Copyright
by
Rezaul Alam Chowdhury

2007

The Dissertation Committee for Rezaul Alam Chowdhury

certifies that this is the approved version of the following dissertation:

Algorithms and Data Structures for Cache-efficient
Computation: Theory and Experimental Evaluation

Committee:

Vijaya Ramachandran, Supervisor

Matteo Frigo

Adam Klivans

Keshav Pingali

Greg Plaxton

Tandy Warnow

Algorithms and Data Structures for Cache-efficient
Computation: Theory and Experimental Evaluation
by

Rezaul Alam Chowdhury, B.Sc.

Dissertation
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2007

For
My parents
(Azam Chowdhury & Sajeda Kohinoor)
and
My sisters
(Tanzina Chowdhury & Tasnuva Chowdhury)

Acknowledgments

First and foremost, I would like to thank my advisor Vijaya Ramachandran. This
thesis would not have been possible without her active support, guidance and en-
couragement.

I would like to express my thanks to the members of my dissertation com-
mittee for their valuable comments and suggestions, and also for making my defence
a stress-free experience. Special thanks to Matteo Frigo and Keshav Pingali for
many useful discussions. [wish to thank Lingling Tong, Hai-Son Le, David Lan
Roche and Mo Chen for helping me with my experiments while they worked on their
undergraduate honors theses at UT.

I thank the Department of Computer Sciences at UT Austin for supporting
me with an MCD graduate fellowship. Thanks also go to NSF as my research was
also supported by NSF Grants CCR-9988160 and CCF-0514876, and NSF CISE
Research Infrastructure Grant EIA-03036009.

I am indebted to my undergraduate advisor Mohammad Kaykobad. He
guided me into the world of research. He believed in me even when I did not believe
in myself. The time I spent with him and Suman Nath during my undergraduate
years is among the most precious in my life. I cannot thank them enough.

I do not know how to express my gratitude to my parents and my sisters.
They had to go through a very difficult time during my absence. Still their support

for me has been unconditional and unwavering. They always cared for me, and

never complained when I failed to take care of them. I am also indebted to my
grandmother, uncle, aunts and my cousins for always being there for me. I could
not have completed my Ph.D. without their active support.

I must also thank my former roommate Uttiya Chowdhury. He was no less
than an elder brother to me. In times of need I could always rely on him (and still
can). I also thank Qumrul Ahsan and my friend Peter Djeu for extending their
helping hands whenever I needed one. Thanks to my officemate Thomas Wahl for
many interesting discussions.

Finally, I would like to express my gratitude to a friend who lived so far away,
and yet cared so much! This caring and sharing helped me get through some of the

most difficult times of my life, and kept me sane enough to earn this Ph.D.!

REzAUL ALAM CHOWDHURY

The University of Texas at Austin
August 2007

vi

Algorithms and Data Structures for Cache-efficient

Computation: Theory and Experimental Evaluation

Publication No.

Rezaul Alam Chowdhury, Ph.D.
The University of Texas at Austin, 2007

Supervisor: Vijaya Ramachandran

The ideal-cache model is an abstraction of the memory hierarchy in modern comput-
ers which facilitates the design of algorithms that can use the caches (i.e., memory
levels) in the hierarchy efficiently without using the knowledge of cache parameters.
In addition to possibly running faster than traditional flat-memory algorithms due to
reduced cache-misses, these cache-oblivious algorithms are also system-independent
and thus more portable than cache-aware algorithms. These algorithms are useful
both in applications that work on massive datasets and in applications that run on
small-memory systems such as handheld devices.

The major contribution of this dissertation is a number of new cache-efficient

and cache-oblivious algorithms and data structures for problems in three different

vil

domains: graph algorithms, problems in the Gaussian Elimination Paradigm (GEP),
and problems with dynamic programming algorithms. Among graph problems we
concentrate on shortest path computation, and for the computation-intensive prob-
lems in the latter two domains we also present efficient parallelizations of our cache-
oblivious algorithms for distributed and shared caches. We perform extensive ex-
perimental study of most of our algorithms, and compare them with best known
existing algorithms and software.

In the area of graph algorithms and data structures, we introduce the first
efficient cache-oblivious priority queue supporting Decrease-Key operations, and use
it to obtain the first non-trivial cache-oblivious single-source shortest path algorithms
for both directed and undirected graphs with general non-negative edge-weights.
Our experimental results show that shortest path computation using a light-weight
version of this new priority queue is faster than using highly optimized traditional
priority queues even when the computation is in-core. We also present several new
cache-efficient exact and approximate all-pairs shortest path algorithms for both
weighted and unweighted undirected graphs.

The Gaussian Elimination Paradigm (GEP) includes many important practi-
cal problems with constructs similar to that in Gaussian elimination without pivot-
ing, e.g., Floyd-Warshall’s all-pairs shortest path, LU decomposition without pivot-
ing, matrix multiplication, etc. We present a general cache-oblivious framework for
cache-efficient sequential and parallel solution of any problem in GEP. Our exper-
imental results comparing our cache-oblivious algorithms with industrial-strength
cache-aware BLAS (i.e., Basic Linear Algebra Subprogram) code suggest that our
GEP framework offers an attractive trade-off between efficiency and portability.

In the domain of dynamic programs, we present efficient cache-oblivious se-
quential and parallel algorithms for a number of important dynamic programs in

bioinformatics including optimal pairwise sequence alignment, median of three se-

viii

quences, and RNA secondary structure prediction with and without (simple) pseudo-
knots. All our algorithms improve significantly over the cache complexity of earlier
algorithms, and either match or improve over their space complexity. We empiri-
cally compare most of our algorithms with the best publicly available code written
by others, and our experimental results indicate that our algorithms run faster than

these software.

ix

Contents

Acknowledgments
Abstract

List of Tables
List of Figures

Chapter 1 Introduction

1.1 The Two-level I/O Model
1.2 The Ideal-cache Model & Cache-oblivious Algorithms
1.3 Scope of the Dissertation and Our Contributions
1.3.1 Cache-efficient Graph Algorithms & Data Structures
1.3.2 The Cache-oblivious Gaussian Elimination Paradigm
1.3.3 Cache-oblivious Dynamic Programming

1.4 Organization of the Dissertation

Chapter 2 Background

2.1 Cache-efficient Graph Algorithms and Data Structures
2.1.1 Basic Notations & Definitions
2.1.2 Known Results
2.1.3 Key Issues in Cache-efficient Shortest Path Computation . . .

