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Utility maximization problems occupy an important role in Mathematical
Finance and since Merton’s (1969, 1971) papers, they have been dubbed as Merton
Problems. Combining asset and utility models yields various such problems, three
of which are treated in this dissertation. In Chapter 2, we analyze the level curves
for the classical Merton problem and compare them with the case when trading
constraints, and respectively transaction costs are introduced. In Chapter 3, we
study the Merton Problem when the agent faces trading constraints and exhibits
recursive utility. A representation of the value function is obtained, which has
interesting economic explanations. In Chapter 4, we study the Merton Problem
when the agent not only faces trading constraints in one asset, but also she is
unable to observe its price. Typical examples are illiquid stocks, pre- IPO stocks or
pre- IPO stock options. We provide a numerical algorithm. Chapter 5 states few

open problems.
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Chapter 1

Introduction

Utility maximization problems occupy an important role in Mathemat-
ical Finance and since Merton’s (1969, 1971) papers, they have been dubbed

as Merton Problems.

The typical model is that of a market consisting of several assets: a
risk free asset following a deterministic equation and one or more risky assets,
modelled as Ito processes. The time horizon is either [0,77] or [0,00). An
agent acts on the market by buying and selling the assets and consuming the
risk free asset, subject perhaps to various constraints, like interdiction to trade
some of the assets, transaction costs or informational limitations. The agent
has a certain utility from consumption which, according to her preferences,
might take various forms: utility of terminal wealth in the case when the
time horizon is finite and the agent only consumes at the end of the horizon;
additive utility of consumption across time; recursive utility in the case the
agent has preferences on the timing of resolution of uncertainty as well; and a
combination of all of the above. Combining the constraints faced by the agent
with her specific utility from consumption yields a large class of ”Merton

Problems”, some of which were not studied previously.



In the present paper we look at three such problems: in Chapter 2, we
analyze the level curves for the classical Merton problem and compare them
with the case when trading constraints, and respectively transaction costs are

introduced.

In Chapter 3, we study the Merton Problem when the agent faces trad-
ing constraints and exhibits recursive utility. One question arising in such a
setup is how much more ”anxiety” is experienced by an agent with recursive
preferences when the model includes an extra stochastic factor — namely, the

asset in which the agent is forbidden to trade.

Finally, in Chapter 4, we study the Merton Problem when the agent not
only faces trading constraints in one asset, but also she is unable to observe its
price. Typical examples are illiquid stocks, pre- IPO stock or pre- IPO stock
options. An interesting question that arises here is whether the agent can ob-
serve her own informational limitations in the presence of another uninformed
agent, or, put in specific terms, whether the Separation Principle holds. Also,

a numerical algorithm is presented.



Chapter 2

INDIFFERENCE CURVES FOR THE
VALUE FUNCTION

We study the level sets of value functions in expected utility stochastic
optimization models. We consider optimal portfolio management models in
complete markets with lognormally distributed prices as well as asset prices
modelled as diffusion processes with non-linear dynamics. Besides the com-
plete market cases, we analyze models in markets with frictions like correlated
non-traded assets and diffusion stochastic volatilities. We derive, for all the
above models, equations that their level curves solve and we relate their evolu-
tion to power transformations of derivative prices. We also study models with
proportional transaction costs in a finite horizon setting and we derive their
level curve equation; the latter turns out to be a Variational Inequality with

mixed gradient and obstacle constraints.

2.1 INTRODUCTION

In this chapter, we initiate a study of the level sets of the value functions
of stochastic optimization problems that arise in utility maximization models.

Level sets are sets on which the value function is constant and, as the examples



below indicate, they might have a natural connection with derivative prices.
The utility maximization models are the cornerstone in both areas of portfolio
management and derivative security pricing especially in incomplete markets.
In fact in the latter case, such models arise in the hedging of contingent claims
(see example 1) as well as in the pricing of claims via utility methods. Even
though when perfect replication is feasible the utility formulation is clearly
redundant, this method has produced fruitful results in the presence of frictions

which prohibit exact replication.

The study of the level curves has always been of central interest in non-
linear evolution problems. Problems of this nature also arise in a variety of
mathematical finance models but the level curves of their solutions have not
been analyzed yet. Besides studying these curves for their own sake, there is
concrete evidence that they may also contain valuable information for asset

valuation as the following examples indicate.

Example 1: It is well known that in the presence of transaction costs per-
fect replication of contingent claim payoffs is not feasible. Thus one needs
to relax the notion of exact replication in order to be able to price deriva-
tives with transaction costs. Among the various methodologies proposed — the
utility maximization approach, the imperfect hedging technique and the super-
replication method — the latter produces, from the practical point of view, the
least interesting results. In fact, as Davis and Clark (1994) conjectured and
Soner et al (1995) established, the cheapest super-replication strategy is to

buy and hold one share of the underline security. This result was subsequently



generalized by Leventhal and Skorohod (1997) who showed that if the deriva-
tive payoff g(Sr) satisfies g(S) ~ €S for large S, then in order to have exact
super-replication at expiration, the least expensive strategy is to hold ¢ shares
of the underlying security. Because these constraints are rather stringent and
produce prices of little practical significance, it is imperative to relax the re-
quirement of exact super-replication by allowing for a “small slippage”. In
other words, one may replace the almost surely super-replication requirement
by the condition that the candidate (super) hedging portfolio dominates the

security payoff with probability € € (0, 1) only.

A convenient way to study such questions is to formulate the problem
as a singular stochastic control one and identify its value function with the

maximal probability of hedging

(1'1) V(x~ Y, S, t) = (iujg) E[1{$T+<g)(yT_g(ST))ZO}/xt =2,y =Y, S5 = S]

The constants a and (3 are related to the proportional transaction costs
and the controlled processes z, ys, t < s < T represent the current size of the
bond and the stock accounts. The optimization is over the set of admissi-
ble (super) hedging strategies and the value function gives the probability of
(super) hedging. It is then immediate that given a slippage threshold corre-
sponding to super-hedging probability ¢ € (0,1), we can determine the new

price by studying the e-level sets of V.

Ezxample 2. The utility maximization approach has been proven to be a power-

ful method in obtaining the so-called reservation derivative prices in the pres-



ence of market frictions. The prices are determined by comparing the maximal
utility of the derivative holder/buyer to the value function without the oppor-
tunity to trade the derivative (see Hodges and Neuberger (1989), Davis et al
(1993), Constantinides and Zariphopoulou (1999)). Generally speaking and
with a slight abuse of the notation, for a European type derivative of payoff
g(Sr), the buyer’s value function is

u(zx, S,t) = Sup [E /tT U(Cs)ds + V(xr +9(Sr), T)/ Xy = ¢, 5, = S]

where
T1
V(z,t) =sup E [/ U(Cy)ds + (X)) /X = x] :
Ao ¢
The processes X, and S, represent, respectively, the wealth and the primitive
asset price, the functions U and ® are the utility functions of intermediate
consumption and terminal wealth satisfying U(0) = &0) = 0; the trading
horizon T7 is taken to dominate the expiration time 7. The sets of admissible

policies A and A, are appropriately defined to guarantee that the necessary

non-negativity wealth constraints are met.
In the frictionless case, the price of the derivative is the unique function
h = h(S,t) such that for all (z, S, 1)

V(z,t) =u(xz — h(S,t),S,t).

One may easily show — after some tedious but routine calculations — that
h(S,t) solves the Black and Scholes equation and that the zero-level sets of u

are described by the derivative price.



FEzample 3: Recently Carr, Tari and Zariphopoulou (1999) showed that in
the absence of arbitrage, the so-called absolute volatility function a(Ss, s),t <
s < T, of the underlying stock price process S,, must satisfy the nonlinear
parabolic problem

a: + 2a’ay, + k(t)ya, = q(t)a

a(0,t) =0, a(y,T) =v(y), (y,1) € BT x[0,1].
The functions k(t) and ¢(¢) depend on the interest rate and the dividends.
The terminal condition 9 (y) represents the volatility data for a given “smile”.
As we show in Section 2, the slope f(z,t) of the level curves of the value
function of the classical Merton problem ((1969), (1971)), is given by f(xz,t) =
om(x,t) + rz. The coeflicients ¢ and r are positive constants and 7 solves a

problem similar to (1.5) (see equation (2.18)).

Motivated by the examples above, we start herein a systematic, albeit
preliminary, study of the level sets that arise in various utility maximization
problems. The basic analysis is carried out through the properties of the
relevant Hamilton-Jacobi-Bellman (HJB) equation that their value function
is expected to solve. We analyze the level curves of the Merton problem
for lognormally distributed prices as well as for the case of non-linear price
dynamics. In the first case, the slope of the level curves solves a terminal
value problem similar to (1.5) and in the second case, under CRRA references,

the level curves are expressed directly as powers of a derivative price.

In section 3, we study the portfolio optimization problems with stochas-

tic volatility, when the latter is modelled as a diffusion correlated with the



underlying stock price, and with transaction costs.

2.2 MODELS WITH NO FRICTIONS

We study the level curves of the value function of the classical optimal
portfolio management model with general preferences. This model was intro-
duced by Merton ((1969), (1971)) for the case of Hyperbolic Absolute Risk
Aversion (HARA) utility functions and lognormally distributed stock prices,
and subsequently generalized by various authors (see, among others, Karatzas
et al (1987), Grossman and Zhou (1993), Cvitanic and Karatzas (1996), Vila
and Zariphopoulou (1997) and Karatzas (1997)).

We show that for general preferences, the slope of the level curves
is proportional to the optimal feedback portfolio rule. Moreover, we prove
that it solves a nonlinear partial differential equation for which we establish
uniqueness of solutions. A byproduct of the latter fact is a comparison result
for the optimal feedback portfolio policies in terms of the individual’s absolute

risk aversion coefficient.

(i) Models with lognormal stock prices.

We start with a brief review of the Merton model assuming general util-
ity functions and market completeness. To this end, we consider an economy

with two securities, a bond and a stock. The bond’s price B, is deterministic



and evolves, for 0 <t < s < T, according to

dB, = rBds
(2.1) {

B;,=B>0
with r being the interest rate. The stock price is modelled as a diffusion process

S, solving for 0 <t < s < T, the stochastic differential equation

dSs = puSsds + aSsdW
(2.2) {

St = S > 0
The market parameters p and o are respectively the mean rate of return

and the volatility; it is assumed that g > r > 0 and o > 0. The process W is

a standard Brownian motion defined on a probability space (2, F,P).

Trading takes place between the bond and the stock accounts con-
tinuously in time, in the trading horizon [0,7]. The wealth process satisfies
X, = 7% + 7, with 7% and =, representing the current holdings in the bond

and the stock accounts.

Using the price equations (2.1) and (2.2) one may easily derive the

equation for the state process

(2.3) dX, =rXds+ (u—r)mgds + omgdWs.
The wealth process must also satisfy the state constraint
(2.4) X;>0 ae t<s<T.

The control m,,t < s < T is admissible if it is Fy-progressively measurable —

with



Fo = o(Wyt < u < s) — it satisfies F [/ 72ds < +o00 and, it is such that
the state constraint (2.4) is satisfied. We denote the set of admissible policies
by A.

The value function is defined as

(2.5) u(z,t) = Sljtp ElU(X7)/ X = z],

where U : Rt — R* is the utility function modelling the individual prefer-

ences.

Assumption 2.1: The utility function U € (C*0,+00) N C?%(0,400)) is in-
creasing, concave and satisfies the growth condition U(z) < K(1 + z)” for

some positive constants K and vy, with v € (0,1). Moreover, U(0) = 0 and
_Ul)
U”(.T

= O(xz) for large =.

~—

The following result was proved in Karatzas et al (1987).

Proposition 2.1: (i) The value function v € C%'((0,+00),[0,T]) is the

unique increasing and concave solution of the Hamilton-Jacobi-Bellman equa-

tion
(2.6) u; + max %UQWQUM + (p—r)ru,| +reu, =0
(2.7) u(z,T) = U(z) and u(0,t) =0, te[0,7].

(ii) The optimal policy ¥, t < s < T is given in the feedback form
mf = 7(XZ?,s) where 7 : Rt x [0,T] — R" is

p—r ug(z,t)
02 Uge(x,t)

(2.8) (2, t) = —

10



and X} is the solution of (2.3) with the policy ¥ being used. |

We now explore the HJB equation (2.6) from a different point of view.

First, we evaluate it at the optimum point (2.8) yielding

2
L—ru
5 — +rzu, = 0.
207 Uyy

U —

Therefore, one may interpret the HJB equation (2.6) as the first order wave

equation
up + fx,t)u, =0
(2.9)
u(z,T) = U(z) and u(0,t) =0,
where
(2.10) Fat) = E= 257w, ) + ra.

The above equation is known as the travelling wave equation of first
order (see, for example, Zauderer (1983)). It is well known for this class
of equations that the solution u of (2.9) is constant along the characteristic
curves, denoted herein by Z(s),t < s < T. For a given positive constant c, the
characteristic curve, say 7°(s), is defined as the set Z°(s) on which the value

function remains constant, i.e.
(2.11) u(z°(s),s) = c.

It is then immediate, in view of (2.9), that the characteristic curves of (2.6)

have slope

(2.12)



and satisfy at t =T,
(2.13) (T) = U™ (c).

