the simulations,

leaving only weakly deleterious changes. Indeed, the resulting true S distribu-

tions for these updated parameters were distinctly unimodal (Figure 4.6). We

will refer to these new simulations as “weakly deleterious” and to the origi-

nal simulations as “strongly deleterious.” We processed each new alignment

with swMutSel and pbMutSel, and we assessed the correspondence between

true and inferred S distributions as well as the true and predicted site-specific

dN/dS ratios.

As with the strongly deleterious simulations, we found that no inferred

S distribution precisely corresponded to the true S distribution (all P < 10−15,

KS test). However, we found that which inferred S distribution provided

the best qualitative approximation of the true distribution differed from the

strongly deleterious simulations. For weakly deleterious simulations, S dis-

tributions inferred by strongly-penalized swMutSel (in particular mvn1) and

pbMutSel best captured the shape of the true S distribution (Figures 4.7 and

4.6). Further, in spite of the lack of strongly deleterious substitutions, unpe-

nalized swMutSel, and to a lesser degree mvn100, inferred a distinct mode of

S < −10 coefficients (Figures 4.7 and 4.6), which suggested possible overpa-

rameterization.
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Figure 4.6: Distributions of scaled selection coefficients across all inference
methods, for weakly deleterious simulations. For visualization, distributions
have been binned at S ≤ −10 and S ≥ 10. The text to the right of each row
indicates the yeast alignment in ref. [91] from which simulation parameters
were derived.
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Figure 4.7: Accuracy of predicted dN/dS, but not of selection coefficient distri-
butions, was robust to the proportion of highly deleterious amino acids. (A-D)
Predicted dN/dS from vs. true dN/dS for a strongly and weakly deleterious
simulated alignment, for inference approaches unpenalized, d0.01, mvn1, and
pbMutSel. The line in each panel represents the y = x line. (E-H) True
and inferred S distributions for a strongly (left) and weakly (right) deleteri-
ous simulated alignment,for inference approaches unpenalized, d0.01, mvn1,
and pbMutSel. All results in this figure correspond to the alignment simu-
lated using parameters derived from the yeast protein alignment in ref. [91]
corresponding to PDB ID 1R6M, chain A.

Between simulation sets, the true vs. predicted dN/dS correlations were

relatively larger under the weakly deleterious simulations when analyzed by

strongly-penalized swMutSel and/or pbMutSel (Figure 4.9A). By contrast,

when analyzed with unpenalized and weakly-penalized swMutSel, correlations

were larger under the strongly deleterious regime compared to the weakly

deleterious regime. Even so, under both weakly and strongly deleterious con-

ditions, unpenalized and weakly-penalized swMutSel consistently showed the

largest correlations. In addition, estimator bias was generally lower for weakly

deleterious compared to strongly deleterious simulations under all swMut-
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Sel parameterizations (Figure 4.9B). For pbMutSel, the extent of estimator

bias was consistent between simulation sets. Again, however, unpenalized

and weakly-penalized swMutSel remained the least biased inference methods.

Therefore, the proportion of strongly deleterious changes did not dramatically

influence relative performance accuracy.
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Figure 4.8: Scatterplots of predicted vs. true dN/dS ratios, for all inference
methods, across weakly deleterious simulations. Each red line indicates the
y = x line, and the text to the right of each row indicates the yeast alignment
in ref. [91] from which simulation parameters were derived.
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Taken together, these results revealed a strong disconnect between S

distributions and site-specific evolutionary constraint: The mutation–selection

implementation that provided the best S estimates did not necessarily pro-

vide the best estimates of site-specific selection pressure (Figure 4.7). The

method which yielded the best S estimate depended on the underlying se-

lection pressure (weakly or strongly deleterious), whereas unpenalized and/or

weakly-penalized swMutSel (particularly d0.01) consistently yielded the high-

est dN/dS correlations under both weakly and strongly deleterious simulation

sets. In other words, while accuracy of S inference depended on the underlying

selective landscape, accuracy in estimating the strength of natural selection at

individual sites was robust to this change.
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4.3 Discussion

We have investigated the utility of mutation–selection model inference

platforms for inferring site-specific selective constraint from coding sequences.