2.2 The Cache-oblivious Gaussian Elimination Paradigm
221 Known Results

2.3 Cache-oblivious Dynamic Programming
2.3.1 Known Results,

vii

XV

xXVvi

© g ot ot W N =

10

232 Keylssues.
2.3.3 Caches on Parallel Machines

Chapter 3 Cache-oblivious Buffer Heap and its Applications

3.1

3.2
3.3

3.4

3.5

Introduction
3.1.1 Cache-aware Shortest Path Algorithms
3.1.2 Cache-oblivious Shortest Path Algorithms
313 OurResults
3.1.4 Organization of the Chapter
Slim Data Structures
The Buffer Heap,
3.3.1 Structure
3.32 Layout
3.3.3 Operations
Buffer Heap Applications
3.4.1 Cache-oblivious Undirected SSSP
3.4.2 Cache-oblivious Directed SSSP
3.4.3 Cache-aware Undirected APSP

Conclusion s

Chapter 4 Experiments: Priority Queues for SSSP Computation

4.1

4.2

4.3
4.4
4.5

Introduction
4.1.1 Summary of Experimental Results
4.1.2 Organization of the Chapter
Overview of Priority Queues
4.2.1 Internal-Memory Priority Queues

4.2.2 Cache-aware Priority Queues

4.2.3 Cache-oblivious Buffer Heap and Auxiliary Buffer Heap

Choice of Algorithms for the SSSP problem
Experimental Set-up oo
Experimental Results,
4.5.1 In-Core Results for Gy, oo
4.5.2 In-Core Results for Power-Law Graphs
4.5.3 Out-of-Core Results for G,yo

X1

20
21
21
22
23
24
25
26
27
28
28
42
43
43
46
48

4.5.4 Performance on Real-World Graphs 70

Chapter 5 Cache-efficient Unweighted and Bounded-weight APSP 73

5.1

5.2

5.3

5.4

5.5

Introduction 74
5.1.1 Cache-aware APSP Algorithms 74
5.1.2 Cache-oblivious APSP Algorithms 75
51.3 OurResults 75
5.1.4 Organization of the Chapter 77
Cache-oblivious APSP and Diameter for Unweighted Undirected Graphs 77
5.2.1 Munagala and Ranade’s Cache-oblivious BFS Algorithm . . . 77
5.2.2 Cache-oblivious APSP for Unweighted Undirected Graphs . . 78

5.2.3 Cache-oblivious Unweighted Diameter for Undirected Graphs 81
Cache-aware Approximate APSP for Unweighted Undirected Graphs 81

5.3.1 Dor et al.’s Approximate AP-BFS for Flat-Memory Model . . 82
5.3.2 Our Cache-efficient Algorithm 82
5.3.3 Cache-efficient Graph Decomposition 83
5.3.4 Replacing SSSP with BFS for Cache-efficiency 87
5.3.5 Cache-efficient Approximate AP-BFS. 90
Cache-aware APSP for Bounded-weight Undirected Graphs 96
5.4.1 Meyer & Zeh’s Bounded-weight Undirected SSSP Algorithm . 96
5.4.2 Our Bounded-weight Undirected APSP Algorithm 97
5.4.3 An Improved Algorithm 99
Conclusion e 100

Chapter 6 The Cache-oblivious Gaussian Elimination Paradigm 102

6.1

6.2

Introduction 103
6.1.1 The Gaussian Elimination Paradigm (GEP) 104
6.1.2 Related Work 106
6.1.3 Organization of the Chapter 106
I-GEP: In-place Cache-oblivious Solution to Some GEP Instances . . 107
6.2.1 Propertiesof -GEP 108
6.2.2 Cache Complexity 113
6.2.3 Time and Space Complexities 115
6.2.4 Static Pruning of -GEPo 115

xil

6.3

6.4

6.5

6.6
6.7

6.8

Applications of Cache-oblivious I-GEP 117
6.3.1 Gaussian Elimination without Pivoting 118
6.3.2 Matrix Multiplication 120
6.3.3 Path Computations Over a Closed Semiring 120
C-GEP: Extension of [-GEP to Full Generality 122
6.4.1 A Closer Look at -GEP 122
6.4.2 C-GEP using 4n? Additional Space 123
6.4.3 Reducing the Additional Space 127
Parallel I-GEP and C-GEP 128
6.5.1 Cache Complexity 130
Cache-oblivious GEP and Compiler Optimization 133
An Additional Application of Cache-oblivious I-GEP 135
6.7.1 Simple Dynamic Programs 135
Conclusion e 140

Chapter 7 Experimental Results: Gaussian Elimination Paradigm 142

7.1

7.2
7.3

7.4

Introduction 142
7.1.1 Organization of the Chapter 143
Experimental Setup Lo 143
Experimental Results 144
7.3.1 GEP, I-GEP and C-GEP for APSP 144
7.3.2 Comparison of I-GEP and BLAS Routines 146
7.3.3 Multithreaded I-GEP 150
Discussion 152

Chapter 8 Cache-oblivious Dynamic Programs for Bioinformatics 154

8.1

8.2

Introduction 155
811 OurResults 155
8.1.2 Organization of the Chapter 158
Cache-oblivious Dynamic Programs with Local Dependencies 158
8.2.1 Cache-oblivious Algorithm for Solving Recurrence 8.2.3 in 3D 161
822 I/OLower Bound., 166
8.2.3 Parallel Implementation of the Cache-oblivious Framework . . 167
8.2.4 Applications of the Cache-oblivious Framework 170

xiii

8.3 Cache-oblivious Dynamic Programs with Non-local Dependencies . . 179

8.3.1 The Gap Problem 179
8.3.2 RNA Secondary Structure Prediction without Pseudoknots . 185
84 Conclusion. 185

Chapter 9 Experiments: Cache-oblivious DP for Bioinformatics 187

9.1 Imtroduction 187
9.1.1 Organization of the Chapter 188

9.2 Experimental Setup 188
9.3 Experimental Results 189
9.3.1 Pairwise Global Sequence Alignment with Affine Gap Penalty 189

9.3.2 Median of Three Sequences 193

9.3.3 RNA Secondary Structure Prediction with Pseudoknots . . . 198

9.4 Discussion 200
Chapter 10 Conclusion 203
10.1 Summary 203
10.2 Future Work 205
Appendix A The Cache-oblivious Tournament Tree 208
Appendix B Implementations of Dijkstra’s SSSP Algorithm 212
Appendix C Formal Definitions of § and =« 218

Appendix D Cache-oblivious Algorithm for Recurrence 8.2.3 in 2D 221
Bibliography 224

Vita 238

Xiv

List of Tables

3.1
3.2
3.3

4.1
4.2
4.3
4.4

5.1

6.1
6.2

7.1

9.1
9.2
9.3
9.4
9.5
9.6
9.7

B.1
B.2

Cache complexities of priority queues with Decrease-Keys
Cache complexities of slim priority queues with Decrease-Keys
Cache complexities of SSSP & APSP algorithms on weighted graphs

I/0O bounds for priority queues with Decrease-Keys
I/O bounds for priority queues without Decrease-Keys
Different implementations of Dijkstra’s algorithm

Running times of Dijkstra implementations on US road networks
Cache-miss bounds for APSP problems on undirected graphs

States of relevant cells immediately before updates by GEP/I-GEP .
Properties of supernodes in C(G)

Machines used for GEP experiments

Machines used for DP experiments
Pairwise sequence alignment algorithms used in our experiments . . .
Performance of pairwise alignment algorithms on CFTR DNA seqs .
Median algorithms used in our experiments
Performance of median algorithms on 16S bacterial rDNA seqs

RNA secondary structure prediction algorithms in our experiments .