The goal for the rest of this section is to study the evolution of the level
curves z°(s). We accomplish this by studying an autonomous equation that
their slope f solves. To this end, we show that f solves a nonlinear equation,

see (2.15), and that, under mild growth and regularity conditions, f is in fact

its unique solution.

Proposition 2.1: The slope of the characteristic curves f(x,t), given in

(2.10), satisfies for x > 0,
(2.14) f(z,t) > rz,

and it solves the nonlinear parabolic problem

2
(2.15) ft_kﬁ(f_mffm—i-mfm =rf,
(2.16) fla,T) = _(“2;;)2 g,//((?) +rz, Vx>0,
(2.17) fO,8) =0, 0<t<T.

Proof: First, we recall that the value function u is concave and strictly in-
creasing for = > 0 (see Karatzas (1987)). Therefore, 7(z,t) > 0 which in view
of (2.10) yields (2.14). To derive equation (2.15), we first use (see He and
Huang (1994), Huang and Zariphopoulou (1999)) that under Assumption 2.1,

the optimal portfolio feedback function 7 (z,t) solves

1
(2.18) 7ty + 5027%27@36 +reh, =i

12



with

p—r U(a)

(2.19) A1) =~

and 7(0,t) = 0.

The above equalities follow respectively from (2.8) and (2.9) and, the state
constraint (2.4). Equation (2.18) was derived by He and Huang (1994) and it
was further studied by Huang and Zariphopoulou (1999). The arguments used
for its derivation are rather technical and tedious and we do not present them

here; instead, we refer the technically oriented reader to the above references.

Equation (2.15) and the terminal and boundary conditions (2.16) and
(2.17) are then a direct consequence of (2.18), (2.19) and the definition of f
in (2.10).

The following theorem provides a uniqueness result for the solutions of
the fully nonlinear equation (2.15). Similar results have been recently used by
Carr, Tari and Zariphopoulou (1999) to establish the unique characterization
of volatility surfaces given a specified “volatility smile” at the expiration time

of Kuropean derivatives.

Theorem 2.1: Let f : Rt x [0,T] — R* be a solution of (2.15) (2.17)
satisfying the terminal condition ¢(x) = f(x,T) with ¢ € C?0,+0c0) and
o(x) ~ O(x) for x large. Then f is the unique solution of (2.15) (2.17) in the
class of functions satisfying f(x,t) ~ O(z) for x large and |(f*(x,t))z| < C

for (z,t) € Rt x [0,T] and some given constant C'.

13



Proof: The uniqueness result will follow once we establish that 7(z,t) is the
unique solution of (2.18) and (2.19). To simplify the presentation we assume
that all coeflicients appearing in (2.15)—(2.17) are equal to one and we denote
its solution by a(z,t), i.e., with a slight abuse of notation we define, a(z,t) =

7(x,t;o0 =1, p—r = 1,7 =1) to be a solution of

1
(220) a; + §a2am +xa; = a
U'(z)
(2.21) a(x,T) = @) and a(x,t) =0.

First, we observe that if a(x,t) satisfies (2.21) and solves the nonlinear

problem
(2.22) 4y + =82z = 0,
then the function
a(z,t) = e~ T Va(zelT™ 1)
solves (2.20) and (2.21); this can be easily verified by direct differentiation.
Given the above, it suffices to establish uniqueness for the solutions of
(2.21) and (2.22). To this end, we define F': R x [0,T] — R" to be
(2.23) F(z,t) = a@*(x,t).
Direct calculations yield that F' solves
(2.2 Fz,t) + %F(:c, (. t) = F2(x,1)

_U'le)
U ()

(2.25) F(z,T) = ( )2 and F(0,t) =0, 0<t<T.

14



From the assumptions on f(z,t) and therefore on 7(z,t) and, in turn, on
a(z,t) we get that F(x,t) ~ O(x?) for = large and that F(z,t),, < C for
(x,t) € Rt x[0,T). Using a variation of the results of I. Fukuda, H. Ishii and

M. Tsutsumi (1993) we get that (2.24), (2.25) has a unique solution.

Therefore, if aq(z,t) and ay(z,t) are two solutions of (2.22), satisfying

also (2.21), the above uniqueness result yields that
(2.26) ai(z,t) = a3(x,t).

Next, we look at the difference G(z,t) = ay(z,t) —az(z, t). Differentiation and

use of (2.21) yield that G solves

Gyl 1) + Ja(z, )Gl () = 0
(2.27)
G(0,t)=0 and G(z,7)=0, 0<t<T.

Working as above for G(z,t) = ay(x,t) — ay(z,t) yields that G solves
~ 1 9 ~

which, in view of (2.26), coincides with (2.27). Moreover, G(0,T) = 0 and

~

G(z,T) = 0. We can easily verify that equation (2.27) (or (2.28)) admits a
comparison principle and we readily conclude that G(z,t) = 0 and therefore,
ar(z,t) = as(x,t) for

(z,t) € B* x [0,T]. n

The following result is an interesting consequence of the uniqueness

of solutions of the autonomous portfolio equation (2.18). It shows that two

15



investors with absolute risk aversion coefficients, say Ri(x) and Ry(z) satis-
fying Ry(z) < Ra(x), always choose their optimal portfolio policies 7(x, 1)
and 7ro(z,t), such that i(x,t) > 7a(z,t). Therefore, it is only the terminal
ordering in the optimal portfolios — via the absolute risk aversion coefficient —
that determines the dynamic ordering of all trading times. Even though this
result follows easily in the case of Constant Relative Risk Aversion (CRRA)
and exponential utilities, to our knowledge, this is the first time that this
monotonic behavior is established for dynamic trading models with general

individual preferences.

Proposition 2.2: Assume that utilities Uy and Uy have absolute risk aversion

coefficients Ry and Ry satisfying Ry(z) < Ro(x), i.e.

Uiz) . _Uz(z)

(2.29) ACEAT

and U1(0) = Us(0) = 0. Consider the relevant utility mazimization problems
(2.6) and (2.7) for utilities Uy and Uy and denote, respectively, by wi(x,t) and
7y (x,t) their optimal feedback portfolio rules. Assume that w} and w5 satisfy
the growth and regularity conditions 7} (z,t) ~ O(z) and |(7})2,] < C, for a

large constant C. Then

(2.30) i (x,t) > my(x,t), 0<t<T.

i) Models with non-linear stock dynamics.

16



We consider the generalization of the Merton model in a market with
two securities, a deterministic bond and a stock. We allow for the stock price
to follow a diffusion process with non-linear dynamics. In this setting, the
portfolio optimization problem becomes two dimensional and closed form so-
lutions are not in general available. The case of CRRA functions was recently
studied by Zariphopoulou (1999) who produced the solutions in a reduced form

(see Proposition 2.3 below).

We represent the stock price as the solution of
(2.31) dSs = p(Ss)Ssds + a(S5)SsdWs.

The process Wy is a standard Brownian motion on a probability space (2, F, P)
and the coefficients p, o are given functions of the current stock price. They
are assumed to satisfy, respectively, the global Lipschitz and linear growth
conditions | f(y) — f(¥)| < kly —y| and f*(y) < k*(1 + y?) for y > 0, k being

a positive constant and f standing for p and o. Moreover there exist positive
(n(y) —r)?
a*(y)

With the above non-linear stock price dynamics, the wealth state equa-

constants ¢; and /5 such that for y > 0, o(y) > ¢; and < /.

tion becomes

dXs =rXds + (u(Ss) — r)msds + o (Ss)msdW
(2.32)
Xi=22>20, 0<t<s<T

with X, being the current wealth satisfying the state constraint X, > 0 a.s.,

t<s<T.

17



The utility functions is of Constant Relative Risk Aversion (CRRA)

type
(2.33) Ulx) = —a”
with v € (0,1).
The value function is
u(z, S,t) = sB‘p ElU(X7)/Xi =2,5 =S|
with A being the set of admissible portfolios.
The proof of the following result may be found in Zariphopoulou (1999).

Proposition 2.3: i) The value functions u is given by

(2.34) u(z, S,t) = %V(S, 6

where V : RT x [0, T] — R™ solves the linear parabolic equation

2
(2.35) ol
+1_7 r+202
V(S,T)=1 and VOt Tt), 0<t<T

ii) The optimal portfolio policy 7* is given in the feedback form 7' =
7s( X2, S5, 8) where

) C[SVs o w(S) -1
m(z, 5,1) = [ v (1—7)02(5)] '

18



Using the above representation, one may obtain the level sets of u in a

simplified form. In fact, given ¢ > 0 and x¢(S,t) being such that
u(z(S,t),S,t) =c

the representation (2.34) yields

(2:36) 7(5,0) = (V) V(S0

with V' solving the linear equation (2.35).

So we see that in the case of complete markets with stocks modelled
as diffusion prices but with non-linear dynamics the level sets are represented
as powers of solutions of linear parabolic equations. Since such equations are
directly related to prices of European type derivative securities, we observe an

interesting connection between level sets and derivative prices.

2.3 MODELS WITH FRICTIONS

In this section we derive the level sets of two fundamental models of

optimal portfolio management in markets with frictions.

i) Models with non-traded assets

These models are similar to the ones we studied in the previous section
but we allow for a non-traded asset in the market environment. This asset

affects the returns of the underlying and it is in general correlated with it. A

19



special case is when the volatility is stochastic and it is modelled as a correlated
diffusion process. Of course, since the volatility is in general unobservable the

model might not be very realistic albeit useful for certain approximations.

We assume that trading takes place between a bond account — with the

bond price given by (2.1) — and a stock account with the stock price S solving
(3.1) dS, = puSyds + o (Y,)S,dW}
where > r > 0 and Y is given by

(3.2) dY, = b(Yy, s)ds + a(Ys, s)dW2.

The processes W} and W2 are standard Brownian motions on a prob-
ability space (92, F, P) correlated with correlation coefficient p € (—1,1).
The coefficients ¢ : R — RT and b, : R x [0,T] — R satisfy the global
Lipschitz and linear growth conditions |f(y,t) — f(7,t)|] < K|y — | and
[y, t) < E*(1+y?), for every t € [0,T], y,7 € R, K being a positive constant
and f standing for o,b and a. Moreover, uniformly in y € R and t € [0,7],

there is a positive constant ¢ such that for y € R and t € [0,T], o(y) > ¢.

The value function w is
1
(3.3) w(z,y,t) =sup B(=X1/X; =x,Y;, = y).
Al v
Here A; is the set of admissible policies 7, which are F,-progressively
measurable processes, with F, = o((W}1, W2);t < u < s), satisfy the integra-

bility condition
E/ (Y, s)2m2ds < +oo,
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and are such that the state wealth X satisfies Xy, >0 a.e., t < s <T.

Using the state equations (2.1), (3.1) and (3.2), one easily derives the

stochastic differential equation for X, namely

(3.4) dX, =1Xeds + (u —r)myds + o (Ys)medW..

This generalization of the Merton problem was recently solved in Za-
riphopoulou (2001). Using the apparent homogeneity of the problem and a
convenient power transformation, one may obtain the value function in a re-
duced form. For the proof of the following result we refer the reader to Theorem

3.3 of Zariphopoulou (1999a).

Theorem 3.1: The value function w is given by

1"7 1—v
(3.5) w(z,y,t) = —H(y,t)T=-+%
v

where H : R x [0,T] — R" solves the linear parabolic problem

3.6 H; + %a2(ya ) Hyy + [b(y, t) + p%] Hy
: Y(1—y+p*7) (p=r) =
+ I—y [T + 202(1/)(1—7)} H=0
(3‘7) H(y, T) = 1.

The following result is a direct consequence of the representation for-

mula (3.5) for the value function.
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Proposition 3.1: The curve z¢(y,t) on which the value function satisfies
w(z(y,t),y,t) = c is given by

11—y

(3.8) 2°(y,t) = (cy)7 H(y, 1)

with H solving (3.6) and (3.7).
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ii) Models with transaction costs.

Transaction costs have always been present in financial transactions and
their role in asset pricing has long been of central interest, especially when the

financial assets involved have different liquidity.

The stochastic control problems that arise in models with transaction
costs are of singular type and their HJB equation becomes a Variational In-
equality with gradient constraints. The majority of existing work on the sub-
ject deals with infinite horizon problems of optimal consumption; see, the
pioneering paper of Magill and Constantinides (1976) and the seminal paper
of Davis and Norman (1990). Given that a considerable number of appli-
cations deal with dynamic trading in a finite horizon, it is highly desirable
to study the finite horizon case as well. Important optimization problems
in which the finiteness of the horizon is crucial arise in models of derivative
pricing with transaction costs via the utility maximization approach. These
stochastic portfolio optimization problems consider the optimal policies of the
writer and/or the buyer of the derivative security which in turn yield useful
bounds on the selling and the buying price (see for example, Davis et al (1993),
Davis and Zariphopoulou (1995), Barles and Soner (1998), Constantinides and
Zariphopoulou (1999, 1999a)).

In the sequel we review briefly the underlying finite horizon model and
we proceed with the derivation of the equation of the level curves. To this end,
we consider a market with two securities, a bond and a stock whose prices

solve (2.1) and (2.2) respectively. Trading takes place between the bond the
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the stock accounts and there is no intermediate consumption. The amounts
s and y, invested, respectively, in the bond and the stock account, evolve

according to the controlled state equations

drs = rxgds — (1 4+ N)dLs + (1 — p)dM,

(3.9)
Ty = T,
and
dys = pysds + oy, dWs + dLg — dM,
(3.10) {
y=y, 0<t<s<T.

