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As high precision data acquisition systems continue to improve their perfor-

mance and power efficiency to migrate into portable devices, increasing demands

are placed on the performance and power efficiency of the analog-to-digital con-

version modulator. On the other hand, analog-to-digital modulator performance is

largely limited by several major noise sources including thermal noise, flicker noise,

quantization noise leakage and internal analog and digital coupling noise. Large

power consumption and die area are normally required to suppress the above noise

energies, which are the major challenges to achieve power efficiency and cost targets

for modern day high precision converter design. The main goal of this work is to

study various approaches and then propose and validate the most suitable topology

to achieve the desired performance and power efficiency specifications, up to 100

kHz bandwidth with 16-21 bits of resolution.

This work will first study various analog-to-digital conversion architectures

ranging from Nyquist converters such as flash, pipeline, to the delta sigma architec-

ture. Advantages and limitations of each approach will be compared to develop the

criteria for the optimal modulator architecture. Second, this work will study analog

sub-circuit blocks such as opamp, comparator and reference voltage generator, to

compare the advantages and limitations of various design approaches to develop the

vii



criteria for the optimal analog sub circuit design. Third, this work will study noise

contributions from various sources such as thermal noise, flicker noise and coupling

noise, to explore alternative power and die area efficient approaches to suppress the

noise. Finally, a new topology will be proposed to meet all above criteria and adopt

the new noise suppression concepts, and will be demonstrated to be the optimal

approach. The main difference between this work from previous ones is that current

work places emphasis on the integration of the modulator architecture design and

analog sub-circuit block research efforts.

A high performance stereo analog-to-digital modulator is designed based on

the new approach and manufactured in silicon. The chip is measured in the lab and

the measurement results reported in the dissertation.

viii



Contents

Acknowledgments iv

List of Tables xii

List of Figures xiii

Chapter 1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2 Analog to Digital Conversion Fundamentals 7

2.1 Nyquist’s criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Quantization error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Major Design Challenges for Analog to Digital Conversion . . . . . . 10

2.3.1 Input sampling network design . . . . . . . . . . . . . . . . . 10

2.3.2 Major noise sources . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.3 Major Nyquist analog to digital converter topology overview 18

Chapter 3 Delta Sigma Converter Topology Overview 22

ix



3.1 Delta sigma loop filter topologies . . . . . . . . . . . . . . . . . . . . 26

3.2 Cascaded delta sigma modulator . . . . . . . . . . . . . . . . . . . . 29

3.3 Discrete and continuous time delta sigma modulator design . . . . . 31

3.4 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Tones and dithers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Sub circuit design parameter analysis . . . . . . . . . . . . . . . . . . 34

3.6.1 Finite opamp DC gain . . . . . . . . . . . . . . . . . . . . . . 34

3.6.2 Opamp settling & Slew analysis . . . . . . . . . . . . . . . . . 35

3.6.3 Opamp noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6.4 Switched capacitor input sampling network design . . . . . . 38

3.6.5 Comparator design . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6.6 State of art converter topology comparison . . . . . . . . . . 40

Chapter 4 System Aspects of High Precision Analog to Digital Con-

verter Design 42

4.1 System level view of switched capacitor input sampling stage design 43

4.2 System level view of converter design parameters . . . . . . . . . . . 47

Chapter 5 High Precision Delta Sigma Modulator Design 55

5.1 High precision delta sigma topology analysis . . . . . . . . . . . . . . 55

5.2 Proposed high precision delta sigma modulator architecture . . . . . 63

Chapter 6 Analog Sub-circuit Design 71

6.1 First Integrator and Feedback DAC Design . . . . . . . . . . . . . . 76

6.1.1 Reference scheme design . . . . . . . . . . . . . . . . . . . . . 77

6.1.2 Input sampling switch design . . . . . . . . . . . . . . . . . . 81

6.1.3 Opamp analysis and design . . . . . . . . . . . . . . . . . . . 85

x



6.1.4 Common mode feedback circuit design . . . . . . . . . . . . . 90

6.2 Comparator Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3 Summation circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4 Dynamic element matching circuit and analog clock diagram . . . . 95

6.5 Clock generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.6 Decimation filter design . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.7 Top level verification and optimization for mixed signal circuit design 104

Chapter 7 Circuit Board Design and Chip Layout 106

Chapter 8 Chip Fabrication and Measurement Results 121

Chapter 9 Conclusions and future work 134

9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

9.2 Possible Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Bibliography 147

Vita 154

xi



List of Tables

5.1 Integrator output maximum swings and steps . . . . . . . . . . . . . 68

6.1 Integrator 1 opamp performance summary . . . . . . . . . . . . . . . 91

6.2 Summation opamp performance summary . . . . . . . . . . . . . . . 95

8.1 Performance measurement summary . . . . . . . . . . . . . . . . . . 126

8.2 Stereo A/D converter summary . . . . . . . . . . . . . . . . . . . . . 132

xii



List of Figures

1.1 “Egg” model [1] for high precision analog to digital data conversion . 2

2.1 Analog to digital conversion . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 MOS switch charge injection when the switch turns off . . . . . . . . 12

2.3 Clock feedthrough in switched capacitor circuit . . . . . . . . . . . . 14

2.4 Switched capacitor thermal noise calculation . . . . . . . . . . . . . 15

2.5 Substrate noise coupling . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Flash ADC architecture . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 Pipeline ADC architecture . . . . . . . . . . . . . . . . . . . . . . . 20

2.8 SAR ADC architecture . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Oversampling concept . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Delta sigma modulator architecture . . . . . . . . . . . . . . . . . . 24

3.3 5th order distributed feedback delta sigma modulator . . . . . . . . 27

3.4 Feedforward summation topology . . . . . . . . . . . . . . . . . . . 27

3.5 Feedforward modulator with local resonate . . . . . . . . . . . . . . 28

3.6 Cascade delta sigma architecture . . . . . . . . . . . . . . . . . . . . 30

3.7 Continuous time and discrete time delta sigma modulator . . . . . . 32

3.8 Opamp with gain boosting stages . . . . . . . . . . . . . . . . . . . 35

xiii



3.9 Switched capacitor first integrator . . . . . . . . . . . . . . . . . . . 36

3.10 Rough and fine input sampling stage . . . . . . . . . . . . . . . . . 39

3.11 Analog to Digital Converter Comparison . . . . . . . . . . . . . . . 41

4.1 Switched capacitor ADC input measurement plots . . . . . . . . . . 45

4.2 Delta sigma analog-to-digital converter anti aliasing buffer . . . . . 46

4.3 A single ended switched capacitor Integrator 1 and feedback path

circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Package & layout aspect of high precision converter design . . . . . . 52

4.5 Illustration of self heating . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1 Multibit delta sigma architecture . . . . . . . . . . . . . . . . . . . . 57

5.2 Feedforward multibit delta sigma architecture . . . . . . . . . . . . . 58

5.3 Second order feedforward multibit delta sigma architecture . . . . . 59

5.4 High order feedforward delta sigma architecture . . . . . . . . . . . . 61

5.5 Conventional feedforward delta sigma modulator . . . . . . . . . . . 64

5.6 First integrator output during over range signal recovering process . 66

5.7 Last integrator output during over range signal recovering process . 66

5.8 High precision feedforward delta sigma modulator . . . . . . . . . . 67

5.9 FFT plot of the modified feedforward delta sigma modulator . . . . 68

5.10 Poles and zeros of the signal transfer function . . . . . . . . . . . . . 69

5.11 Poles and zeros of the noise transfer function . . . . . . . . . . . . . 70

6.1 Input tracking multilevel quantizer scheme . . . . . . . . . . . . . . 72

6.2 Dual phase multilevel quantizer . . . . . . . . . . . . . . . . . . . . 73

6.3 Dual phase multilevel quantizer output waveform . . . . . . . . . . 74

6.4 Chopper stabilized opamp . . . . . . . . . . . . . . . . . . . . . . . 77

xiv



6.5 Passive rough and fine reference sampling scheme . . . . . . . . . . 78

6.6 Switched capacitor first integrator and conventional feedback DAC

circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.7 Conventional dual reference voltage generation circuit diagram . . . 81

6.8 Switched capacitor first integrator and modified feedback DAC circuit

diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.9 Single ended reference voltage generation circuit diagram . . . . . . 83

6.10 Sampling switch resistance across the voltage range . . . . . . . . . . 84

6.11 First integrator with feedback reference capacitor block diagram for

opamp finite DC gain analysis . . . . . . . . . . . . . . . . . . . . . 86

6.12 Simulated converter output FFT plot of 85dB opamp DC gain . . . 88

6.13 Simulated converter output FFT plot of 75dB opamp DC gain . . . 89

6.14 First integrator opamp circuit diagram . . . . . . . . . . . . . . . . . 90

6.15 Switched capacitor common mode feedback circuit diagram . . . . . 91

6.16 Comparator Circuit Diagram . . . . . . . . . . . . . . . . . . . . . . 92

6.17 Switched capacitor summation circuit with holding capacitor . . . . 94

6.18 Multi-input switched capacitor summation circuit . . . . . . . . . . 96

6.19 Summation circuit opamp . . . . . . . . . . . . . . . . . . . . . . . . 97

6.20 Feedback DAC capacitor layout . . . . . . . . . . . . . . . . . . . . 98

6.21 Noise shaping dynamic element matching block diagram . . . . . . 99

6.22 Simulated FFT plot of the modulator output with second order DEM

and 5 % feedback DAC capacitor mismatch . . . . . . . . . . . . . . 101

6.23 Analog clock diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.24 Non-overlapping clock generator . . . . . . . . . . . . . . . . . . . . 103

7.1 Substrate modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

xv



7.2 3D resistor macro model . . . . . . . . . . . . . . . . . . . . . . . . 108

7.3 Layout floor plan search flow . . . . . . . . . . . . . . . . . . . . . . 109

7.4 Analog coupling noise current profile with substrate tied to digital

ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.5 Analog coupling current flow for cases of substrate tied to digital ground112

7.6 Substrate coupling current flow for cases of substrate tied to analog

ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.7 Converter digital floor plan and substrate connections . . . . . . . . 114

7.8 Analog section floor plan . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.9 Illustration of signal shielding . . . . . . . . . . . . . . . . . . . . . 118

7.10 Illustration of circuit board layer allocation . . . . . . . . . . . . . . 119

8.1 Die photo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.2 Major analog noise sources . . . . . . . . . . . . . . . . . . . . . . . 124

8.3 Test set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.4 FFT plot for -60dBFs 1kHz input signals over 20kHz bandwidth . . 126

8.5 FFT plot for -1dBFs 1kHz input signals over 20kHz bandwidth . . . 127

8.6 FFT plot for -1dBFs 100Hz input signals over 1kHz bandwidth . . . 127

8.7 FFT plot for -1dBFs 100Hz input signals over 1kHz bandwidth . . . 128

8.8 FFT plot for -60dBFs 1kHz input signals over 80kHz bandwidth . . 128

8.9 FFT plot for -1dBFs 1kHz input signals over 80kHz bandwidth . . . 129

8.10 FFT plot for -1dBFs 1kHz input signals with various substrate con-

nections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.11 Breakdown of major power consumption sources . . . . . . . . . . . 131

8.12 Interchannel isolation measurement for 1kHz full scale input signal . 132

8.13 Interchannel isolation measurement across audio signal band . . . . 133

xvi



9.1 Verilog behavioral model of first integrator, section 1: initial condi-

tions and start up . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

9.2 Verilog behavioral model of first integrator, section 2: Phase 1 and

Phase 2 operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

9.3 Verilog behavioral model of down stream integrator without zero feed-

back path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

9.4 Verilog behavioral model of down stream integrator with zero feed-

back path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

9.5 Verilog behavioral model of summation circuit . . . . . . . . . . . . 142

9.6 Verilog behavioral model of multibit quantizer, section 1: low resolu-

tion phase quantization . . . . . . . . . . . . . . . . . . . . . . . . . 143

9.7 Verilog behavioral model of multibit quantizer, section 2: high reso-

lution phase quantization . . . . . . . . . . . . . . . . . . . . . . . . 144

9.8 Verilog behavioral model of the feedback DAC, section 1: initial con-

ditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

9.9 Verilog behavioral model of the feedback DAC, section 1: feedback

operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

xvii



Chapter 1

Introduction

1.1 Motivation

The proliferation and advance of digital signal processing algorithms and circuits

have generated increasingly stringent requirements for data acquisition circuits used

in various systems ranging from industrial and medical high precision measurement

applications to professional audio recording. Figure 1.1 shows multiple major appli-

cations.

Wide dynamic range and low distortion are needed to capture an analog in-

put signal in its most original form, which, in most cases, is the most crucial step

to achieve the performance target. High precision applications such as industrial

measurement, medical diagnostics, and professional audio have continued to im-

prove their performance and efficiency due to the rapid advance and availability of

high-precision data acquisition technology as well as digital signal processing (DSP)

technologies to improve precision in the digital domain. These applications are also

rapidly migrating into USB-powered and portable devices, placing increasing strin-

gent demands on the power efficiency and performance of high precision analog to

1



Figure 1.1: “Egg” model [1] for high precision analog to digital data conversion

digital conversion design. Following is a summary of several key application areas.

1. In audio applications, noise floor needs to be exceptionally stable, free from

tones as the input level is varied, and ideally be flat throughout the audio signal

band which is from 20Hz to 20 kHz. This requirement arises mainly because

human hearing is very sensitive to the audibility of noise floor modulation and

spurious tones. Normally, 128 sound channels are needed for professional audio

applications such as recoding studios. Low cost and low power consumption

are also important to this market.

2. Sonar applications require high performance over wider bandwidth, ranging

from 40kHz to 100kHz. Power consumption has to be reduced for portable

sonar devices.

2



3. Industrial, Agriculture and Medical measurement applications have various

performance requirements. Geophysical application requires high performance

over narrow bandwidth from DC to 1 kHz across a wide temperature range.

Offset and offset drift also have to be kept low for these applications. On

the other hand, vibration detection sensors need high performance over a 100

kHz bandwidth. In order to process multiple input signals in different signal

bands simultaneously, the converter also has to maintain high linearity to avoid

interference between signal channels.

Several designs [10] [11] [12] [13] have been developed throughout the years

to address various applications. Single bit, single loop delta sigma topology was

first applied to achieve 120dB dynamic range over the audio band [12]. However, as

high precision measurement applications such as professional audio and industrial

measurement etc., enter the consumer market, there is increased demand for higher

levels of linearity and dynamic range with lower cost. However, high power con-

sumption not only makes it difficult to achieve expected performance on the circuit

board, but also increases system level cost due to package, heat sink, etc., especially

for multi-channel applications.

Achieving high performance with high levels of analog and digital circuit

integration, while maintaining low power consumption and small die area, are the

major challenges for future high precision analog to digital converter design. Multi-

bit delta sigma topology becomes popular nowadays for high performance converter

design mainly due to its ability to reduce integrator output swings, which relaxes

analog circuit design requirements and reduces power consumption. Such a benefit

becomes more critical for high performance A/D converter design. A multibit delta-

sigma topology with a large number of quantization levels also significantly lowers

3



the out-of-band quantization noise energy, which greatly relaxes the decimation fil-

ter design requirements. Since the quantizer is inside the delta-sigma loop, it can

only tolerate minimum latency. A flash type A/D converter is normally adopted

for the quantizer due to its low latency. However, each additional bit of resolution

for the quantizer doubles its power consumption and die area. The power consump-

tion increase of the quantizer quickly outweighs the benefit and power saving from

low integrator output voltage swings. A large number of comparators also inject

a substantial amount of signal dependant noise energy into the substrate, which

causes degradation of converter performance and interference between channels in

the case of multi-channel converter design. Clock jitter sensitivity [14] [15] is an-

other major concern for high performance converter design. It is important to ensure

that the converter clock jitter requirement is reasonable to achieve in a real world

environment. A switched capacitor topology is widely used for analog circuit imple-

mentation due to its better immunity to clock jitter. However, charge injection from

the switched capacitor input sampling network tends to degrade the performance of

the input anti-alias filter, which limits the achievable performance of the converter.

Although increasing the oversampling ratio decreases the sampling capacitor size,

this translates to less settling time for integrator opamp and digital switching noise,

which makes the converter sensitive to digital coupling noise.

1.2 Research Goals

Besides the performance targets, this work will also focus on die area and power

efficiency of the analog-to-digital conversion system. The main goal of this work is

to develop a system-oriented design approach to achieve the desired performance

and power dissipation specifications up to 100kHz bandwidth with 16-21 bits of

4



resolution.

The goal of this work can be further summarized as follows:

1. To develop a system-oriented power and die area efficient modulator architec-

ture which maximally relax the design requirements for analog sub blocks.

2. Study existing design trade offs for analog sub circuit blocks to take advantage

of the new power efficient architecture.

3. Study noise contributions from various sources such as thermal noise, flicker

noise and digital coupling noise to explore the power and die area efficient

approaches to suppress above noises.

4. Design a stereo converter based on the newly proposed design approach to

validate the approaches.

1.3 Thesis organization

Chapter 2 covers basic background information of analog to digital converters, which

includes key converter performance specifications, major design challenges and sys-

tem level overview of major analog to digital topologies.

Chapter 3 introduces the fundamentals of various oversampling delta sigma

design approaches. Major design trade offs and impacts of different non-idealities

will also be discussed.