RNA secondary structure prediction on 16S rRNA sequences

I/Os for accessing the graph by different Dijkstra implementations

Number of priority queue ops performed by Dijkstra implementations

XV

23
25

93
53
59
71

76

122
132

144

188
189
191
193
196
199
201

215
216

List of Figures

4.1
4.2
4.3
4.4
4.5

5.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17

In-core: Dijkstra implementations on G, ,, with fixed avg. degree . . 64
In-core: priority queue operations on G, ,, with fixed avg. degree . . 65
In-core: Dijkstra implementations on G, ,, with fixed m 66
In-core: Dijkstra implementations on power-law graphs 67
Out-of-core: Dijkstra implementations on Gy, ,, with fixed m 69
Directed unweighted edges replacing undirected weighted edges of G;(u) 88

The triply nested GEP loop 105
Cache-oblivious I-GEP 105
Processing order of quadrants of input matrix by -GEP 105
Evaluating 7(z, z) and 7(z,z) forx >z 109
Evaluating 6(z,y,2) o oo 111
Cache-oblivious I-GEP reproduced from Figure 6.2 115
Functions recursively called in Figure 6.6 116
Function specific pre-conditions for Figure 6.2 116
Relative positions of relevant cells in different instantiations of -GEP 116

A more general form of Gaussian elimination without pivoting 119
Matrix multiplication and its more general form 120
Computation of path costs over a closed semiring 121
C-GEP: A fully general cache-oblivious implementation of GEP . . . 124
Multithreaded I-GEP 129
Traditional and tiled matrix multiplication 134
The iterative simple DP algorithm 136
Two simple variants of GEP. 141

xXvi

7.1
7.2
7.3
7.4
7.5
7.6

8.1
8.2
8.3
8.4

9.1
9.2
9.3
9.4
9.5
9.6
9.7

B.1

D.1
D.2

Out-of-core: GEP, I-GEP and C-GEP 145
In-core: I-GEP and GEP implementations of Floyd-Warshall’'s APSP 146
In-core: I-GEP and C-GEP 147
In-core: I-GEP and GotoBLAS for Gaussian elimination w/o pivoting 148
In-core: I-GEP and native BLAS for square matrix multiplication . . 149
In-core: performance of multithreaded I-GEP 151
Cache-oblivious evaluation of recurrence 8.2.3 in 3D w/o traceback . 162
Cache-oblivious evaluation of recurrence 8.2.3 in 3D with traceback . 163
I/0 lower bound for DP implementing recurrence 8.2.3 166
Cache-oblivious algorithm for the gap problem 180
Performance of pairwise alignment algorithms on random sequences . 190
Cache-misses by pairwise alignment algorithms on random seqs . . . 191
Performance of multithreaded cache-oblivious pairwise alignment . . 192
Performance of median algorithms on random sequences 195
Affects of space-reduction and cache-efficiency on Knudsen’s algorithm 197
Performance of multithreaded cache-oblivious median algorithm . . . 198
RNA secondary structure prediction on random sequences 200
Dijkstra’s SSSP implementations with and without Decrease-Keys . . 214

Cache-oblivious evaluatiion of recurrence 8.2.3 in 2D w/o traceback . 222

Cache-oblivious evaluation of recurrence 8.2.3 in 2D with traceback . 223

xvii

Chapter 1

Introduction

Mama says they was magic shoes.
They could take me anywhere.

(Forrest Gump)

Massive datasets appear in a wide range of applications including database systems
[76, 105], spatial databases and geographic information systems (GIS) [38, 68, 86,
108], computational biology [67, 129, 130], VLSI design [14], physics and geophysics
[36, 125|, communications [12, 26|, computer graphics and virtual reality [49, 108],
and meteorology [36]. Efficient processing of these datasets requires a computer
with a fast memory large enough to hold the entire input. For fundamental physical
reasons, however, memory cannot be fast and large at the same time (see, e.g.,
[110]). Instead, in modern computers large access latencies of large memories are
amortized by organizing the memory in a hierarchy with registers in the lowest level
followed by several levels of caches (L1, L2 and possibly L3), RAM, and disk, with
the access time and size of each level increasing with its depth, and using block
transfers between adjacent levels.

An algorithm that performs well on memory hierarchies typically has the fea-
ture that whenever a block is brought into a faster level of memory it contains as
much useful data as possible (‘spatial locality’), and also that as much useful work
as possible is performed on this data before it is written back to a slower level (‘tem-

poral locality’). Caching and prefetching heuristics have been developed in order to

reduce the number of cache misses! on this hierarchy. However, these methods are
general-purpose in nature and thus in general, cannot take full advantage of the lo-
cality inherent in an algorithm. Therefore, an algorithm must rearrange its memory
accesses explicitly in order to maximize its cache performance.

The presence of caches with larger access latencies deeper in the memory
hierarchy motivates the use of cache-efficient algorithms for all input sizes. Another
motivation comes from the emergence of a wide variety of handheld devices like
mobile phones, PDAs and handheld computers, GPS navigation systems, gaming
consoles and media players. Some of these devices (e.g., mobile phones, PDAs etc.)
are designed as multi-purpose devices and they run all sorts of applications. These
multi-purpose devices now outsell laptop/desktop computers combined [69]. How-
ever, since caches occupy valuable chip-area, these devices tend to have very small
caches (i.e., DRAM and RAM). Another reason for having small caches is to keep
the price of the device low and thus make it affordable for the mass population (e.g.,
cell phones). Therefore, algorithms running on these devices must be cache-efficient

even if the dataset is small.

1.1 The Two-level I/O Model

The two-level 1/0 model [3] is a simple abstraction of the memory hierarchy that
consists of a cache (or internal memory) of size M, and an arbitrarily large main
memory (or external memory) partitioned into blocks of size B. An algorithm is
said to have caused a cache-miss (or page fault) if it references a block that does
not reside in the cache and must be fetched from the main memory. The cache
complezity (or 1/O complezity) of an algorithm is measured in terms of the number
of cache-misses it incurs and thus the number of block transfers or I/O operations
it causes. This is a simple model that successfully captures the situation where I/0
operations between two levels of the memory hierarchy dominate the running time
of the algorithm.

Two basic I/O bounds are known for this model: the number of I/Os needed
to read N contiguous data items from external memory is scan(N) = © (1 + %)
and that for sorting N data items is sort(N) = © (1 + X+ %log% %) [3]. For

LA cache miss refers to the situation where the referenced block does not reside in the current
memory level and must be fetched from a higher level.

most realistic values of M, B and N, scan(N) < sort(N) < N. Further, permuting
N elements according to a given permutation takes © (min(N,sort(N))) I/O0s [3]
which is © (sort(N)) for all practical values of N, M and B. This represents a
fundamental difference between the flat memory (RAM) and I/O models, since N
elements can be permuted in © (N) time in the RAM model whereas sorting them
requires O (N log N) time.

A major disadvantage of the two-level model is that algorithms often crucially
depend on the knowledge of the parameters of two particular levels of the memory
hierarchy and thus do not adapt well when the parameters change. Thus these
algorithms cannot simultaneously adapt to all levels of a multi-level hierarchy, and
in order to run efficiently on other machines they must have access to the cache
parameters of the new system which are not always easily available. Moreover,
modern operating systems typically run several concurrent threads that share the
same cache, and hence the entire cache is not always available to any particular
application and the size of the available cache can change during runtime without
the knowledge of the application. A similar situation arises at the hardware level

when multicore processors with shared caches are used.