The control processes Ly and M, represent the cumulative purchases
and sales of stock. The pair (Ls, M) is admissible if the processes L; and
M, are F,-progressively measurable, right continuous with left limits, and the

state constraint
Q

(3.11) xs+<ﬁ>y320 ae t<s<T

is satisfied, where

(3.12) a=1—p and B=1+A\

For the rest of the chapter, to ease the presentation we adopt the notation
Q az if 2>0

(3.13) <ﬁ>z_{ﬁz if z<0.

We denote the set of admissible policies by As,.
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The value function is defined as

(3.14) Viz,y,t) = S}E)E l% <wT + (g) yT> [T =2,y = y] :

where

(v,y) € D = {(m,y) ER:z+ <g>y20}.

Following arguments similar to the ones used in Constantinides and

Zariphopoulou (1999) yields the following result.

Theorem 3.2: The value function is the unique concave and increasing in x

and vy, constrained viscosity solution on D of the Variational Inequality
1
(3.15)  min {—Vt — 502y2Vyy — pyVy —raVy, BV, =V, —aV, + Vy} =0

satisfying

(3.16) Vi, y,T) = % (m + (O‘> y> .

The fact that one needs to relax the notion of solutions to the Hamilton-
Jacobi-Bellman equation of stochastic control problems involving models with
frictions, is by now well established. For the use of viscosity solutions in models
with transaction costs, we refer the technically interested reader to the review

article by Zariphopoulou (1999).

We are now ready to derive the equation which the level curves of V
satisfy. Note that complete results on the regularity of the value function are

not in general available and the calculations below are formal.
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To this end, we consider a constant ¢ > 0 and we look for the function

g:Rx[0,T] — R such that

(3.17) V(z,g(x,t),t) =c.

We recall that V' is jointly homogeneous of degree v which yields
(3.18) aVo(z,g(x.1). 1) + g(x. 1)V, (z, g(x,1), 1) =V (x, g(x.1), 1)

and, in turn, that
(3.19)

x\/m(ac,g(m,t),t) +g($vt)‘/wy(l‘ag(x=t)’t) = (1 - ’y)gw(l‘,t)‘/y($,g(l',t),t).

Differentiating twice (3.17) with respect to x yields

Vea (2, g(, 1), 1)+ 29.(x,t)Vyy(z, 9(x, 1), 1)+
+Gua (2, )V, (2, g(2, 1), 1) + g2 (2, t) Vi (2, g2, t), ) = 0.
Combining (3.19) and (3.20) gives

[(1 - '7)99[: + xgww]vy + fﬂgi%y

21 o

with all the above derivatives of V' being evaluated at the point (z, g(z,1),t).

Using again the homogeneity of V' implies

mey(x,g(x,t),t) —i—g(x,t)%y(a:,g(x,t),t) = _(1 - ")/)V;/(.T,g(l',t),t)
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which together with (3.21) results in

Vy(l‘,g(l‘,t),t) g(l‘,t) —l'gm(l‘,t) (g(l’,t)—ng(I,t))Q'

Differentiating (3.17) with respect to time and x respectively, implies

(3.23) Vi(z, g(z,t),t) = —g(z, t)Vy(z, g(x, 1), 1)
and
(324) V;(x,g(a:,t),t) - —gm(x,t)%(x,g(xj),t).

Combining (3.22), (3.23) and (3.24) yields that the second order oper-

ator appearing in (3.15), namely
1
(3.25) LV = —{V, + §O2y2Vyy + pyVy +raVy}

when evaluated at (z, g(x,t),t) becomes

LV(x, g(z,1),t) = Vy(2, g(x, 1), 1) [gu(z, 1)+
(3.26)

1 1— 22 geq (1) '
+50°0%(2,1) (Gomams + G aane) — k(@ t)]

From (3.24) we get that the gradient terms
LV =pV,=V, and LV =—-aVl,+7V,

evaluated at (z, g(z,t),t) become

(3.27) LV (x,g(x,t),t) ==V, (z,g9(x,t),t)(Bgs(z,t) + 1)
and
(3.28) LoV (x,g(x,t),t) = V,(z,9(x, 1), t)(ag.(x,t) + 1).
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Combining (3.26)—(3.28) and cancelling the common term V;, gives the
equation that g(z,t) satisfies. The latter turns out to be the Variational In-
equality

1— %G00
i i g _
g — TGz (g - “Tga:)

(3.29) min {9#%0292[ | =19, —(Bgs+1),ag,+1} = 0.

The terminal condition g(x,T") is recovered easily from (3.16) and it is

given by

1
cCY — T

(3.30) g@,T) =1 P

1
cCY — X

1
if x>c¢n

1
ifz <cn.

«

Next we make the following transformations.

Remark 3.1: One may further simplify the second order part in (3.29) using
a number of transformations. In fact, if k : Rx[0,7] — R is such that k(z,t) =
ete 3 g(eh 1),

0<t<Tandp:Rx]|0,T)] —>Risgivenbyp(x,t):k(x,g%t) for0<t<T
with T = OJTT, after lengthy arguments, one can argue that there is a well

defined function ¢(x,t) such that p(q(z,t),t) = x. Defining

. r 1
S(x,t) :exp{—q(e ,t)+§+1}

one gets — after tedious but routine calculations — that S solves

_
S

1 w, (S, 1
+7+—>+1,—5e§‘5t (—§+7+§> —1}:0

. 2u,
min {St + Sps, aeo?" ( 5
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with terminal condition
. 7 [alg, 1e, 7
S(x,T) = em3-71 |20} +_B 20} e 4 g
ert
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Chapter 3

INCOMPLETE MARKETS AND
RECURSIVE PREFERENCES

We consider and solve the problem of maximizing two types of recursive
utilities, namely Standard Additive and Kreps-Porteus, in the Markovian case
of a market consisting of a stock,which depends on a stochastic factor, and a
bond. The noises driving the stock and the stochastic factor are correlated.
Intuitively, we expect that the presence of the stochastic factor brings more
anxiety to a trader who differentiates preferences by timing of resolution of
uncertainty. By providing a certain variational interpretation of the value

function , we prove rigorously that the intuitive affirmation above is true.

3.1 INTRODUCTION

We consider a market with two assets,a bond and a stock. The stock
price is modelled as a diffusion whose drift and quadratic variation depend
upon a third process, which is itself a diffusion, and is interpreted for instance
as an observable but non-traded asset, or as a stochastic volatility. We con-

sider an agent that invests in the assets and also consumes. Our goal is to
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understand how the presence of a “stochastic factor” influences the agent’s

optimal policy.

Such a model has been considered earlier by Zariphopoulou (2001): the
agent had only terminal HARA consumption. Zariphopoulou (2001) provided
an explicit method to solve the associated control problem. In this chapter,
we allow the agent to consume such that a combination between her recursive
preferences and terminal consumption is maximized. The recursive utility
supposedly brings more insight about how the stochastic factor influences the
agent’s behavior hence her attitude toward the timing of the resolution of
uncertainty. For example, an agent who cares about the time the uncertainty
is revealed experiences intuitively more anxiety if the uncertainty comes not
only from the noisy structure of a price (which we give exogeneously), but
also from an extra noisy parameter related to the stock price, than if the

uncertainty were coming solely from a noisy, but log-normal, price.

To see how the particular type of utility used in this chapter treats
resolution of uncertainty, we consider a choicex among three hypothetical con-
sumption programs, which are informally defined as follows. Consumption
during the interval [0,1) is fixed at the same level for all three programs. In
the first program, c', a fair coin is flipped at ¢t = 1. If the outcome is head,
then consumption is constant at level [ for the entire remaining time horizon
[1,T]. Otherwise, it is constant at L > [. For consumption program c?, T — 1
independent fair coins are flipped, one for each integer time ¢ € [1,7T), and all

coin tosses are revealed at time ¢t = 1. If the tth toss yields a head (tail) then
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consumption over the interval [t,¢ + 1) is I(L). Finally, ¢ differs from c' only
in that the tth coin toss is not revealed until time ¢. From the perspective
of an agent with time separable additive utility, ¢! ~ ¢? ~ ¢3. Diversification
reasons would want to make another agent to differentiate between ' and
¢ (in the former the consumption across time is positively autocorrelated —
therefore undiversified, in the latter the consumption is serially independent).
However, such criteria still don’t distinguish between c¢? and ¢?. It is only the
recursive utility which distinguish between them; the distinction is typically
that early resolution of uncertainty dominates the early one. Now, in our par-
ticular model, the uncertainty ”increases” due to the presence of a non-traded
asset. This asset is the analogue of the coined flipped in the previous example,
and its "outcomes” are not known until the price of the non-traded asset is
observed. We would expect that this "extra uncertainty” brings disutility to

an agent with recursive preferences. This will become clear in the context.

This is not the first time when such an optimization problem was con-
sidered. Schroeder and Skiadas (1999) analyze a Markovian model; if we
interpret our volatility as a underlying Markovian state, and think the market
as consisting of the bond and tradeable stock only, then our model coincides
with theirs. However, when one does such identifications, one must be careful
with the information available before and after the identification. To be more
precise, it is the filtration used in the definition of the recursive utility which
matters; in the present chapter, as we will make precise later, this is not a

sensitive issue, but it can become one when dealing with partial information.

32



We want to warn the reader about it.

The present chapter does two things: on the one hand, it solves the
control problem associated with a recursive utility in the market model de-
scribed above, and on the other hand, provides an economically meaningful
representation of the value function. A distortion transformation, correspond-
ing to a change from the actual probability to a coherent measure, plays an
important role above, as it simultaneously simplifies the problem technically

and allows the practical interpretation of the result.

3.2 THE MODEL

Let (€2, F, P) be a probability space. We are placed in a market with
two traded assets, namely, a bond of maturity T" with price given by

dB, = rB.ds
(2.1) {

B,=10<t<s<T,
and a stock modelled as

ds,
(2.2) g = p(s, Yy)ds + o(s, Ys)dW,

The stock price itself depends upon a diffusion coefficient, which could
be interpreted either as a stochastic volatility or as a non-traded asset, and

whose dynamics is described by

(2.3) dY, = b(s,Y,)ds + a(s, Ys)dW?

Y, =y e€R.
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The Brownian motions W' and W? are defined on a probability space

(Q, F,P) and they have correlation p € (—1,1).

An agent consumes at a rate cg, at time s, and invests the amounts ﬂg
and 7, in the bond and stock, respectively. The current wealth X, = 72 +

solves the state controlled SDE:

(2.4) dX, = [rX, + (u(Ys, 8) — 1)y — c5)ds + o (Y, s)medW}

Xt =T Z 0.
The aim of the agent is to maximize a recursive utility of the above

consumption, that is, to maximize V;, where

(2.5) VS:E[/Tf(cl,Xl,Vl)ds+g(XT)| Fs, t<s<T.

This type of utility has been introduced by Duffie and Epstein(1992) to
incorporate the timing of resolution of uncertainty, which we expect to be an
important factor in the presence of the stochastic coefficient Y. The functional
f is the generator of the recursive utility, and it takes several important forms

that will be described later on.

The utility function is

(2.6) T(t.2.9) = s Vi

The Hamilton-Jacobi-Bellman equation associated with the above op-

timization problem could be written (see Duffie and Epstein (1992)) as:

(2.7) sup LT (t,z,y) + f(e,x, T (t.2,y)) = 0

J(T,z,y) = g(z),
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where

1
LT =T+ §a2(ta Y) Ty + 08, y) Ty + 122

1
(28) 507t Y)w Tow + palt,y)o (b, y)7 oy + [ult, y) = 1w Te = e

We consider several cases for the generator f, known for their financial
significance. For a review of the most meaningful generators ( complete list
of references to come), and for various forms in which the recursive utility
could be represented, we refer the reader to El Karoui, Peng, Quenez (1997)

or Duffie and Epstein (1992). We enlist below the cases we analyze:

e Standard additive utility with Hyperbolic Relative Risk Aversion

c7

f(C,V) = ; _5‘/7,-), € (_0091) - {0}
(2.9a) fle,V)=loge—pBV,y=0

e Kreps-Porteus isoelastic, normalized

— (~AV/Y
(2.90) f(c,V)zg%,a,7<l,a,7%0

Please remark that as compared to the existing literature, we used the
letter v for the intertemporal rate of substitution in the expression above. This
is a parameter which measures the attitude toward the timing of resolution

of uncertainty: when a > 0, then a bigger v means more tolerance for later
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resolution of uncertainty, while when a < 0 the role of 7 is reversed. We refer
the reader to the paper of Schroeder and Skiadas (1999), for more insightful
comments on the parameters a and . As one could see in (2.10) below, we
have chosen the HARA exponent of the utility of terminal wealth to equal the
intertemporal rate of substitution. This makes the problem homogeneous, and

allows us to manipulate the HJB equation efficiently.

o Uzawa utility

(2.9¢) f(e,V) = ule) = B(e)V.

We will not analyze the case of the Uzawa generator (the functions u
and (3 are too general to allow explicit formulae),but we will use it in a later
section; the term w in its expression is to be interpreted as a wtility (recall the
properties of a risk aversion utilities: increasing with respect to consumption
and concave), while (3 is a discount factor(see Appendix D for an explanation
of this terminology). The Uzawa utility appears as a generalization of the
Standard Additive utility, that is, the discount factor of the Uzawa generator
depends also on consumption. We slightly extend the terminology of “Uzawa
generators” by allowing 3 to be stochastic.