We did not recover unequivocal evidence that any inference method could pre-

cisely infer the gene-wide distribution of scaled selection coefficients. However,

swMutSel, run either unpenalized or with a weak penalty function, consistently

inferred site-specific fitness values that reliably captured each site’s evolution-

ary constraint (Figures 4.3, 4.4, and 4.8). pbMutSel and swMutSel run with a

strong penalty function systematically underestimated the strength of natural

selection across sites. Importantly, these results were robust to the proportion

of deleterious changes in the data: Even when all |S| ≤ 6, indicating only

weakly deleterious substitutions, pbMutSel and strongly-penalized swMutSel

still substantially underestimated selective constraint across sites.

We identified a striking discordance between gene-wide S distributions

and site-specific evolutionary constraint, as measured by the dN/dS ratio.

While unpenalized and weakly-penalized swMutSel consistently inferred site-

specific amino-acid fitness values that most precisely corresponded to selec-

tion pressure, the mutation–selection implementation that inferred the most

qualitatively correct S distribution depended heavily on the gene-wide selec-

tive constraint (i.e. presence or absence of strongly deleterious substitutions).

Strongly-penalized swMutSel and pbMutSel best estimated the S distribu-

tion for weakly deleterious simulations, but unpenalized or weakly-penalized

swMutSel best estimated S for strongly deleterious simulations. As such, it
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would be difficult to discern from S inferences alone which inference platform

produced amino-acid fitness estimates that best reflected evolutionary con-

straint, ultimately revealing that S distributions may be a poor and mislead-

ing quantity for evaluating methodological performance. Taking the purpose

of these models into consideration, this observation makes perfect sense. Both

swMutSel and pbMutSel were implemented for the specific purpose of mecha-

nistically modeling site-specific selection pressure in protein-coding sequences.

Focusing on whole-gene metrics over site-specific inferences stands at odds

with the very motivation behind the site-wise mutation–selection model.

From a purely statistical standpoint, it may seem unsettling that un-

penalized swMutSel inferred a peak, albeit a relatively small one, of strongly

deleterious substitutions for the weakly deleterious simulations (Figures 4.7

and 4.6). These estimates, as previously noted by ref. [96], were likely made be-

cause swMutSel’s “extensive parameterization approach considers unobserved

amino acids as highly deleterious.” ref. [96] further suggested that pbMutSel’s

“less conclusive” inferences regarding unseen amino acids represent a more

desirable behavior, reasoning that just because an amino acid has not been

observed does not necessarily mean that it was highly deleterious or lethal.

While this argument may seem appealing, we contend that swMut-

Sel’s treatment of unseen amino acids is preferred. Inferring anything other

than a highly deleterious fitness value for unseen amino acids directly con-

tradicts the logic of the underlying reversible Markov model. The mutation–

selection model implemented in both swMutSel and pbMutSel assumes that
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sequences evolve under an equilibrium process. As such, the observed data is

directly interpreted as representative sample of the model’s steady-state dis-

tribution [46, 109, 130]. Under the assumption of equilibrium, the only logical

way to model unseen amino acids is to assume that they have an exception-

ally small steady-state frequency. In the mutation–selection model framework,

such small frequencies are a direct result of extremely low fitnesses which, by

definition, mostly preclude their fixation. Whether scaled selection coefficients

associated with such highly deleterious amino acids are S = −20 or S = −50

is largely irrelevant: As long as the fixation probability for that amino acid is

sufficiently low, then selective constraint will be well-estimated.