1.2 The Ideal-cache Model & Cache-oblivious Algorithms

An algorithm is cache-oblivious if it contains no variables dependent on hardware
parameters, such as cache size M and block transfer size B, that need to be tuned in
order to optimize its cache complexity [52]. The ideal-cache model [52] is an extension
of the two-level I/O model with the additional feature that algorithms remain cache-
oblivious. This seemingly simple extension has surprisingly powerful consequences.
One consequence is that since the analysis of an algorithm in this model holds for
any memory and block size, it holds for any two adjacent levels of a multi-level
memory hierarchy [52]. Thus by reasoning about a simple two-level memory model
we can, in fact, prove results for an arbitrary multi-level memory hierarchy. Another
consequence is that the resulting algorithms are flexible and portable since they do
not need to be tuned to cache parameters that are not always easily available.

This model makes the following four assumptions.

1. Optimal Replacement. Assumes an optimal offline cache replacement policy

— the cache block to be accessed furthest in the future is chosen for replacement.

2. Exactly Two Levels of Memory. Assumes that there are exactly two mem-

ory levels as in the two-level I/O model.

3. Automatic Replacement. Assumes that whenever a data item that is
not stored in the internal memory is requested, the external memory block
containing that item is automatically transferred to internal memory by the
OS/hardware, and the algorithm designer need not worry about it while de-

signing the algorithm.

4. Full Associativity. Assumes that when a block is fetched from the external

memory it can be placed anywhere in the internal memory.

While assumption 1 is practically unrealizable, LRU and FIFO, the cache replace-
ment policies mostly used in practice, allow for a constant factor approximation of
the optimal strategy at the cost of only a constant factor wastage of the cache space
[113]. Assumption 2 simplifies the model, but can be effectively removed by making
several realistic assumptions about the memory hierarchy. Firstly, memory levels are
assumed to satisfy the inclusion property — level i stores only a subset of the elements
stored in level i 4+ 1, where level 1 is the level nearest to the CPU. Secondly, the size
of level 7 + 1 cache is assumed to be strictly larger than that of level ¢ cache. While
assumption 3 seems reasonable, assumption 4 does not, since in practice, caches are
either direct-mapped? or have very limited associativity® such as 2 or 4, and usually
not more than 16. But it has been shown in [52] that assumptions 3 and 4 can
be efficiently implemented in software by using LRU cache replacement based on
2-universal hashing.

Cache-oblivious algorithms sometimes require a tall cache (i.e., require that
cache size, M = €} (Bz), where B is the block size) for cache-efficiency, which is not
a severe restriction since most practical caches are tall.

The scanning and sorting bounds (scan(N) and sort(N)) for the two-level
I/O model (see Section 1.1) continue to hold for the ideal-cache model [52]. However,
a tall cache is required for the sorting bound to hold. The optimal © (min(N, sort(N)))

bound for permuting N elements in the two-level I/O model cannot be achieved in

2In direct-mapped caches each main-memory block can only be placed at a fixed location in the
cache.

3In a c-way set-associative cache each block can be placed only at a fixed set of ¢ locations in
the cache.

the ideal-cache model [23]. Permutation in this model requires either O (sort(N))
or O (N) block transfers.

1.3 Scope of the Dissertation and Our Contributions

The central theme of this dissertation is the development of cache-efficient and cache-

oblivious algorithms and data structures for the following three problem domains.
(i) Graph problems,

(i) GEP (Gaussian elimination paradigm) problems (e.g., path computations over

closed semirings, Gaussian elimination without pivoting, etc.), and
(7i7) Problems with dynamic programming algorithms.

Among graph problems our emphasis is on shortest path problems, and for com-
putationally expensive GEP and dynamic programming problems our goal is to de-
sign parallel cache-oblivious algorithms whenever feasible. In addition to producing
theoretical results, we perform extensive experimental evaluation of our algorithms

against existing algorithms.

1.3.1 Cache-efficient Graph Algorithms & Data Structures

Massive graphs arise in a wide variety of applications involving huge data sets.
One example of huge data sets is AT&T’s phone-record database with an estimated
growth of 20 terabytes a year [12, 26]. Besides using the data for billing purposes
researchers would like to use it for understanding the network usage better and
thus enabling the carriers to optimize their operations. For this purpose the data
is often viewed as a massive directed multigraph with the telephone numbers as the
nodes, and phone calls representing directed edges connecting nodes. The edges are
weighted by the time and duration of the corresponding calls.

The hyperlinked landscape of the World Wide Web is also represented by a
massive digraph with web pages as nodes and hyperlinks as edges. The number of
nodes in this graph (known as the Web Graph) is in the order of billions at present,
and is growing rapidly with time. Diameter, and connected and strongly connected
components of this graph represent meaningful entities, and this graph is also useful

for searching, browsing and mining the web.

Massive graphs also arise in Geographic Information Systems (GIS), and many
common GIS problems can be formulated as standard graph problems [12]. The
most commonly used GIS package, Arc/Info [9], contains functions for computing
DFS, BSF, and minimum spanning trees, and also shortest paths and connected
components.

Algorithms that handle graphs too large to fit in internal-memory must ex-
ploit the locality of data and computation in order to reduce costly page-faults. Since
disks are far too slow compared to RAM, I/O-efficient algorithms must be used in
order to ensure that the applications produce results in reasonable time.

In addition to applications that work on massive graphs, new graph appli-
cations are now emerging that run on small-memory devices. Examples of such
devices include handheld GPS navigation systems and modern portable gaming con-
soles. Not only do these devices have limited memory (e.g., SONY PSP has only 32
MB RAM), they must also limit power dissipated due to cache misses. Hence, these

devices need cache-efficient algorithms even for graphs of moderate size.

Our Results.

In the initial half of the thesis (i.e., Chapters 3 — 5) we consider shortest path prob-
lems on graphs — both single-source and all-pairs. These computational problems
typically have high degree of spatial locality, but very little temporal locality. Con-
sequently, our algorithms and data structures for these problems extensively use
scanning and sorting primitives for exploiting spatial locality. We attempt to solve
two major problems encountered in cache-efficient and cache-oblivious shortest path
computation: (i) lack of cache-oblivious priority queues with Decrease-Keys, and
(74) unstructured accesses to adjacency lists of the input graph.

We begin with the introduction of the buffer heap (in Chapter 3) — the first
cache-oblivious priority queue supporting Decrease-Key operations and matching
the performance bounds of its cache-aware counterpart. A buffer heap supports
Delete, Delete-Min and Decrease-Key operations in O (% logy %) amortized cache-
misses each, where N is the number of items in the data structure, B is the block
transfer size, and M is the size of the cache. We use this data structure to ob-
tain the first cache-oblivious single-source shortest path algorithms for both di-

rected and undirected graphs with general edge-weights. These two algorithms incur

(@) ((n + %) -log, %) and O (n + 7 logy %) cache-misses, respectively, where n is
the number of nodes and m is the number of edges in the graph. Both algorithms
match the performance bounds of their best cache-aware counterparts. We also in-
troduce the notion of a ‘slim data structure’ in which only a very small portion of
the data structure can be retained in the cache between data structural operations.
We show that buffer heaps in this ‘slim’ setting can be used to obtain an all-pairs
shortest path algorithm with improved cache performance for graphs with arbitrary
edge-weights.

