
Copyright

by

Rezaul Alam Chowdhury

2007

The Dissertation Committee for Rezaul Alam Chowdhury

certifies that this is the approved version of the following dissertation:

Algorithms and Data Structures for Cache-efficient
Computation: Theory and Experimental Evaluation

Committee:

Vijaya Ramachandran, Supervisor

Matteo Frigo

Adam Klivans

Keshav Pingali

Greg Plaxton

Tandy Warnow

Algorithms and Data Structures for Cache-efficient

Computation: Theory and Experimental Evaluation

by

Rezaul Alam Chowdhury, B.Sc.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2007

For

My parents

(Azam Chowdhury & Sajeda Kohinoor)

and

My sisters

(Tanzina Chowdhury & Tasnuva Chowdhury)

Acknowledgments

First and foremost, I would like to thank my advisor Vijaya Ramachandran. This

thesis would not have been possible without her active support, guidance and en-

couragement.

I would like to express my thanks to the members of my dissertation com-

mittee for their valuable comments and suggestions, and also for making my defence

a stress-free experience. Special thanks to Matteo Frigo and Keshav Pingali for

many useful discussions. I wish to thank Lingling Tong, Hai-Son Le, David Lan

Roche and Mo Chen for helping me with my experiments while they worked on their

undergraduate honors theses at UT.

I thank the Department of Computer Sciences at UT Austin for supporting

me with an MCD graduate fellowship. Thanks also go to NSF as my research was

also supported by NSF Grants CCR-9988160 and CCF-0514876, and NSF CISE

Research Infrastructure Grant EIA-0303609.

I am indebted to my undergraduate advisor Mohammad Kaykobad. He

guided me into the world of research. He believed in me even when I did not believe

in myself. The time I spent with him and Suman Nath during my undergraduate

years is among the most precious in my life. I cannot thank them enough.

I do not know how to express my gratitude to my parents and my sisters.

They had to go through a very difficult time during my absence. Still their support

for me has been unconditional and unwavering. They always cared for me, and

v

never complained when I failed to take care of them. I am also indebted to my

grandmother, uncle, aunts and my cousins for always being there for me. I could

not have completed my Ph.D. without their active support.

I must also thank my former roommate Uttiya Chowdhury. He was no less

than an elder brother to me. In times of need I could always rely on him (and still

can). I also thank Qumrul Ahsan and my friend Peter Djeu for extending their

helping hands whenever I needed one. Thanks to my officemate Thomas Wahl for

many interesting discussions.

Finally, I would like to express my gratitude to a friend who lived so far away,

and yet cared so much! This caring and sharing helped me get through some of the

most difficult times of my life, and kept me sane enough to earn this Ph.D.!

Rezaul Alam Chowdhury

The University of Texas at Austin

August 2007

vi

Algorithms and Data Structures for Cache-efficient

Computation: Theory and Experimental Evaluation

Publication No.

Rezaul Alam Chowdhury, Ph.D.

The University of Texas at Austin, 2007

Supervisor: Vijaya Ramachandran

The ideal-cache model is an abstraction of the memory hierarchy in modern comput-

ers which facilitates the design of algorithms that can use the caches (i.e., memory

levels) in the hierarchy efficiently without using the knowledge of cache parameters.

In addition to possibly running faster than traditional flat-memory algorithms due to

reduced cache-misses, these cache-oblivious algorithms are also system-independent

and thus more portable than cache-aware algorithms. These algorithms are useful

both in applications that work on massive datasets and in applications that run on

small-memory systems such as handheld devices.

The major contribution of this dissertation is a number of new cache-efficient

and cache-oblivious algorithms and data structures for problems in three different

vii

domains: graph algorithms, problems in the Gaussian Elimination Paradigm (GEP),

and problems with dynamic programming algorithms. Among graph problems we

concentrate on shortest path computation, and for the computation-intensive prob-

lems in the latter two domains we also present efficient parallelizations of our cache-

oblivious algorithms for distributed and shared caches. We perform extensive ex-

perimental study of most of our algorithms, and compare them with best known

existing algorithms and software.

In the area of graph algorithms and data structures, we introduce the first

efficient cache-oblivious priority queue supporting Decrease-Key operations, and use

it to obtain the first non-trivial cache-oblivious single-source shortest path algorithms

for both directed and undirected graphs with general non-negative edge-weights.

Our experimental results show that shortest path computation using a light-weight

version of this new priority queue is faster than using highly optimized traditional

priority queues even when the computation is in-core. We also present several new

cache-efficient exact and approximate all-pairs shortest path algorithms for both

weighted and unweighted undirected graphs.

The Gaussian Elimination Paradigm (GEP) includes many important practi-

cal problems with constructs similar to that in Gaussian elimination without pivot-

ing, e.g., Floyd-Warshall’s all-pairs shortest path, LU decomposition without pivot-

ing, matrix multiplication, etc. We present a general cache-oblivious framework for

cache-efficient sequential and parallel solution of any problem in GEP. Our exper-

imental results comparing our cache-oblivious algorithms with industrial-strength

cache-aware BLAS (i.e., Basic Linear Algebra Subprogram) code suggest that our

GEP framework offers an attractive trade-off between efficiency and portability.