Along this chapter we let the terminal criterion to be of HARA type,
T
(2.10) g9(x) = Pl # 0

We make the reader aware that the significance of v differs from the Standard

Additive case to the Kreps-Porteus case; we used the same v to enable us to
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obtain a closed form solution to our problem and represent it in a meaningful
way. While in the Standard Additive case 7y relates to the risk aversion of the
agent, in the Kreps-Porteus case 7 is an indicator of the preference for the

timing of the resolution of uncertainty.

3.3 THE OPTIMIZATION PROBLEM

Using a distortion transformation introduced by Zariphopoulou (2001),
we simplify the HJB equation (2.7) and prove existence and uniqueness results,
for a fairly large class of parameters. We are also able to produce explicit
bounds on the value function, depending on given bounds on the coefficients
driving the diffusions (2.2) and (2.3). We do the computations separately for
the two most significant types of utilities, namely the Standard Additive and
the recursive Kreps-Porteus utility. Once again we warn the reader about the
different significance of the parameter v in the two cases. We also mention
that the Kreps-Porteus utility degenerates into one similar with the Standard

Additive utility when o = ~.
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3.3.1 The Standard Additive case

In this case the HJB equation (1.6) becomes:

1
u7t + éa(ta y)QJyy + b(ta y)jy + ija:
1
(311) + m;xx{ﬁa(t, y)2t7a2:vﬂ-2 + pa(tv y)a(ta y)jxyﬂ- + [,u(ta y) - T]jxﬂ-}
+ max{—cJ, + % — BT} =0

Y

jTav =
(T, z,y) S

The maximum with respect to c is

(3.1.2)

obtained at

c(t,z,y) = (jx(t,x,y))w_il
(3.1.3)
po(t,y)at,y) Ty (t, 2, y) + [p(t,y) — 7] Te(t, 7, )
o(t,y)?Tua(t, x.,y)

The form of the preference functionals suggests that the value function decom-

T (t,z,y) = —

poses as

Y~

(3.1.4) J(t,z,y) = %V(t,y)-

We will look for a candidate solution of (3.1.1) of the above form.

Once a candidate solution if found, its identification with the value function

38



will come from uniqueness results of viscosity solutions in the relevant class.

To this end, using V in (3.1.1) yields
(3.1.5)

1o 1 N L
~[Vi+ 5alt.9)*Vyy + 0L )V, + 1V
1 ~ i i
+max{5(y = o(t,9)*VE* + po(t, y)a(t, y)VyF + [p(t,y) — r]VE}
1=~ 4 N
e By
v v

V(T,y) =1

We inserted an z into the old control 7 to get the new control 7 = 7 /z.

If we solve the maximization problem above, (3.1.5) becomes:

Vi + %a(t, YV + 0(ty) + p- . Py“(ta ) (M(;,(i)y; r)Wy
(3.1.6) iy + 5 7 - (uét(;(yt),y—);y _ a7
e
V(T,y)=1

The optimal investment strategy is given (in terms of V) by

*(s. T _ pO’(S, y)a(87 y)‘/;/(sv y) + [/{(Sv y) B T]‘N/(& y)l‘
LD ey (1 =)0 9)V (5.9

We make now the transformation

(3.1.8) Vi(t,y) =v(t.y)’.

Calculating the derivatives yields

(3.1.9) Vi = 6v™ 1V, = ov, 0071 V) = 60,07 4 6(6 — Dv2e’
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Therefore equation (3.1.6) becomes:

1 1
Sv® Tt §a(y, £)260,,v° " + §a(y, £)%6(6 — 1)1}51}5_2
t —
by, 1) + pr2—alt, y)w}évyvél
(8.1.10) v (u(y_t; r)? oy s
RAadCARZ ) ) )T
+[ry + Y 20(9) Blv° + (1 —y)vr
1, 820200
2T g =0
+5p 1_7a(,y) ”;
v(T,y) =1
Dividing by dv°~! yields:
1 gl (u(t.y) —r)
Ut —I— §a(t7 y)vay —I— [b(tv y) + pl o ’Ya(t’ y) O'(t, ) ]Uy
1 v (pty) —r)?
(3.1.11) R i e Pt/
a(t, y)*v, 2 7 =7 52 _(5-1)
0—1 1) - =
5 [ +r T ]|+ U 0
v(T,y) =1
Choosing
l—v
3.1.12 =
( ) L—v+p*y
we get the simpler equation:
1 t,y)—r
v + §a(t, Y)2vy,, + [b(t,y) + Py j ’ya(t, Y) (”(0(‘?)” )]vy
(3113) _ 2 - 7’7 1—p2
gl v (wty)—r)” B, 11—y 0
Tirs Plo+ =2yt =
+6[r Jrl_7 20 (t.7)? 7]1}4— 5V 0
v(T y) =1

Remark that if the Brownian Motions W*, W? are perfectly correlated,

the semilinear term in the equation above is removed. We send the reader to

examples in Zariphopoulou (1999), related to the situation p = 1.
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3.3.2 The Kreps-Porteus case

In this case, the HJB equation (2.7) becomes:
1
L7t + éa(tv y)zjyy + b(t7 y)jy + Tl’jx
1
(Lot )° T + po(t,y)a(t. ) Ty + (L) — 1] o)

Ber = ()
—i—mgmx{—cjm + EW} =0

(3.2.1)

We proceed exactly as in the previous case, that is, we solve first the
maximization problem with respect to ¢, and see that the optimal value is

taken for

(3.2.2) ¢ (s,2,y) %m,x,y)W(s,x,y»O‘“—wﬁ

then we make the transformation (3.1.4) to transform the equation (3.2.1)

nto:
(3.2.3)
1. 1 - N 3
;[Vt + 50t y) Vo + 0L y)V] + 1V

1 . . .
+max{z(y = 1)o(t, y)?Vi® + po(t.y)a(t,y)Vym + [u(t,y) — r]V7}

1 e B
+7a T (= — )V ey — By
o (6]

V(T,y)=1

We solve the optimization problem (out of which we get 7* as in (3.1.7)),

then we make again the transformation (3.1.7) and for

L=~

3.2.4 -
(3:24) L=~ +p*y

)
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we get

o n %a(t7 y)vay + [b(t, y) + pl j ,ya/(t; y) (/‘L(;?(?Z)y; T)]Uy
1 by) =)’
(3.2.5) 5+ . Y (Héo—?t), y)Q) : g]v

1 — da
71 'Ul+(afl)v =0
(Sﬂﬁ «Q

v(T,y) = 1.

+

In the next section, we will summarize our computations.

3.3.3 Summary of computations

We observe that the equations (3.1.13) and (3.2.5) have the same form,
that is, they are reaction-diffusion equations. For an extensive study of such
equations, we recommend the monograph of Rothe (1984), or the book of
Smoller (1994).The difficulty herein comes from the fact that the reaction-
diffusion equation is not a standard one (ie, has non-Lipschitz nonlinearity),

so we need to provide a complete proof for existence and uniqueness. This is

done in the Appendix A. The common form for both (3.1.13) and (3.2.5) is:

(3.3.1) v+ Lv+ A(t,y)v+ Bv? =0

v(T,y) =1
whose parameters A, B,p are described in (3.3.2) and (3.3.3) below. The

parameters are therefore:

e for Standard Additive Case:
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Aty) = 3lry+ 55 - 0

1—
(3.3.2) B — 1=
_ _p2
p - 11(71+ppzv) <1

e for Kreps-Porteus:

t,y)—r 2
A(t’ y) = %[T’Y + 117 (M2(o'(yt)’y)2) - g]
3.3.3 B = 1 _l-a
( ) spa-1 ©
_ __ da
Poo= L= oy

In both cases, £ is a second order linear differential operator given by:

(3:34) (£0)(t.1) = alt.00{t.9) + B0.0) + o —alto) P,
and
(3.3.5) :1_212%

3.3.4 Assumptions

The assumptions below are made to insure, on one hand, strong exis-
tence and uniqueness for the diffusions S, Y, and on the other hand, to allow us

to prove existence and uniqueness for the reaction diffusion equation (3.3.1).
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Assumption A.1: We assume that o is strictly positive and also invertible with

respect to its spatial argument; that is, there is a constant Cy > 0 such that:

(3.4.1a) o(s,y) > Cp,t<s<T,yeR
and also
(3.4.1b) o (s,) exists ,t <s<T

Assumption A.2: We assume that any coefficient ¢ which appears in the equa-
tions describing any diffusion we encounter is Lipschitz, uniformly in time,

that is, we assume that there is a constant C; > 0 such that:
(3.4.2) lq(t1, 1) — q(t2,y2)| < Cilyr — vo|

Assumption A.3: We assume that the differential operator £ is uniformly

parabolic, that is:
(3.4.3) a(s,y) > Cy,t <s<T,yeR

for some constant Cy > 0.

Assumption A.4: This assumption is automatically satisfied in the Standard

Additive case if v < 0, or in the Kreps-Porteus case if ay < 0.
a) for the Standard Additive case:

there is a constant C; < 0 such that:

(3.4.40) py eV =T B

2(1=y)o2(s,y) v
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b) for the Kreps-Porteus case:

there is a constant C'3 < 0 such that:

(3.4.4D) R CICH ) k) M APe

2(1 =y)o%(s,y)  ya

Assumption A.5: Any ¢ which is either a coefficient of the diffusions S or Y,

or is equal to A from (3.3.1) satisfies:

(3.4.5) q € b((t,T); WH>(R))

Assumption A.1 is not only a technical condition, it is exactly the in-
gredient that insures the observability of the process Y. This was used in a
crucial way, for the reason the HJB equation is deterministic is exactly the
fact that not only S, but also Y is measurable with the filtration used in the
definition of the recursive utility. The motivation is, very shortly, the follow-
ing: if we observe S, we could observe its quadratic variation, that is, formally,
02(s,Y,)S?ds. That basically means that we could recover o?(s,Y;) from our
observations, and since ¢ is positive and properly invertible, we recover Y.
That proves that Y, is measurable with respect to F,. We do not work there-
fore with partial information, and the results of the chapter will prove that
even in the case of full information, incorporating timing of resolution of un-
certainty in the utility brings more anxiety to the trader. For details in the

case of partial information, see the next chapter.
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Assumptions A.4 and A.5 are technical conditions, sufficient to make
our analysis of the pde (3.3.1) work. They are not necessary conditions for
the solvability of the entire optimization problem, and could be relaxed or

modified in various ways.

3.4 THE SOLUTION OF OUR PROBLEM

Even though the reaction-diffusion equation (3.3.1) is not of a standard
type (i.e., non-Lipschitz and with non-monotonic nonlinearities), it turns out
that the coefficients p and B, which could be responsible for a blow up of the
solution, “match their values” in such a way that when one is “bad” for the

equation, the other has the proper sign to repair the “bad” effect.

A detailed analysis of the equation, along with constructive, elementary
existence proofs that also allows us to write bounds on the value function, is
given in the Appendix A. We demonstrate later that the solution constructed

is suitable for practical applications.
Among parameters, we distinguish four different cases:
Case I: v € (—00,0),a € (—00,0)

In this case, A >0,B > 0,p < 1.

Case II: v € (0,1),a € (—00,0)
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In this case, A > 0,B < 0,p > 1.

Case III: ~ € (—00,0),a € (0,1)

In this case A <0,B <0,p > 1.

Case IV: v € (0,1),a € (0,1)
In this case, A < 0,B > 0,p < 1.

With a Kreps-Porteus utility, we might encounter any of the four cases

above; the Standard Additive Utility belongs to Case IV.

To recover the intuition of the proof, a look at the various cases shows that
when the parameter p is bigger than 1, which may cause explosion of the solu-
tion, the parameter B is negative. So actually the solution is “slowed down”,
so that we are able to get existence results. The uniqueness in the problem
(3.3.1) should be understood as uniqueness of positive solution. Even though
the v — P is not Lipschitz, so we cannot establish uniqueness right away,
comparison shows that if solutions exist, then they are “properly” bounded
(away from zero), so actually v — v? is Lipschitz on the domain of interest

and that yields the uniqueness. The technically oriented reader is referred once
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again to the Appendix for a full proof of existence and uniqueness of positive

solution for (3.3.1).
We are therefore able to obtain the following result:

Theorem 4.1 : If the Assumptions A.1-A.5 are satisfied, then the control

problem (1.5) has a unique solution of the form

Y

(4.1) J(t.zy) = %v(t,y)5,
where
l—n
4.2 = —-"">0.
(42) L=y +py

Also, there is a positive constant C' = C(Cy, Cy, Cq, C3) (and whose functional

form is different according to Cases I-1V" ), such that

e in case I:
(4.3) 1< w(t,y) <1+ S0
e in cases II and III:
(4.4) 0<@(T) <B(T —t) <v(t,y) < T

where w depends only upon t and

(4.5) Wy = —Cb — Bel?= D P
w(0) =1
e in Case IV:
(4.6) e U < y(t,y) <140
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The optimal consumption and investment strategies can be obtained
from (3.1.3), (3.2.2) and (3.1.7) respectively, and they are given in the fol-

lowing

Theorem 4.2: The solution v of (3.3.1) is of class C**((0,T) x R) and the

optimal consumption-investment policies of the optimization problem (2.6) are

given by:
e For Standard Additive case:
(4.7) ¢} = (X2)7Tu(s, V)7
e For the Kreps-Porteus case:
. | R, _ba__
(48) CS = (B)ales’U(s’}/s)'y(afl)‘

The optimal investment strategy is given in both cases by

*
s

(4.9) T

s

:[ 1 u(:s,Y;)—r+ ) a(s,Ys)v(s,YS)}
17 0(sY)? | T—70(s Y. 0(sY)

The process of optimal wealth X} is the unique solution of the stochastic

differential equation

X7 = [P X7 + (u(s, Ya) = r)m*(s, X7, Ya) — (s, X7, Y] ds
(4.10) +o(s, Y)m* (s, X2, Y,)dW}

X, =u.
where the deterministic functions ©* and c* are the ones from (3.1.3), (3.1.6)

and (3.2.2). |
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In words, the value function is a HARA utility of the initial wealth times
the distorted solution of a reaction-diffusion equation. A full interpretation of

this result will be obtained in the next section.
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3.5 INTERPRETATION OF RESULTS AND VARIA-
TIONAL FORMULA FOR v

In addition to the theoretical importance of Theorem 4.1 (establishing
existence and uniqueness for the optimization problem), it offers insight about
the attitude of the agent toward the presence of a stochastic factor when
timing of resolution of uncertainty does matter. Albeit the initial value of the
stochastic factor influences the value function, we actually proved that it is
impossible that the value function vanishes or explodes as a consequence of the
presence of the stochastic factor. To rephrase, no “extreme” situations appear
because of the presence of Y (this is technically reflected by the fact that we
have bounds on v). We will also prove that the value function might separated
into two factors: the HARA utility of the wealth and another, distorted value

function associated with the problem of mazimizing a Uzawa-type disutility.