Chapter 4 provides system level analysis of delta sigma modulator architec-

ture, sub circuit design trade offs and challenges for high precision data acquisition

applications. An optimal modulator architecture design criteria for base band high

precision analog to digital converters will be developed. The study will also cover

the circuit board and chip layout challenges.

5



Chapter 5 proposes an optimal modulator architecture for high precision

applications. Detailed analysis of the new modulator will be presented.

Chapter 6 studies design trade offs for analog sub blocks. The study will

be focused on approaches which take advantage of the newly proposed modulator

architecture to further improve the converter power and die area efficiency.

Chapter 7 studies circuit board and chip layout approaches.

Chapter 8 presents chip measurement results.

Chapter 9 summarizes and concludes the study. This chapter also discuss

possible future directions for this area.

6



Chapter 2

Analog to Digital Conversion

Fundamentals

Analog to digital conversion operation captures real world signals into the digital

domain to be further processed by digital signal processing circuits. The prolif-

eration of digital signal processing circuits and advance in semiconductor process

technologies make the analog to digital converter becoming the major bottleneck to

further advance the performance and power efficiency of data acquisition system to

the next level.

2.1 Nyquist’s criterion

The Nyquist’s criterion forms the foundation for analog to digital conversion. Nyquist’s

criterion [2] defines the conditions to reconstruct a uniformly sampled bandlimited

signal.

fs > 2fsig (2.1)

7



where fs refers to the sampling frequency and fsig refers to the upper input signal

frequency limit. Periodic sampling process introduces spectral replications, which is

periodically spaced by fs. The Equation 2.1 is necessary to prevent overlap of such

spectral replications. The distortion caused by the overlapping of these periodic

spectral replications is commonly referred to as aliasing. An analog anti-aliasing

filter is normally placed in front of the analog to digital converter to attenuate

signal energy above fs. Converter sampling rate is the number of times the input

signal is sampled per second.

2.2 Quantization error

Quantization error is the difference between input signal and the quantized output.

As illustrated in Figure 2.1, if we assume the input changes randomly, the input

has equal possibility of lying anywhere within the quantization step. This statistical

property suggests the quantization error is independent of input signal and can be

represented as a noise, which is also referred as quantization noise.

If we further assume the quantization step is δ, then the quantization error

has equal probability of lying anywhere in the range of +/ − ∆
2 . The mean square

value for quantization error is

e2
rms =

1
∆

∫ ∆
2

−∆
2

e2de =
∆2

12
(2.2)

The signal to noise ratio (SNR) is the ratio between power of sine wave

input and integrated noise power across the band of interest. SNR is widely used to

evaluate the performance of a analog to digital converter.

8



Figure 2.1: Analog to digital conversion

SNR = 10 log(
Psig
Pnoise

) (2.3)

For sine wave input with signal peak amplitude is defined as A, the quanti-

zation step for N bit analog to digital converter is:

∆ =
2 ·A

2N − 1
(2.4)

Insert Equation 2.4 to Equation 2.2

e2
rms =

( 2·A
2N−1

)2

12
≈

(2·A
2N )2

12
(2.5)

The signal root mean square value is:

A2
rms =

A2

2
(2.6)
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Inserting Equation 2.5 and Equation 2.6 to Equation 2.3

SNR[dB] = 10 · log10(
A2
rms

erms2
) = 10 · log10 (

3
2
· 22·N ) (2.7)

SNR[dB] = 1.76 +N · 6.02 (2.8)

Equation 2.8 indicates 6dB SNR improvement per 1 bit resolution increase.

Dynamic range measurement is widely used to evaluate the range of input

signal amplitudes for which the analog to digital converter can obtain meaningful

output. If the converter noise power is independent of the input signal magnitude,

then the dynamic range is equal to the SNR measurement. However, in most cases,

converter noise power increases with the input signal level. For most high precision

applications such as audio devices, dynamic range is normally obtained by measuring

the SNR with -60dB input signal and then adding 60dB to the measurement results.

Basically, such dynamic range measurement indicates the maximum dynamic range

that can be obtained from this device before distortion component become non

negligible.

2.3 Major Design Challenges for Analog to Digital Con-

version

2.3.1 Input sampling network design

Input sampling network normally convert a continuous time signal into a discrete

time signal at a fixed sampling rate. Ideal input sampling network samples the input

signal without adding noise or distortion. The precision of the input sampling stage
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sets up the upper limit of the achievable performance of the converter.

PMOS, NMOS or T-gate configuration is widely used as switches in the

actual circuit design. Several issues are associated with MOS switches. One problem

is for NMOS transistor, when the transistor is turned off the gate voltage reaches

Vdd − Vt, where Vdd is the circuit supply voltage and Vt is the NMOS threshold

voltage. PMOS encounters similar issues during discharging operation. Using T-gate

configuration can mitigate this issue. Another issue happens in the switches’ turning

on and off period. In this period, the transistor goes through different operational

region. For NMOS, when Vds > Vds−V t, the transistor is in the saturation region, or

the transistor enters the linear region. On the other hand, for a switched capacitor

circuit, the capacitor size is normally determined by thermal noise target while the

switch resistance is determined by the network’s speed requirement to sample the

signal without distortion. As MOS switch is fully turned on, the resistance is defined

as

RON =
1

µCox
W
L (Vgate − Vin − VTH)

(2.9)

where µ is the transistor mobility, Cox is the unity gate capacitance, W is the

channel width, L is the channel length, VTH is the threshold voltage which is different

between NMOS and PMOS switches. Large channel width or high gate voltage

is needed to lower the MOS switch resistance. The time constant of a switched

capacitor sampling network is defined as

τ = C ·RON =
CL

µCoxW (Vgate − Vin − VTH)
(2.10)

On the other hand, when a MOS switch is turned on, there is a conducting
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channel formed under the gate. Total charge within this channel is

Q = WLCox(Vgate − Vin − VTH) (2.11)

Figure 2.2: MOS switch charge injection when the switch turns off

When the switch is turned off, the charge is released from the channel and

dumped to either source and drain capacitor. The exact charge dumped on either

node depends on impedance difference between source and drain and the clock falling

time. This error is commonly referred as charge injection error [16], [19]. It is easy

to conclude from equation 2.11 that the charge injection error degrades sampling

network performance since the charge itself is input signal dependant. Second order

effect such as body effect further complicates this issue. For example, the threshold

voltage for NMOS transistor is defined as

Vth = Vth0 + γ(
√

2φb + Vbs −
√

2φb) (2.12)
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Insert equation 2.12 into equation 2.11

Q = WLCox(Vgate − Vin − Vth0 − γ(
√

2φb + Vbs −
√

2φb)) (2.13)

As the input signal varies, different amount of charge is formed under the

gate. The amount of charge dumped to source and drain nodes varies after MOS

switch are turned off.

MOS switches also couple gate clock control signal to the sampling capacitor

through gate to drain or gate to source parasitic capacitors. As shown in Figure

2.3, this error is commonly referred as clock feedthrough. The error voltage can be

expressed as

∆V = Vclk
Cgs

Cgs + Cs
(2.14)

where Vclk is the clock voltage, Vgs is parasitic capacitance between gate and source

and Vs is the sample capacitor.

2.3.2 Major noise sources

As shown in Figure 2.4, MOS switches can be modeled as resistors when they are

turned on. Resistor thermal noise spectral density is 4kTR, where k is the Boltzmann

constant. The thermal noise of the MOS switch resistance can be modeled as a serial

voltage source,VR.

Total thermal noise power of switched capacitor circuits is the low passed

result of the switch resistor thermal noise.

Vout
VR

=
1

RC + 1
(2.15)
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Figure 2.3: Clock feedthrough in switched capacitor circuit

Output spectral density is

Sout =
4kTR

4π2R2C2f2 + 1
(2.16)

where f is frequency. Equation 2.16 indicates the resistor thermal noise is low pass

filtered.

Ptotal =
∫ ∞

0

4kTR
4π2R2C2f2 + 1

df (2.17)

where Ptotal is the total integrated noise power. after apply

∫
dx

x2 + 1
= tan−1x (2.18)

Equation 2.19 becomes
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Figure 2.4: Switched capacitor thermal noise calculation

Ptotal =
kT

C
(2.19)

The total integrated noise is independent of switch resistance. The total

integrated noise can only be reduced by increasing capacitor size, which create

multiple design challenges for high precision converter design.

A MOS transistor also generates thermal noise. It can be modeled by a

current source between drain and source terminals.

I2 = 4kTγgm (2.20)

where γ varies for different process.

Another major noise source for baseband converter design is flicker noise.

Flicker noise varies on multiple factors such as doping profile, voltage over gate and

source [21], which makes it very difficult to model the flicker noise accurately. The
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noise voltage can be roughly expressed as

V 2 =
K

CoxWL
· 1
f

(2.21)

where K is the process dependent constant. Equation 2.21 suggests device area has

to be increased to reduce the noise, which results in substantial die area penalty for

high precision design.

Substrate digital noise coupling is another major noise source for single die

mixed signal design, especially for high precision design. Substrate noise generators

include switching devices, digital ground bouncing, substrate contacts bouncing

etc. They pump signal dependant current pulse into the common substrate. On

the victim side, the substrate noise current affects sensitive analog node and ground

through body effect and parasitic capacitance. Effects of switching noise on digital

circuits range from false switching to delay variations. It affects the analog circuit

through direct coupling into signal path or degrading sensitive analog signals such as

reference voltage or critical analog clock edge. [23] [24] We can observe from Figure

2.5 that digital switching noises couples to analog sensitive nodes through substrate.

Modern day mixed signal design commonly has tens of thousands digital gates switch

simultaneity to generate a large amount of noise energy into the substrate. Three

general approaches are applied to minimize the substrate noise.

1. Reduce the amount of noise injected into the substrate

2. Design circuits so that it is less sensitive to substrate coupling

3. Divert the substrate noise current away from the sensitive nodes. Guard ring

and Nwell trench Guard ring and Nwell trench are commonly utilized to pro-

tect the sensitive nodes. [25] The ring is a surface region heavily doped with
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the majority-carrier dopant and is intended to form a Faraday shield around

any sensitive devices, which need to be protected from the substrate noise. A

well thought layout floor plan diverts coupling noise current away from the

most sensitive nodes. An on/off chip bypass capacitance can also be added to

minimize the supply and ground fluctuation. Normally these methods result

in substantial die area penalty, especially for high precision design. On the

other hand, various design decisions such as circuit’s structure for reference

block in analog section or different filter algorithm for digital filters etc. have

to be decided at early stage of the design phase.

Figure 2.5: Substrate noise coupling

Several substrate noise modeling methods have been developed during the

past decade such as the finite difference mesh method and the boundary element

method. [26] [27] Although these approaches generate accurate results in theory,

it requires detailed process and layout information such as sheet resistivity and

17



doping density across substrate. In most cases, such information is only available

after the circuit design method has been established and the layout is completed.

Long computation time is needed to set up substrate coupling models to achieve

the accuracy needed for high precision design. Several critical decisions we have to

make for the design.

1. Digital algorithm/structure selection based on trade off between die area,

power consumption, reusability etc.

2. Analog topology selection based on trade off between performance, power con-

sumption, die area etc.

3. Package pin layout selection based on on-chip noise coupling, ESD, circuit

board noise immunity etc.

4. Floor plan based on noise immunity, reusability, layout time etc.

A new simple substrate noise estimation method is needed to guide the design

and layout of the high precision mixed signal design design.

2.3.3 Major Nyquist analog to digital converter topology overview

Flash ADC

Flash ADC is one of the most widely used analog to digital converters [3] [4]

[5]. Its main advantage is low latency since flash ADC is able to generate digital

output with one operation clock cycle. Low latency makes the converter suitable for

high speed applications. A typical flash ADC block diagram is shown in Figure 2.6.

Comparators are used to compare the input with various reference levels.However,

each additional bit of resolution doubles the power consumption and die area and

18



Figure 2.6: Flash ADC architecture

the topology is also very sensitive to comparator offset. The comparator offset has

to be less than half LSB for high precision design. Flash ADC is normally employed

for applications which requires 8 to 10 bit resolutions.

Pipeline ADC

In pipeline topology [3] [6] [7], each downstream ADC only needs to processes

the ”residual” voltage from the previous stage. This approach significantly reduces

the overall power consumptions. The major advantage of pipeline topology is the

comparators in its downstream stages are much less sensitive to offset. The major

resolution limitation of the pipeline topology is the gain mismatch between each

sub-ADC. Special process is normally required to achieve high resolution by this

topology. Since the input signal has to go through multiple stages, the latency is

much larger than flash ADC. A typical pipeline ADC is shown in Figure 2.7.

Pipeline ADC is able to achieve 8 to 16 bit resolution over a 125MHz to

1GHz bandwidth.

19



Figure 2.7: Pipeline ADC architecture

Successive approximate ADC (SAR ADC)

A successive approximate ADC [8] [9] is composed of only one stage, which

offers significant power consumption and die area advantages over other topologies.

A typical successive approximate ADC architecture is shown in Figure 2.8. A digital

to analog converter (DAC) is introduced to generate analog signal from its output.

This internal analog signal is subtracted from input signal to produce the ”residual”

voltage for the next operation, which is similar to that of a typical pipeline ADC.

Therefore, at least clock cycle is required for each bit of resolution, which limits

successive approximate ADC to relatively low speed applications. Since SAR ADC

avoids stage to stage mismatch, this converter can achieve over 18 bit resolution in

high quality analog process.
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Figure 2.8: SAR ADC architecture
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Chapter 3

Delta Sigma Converter

Topology Overview

As shown in the previous chapter, total quantization energy is ∆2

12 . One common

approach to relax design requirements for high precision design is to increase the

sampling frequency to much higher frequency than the Nyquist criterion, which is

twice the input signal frequency. For simplicity, we continue to assume quantization

noise is white noise.

As shown in Figure 3.1, we only have to deal with the quantization noise

left inside the signal bandwidth, which is the portion of fsig
fs
2

, where fsig is the

signal frequency and fs is the sampling frequency. Normally, each doubling of

sampling frequency improves signal to noise ratio by 3dB. Oversampling ratio (OSR)

is normally referred to as the ratio between the oversampling frequency and the

Nyquist frequency.

The oversampling delta sigma topology is introduced to further suppress the

quantization noise within the signal band. As shown in Figure 3.2, the delta sigma
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Figure 3.1: Oversampling concept

modulator is consisted of an integrator, a quantizer and a negative feedback path

formed by a Digital-to-Analog (DAC) converter. For simplicity, the quantization

noise is assumed to be white noise and the DAC is assumed to be ideal. The

modulator can be considered as a linear system under above assumptions. The signal

transfer function STF(z) and the noise transfer function NTF(z) can be derived as

NTF (z) =
H(z)

1 +H(z)
(3.1)

STF (z) =
1

1 +H(z)
(3.2)

The delta sigma modulator output is the summation of Equation 3.1 and

Equation 3.2.

Y (z) = STF (z) ·X(z) +NTF (z) ·Q(z) (3.3)

By selecting a loop filter as H(z) = 1
1−z−1 and insert it to Equation 3.1 and 3.2,

the signal transfer function and noise transfer function for L-th order modulator is
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Figure 3.2: Delta sigma modulator architecture

shown as:

NTF (z) =
H(z)

1 +H(z)
= z−L (3.4)

STF (z) =
1

1 +H(z)
= (1− z−1)L (3.5)

The L-th delta sigma modulator output is

Y (z) = X(z) · z−L +Q(z) · (1− z−1)L (3.6)

The output includes the delayed version of the input signal. The delta sigma modu-

lator suppresses quantization noise within signal band and moves the noise energy to
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higher frequency, which will be filtered out by the following digital decimation filter.

Such operation is also referred as noise shaping. Using z domain transformation

z = ej2πf , the integrated quantization energy over signal band can be calculated as

Pnoise =
∫ fsig

f−sig

∆2

12
NTF 2df ≈ ∆2

12
π2L

(2L+ 1)OSR2L+1
(3.7)

The converter dynamic range when only the quantization noise is taken into

consideration can be shown as:

DR(Q) ≈ 3
2

2L+ 1
π2L

OSR2L+1(2Nquan − 1)2 (3.8)

where Nquan is the internal quantizer resolution.

It is easy to observer from Equation 3.8 that the noise shaping of quantiza-

tion bases on multiple factors which include order of the modulator, oversampling

ratio(OSR) and the internal quantizer resolution. Even for first order modulator,

each doubling of the oversampling frequency improves the dynamic range by 9dB,

while non noise shaped oversampling topologies improve the dynamic range by only

3dB. Multiple disadvantages are associated with increasing the oversampling ratio.

First, increasing the oversampling ratio moves the quantization noise to higher fre-

quency which degrades modulator stability. Second, higher oversampling ratio also

increases power consumptions as well. On the other hand, each additional bit of

resolution for the internal quantizer also improves the dynamic range by 6dB. This

is one of the major reason multibit delta sigma topology is widely adopted recently

to achieve high performance and power efficient at the same time.
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3.1 Delta sigma loop filter topologies

Loop topology is another important factor for modulator design. Normally, a loop

filter has high gain within the band of interest to attenuate quantization noise.