In Chapter 4 we present the results of an experimental study on how cache-
efficient priority queues improve the performance of some shortest path algorithms.
We consider both in-core and out-of-core computations. Our experimental results
suggest that shortest path computation with a light-weight version of our cache-
oblivious buffer heap is often faster than that with highly optimized traditional
flat-memory priority queues even when the computation is in-core.

Next we consider the all-pairs shortest path (APSP) problem on unweighted
and bounded-weight undirected graphs (in Chapter 5). We use various techniques
to reduce unstructured accesses to adjacency lists, and consequently obtain APSP
algorithms with improved cache-miss bounds. We design the first cache-oblivious
APSP algorithm for unweighted graphs matching the cache complexity of its cache-
aware counterpart. On a graph with n nodes and m edges this algorithm incurs only
O (n - sort(m)) cache-misses, where sort(m) is the number of cache-misses incurred
while sorting m items. We also present the first cache-efficient approximate APSP
algorithms for unweighted graphs. Our exact APSP algorithm for bounded-weight
graphs is based on a hierarchical clustering technique, and it is the first non-trivial

cache-efficient algorithm for the problem.

1.3.2 The Cache-oblivious Gaussian Elimination Paradigm

We use the term GEP or the Gaussian Elimination Paradigm to refer to a class
of triply nested loops similar to the one in Gaussian elimination without pivoting.
Many important practical problems belong to this category including path compu-
tations over closed semirings [4] (e.g., Floyd-Warshall’s all-pairs shortest path [48],
transitive closure [128]), Gaussian elimination and LU decomposition without piv-

oting [37], and matrix multiplication. The all-pairs shortest path problem arises in

a wide range of application areas including network routing, distributed comput-
ing and robotics. Gaussian elimination without pivoting is used in the solution of
systems of linear equations and LU decomposition of symmetric positive-definite or
diagonally dominant real matrices [37]. Matrix multiplication has numerous practical
applications and is at the heart of scientific computing [59, 103, 116, 66, 102, 60].
All GEP problems have a high degree of both temporal and spatial locality,
and hence algorithms for these problems must exploit both types of locality for

efficient execution.

Our Results.

In Chapter 6 we present a general framework for efficient cache-oblivious execution
of problems in the Gaussian Elimination Paradigm. We show that several important
problems in this class (e.g, Gaussian elimination w/o pivoting, Floyd-Warshall’s
APSP, square matrix multiplication, etc.) can be solved in-place using our cache-
oblivious framework, and further with a modest amount of extra space our framework

can solve any GEP instance cache-efficiently. On input n x n matrices, our framework

performs O (n3) work and incurs O (%) cache-misses, where M is the size of the
cache and B is the block transfer size. We also present a parallel implementation of
our framework that terminates in O <”§ + n log? n) parallel steps on p processors,
and provide scheduling policies for cache-efficient execution of this implementation
separately on parallel machines with distributed and shared caches. We discuss
potential application of our framework in optimizing compilers as a cache-oblivious
tiling technique.

In Chapter 7 we present extensive experimental results on our cache-oblivious
framework for GEP, which we believe is one of the first attempts in literature to
compare cache-oblivious code with high-performance industrial-strength cache-aware
code. We consider both in-core and out-of-core, sequential and parallel implementa-
tions of our framework, and compare our in-core sequential algorithms for square ma-
trix multiplication and Gaussian elimination w/o pivoting with finely-tuned cache-
aware BLAS (Basic Linear Algebra Subprograms) code. The results indicate that
our cache-oblivious framework offers an attractive trade-off between efficiency and

portability.

1.3.3 Cache-oblivious Dynamic Programming

Dynamic programming (DP) [17, 114] is a powerful algorithmic technique which
when applicable, allows one to solve combinatorial problems over an exponential
search space in polynomial time and space. It is useful in a wide variety of applica-
tion areas including stochastic systems analysis, operations research, combinatorics
of discrete structures, biosequence analysis, flow problems, parsing of ambiguous lan-
guages etc. [58]. Dynamic programming is extensively used in biosequence analysis,
such as in protein homology search, gene structure prediction, motif search, analysis
of repetitive genomic elements, RNA secondary structure prediction, interpretation
of mass spectrometry data, etc. [67, 46, 16, 129]. In [46], a recent textbook on bio-
logical sequence analysis, the authors list 11 applications of dynamic programming
in bioinformatics in its introductory chapter with many more in chapters that follow.

Dynamic programming is based on two key ideas [45, 17]: (1) the principle of
optimality and (2) recursion on the principle of optimality. The principle of optimal-
ity states that an optimal solution to a problem contains within it optimal solutions
to subproblems. Recursion on the principle of optimality says that while the optimal
solution to a subproblem might not be known, it can be determined by applying the
principle of optimality on the subsequent subsubproblems recursively. The technique
is very similar to the divide-and-conquer strategy. Unlike the divide-and-conquer
strategy, however, dynamic programming is applicable when the subproblems are
not independent, i.e., when the subproblems share subsubproblems. A dynamic pro-
gramming algorithm avoids recomputing the solution to a subsubproblem every time
it is encountered by saving the solution to the subsubproblem in a table the first
time it is solved.

Standard implementations of most dynamic programming algorithms take full
advantage of the spatial locality of the data since they mostly perform sequential
read /write operations. These implementations, however, often fail to exploit the
temporal locality inherent in the recursive nature of the solution. Therefore, there
is room for significant improvement in the cache usage of these algorithms, and
consequently also their running times. Moreover, since these algorithms are often
quite expensive in terms of computation, parallel cache-efficient implementations of

these algorithms are often desirable.

Our Results.

In Chapter 8 we present a general cache-oblivious dynamic programming framework
that gives efficient cache-oblivious sequential and parallel algorithms for a number of
important dynamic programming problems in bioinformatics including optimal pair-
wise global sequence alignment and median of three sequences (both with affine gap
costs), and RNA secondary structure prediction with simple pseudoknots. For prob-
lems requiring solutions to d-dimensional recurrences (d = 2 for pairwise alignment,

and d = 3 for the median problem; see Chapter 8 for details), our cache-oblivious

algorithm performs O (nd) work, uses O (nd_l) space, incurs O <—"d1—> cache-
BM d-1

misses and terminates in O ("7;1 + dn) parallel steps, where n is the length of each
input sequence, M is the size of the cache, B is the block transfer size, and p is
the number of parallel processors. Given an RNA sequence of length n, our algo-

rithm predicts an RNA secondary structure with simple pseudoknots in O (n4) work,

O (n2) space, O (B’jﬁ) cache-misses and O (%1 + nlog? n) parallel steps. We also
present cache-oblivious sequential and parallel algorithms for optimal pairwise align-

ment with general gap costs. Our sequential algorithm runs in O (n3) time and

@) (nz) space, and incurs O (n?) cache-misses, while its parallel implementation

BVM
executes O (”Tf + nlogz 3) parallel steps. All our algorithms improve significantly
over the cache-efficiency of earlier algorithms, while matching the best-known time
complexity, and matching or improving the best-known space complexity of the
problem.