We continue by analyzing rigorously the way the stochastic factor influ-
ences the value function. To do that, we will provide a variational formula for
the solution v of (3.3.1); using comparison principles for stochastic backward
differential equations (see the Appendix B for a brief on the theory), we will
represent v as the value function of a stochastic problem with a recursive cri-
terion. The power transformation used earlier is going to prove its usefulness
again, as the generator of the aforementioned recursive criterion turns out to

be linear in V', that is, of Uzawa type.

We begin first by considering the equation (3.3.1): using the general-
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ized Feynman-Kac formula presented in the Appendix B, we could interpret
its solution as the initial value of the solution of a Backward-Forward Stochas-
tic Differential Equation(FBSDE).To do that, we introduce first the forward

process:

S La~8(ﬂ(ffs,8)—7“)sa~8~
(5.1) 6{12—[6(3‘5,8)+p1_7 (Y, )—U(ﬁ’s) Jds + a(Ys, s)dW;
Yi=yeR

The infinitesimal generator of the diffusion Y is £, given by (3.3.4).

The backward component of the FBSDE is:

(5.2) U, = E[/Tg(w, LU+ 1| F)]
where
(5.3) g(w,s,U) = A(s. Yy(w))U + BU?

and hence the solution v of (3.3.1) is given by
(54) U(t7 y) = Ut

We want to warn the reader that it is not obvious that the above equation has
a unique positive solution; arguments for existence and uniqueness of positive

solution are made in the Appendix C.

We will continue with the interpretation of v as a value function. Look-
ing once more at the four possible cases for our parameters as presented in

Section 4, we could readily observe that:

(5.5) if p e (—00,0), Bv? = Hcl>ag({B(1 — p)c + Bpu?™'}

if p € ((0,00) — {1}), Bo” = min{ B(1 —p)¢® + Bpoc® '}
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We define the generators:
(5.6) g(w,¢,5,U) = B(1 = p)c® + [Bpc" ! + A(s, Y, (w))U

We make the observation that g is linear in U, that is, it has the typical form of
the Uzawa utility generator g = u(c)+6(c)U, in which we allowed the discount

factor 6 to be stochastic.

We also introduce recursive criteria U(%):, given by

T
(5.7) Ul = B[ gL Ul + 117

s

Applying Proposition (2.1) in the Appendix B, we get the following
Theorem 5.1 Let U= defined in (5.7). Then
o if p <0 we have:
(5.8) v(t,y) = max e
oif p>0,p#1, we have:
(5.9) v(t,y) = mcax{—U(ct)t}

The first observation we make is that the distortion introduced earlier
is useful in the sense that v could be seen as the solution of a stochastic control

problem with a linear and recursive criterion, that is, one of the form:
(5.10) g(c,s,U) = u(c)+ 0(c)U
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for

(5.11) u(c) = B(1 —p)c?

0(c) = [Bpc* + A(s,Y3)]
In the above expression, u could be interpreted as a disutility function, and 6 as
a discount factor. In our case, we observe that the discount rate is stochastic,
as a consequence of the presence of the stochastic factor. We refer the reader to
the Appendix D for an explanation of the notions of wtility from consumption

and discount factor used for Uzawa utility.

We now look at the specific formula we have gotten in the representation
of v. In the case of p > 0,p # 1, we remark that u is a utility function (that
is, it is increasing with respect to consumption; it is not concave, so if p > 1 it
is not risk averse). In this case, v is the value function of a mazimization of a
disutility problem; if we interpret U(¢)s as a Uzawa utility, then v is obtained
by mazimizing —U)s | so the presence of the stochastic factor is a negative
trait, as it could be seen as a factor which enforces the agent to maximize a
Uzawa-type disutility (then distort the value function obtained and multiply
it by the HARA utility of the terminal wealth ), in order to obtain the value

function of (2.6).

In the case of p > 0,p # 1, u is decreasing with respect to consumption,
hence it may be regarded as a disutility function again. The recursive criterion,
of Uzawa type, could therefore be regarded as a disutilty function as well, and
the control problem we face is to mazimize this criterion. We see therefore

again the negative trait of the presence of the stochastic factor, as we mazimize
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a disutility in order to obtain the term v that gives the (distorted) contribution

of the stochastic factor to the value function of (2.6).

Since the distortion is a monotonic transform, we see how the “bad

character” of the presence of Y inherits from v to J from (2.6).

Another feature of Theorem 5.1 is that it incorporates the stochastic
factor into the criterion to be maximized, and we know exactly how, namely,
the stochastic factor comes into the expression of the discount factor of the

Uzawa criterion.

To see another situation to which this type of representation applies,

we refer to Zariphopoulou (1999).
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Chapter 4

MARKETS INFORMATIONALLY
INCOMPLETE

Suppose that a company which is not publicly traded yet (but plans to
become public) is trying to hire an employee. Due to lack of financial slack
but having very good growth opportunities the company may promise
the future employee a fraction of its equity instead of a bigger salary. If the
company does well and goes public, the employee may cash her stock. If the
employee lacks strong confidence in the company,then stock options, rather
than plain stock, may be awarded initially to the employee. Given that there
is no stock price to observe, one cannot use a Black-Scholes formula to value
the stock options. How can we value then the package given to the employee?

How can we hedge the stock options?

The answer is that initially , the employee knows something about the
company, and implicitly about the value of its equity. For example, the value
of the company, as known to the future employee, is between $ 10 and $ 25.
This is the same as saying that the employee believes initially that the value of
the company has some distribution over the interval $[10,25]. Moreover, the

company is not isolated; by observing its environment, we can infer even more
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about it. Suppose for example that our company hosts online auctions. Then
most of the people who buy things in auctions use some electronic service
to pay, which is, say, offered through a big Internet portal. The success of
the online bidding company has a certain impact on the value of the Internet
portal, and this success can be publicly observed, and quantified to some

extent, if the portal is a public company.

Mathematically, this amounts to filter out the ”price” of our company
from observations on the portal. This will become very clear in this chapter.
We present a model with two entangled prices where one is not observable.
We derive the corresponding HJB equation and we transform it into a linear
equation, which has good regularity properties. This linearization is also useful

for numerics.

Suppose now that instead of the incompleteness generated by the un-
observability of the ”price” of our company, we can observe the price, only we
cannot trade in its stock. In this new setting we expect an optimal strategy
that is dependent on the stock price that formerly went unobserved. The ques-
tion arises, is the optimal strategy conditionally the same as the one in the
partially observed market ? The answer is yes for logarithmic utility, and no for
the other types analyzed. The importance of this question comes from market
microstructure models. In such a typical model, different agents have specific
information and the prices form in a Rational Expectations Equilibrium. Price
itself conveys information. These models rely on the existence of non-informed,

or noisy traders, which are agents who do not have private information. The
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question that arises is whether by observing the price and the relative suc-
cess (for example in terms of wealth) of the other market participants, the
uninformed agents will actually discover their own informational disadvantage
and withdraw from the market. An interesting question, remained unsolved in
the present work, is the reciprocal of the affirmations above: precisely, if the
Separation Principle described above holds, can we infer the functional form

of the agent’s utility?

This is not the only story behind such models. In fact we provide one
example in which the solution can be computed in closed form, where the
health of the CEO of a company is the unobservable factor and the stock price
of the company is public information. This model is inspired by the anecdotal
evidence that sudden shocks to the health of the CEO produce shocks in the
stock price, in the opposite if the shock to the health is unexpected. For
example, the stock prices go up, on average, following a sudden death of the

CEO.

Technically, the present work is the first in which the HJB equation
arising is numerically tractable; while this is possible due to the linearization
of the HJB equation, we hope it is possible in a general setting (see Chapter
5 ”7Open Problems”). The structure of this chapter is as follows: Section 1
describes the model. Section 2 analyzes the corresponding HJB equation and
states a regularity result for its solution. Section 3 provides an example where
the infinite dimensional HJB equation could be solved in closed form. Section

4 studies whether a separation principle holds for the optimal strategy. Section
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5 describes a numerical algorithm to solve the problem.

4.1 THE MODEL

We restrict to a finite time horizon [0,7] and we work with a market

model hosted by (2, F, P) consisting of a bond

ng = TBSdS
(1.1) {
B, =1, t<s<T
a stock
£5 = (s, o)+ o(s)dW]
(1.2)

Si=8, T<s<T, (s:=0(By,Sy;t<u<s)

and a “stochastic factor” Y,

(1.3) dY, = b(s,Y,)ds + a(s, Y,)[pdW} + /1 — p2dW?]

with initial distribution (at time ¢). We assume v; has a density p;. W' and
W? are independent Brownian Motions and p € [—1,1]. We assume that an
agent on the market has access to observations of S and B, but is unable to

observe Y. For future reference, we take the processes

(1.4) g, — M5 Y5)

(1.5) L= exp{ - /t 0,dY, — %/t 02du)



and the differential operators

(1.6) L %aQ(s, )05 + b(s, )0
(1.7) B = Ma({f?)')oo—l—p%(f,-)@.

The agent invests an amount 74 of his wealth in stock, for each instant
s, so that his wealth X7** satisfies:

AXT — [pXT00 4 (u(s, Yy) — r)m]ds + o(s)m,dW]
(1.8)

X[ = 1.

We assume that the strategy m, is measurable with respect to the fil-
tration generated by S and B but not of that generated by Y. We also ask
that m € A = {(K)s : Ky is 0(Sy;t < u < s)-adapted, E [ | K |?ds < oc}.

The objective of the agent is to choose 7 such that the following (ter-

minal) criterion is maximized:
(1.9) E[U(X7™")U (Yr)]
The value function associated with the optimization problem above is

(1.10) T (t..p) = sup BIU (X520 (V)

We have an optimization problem with partial information. We con-

tinue by listing our assumptions on the parameters:
e (H1) 3C > 0 such that o(-) > C
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e (H2) d?(s,-), % b(s,-) have derivatives up to order two, bounded

uniformly with respect to s, t < s < T.

e (H3) p; € H*(R) (p is the density of ;).

e (H4) U satisfies: gjligé =k = const. or U(x) = logx

To illustrate the (unusual) choice of the utility, we will give few examples.

Examples of utilities satisfying (H4)

o a)U(x) = 27/v,7 € (00, 1),7 # 0; (here k = —1=7)

e Uly) =1

This is the Merton problem with partial information and HARA util-
ity of terminal wealth (see Zariphopoulou(2000) for the full information

solution).

o b)U(xz) = —e* v > 0; (here k = 1)

e Uly) =1
This is the Merton problem with partial information and exponential

utility of terminal wealth.

e c)U(x) =—e",v>0;(here k = 1)

o Uy) = e

61



In this case the criterion to be maximized is

E[—e X5~V

We observe that the optimal strategy for the above criterion is also

optimal for

E[l _ e—W(X;’w’p—g(YT))]

and this represents the exponential utility of the writer of an European option
on the unobserved asset Y, with the payoff g(Y7) (see Davis, Panas and Za-
riphopoulou (1993) for details). The optimal strategy will also be the hedging
strategy of such an agent. We will obtain an explicit form of this strategy in

Example 1, for the case when S and Y are not correlated.

In what follows, it is convenient to change the probability such that the
(observable) stock S becomes a Brownian integral. This technique is standard
for partial information problems (see Lakner (1998), Lasry and Lions (1999)
or Pham and Quenez (2000)). The new probability P° is given by

ap’

1.11 — = L.
(1.11) iy

The Bayes rule gives (see Karatzas and Shreve (1992))
_ Ef(YS) LT | G

and
(1.13) EYIL 16l = [ Fwpw)dy
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where pg is the unnormalized conditional density of Y, given (.
Under P°, the process
(1.14) W =W+ / 0, du
t

is a Brownian Motion, independent of 2.