We additionally emphasize that, while unpenalized and/or weakly-

penalized swMutSel emerged here as the more reliable mutation–selection in-

ference platform, dN/dS ratios predicted from all inferences correlated strongly

with the true dN/dS ratios (Figure 4.4), and indeed with one another. For

example, the Pearson correlation between dN/dS predicted from unpenalized

swMutSel and pbMutSel was, on average, r = 0.89 across all simulations.

This high correlation contrasts strongly with conclusions drawn from previous

studies that swMutSel and pbMutSel make fundamentally distinct inferences.

Importantly, such assertions have been made entirely by comparing true and

inferred S distributions, and not based on any rigorous quantitative compari-

son of true vs. inferred site-specific parameters. Our results, therefore, demon-

strated that performance differences between swMutSel and pbMutSel, while

clearly present, were smaller than one would assume based on S distributions
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alone.

We suggest that some modifications to pbMutSel’s default settings,

such as changing the fixed dispersion parameter for its Dirichlet prior, may

produce more reliable inferences. Although such efforts may be helpful, there

remained salient differences in runtime between swMutSel and pbMutSel. For

example, each swMutSel inference required between six and 24 hours to con-

verge (with unpenalized swMutSel inferences taking the most time), whereas

each pbMutSel inference required between one to two weeks. In other words,

each swMutSel inference converged seven to 50 times more quickly than did

each pbMutSel inference. From a practical standpoint, swMutSel’s relatively

short runtime and reliable inferences make it the preferred inference platform.

In sum, although mutation–selection models may not be well-suited

for inferring the precise distribution of S from any dataset, they can readily

capture selection pressures acting at individual sites. We recommend the use

of swMutSel with a weak Dirichlet prior (e.g. with α = 0.01, as investigated

here), as this parameterization provided the most accurate and least biased

estimates of site-specific evolutionary constraint.

4.4 Materials and Methods

4.4.1 Generation of simulated data

Sequences were simulated according to the mutation–selection model

in ref. [46], which assumes a reversible Markov model of sequence evolution.
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For each site k, this model’s rate matrix is given by

q
(k)
ij =

{
µijf

(k)
ij single nucleotide change

0 multiple nucleotide changes
, (4.2)

where µij is the site-invariant mutation rate between codons i and j, and f
(k)
ij ,

the site-specific fixation probability from codon i to j, is defined as

f
(k)
ij =

S
(k)
ij

1− e−S
(k)
ji

, (4.3)

where S
(k)
ij is the scaled selection coefficient from codon i to j at site k [46].

Note that f
(k)
ij can also be expressed as

f
(k)
ij = ln

(
π
(k)
j µij

π
(k)
i µji

)/(
1− π

(k)
i µji

π
(k)
j µij

)
, (4.4)

where πk
i is the equilibrium frequency of codon i at site k [46, 109].

We determined each alignment’s site-specific codon frequencies directly

from an empirical dataset of yeast amino-acid alignments, each homologous to

a given PDB struture, compiled by ref. [91]. For each yeast alignment which

contained at least 150 taxa, we calculated each site’s amino acid frequencies,

which we converted to codon frequencies under the assumption that all syn-

onymous codons for a given amino acid had the same frequency. In addition,

sites which contained fewer than 150 amino acids (e.g. a column in an align-

ment with 200 taxa but half of whose characters are gaps) were discarded. A

total of eleven yeast alignments, with a number of codon positions ranging

from 115–291, were obtained from this procedure. We additionally set the

equilibrium frequency of all unobserved amino acids to 10−9. For alignments
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simulated with only weakly deleterious changes, we re-assigned the equilib-

rium frequency of the most deleterious amino acids by drawing a fitness value

from a uniform distribution F = U(−4.5,−6), where each set of site-specific

fitnesses were scaled to give the maximally-fit codon a fitness of F = 0.

We then simulated an alignment corresponding to each of these eleven

proteins using the Python library Pyvolve [108]. All simulations were con-

ducted along a 512-taxon balanced tree with branch lengths equal to 0.5.