In Chapter 9 we perform extensive experimental evaluation of our cache-
oblivious algorithms for optimal pairwise sequence alignment, the median problem,
and RNA secondary structure prediction with simple pseudoknots. For the first two
problems we compare our algorithms with the best publicly available code written
by others, and conclude that our algorithms run faster than these software. Our

parallel algorithms show good speed-up as the number of processors increase.

1.4 Organization of the Dissertation

The rest of the dissertation is organized as follows. In Chapter 2 we describe known
results and the key issues we will address for each of the three problem domains we

consider in this thesis.

10

In Chapters 3 — 5 we present our results on cache-efficient graph algorithms
and data structures. Chapter 3 describes our theoretical results on cache-oblivious
priority queues and cache-efficient shortest path computation using our new pri-
ority queue data structure. Chapter 4 presents our experimental results on how
the cache-efficiency of priority queues affects the performance of some shortest path
algorithms. In Chapter 5 we describe several theoretical results on cache-efficient
all-pairs shortest path computation.

Chapter 6 presents our theoretical results on the cache-oblivious Gaussian
Elimination Paradigm (GEP), followed by Chapter 7 which contains our experimen-
tal results on GEP.

In Chapter 8 we present our cache-oblivious dynamic programming results,
and in Chapter 9 we include an experimental study on the performance of several
algorithms presented in Chapter 8.

Finally, in Chapter 10 we offer some concluding remarks.

11

Chapter 2
Background

The possession of knowledge does not kill
the sense of wonder and mystery.

There is always more mystery.

(Anais Nin)

In this chapter we put the results in this dissertation in context by providing a sur-
vey of major known results on cache-efficient graph algorithms and data structures,
the cache-oblivious Gaussian Elimination Paradigm, and cache-oblivious dynamic
programming problems. For each topic we also discuss the major issues we address

in subsequent chapters.

2.1 Cache-efficient Graph Algorithms and Data Struc-

tures
First we briefly describe the major known results on cache-efficient graph algorithms
and data structures. We then discuss the key problems encountered in designing

cache-efficient shortest path algorithms, some of which are addressed in Chapters 3
and 5.

12

2.1.1 Basic Notations & Definitions

By G = (V,E,w) we denote a (directed or undirected) graph with vertex set V,
edge set E, and a non-negative real-valued weight function w over E. By n and m
we denote the size of V' and E, respectively. We assume that E is given either as
an unordered sequence of edges or as an adjacency list. An unordered sequence of
edges can be converted to adjacency list format in O (sort(m)) I/Os using a sorting

step.
The SSSP Problem. The single-source shortest path (SSSP) problem is one of the

most fundamental and important combinatorial optimization problems from both a
theoretical and a practical point of view. Given a (directed or undirected) graph
G = (V,E,w), and a distinguished vertex s € V, the SSSP problem seeks to find
a path of minimum total edge-weight from s to every reachable vertex v € V. For

unweighted graphs this problem is also called the breadth-first search (BFS) problem.

The APSP Problem. Given a (directed or undirected) graph G = (V, E, w), the
all-pairs shortest path (APSP) problem seeks to find a path of minimum total edge-
weight between every pair of vertices in V. The diameter of G is the longest shortest
distance between any pair of vertices in G. For unweighted graphs the APSP problem
is also called the all-pairs breadth-first search (AP-BFS) problem.

Connected Components & Minimum Spanning Forest. Given an undirected
graph G = (V, E,w) and the connected components (CC) problem asks for an enu-
meration of maximal subsets of V' such that for every pair of vertices u,v € V there
is a path between u and v in G. In the minimum spanning forest (MSF) problem

the objective is to find a spanning forest of G with a minimum total edge weight.

2.1.2 Known Results

The solution of almost any graph problem involves somehow permuting the n vertices
and m edges of the graph, and hence the lower bound on permutation implies that
O (min(n, sort(n))) (which is © (sort(n)) for all practical cases; see Sections 1.1
and 1.2 in Chapter 1) is a general lower bound on the number of 1/O operations
needed to solve most graph problems. Though in recent years considerable efforts
have been devoted to developing efficient graph algorithms for external memory (see

[77, 121, 21, 127] for recent surveys), not many of them are known to match the

13

lower bound. We summarize the most important results below. Recall that B is the

block transfer size and M is the size of the cache.

Cache-aware Results

The first work on external memory graph algorithms is due to Ullman and Yan-
nakakis [123], where they considered the I/O complexity of the transitive closure
problem.

Chiang et al. [31] considered a wide variety of graph problems for several of
which they obtained optimal I/O bounds. They developed the first cache-optimal
(matching the permutation lower bound) algorithm for list ranking (the problem
of sorting the elements in a linked list stored unordered on disk) which is the
most fundamental 1/O graph problem. Using this algorithm and PRAM techniques
O (sort(n)) I/O algorithms can be developed for most problems on trees, such as
computing an Euler tour, breadth-first search (BFS), depth-first search (DFS), cen-
troid decomposition, and expression tree evaluation [31]. The best known external
DFS algorithm for directed graphs that uses O (n + %) I/Os, is also due to Chiang
et al. [31].

Arge [10]| developed the buffer tree technique, and showed how to use this
technique to obtain a priority queue supporting Insert and Delete-Min operations in
@) (% log M %) amortized I1/Os each, where N is the number of operations performed
(or the total number of elements inserted into the queue).

Kumar & Schwabe [83] developed graph algorithms based on amortized data
structures for binary heaps and tournament trees. While their cache-efficient bi-
nary heap supports the same operations in the same I/O bounds as does the pri-
ority queue by Arge [10], their cache-efficient tournament tree also supports Update
(or Decrease-Key) operations. However, the tournament tree requires O (% logs %)
amortized I/Os for each operation. Using cache-efficient tournament trees they de-
veloped the first and best known cache-efficient single-source shortest path (SSSP)
algorithm for undirected graphs requiring O (n + 7 log, %) I/Os. However, using
the technique in [31] for handling visited vertices, undirected SSSP can be solved in
O (n+ 4% + sort(m)) 1/Os.

Munagala & Ranade [92] gave improved algorithms for connectivity and BFS
in undirected graphs requiring O (sort(m) - loglog 22) and O (n + sort(m)) 1/Os

14

respectively. Later Arge et al. [12]| extended this approach to compute MSF in
O (sort(m) - loglog %) I/0s.

Buchsbaum et al. [25] developed the buffered repository tree to obtain the best
known external DFS algorithm for directed graphs using O ((n +) - logy % + sort(m))
I/Os. Using a cache-efficient tournament tree [83] as the priority queue and a buffered
repository tree for remembering visited vertices directed SSSP can be solved in
O ((n+ %) -logy % + sort(m)) which is weaker than the known upper bound for
undirected SSSP.

Mehlhorn & Meyer [88] reduced the I/O cost of accessing the adjacency lists
during an undirected BFS from O (n) to O (%) when m < nB, and later Meyer
& Zeh [89] obtained a slightly weaker result for undirected SSSP on graphs with
bounded edge-weights.