Figure 3.3 shows a fifth order distributed feedback filter architecture. It places

negative feedback around each integrator. The quantization noise transfer function

is:

NTF (z) =
(z − 1)5

(z − 1)5 + a5(z − 1)4 + a4(z − 1)3 + a3(z − 1)2 + a2(z − 1) + a1
(3.9)

All zeros are placed in DC. A high pass filter such as butterworth filter can

be used to implement the poles. As shown in Equation 3.1 and 3.2, noise transfer

function and signal transfer function normally share the same poles. The signal

transfer function is a low pass filter with butterworth poles for distributed feedback

architecture, which helps to filter out out-of-band energy to improve modulator

stability.

An alternative feedforward filter topology is shown in Figure 3.4. The output

of each integrator is weighted and then summed together to feed to the input of the

internal quantizer. The noise transfer function is the same as Equation 3.9

By adding additional negative feedback around integrators, the zeros in the

noise transfer function can be moved away from DC to add additional attenuation

to in-band quantization noise. The feedforward modulator with local resonator is

shown in Figure 3.5.
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Figure 3.3: 5th order distributed feedback delta sigma modulator

Figure 3.4: Feedforward summation topology

27



Figure 3.5: Feedforward modulator with local resonate
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3.2 Cascaded delta sigma modulator

Cascaded delta sigma architecture is another approach to improve stability for high

order modulator design. As shown in Figure 3.6, quantization noise generated in

the first stage is further processed in the second stage. Outputs from each stages are

further weighted by the noise cancellation logic circuit based on the prediction of

integrator gain of previous stages. All outputs are summed in the digital domain to

cancel most quantization noises. Ideally, only the quantization noise of the last stage

is left in the final output. As an example, we consider a second order modulator to

illustrate the operation. Now, we assume first order integrator filter, H(z) = 1
1−z−1 .

Y1 = X(z) + (1− z−1)Q1 (3.10)

Y2 = −Q1 + (1− z−1)Q2 (3.11)

Y2 is further processed by noise cancellation logic, 1− z−1. The final output

is

Y = Y1+(1−z−1)Y (2) = X(z)+(1−z−1)Q1−Q1(1−z−1)+(1−z−1)2Q2 = X+(1−z−1)2Q2

(3.12)

The quantization noise from the first modulator is completely suppressed

and this architecture achieves second order noise shaping with first order modulator

in each stage. This topology can be further extended to achieve high order noise

shaping while using low order modulator in each stage to achieve excellent stability.

For multibit cascade scheme,the feedback digital to analog converter (DAC) non-
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Figure 3.6: Cascade delta sigma architecture

linearity is suppressed by the noise cancellation logic that processes the outputs of

multiple quantizer in the cascade. Also, the feedback DAC of downstream stages

doesn’t contribute thermal noise directly to the input sampling capacitors. These

facts greatly reduce the dynamic element matching (DEM) logic complexities and

overall die area required for the feedback DAC. The major shortcoming of this ap-

proach can be easily observed from this example as well. The noise cancellation is

not perfect in the actual circuit design. Part of the quantization noise from the first

stage can leak to the final output due to this effect,which may create performance

limitations for high precision design.
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3.3 Discrete and continuous time delta sigma modula-

tor design

The delta sigma modulator can be designed as a discrete time data sampling system

or as a continuous time circuit. As shown in Figure 3.7, the discrete time sigma delta

normally adopts switched capacitor integrators and the continuous time systems use

RC integrator. Since the coefficient of a switched capacitor integrator depends the

ratio of two capacitors, the integrator operation is not only more accurate but also

more insensitive to process variations. For a continuous time integrator, its coef-

ficient is associated with the resistor and capacitors. Its accuracy depends on the

absolute value of resistor and capacitors, which makes it very difficult to improve

the converter performance. On the other hand, the speed of a switched capacitor

integrator is limited by the bandwidth of its opamp while the opamp inside contin-

uous time delta sigma modulator doesn’t have to settle to full accuracy during each

clock period. Therefore, a continuous time delta sigma modulator is widely used in

low to medium performance, high speed applications.

3.4 Stability

For simplicity, the internal quantizer gain is normally assumed to be constant. How-

ever, the quantizer gain varies during operation since the output is a step function

for both the signal bit and multibit architecture. Conventional transfer function pole

analysis is not sufficient to guarantee the modulator stability. Normally, extensive

time domain simulation is also needed. [20] For high precision design, a high order

modulator is often used to suppress the quantization noise within the signal band.

It is difficult to achieve excellent stability for single loop high order architecture due
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Figure 3.7: Continuous time and discrete time delta sigma modulator
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to high level of out of band high frequency quantization noise energy. In real world

applications, a high frequency signal can leak to the converter input directly and

cause the modulator to become unstable. In general, the whole modulator has to

be reset to get out of the unstable condition. The converter is unable to process the

input signal during this reset process, which results in data loss. The new genera-

tion converter not only has to achieve excellent stability but also has to be able to

recover from unstable condition quickly to minimize the data loss.

3.5 Tones and dithers

For simplicity, we assume quantization noise as white noise so far. However, in

reality, the delta sigma quantization noise spectrum contains signal like components

which are commonly referred to as tones. Tones exist even for low level input signals,

which is problematic for applications such as audio or high precision measurement

applications. Tones are normally caused by the correlation between the input signal

and the quantization noise. Therefore, tones vary with the input signal magnitude

and frequency in most cases. One method to break such correlation is to add a

random signal directly to the input of the internal quantizer. Such random signal is

commonly referred as dither signal. Although the dither signal can break tones, it

also adds noise to the converter. The magnitude of the dither signal has to be kept

as minimum. Beside the dither signal, adopting a high order modulator or multibit

internal quantizer also significantly weakens the correlation between the input signal

and the quantization noise.
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3.6 Sub circuit design parameter analysis

3.6.1 Finite opamp DC gain

Finite opamp dc gain allows internal quantization noise leaks back to the input,

which introduces additional noise into the converter.

H(z) =
z−1

1− (1− ε)z−1
(3.13)

where ε represents the error introduced by the opamp finite DC gain. For first order

delta sigma modulator, the noise transfer function becomes

NTF =
1− (1− ε)z−1

1 + εz−1
≈ (1− z−1) + εz−1 (3.14)

The first term on the right side of Equation 3.14 is the first order noise

shaping function. The second term is the error introduced by the finite opamp DC

gain. The integrated noise over signal band is

Pnoise =
∫ fsig

f−sig

∆2

12
NTF 2df ≈ ∆2

12
(

π2L

(2L+ 1)OSR2L+1
+

ε2

OSR
) (3.15)

Compared with Equation 3.7, the second term on the right side of Equation

3.15 is the error introduced by the opamp finite DC gain. The additional noise power

is proportional to the quantization noise energy inside the loop. [17] [18] For single

loop architecture, the quantization noise leakages from down stream integrators are

suppressed by the gain of first integrator, while each stage contributes quantization

noise leakages in a cascade delta sigma modulator due to stage to stage mismatch.

For a high precision converter design, the integrator normally has to adopt high DC
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Figure 3.8: Opamp with gain boosting stages

gain opamp with gain boosting scheme, which becomes a bottleneck to lower the

die cost and power consumption of the design. A typical folded cascode opamp with

gain boosting is shown in Figure 3.8.

3.6.2 Opamp settling & Slew analysis

A typical switched capacitor first integrator is shown in Figure 3.9. Phase one and

phase two are two non overlapping clocks. Cin is the sampling capacitor and Cint

is the integration capacitor.

Phase two is normally referred to as the integration phase when the charge

from the sampling capacitor is transferred to the integration capacitor. The phase

one is normally referred as the holding phase when the integrator output voltage
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Figure 3.9: Switched capacitor first integrator
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is hold from previous clock phase. As integrator switches between these two clock

phases, the opamp has to be able to settle the glitches in both phases. The settling

requirement of the opamp is determine by the more stringent value between these

two cases. The integrator settling error can be expressed as

Vout
Vin

=
Cin
Cint

z−1

1− z−1
(1− εs) (3.16)

where εs is the settling error. In order to achieve N bit accuracy, the settling error

has to satisfy the following expression.

εs <
1

2N+1
(3.17)

The switched capacitor network can also lead to gain error. The settling

error of the switched capacitor network is

Vout
Vin

=
Cin
Cint

· z−1

1− z−1
(1− e

− Ts
Ron·Cin ) (3.18)

where Ts is the settling time period and Ron is the MOS switch resistance when the

switch is turned on.

The slew requirement is defined by the maximum integrator output voltage

step and the slew time period.

SR =
∆Vstep

∆t
=

I

Cload
(3.19)

where ∆Vstep is the maximum integrator output step, Deltat is the time period, I

is the bias current and Cload is the load capacitor, which is mostly the bottom plate

parasitic capacitor of the integration capacitor. In summary, opamp bias current

and sampling switch sizes have to be increased to improve converter performance,
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which makes it very difficult to design a high performance converter with low power

consumption and small die area.

3.6.3 Opamp noise

Opamp inside internal integrator and reference buffer etc. introduces noise into

converter. The noise sources generally consist of thermal noise and flicker noise.

For MOS transistor in strong inversion region, the input referred thermal noise

density is modeled as

v2
noise,thermal =

8kT
3gm

∆f (3.20)

The flicker noise can modeled as

v2
noise,flicker =

k

CoxWL · f
∆f (3.21)

where k and Cox are process dependant parameters. The flicker noise becomes

the dominate noise source as the signal band approaches DC. In general,modulator

quantization noise and opamp noise are independent of each other. Each noise

source can be studied separately and summed together to calculate the total noise

power.

3.6.4 Switched capacitor input sampling network design

Charge injection from the switched capacitor input sampling network tends to de-

grade the performance of the input anti-alias filter, which limits the achievable

performance of the converter. A two-phase, rough and fine topology has been re-

ported, [39]which is able to suppress the charge injection error. The circuit diagram
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Figure 3.10: Rough and fine input sampling stage

is shown in Figure 3.10.

A pre-charge opamp is introduced for each input to bring the node closely

to its final value during the rough phase. The front buffer only needs to provide

remaining charges to bring the sampling capacitor to its final value. This scheme

relaxes the requirement for the front buffer. However, since the topology requires

an additional rough phase opamp to pre-charge the sampling capacitor, the power

consumption and die area penalty increases substantially for higher performance

designs.
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3.6.5 Comparator design

Since the delta sigma modulator is a feedback system, the internal quantizer and

comparators have to generate their outputs and feedback them to the first integrator

within one clock cycle, or the delta sigma modulator stability will begin to degrade.

Therefore, the internal quantization and comparators must have very low latency.

Therefore, a high speed comparator is normally adopted for signal bit topology,

while flash ADC type quantizer is used for multibit topology. For continuous normal

operation, the internal ADC and comparators have to be memoryless from previous

clock cycles. Comparators are normally reset after each operation.

3.6.6 State of art converter topology comparison

The current analog to digital converter performance versus signal bandwidth plot is

shown in Figure 3.11.

Different converter topologies are selected for different resolution and input

signal bandwidth. Delta sigma topology is widely used for baseband high precision

applications due to its ability to relax design requirements for sub analog circuits

and fabrication process.
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Figure 3.11: Analog to Digital Converter Comparison
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Chapter 4

System Aspects of High

Precision Analog to Digital

Converter Design

High precision applications have continued to improve their performance and effi-

ciency due to the rapid advance and availability of high-precision data acquisition

technology as well as digital signal processing (DSP) technologies. These appli-

cations are also rapidly migrating into USB-powered devices and portable device,

placing increasing stringent demands on the power efficiency and performance of

high precision analog to digital conversion design. Furthermore, as the new gen-

erations of high end systems enter the consumer market, there are also increasing

demands to reduce the overall system level cost.
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4.1 System level view of switched capacitor input sam-

pling stage design

On typical modern day multi channel high precision data acquisition circuit board,

all on chip components are placed closely to each other to save circuit board space.

Adding either heat sink or fan will substantially increase the system level cost. This

trend places more stringent requirements on high precision converters to realize their

performance in such environment. A switched capacitor ADC input is measured in

this environment to further illustrate the challenges.

As discussed in the previous chapter, charge injections from the switched

capacitor input stage rattles the front opamp and introduces nonlinearity to the

signals being sampled by the converter. For lower level input signals, the front

opamp can settle the charge injection ”kick” well and introduce less nonlinearity.

As shown in Figure 4.1 (a) to (c), most nonlinearity harmonics disappears as input

signal magnitude reduces from -60dBFs to -100dBFs with on board digital signal

processing(DSP) circuits are in operational mode. However, one large harmonic

still remains in the signal band with -80dBFs input signal. The magnitude of this

harmonic remains almost the same as as input signal level decreases. As shown in

(e), this harmonic continues to exit even the converter is stopped. The harmonic only

disappears after the on board DSP is shut down. These measurement plots indicate

harmonics shown in (a) & (b) are generated from multiple sources. One first source

is from the charge injections from the switched capacitor input stage, the second

source is from the noise coupling from on board DSP circuits, the third source is

the intermodulation components of previous two sources. For multichannel design,

noise coupling also occurs on the circuit board. A commonly used anti aliasing

buffer is shown in Figure 4.2. The capacitor Ccm is added to be used as charge
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reserve to mitigate the charge injection issue. This capacitor also form a single pole

anti aliasing filter. During each sampling phase, the internal sampling capacitor

is connected to the front buffer to be charged up. The sampling capacitor and its

switches can be viewed as an equivalent resistor.

Req =
1

f · Cs
(4.1)

where Req is the equivalent resistance of the input sampling network, Cs is the sam-

pling capacitor and f is converter sampling frequency. As the oversampling ratio and

frequency are increased to suppress more quantization noise, the sampling capacitor

size is increase to lower thermal noise for high precision converter design. On the

other hand, the sampling switch size also increases to achieve targeted RC time con-

stant, which generates more charge injections during the sampling operation. This

requires the front buffer to settle large transient current at high frequency. Unfortu-

nately, most existing amplifiers are unable to provide such current, which introduces

excessive nonlinearity into the converter sampling stages. Specially designed high

performance amplifiers not only increase overall system level cost but also normally

consumes much more power. A converter input sampling stage design which relaxes

the performance requirements of the front anti alias buffer is an important step to

achieve the performance, cost and power consumption target. Although the front

anti alias filter filtered out high frequency energy in theory, high frequency energy

leaks to converter input during real world applications, especially when all discrete

components are placed closely to each other. The converter modulator has to have

excellent stability to recover from the high frequency input and to return to normal

operation.
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Figure 4.1: Switched capacitor ADC input measurement plots
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Figure 4.2: Delta sigma analog-to-digital converter anti aliasing buffer
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4.2 System level view of converter design parameters

Although it is possible to design digital filters and converter reference circuits on

a separate die to suppress internal noise coupling and to reach performance target,

it is important to design a single die high precision converter with a high degree of

integration to reduce the die and circuit board cost.

It is easy to observe from Equation 2.3 that adopting a larger input signal

magnitude improves the converter signal-to-noise ratio. However, large input signal

normally increases internal integrator output swings, which degrades modulator

stability and increases power consumptions. A single ended, single sampled switched

capacitor integrator with feedback reference path is shown in Figure 4.3.

The converter kT/C noise is defined as

kT

C
=
kT

Cin
· (1 +

Cfb
Cin

) · fsig
fs

2

(4.2)

Cin: input sampling capacitor, Cfb: feedback DAC capacitor, fs: sampling fre-

quency.

The ratio of Cfb and Cin is limited by the modulation index, MI.

MI =
Vin · Cin
Vref · Cfb

(4.3)

Vin: input signal magnitude, Vref : reference voltage magnitude

Insert Equation 4.3 into Equation 4.2

kT

C
=
kT

Cin
· (1 +

Vin
MI ∗ Vref

) · fsig
fs

2

(4.4)

Equation 4.4 indicates that, for a given input signal, a high modulation index

and large reference voltage minimizes the kT/C noise contribution from the feedback
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Figure 4.3: A single ended switched capacitor Integrator 1 and feedback path circuit
diagram
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DAC capacitors, thus reducing the input sampling capacitor size for a given design

target.

Opamp is another major contributor. The input referred opamp noise is

sampled by both the input and integration capacitor. The converter input referred

opamp noise is

N2
opin

· (Cint + Cin)2 = C2
in ·N2

nop (4.5)

N2
nop = N2

opin

(Cin + Cint)2

C2
in

(4.6)

where Nopin is the input referred opamp noise which includes both the thermal and

flicker noise. The Nnop is the converter input referred opamp noise.

The opamp noise is also limited by the switched capacitor network. Assume

the unity gain bandwidth of the switched capacitor network is fo. Bandlimited

converter input referred noise is

N2
nopbi

= N2
opin

(Cin + Cint)2

C2
in

·
∫ ∞

0

1
(1 + f

f0
)2
df (4.7)

By using

tan2 θ + 1 =
1

cos2 θ
(4.8)

N2
nopbi

≈ N2
nopfo

π

2
(4.9)

where Nnopbi
is the bandlimited converter input referred opamp noise.
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N2
nopbi

≈ N2
opin

(Cin + Cint)2

C2
in

fo
π

2
(4.10)

This noise is aliased back to signal band.

N2
nopbi

≈ N2
opin

(Cin + Cint)2

C2
in

fo
π

2
fsig
fs

2

(4.11)

N2
nopbi

≈ N2
opin

(1 +
1
Cin
Cint

)2πfofsig
fs

(4.12)

Equation 4.12 indicates that converter input referred opamp noise is attenu-

ated by the integrator 1 coefficient, Cin
Cint

. However, large integrator coefficient gen-

erally results in large output swings, which introduce distortion and increase power

consumption. Down stream integrators and their internal opamps also contribute

noise to the converter. The converter referred noise energy is attenuated by the

total gain of previous stages. Normally, noise contrition after the third integrator is

negligible.