In the domain of dynamic programs, we present efficient cache-oblivious se-

quential and parallel algorithms for a number of important dynamic programs in

bioinformatics including optimal pairwise sequence alignment, median of three se-

viii

quences, and RNA secondary structure prediction with and without (simple) pseudo-

knots. All our algorithms improve significantly over the cache complexity of earlier

algorithms, and either match or improve over their space complexity. We empiri-

cally compare most of our algorithms with the best publicly available code written

by others, and our experimental results indicate that our algorithms run faster than

these software.

ix

Contents

Acknowledgments v

Abstract vii

List of Tables xv

List of Figures xvi

Chapter 1 Introduction 1

1.1 The Two-level I/O Model . 2

1.2 The Ideal-cache Model & Cache-oblivious Algorithms 3

1.3 Scope of the Dissertation and Our Contributions 5

1.3.1 Cache-efficient Graph Algorithms & Data Structures 5

1.3.2 The Cache-oblivious Gaussian Elimination Paradigm 7

1.3.3 Cache-oblivious Dynamic Programming 9

1.4 Organization of the Dissertation . 10

Chapter 2 Background 12

2.1 Cache-efficient Graph Algorithms and Data Structures 12

2.1.1 Basic Notations & Definitions 13

2.1.2 Known Results . 13

2.1.3 Key Issues in Cache-efficient Shortest Path Computation . . . 15

2.2 The Cache-oblivious Gaussian Elimination Paradigm 17

2.2.1 Known Results . 17

2.3 Cache-oblivious Dynamic Programming 18

2.3.1 Known Results . 18

x

2.3.2 Key Issues . 18

2.3.3 Caches on Parallel Machines 19

Chapter 3 Cache-oblivious Buffer Heap and its Applications 20

3.1 Introduction . 21

3.1.1 Cache-aware Shortest Path Algorithms 21

3.1.2 Cache-oblivious Shortest Path Algorithms 22

3.1.3 Our Results . 23

3.1.4 Organization of the Chapter 24

3.2 Slim Data Structures . 25

3.3 The Buffer Heap . 26

3.3.1 Structure . 27

3.3.2 Layout . 28

3.3.3 Operations . 28

3.4 Buffer Heap Applications . 42

3.4.1 Cache-oblivious Undirected SSSP 43

3.4.2 Cache-oblivious Directed SSSP 43

3.4.3 Cache-aware Undirected APSP 46

3.5 Conclusion . 48

Chapter 4 Experiments: Priority Queues for SSSP Computation 49

4.1 Introduction . 50

4.1.1 Summary of Experimental Results 52

4.1.2 Organization of the Chapter 52

4.2 Overview of Priority Queues . 53

4.2.1 Internal-Memory Priority Queues 53

4.2.2 Cache-aware Priority Queues 55

4.2.3 Cache-oblivious Buffer Heap and Auxiliary Buffer Heap . . . 56

4.3 Choice of Algorithms for the SSSP problem 58

4.4 Experimental Set-up . 60

4.5 Experimental Results . 62

4.5.1 In-Core Results for Gn,m . 63

4.5.2 In-Core Results for Power-Law Graphs 68

4.5.3 Out-of-Core Results for Gn,m 70

xi

4.5.4 Performance on Real-World Graphs 70

Chapter 5 Cache-efficient Unweighted and Bounded-weight APSP 73

5.1 Introduction . 74

5.1.1 Cache-aware APSP Algorithms 74

5.1.2 Cache-oblivious APSP Algorithms 75

5.1.3 Our Results . 75

5.1.4 Organization of the Chapter 77

5.2 Cache-oblivious APSP and Diameter for Unweighted Undirected Graphs 77

5.2.1 Munagala and Ranade’s Cache-oblivious BFS Algorithm . . . 77

5.2.2 Cache-oblivious APSP for Unweighted Undirected Graphs . . 78

5.2.3 Cache-oblivious Unweighted Diameter for Undirected Graphs 81

5.3 Cache-aware Approximate APSP for Unweighted Undirected Graphs 81

5.3.1 Dor et al.’s Approximate AP-BFS for Flat-Memory Model . . 82

5.3.2 Our Cache-efficient Algorithm 82

5.3.3 Cache-efficient Graph Decomposition 83

5.3.4 Replacing SSSP with BFS for Cache-efficiency 87

5.3.5 Cache-efficient Approximate AP-BFS 90

5.4 Cache-aware APSP for Bounded-weight Undirected Graphs 96

5.4.1 Meyer & Zeh’s Bounded-weight Undirected SSSP Algorithm . 96

5.4.2 Our Bounded-weight Undirected APSP Algorithm 97

5.4.3 An Improved Algorithm . 99

5.5 Conclusion . 100

Chapter 6 The Cache-oblivious Gaussian Elimination Paradigm 102

6.1 Introduction . 103

6.1.1 The Gaussian Elimination Paradigm (GEP) 104

6.1.2 Related Work . 106

6.1.3 Organization of the Chapter 106

6.2 I-GEP: In-place Cache-oblivious Solution to Some GEP Instances . . 107

6.2.1 Properties of I-GEP . 108

6.2.2 Cache Complexity . 113

6.2.3 Time and Space Complexities 115

6.2.4 Static Pruning of I-GEP . 115

xii

6.3 Applications of Cache-oblivious I-GEP 117

6.3.1 Gaussian Elimination without Pivoting 118

6.3.2 Matrix Multiplication . 120

6.3.3 Path Computations Over a Closed Semiring 120

6.4 C-GEP: Extension of I-GEP to Full Generality 122

6.4.1 A Closer Look at I-GEP . 122

6.4.2 C-GEP using 4n2 Additional Space 123

6.4.3 Reducing the Additional Space 127

6.5 Parallel I-GEP and C-GEP . 128

6.5.1 Cache Complexity . 130

6.6 Cache-oblivious GEP and Compiler Optimization 133

6.7 An Additional Application of Cache-oblivious I-GEP 135

6.7.1 Simple Dynamic Programs . 135

6.8 Conclusion . 140

Chapter 7 Experimental Results: Gaussian Elimination Paradigm 142

7.1 Introduction . 142

7.1.1 Organization of the Chapter 143

7.2 Experimental Setup . 143

7.3 Experimental Results . 144

7.3.1 GEP, I-GEP and C-GEP for APSP 144

7.3.2 Comparison of I-GEP and BLAS Routines 146

7.3.3 Multithreaded I-GEP . 150

7.4 Discussion . 152

Chapter 8 Cache-oblivious Dynamic Programs for Bioinformatics 154

8.1 Introduction . 155

8.1.1 Our Results . 155

8.1.2 Organization of the Chapter 158