Cache-oblivious Results

Arge et al. [11] introduced the first cache-oblivious priority queue supporting Insert
and Delete-Min operations in optimal O (%log% %) I/Os each, where N is the
number of operations performed on the queue. Using this priority queue they solved
the list ranking problem cache-obliviously using O (sort(n)) I/Os which immediately
implies O (sort(n)) I/O cache-oblivious algorithms for tree problems such as the Eu-
ler tour, BF'S, DFS, and centroid decomposition. They presented directed BFS and
DF'S algorithms incurring O ((n + %) - logy % + sort(m)) 1/Os each, undirected BFS
requiring O (n + sort(m)) I/Os, and undirected MSF algorithm with I/O complex-
ity O (min(n + sort(m), sort(m) - loglogn)). All their algorithms match the cache
complexity of the best known cache-aware algorithms under tall cache assumption.
Later Brodal & Fagerberg [22] introduced another cache-oblivious priority queue
known as the Funnel Heap supporting the same operations in the same amortized

bounds as does the priority queue by Arge et al. [11].

2.1.3 Key Issues in Cache-efficient Shortest Path Computation

As pointed out in [77], the key problems encountered in developing cache-efficient
shortest path algorithms are: (a) lack of cache-efficient priority queues supporting
Decrease-Key operations, (b) unstructured indexed accesses to adjacency lists, and

(¢) remembering visited vertices.

15

(a) Cache-efficient Priority Queue with Decrease-Keys. Virtually all inter-

nal memory SSSP algorithms work by maintaining an upper bound on the shortest
distance (a tentative distance) to every vertex from the source vertex and visiting
the vertices in a one-by-one fashion (or by groups) in non-decreasing order of tenta-
tive distances. The next vertex (or group of vertices) to be visited is the one with
the smallest tentative distance extracted from the set of unvisited vertices kept in
a priority queue (). After a vertex (or a group of vertices) has been extracted from
Q@ each of its unvisited neighbors is either inserted into) with a finite tentative
distance or gets its tentative distance updated if it already resides in (). Therefore,
in addition to supporting Insert and Delete-Min operations, () needs to support
efficient Decrease-Key operations.

Though the cache-aware tournament tree supports Decrease-Key operations
cache-efficiently, no such cache-oblivious data structure was known prior to our work

on cache-oblivious buffer heap (see Chapter 3).

(b) Unstructured Accesses to Adjacency Lists. Virtually all external memory
graph traversal (BFS, DFS, SSSP) algorithms require © (n + %) block transfers to

access the adjacency lists and this is a bottleneck for these algorithms. Though

this bound has been improved slightly for undirected graphs with unweighted edges
[88] and bounded-weight edges [89], improvement is achieved only for very sparse
graphs. However, no such results are known for directed graphs or graphs with
general edge-weights.

In Chapters 3 (Section 3.4.3) and 5 we use various techniques to reduce

unstructured accesses to adjacency lists for the APSP problem.

(c) Remembering Visited Vertices. Shortest path algorithms need to remember

the vertices whose shortest paths from the source have already been determined in or-
der to avoid recomputing the shortest paths to those vertices in future. In undirected
graphs this problem can be avoided by using an auxiliary priority queue [83, 77]. In
directed graphs keeping track of visited vertices costs O (n logn + 7 log n) cache-
misses using a buffered repository tree (BRT) [25, 32]. The BRT structure main-
tains O (m) elements under the operations Insert and Extract which are supported
in O (% log, n) and O (logy n) amortized cache-misses, respectively. An SSSP al-
gorithm performs n Fatract and m Insert operations on this structure incurring

O (nlogn) and O (% log, n) block transfers, respectively. The I1/O cost of remem-

16

bering visited vertices is one of the major bottlenecks in shortest path computation

in directed graphs.

2.2 The Cache-oblivious Gaussian Elimination Paradigm

We discuss known cache-oblivious algorithms for problems in the Gaussian Elimi-
nation Paradigm (GEP). The key issues in designing cache-efficient algorithms for
GEP problems are similar to those arising during the design of cache-efficient dy-

namic programming algorithms and hence are discussed in Section 2.3.

2.2.1 Known Results

A cache-oblivious dynamic programming algorithm for Floyd-Warshall’s APSP al-

gorithm is given in [95] (also in [39]). The algorithm runs in O (n?) time and incurs

@) < B?/SM) cache misses. Experimental results show that on some architectures the
algorithm runs up to 10 times faster than the standard Floyd-Warshall algorithm
even when the entire input matrix fits into the RAM.

Though Gaussian elimination, LU decomposition and matrix multiplication
are not dynamic programming algorithms, these computations have structural simi-
larity to Floyd-Warshall’s APSP (see Chapter 6). Known cache-oblivious algorithms

for Gaussian elimination for solving systems of linear equations are based on LU

decomposition. In [134, 19] cache-oblivious algorithms performing O (B%) I/0
operations are given for LU decomposition without pivoting, while the algorithm in
[120] performs LU decomposition with partial pivoting within the same I/O bound.
These algorithms use matrix multiplication and solution of triangular linear systems
as subroutines.

An O (mnp) time and O <m +n +p 4 DREDPEMP 4 EP > I/0O cache-oblivious

BVM
algorithm for multiplying an m x n matrix by an n x p matrix is given in [52].

Our major contribution in this area is a unified framework that gives efficient
cache-oblivious algorithms for all problems above and possibly many others (see
Chapter 6) typically matching the best performance bounds for the corresponding

problem.

17

2.3 Cache-oblivious Dynamic Programming

We first give a brief overview of known results on cache-oblivious dynamic program-

ming and then list the key issues one should address in designing these algorithms.

2.3.1 Known Results

In [30] an O (n?) time and O (B?/:;M) I/O cache-oblivious algorithm based on Valiant’s
context-free language recognition algorithm [124], is given for simple-DP that in-
cludes algorithms for RNA secondary structure prediction [78], matrix chain multi-
plication, optimal polygon triangulation and optimal binary search tree construction.
A similar algorithm for simple-DP is also given in [117], and in [118] the algorithm
is extended for cache-efficient execution on a multicore programming model based
on IBM Cyclops64.

The cache-oblivious stencil computation technique presented in [54] can be
used as a dynamic programming algorithm for computing the length of a longest
common subsequence of two sequences of length n each in O (n2) time, O (n) space

and O (%) I/Os. This method, however, does not compute the subsequence.

2.3.2 Key Issues

Two of the major issues in developing efficient cache-oblivious dynamic programming

algorithms are as follows. Both issues are addressed in Chapters 6 and 8.

(a) Exploiting Both Temporal and Spatial Locality. Standard implementa-

tions of dynamic programming algorithms often fully exploit the spatial locality of
data since they mostly perform repeated sequential read/write operations on the
dynamic programming table. On some architectures sequential scans receive good
support from prefetchers. However, scanning the entire table over and over again
means that no significant portion of the table is retained in the cache for reuse, i.e,
any temporal locality inherent in the computation is ignored. Therefore, significant
improvement in the cache usage of these algorithms can be achieved if the temporal

locality can be exploited without giving up on the spatial locality.