The reference circuit also contribute thermal and flicker noise. Its converter

input referred noise can be expressed as

N2
refin

= N2
ref (

Cfb
Cin

)2 (4.13)

where Nrefin
is the converter input referred noise from reference circuit, Nref is

reference circuit noise.

Insert equation 4.3 into equation 4.13

N2
refin

= N2
ref (

Vin
MI · Vref

)2 (4.14)
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Equation 4.14 again indicates a large reference voltage and stable modulator

with large modulation index can reduce the noise contribution from the reference

path. Similar calculation can be calculated for the input referred noise from down

stream integrators to demonstrate that the down stream integrator noise energies

are attenuated by the front integrator gain. [37] For the second integrator, its noise

energy is attenuated by first integrator transfer function Cin
Cint

z−1

1−z−1 .

The input referred noise from down stream integrators are expressed as:

N2
dsin =

π2

3a2
1(OSR)3

N2
ds2 +

π4

5a2
1a

2
2(OSR)5

N2
ds3 + ·· (4.15)

where Ndsin is the input referred down stream integrator noise, Nds2 is the second

integrator noise , Nds3 is the third integrator noise, a1&a2 is the first and second

integrator gain and OSR is the oversampling ratio. As shown in equation 4.15, down

stream integrator noise are suppressed by the oversampling topology. Normally, only

the noise contribution from the second and third integrator is considered. Beside

the oversampling ratio, increasing first and second integrator gain will also help to

attenuate the noise contribution from down stream integrators.

On the other hand, the chip is placed in package and signals and power lines

are connected to package pins, front buffer and supplies through bond wires and

on board metal traces. As shown in Figure 4.4, signal dependant currents generate

signal dependant voltages which further degrade sampled input signal and converter

power supplies. For multichannel systems, since all converters share common power

supply and analog ground, signal dependent supply and ground current will cause

very serious inter-channel interference. Also shown in Figure 4.4, the layout of a

conventional single die high performance switched capacitor converter is dominated

by the large capacitor inside the first integrator and feedback digital to analog con-
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Figure 4.4: Package & layout aspect of high precision converter design

verter(DAC). Large isolation guard ring is needed to minimize the effect of digital

coupling noise. These factors become the major bottlenecks to suppress the con-

verter die cost.

Thermal effects such as transistor self heating are also able to seriously affect

the high performance converter design. Self heat generated inside the transistors

not only degrades the DC, AC performance of transistors themselves but also the

performance of nearby devices. Such a effect is illustrated in Figure 4.5.

As shown in Figure 4.5 (a), when the tail current is switched between input

pair transistors, self heat generated inside transistors introduces large threshold
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Figure 4.5: Illustration of self heating
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voltage and mobility difference between transistors. This difference introduces large

dc offset and ac performance degradation for the opamp. For converter design, this

error is strongly signal dependant, which degrades conversion linearity. Self heat

also degrades circuits performance nearby. As shown in Figure 4.5 (b), even the

current mirror doesn’t suffer from the self heating directly, self heating generated

by near by devices still introduces additional errors. Another challenge with self

heating is that it is very difficult to model the phenomena accurately since it is both

process and layout structure dependant.

In summary, from system level analysis, in order to achieve the targeted per-

formance with efficiency in real world applications, next generation high precision

modulators have to be able to handle large input signal, adopt large first and second

integrator coefficient without increasing internal integrator output swings while still

maintaining excellent stability. For the circuit level design, the converter needs to

limit the settling requirements of the front buffer and the internal opamps, generate

minimum signal dependant current, reduce the size of internal opamp, capacitors,

the isolation guard rings and limit the overall power consumption to improve per-

formance and overcome thermal effects such as self heating.
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Chapter 5

High Precision Delta Sigma

Modulator Design

5.1 High precision delta sigma topology analysis

Single bit, single loop delta sigma topology was first applied to achieve 120dB dy-

namic range over the audio band [22]. The first drawback of single-bit delta sigma

is that its modulator is prone to generate tones over the signal band for cases of

low input signals. For professional audio applications, the signal band should also

be free from tones for low level inputs. The second drawback is that it is difficult

for high order analog modulators to achieve good stability. The modulation index

is normally under 0.6 for fifth-order single loop, single bit modulators. In real world

applications, if the modulator becomes unstable during cases such as high frequency

signal energy leaks to the ADC input network, it is also hard for the analog modu-

lator to recover from such unstable conditions. In most cases, the modulator has to

be stopped and reset to recover from the unstable condition. This normally results
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data loss in real time applications. Finally, high power consumption, which is close

to one watt for a stereo audio ADC [22], becomes the bottleneck to further improve

the ADC performance and lower the system level cost. An alternative approach is

to use cascaded delta sigma modulation topology. Since the modulator is composed

of multiple low order modulators, this topology is able to achieve excellent stability.

The main limitation for this approach is that the quantization noise and tones from

the first stage, low order delta sigma loop of a multistage converter tends to leak

to the converter output due to stage-to-stage mismatch [30] [31], which makes it

difficult to avoid idle tones in the signal band. Based on analysis from previous

chapters, it is easy to conclude that achieving high performance with high levels

of analog and digital circuit integration, while maintaining low power consumption,

reducing front buffer settling requirements and small die area are the major chal-

lenges for future high precision analog to digital converter design. A multibit delta

sigma topology has been demonstrated to be suitable for modern day high-precision

analog to digital conversion design.A conventional first order multibit delta sigma

modulator is shown in Figure 5.1. The main advantage over a single-bit design is its

ability to reduce integrator output swings, which relaxes the analog circuit design

requirements and reduces power consumption. Such a benefit becomes more critical

for high performance A/D converter design. A multibit delta sigma topology with a

large number of quantization levels also significantly lowers the out-of-band quanti-

zation noise energy, which greatly relaxes the decimation filter design requirements.

Compared with continuous time topology, a switched capacitor topology is widely

used for high precision ADC design due to its relatively less sensitivity to process

variations.

The integrator transfer function of the conventional first order multibit delta
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Figure 5.1: Multibit delta sigma architecture

sigma modulator, which is shown in Figure 5.1 is z−1

1−z−1 . As shown in the second

chapter, its output can be expressed as

Y (z) = X(z) · z−1 +Qm(z) · (1− z−1) (5.1)

The internal signal X1 and Y1 can be expressed as:

X1 = (1− z−1) ·X − (1− z−1) ·Qm(z) (5.2)

Y1 = z−1 ·X − z−1 ·Qm(z) (5.3)

where Qm is the quantization noise of the multibit quantizer and X is the

input signal. Both the internal signal X1 and Y1 shows strong dependence on the

input signal. Contrary to common impression about multibit topology, integrator
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Figure 5.2: Feedforward multibit delta sigma architecture

output swing doesn’t scale down proportionally with the increase of quantization

level, which seriously diminishes the benefit of the multibit modulator structure.

As input signal energy appears in the internal nodes, it substantially increases the

settling requirements of internal opamp and introduce additional nonlinearity. Fur-

thermore, high frequency energy leaks to input node can also quickly degrade the

stability of the internal opamp and modulator.

A first order feedforward modulator architecture is shown in Figure 5.2. In

this topology, the input signal is directly fed into the quantizer, which force the

internal quantizer to track the input signal to first order throughout the operation.

The output and internal signals can be expressed as:

Y (z) = X(z) +Qm(z) · (1− z−1) (5.4)
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Figure 5.3: Second order feedforward multibit delta sigma architecture

X1 = −(1− z−1) ·Qm (5.5)

Y1 = −z−1 ·Qm (5.6)

Y2 = X(z)− z−1 ·Qm (5.7)

In this structure, there is no input signal component in the input and output

nodes of the internal opamp. This topology can be extended further to second order

architecture. A second order feedforward delta sigma modulator is shown in Figure

5.3.
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Y (z) = X(z) +Q(z) · (1− z−1)2 (5.8)

X1 = −(1− z−1)2 ·Qm (5.9)

X2 = −z−1(1− z−1)2 ·Qm (5.10)

Y2 = −a2 · z−2 ·Qm (5.11)

Y3 = X + a2z
−1 · (z−1 − a1) ·Qm (5.12)

Since integrator output swing depends mostly on quantization noise, instead

of input signal level in this approach, it not only reduces opamp settling requirements

and power consumption, but also reduces signal dependent energy generated inside

the loop, which helps to reduce inter channel interference. Another implication

for this architecture is larger input signal can be used since the internal opamp

swing depends only on quantization noise. In conventional modulator design, large

input signal appears in the internal opamp output is more likely to saturate the

circuits. So far, we assume linear model for above calculations. For actual multibit

quantizer, the signal energy cancellation at X1 is not perfect due to the variation

of the multibit quantizer gain. The signal energy leaks into the loop normally

propagates and accumulates at the last down stream integrator output which results

in the largest output swing among all integrators. Therefore, the integrator output

swings are based on both the internal quantizer resolution and the order of loop filter.
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Figure 5.4: High order feedforward delta sigma architecture

Increasing quantizer resolution decreases quantization noise energy, which reduces

integrator output swings,while increasing the order of loop filter accumulates more

signal energy to integrator output in real design due to the variation of quantizer

gain. A fifth order feedforward architecture is shown in Figure 5.4

For L-th order feedforward summation delta sigma modulator, the output

can be expressed as:
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Y (z) = (X(z)−Y (z))·( a1

1− z−1
+

a1a2

(1− z−1)2
+

a1a2a3

(1− z−1)3
+··+ a1a2 · ·aL

(1− z−1)L
)+X(z)+Qm

(5.13)

Y = X+
(1− z−1)L

1 + a1a2 · ·aL + a1(1− z−1)L−1 + a1a2(1− z−1)L−2 + · ·+a1a2 · ·aL−1(1− z−1)
Qm

(5.14)

Therefore, the noise transfer function is:

NTF =
(1− z−1)L

1 + a1a2 · ·aL + a1(1− z−1)L−1 + a1a2(1− z−1)L−2 + · ·+a1a2 · ·aL−1(1− z−1)
(5.15)

The last down stream integrator output swing SL is:

SL =
a1a2 · ·aL

1 + a1a2 · ·aL + a1(1− z−1)L−1 + a1a2(1− z−1)L−2 + · · a1a2 · ·aL−1(1− z−1)
Qm

(5.16)

As opposed to the multistage case, all feedback DAC capacitors contribute

thermal noise to the sampling capacitor and the dynamic element matching (DEM)

circuit must suppress the static nonlinearity caused by capacitor mismatch. Since

the DEM circuit is placed inside the modulator feedback loop, it is crucial to mini-

mize its latency otherwise stability will be compromised.

A single loop multibit delta-sigma architecture is selected for this design.

However, traditional single loop multibit design results in large integrator output

swings due to input signal energy leakage into the delta sigma loop. A feedforward
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architecture is adopted in this work [10] [33] [34].A conventional second order single

loop multi-path feedforward delta-sigma modulator is shown in Figure 5.5. The

signal feedforward path 1 prevents most signal energy from leaking into the delta

sigma loop, which limits output swings of all integrators. Since the quantizer gain is

not constant across input range, there are residual signal energy leaks into the delta

sigma modulator, which diminish the advantage of adopting multilevel topology. A

second input feedforward path is added to cancel the residual input signal energy

remaining inside the delta-sigma loop. However, for a high order, many-level delta-

sigma modulator, input feedforward paths for downstream integrators increases die

area, layout complexity and power consumption.

5.2 Proposed high precision delta sigma modulator ar-

chitecture

The delta-sigma analog modulator adopted in this design to meet various challenges

is shown in Figure 5.8 . It is a modified 5th order feedforward modulator with

thirty-three quantization levels. A large number of quantization levels are selected

to reduce the out-of-band quantization noise energy, which relaxes the on-chip dec-

imation filter design requirements, and to eliminate tones for low level inputs. The

signal feedforward path 1 prevents most signal energy from leaking into the delta-

sigma loop, which limits the output swings of all integrators. Residual signal energy

leaks into the modulator are mostly accumulated at the last downstream integrator

output. This suggest that there are input signal energy remains at the output of

the last integrator. The input signal is added negatively to the input of the last

integrator, which is easy to implement in a fully differential structure, to cancel the

remaining signal energy. Equation (5.13) now becomes
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Figure 5.5: Conventional feedforward delta sigma modulator
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Y = (X−Y )·( a1

1− z−1
+

a1a2

(1− z−1)2
+

a1a2a3

(1− z−1)3
+··+ a1a2 · ·aL

(1− z−1)L
)+X− bX

1− z−1
+Qm

(5.17)

The signal swing at the last integrator output is:

SL = − (1− z−1)L · bX
(1 + a1a2 · ·aL + a1(1− z−1)L−1 + · ·+a1a2 · ·aL−1(1− z−1)) · (1− z−1)

+
(1− z−1)L ·Qm

1 + a1a2 · ·aL + a1(1− z−1)L−1 + · ·+a1a2 · ·aL−1(1− z−1)

This approach limits the output swings of all integrators with minimum

increase of system and circuit level complexity. All integrator output swings and

maximum steps are shown in Table 5.1 Additional negative feedforward paths can

be added to the inputs of integrator 2 to integrator 4 to further reduce their output

swings at the expense of increasing analog circuit complexities. As this modulator

structure suppresses all integrator output swings, it helps to reduce signal dependant

energy injected into substrate and noise coupling between the analog modulator,

which improves the inter-channel isolation for this stereo converter. Finally, for

over range input signal, the modulator returns to normal operation after the over

range condition is gone without resetting the loop. This minimizes possible data

loss in real applications. Outputs of the first and last integrator during recovering

from over range input signal are shown in Figure 5.6 and Figure 5.7 The integrator

outputs are able to return to normal range after the over range signal condition is

removed.

Although increasing the oversampling ratio decreases the sampling capacitor

size, this translates to less settling time for integrator opamp and digital switching
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Figure 5.6: First integrator output during over range signal recovering process

Figure 5.7: Last integrator output during over range signal recovering process
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Figure 5.8: High precision feedforward delta sigma modulator

noise, which makes the converter sensitive to digital coupling noise. An oversam-

pling ratio of 128 is chosen for this design, which is a trade off between digital

switching noise immunity, die area and power consumption. This architecture also

helps to improve modulator stability and prevent overload for full scale input sig-

nals. Clocked at 6.144MHz, the theoretical SNR of this this analog modulator is

145dB over a 20 kHz bandwidth. The maximum modulation index exceeds 0.95 for

this design.

The fft plot of the modulator output is shown in Figure 5.9

The poles and zeros of the signal transfer function is shown in Figure 5.10
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Integrator Output Int1 Int2 Int3 Int4 Int5
Maximum Swing 0.52 0.65 0.78 0.95 0.89
Maximum step 0.32 0.25 0.19 0.15 0.11

Table 5.1: Integrator output maximum swings and steps

Figure 5.9: FFT plot of the modified feedforward delta sigma modulator
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Figure 5.10: Poles and zeros of the signal transfer function
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Figure 5.11: Poles and zeros of the noise transfer function

The poles and zeros of the noise transfer function is shown in Figure 5.11
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Chapter 6

Analog Sub-circuit Design

For single loop delta sigma modulator design, since the quantizer is inside the delta-

sigma loop, it can only tolerate minimum latency. A flash type A/D converter is

normally adopted for the quantizer due to its low latency. A conventional flash type

quantizer doubles in size for each additional bit of resolution. A large number of

comparators also inject a substantial amount of signal dependant noise energy into

the substrate, which causes degradation of converter performance and severe inter-

ference between channels in the case of multi-channel converter design. Furthermore,

having many quantization levels decreases the reference voltage step substantially,

which increases design and layout requirements of individual comparators. A large

number of comparators also create large ”kick-back” on the quantizer reference line,

which potentially introduces excessive errors. Tracking quantizers [35], which is

shown in Figure 6.1 , have been reported to deal with the issue. This topology em-

ploys additional digital to analog (DAC) circuits to generate input signal tracking

reference voltages to reduce the total number of comparators. However, this ap-

proach suffers from several major shortcomings such as requiring a separate circuit
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Figure 6.1: Input tracking multilevel quantizer scheme

to set up the initial loop operating point, DAC circuits, and potential modulator

instability due to high frequency input signal leakage, which makes it risky to apply

the design to real world applications.

The multilevel quantizer topology applied in this design is shown in Figure

6.2. The quantization levels are divided into two sections, which are coarse and fine.

The quantizer changes one quantization level in the fine section, while it changes

two quantization levels in the coarse section. In order to utilize existing dynamic

element matching (DEM) logic circuits [38], the middle quantization output bit is

interpolated by ANDing two adjacent comparator outputs in the coarse quantization

section. The multilevel quantizer output waveform is shown in Figure 6.3.