8.2 Cache-oblivious Dynamic Programs with Local Dependencies 158

8.2.1 Cache-oblivious Algorithm for Solving Recurrence 8.2.3 in 3D 161

8.2.2 I/O Lower Bound . 166

8.2.3 Parallel Implementation of the Cache-oblivious Framework . . 167

8.2.4 Applications of the Cache-oblivious Framework 170

xiii

8.3 Cache-oblivious Dynamic Programs with Non-local Dependencies . . 179

8.3.1 The Gap Problem . 179

8.3.2 RNA Secondary Structure Prediction without Pseudoknots . 185

8.4 Conclusion . 185

Chapter 9 Experiments: Cache-oblivious DP for Bioinformatics 187

9.1 Introduction . 187

9.1.1 Organization of the Chapter 188

9.2 Experimental Setup . 188

9.3 Experimental Results . 189

9.3.1 Pairwise Global Sequence Alignment with Affine Gap Penalty 189

9.3.2 Median of Three Sequences 193

9.3.3 RNA Secondary Structure Prediction with Pseudoknots . . . 198

9.4 Discussion . 200

Chapter 10 Conclusion 203

10.1 Summary . 203

10.2 Future Work . 205

Appendix A The Cache-oblivious Tournament Tree 208

Appendix B Implementations of Dijkstra’s SSSP Algorithm 212

Appendix C Formal Definitions of δ and π 218

Appendix D Cache-oblivious Algorithm for Recurrence 8.2.3 in 2D 221

Bibliography 224

Vita 238

xiv

List of Tables

3.1 Cache complexities of priority queues with Decrease-Keys 23

3.2 Cache complexities of slim priority queues with Decrease-Keys 23

3.3 Cache complexities of SSSP & APSP algorithms on weighted graphs 25

4.1 I/O bounds for priority queues with Decrease-Keys 53

4.2 I/O bounds for priority queues without Decrease-Keys 53

4.3 Different implementations of Dijkstra’s algorithm 59

4.4 Running times of Dijkstra implementations on US road networks . . 71

5.1 Cache-miss bounds for APSP problems on undirected graphs 76

6.1 States of relevant cells immediately before updates by GEP/I-GEP . 122

6.2 Properties of supernodes in C(G) . 132

7.1 Machines used for GEP experiments 144

9.1 Machines used for DP experiments 188

9.2 Pairwise sequence alignment algorithms used in our experiments . . . 189

9.3 Performance of pairwise alignment algorithms on CFTR DNA seqs . 191

9.4 Median algorithms used in our experiments 193

9.5 Performance of median algorithms on 16S bacterial rDNA seqs . . . 196

9.6 RNA secondary structure prediction algorithms in our experiments . 199

9.7 RNA secondary structure prediction on 16S rRNA sequences 201

B.1 I/Os for accessing the graph by different Dijkstra implementations . 215

B.2 Number of priority queue ops performed by Dijkstra implementations 216

xv

List of Figures

4.1 In-core: Dijkstra implementations on Gn,m with fixed avg. degree . . 64

4.2 In-core: priority queue operations on Gn,m with fixed avg. degree . . 65

4.3 In-core: Dijkstra implementations on Gn,m with fixed m 66

4.4 In-core: Dijkstra implementations on power-law graphs 67

4.5 Out-of-core: Dijkstra implementations on Gn,m with fixed m 69

5.1 Directed unweighted edges replacing undirected weighted edges of Gi(u) 88

6.1 The triply nested GEP loop . 105

6.2 Cache-oblivious I-GEP . 105

6.3 Processing order of quadrants of input matrix by I-GEP 105

6.4 Evaluating π(x, z) and π(z, x) for x > z 109

6.5 Evaluating δ(x, y, z) . 111

6.6 Cache-oblivious I-GEP reproduced from Figure 6.2 115

6.7 Functions recursively called in Figure 6.6 116

6.8 Function specific pre-conditions for Figure 6.2 116

6.9 Relative positions of relevant cells in different instantiations of I-GEP 116

6.10 A more general form of Gaussian elimination without pivoting 119

6.11 Matrix multiplication and its more general form 120

6.12 Computation of path costs over a closed semiring 121

6.13 C-GEP: A fully general cache-oblivious implementation of GEP . . . 124

6.14 Multithreaded I-GEP . 129

6.15 Traditional and tiled matrix multiplication 134

6.16 The iterative simple DP algorithm 136

6.17 Two simple variants of GEP. 141

xvi

7.1 Out-of-core: GEP, I-GEP and C-GEP 145

7.2 In-core: I-GEP and GEP implementations of Floyd-Warshall’s APSP 146

7.3 In-core: I-GEP and C-GEP . 147

7.4 In-core: I-GEP and GotoBLAS for Gaussian elimination w/o pivoting 148

7.5 In-core: I-GEP and native BLAS for square matrix multiplication . . 149

7.6 In-core: performance of multithreaded I-GEP 151

8.1 Cache-oblivious evaluation of recurrence 8.2.3 in 3D w/o traceback . 162

8.2 Cache-oblivious evaluation of recurrence 8.2.3 in 3D with traceback . 163

8.3 I/O lower bound for DP implementing recurrence 8.2.3 166

8.4 Cache-oblivious algorithm for the gap problem 180

9.1 Performance of pairwise alignment algorithms on random sequences . 190

9.2 Cache-misses by pairwise alignment algorithms on random seqs . . . 191

9.3 Performance of multithreaded cache-oblivious pairwise alignment . . 192

9.4 Performance of median algorithms on random sequences 195

9.5 Affects of space-reduction and cache-efficiency on Knudsen’s algorithm 197

9.6 Performance of multithreaded cache-oblivious median algorithm . . . 198

9.7 RNA secondary structure prediction on random sequences 200

B.1 Dijkstra’s SSSP implementations with and without Decrease-Keys . . 214

D.1 Cache-oblivious evaluatiion of recurrence 8.2.3 in 2D w/o traceback . 222

D.2 Cache-oblivious evaluation of recurrence 8.2.3 in 2D with traceback . 223

xvii

Chapter 1

Introduction

Mama says they was magic shoes.

They could take me anywhere.