Finally, we inferred a true dN/dS for each alignment’s column as described in

ref. [109].

4.4.1.1 Mutation–selection model inference

We processed all alignments, both simulated and empirical, with swMut-

Sel and pbMutSel. swMutSel inference was carried out under seven specifi-

cations, including without the use of a penalty function, and three parame-

terizations each for both the multivariate normal and the Dirichlet penalty

functions. For the multivariate normal penalty, we set µ to either 1, 10 or 100,

and for the Dirichlet penalty, we set α to either 1.0, 0.1, or 0.01.

For inference with pbMutSel, we followed the inference approach given

in ref. [96]. We ran each chain for 5500 iterations, saving every 5 cycles until a

total sample size of 1100 was obtained. The first 100 samples were discarded

as burnin, and hence the final posterior distribution from which fitnesses were

calculated contained 1000 draws. Convergence was assessed visually using

Tracer [90].
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For each mutation–selection inference, we calculated a site-specific dN/dS

value directly from inferred parameters [109].

4.4.2 Statistical Analysis and Data Availability

All statistical analyses were conducted in the R programming lan-

guage [88]. All reported P-values were corrected for multiple testing using

the Bonferroni correction. Simulated data, statistical analyses, and all code

used are freely available from the github repository

https://github.com/sjspielman/mutsel benchmark.
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Chapter 5

Conclusion

The work described in this dissertation will provide a concrete basis

on which new statistical models of sequence evolution can be evaluated, com-

pared, and developed. The Pyvolve library described in Chapter 2 has already

provided a flexible and easily-extensible tool for sequence simulation, which

can in turn be used to develop and test models [37, 109]. In addition, the

formal, mathematical relationship derived in Chapter 3 between dN/dS and

mutation–selection model parameters allowed for a more rigorous assessment

of both dN/dS-based and mutation–selection models. Past attempts to dis-

cern the relative merits among dN/dS-based model formulations have relied

either on model fit metrics (e.g. AIC or BIC) or simply through intuitive as-

sumptions, which are not strictly scientific. Our results demonstrated that

the use of model fit metrics can, in fact, be highly misleading (Tables 3.3 and

3.4) and allow for spurious conclusions. Importantly, we were only able to

recover this critical finding by testing dN/dS-based models with mutation–

selection model simulation, revealing the broad utility of understanding the

relationships among sequence evolution modeling frameworks.

Because the mutation–selection model assumes that selection pressure
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is constant, on a per-site basis, over time, it effectively provides a null model

for asking whether a given site is evolving under an equilibrium evolution-

ary process. Using a combined modeling approach, one can envision a novel

hypothesis-testing framework wherein we can infer both dN/dS and mutation–

selection model parameters from a dataset, both using standard maximum-

likelihood approaches. Next, we can predict a null expectation for dN/dS

based on the inferred mutation–selection parameterization at each site. We

can then formally test the hypothesis that a given site is evolving under the

mutation–selection model by comparing the ML-inferred dN/dS to the dN/dS

ratio predicted from mutation–selection parameters. This framework would

necessitate estimating a confidence interval for the null dN/dS expectation,

which can be accomplished by bootstrapping.

An analogous approach to the one described above has recently been

proposed, through which experimentally-derived and computationally-predicted

estimates of site-specific fitness are compared to reveal sites under selection

[15]. This framework has already shown promising results. It has successfully

been applied to four proteins and has identified sites known to be under selec-

tion that would not normally be identified as such using a dN/dS-based model.

However, the proposed procedure requires extensive, and costly, experimental

assays. The computational approach described above would therefore provide

a more accessible and reproducible test for non-equilibrium evolution. Such

a hypothesis test would have a wide-ranging influence across evolutionary bi-

ology, and potentially establish a new paradigm, in addition to the standard
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dN/dS-based tests for positive selection, for identifying cases of shifting selec-

tive constraint over time.
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