Since the multilevel quantizer is inside the loop, nonlinearity introduced by

this approach is suppressed by the delta sigma modulator. The fine quantization
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Figure 6.2: Dual phase multilevel quantizer
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Figure 6.3: Dual phase multilevel quantizer output waveform
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section, which is from level 8 to level 24, is further divided into two phases, a low

resolution phase and high resolution phase. There are four comparators in the low

resolution phase, and three reference voltage levels interleave between two adjacent

comparators. The high resolution phase consists of three comparators. During the

low resolution phase, if adjacent comparators outputs are the same, then comparison

operations between these bits are skipped and the outputs are ”interpolated” by

simple digital logic circuits. Switches S1, S2 and S3 are controlled by an XOR of

adjacent low resolution comparator outputs. For example, if the level 20 output

is low and level 16 output is high, the XOR of these two outputs is high. This

operation turns on the switches S1, S2 and S3, which steers the high resolution

comparators to detect level 17 to level 19. On the other hand, if both level 20 and

level 16 are high or low, this suggests that the input level is either higher than level

20 or lower than level 16, and quantization operations between level 17 to level 19

can be skipped.

For large input signals, the ADC output performance is dominated by non-

linearity components such as even and odd harmonics. This new scheme, which

increases quantization noise slightly for large input signals, virtually has no impact

on large input signal ADC performance. For small input signals, when nonlinearity

components such as even and odd harmonics are negligible, the fine quantization

level is applied to achieve the lowest noise floor. Although adding a large number of

coarse quantization levels reduces die area and power consumption of the new mul-

tilevel quantizer, this introduces excessive quantization noise and degrades dynamic

range for small input signal when nonlinearity harmonics are still negligible.

The low resolution phase comparators also set up the initial DC operational

points for the delta-sigma loop. Ideally, an anti-alias analog filter in front of this
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modulator filters out all high frequency signals. However, in real world applications,

there are cases where high frequency energy is leaked to the A/D converter input

that forces the quantizer to change multiple levels during one operation. The low res-

olution phase comparators are always able to track the input changes and maintain

the stability of the delta-sigma loop. This new multilevel quantizer design reduces

the number of comparators from thirty two to twelve in the low resolution phase and

three in the high resolution phase, which significantly lowers the ”kick back” on the

quantizer reference line especially for the critical high resolution quantization phase.

Furthermore, comparators in the low resolution phase only need to distinguish every

two or four quantization levels, which relax the design requirements for individual

comparators.

6.1 First Integrator and Feedback DAC Design

Flicker noise is one of the major noise source for baseband applications. Chopper

stabilization technique is able to remove 1/f noise [10] [46]. A chopper stabilized

opamp is shown in Figure 6.4.

The op-amp flicker noise is modulated once and moved up to the chopping

frequency, away from the baseband. The input signal, however, is modulated up

to the chopping frequency and then demodulated back down to baseband. There-

fore, there exists a possibility that the high frequency shaped quantization noise

could be demodulated down thus coupling additional noise into the converter sig-

nal band. Digital switching noise can also be coupled into the opamp input nodes

and mismatch among chopper switches introduce additional noise as well. Chopper

stabilization is purposely avoided for this single die, high precision design.
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Figure 6.4: Chopper stabilized opamp

6.1.1 Reference scheme design

Noise form reference path is one of the major noise source in high precision design.

One common approach is to use off chip reference circuits, which will allow the

reference chip to use high end, low noise process to achieve the performance target.

However, such scheme tends to substantially increase system level cost.

As shown in Equation 4.4, a high modulation index and large reference volt-

age minimizes the kT/C noise contribution from the feedback DAC capacitors, thus

reducing the input sampling capacitor size for a given design target. On the other

hand, passive rough and fine switched capacitor references are used to eliminate the

noise from the reference path. [10] The passive reference scheme is shown in Figure

6.5. The feedback DAC samples either the analog power supply or analog power

ground, depending on the code output from the DEM coupling logic, during the
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Figure 6.5: Passive rough and fine reference sampling scheme

rough phase. During the fine phase, the DAC is connected to an off-chip capacitor

that effectively filters out high frequency noise components. The low pass corner

frequency is set around 3 to 4Hz, and this configuration is able to achieve reasonably

good power supply rejection (in the range of 60dB at 1kHz). However, better power

supply rejection ratio is needed for the ultra high precision converter design.

An on-chip reference circuit is included in this design and a double sampled

scheme [45] is used for both the input and the reference feedback network while single

sampled scheme is used for all downstream integrators. For the input signal path, the

double sampling scheme increases the signal charge, which lead to smaller sampling

capacitor size and sampling switch size. For reference path, as shown in equation

4.4, the double sampling scheme minimizes the kT/C noise contribution from the

feedback path, thus reducing the input sampling capacitor size for a given design
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target. An on-chip reference circuit also provides better power supply rejection ratio

than sampling the power supply [10]. An off chip capacitor is used to filter out the

excessive noise in this case. A folded cascode architecture, which is similar to first

integrator opamp, is used in the reference opamp design.

A conventional double sampled scheme [36] is shown in Figure 6.6 and Figure

6.7. For 5V power supply and 2.5V common mode voltage, if the Vref+ is 4V, then

the Vref− is 1V. Total equivalent feedback voltage is 6V. Normally, reference voltages

are generated through gain stages from bandgap voltages. A conventional reference

stage is shown in Figure 6.7. The noise from the bandgap is amplified through the

gain stage to the reference signal Vref+ and Vref−. In such a scheme, two off chip

capacitors are required for each channel, which occupies large circuit board area for

multichannel applications.

In order to further increase the reference voltage range, the Vref− is connected

to analog ground in our design. The equivalent reference voltage increases to 8V. The

modified reference double sampled scheme is shown in Figure 6.8. The corresponding

reference scheme is shown in Figure 6.9. Only one buffer and one off chip capacitor

is used in this approach, which reduces the noise contribution from the reference

path and the circuit board area required for this stereo design. The off capacitor

also acts to absorb voltage glitches caused by the switching operation.

Also discussed in equation 4.4, a high modulation index helps to limit the

noise contribution from the reference path as well. A modulation index of 0.9 is

used in this design. Combined with the double sampling scheme for both the input

and reference path, a fully differential configuration is used for the design to further

suppress nonlinear errors such as clock injection, clock feed-through and digital

coupling noise.
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Figure 6.6: Switched capacitor first integrator and conventional feedback DAC cir-
cuit diagram
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Figure 6.7: Conventional dual reference voltage generation circuit diagram

6.1.2 Input sampling switch design

Combined with the double sampling scheme for both the input and reference path, a

fully differential configuration is used for the design to further suppress nonlinear er-

rors such as clock injection, clock feed-through and digital coupling noise. Reducing

the input sampling capacitor size leads to smaller sampling switches and less charge

injection. The T-gate switch configuration is applied for this design to minimize

design complexity and reduce die area. In order to maintain constant impedance

through the input signal range, PMOS needs to be larger than NMOS since PMOS’

mobility is normally smaller.

(WL )P
(WL )N

=
µN
µP

(6.1)

where µN is the mobility for NOMS and µP is the mobility for PMOS.

On the other hand, NMOS and PMOS is chosen to have equal size to cancel

81



Figure 6.8: Switched capacitor first integrator and modified feedback DAC circuit
diagram
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Figure 6.9: Single ended reference voltage generation circuit diagram
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Figure 6.10: Sampling switch resistance across the voltage range

charge injection.

WN · LN = WP · LP (6.2)

where W is the transistor width and L is transistor channel length.

A poly resistor is connected in serial with the T-gate in this design to further

improve its linearity across signal range. Equation 6.1 and 6.2 are combined with the

switched capacitor network time constant to choose the size of the switch transistor

sizes. The sampling switch resistance across the supply range is shown in Figure 6.10.

Although other alternative approaches such as front slew boosting unity gain opamp

or switching opamp are also able to further minimize the switch charge injection,

the decision is based on trade-offs between circuit performance, complexity, die area

and power consumption.
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6.1.3 Opamp analysis and design

Since the modified feedforward modulator eliminates most signal energy leakage into

the delta sigma loop and reduces integrator output swing, a class A type opamp is

adopted for Integrator I and the design still achieves the power consumption target.

The quantization noise leakage due to finite integrator opamp DC gain has potential

to seriously degrade the converter performance. On the other hand, the opamp also

has to provide large slew rate. The integrator opamp is the major contributor to

the overall converter power consumption and die area. Therefore, it is important to

accurately model the finite opamp DC gain effects. The block diagram of the first

integrator with feedback reference is shown in Figure 6.11

For ideal case when the opamp gain is infinity, the integrator output can be

expressed as

Vout =
z−1

1− z−1
(
Cin
Cint

Vin +
Cfb
Cint

Vref ) (6.3)

For cases when the opamp gain is finite,

At t=n-1:

Q1[n− 1] = Cin(Vin[n− 1]− Vx[n− 1]) (6.4)

Q2[n− 1] = Cfb(Vref [n− 1]− Vx[n− 1]) (6.5)

Q3[n− 1] = Cint(Vout[n− 1]− Vx[n− 1]) (6.6)

85



Figure 6.11: First integrator with feedback reference capacitor block diagram for
opamp finite DC gain analysis
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Vout[n− 1] = −Vx[n− 1] ·A (6.7)

At t=n:

Q1[n] = −Vx[n] · Cin (6.8)

Q2[n] = −Vx[n] · Cfb (6.9)

Q3[n] = Cint(Vout[n]− Vx[n]) (6.10)

Vx[n] = −Vout[n]
A

(6.11)

((Vout[n]−Vx[n])−(Vout[n−1]−Vx[n−1]))·Cint = CinVin[n−1]+Vx[n]Cin+CfbVref [n−1]+Vx[n]Cfb

(6.12)

Insert Equation 6.8, 6.9, 6.10 and 6.11 into Equation 6.12, assume the inte-

grator is reset during the start up sequence and transform the equation to z domain.

Vout1(1− z−1)Cint = −Vout1
A

Cin −
Vout1
A

Cfb + (CinVin + CfbVref )z−1 (6.13)

The Equation 6.14 can be rewritten as
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Figure 6.12: Simulated converter output FFT plot of 85dB opamp DC gain

Vout1 =
(CinVin + CfbVref )z−1

(1− z−1)Cint + Cin
A + Cref

A

(6.14)

For the next clock cycle

Vout2 +
Vout2
A

=
Cin
Cint

(Vx2 + Vin) +
Cfb
Cint

(Vx2 + Vref ) + Vout1 +
Vout1
A

(6.15)

Vout2 =
Cin
Cint

Vin + Cfb

Cint
Vfb + (1 + 1

A)Vout1

1 + 1
A(1 + Cin

Cint
+ Cfb

Cint
)

(6.16)

The calculation is included in the delta sigma behavioral simulation. The

converter output fft plot of 85dB opamp DC gain is shown in Figure 6.12. The

signal to noise ratio is 140dB over 20kHz audio bandwidth.
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Figure 6.13: Simulated converter output FFT plot of 75dB opamp DC gain

The converter output fft plot with 75dB opamp DC gain from Matlab simu-

lation is shown in Figure 6.13. The signal to noise ratio is 128dB over 20kHz audio

bandwidth. The internal opamp DC gain is selected around 85dB for this converter.

A class A type opamp is selected mainly due to its constant tail current,

instead of a class AB type opamp which generates a large amount of signal dependent

current inside the chip. As shown in Figure 6.14, a folded cascode, single stage

opamp with PMOS input pair is selected for the first integrator opamp. PMOS

input pair is used because of its low flicker noise and the PMOS N-well provides

isolation and shielding from analog and digital coupling noise. A cascode stage,

which is biased by bias voltage 3, is added to the input pair to provide additional

protection for the input pair. Reduced integrator output swing also relaxes design
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Figure 6.14: First integrator opamp circuit diagram

requirements for the opamp. Simulated opamp DC gain for the integrator opamp is

85dB and unity gain bandwidth is 90MHz. The performance summary of the first

integrator opamp is shown in Table 6.1.

6.1.4 Common mode feedback circuit design

For fully differential circuit, a common mode feedback circuit is normally needed to

control the common mode voltage of the integrator output. A switched capacitor

common mode feedback [48] circuit is used in this design to reduce power consump-

tion. A switched capacitor common mode feedback circuit diagram is shown in
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Figure 6.15: Switched capacitor common mode feedback circuit diagram

Integrator 1 opamp DC gain Bandwidth Phase margin Power consumption
85dB 90MHz 68 degree 65mW

Table 6.1: Integrator 1 opamp performance summary

Figure 6.15. Signal Vp, V n are the fully differential integrator output. During phase

1, capacitor C1 samples the difference between the intended common mode voltage

and bias voltage. During phase 2, electric charges from C1 is transferred to capaci-

tor C2 which also samples the integrator output to produce the middle DC point of

the output. Vcmfb is feedback to the internal opamp of the integrator to control the

common mode. All switches are kept minimum to reduce charge injection during

the operation.
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Figure 6.16: Comparator Circuit Diagram

6.2 Comparator Design

Since the quantizer is inside the delta sigma feedback loop, the comparator offsets

are largely suppressed. The new dual phase quantization scheme further relaxes the

requirements of individual comparator, especially for the comparators in the low

resolution phase.

The comparator schematic diagram is shown in Figure 6.16. A current mirror

is inserted between the input pair and the output signals to reduce ”kick back” en-

ergy from the regeneration output stage [47]. Dummy transistors are added around
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input pair, current mirror and the regeneration output stage for the three high

resolution phase comparators, which help to limit the comparator offset to under

10mV. Simulation indicates that the increase of integrator output swing from 10mV

comparator offset in this modulator is negligible. Therefore, no comparator offset

cancellation techniques are used in this design to reduce design complexity.

6.3 Summation circuit

In feedforward summation delta sigma architecture, all integrator outputs are summed

together at the summation circuit. This summation circuit should not have any

”memory” from previous operations, which means the circuit must be reset after

each summation operation. This requirement presents an unique dilemma for multi-

bit topology. Even each integrator output only changes by a small amount from one

clock cycle to another, the summation circuit still needs to provide large slew rate

since its output has to be reset to zero after each clock cycle. This internal opamp of

the summation circuit also has to drive the input of the following multibit quantizer.

The loading capacitor for multibit quantizer with a large number of comparators is

non-trivial. Summation circuit with holding capacitor has been proposed to deal

with this issue. The circuit diagram is shown in Figure 6.17

During phase 1, capacitor Cs and C1 are discharged. At the same time, the

holding capacitor CH are connected across the input and output of the opamp to

maintain the opamp output value. The holding capacitors are connected between

opamp output and common mode voltages. The new opamp output voltage is

stored on the holding capacitor after phase 2. Capacitor Cs and C1 form a switched

capacitor gain stage during phase 2. Under this scheme, the summation circuit

output changes only be small steps. The main drawback of this approach is the
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Figure 6.17: Switched capacitor summation circuit with holding capacitor
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Summation opamp DC gain Bandwidth Phase margin Power consumption
95dB 120MHz 71 degree 15mW

Table 6.2: Summation opamp performance summary

additional circuit complexity.

In our design, the dual phase multibit quantizer scheme reduces the total

number of comparator to fifteen and the modified feedforward summation modulator

substantially reduces the output swings of all integrators. The summation circuit

can be simplified and still achieve the power consumptions target. The summation

circuit is shown in Figure 6.18.

During phase 1, capacitor Cs1 to Cs5 and C1 are discharged. The input of the

following multibit quantizer is also reset. During phase 2, the circuit again operates

as a switched capacitor gain stage.

A second stage opamp is used for the summation stage. The circuit diagram

is shown in Figure 6.19. The summation opamp performance is summarized in Table

6.2.

6.4 Dynamic element matching circuit and analog clock

diagram

The mismatch among capacitors of the multibit feedback DAC (digital to analog

converter) introduces nonlinearity and tones into the converter. This is because such

errors are directly added to the input signal and not suppressed by the delta sigma

noise shaping. In this design, the capacitors are fabricated in a double poly, low

cost digital CMOS process. One possible layout scheme is shown in Figure 6.20 (a).

In this scheme, capacitors are placed close to each other to minimize gradient and

95



Figure 6.18: Multi-input switched capacitor summation circuit
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Figure 6.19: Summation circuit opamp
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Figure 6.20: Feedback DAC capacitor layout

random process mismatch. However, since there are thirty two pairs of capacitors

inside the feedback DAC, such layout scheme occupies large die area and it is very

difficult to match the parasitic capacitor introduced by the signal lines to the top

and bottom capacitor plates.

The layout scheme used in this design is shown in Figure 6.20 (b). The scheme

makes it easier to match parasitic capacitor introduced by the top and bottom plate

signal lines and occupies less die area. Furthermore, the feedback DAC itself acts

as active shielding to prevent digital noise coupling into rest of the analog blocks.

However, such layout scheme introduce large gradient mismatch, which has to be

suppressed. For low to medium resolution converter design, using special analog

process or various calibration schemes are able to remove such errors. [40] [44]

However, both approaches are not sufficient to achieve the performance target of
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Figure 6.21: Noise shaping dynamic element matching block diagram

this design.

Dynamic element matching circuits have been implemented for high precision

design. One popular topology is the data weighted averaging (DWA) [41] [42] [43].

This algorithm scrambles through the feedback capacitors to ensure each capacitor

are equally used throughout the operation. Combined with the oversampling nature

of the delta sigma modulator, this scheme moves the capacitor error out of the band

of interest. However, such periodic scrambling of the capacitor also creates tones

inside baseband.

A DEM circuit with second order noise shaping is implemented in this design

[38]. The second order DEM is needed to handle the worst-case scenario, with

potentially larger than fiver percent gradient mismatch. It also eliminates unwanted

signal dependant tones associated with the first order DEM circuit. The noise

shaping element matching block diagram is shown in Figure 6.21.