(Forrest Gump)

Massive datasets appear in a wide range of applications including database systems

[76, 105], spatial databases and geographic information systems (GIS) [38, 68, 86,

108], computational biology [67, 129, 130], VLSI design [14], physics and geophysics

[36, 125], communications [12, 26], computer graphics and virtual reality [49, 108],

and meteorology [36]. Efficient processing of these datasets requires a computer

with a fast memory large enough to hold the entire input. For fundamental physical

reasons, however, memory cannot be fast and large at the same time (see, e.g.,

[110]). Instead, in modern computers large access latencies of large memories are

amortized by organizing the memory in a hierarchy with registers in the lowest level

followed by several levels of caches (L1, L2 and possibly L3), RAM, and disk, with

the access time and size of each level increasing with its depth, and using block

transfers between adjacent levels.

An algorithm that performs well on memory hierarchies typically has the fea-

ture that whenever a block is brought into a faster level of memory it contains as

much useful data as possible (‘spatial locality’), and also that as much useful work

as possible is performed on this data before it is written back to a slower level (‘tem-

poral locality’). Caching and prefetching heuristics have been developed in order to

1

reduce the number of cache misses1 on this hierarchy. However, these methods are

general-purpose in nature and thus in general, cannot take full advantage of the lo-

cality inherent in an algorithm. Therefore, an algorithm must rearrange its memory

accesses explicitly in order to maximize its cache performance.

The presence of caches with larger access latencies deeper in the memory

hierarchy motivates the use of cache-efficient algorithms for all input sizes. Another

motivation comes from the emergence of a wide variety of handheld devices like

mobile phones, PDAs and handheld computers, GPS navigation systems, gaming

consoles and media players. Some of these devices (e.g., mobile phones, PDAs etc.)

are designed as multi-purpose devices and they run all sorts of applications. These

multi-purpose devices now outsell laptop/desktop computers combined [69]. How-

ever, since caches occupy valuable chip-area, these devices tend to have very small

caches (i.e., DRAM and RAM). Another reason for having small caches is to keep

the price of the device low and thus make it affordable for the mass population (e.g.,

cell phones). Therefore, algorithms running on these devices must be cache-efficient

even if the dataset is small.

1.1 The Two-level I/O Model

The two-level I/O model [3] is a simple abstraction of the memory hierarchy that

consists of a cache (or internal memory) of size M , and an arbitrarily large main

memory (or external memory) partitioned into blocks of size B. An algorithm is

said to have caused a cache-miss (or page fault) if it references a block that does

not reside in the cache and must be fetched from the main memory. The cache

complexity (or I/O complexity) of an algorithm is measured in terms of the number

of cache-misses it incurs and thus the number of block transfers or I/O operations

it causes. This is a simple model that successfully captures the situation where I/O

operations between two levels of the memory hierarchy dominate the running time

of the algorithm.

Two basic I/O bounds are known for this model: the number of I/Os needed

to read N contiguous data items from external memory is scan(N) = Θ
(
1 + N

B

)

and that for sorting N data items is sort(N) = Θ
(
1 + N

B
+ N

B
log M

B

N
B

)
[3]. For

1A cache miss refers to the situation where the referenced block does not reside in the current
memory level and must be fetched from a higher level.

2

most realistic values of M , B and N , scan(N) < sort(N)≪ N . Further, permuting

N elements according to a given permutation takes Θ (min(N, sort(N))) I/Os [3]

which is Θ (sort(N)) for all practical values of N , M and B. This represents a

fundamental difference between the flat memory (RAM) and I/O models, since N

elements can be permuted in Θ (N) time in the RAM model whereas sorting them

requires Θ (N log N) time.

A major disadvantage of the two-level model is that algorithms often crucially

depend on the knowledge of the parameters of two particular levels of the memory

hierarchy and thus do not adapt well when the parameters change. Thus these

algorithms cannot simultaneously adapt to all levels of a multi-level hierarchy, and

in order to run efficiently on other machines they must have access to the cache

parameters of the new system which are not always easily available. Moreover,

modern operating systems typically run several concurrent threads that share the

same cache, and hence the entire cache is not always available to any particular

application and the size of the available cache can change during runtime without

the knowledge of the application. A similar situation arises at the hardware level

when multicore processors with shared caches are used.

1.2 The Ideal-cache Model & Cache-oblivious Algorithms

An algorithm is cache-oblivious if it contains no variables dependent on hardware

parameters, such as cache size M and block transfer size B, that need to be tuned in

order to optimize its cache complexity [52]. The ideal-cache model [52] is an extension

of the two-level I/O model with the additional feature that algorithms remain cache-

oblivious. This seemingly simple extension has surprisingly powerful consequences.

One consequence is that since the analysis of an algorithm in this model holds for

any memory and block size, it holds for any two adjacent levels of a multi-level

memory hierarchy [52]. Thus by reasoning about a simple two-level memory model

we can, in fact, prove results for an arbitrary multi-level memory hierarchy. Another

consequence is that the resulting algorithms are flexible and portable since they do

not need to be tuned to cache parameters that are not always easily available.

This model makes the following four assumptions.

1. Optimal Replacement. Assumes an optimal offline cache replacement policy

– the cache block to be accessed furthest in the future is chosen for replacement.

3

2. Exactly Two Levels of Memory. Assumes that there are exactly two mem-

ory levels as in the two-level I/O model.

3. Automatic Replacement. Assumes that whenever a data item that is

not stored in the internal memory is requested, the external memory block

containing that item is automatically transferred to internal memory by the

OS/hardware, and the algorithm designer need not worry about it while de-

signing the algorithm.

4. Full Associativity. Assumes that when a block is fetched from the external

memory it can be placed anywhere in the internal memory.