4.2 THE HJB EQUATION

Firstly, classical results in filtering theory (see Zakas (1969) for deriva-

tion of the filtering equation) give the following

Proposition 2.1. (Krylov and Rozovskii (1982)). The unnormalized condi-

tional density py satisfies the stochastic pde

dps - £*psds + B*pdesl
(2.1)

Py given

Also, ps € H*(R), t < s < T and 3C > 0 such that

(2.2) E°[ sup [Ipagm) < Ipellieme ™.

Knowing that p, € H*(R), t < s < T, we could now look for a value

function

(2.3) J 1 [t,T] x (0,00) x (H*(R) N densitites) — (0, o).
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We translate the optimization problem (1.10) in the language of P°:
J(tz,p) = SUp e 4 U (XT)U(Yy)]
= supreq BOIU(X7"")U (Yr) Lyt
= supre g BO[EU(X7"")U(Ye) Ly | ¢2l]
= sup,eq EV[UXT™) [ U(y)pr(y)dy]
(we used (1.13) to infer the last equality.)
In what follows, we need an 1t6 formula in infinite dimensions. By ap-
proximating p € H?(R) with finite dimensional functions (H?(R) is separable

Hilbert space) and using finite dimensional formula, it is not difficult to prove

the following;:

Proposition 2.2. Let H be a separable Hilbert space, (Ps)seprr) o H-valued
diffusion such that
dP; = A(Py)ds + B(Ps)dW,

where A,B: H — H and let F: [t,T] x H — R, F € CPY2((t,T) x H) (dif-
ferentiation with respect to the variable in H is understood in Fréchet sense).
Then

2.5
( dF)(s, p) = Fy(s, P,)ds + F,(s, P,)(A(P,)ds + B(P,)dW,)

+2Fy(s, Ps)(A(Py)ds + B(P,)dW,, A(P,)ds + B(P,)dWs).

In the formula above,

F(s,P) € H', F,(s,P,) e (HxH).
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Taking H = (0,00) x H%(R), we are able to derive formally the HJB
equation satisfied by the value function. Assuming enough regularity in 7, we

see that formally (formally because we did not prove any regularity results on
J):
d7 = {J+ X7 = rm)To + Tp(L7pa) +
+3720%(5) Toa
(2.6) +5 T (Bps, B ps)+
+W50(5)jzp(8*p5)}ds
+QudW,

where @), is a predictable square integrable process. Above, any J.,
u,v € {t,z,p} is shorthand for 7,,(t, x, p), for example

Jp(L*ps) means J,(t, z, p)(L*ps), etc.

In order to have a HJB equation on the Hilbert space H?(R), we
need to extend the definition (2.4) to any p € H?(R); we will then solve the
optimization problem for all p € H?(R), and if J is the solution of the problem

on H%(R), namely,
T o [t,T] x (0,00) x H*(R) — (0, 00).

We could obtain the value function (2.3) by

(2.7) T = Tit11% (0,00 x (H2(R) P)-
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Above, P = {p: R — R™ Borel measurable : [, p(y)dy = 1} are the probabil-
ity densities. We will use only J alone, and we understand it as defined on

H*(R).

Remark 1: We have restricted our data to H*(R). To see why this choice
has been made, see Ishii (1993) for a discussion of how to formulate correctly

infinite dimensional pde’s.

Formally, 7 is “the solution” of

Ji + mljx + J,(L*p)+

+57w(Bp, Bp)
(2.8) + max {%ﬂgag(t)%x + 70 (t) Tep(Bp)
—rr T} =0

J(T.a.p) = Ux) [ O(y)ply)dy.

R

Remark 2: /p(y)dy is not 1, as we extended J to H?*(R) (the value
R
function is not defined solely on densities now) The aforementioned integral

equals 1 if p is also a probability density. We first look for a solution of the

form

(2.9) J(t,z,p) = K(t,e" "Dz, p)
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and we obtain that K satisfies
1
K+ K,(L'p) + §Kpp(8*p, B*p)+
1
(2.10) + max {502(25)Km7%2 + o (t)K,p(B p)7t — Tﬁ'Kx} =0
K(T,z,p) =U(x) /R U(y)p(y)dy
T—t)

We replaced the control © with the new control & = e,

Now, we can simplify further the HJB equation, but this will be done
differently for the logarithmic utility than for the other type we are analyzing.
We will begin with the logarithmic utility first, as this is a case when the

feedback control takes an explicit form.

4.2.a LOGARITHMIC UTILITY

If U(z) = logz, then (2.10) becomes

1
Kot 5 Kpp(B'p. Bp) + K,p(L'p) +

1
(2.10a) + max {502@)}(”7%2 +0(t) Kop(B'p) T — K7 | = 0

K(T,z,p) =logx /R U(y)p(y)dy

As we do for the Merton problem with logarithmic utility, we look for
(2.11a) K(t,z,p) = logI/RU(y)p(y)dy +V(t.p)

and where V solves
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1
Vi + §Vpp(5*p, B*p) + V(L p)+

smax{ = 20%0) [ Dwpw)dye + o(0) | (B0 wply)dy7

(2.12q) i
—r /R U(y)p(y)dyi} =0
V(T,p)=0
Above, m = g is a new control. Solving the maximization of the

quadratic,

Vit %V}»p(l?*p, B'p) + Vo(L7p)+
(2.130) Lo L BO WPy —r [ Owpw)as]

20%(t) [ U(y)p(y)dy
V(T,p)=0

which is a (infinitely dimensional) linear pde.

The optimal policy 7 is given by

1 [U(t) Jr(BU)(y)p(y)dy

(2.14a) m(t,z,p) = 20 Ty r]az

We continue solving the problem for the other utilities presented in

(H4), the ones not logarithmic.

4.2.bc HARA AND EXPONENTIAL UTILITIES
We observe that K separates as

(2.11) K(t,z,p) = U(z)V(L,p)
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with V satisfying

1
Vi + Vo (L) + 5V (B, Bp)+

(2.12) + max {%OQ(t)karQ +o(t)V,(B'p)i — iV} =0

V(T.p) = | U@)p(y)dy

R
We replaced again the former control 7 with the new control 7 = 7%%’

Solving the maximization of the quadratic, we obtain

1
Vi+ V(L) + 5\/;,,,(8*19, B*p)+
(o(t)V,(B*'p) —rV)?

(2.13) B 2KV 02(t) =0

V(o) = [ Tw(v)dy

The way we continue depends now on the value of k. If k £ 1 then we

look for
(2.14b) V(t,p) = v(t,p)’
and if
k )
(2.15b) d= m(zl—ylf Uz) =27/7)
we obtain
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1 * >k r *
Vs + EUpp(B p,B p) + Up{(ﬁ + F(ZS)B) p}_
,rZ
2.160 -V =
(2.160) 2oy’ =Y

o) ={ [ Oy}

This is a linear pde.

If £ =1, then the nonlinear term w in (2.13) cannot be removed
by a substitution of the form (2.14b), and we seek instead a solution of the

form

(2.14c) V(t,p) = e’®?)

We obtain that v satisfies

1 * * r *
v + évpp(B p. B*p) + vp[(ﬁ + %B) p]_
2
,

202(1)

o(T,p) = log /R U(y)p(y)dy)

=0

(2.15¢)

The optimal policies are given respectively by

1 do(t)v,(B*p) —r
R(zer(T-1) o%(t)v

L ot (B) -
R(xer(T-1) o?(t)

Urer@=0 if i #1
(2.16) m(t x,p) = .
ifk=1
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where

U'(z)
xU"(x)

(2.17) R(z) = —
is a the risk aversion of the utility U.

The Main Theorem

We can summarize our computations in the following statement:

Main Theorem The value function J € 0172’2([t,T] X R % HQ(R)).

The value function and the optimal control w are given by:

If U(z) = logx then:

J(t.w,p) = |logz+r(T—1)] [rUy)py)dy+V(t,p)

_ 1 [o®) [BO@pwdy
7T(t; Z, p) = 20 [ fR T(0)p()dy T}l‘

where V' satisfies (2.13a).

UWg_k¢1mm

J(t, z,p) = U(zerTD)u(t, p)Er
W(tj v p) - R(a:erl(T—t)) 50(15)1:2(5;5)—7’1).7:6“11_”

where v satisfies (2.16b) and R is given by (2.17).

If e = k =1 then:

J(t; l'./ p) = U(I‘er(T_t))e’U(t,p)
7T(t7 fL‘; p) — R(we‘r‘l(T—t)) U(t)vggl(ggp)*'r l'eT(T_t)
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where v satisfies (2.15¢) and R is given by (2.17). ]

Remark 4: 1In either case, we reduced the difficulty of solving the
optimization problem into solving a linear, though infinite dimensional pde.
In some cases (and we will give an example) this infinite dimensional equation

is solvable explicitely.

The proof of the Theorem is a simple exercise for the reader familiar
with the DP principle and stochastic partial differential equations. Existence
and uniqueness results for (2.16) appear in the literature; the reader may
choose between viscosity solutions techniques( as in Ishii (1993), Lions (1984))
or classical treatment (as in Zabczyk(1999)). The Main Theorem is a sim-
ple verification theorem, once the existence and uniqueness results mentioned
above are available. The fact that we were able to linearize the HJB equation
had also its own technical importance because, as we mention in the intro-
duction, results concerning non linear pde’s are quite scarce in the literature,
while the study of the linear parabolic pde’s in Hilbert spaces has quite a long
history, beginning with Daleckii (1964).

Despite the infinite dimensionality, the linear equations to which our
problem has been reduced aren’t always unsolvable. We continue by an exam-

ple of a situation where such equations admit in fact closed form solution.
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4.3 EXAMPLES

In this section we provide two applications of the theory developed in
the previous section: one example in which despite the infinite dimensionality,
the HJB equation admits closed form solution, and a second example in which

we show how to compute prices of European Options with the underlying Y.

4.3.1 An Example of Closed Form Solution

We are investigating a model in which Y follows a pure diffusion pro-
cess with bounded volatility (see equation (3.1.1) below for the formal expres-

sion), and the mean rate of return of S is linear with respect to Y.

This is a model of the influence the health of the CEO of a company
has on the stock price. There is anecdotal evidence that the sudden death of
the CEO induces a fall in the stock price. In what follows, we assume that Y
models the shocks that the health of the CEO produces on returns, and that

S is the stock price.

Precisely,

(3.1.1) dY, = a(Yy — 0)(1 —u=tY,)dWw?

dS;
S

(3.1.2) = \m — Y,)ds + odW}.
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Y is a pure diffusion process. Suppose a positive shock dW}? is applied
to Y; what is the change in Y7 Recall that Y is not the health of the CEO
per se, but the shock that changes in the CEQO’s health induces on the stock
returns. If Y is low, so that its diffusion coefficient is negative, the positive
shock dW2, combined with a negative diffusion coefficient, send Y up. That is,
if the CEO was previously very sick and his or her health improves, the stock
return improves. If the CEO’s health decreases further, the stock returns are
negatively influenced. If the diffusion coefficient of Y is positive (this happens
if the the variable Y is ”in the middle” — so we don’t know that the CEO
is very sick nor that the CEO is extremely healthy) , then a negative shock
to the health makes the returns to move up, consistent with the anecdotal
evidence that unexpected changes in the CEO’s health affects the stock prices
negatively. When Y is big enough so that it’s diffusion coefficient is negative,
then positive shocks in health yield positive shocks in returns (similarly with

the situation when the CEO is very sick).

The partial information Merton problem is in this context a portfolio

management problem in which we can control for the state of health of the

CEO.

The utility is such that UU”/(U")? = k and U = 1. Therefore, with
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the notations of Section 1, we have

pty) = Alm —y)
ot) = o

b(t,y) = 0
(3.1.3)

a(ty) = aly —0)(1—u'y)

BAW) = Zm=y)f(y)+paly =)L —u'y)f(y)

(LHy) = (=01 —uly)?f"(y)

Reducing the degrees of freedom of our model, we also assume that

(3.1.4) g n % —0

This assumption, although very restrictive, was made in order to enable us
to produce closed form solutions. With the above assumption, we look for a

solution of the form:

(3.15) o(t.p) = (0. [ p)dy. [ yp(v)dy).

where f : [0, T] x R? = R. To substitute the Fréchet derivatives of v, we have,

for example for ¢ € H*(R),

up(t, p)(q) = fl(t,/Rp(y)dy,/Ryp(y)dy)/RQ(y)dy+

+f2(t,/Rp(y)dy,/Ryp(y)dy) /qu(y)dy,
af

where fi(t,x1,29) = a_xi(taxhﬂﬂz)-
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If we denote

c(xy, z2) = g(mxl — I9)

3.1.6
( ) d(zy,29) = (mT’\ + pa + p%e)a:g — palxy,

then f satisfies the following 2-dimensional, linear, parabolic pde:

Ifk #1:
L 2
fr+ 5(0 fi1 + 2cdfia + d° fao)+
2
3.1.7b o A
(3.1.7) b (e df) — o f =0
F(Ty 21, 20) = 217
Ifk=1:
L 2
fi + 5(0 fi1 + 2cdf1a + d° fa)+
2
. T r
(‘3170) +;(Cf1 + dfg) — ﬁ =0

f(T, zq,29) =log(zq1); 21 >0

So up to the solution of the above 2-dimensional linear parabolic equa-

tion, the value function and the feedback control are given by:

Ifk 4 1:
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J(t,z,p) = U(xe’”(T_t))f(t, 1, Ml(p))1/5

n(t.z,p) = AT
(3.1.8b)
x (8ole(1, My(p) fi(t, 1, My (p))
+d(1, Mi(p)) fo(t, 1, Mi(p))] = rf (1, 1, My(p))
Ifk=1:

(3.1.8¢)

j(t7 x, p) — U(l’er(T_t))ef(trluMl (»))

w(t,x,p) = —IRCE';’x) X

x (ole(1, Mu(p)) f(t, 1, Ma(p)) + d(1, My (p) falt, 1, My(p))]

)

Remark 5: We need to make an observation needed in Section 4.
It could be verified by direct inspection that for m, A, p # 0, the solution of
the equation (3.1.8b) is not of the form e*®®)+vt:2)y and the solution of the

equation (3.1.8¢) is not of the form u(t, ) + v(t, x)y.