The output sv are the control bits which select individual capacitor inside

99



feedback DAC. Signal sy represents the ideal usage for each capacitor. The vector

quantizer selects capacitor with the largest sy value to minimize the difference be-

tween sy and sv. The signal se is then filtered by noise shaping function H2. In

other word, the mismatch error is noise shaped by H2. By selecting second order

noise shaping for H2 = (1 − z−1)2, second order mismatch suppression circuit is

implemented for this design. Simulation result of the modulator output with the

second order DEM and five percent gradient mismatch among feedback DAC ca-

pacitors is shown in Figure 6.22. The signal to noise ratio in this case is 135dB over

20kHz bandwidth.

6.5 Clock generator

The analog clock diagram of the dual phase quantizer with their reset phase is shown

in Figure 6.23. The low resolution quantization occurs in the middle of the integra-

tion phase. This arrangement creates a time slot to switch in the proper reference

voltage and turn on comparators for the high resolution quantization phase. This

operation also divides quantization into two phases, which effectively increases the

settling time for comparison glitches prior to the critical sampling clock edge. The

DEM starts computation after the fine quantization phase is completed.

The clock generator to produce the non-overlapping clock signals are shown

in Figure 6.24.

An external fifty percent duty cycle clock is used as the input to the clock

generator. The delay cell defines the period length of phase one and phase two. Each

clock signal is buffered to achieve roughly equal rising and falling edge across the

layout. The clock for the low resolution quantization is generated from the bottom

delay cell.
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Figure 6.22: Simulated FFT plot of the modulator output with second order DEM
and 5 % feedback DAC capacitor mismatch
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Figure 6.23: Analog clock diagram
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Figure 6.24: Non-overlapping clock generator

6.6 Decimation filter design

For a single die A/D converter design, it is also important to suppress the switching

noise of the decimation filter to achieve the ADC performance targets. However,

conventional approach requires over 120dB stopband attenuation [49] for the dec-

imation filter which generates a large amount of digital coupling noise inside the

single die chip. Such digital coupling noise can easily degrade the overall ADC per-

formance. The adoption of thirty three quantization levels for the analog modulator

reduces out-of-band quantization noise energy substantially, which helps to relax

stop band attenuation requirement for the decimation filter. An on-chip high pass

filter further processes the decimation filter output to remove the DC offset from

the analog modulator.

In a conventional multistage comb filter design, an additional circuit is needed

to compensate for the passband droop. Halfband filters are used for this design.
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Since a halfband filter is flat throughout its passband, the passband droop compen-

sation circuit is eliminated. A transposed form structure is applied to implement

the half band decimation filter to reduce memory requirements. The last two stages

of the decimation filtering and the high pass filtering are implemented by a fixed

point MAC engine. Digital circuit synthesis is optimized to achieve optimum trade

off between minimizing worst case delay and digital die area. This linear phase filter

is simulated with 100dB stopband attenuation and 0.00015dB passband ripple.

6.7 Top level verification and optimization for mixed

signal circuit design

Top level verification and optimization for mixed signal circuit design is normally

performed with transistor level simulation after most analog circuit design is com-

pleted. However, with the increase of circuit complexities, simulation time for mixed

signal circuit verification and optimization takes very long time even with the latest

high speed processor. It is not unusual for top level simulations to take over one

week, which becomes another bottleneck for high performance mixed signal design.

Verilog behavioral model is introduced for this design. Compared with Mat-

lab model, the Verilog model is established to be more closely resemble the actual

switched capacitor operation. On the other hand, eliminating SPICE simulation

blocks greatly reduces simulation time. Since the Verilog language can not pass real

values between modules, Bitstoreal and Realtobits functions are used to convert real

and digital value between each function module. Multiple decisions have to be made

before establishing such models. First, the behavioral models need to closely match

the actual analog circuit function and performance while limit the model complex-

ities. In other word, it is important to balance the performance of the model and
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its complexities to speed up the simulation. Second, the models need to be flexible

enough to track possible design changes.

The behavioral model includes the following

1. common mode voltage and offset inside the quantizer module to model the

effect of common mode voltage mismatch and quantizer offset.

2. power down and reset signals to model the analog start up sequence.

3. delays to model the analog sub circuit behaviors.

4. mismatch in feedback DAC elements to model the capacitor mismatch.

5. delays introduced by the analog & digital interface operation.

The Verilog behavioral model is also used to verify and optimize the digital

filter performance before and after the synthesis. The Verilog behavioral model

codes are shown in the attached appendix.

105



Chapter 7

Circuit Board Design and Chip

Layout

Based on the understanding of current flow paths, a resistive macro model [28] [29],

which is shown in Figure 7.1, has been established to simulate the effectiveness of

substrate coupling noise.

Although the resistive macro model requires much less computation time, it

still models nodes across substrate. Information regarding G2, which depends on

layout and design, is also only available after the layout is completed. Since larger

substrate impedance associated with longer distance in non-epi process provides

better isolation between sensitive analog section and digital circuits, non-epi process

is selected for this design. We can also make several observations from typical

modern mixed signal circuits.

1. Transistors are located on the top layer of the substrate.

2. The resistance of this transistor layer increases with transistor density.
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Figure 7.1: Substrate modeling

3. Transistor density is substantiallly different between various blocks such as

between analog section, memory cells and common digital blocks.

4. Digital blocks are normally to be the main contributor of signal dependant

substrate coupling noise.

5. Digital switching activities/power consumptions differ substantially between

each digital circuit block, normally due to operation frequency or function

difference.

A 3-D resistive macro model, which is shown in Figure 7.2, is used to study

the substrate coupling noise profile in the analog section of baseband applications.

Rt represents the top layer and Rb represents the bottom layer substrate resistor.

The resistive macro model is composed of top layer resistors, bottom layer resis-

tors and vertical resistors. Bottom and vertical resistors are process dependent.

Digital section is composed of three blocks, highly noisy, medium noisy and low
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Figure 7.2: 3D resistor macro model

noisy section. These three sections represent typical digital functions seen inside

modern digital circuits such as digital filter, memory, digital signal processing etc.

Low noisy digital section, which represents memory, is assumed highest transistor

density while analog section is assumed lowest transistor density in the simulation.

Current pulses are applied to resistor nodes to represent digital activities. Package

pin macro model is used in the simulation as well. The search flow is shown in

Figure 7.3. The first step is to establish the substrate noise model with information

available in the early design stage such as major function blocks, estimated die area

and power consumption, clock rate etc. The second step is to compare the coupling

noise profile for all possible chip and circuit board layout floor plans. The key mo-

tivation of this approach is to compare possible layout floor plans, instead of trying

to calculate and model the digital coupling noise energy itself.

The first issue is how to connect the substrate.The conventional wisdom is

to connect the substrate to digital ground. The assumption here is noise current
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Figure 7.3: Layout floor plan search flow
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should always flow to the lowest voltage potential and low impedance points which

is the digital ground nearby. The noise current should not flow into analog section.

However, analog section continues to experience sever digital coupling noise in such

arrangement which indicates the original assumption is not accurate.

By connecting the substrate to digital ground, analog section substrate cou-

pling current profile is shown in Figure 7.4, where section A represents the digital

block running on highest clock rate, section B represents the digital block running

on medium speed bloc and section C represents the low speed digital block such

as memory. Again, only the difference between these two plots is important. The

absolute value of coupling current is not irrelevant to the discussion.

Instead of steering the digital coupling current to digital ground, the digital

current penetrates deeply into the analog section. The coupling current profile also

varies substantially for different digital layout. This matches what people normally

observed from silicon measurement.

The original assumption overlooks the transistor density between analog and

digital section and among various digital blocks. As shown in Figure 7.5, due to

transistor density difference among various circuit blocks, digital coupling currents

follow low impedance path into analog section instead of flow to the digital ground

directly.

A similar plot with substrate tied to analog ground is shown in Figure 7.6

. The substrate to analog ground connection behaves like a ”current collector”.

Therefore, a current peak can be observed around the connection pin.

Compared with the case in which the substrate is tied to digital group, the

coupling current profile variation between different digital floor plan is much smaller.

The comparison yield sufficient difference between these two different substrate con-
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Figure 7.4: Analog coupling noise current profile with substrate tied to digital
ground
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Figure 7.5: Analog coupling current flow for cases of substrate tied to digital ground

nections. This approach is further apply to identify the best digital floor plan for

the high precision converter. The result is shown in Figure 7.7.

Contrary to conventional wisdom, highly noisy section A is placed closest to

analog section, which is a direct result from the proposed modeling flow. The model

also suggests tying analog ground to substrate to minimize substrate noise coupling.

Transistor density of the analog section is also normally lower than the digital section

since it usually includes redundant metal lines or empty area to protect critical

analog blocks. Placing a high energy digital block close to the analog section and

tying substrate to analog ground suppresses digital coupling noise by reducing its

settling time.Three substrate tie options are pre-arranged in the layout to validate

the new model. Option one is tying the substrate to one analog ground. Option two

is tying the substrate to two analog grounds on different locations. Option three
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Figure 7.6: Substrate coupling current flow for cases of substrate tied to analog
ground
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Figure 7.7: Converter digital floor plan and substrate connections
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is tying the substrate to digital ground. The measurement results from different

substrate connections will be shown in the next chapter.

Since the capacitor size is substantially reduced by techniques shown in pre-

vious chapters, this gives more flexility for the analog layout floor planning. The

stereo ADC is implemented in a 0.35 µm, double poly, three metal CMOS process. A

great deal of attention was given to analog floor planning, which is shown in Figure

8, to achieve compact modulator layout and adequate shielding between sensitive

analog nodes and clock lines. The clock generator and digital control circuits for

analog section are placed between two analog modulators to minimize clock skew

between the channels. The multibit quantizer and digital control circuits for the

feedback DAC are placed between the critical first integrator and digital filter cir-

cuits to act as ”active” shielding for the digital coupling noise. The layout of the

first integrator and feedback DAC are fully symmetric, and node parasitic capacitors

were carefully minimized through optimal placement of the switches and capacitors

adjacent to each integrator’s op-amp. The critical reference circuits are placed far

away from the analog clock generator and digital circuits. Sensitive nodes such as

loop summing junctions and the reference-sampling path were very carefully routed,

and shielded from interfering signal. The analog floor plan is shown in Figure 7.8.

Following are several additional descriptions of the floor plan.

1. First integrator and the input sampling network are placed close to the signal

pads to minimize the length of bond wire.

2. Reference voltage generation circuits are placed far away from the analog input

signals and the digital circuit to minimize coupling noise from the analog and

digital section.

3. Clock generation circuit is placed in the middle of the layout and next to the
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Figure 7.8: Analog section floor plan
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critical first integrator to minimize the effect from clock skew.

4. Feedback DAC is placed close to the dynamic element matching circuit(DEM)

to minimize delay.

5. Analog ground pads are inserted between the input signal and the reference

signals to minimize noise coupling.

Since fully differential structure is used in the design, the layout is carefully

matched to to suppress circuit mismatch and coupling noise. Following techniques

are used in this design.

1. Dummy devices such as dummy transistor and dummy capacitors are placed

around opamp and feedback capacitors to minimize edge effects.

2. Common centroid layout is adopted for opamp input pairs to minimize doping

and oxide gradient effects.

3. Input signal lines are shielded to minimize signal coupling to nearby analog

blocks. The shielding scheme is shown in Figure 7.9

4. Reference circuit and signal lines are shielded to minimize noise coupling from

analog and digital sections.

5. Static digital signals are placed close to analog section to shield again digital

coupling noise from pad ring and circuit board

6. The multibit quantizer is shielded to minimize its noise coupling to nearby

analog circuits

7. Wider power and ground lines are used for internal circuits to minimize the

voltage drop
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Figure 7.9: Illustration of signal shielding
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Figure 7.10: Illustration of circuit board layer allocation

8. Instead of connecting substrate contacts to local ground, substrate connections

are summed at the dedicated substrate pad

Noise coupling can seriously degrade performance on the circuit board as

well. Although it is important to prevent noise coupling on circuit board, it is

also important to design the circuit board so that it is practical for real world

applications. A four layer board is selected for this design. Two possible circuit

board layer allocation schemes are shown in Figure 7.10.

In theory, the scheme shown in Figure 7.10 (a) can best protect the design
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again noise coupling. However, it is hard to debug and requires a large number of

vias betweens layers. The allocation scheme used in this design is shown in Figure

Figure 7.10 (b). Analog signals are placed on the top layer while digital signals are

placed on both the top and bottom layer. The same power and ground layer is used

for both the analog and digital sections. The scheme is selected as a compromise

between performance, debugging process and manufacture cost.
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Chapter 8

Chip Fabrication and

Measurement Results

The chip was fabricated in a double-poly three metal 0.35µm digital CMOS process.

Transistor matching degrades for small geometry process, which introduces addi-

tional errors into conventional flicker noise suppression approaches such as chopper

stabilization. Error energy caused by the mismatches among chopping switches can

easily affect the performance of high precision converters. On the other hand, low

digital library density of a long channel, low 1/f noise analog process substantially

raises overall die area and manufacture cost.

Process selection was based on a trade off between design target, design risk

and manufacture cost. The die photo is shown in Figure 8.1. Extra analog ground

pins are placed around the input and reference signals to provide additional channel

isolation. The bandgap and clock generator are placed in the middle to minimize

performance differences between stereo channels. Static digital signals are placed

next to the analog section while dynamic digital signals are placed far away from
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analog signals. No deep N-well and small guard ring is used in this design to further

reduce cost and layout complexity. The core die area, which includes the reference

voltage circuit and decimation filter is 14.8 mm2. Total power consumption is less

than 330mW.

The total noise contribution from various analog block is shown in Figure

8.2. The total simulated noise voltage is around 3.0047µV over 20kHz bandwidth.

All measurement results were taken with a 5V analog and 2.5V digital power

supply. The test setup is shown in Figure 8.3. Audio precision generates the analog

input signal and read back the digital output signal for analysis. A single power

supply provides the supply for both the analog and digital section.

The A/D converter achieves 124dB dynamic range (A-weighted), -111dB

THD over 20kHz bandwidth. 16384-point FFT plots of -60dB and -1dBFs input

signals are shown in Figure 8.4 and Figure 8.5. As shown in Figure 8.4, no tones

are observed for -60dBFS input signal. High order harmonics shown in Figure 8.5

are believed to be caused by charge injection from the input sampling network.

1. The A-weighted dynamic range measurement of Figure 8.4 is 124dB over 20kHz

bandwidth

2. The THD+N measurement of Figure 8.5 is -110dB over 20kHz bandwidth.

3. The dynamic range measurement of Figure 8.6 is 128dB over 1kHz bandwidth.

4. The Total harmonic distortion(THD) of Figure 8.7 is -114dB over 1kHz band-

width.

5. The dynamic range measurement of Figure 8.8 is 112dB over 80kHz band-

width.
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Figure 8.1: Die photo
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Figure 8.2: Major analog noise sources
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Figure 8.3: Test set up
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Figure 8.4: FFT plot for -60dBFs 1kHz input signals over 20kHz bandwidth

Signal Bandwidth 20kHz 1kHz 80kHz
Dynamic range 124dB((A-weighted) 128dB 112dB

Distortion -110dB(THD+N) -114dB(THD) -108dB(THD+N)

Table 8.1: Performance measurement summary

6. The THD+N measurement of Figure 8.8 is -108dB over 80kHz bandwidth.

Breakdown of major power consumption sources are shown in Figure 8.11.

The performance measurement summary is shown in Table 8.1.

As shown in Figure 8.10, the worst harmonic when the substrate is connected

to digital ground is -102dB, the worst harmonic when the substrate is connected to

multiple analog ground is -108dB, and the worst harmonic when the substrate is

connected to analog ground is -117dB. The measurement results validate the sub-

strate noise model and analysis shown in previous chapter. Inter-channel isolation

for a 1kHz full scale input signal is shown in Figure 8.12 while the inter-channel

isolation across the audio signal band is shown in Figure 8.13. This stereo ADC
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Figure 8.5: FFT plot for -1dBFs 1kHz input signals over 20kHz bandwidth

Figure 8.6: FFT plot for -1dBFs 100Hz input signals over 1kHz bandwidth
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Figure 8.7: FFT plot for -1dBFs 100Hz input signals over 1kHz bandwidth

Figure 8.8: FFT plot for -60dBFs 1kHz input signals over 80kHz bandwidth
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Figure 8.9: FFT plot for -1dBFs 1kHz input signals over 80kHz bandwidth

achieves better than 130dB inter-channel across the signal band and over 140dB

channel isolation for 1kHz full scale input signal. This result indicates that, con-

trary to the common design practice which places emphasis on layout techniques

such as using large guard ring or deep N-well etc. to handle coupling noise, the

more effective and die area efficient approach is to focus on reducing signal depend

energy generated inside the chip.