While assumption 1 is practically unrealizable, LRU and FIFO, the cache replace-

ment policies mostly used in practice, allow for a constant factor approximation of

the optimal strategy at the cost of only a constant factor wastage of the cache space

[113]. Assumption 2 simplifies the model, but can be effectively removed by making

several realistic assumptions about the memory hierarchy. Firstly, memory levels are

assumed to satisfy the inclusion property – level i stores only a subset of the elements

stored in level i + 1, where level 1 is the level nearest to the CPU. Secondly, the size

of level i + 1 cache is assumed to be strictly larger than that of level i cache. While

assumption 3 seems reasonable, assumption 4 does not, since in practice, caches are

either direct-mapped2 or have very limited associativity3 such as 2 or 4, and usually

not more than 16. But it has been shown in [52] that assumptions 3 and 4 can

be efficiently implemented in software by using LRU cache replacement based on

2-universal hashing.

Cache-oblivious algorithms sometimes require a tall cache (i.e., require that

cache size, M = Ω
(
B2
)
, where B is the block size) for cache-efficiency, which is not

a severe restriction since most practical caches are tall.

The scanning and sorting bounds (scan(N) and sort(N)) for the two-level

I/O model (see Section 1.1) continue to hold for the ideal-cache model [52]. However,

a tall cache is required for the sorting bound to hold. The optimal Θ (min(N, sort(N)))

bound for permuting N elements in the two-level I/O model cannot be achieved in

2In direct-mapped caches each main-memory block can only be placed at a fixed location in the
cache.

3In a c-way set-associative cache each block can be placed only at a fixed set of c locations in
the cache.

4

the ideal-cache model [23]. Permutation in this model requires either O (sort(N))

or O (N) block transfers.

1.3 Scope of the Dissertation and Our Contributions

The central theme of this dissertation is the development of cache-efficient and cache-

oblivious algorithms and data structures for the following three problem domains.

(i) Graph problems,

(ii) GEP (Gaussian elimination paradigm) problems (e.g., path computations over

closed semirings, Gaussian elimination without pivoting, etc.), and

(iii) Problems with dynamic programming algorithms.

Among graph problems our emphasis is on shortest path problems, and for com-

putationally expensive GEP and dynamic programming problems our goal is to de-

sign parallel cache-oblivious algorithms whenever feasible. In addition to producing

theoretical results, we perform extensive experimental evaluation of our algorithms

against existing algorithms.

1.3.1 Cache-efficient Graph Algorithms & Data Structures

Massive graphs arise in a wide variety of applications involving huge data sets.

One example of huge data sets is AT&T’s phone-record database with an estimated

growth of 20 terabytes a year [12, 26]. Besides using the data for billing purposes

researchers would like to use it for understanding the network usage better and

thus enabling the carriers to optimize their operations. For this purpose the data

is often viewed as a massive directed multigraph with the telephone numbers as the

nodes, and phone calls representing directed edges connecting nodes. The edges are

weighted by the time and duration of the corresponding calls.

The hyperlinked landscape of the World Wide Web is also represented by a

massive digraph with web pages as nodes and hyperlinks as edges. The number of

nodes in this graph (known as the Web Graph) is in the order of billions at present,

and is growing rapidly with time. Diameter, and connected and strongly connected

components of this graph represent meaningful entities, and this graph is also useful

for searching, browsing and mining the web.

5

Massive graphs also arise in Geographic Information Systems (GIS), and many

common GIS problems can be formulated as standard graph problems [12]. The

most commonly used GIS package, Arc/Info [9], contains functions for computing

DFS, BSF, and minimum spanning trees, and also shortest paths and connected

components.

Algorithms that handle graphs too large to fit in internal-memory must ex-

ploit the locality of data and computation in order to reduce costly page-faults. Since

disks are far too slow compared to RAM, I/O-efficient algorithms must be used in

order to ensure that the applications produce results in reasonable time.

In addition to applications that work on massive graphs, new graph appli-

cations are now emerging that run on small-memory devices. Examples of such

devices include handheld GPS navigation systems and modern portable gaming con-

soles. Not only do these devices have limited memory (e.g., SONY PSP has only 32

MB RAM), they must also limit power dissipated due to cache misses. Hence, these

devices need cache-efficient algorithms even for graphs of moderate size.

Our Results.

In the initial half of the thesis (i.e., Chapters 3 – 5) we consider shortest path prob-

lems on graphs – both single-source and all-pairs. These computational problems

typically have high degree of spatial locality, but very little temporal locality. Con-

sequently, our algorithms and data structures for these problems extensively use

scanning and sorting primitives for exploiting spatial locality. We attempt to solve

two major problems encountered in cache-efficient and cache-oblivious shortest path

computation: (i) lack of cache-oblivious priority queues with Decrease-Keys, and

(ii) unstructured accesses to adjacency lists of the input graph.

We begin with the introduction of the buffer heap (in Chapter 3) – the first

cache-oblivious priority queue supporting Decrease-Key operations and matching

the performance bounds of its cache-aware counterpart. A buffer heap supports

Delete, Delete-Min and Decrease-Key operations in O
(

1
B

log2
N
M

)
amortized cache-

misses each, where N is the number of items in the data structure, B is the block

transfer size, and M is the size of the cache. We use this data structure to ob-

tain the first cache-oblivious single-source shortest path algorithms for both di-

rected and undirected graphs with general edge-weights. These two algorithms incur

6

O
((

n + m
B

)
· log2

n
B

)
and O

(
n + m

B
log2

n
M

)
cache-misses, respectively, where n is

the number of nodes and m is the number of edges in the graph. Both algorithms

match the performance bounds of their best cache-aware counterparts. We also in-

troduce the notion of a ‘slim data structure’ in which only a very small portion of

the data structure can be retained in the cache between data structural operations.

We show that buffer heaps in this ‘slim’ setting can be used to obtain an all-pairs

shortest path algorithm with improved cache performance for graphs with arbitrary

edge-weights.

In Chapter 4 we present the results of an experimental study on how cache-

efficient priority queues improve the performance of some shortest path algorithms.

We consider both in-core and out-of-core computations. Our experimental results

suggest that shortest path computation with a light-weight version of our cache-

oblivious buffer heap is often faster than that with highly optimized traditional

flat-memory priority queues even when the computation is in-core.