4.3.2 Pricing European Options

Although the object of this presentation is not how to compute option
prices, we will present it as an example. We will solely solve the problem for

the seller of an European Option; the buyer’s problem is similar.
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The typical example is of an option written on a pre-IPO stock. The
method requires an initial estimation of the probability density of the pre-
IPO stock, which should be made available from the underwriter of the stock
offering (the so-called prospectus if the IPO offering was filed already with
SEC) .

We use a technique presented in Davis, Panas and Zariphopoulou
(1993) to compute the seller’s price of European Options within the incom-
plete information framework. Their method yields the indifference price — the
unique price P of the option that makes the seller indifferent between between
being given extra P dollars initially but having to honor the option’s payoff in

the end, and not having to deal with the option at all.

We assume that the agent has an exponential utility

A

(3.2.1) Ulx)=1—e"

and that he sells some European Options with underlying asset Y, expiration
T and payoff g. Initially, the agent has = dollars and he made ¢ dollars more
by selling the options. If the price of each options was C', the agent has shorted
§/C options, and he will have to shell out 2¢(Y7) dollars at the end of the
time horizon to cover these options. His objective is to maximize the expected
utility of his terminal wealth, trading in S meanwhile. The criterion to be

maximized is therefore

(3.2.2) E[U (X5 — gg(YT))}
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and we denote the associated value function by
2 t,x+0,m 0
(3.2.3) I(t,2.p.6) = sup B[U(XF"*7 — Zg(¥2))]

Remark that I has the form

(3.2.4) I(t,z,p,8) =1+ E[UXEMU(=g(Yr))]

Ql =

where U and U are like in the Example ¢) of Section 1, and [ is related

to the value function J of the Main Theorem by

(3.2.5) I(t,z,p,0) =14+ T(t,z + 0,p)

According to the pricing method described in Davis, Panas and Za-
riphopoulou (1993), the price of the option is given in case exists and it’s

unique, by the unique solution of the equation

ol
(3.2.6) %(t, z,p,0 =0)=0

Using the Main Theorem, (3.2.5) and (3.2.6) we obtain that the price

C' of the option is given by

(3.2.6) C(t,p) = eI C(t,p)
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where C° is the solution of the partial differential equation

1
C7 + 5C(BD. Bp) + Cp (£ + —

B2 iy - sy

Jrp(y)dy

The price C is the seller’s price of the option.

4.4 THE SEPARATION PRINCIPLE

This section studies how different is the hedging strategy of an agent
acting in the full information compared to that of an agent acting in an in-
complete information environment, from the perspective of the agent placed in
the partial information market. In other words, conditional on the common

information, are the hedging strategies the same?

The question arises when an uninformed agent observes the market in
order to decide whether or not to participate. We assume that the uninformed
agent has access to the (conditional) trading strategy of the informed agent
and to the stock price S. Based on the information regarding the stock price
and her own risk aversion, the uninformed agent opts for her (uninformed)
trading strategy. Then this strategy is compared to the one of the informed
agent; if they coincide, the uninformed agent may enter the market, while if

they are different, the uninformed agent realizes her informational limitations.

The separation holds for log-utility:
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Proposition 4.1 Let 7/ (t, X,,Y;) and 7%/ (t, X,, p;) be the optimal trading

strategies of an informed, respectively uninformed agent. Then

E[ﬂ—inf(ta Xt: Y;f) |Ct] = Wuninf(t: Xt7 pt)

Proof: In the case when U = 1, that is, when we solve the Mer-
ton problem with incomplete information and logarithmic utility, the optimal

policy is (from the Main Theorem)

Jart)@pw)dy
Jorw)dy r] T

= o Bt V)] G —r]a

- E[r™(t, X, Yy)|¢]

so we recover the ”separation principle” (4.5) from Pham and Quenez (2000).

unin f _ 1
winl(tx,p) = ]

If the utility is not logarithmic then the two policies are conditionally
different. One agent with non-logarithmic utility may — using only publicly
available information to infer that a competitor has private information.
This casts doubt on market microstructure or equilibrium models based on
the existence of uninformed traders, because uninformed traders are able to
realize their exclusive role as liquidity providers and therefore withdraw from

the market because they anticipate losses.

To show that the Separation Principle does not hold for power or
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exponential utilities we present now a counterexample, based on the Example

already built in Section 3.1.

Proposition 4.2. The Separation Principle does not hold in general for

HARA or exponential utilities.

Proof: The counterexample consists of the model presented in

Section 3.1, where m, A, p, a # 0.

Suppose by absurd that the Separation Principle holds; then

Wuninf(t,Xt,pt) = E[’]rinf(t,Xt,}/t)Kt]

(4.1) = Jra(t.z, y)p(y)dy,

for some smooth function g : [0,7] x [0,00) x R — R and any H?*(R)

function p.

From the Example 3.1.(formulae 3.1.8b) and (3.1.8¢)) we have that

(12) w4 X, ) = aR(L A [ yply)dy).

where h is some smooth function h : [0,7] x R — R.

Combining (4.1) and (4.2) there should be a function i(t, y) = g(t,z,y)/(xR(t, x))

such that

hit, [ up(w)dy) = | it.y)py)dy. ¥p.
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Differentiating with respect to p along the direction of some ¢ € H?*(R),

we obtain that

ha(t. [ up(w)dy) [ vatwydy = [ it.v)a(w)dy,Vp.q
But the above relationship is impossible unless hy(%, z) does not depend
on z, so h must be affine with respect to its second argument.

Given the expression for 7%/ from (3.1.8b) and (3.1.8¢), this happens

if and only if

u(t,z)+v(t,z)y k 7& 1
€ )
f(tz,y) = {u(t,x) +o(t, )y, k= 1.

But the Remark 5 closing Section 3.1. asserts that this is impossible

(at least for nontrivial parameters).

Therefore the Separation Principle cannot hold. 1

4.5 NUMERICAL ALGORITHM

This section provides numerical results for the HJB equations devel-
oped in Section 2. It exploits heavily the linear structure created in Section 2,
even though the infinite dimensionality remains; it turns out that the problem
is numerically tractable with tools already available in the literature: simula-

tions of Zakai equations coupled with Monte Carlo methods for solving partial
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differential equations. We will present below the main ingredients of the theory

and the numerical algorithm.

We present first a Feynman-Kac formula for infinite dimensional parabolic
partial differential equations.

Proposition 5.1. (Feynman-Kac) Let B, £ asin (1.6), (1.7) and p; € H*(R)

the solution of the stochastic partial differential equation

dp, = L*pyds + l’)”"psclI/AVS1
(5.1)

bt =Pp
and let v : [0,T] x H*(R) — R the solution of the infinite dimensional

partial differential equation

e (B, B) 0, (£°9) — k() + g(p) = 0
(5.2)
v(T,p) = f(p)-

Then

(5.3) u(t,p) = E[f (pr)e  HOb 4 [T g(p)e I Kty

The proof is similar to the finite dimensional case, based on applying
Ito’s rule to f(ps)e J: kud - ovcept that we have to use the infinite dimensional

Ito rule given in Proposition 2 of Section 2.
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We present now an algorithm which computes numerically the solution
of (5.1), for given Brownian Motion paths (W;);. It is presented in Kushner
and Dupuis (1992).

Suppose p € H?(R) is given. We would like to simulate a path of the
solution ps,t < s < T of equation (5.1). As p is infinite dimensional, we must
approximate p with the values it takes on a grid. We chose the space grid as
AX = {zg, 21,29, ..., T} C R, 2, = 29 + kh/n. h > 0 is the space grid mesh.
The time is discretized as AT = {tg = t,t1,lo, ..., t,, = T}, tp = t+ k(T —1)/m.

Remark that we consider the values of the meshes given.

Therefore, p, is approximated by the vector p, € R",

ﬁs - (ps(l’o), "'7p8(‘rn)>l'

The first and second derivative are formally approximated by

J(@ry1) — f(a)

. Jk<n
(5.4) f(ay) ~ fe)
— .
S () ;ff(fvo) k=0
(5.5) F(ax) ~ J(@r41) — Qf]gfk) + f(l’kfl),l <k<n
—Qf(l'n)ht f(@n-1) k—n
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Following (5.4) and (5.5), the operators B, L of (1.6) and (1.7) are

approximated by the matrices B?, £ € Rn+Dx(n+1),

lgo(s) lz(s) 0 0 0 0
(5.6) L7 = Ga(s)  lia(s)  lis(s)
0 0 0 Ini(s)  lna(s)
where
LED |
ZZZ(S) _2a2§lsz,:ck) b(s;La:k) =9
b5i(s)  ba(s) 0 0 0
(5.7) Br = b (s)  ba(s) :
0 0 0 b(s)
where
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_pal(s,m) 4 p(smR) ;o
h + o(s) =1

ri(s) = (s00)
pPas,r y
Tk'/?/ — 2‘

An approximation to the solution of equation (5.1) is then built as

follows:

o start with p!' = (pi(xo), ..., pe(z,))";

o for j =1 to m:

(' -1

n (T - t) n npn]® n
Dy j(r—t)/m = [1 + - L3+ €; st| Dy (j—1)(T—t) /m>

where €} are independent random normal variables.

Denote the simulated sequence of p’s by (p}'); and repeat the above
algorithm @ times, obtaining a (p}), at each step. Then, by the law of large

numbers and Proposition 5.1, an approximation of v(t,p) is given by Monte

Carlo:

< T
U(t,p) ~~ M Z [f(( ) ) f k(s)ds + Z —g pt+](T t)/m) ) fft k(u)du}
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Chapter 5

OPEN PROBLEMS

Although we have solved the problems we started with, there are still
problems that stem from the proposed models that we do not solve here. We

present here a short list.

In Chapter 3, we have proved that a Merton Problem in incomplete
markets, with agents exhibiting recursive preferences, could be reduced to a
(simpler) Merton Problem in complete markets, where the agent exhibits a
Uzawa utility with stochastic discount factor. The question is how general

this result is; also, a more profound economic explanation is due.

In Chapter 4, the infinite dimensional HJB equation admitted an easy
treatment: we were able to linearize it, so regularity results followed from liter-
ature already available. Also, the linear structure made Monte Carlo analysis
very easy. It is important to analyze the very features of the model that made
these results possible. One aspect is that the process Y does not depend on S.
This would be perhaps unrealistic for long time behavior of pre -IPO stocks:
as time increases, the big internet portal will definitely influence the value of
Y. Therefore, the coefficients of ¥ should depend on S, but this complicates

the structure as another state variable is to be introduced. Another aspect
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is the dimensionality of the problem: both S and Y are one dimensional. To
generalize the result in several dimensions will destroy the linearity. How-
ever, from a numerical point of view, the hope is not completely lost: the HJB
equation cannot be linearized, but we can use a Feynman - Kac formula for For-
ward Backward Stochastic Differential Equations, coupled with Monte Carlo
schemes for the same FBSDEs. Monte Carlo simulations for such equations
are becoming increasingly feasible, thanks to the use of Malliavin Calculus in
the simulations of conditional expectations. One direction of research would
be to extend the results here (numerics as well as theory) to the case when
S and Y are multidimensional. The first step is to reconstruct a theory of
FBSDEs whose forward component is a SPDE (like Zakai ’s equation); the
second step is to build the approximation scheme; the last step is to establish

the convergence of the Monte Carlo simulations.

Another problem that arises in this model is what exactly makes the
Separation Principle (presented in Section 4.4) to hold. For example, is it true
that if the Separation Principle holds and the agent maximizes utility from

terminal wealth, then does it follow that the utility is logarithmic?
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Appendix A

PROOF OF THEOREM 4.1 OF CHAPTER 3

We split the problem in four smaller ones, according to the values
which «,~ take. Cases refer to Kreps-Porteus utility, with the exception of

Case IV which also include the Standard Additive utility.

Case Iy € (—00,0), a0 € (—00,0)

Case ITy € (0,1),a € (—00,0)

In this case, A > 0,B <0,p > 1.

Case IIl vy € (—00,0),a € (0,1)

In this case A <0,B<0,p > 1.
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Case IVy € (0,1),a € (0,1)

In this case, A < 0,B > 0,p < 1. Also, Standard Additive Utility
is included here, as the coefficients A, B, p satisfy in this case the inequalities

above.

We inquire about existence and uniqueness of positive solutions of the pde
for v. We continue by proving such results; we stress the fact that cases
corresponding to p > 1 are treated differently than cases with p < 1. We

therefore begin with cases I and IV, then we do II and III.