(b) Exploiting Parallelism with Cache-efficiency. Parallelization is often de-

sirable in order to cope with the high computational cost of dynamic programming

algorithms. An open question is how to achieve both parallelism and cache-efficiency

18

simultaneously. One must also take into account that unlike in the sequential set-
ting, caches can now be either distributed or shared, and different approaches might
be needed for handling these two types of caches. We discuss this issue in some more

detail in the next section.

2.3.3 Caches on Parallel Machines

Symmetric Multiprocessors or SMPs are one of the most common multiprocessor
computer architectures in use today. On an SMP two or more identical processors
are connected to a single shared cache or main memory. Now-a-days Chip Multipro-
cessors or CMPs are also becoming commonplace. On a CMP multiple processors or
cores are placed on a single chip, and each core is accompanied with its own on-chip
private L1 cache. These CMPs which are also known as multicores, also have a large
on-chip L2 cache shared among all processors.

On a parallel machine with a shared cache, a cache-miss occurs when a pro-
cessor reads or writes a data item that is not in the shared cache. In order to reduce
such cache-misses algorithms or scheduling policies must be designed in such a way
that processors executing in parallel share cache blocks as much as possible. In con-
trast, on a parallel machine with distributed or private caches, all processors working
in parallel should access disjoint sets of cache blocks in order to reduce cache-misses
caused by transferring blocks back and forth between private caches. Thus for good
cache performance on shared and distributed caches algorithms and schedulers need
to employ different techniques for data sharing. The situation becomes even more
complicated on CMPs if the goal is to reduce cache misses for both distributed (L1)
and shared (L2) caches. In Chapters 6 and 8 we focus on reducing cache-misses on

shared and distributed caches separately.

19

Chapter 3

Cache-oblivious Buffer Heap and
its Applications

The distance is nothing;
it 1s only the first step that is difficult.
(Marie Anne du Deffand)

In this chapter we present the buffer heap, a cache-oblivious priority queue that supports
Delete, Delete-Min, and Decrease-Key operations in O (% log, %) amortized block transfers
from main memory, where M and B are the (unknown) cache size and block-size, respec-
tively, and N is the number of elements in the queue. We assume that the Decrease-Key
operation only verifies that the element does not exist in the priority queue with a smaller
key value, and hence it also supports the Insert operation in the same amortized bound.
The amortized time bound for each operation is O (log N).

Using the buffer heap we present cache-oblivious algorithms for undirected and
directed single-source shortest path (SSSP) problems for graphs with non-negative real
edge-weights. On a graph with n vertices and m edges, our algorithm for the undi-
rected case performs O (n + % logy %) block transfers and for the directed case performs
o ((n + %) -log, %) block transfers. Running time of both algorithms is O((m—i—n) -log n)

For both priority queues with Decrease-Key operation, and for SSSP problems on
general graphs, our results give the first non-trivial cache-oblivious bounds. Our results,
though not known to be optimal, provide substantial improvements over known trivial
bounds.

We also introduce the notion of a slim data structure which captures the situation

when only a limited portion of the cache which we call a slim cache, is available to the data

20

structure to retain data between data structural operations. We show that a buffer heap au-
. . . . 1 1 N
tomatically adapts to such an environment and supports all operations in O (5 + 5 logy 7)
amortized block transfers each when the size of the slim cache is A. We use buffer heaps
in this setting to improve the cache complexity of the cache-aware all-pairs shortest path

(APSP) problem on weighted undirected graphs.

3.1 Introduction

The single-source shortest path (SSSP) and the all-pairs shortest path (APSP)
problems are among the most important combinatorial optimization problems with
numerous practical applications (see Chapter 1 for definitions). Under the tradi-
tional von Neumann Model of computation which assumes a single layer of memory
with uniform access cost, the SSSP problem on a directed graph can be solved
efficiently in O (m + nlogn) time by Dijkstra’s algorithm [43]| implemented using
a Fibonacci heap [51]. For undirected graphs the problem can also be solved in
O (ma(m,n) + nmin(logn,loglog p)) time [99], where p is the ratio of the maxi-
mum and the minimum edge-weights in G, and «a(m,n) is a certain natural inverse
of Ackermann’s function that evaluates to a small constant for all practical values
of m and n. Faster algorithms exist for special classes of graphs and graphs with
restricted edge-weights. Efficient APSP algorithms have also been developed for this
model [136].

As explained in Chapter 1, modern computers with deep memory hierarchies
differ significantly from the original von Neumann architecture, and demand cache-

efficient algorithms.

3.1.1 Cache-aware Shortest Path Algorithms

In recent years there has been considerable research on developing cache-efficient
graph algorithms (see [127, 77] for recent surveys). Several cache-efficient SSSP algo-
rithms have been developed [31, 83, 77, 89]. As explained in Section 2.1.3 of Chapter
2, in addition to a mechanism to remember visited vertices, cache-efficient imple-
mentations of virtually all SSSP algorithms require cache-efficient priority queues
supporting Decrease-Key operations.

Major known SSSP results for the two-level I/O model are summarized in
Table 3.3 under the caption “Cache-aware Results”. Kumar & Schwabe [83] were the

21

first to develop a cache-efficient version of Dijkstra’s SSSP algorithm for undirected
graphs. They use a tournament tree as a priority queue and perform some extra
book-keeping using an auxiliary priority queue in order to handle visited vertices.
A cache-efficient tournament tree supports a sequence of k Delete, Delete-Min and
Decrease-Key operations in O (% log, %) block transfers leading to an SSSP algo-
rithm incurring O (n + 7 logy %) cache-misses. The phase approach used in [31] im-
plements a priority queue with Decrease-Keys indirectly and results in an undirected
SSSP algorithm that beats Kumar & Schwabe’s algorithm when n = O (M log, %),
i.e., the set of vertices is not too large compared to the size of the cache. In [89]
Meyer & Zeh developed another undirected SSSP algorithm that works on graphs
with real edge-weights, but its performance depends on p, the ratio of the largest
and the smallest edge-weights in the graph. This algorithm outperforms Kumar &
Schwabe’s algorithm for sparse graphs, i.e., when m = O (& . n) This algorithm
uses a hierarchical decomposition technique to reduce random accesses to adjacency
lists, and a priority queue called the bucket heap that is specifically designed for this
purpose. The bucket heap supports a sequence of k Delete, Delete-Min (Batched-
Delete-Min) and Decrease-Key operations in O (sort(k‘) + % log, p) cache-misses.

For directed graphs the survey paper [127] mentions a cache complexity of
(@) ((n + %) - logy %) for SSSP using a tournament tree. Using the phase approach
directed SSSP can be solved in O (n + B4% log, %) block transfers [31, 77].

A straight-forward method of computing APSP is to simply run an SSSP
algorithm from each of the n vertices of the graph. Arge et al. [13]| proposed a
cache-aware APSP algorithm for undirected graphs with general non-negative edge-

weights that performs O (n - (\/ZF logn + sort(m))) block transfers when m =

@) <lo§ ~ n) They use a priority queue structure called the multi-tournament-tree

which is created by bundling together a number of cache-efficient tournament