Next we consider the all-pairs shortest path (APSP) problem on unweighted

and bounded-weight undirected graphs (in Chapter 5). We use various techniques

to reduce unstructured accesses to adjacency lists, and consequently obtain APSP

algorithms with improved cache-miss bounds. We design the first cache-oblivious

APSP algorithm for unweighted graphs matching the cache complexity of its cache-

aware counterpart. On a graph with n nodes and m edges this algorithm incurs only

O (n · sort(m)) cache-misses, where sort(m) is the number of cache-misses incurred

while sorting m items. We also present the first cache-efficient approximate APSP

algorithms for unweighted graphs. Our exact APSP algorithm for bounded-weight

graphs is based on a hierarchical clustering technique, and it is the first non-trivial

cache-efficient algorithm for the problem.

1.3.2 The Cache-oblivious Gaussian Elimination Paradigm

We use the term GEP or the Gaussian Elimination Paradigm to refer to a class

of triply nested loops similar to the one in Gaussian elimination without pivoting.

Many important practical problems belong to this category including path compu-

tations over closed semirings [4] (e.g., Floyd-Warshall’s all-pairs shortest path [48],

transitive closure [128]), Gaussian elimination and LU decomposition without piv-

oting [37], and matrix multiplication. The all-pairs shortest path problem arises in

7

a wide range of application areas including network routing, distributed comput-

ing and robotics. Gaussian elimination without pivoting is used in the solution of

systems of linear equations and LU decomposition of symmetric positive-definite or

diagonally dominant real matrices [37]. Matrix multiplication has numerous practical

applications and is at the heart of scientific computing [59, 103, 116, 66, 102, 60].

All GEP problems have a high degree of both temporal and spatial locality,

and hence algorithms for these problems must exploit both types of locality for

efficient execution.

Our Results.

In Chapter 6 we present a general framework for efficient cache-oblivious execution

of problems in the Gaussian Elimination Paradigm. We show that several important

problems in this class (e.g, Gaussian elimination w/o pivoting, Floyd-Warshall’s

APSP, square matrix multiplication, etc.) can be solved in-place using our cache-

oblivious framework, and further with a modest amount of extra space our framework

can solve any GEP instance cache-efficiently. On input n×n matrices, our framework

performs O
(
n3
)

work and incurs O
(

n3

B
√

M

)
cache-misses, where M is the size of the

cache and B is the block transfer size. We also present a parallel implementation of

our framework that terminates in O
(

n3

p
+ n log2 n

)
parallel steps on p processors,

and provide scheduling policies for cache-efficient execution of this implementation

separately on parallel machines with distributed and shared caches. We discuss

potential application of our framework in optimizing compilers as a cache-oblivious

tiling technique.

In Chapter 7 we present extensive experimental results on our cache-oblivious

framework for GEP, which we believe is one of the first attempts in literature to

compare cache-oblivious code with high-performance industrial-strength cache-aware

code. We consider both in-core and out-of-core, sequential and parallel implementa-

tions of our framework, and compare our in-core sequential algorithms for square ma-

trix multiplication and Gaussian elimination w/o pivoting with finely-tuned cache-

aware BLAS (Basic Linear Algebra Subprograms) code. The results indicate that

our cache-oblivious framework offers an attractive trade-off between efficiency and

portability.

8

1.3.3 Cache-oblivious Dynamic Programming

Dynamic programming (DP) [17, 114] is a powerful algorithmic technique which

when applicable, allows one to solve combinatorial problems over an exponential

search space in polynomial time and space. It is useful in a wide variety of applica-

tion areas including stochastic systems analysis, operations research, combinatorics

of discrete structures, biosequence analysis, flow problems, parsing of ambiguous lan-

guages etc. [58]. Dynamic programming is extensively used in biosequence analysis,

such as in protein homology search, gene structure prediction, motif search, analysis

of repetitive genomic elements, RNA secondary structure prediction, interpretation

of mass spectrometry data, etc. [67, 46, 16, 129]. In [46], a recent textbook on bio-

logical sequence analysis, the authors list 11 applications of dynamic programming

in bioinformatics in its introductory chapter with many more in chapters that follow.

Dynamic programming is based on two key ideas [45, 17]: (1) the principle of

optimality and (2) recursion on the principle of optimality. The principle of optimal-

ity states that an optimal solution to a problem contains within it optimal solutions

to subproblems. Recursion on the principle of optimality says that while the optimal

solution to a subproblem might not be known, it can be determined by applying the

principle of optimality on the subsequent subsubproblems recursively. The technique

is very similar to the divide-and-conquer strategy. Unlike the divide-and-conquer

strategy, however, dynamic programming is applicable when the subproblems are

not independent, i.e., when the subproblems share subsubproblems. A dynamic pro-

gramming algorithm avoids recomputing the solution to a subsubproblem every time

it is encountered by saving the solution to the subsubproblem in a table the first

time it is solved.

Standard implementations of most dynamic programming algorithms take full

advantage of the spatial locality of the data since they mostly perform sequential

read/write operations. These implementations, however, often fail to exploit the

temporal locality inherent in the recursive nature of the solution. Therefore, there

is room for significant improvement in the cache usage of these algorithms, and

consequently also their running times. Moreover, since these algorithms are often

quite expensive in terms of computation, parallel cache-efficient implementations of

these algorithms are often desirable.

9

Our Results.

In Chapter 8 we present a general cache-oblivious dynamic programming framework

that gives efficient cache-oblivious sequential and parallel algorithms for a number of

important dynamic programming problems in bioinformatics including optimal pair-

wise global sequence alignment and median of three sequences (both with affine gap

costs), and RNA secondary structure prediction with simple pseudoknots. For prob-

lems requiring solutions to d-dimensional recurrences (d = 2 for pairwise alignment,

and d = 3 for the median problem; see Chapter 8 for details), our cache-oblivious

algorithm performs O
(
nd
)

work, uses O
(
nd−1

)
space, incurs O

(
nd

BM
1

d−1

)
cache-

misses and terminates in O
(

nd

p
+ dn

)
parallel steps, where n is the length of each

input sequence, M is the size of the cache, B is the block transfer size, and p is

the number of parallel processors. Given an RNA sequence of length n, our algo-

rithm predicts an RNA secondary structure with simple pseudoknots in O
(
n4
)

work,

O
(
n2
)

space, O
(

n4

B
√

M

)
cache-misses and O

(
n4

p
+ n log2 n

)
parallel steps. We also

present cache-oblivious sequential and parallel algorithms for optimal pairwise align-

ment with general gap costs. Our sequential algorithm runs in O
(
n3
)

time and

O
(
n2
)

space, and incurs O
(

n3

B
√

M

)
cache-misses, while its parallel implementation

executes O
(

n3

p
+ nlog2 3

)
parallel steps. All our algorithms improve significantly

over the cache-efficiency of earlier algorithms, while matching the best-known time

complexity, and matching or improving the best-known space complexity of the

problem.