Case 1

Uniqueness of positive solution Let v be a positive solution of the studied pde.
Then v, + Lv < 0 since A, v, B are positive. Also, v(7,y) = 1. By comparison

principle for regular parabolic pdes, v > vy, where vy is the solution of
V1t + £~’01 =0

'Ul(Ta y) =1

that is, v(t,y) = 1. So v > 1. Note that the argument above relies on the fact

that v is bounded below (by some C' > 0).
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We observe that the only thing that impeaches us in getting uniqueness
of positive solution in the pde for v is the fact that v — v? is not Lipschitz
around 0. But positive solutions have been seen to be greater than one, so

uniqueness follows now from standard arguments.

Existence of positive solution Existence for (5) for any time horizon [0, 7] is

equivalent with global existence for

uy = Lu+ Au+ BuP,y € Rt >0

u(0,y) =1
Let I(t — 7,y — 2) be the kernel associated with £, that is, the solution of

Wy = Ew—"g(t:y)

w(0,y) =1
is given by
t +oo
wity) =1+ [ [ U=y = 2)g(r, 2)dzdr
0 J—o0o
Let

up(t,y) =1,vt € [0,7],Vy € R

and for any n > 0 let
t 400
Unsr () = 1+ / / Ut — 7,y — 2)[A(T, 2)un(T, 2) + Bun(r, 2)?|dzdr
0 J—o0

Clearly any wu,, > 1, so the above definition is correct. We also have
t r+oo
us(t.y) = uo(t.y) < [ [ 1t =7y = 2)[A(r,2) + Bldzdr
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< Ct,Vt € [0,7]

since A is bounded below. C'is a constant such that |A| + B < C. Assume

now that
(cy)"

n!

|un(t7 y) - unfl(t'/ y)| < 7Vt € [07 T] (*)

Then, using that |a? — 0’| < |a — b|,Va,b > 1,¥p < 1, we have that

|un+1<ta y) - un<ta y)|

t p+oo

< / / l(t—7,y—2)[A(T, 2)|un (T, 2) —tp_1(T, 2)|+Blu, (T, 2) —typ—1(7, 2)| |dzdT
0 J—oo

and by (*) and the choice of C,

(Cr)™ . (Ct)"*
n! dr = (n+ 1)V

t
|Un+1(t, y) - Un(t, y)| < O/O VYt € [O,T]

We therefore proved that

n+1
[uns1(t,y) —un(t,y)] < gn _2 1)',Vt €[0,7],Yn >0

This yields that (u,),>0 converges to a function u uniformly on [0,7]. Every

u, being clearly continuous, so it is u. Also
lu(t,y)] < 1+e% vt e0,T],Yy € R
By passing to the limit in the recurrence relationship, we get that
t pr+4oo
u(t,y) =1+ / / I(t — 7,y — 2)[A(T, 2)u(T, 2) + Bu(r, z)’|dzdt
0 J—oo

Since the integral with respect to z is a convolution integral, u is also C* in y.

Because u is continuous in ¢ it is also C' is t. By the choice of the recurrence
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relationship, u(T —t, y) is also solution of (3.3.1). It satisfies (3.3.1) in classical

sense.

Remark 1: We also proved that 1 < v(t,y) < 14 ¢

Remark 2: Only the fact that V(0,-) > m > 0 was used in the above

proof.

Remark 3: We used an approximation sequence in the proof above;

this is computationally convenient too.

Case 1I and III

Uniqueness of positive solution: We rewrite (3.3.1) as

uy = Lu+ A(t,y)u + Bu?

u(0,y) =1
and we inquire about global solutions. Then, in the case when A > 0, we

choose M > sup A > 0 and rewrite the above equation in u as

u — Mu = Lu+ (A(t,y) — M)u + Bu?
u(0,y) =1
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or, if we denote w(t,y) = u(t,y)e !

I

(1.1) wy = Lw + A(t,y)w + B(t)w?

w(0,y) =1

where

B(t) = Be® YM <
Let now w be a positive solution of (1.1). We will show that w(t,y) < 2,
Vt > 0,Vy € R. If not, then there is (¢, yo) such that
w(to, yo) = 2
and
w(t,y) < 2,Vt <to,Vy € R

Note that it is possible that y, € {—o00, +00}. We suppose that it belongs to
R and refer the reader to Proposition(15.4.3) from Taylor (1995). The idea of
the proof is the same, it just gets tedious when yy, € R. We observe now that
wi(to, yo) > 0. Also, the function ¢(y) = w(ty, y) has a maximum at yp, and

since w satisfies (1.1),
0 < wi(to, yo) = Lw(to, yo) + Alto, yo)w(to, yo) + B(to)w(to, yo)” < 0

therefore a contradiction. That proves that w is bounded above and since it is
positive standard arguments invoquing the lipschitzianity close the argument

for uniqueness of positive solution of (1.1), and therefore of (3.3.1).
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FEzistence of positive solution: We prove existence of positive solution for (1.1).

Take Ty < sup{|A| + |B|} and define

wO(tv y) =1

and for any n > 0

t p+oo ~
Wpy1(t,y) =1+ / / Ut — 7.y — 2)[A(T, 2)wn (T, 2) + B(T)w, (T, 2)P|dzdT
0 J—o0o
It follows easily by induction that
0 <w,(t,y) <1,Vt €[0,Tp],Vy € R

Using now the fact that

w — w?

is Lipschitz on [0, 1] (recall that now p > 1), that there is a C' > 0 such that

t n+1
|U}n+1<t,y) - wn(ty)| < (O ) Vi € [OaTOLVy eER

(n+1)V

which implies that w,, converges to a solution of (1.1) on [0,75]. Obviously

0 < w(Ty,-) < 1. We therefore got a local solution on [0,7). Let Ty as
above be maximal and suppose it’s not +oco. We'll show how to extend the
solution beyond Tj in this case, obtaining therefore a contradiction. Remark
that above we used only the fact that the initial data was bounded away from
0 uniformly in order to get local existence. If we prove that the solution on
[0, Tp) satisfies w(Tp—, -) > C' > 0, the same proof could be used to extend the

solution beyond Ty. Now, if we take the solution w on [0, Tp), and if we take
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y; be a minimum point of w(t,-), we have Lw(t, 1) > 0 (please remark that

w(t,-) is bounded), and therefore
wy > —Mw — B(t)u”

where M is an upper bound on fl(t, y). It follows easily from the inequality
above (with initial condition w(0,y) = 1) that w is uniformly bounded away

from zero, therefore it could be extended.

Remark 4: We constructed a solution v such that 0 < @(T") < w(T —
t) <w(t,y) < eMT=D where w is the solution of

Wy = — M — B(t)i”

w(0) = 1

Case 1V

This time we'll do the existence first.

FExistence of positive solution: We would like to reproduce the argu-
ments of case I, however, since a < 0 in this case we cannot infer that every
u, defined as in Clase I is bigger than 1, so the inequality used there cannot
be used here. But we’ll rewrite the equation

(1.2) wy = Lu + Au + Bu”

u(0,y) =1
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in a more convenient form. First, let M > 0 such that
|A(t,y)| < M,V1t € [0,T],Vy € R
We could rewrite (1.2) as
u; + Mu = Lu+ [A+ Mu+ Bu”

u(0,y) =1
or, substituting w(t,y) = eMu(t, y),
{wtfw+/~1w+f3wp

W(0,y) =1
with
A(t,y) = A(t,y) + M > 0, B(t) = BeM*1-P)

We obviously continue exactly as in Case [, letting first

wO(tv y) =1

then, forn >0

Wpy1(t,y) =1+ /Ot /:O It — 7,y — 2)[A(T, 2)w, (T, 2) + B(T)w, (7, 2)F]dzdT

We take C' > 0 such that |A| + |B| < C (such a C' exists because if A, B were

bounded, so are A, B ), and we prove that

t n+1
[l y) — walt )] < S0 vt e [0,7], vy € R

(n+ 1)U

which grants existence of a positive solution w and therefore of a positive

solution v of (3.3.1).
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Remark 5 We also proved that e™MT=8 < y(t,y) < e™MI=(1 4

eC’(T—t))'

Uniqueness of positive solution: As in the existence proof, we begin by bringing

the equation to the form
wt:ﬁw+flw+f3wp2[,~w

If solution of (3.3.1) is positive, so is w, so we were able to write the inequality

above and we also get that
UJ(t,y) 2 17Vt € [OvT]

Now v(t,y) > e~MT=Y 50 by standard lipshitzianity arguments we get unicue-

ness for (3.3.1).
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Appendix B

BSDEs

We will follow El Karoui, Peng, Quenez (1997) here and hence we’ll
be brief. For full details, mathematical proofs and applications of the concept

we refer the reader to the aforementioned paper.

Let (2, F, P) be a probability space, and let W be a Brownian Motion

adapted to the (enlarged) (F)i<s<r. Let
T
HZ(R) = {¢predictable, E[/ (Zds] < oo}
0

A Backward Stochastic Differential Equation (BSDE), with solution (U, Z) is

a stochastic equation of the form:
T T
U, =¢ +/ 9(w, 1, Us, Z)dl — / ZidW,

The function g, called generator, is considered to be standard, that is,
g adapted to(Fs)s
g('a E 07 O) € H%(R)
g Lipschitz with respect toU, Z

The random variable £ is the terminal condition, and it satisfies

¢ e L*(Fr)
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This conditions being satisfied, it is proven in El Karoui, Peng, Quenez (1997)
that the BSDE has a unique solution (U, Z) € H2(R).

The BSDE could be written in an equivalent form:
= Ble+ [ o0, 1 U )il F]
so that recursive utilities are solutions of BSDEs. The following results are

proven in El Karoui, Peng, Quenez (1997):

Proposition 2.1 We consider a family of BSDFEs with standard generators

o, g and square integrable terminal conditions &,,& such that:

g = min, go(max, fa)
{ 5 = min,, ga(maxa fa)

(min, or mazx, are taken for some values of o the same value for generator as

for the terminal condition)

Let (U, Z%), (U, Z) be the solutions of these BSDEs. Then:

Up = min Uf(mofjmx Up)

The following result is not stated in its full generality:

Proposition 2.2 (Generalized Feynman-Kac formula) Let v a classical bounded

solution ( that is, of class C*?) of
Ut +£~U +g(tayvv) =0

o(T,y) = vr(y)
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where L is a second order elliptic operator, and g is standard in the sense

described above.

LetY be a diffusion with infinitesimal generator L, driven by the Brow-
nian Motion W, and let (U, Z) be the solution of the following BSDE (with

the generator constructed using g and 'Y ):
T T
Uy =vr(Ye) + [ gUYiUdi— [ ZaWit <s<T

Then
U(ta y) = Ut

The proof of this result is simple, consisting only in applying Ito’s formula to

v(s,Y;) and using uniqueness properties for the BSDE above. 1
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Appendix C

EXISTENCE AND UNIQUENESS FOR (4.4)
OF CHAPTER 3

In our case, U is in HZ(R) since it’s been proven that v is bounded,

and if we rewrite
t +o00
v(t,y) =1+ / / It — 1,y — 2)[A(T, 2)v(T, 2) + BVP(T, 2)|dzdT
0 J—0

and differentiate once with respect to y, we could easily see that v, has linear
growth in y. On the other hand, since Y is a “nice” diffusion (ie, the solution
of a SDE with regular coefficients) we have that Y € H2(R) (see for example
Revuz and Yor (1994), Ch. 9), and therefore Z. = a(-, Y.)v,(-, V) € HA(R) (a

is also bounded from assumptions).

Uniqueness is a bit more complicated. If we try to prove uniqueness
showing that the generator is Lipschitz, as in El Karoui, Peng, Quenez (1997)
, we obviously fail (g is not Lipschitz). However, we know we have a solution
(U, Z) such that, in fact, U is between two positive constants,C,, C*, a.s. The
two constants are not universal, they depend on the parameters of the problem.
Since g doesn’t depend on Z, we could look only for solutions bounded by

the aforementioned afortiori constants, and in such a case g : [C,Cy] — R is
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Lipschitz, therefore uniqueness of a solution with U a.s. bounded and bounded

away from zero is insured, by classical results contained in El Karoui, Peng,

Quenez (1997).
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Appendix D

UZAWA UTILITY

We would like to provide a clearer formula for a recursive criterion

having the Uzawa generator of the form
9(c,V) = u(c) = B(c)V

To do that in an easy-to-follow way, we start with a recursive criterion U which

satisfies
(Ap4 1)U, = E[JT u(e)eJe P q) 4 Up|Flt <s < T
It’s easy to see that U satisfies
U, = el et | " uler)e e gy E [ utee e ary

l
As the process E[f u(c)e” I Bler)dr g1 F,] is a Brownian martingale, the Mar-
tingale Representation Theorem ensures the existence of a square integrable

process Z such that
l S ~ S l
U, = efs ﬁ(c-r)dr{/ Z,dW,; — / u(cl)e_ fs ﬁ(c-r)dq-dl}
t t
Writing the above relationship using Ito differentials produces

_dU, = {u(cy) — Bcs)Us}ds + els 20 7 a1,
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and if we integrate above and write conditional expectation with respect to
Fs we get that
T
Uy = Bl glei,Udl + Uy |7

Obviously all the computations could be done in the reverse way, and
now (Ap.4.1) justifies the names of wtility for u and discount factor for 6 in

the formula of the generator of the Uzawa utility.
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