Major specifications of this high precision stereo analog to digital converter

is shown in Table 8.2.
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Figure 8.10: FFT plot for -1dBFs 1kHz input signals with various substrate con-
nections
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Figure 8.11: Breakdown of major power consumption sources
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Figure 8.12: Interchannel isolation measurement for 1kHz full scale input signal

Technology 0.35µm double poly, triple metal
Core die area 14.8mm2

Analog power supply 5V
Digital power supply 2.5V
Full scale input range 2Vrms(fully differential)

Dynamic range 124dB((A-weighted) over 20kHz bandwidth
Dynamic range 128dB over 1kHz bandwidth
Dynamic range 112dB over 80kHz bandwidth
Dynamic rang 108dB over 100kHz bandwidth

Distortion -110dB(THD+N) over 20kHz bandwidth
Distortion -114dB(THD) over 1kHz bandwidth
Distortion -108dB(THD+N) over 80kHz bandwidth
Distortion -107dB(THD+N) over 100kHz bandwidth

Total Power Consumption 330mW

Table 8.2: Stereo A/D converter summary
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Figure 8.13: Interchannel isolation measurement across audio signal band

133



Chapter 9

Conclusions and future work

9.1 Conclusions

This work studied single die, high preformance, high power, die area and circuit

board area efficient multi channel analog to digital sigma delta converter design for

high precision measurement and professional audio applications. Beside achieving

targeted performance, the work also studied challenges which are critical for modern

day mixed signal design, such as reducing inter channel interference and overall

system level cost. Our research is mainly focused on system level approaches, instead

of circuit level methods, to relax requirements for the fabrication process, sub-circuit

and circuit board design etc., to improve the efficiency of the overall data acquisition

system.

The research results can be summarized as follows.

1. Our research analyzed the system level requirements for modern day high

precision multi channel data acquisition systems to develop the criteria for the

high precision data converters.
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2. Our research studied the impact of circuit nonideality to delta sigma modulator

performance, die area and power consumption. The criteria for optimal high

precision delta sigma modulator is developed.

3. Our research studied various data conversion approaches and delta sigma

topologies to design an optimal delta sigma modulator.

4. Our research studied circuit and board layout techniques for mixed signal,

high precision design.

5. Our research designed a single die, high performance, high power efficient

stereo delta sigma ADC is designed. Multiple techniques are applied in the

analog and digital circuits to suppress noise coupling within the analog modu-

lator and from digital switching activities, and to optimize performance, limit

die area and power consumption. A single loop, fifth-order, thirty-three level

delta-sigma analog modulator with positive and negative feedforward paths

is implemented. An interpolated multilevel quantizer with unevenly weighted

quantization levels replaces a conventional 5-bit flash type quantizer in this

design. Integrated with an on-chip bandgap reference circuit and decimation

filter, the ADC achieves 124dB dynamic range (A-weighted), -111dB THD

over 20kHz bandwidth, 128dB and 108dB dynamic range over 1kHz and 80kHz

bandwidth. Inter-channel isolation is 130dB across the audio signal band, and

over 140dB for a 1KHz full scale input signal. Total power consumption is less

than 330mW.

135



9.2 Possible Future Work

Improving performance and robustness, increasing system level integration while

suppressing power consumption is a common challenge for modern day mixed signal

circuit design. Our research demonstrated a system level approach to the multibit

delta sigma topology and the switched capacitor circuit design. This research can

be further extended to the following areas.

1. Apply the new approach to low voltage design.

Since the modified modulator design lower the maximum integrator output

swings to under 1V, current design can be extend to low voltage supply to

further improve power efficiency.

2. Apply the new approach to advanced digital process.

Circuit noise is suppressed in this design through various architecture level

approaches. This scheme can be apply to advanced digital process, which nor-

mally has degraded noise performance, to improve analog performance while

maintaining the high digital circuit routing density.

3. Apply the new approach to Digital to Analog converter (DAC) design

The theory can be applied to improve the performance and power efficiency

of high precision Digital to Analog (DAC) converter.

4. Improve analog performance in the mixed signal design environment

Various design and layout approaches are applied in this design to suppress

analog and digital coupling noise. Similar approaches can be applied to Digital

to Analog converter (DAC) and Codec designs.
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APPENDIX

1. Bias signal, power down and reset signals are introduced to model the circuit

start up and power down sequence. The signal p and n are used to model the

signal from the feedback DAC. Double sampled scheme is also included in the

model

2. Verilog behavioral model for the down stream integrator with and without

zero are attached

3. Verilog behavioral model for the summation which includes the feedforward

path and dither signal

4. Verilog behavioral model for the feedback DAC which includes capacitor mis-

match model
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module int1 (outn1, outp1, ibias, inn1, inp1, pdn, phi1, phi1d, phi2, phi2d , rst, 
vcm, p, n, outd_ideal,a); 
 
    output [63:0] outn1, outp1, inn1, inp1 
    input ibias, pdn, rst 
    input phi1, phi1d, phi2, phi2d 
   
    input [63:0] vcm, p, n,a  
 
    input [63:0] outd_ideal; 
 
    reg [63:0] outn1, outp1; 
 
real vind,vindx,voutd,outp1_real,outn1_real, vinfb_sc; integer 
infile; real input_real; integer outfile; real output_real; 
 
initial 
 begin 
   vind=0.0; vindx=0.0;voutd=0.0;outp1_real=0.0;outn1_real=0.0;vinfb_sc=0.0; 
 end 
 
always @(pdn or ibias) begin 
 if (pdn || ~ibias) 
  begin 
   assign outp1=64'bz, outn1=64'bz; 
  end 
 else 
  begin 
   assign outp1=$bitstoreal(vcm), outn1=$bitstoreal(vcm); 
  end 
end 
 
always @(rst) 
 begin 
  if ((pdn || ~ibias)) 
   begin 
    assign outp1=64'bz, outn1=64'bz; 
   end 
  else 
   begin 
    $display(" int1 amp powered up \n"); 
    assign outp1=$bitstoreal(vcm), outn1=$bitstoreal(vcm); 
   end 
 end 
 
 

Figure 9.1: Verilog behavioral model of first integrator, section 1: initial conditions
and start up
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always @(posedge phi1) 
 
 #10 
 begin 
  if (~rst && ibias && ~pdn) 
   begin 
    vindx =$bitstoreal(inp1)-$bitstoreal(inn1); 
    input_real=vind; 
    zdx_real=$bitstoreal(zp)-$bitstoreal(zn); 
   end 
 end 
 
 
always @(posedge phi2 ) begin 
   #5 
   Begin 
   vinfb_sc=$bitstoreal(p)-$bitstoreal(n); 
   output_real = vinfb_sc; 
 
   if (~rst && ibias && ~pdn) 
    begin 
      //double sample input 
      vind=$bitstoreal(inp1)-$bitstoreal(inn1)+vindx; 
      input_real=vind; 
 
       voutd=(vind-vinfb_sc)*($bitstoreal(a))+voutd; 
 
      outp1_real=voutd*0.5+$bitstoreal(vcm); 
      outn1_real=voutd*-0.5+$bitstoreal(vcm); 
      assign outp1=$realtobits(outp1_real); 
      assign outn1=$realtobits(outn1_real); 
    end 
 
   end 
 
end 
 
endmodule 
 

Figure 9.2: Verilog behavioral model of first integrator, section 2: Phase 1 and Phase
2 operations
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module int( inn, inp, ibias, pdn, phi1, phi1d, phi2, phi2d, rst, outn, outp,vcm,a); 
 
input ibias, pdn,rst, phi1, phi1d, phi2, phi2d; 
input [63:0] inn, inp, vcm, a;  
output [63:0] outp, outn;  
 
real inn_real, inp_real, ind_real, outd_real,outp_real, outn_real; 
 
reg [63:0] outp, outn; 
 
initial 
 begin 
  inn_real = 0.0; inp_real = 0.0; outp_real=0.0; outn_real=0.0; ind_real=0.0; 
  outp = 64'h0; outn = 64'h0; 
 end 
 
always @ (posedge phi1) 
        #15  
 begin 
         inn_real = $bitstoreal(inn); inp_real = $bitstoreal(inp); 
        end 
 
always @ ( posedge phi2 ) 
 begin 
  if(!pdn & ibias) 
   begin  
    if (!rst) 
     begin 
      ind_real=inp_real-inn_real; 
      outd_real=outd_real + $bitstoreal(a)*ind_real; 
   
      outp_real = 0.5*outd_real + $bitstoreal(vcm);  
      outn_real = -0.5*outd_real + $bitstoreal(vcm); 
      assign outp=$realtobits(outp_real); 
      assign outn=$realtobits(outn_real); 
     end 
    else 
     begin 
      outp_real = 0.0; outn_real = 0.0; 
     end 
    outp=$realtobits(outp_real); outn=$realtobits(outn_real); 
   end 
 end  
 
endmodule 
 

Figure 9.3: Verilog behavioral model of down stream integrator without zero feed-
back path
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module int( inn, inp, ibias, pdn, phi1, phi1d, phi2, phi2d, rst, zn, 
                  zp, outn, outp, vcm, a, az); 
 
input ibias, pdn, rst, phi1, phi1d, phi2, phi2d; 
input [63:0] inn, inp;  
input [63:0] zp, zn, vcm, a, az; 
output [63:0] outp, outn; reg [63:0] outp, outn; 
 
real inn_real, inp_real; zp_real, zn_real; outp_real, outn_real; ind_real, zd_real, outd_real; 
 
initial 
 begin 
  outp_real=0.0; outn_real=0.0; 
  zp_real=0.0; zn_real=0.0; inn_real=0.0; inp_real=0.0; ind_real=0.0; zd_real=0.0; 
outd_real=0.0; outp = 64'h0; outn = 64'h0; 
 end 
 
always @ (posedge phi1)  
     begin            
 inn_real = $bitstoreal(inn); 
        inp_real = $bitstoreal(inp); 
     end 
 
always @ ( posedge phi2 ) 
 begin 
  if(!pdn & ibias) 
   begin  
    if (!rst) 
     begin 
      #5 
      ind_real = inp_real - inn_real; 
      zn_real  = $bitstoreal(zn); zp_real  = $bitstoreal(zp); zd_real = zp_real -zn_real; 
      outd_real = outd_real+$bitstoreal(a)*ind_real-$bitstoreal(az)*zd_real; 
      outp_real = 0.5*outd_real + $bitstoreal(vcm);  
      outn_real = -0.5*outd_real + $bitstoreal(vcm); 
      assign outp=$realtobits(outp_real); assign outn=$realtobits(outn_real); 
     end 
    else 
     begin 
      outp_real = 0.0; outn_real = 0.0; 
     end 
    outp=$realtobits(outp_real); outn=$realtobits(outn_real); 
   end 
 end  
 
endmodule 

Figure 9.4: Verilog behavioral model of down stream integrator with zero feedback
path
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module summation (dith, dithmag buff_op, buff_on, on1, op1, on2, op2, on3, op3, on4, 
op4, on5, op5, rst, ibias, pdn, vcm, phi1d, phi2, phi2d, inp1, inn1, k1, k2, k3, k4, k5,k6); 
 
input dith; ibias; rst, pdn; phi1d, phi2, phi2d; 
input [63:0] vcm,k1,k2,k3,k4,k5,k6,dithmag; inp1,inn1; op1,op2,op3,op4,op5; 
input [63:0] on1,on2,on3,on4,on5; 
output [63:0] buff_op, buff_on; 
real op1_real, op2_real, op3_real, op4_real, op5_real; on1_real, on2_real, on3_real, 
on4_real, on5_real; inp1_real, inn1_real; buff_op_real, buff_on_real; 
real dith; sum, dithmag,k1,k2,k3,k4,k5,k6; 
reg [63:0] buff_op, buff_on; wire rst_all = rst | phi1d; 
initial 
  begin 
     inp1_real=0.0; inn1_real=0.0; op1_real=0.0; op2_real=0.0; op3_real=0.0; 
     op4_real=0.0; op4_real=0.0; on1_real=0.0; on2_real=0.0; on3_real=0.0; 
     on4_real=0.0; on4_real=0.0; sum=0.0; buff_op_real=0.0; buff_on_real=0.0; 
     buff_op=64'b0; buff_on=64'b0; 
  end 
always @ (posedge phi2)   
begin    
        #25 
        inp1_real = $bitstoreal(inp1); inn1_real = $bitstoreal(inn1); 
 op1_real = $bitstoreal(op1); op2_real = $bitstoreal(op2); 
 op3_real = $bitstoreal(op3); op4_real = $bitstoreal(op4); 
 op5_real = $bitstoreal(op5); on1_real = $bitstoreal(on1); 
      on2_real = $bitstoreal(on2); on3_real = $bitstoreal(on3);  
      on4_real = $bitstoreal(on4); on5_real = $bitstoreal(on5); 
 sum= 0.5*((op1_real - on1_real)*$bitstoreal(k1) + 
              (op2_real - on2_real)*$bitstoreal(k2) + 
              (op3_real - on3_real)*$bitstoreal(k3) + 
              (op4_real - on4_real)*$bitstoreal(k4) + 
              (op5_real - on5_real)*$bitstoreal(k5) +  
              (inp1_real - inn1_real)*$bitstoreal(k6) + dith*$bitstoreal(dithmag)); 
      buff_op=$realtobits(0.5*sum+$bitstoreal(vcm));  
      buff_on=$realtobits(-0.5*sum+$bitstoreal(vcm)); 
end 
always @ (rst_all) 
begin 
 if(rst_all == 1'b1) 
   begin 
    buff_op=(vcm); buff_on=(vcm); 
        end 
end 
 
endmodule 
 

Figure 9.5: Verilog behavioral model of summation circuit
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module quan_mbit(b, phi1d, phi2d, comp, vip, vin, ibias_comp, pdn); 
 
input phi1d, phi2d, comp, pdn; ibias_comp;  input [63:0] vip; vin; 
output [31:0] b; real vip_real, vin_real, vind; reg [31:0] b; 
 
initial 
   begin 
           vip_real=0.0; vin_real=0.0; vind=0.0; 
   end 
always @ (posedge comp) 
begin 
if(comp == 1'b1) 
  begin 
  vip_real = $bitstoreal(vip); vin_real = $bitstoreal(vin); b=32'b0; vind=vip_real-vin_real; 
   #30 
    if (vind >= 2.79) 
            b[31]=1'b1; 
    if (vind >= 2.43) 
  b[29]=1'b1; 
    if (vind >= 2.07) 
  b[27]=1'b1; 
    if (vind >= 1.71) 
            b[25]=1'b1; 
    if (vind >= 1.35) 
  b[23]=1'b1; 
 
    if (vind >= 0.63) 
  b[19]=1'b1;  
 
    if (vind  >= -0.09) 
            b[15]=1'b1; 
 
    if (vind  >= -0.81) 

 b[11]=1'b1;  
 

    if (vind >= -1.53) 
  b[7]=1'b1; 
    if (vind >= -1.89) 
  b[5]=1'b1; 
    if (vind >= -2.25) 
  b[3]=1'b1; 
    if (vind >= -2.61) 
  b[1]=1'b1; 
   end 
 
 

Figure 9.6: Verilog behavioral model of multibit quantizer, section 1: low resolution
phase quantization
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#70 
      
    if (vind >= 1.17) 
 b[22]=1'b1; 
    if (vind >= 0.99) 
 b[21]=1'b1; 
    if (vind >= 0.81) 
 b[20]=1'b1; 
 
    if (vind >= 0.45) 
 b[18]=1'b1; 
    if (vind >= 0.27) 
 b[17]=1'b1; 
    if (vind >= 0.09) 
           b[16]=1'b1;  
 
    if (vind  >= -0.27) 
           b[14]=1'b1; 
    if (vind  >= -0.45) 
           b[13]=1'b1; 
    if (vind  >= -0.63) 
           b[12]=1'b1;  
 
    if (vind >= -0.99) 
 b[10]=1'b1; 
    if (vind >= -1.17) 
 b[9]=1'b1; 
    if (vind >= -1.35) 
 b[8]=1'b1; 
 
            end 
endmodule 
 

Figure 9.7: Verilog behavioral model of multibit quantizer, section 2: high resolution
phase quantization
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module dac_mbit(p, n,  D, vcm, phi2d, phi2, phi1d,  outd_ideal); 
 
 
input phi2, phi2d, phi1d; input [63:0] vcm; input [31:0] D; 
output [63:0] p, n; outd_ideal; 
 
real mismag; 
real mis32, mis31, mis30, mis29, mis28, mis27, mis26, mis25; 
real mis24, mis23, mis22, mis21, mis20, mis19, mis18, mis17; 
real mis16, mis15, mis14, mis13, mis12, mis11, mis10, mis9; 
real mis8, mis7, mis6, mis5, mis4, mis3, mis2, mis1; 
real D32_real, D31_real, D30_real, D29_real;  
real D28_real, D27_real, D26_real, D25_real;  
real D24_real, D23_real, D22_real, D21_real;  
real D20_real, D19_real, D18_real, D17_real;  
real D16_real, D15_real, D14_real, D13_real;  
real D12_real, D11_real, D10_real, D9_real; 
real D8_real, D7_real, D6_real, D5_real;  
real D4_real, D3_real, D2_real, D1_real, D0_real; 
real outd, p_real, n_real,vcm_real; 
real level_vol;  
 
reg [63:0] p, n, outd_ideal; 
initial 
   begin 
   D31_real=0.0; D30_real=0.0; D29_real=0.0; D28_real=0.0;D27_real=0.0;D26_real=0.0; 
   D25_real=0.0; D24_real=0.0; D23_real=0.0; D22_real=0.0;D21_real=0.0; D20_real=0.0; 
   D19_real=0.0; D18_real=0.0; D17_real=0.0; D16_real=0.0;D15_real=0.0; D14_real=0.0; 
   D13_real=0.0; D12_real=0.0; D11_real=0.0; D10_real=0.0;D9_real=0.0; D8_real=0.0; 
   D7_real=0.0; D6_real=0.0; D5_real=0.0; D4_real=0.0; D3_real=0.0; D2_real=0.0; 
   D1_real=0.0; D0_real=0.0; outd=0.0; p_real=0.0; n_real=0.0;p=64'b0; n=64'b0;        
 level_vol=0.0; mismag=0.025; //mismatch in percentage 
        mis32=-1;  mis31=-1; mis30=-1;  mis29=1; mis28=1;   mis27=-1; mis26=1;  mis25=-1; 
        mis24=-1;  mis23=-1; mis22=1;  mis21=1; mis20=-1;  mis19=1; mis18=-1;  mis17=-1; 
        mis16=1;  mis15=-1; mis14=1;  mis13=1; mis12=-1;  mis11=1; mis10=-1;  mis9=1; 
        mis8=-1;    mis7=-1;  mis6=1;   mis5=1; mis4=-1;   mis3=1;  mis2=1;   mis1=-1 
end 
 