In Chapter 9 we perform extensive experimental evaluation of our cache-

oblivious algorithms for optimal pairwise sequence alignment, the median problem,

and RNA secondary structure prediction with simple pseudoknots. For the first two

problems we compare our algorithms with the best publicly available code written

by others, and conclude that our algorithms run faster than these software. Our

parallel algorithms show good speed-up as the number of processors increase.

1.4 Organization of the Dissertation

The rest of the dissertation is organized as follows. In Chapter 2 we describe known

results and the key issues we will address for each of the three problem domains we

consider in this thesis.

10

In Chapters 3 – 5 we present our results on cache-efficient graph algorithms

and data structures. Chapter 3 describes our theoretical results on cache-oblivious

priority queues and cache-efficient shortest path computation using our new pri-

ority queue data structure. Chapter 4 presents our experimental results on how

the cache-efficiency of priority queues affects the performance of some shortest path

algorithms. In Chapter 5 we describe several theoretical results on cache-efficient

all-pairs shortest path computation.

Chapter 6 presents our theoretical results on the cache-oblivious Gaussian

Elimination Paradigm (GEP), followed by Chapter 7 which contains our experimen-

tal results on GEP.

In Chapter 8 we present our cache-oblivious dynamic programming results,

and in Chapter 9 we include an experimental study on the performance of several

algorithms presented in Chapter 8.

Finally, in Chapter 10 we offer some concluding remarks.

11

Chapter 2

Background

The possession of knowledge does not kill

the sense of wonder and mystery.

There is always more mystery.

(Anais Nin)

In this chapter we put the results in this dissertation in context by providing a sur-

vey of major known results on cache-efficient graph algorithms and data structures,

the cache-oblivious Gaussian Elimination Paradigm, and cache-oblivious dynamic

programming problems. For each topic we also discuss the major issues we address

in subsequent chapters.

2.1 Cache-efficient Graph Algorithms and Data Struc-

tures

First we briefly describe the major known results on cache-efficient graph algorithms

and data structures. We then discuss the key problems encountered in designing

cache-efficient shortest path algorithms, some of which are addressed in Chapters 3

and 5.

12

2.1.1 Basic Notations & Definitions

By G = (V,E,w) we denote a (directed or undirected) graph with vertex set V ,

edge set E, and a non-negative real-valued weight function w over E. By n and m

we denote the size of V and E, respectively. We assume that E is given either as

an unordered sequence of edges or as an adjacency list. An unordered sequence of

edges can be converted to adjacency list format in O (sort(m)) I/Os using a sorting

step.

The SSSP Problem. The single-source shortest path (SSSP) problem is one of the

most fundamental and important combinatorial optimization problems from both a

theoretical and a practical point of view. Given a (directed or undirected) graph

G = (V,E,w), and a distinguished vertex s ∈ V , the SSSP problem seeks to find

a path of minimum total edge-weight from s to every reachable vertex v ∈ V . For

unweighted graphs this problem is also called the breadth-first search (BFS) problem.

The APSP Problem. Given a (directed or undirected) graph G = (V,E,w), the

all-pairs shortest path (APSP) problem seeks to find a path of minimum total edge-

weight between every pair of vertices in V . The diameter of G is the longest shortest

distance between any pair of vertices in G. For unweighted graphs the APSP problem

is also called the all-pairs breadth-first search (AP-BFS) problem.

Connected Components & Minimum Spanning Forest. Given an undirected

graph G = (V,E,w) and the connected components (CC) problem asks for an enu-

meration of maximal subsets of V such that for every pair of vertices u, v ∈ V there

is a path between u and v in G. In the minimum spanning forest (MSF) problem

the objective is to find a spanning forest of G with a minimum total edge weight.

2.1.2 Known Results

The solution of almost any graph problem involves somehow permuting the n vertices

and m edges of the graph, and hence the lower bound on permutation implies that

O (min(n, sort(n))) (which is Θ (sort(n)) for all practical cases; see Sections 1.1

and 1.2 in Chapter 1) is a general lower bound on the number of I/O operations

needed to solve most graph problems. Though in recent years considerable efforts

have been devoted to developing efficient graph algorithms for external memory (see

[77, 121, 21, 127] for recent surveys), not many of them are known to match the

13

lower bound. We summarize the most important results below. Recall that B is the

block transfer size and M is the size of the cache.

Cache-aware Results

The first work on external memory graph algorithms is due to Ullman and Yan-

nakakis [123], where they considered the I/O complexity of the transitive closure

problem.

Chiang et al. [31] considered a wide variety of graph problems for several of

which they obtained optimal I/O bounds. They developed the first cache-optimal

(matching the permutation lower bound) algorithm for list ranking (the problem

of sorting the elements in a linked list stored unordered on disk) which is the

most fundamental I/O graph problem. Using this algorithm and PRAM techniques

O (sort(n)) I/O algorithms can be developed for most problems on trees, such as

computing an Euler tour, breadth-first search (BFS), depth-first search (DFS), cen-

troid decomposition, and expression tree evaluation [31]. The best known external

DFS algorithm for directed graphs that uses O
(
n + mn

BM

)
I/Os, is also due to Chiang

et al. [31].

Arge [10] developed the buffer tree technique, and showed how to use this

technique to obtain a priority queue supporting Insert and Delete-Min operations in

O
(

1
B

logM
B

N
B

)
amortized I/Os each, where N is the number of operations performed

(or the total number of elements inserted into the queue).