 
 
 
 
 
 
 
 

Figure 9.8: Verilog behavioral model of the feedback DAC, section 1: initial condi-
tions
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always @ (D[31] or D[30] or D[29] or D[28] or D[27] or D[26] or D[25] or D[24] or D[23] or 
D[22] or D[21] or D[20] or D[19] or D[18] or D[17] or D[16] or D[15] or D[14] or D[13] or 
D[12] or D[11] or D[10] or D[9] or D[8] or D[7] or D[6] or D[5] or D[4] or D[3] or D[2] or D[1] 
or D[0]) 
begin  
  D31_real = D[31]? 1.0 : -1.0;D30_real = D[30]? 1.0 : -1.0; D29_real = D[29]? 1.0 : -1.0;  
  D28_real = D[28]? 1.0 : -1.0; D27_real = D[27]? 1.0 : -1.0; D26_real = D[26]? 1.0 : -1.0; 
  D25_real = D[25]? 1.0 : -1.0; D24_real = D[24]? 1.0 : -1.0; D23_real = D[23]? 1.0 : -1.0; 
D22_real = D[22]? 1.0 : -1.0; D21_real = D[21]? 1.0 : -1.0; D20_real = D[20]? 1.0 : -1.0;     
D19_real = D[19]? 1.0 : -1.0; D18_real = D[18]? 1.0 : -1.0; D17_real = D[17]? 1.0 : -1.0; 
D16_real = D[16]? 1.0 : -1.0; D15_real = D[15]? 1.0 : -1.0; D14_real = D[14]? 1.0 : -1.0; 
D13_real = D[13]? 1.0 : -1.0; D12_real = D[12]? 1.0 : -1.0; D11_real = D[11]? 1.0 : -1.0;  
D10_real = D[10]? 1.0 : -1.0; D9_real =  D[9]? 1.0 : -1.0; D8_real =  D[8]? 1.0 : -1.0; 
D7_real =  D[7]? 1.0 : -1.0; D6_real =  D[6]? 1.0 : -1.0; D5_real =  D[5]? 1.0 : -1.0; 
D4_real =  D[4]? 1.0 : -1.0; D3_real =  D[3]? 1.0 : -1.0;  D2_real =  D[2]? 1.0 : -1.0; 
D1_real =  D[1]? 1.0 : -1.0;  D0_real =  D[0]? 1.0 : -1.0;  end 
always @(phi1d) 
 if ( phi1d == 1) 
 begin 
      level_vol=0.25;  #2 
 begin 
outd=level_vol*(1+mis32*mismag)*D31_real+level_vol*(1+mis31*mismag)*D30_real+level
_vol*(1+mis30*mismag)*D29_real+level_vol*(1+mis29*mismag)*D28_real+level_vol*(1+m
is28*mismag)*D27_real+level_vol*(1+mis27*mismag)*D26_real+level_vol*(1+mis26*mism
ag)*D25_real+level_vol*(1+mis25*mismag)*D24_real+level_vol*(1+mis24*mismag)*D23_r
eal+level_vol*(1+mis23*mismag)*D22_real+level_vol*(1+mis22*mismag)*D21_real+level_
vol*(1+mis21*mismag)*D20_real+level_vol*(1+mis20*mismag)*D19_real+level_vol*(1+mi
s19*mismag)*D18_real+level_vol*(1+mis18*mismag)*D17_real+level_vol*(1+mis17*mism
ag)*D16_real+level_vol*(1+mis16*mismag)*D15_real+level_vol*(1+mis15*mismag)*D14_r
eal+level_vol*(1+mis14*mismag)*D13_real+level_vol*(1+mis13*mismag)*D12_real+level_
vol*(1+mis12*mismag)*D11_real+level_vol*(1+mis11*mismag)*D10_real+level_vol*(1+mi
s10*mismag)*D9_real+level_vol*(1+mis9*mismag)*D8_real+level_vol*(1+mis8*mismag)*
D7_real+level_vol*(1+mis7*mismag)*D6_real+level_vol*(1+mis6*mismag)*D5_real+      
level_vol*(1+mis5*mismag)*D4_real+level_vol*(1+mis4*mismag)*D3_real+level_vol*(1+mi
s3*mismag)*D2_real+level_vol*(1+mis2*mismag)*D1_real+level_vol*(1+mis1*mismag)*D
0_real;       
 
p_real= 0.5*outd+$bitstoreal(vcm); n_real=-0.5*outd+$bitstoreal(vcm); 
 
p=$realtobits(p_real); n=$realtobits(n_real) 
 end 
       end 
endmodule 
 
 
 

Figure 9.9: Verilog behavioral model of the feedback DAC, section 1: feedback
operation

146



Bibliography

[1] Proposed by P. Gray at University of California, Berkeley.

[2] A. Oppenheim, R. Schafer, J. Buck, “Discrete Time Signal Processing”, Prentice-

Hall.

[3] R.J. van de Plassche, “Integrated analog-to-digital and digital-to-analog con-

verters” Kluwer Academics Publishers, 1994.

[4] X. Jiang and M.C.F. Chang, “A 1Ghz signal bandwidth 6bit CMOS ADC with

power efficient averaging,” IEEE Journal of Solid State Circuits, Vol. 40, pp.

532-535, Feburary 2005.

[5] C. Sandner et. al., “A 6bit 1.2GS/s low power flash ADC in 0.13um digital

CMOS,” IEEE Journal of Solid State Circuits, vol. 40, pp. 1499-1505, July 2005.

[6] L. Sumanen et. al., “A 10bit 200 MS/s CMOS parallel pipeline A/D converter,”

IEEE Journal of Soloid State Circuits, Vol. 36, No. 7, pp. 1048-1055, July 2003.

[7] M. Yoshioka et. al., “A 10b 125 MS/s 40mW pipleline ADC in 0.18um CMOS,”

IEEE Journal of Solid State Circuits, pp. 282-282, 2005.

[8] C. Lin et. al., “A new successive approximation Architecture of low-power low-

147



cost CMOS A/D converter,” IEEE Journal of Solid State Circuits, Vol. 38, No.

1, pp. 54-62, Janurary 2003.

[9] F. Kuttner, “A 1.2V 10b 20MS/S non-binary succesive approximatation ADC in

0.13um CMOS,” IEEE International Solid State Circuit Conference, pp. 176-177,

2002.

[10] Y. Yang et. al., “A 114dB 68mW chopper stabilized stereo multibit audio A/D

converter in 5.62 mm2,” pp. 56, IEEE International Solid State Circuit Conferenc,

2003.

[11] I. Fujimori, K. Koyama, D. Trager, F. Tam, and L. Longo, “A 5V single-chip

Delta-Sigma audio A/D converter with 111 dB dynamic range,” Proc. 1996 IEEE

Custom Integrated Circuits Conference, pp. 415-418, May 1996.

[12] Ka Y. Leung, Eric J. Swanson, Kafai Leung, Sarah S. Zhu, “A 5V 118dB delta

sigma Analog-to-Digital Converter for Wideband Digital Audio,” IEEE Interna-

tional Solid State Circuit Conference, pp. 218-219, 1997.

[13] R. W. Adams, “Design and implementation of an audio 18-bit analog-to-digital

converter using oversampling techniques,” Journal of Audio Engeering Society,

Vol. 34, pp.163-166, March 1986.

[14] S. Luschas, and H.-S. Lee, “High Speed Modulators With Reduced Timing

Jitter Sensitivity,“ IEEE Transactions on Circuits and Systems II: Analog and

Digital Signal Processing. pp. 712-720, November 2002.

[15] V. Zeijl, V. Veldhoven, Nuijten,“Sigma Delta ADC Clock Jitter in Digitally Im-

plemented Receiver Architectures,“ 9th European Conference on Wireless Tech-

nology, pp. 16-18, September 2006.

148



[16] B.J.Sheu, C.Hu, “Switch-Induced Error Voltage on a Switched Capacitor,”

IEEE Journal of Solid State Circuits, Vol. SC-19, pp. 519-525, April 1984.

[17] S.R. Adarlan and J.J. Paulos, “An Analysis of Nonlinear Behaviour in Sigma

Delta Modulators,“ IEEE Transactions on Circuits and Systems, Vol. 34, pp.

593-603, June 1987.

[18] R.W. Adams, “Design and Implementation of an Audio 18bit Analog-to-Digital

Converter Using Oversampling Techniques,“ Journal of Audio Engnieering Soci-

ety, Vol. 34, pp. 153-166, March 1986.

[19] R.Gregorian and G.C.Temes, Analog MOS Integrated Circuits for Signal Pro-

cessing, New York: John Wiley and Sons. 1986.

[20] R.T. Baird and T.S. Fiez, “Stability Analysis of High order Delta Sigma Mod-

ulation for ADC’s,“ IEEE Trans. on Circuits and Systems, II, Vol. 41, pp. 59-62,

January 1994.

[21] Y.Tsividis, Operation and Modeling of the MOS transistor, Second Edition,

Boston:McGraw-Hill, 1999.

[22] K. Leung, S. Zhu, E. Swanson, “A 120dB Dynamic Range 96kHz Stereo 24 Bit

Analog to Digital Converter,“ Audio Engineering Society, pp. 4443, March 1997.

[23] SICARD et. al., “Analysis of crosstalk interference in CMOS integrated cir-

cuits,“ IEEE Transactions on Electomagnetic Compatibility, Vol. 34, pp. 124-129,

May 1992.

[24] X. Aragones et. al., “Analysis and modeling of parasitic substrate coupling in

CMOS circuits,“ IEEE Proceedings of Circuits Devices System. Vol. 142, No. 5,

pp. 307-312, October 1995.

149



[25] F. Moll et. al., “Spurious signals in Digital CMOS VLSI circuits: A propagation

analysis,“ IEEE Transactions Circuits and Systems II, vol. 39, No. 10, pp. 749-752,

October 1992.

[26] N. K. Verghese and D. J. Allstot, “Rapid Simulation of Substrate Coupling Ef-

fects Mixed-Mode ICs,“ IEEE Custom Integrated Circuits Conference, pp. 18.3.1-

18.3.4, 1993.

[27] Ali M. Niknejad et. al., “Numerically Stable Green Function for Modeling and

Analysis of Substrate Coupling in Integrated Circuits,“ IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, Vol. 17, No.4, pp.

305-315, April 1998.

[28] N. K. Verghese et. al., “Fast Parasitic Extraction for Substrate Coupling in

Mixed-Signal ICs,“ IEEE Custom Integrated Circuits Conference, pp. 721-724,

1995.

[29] A. Samavedam et. al., “A Scalable Substrate Noise Coupling Model for Mixed-

Signal ICs,“ IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, pp. 128-131, 1999.

[30] I. Fujimori et. al., “A 5V single-chip Delta-Sigma audio A/D converter with 111

dB dynamic range,“ IEEE Custom Integrated Circuits Conference, pp. 252-255,

May 1996.

[31] I. Fujimori et. al., “A 90-dB SNR 2.5-MHz output rate ADC using cascaded

multibit delta sigma modulation 8x oversampling ratio,“ IEEE International Solid

State Circuit Conferenc, pp. 338-339, 2000.

150



[32] B.E. Boser and B.A. Wooley, “The design of sigma delta modulation analog-to-

digital converters,” IEEE Journal of Solid State Circuits, Vol 23, pp. 1298-1308,

December 1988.

[33] A.A. Hamoui and W. Martin, “High order multibit modulators and pseudo

data-weighted-averaging in low oversampling ADCs for broadband applications,”

IEEE Transactions Circuits System. I, Regular Papers, Vol. 51, no. 1, pp. 72-85,

January 2004.

[34] K. Nam, S.M. Lee, D.K.Su and B. A. Wooley, “A low-voltage low power sigma-

delta modulator for broadband analog-to-digital conversion,” IEEE Journal Solid

State Circuits, Vol. 40, No. 9, pp. 1855-1864, September 2005.

[35] L. Dorrer, F. Kuttner, P. Greco, P. Torta and T. Hartig, “3mW, 74dB SNR

2MHz Continuous time Delta-Sigma ADC with a tracking ADC Quantizer in

0.13um CMOS”, IEEE Journal of Solid State Circuits, Vol. 40, No. 12, pp. 2416-

2427, December. 2005.

[36] P.J. Hurst et. al., “Double sampling in SC delta sigma A/D converters”, ISCAS,

pp. 902-905, May 1990.

[37] M.Gustavsson, J.Wikner,N.Tan. CMOS data converters for communicatinos,

Kluwer Academic Publisers, 2000.

[38] S.R. Norsworthy, R. Schreier and G.C. Temes, “Delta-Sigma Data Converters,

Theory Design and Simulation,“ IEEE press, pp.262, 1997.

[39] A. Prasad, A. Chokhawala, K. Thompson, J. Melanson, “A 120dB 300mW

Stereo Audio A/D Converter with 110dB THD+N,“ ESSCIRC 2004.

151



[40] I.E. Opris, L.D.Lewicki, and B.C. Wong, “A single-ended 12bit 20 Msample/s

self calibrating pipeline A/D converter,“ IEEE Journal of Solid State Circuits,

Vol. 33, pp. 1898-1903, December 1998.

[41] R.T. Baird and T.S. Fiez, “Improved ∆
∑

DAC linearity using data weighted

averaging,” IEEE Internatinal Symposium on Circuits and Systems, pp. 13-16,

1995.

[42] O. Nys and R.K. Henderson, “A 19bit low power multibit sigma delta ADC

based on data weighted averaging,“ IEEE Journal of Solid State Cirucuits, Vol.

32, No. 7, pp. 933-942, July 1997.

[43] J. Welz, I. Galton, and E. Fogleman, “Simplified logic for first order and second

order mismatch shaping digital to analog converters,“ IEEE Transactions Circuits

and System II, Vol. 48, pp. 1014-1026, November 2001.

[44] Y. Chiu, P.R.Gray, and B. Nikolic, “A 14b 12MS/s CMOS Pipeline ADC with

over 100dB SFDR,” IEEE Journal of Solid State Circuits, Vol. 39. pp. 2139-2151,

December 2004.

[45] T. V. Burmas, S. H. Lewis, P. J. Hurst and K. C. Dyer, “A second order double

sampled delta sigma modulator,” IEEE ustom Integrated Circuits Conference, pp.

195-198, 1995.

[46] C.B. Wang, “A 20bit 25kHz delta sigma A/D converter utilizing a frequency

shaped chopper stabilization scheme,” IEEE Journal of Solid State Circuits, Vol.

36, No. 3, pp. 566-569, March 2001.

[47] G. M. Yin, F.Op’t Eynde, and W. Sanden, “A high-speed CMOS comparator

152



with 8-b resolution,” IEEE Journal of Solid State Circuits, vol. 27, pp. 208-211,

February 1992.

[48] D. Senderowicz, S.F. Dreyer, J.H. Huggins, C. F. Rahim and C.A. Laber, “A

Family of differential NMOS Analog Circuits for a PCM codec filter chip,“ IEEE

Journal of Solid State Vol. SC-17, No. 6, pp. 1014-1023, December 1982.

[49] AKM5394 data sheet, Asahi Kasei Microelectronics, Inc., Tokyo, Japan.

153



Vita

YuQing Yang was born in ShangHai, China. He received the B.S. and M.S. degree in

electrical engineering from Waseda University, Tokyo, Japan in 1995, and University

of Minnesota, Minneapolis, in 1997 respectively.

From 1997 to 1999, he was a design engineer at RocketChips Inc. prior to its

acquisition by Xilinx Inc, where he involved in Gigabit CMOS Ethernet transceiver

design. He joined Crystal Semiconductor division of Cirrus Logic, Austin, TX in

1999, where he involved in the research and development of high performance audio

ADC, DAC, video encoder and decoder. After joined Texas Instruments, Inc. in

2003, he has been engaged in the research and development of high precision analog

& mixed signal circuit design, high precision & low power data converter design and

PWM/Class D amplifier design. He also authored or co-authored numerous journal

and conference papers and has been granted five US patents and one European

patent.

Permanent Address: 7312 Swanson Drive, Plano, Texas 75025

154



This dissertation was typeset with LATEX 2ε1 by the author.

1LATEX2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of
the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin, and extended
by Bert Kay, James A. Bednar, and Ayman El-Khashab.

155