Kumar & Schwabe [83] developed graph algorithms based on amortized data

structures for binary heaps and tournament trees. While their cache-efficient bi-

nary heap supports the same operations in the same I/O bounds as does the pri-

ority queue by Arge [10], their cache-efficient tournament tree also supports Update

(or Decrease-Key) operations. However, the tournament tree requires O
(

1
B

log2
N
B

)

amortized I/Os for each operation. Using cache-efficient tournament trees they de-

veloped the first and best known cache-efficient single-source shortest path (SSSP)

algorithm for undirected graphs requiring O
(
n + m

B
log2

m
B

)
I/Os. However, using

the technique in [31] for handling visited vertices, undirected SSSP can be solved in

O
(
n + mn

BM
+ sort(m)

)
I/Os.

Munagala & Ranade [92] gave improved algorithms for connectivity and BFS

in undirected graphs requiring O
(
sort(m) · log log nB

m

)
and O (n + sort(m)) I/Os

14

respectively. Later Arge et al. [12] extended this approach to compute MSF in

O
(
sort(m) · log log nB

m

)
I/Os.

Buchsbaum et al. [25] developed the buffered repository tree to obtain the best

known external DFS algorithm for directed graphs usingO
(
(n + m

B
) · log2

n
B

+ sort(m)
)

I/Os. Using a cache-efficient tournament tree [83] as the priority queue and a buffered

repository tree for remembering visited vertices directed SSSP can be solved in

O
(
(n + m

B
) · log2

n
B

+ sort(m)
)

which is weaker than the known upper bound for

undirected SSSP.

Mehlhorn & Meyer [88] reduced the I/O cost of accessing the adjacency lists

during an undirected BFS from O (n) to O
(√

mn
B

)
when m < nB, and later Meyer

& Zeh [89] obtained a slightly weaker result for undirected SSSP on graphs with

bounded edge-weights.

Cache-oblivious Results

Arge et al. [11] introduced the first cache-oblivious priority queue supporting Insert

and Delete-Min operations in optimal O
(

1
B

logM
B

N
B

)
I/Os each, where N is the

number of operations performed on the queue. Using this priority queue they solved

the list ranking problem cache-obliviously using O (sort(n)) I/Os which immediately

implies O (sort(n)) I/O cache-oblivious algorithms for tree problems such as the Eu-

ler tour, BFS, DFS, and centroid decomposition. They presented directed BFS and

DFS algorithms incurring O
(
(n + m

B
) · log2

n
B

+ sort(m)
)

I/Os each, undirected BFS

requiring O (n + sort(m)) I/Os, and undirected MSF algorithm with I/O complex-

ity O (min(n + sort(m), sort(m) · log log n)). All their algorithms match the cache

complexity of the best known cache-aware algorithms under tall cache assumption.

Later Brodal & Fagerberg [22] introduced another cache-oblivious priority queue

known as the Funnel Heap supporting the same operations in the same amortized

bounds as does the priority queue by Arge et al. [11].

2.1.3 Key Issues in Cache-efficient Shortest Path Computation

As pointed out in [77], the key problems encountered in developing cache-efficient

shortest path algorithms are: (a) lack of cache-efficient priority queues supporting

Decrease-Key operations, (b) unstructured indexed accesses to adjacency lists, and

(c) remembering visited vertices.

15

(a) Cache-efficient Priority Queue with Decrease-Keys. Virtually all inter-

nal memory SSSP algorithms work by maintaining an upper bound on the shortest

distance (a tentative distance) to every vertex from the source vertex and visiting

the vertices in a one-by-one fashion (or by groups) in non-decreasing order of tenta-

tive distances. The next vertex (or group of vertices) to be visited is the one with

the smallest tentative distance extracted from the set of unvisited vertices kept in

a priority queue Q. After a vertex (or a group of vertices) has been extracted from

Q each of its unvisited neighbors is either inserted into Q with a finite tentative

distance or gets its tentative distance updated if it already resides in Q. Therefore,

in addition to supporting Insert and Delete-Min operations, Q needs to support

efficient Decrease-Key operations.

Though the cache-aware tournament tree supports Decrease-Key operations

cache-efficiently, no such cache-oblivious data structure was known prior to our work

on cache-oblivious buffer heap (see Chapter 3).

(b) Unstructured Accesses to Adjacency Lists. Virtually all external memory

graph traversal (BFS, DFS, SSSP) algorithms require Θ
(
n + m

B

)
block transfers to

access the adjacency lists and this is a bottleneck for these algorithms. Though

this bound has been improved slightly for undirected graphs with unweighted edges

[88] and bounded-weight edges [89], improvement is achieved only for very sparse

graphs. However, no such results are known for directed graphs or graphs with

general edge-weights.

In Chapters 3 (Section 3.4.3) and 5 we use various techniques to reduce

unstructured accesses to adjacency lists for the APSP problem.

(c) Remembering Visited Vertices. Shortest path algorithms need to remember

the vertices whose shortest paths from the source have already been determined in or-

der to avoid recomputing the shortest paths to those vertices in future. In undirected

graphs this problem can be avoided by using an auxiliary priority queue [83, 77]. In

directed graphs keeping track of visited vertices costs O
(
n log n + m

B
log n

)
cache-

misses using a buffered repository tree (BRT) [25, 32]. The BRT structure main-

tains O (m) elements under the operations Insert and Extract which are supported

in O
(

1
B

log2 n
)

and O (log2 n) amortized cache-misses, respectively. An SSSP al-

gorithm performs n Extract and m Insert operations on this structure incurring

O (n log n) and O
(

m
B

log2 n
)

block transfers, respectively. The I/O cost of remem-

16

bering visited vertices is one of the major bottlenecks in shortest path computation

in directed graphs.

2.2 The Cache-oblivious Gaussian Elimination Paradigm

We discuss known cache-oblivious algorithms for problems in the Gaussian Elimi-

nation Paradigm (GEP). The key issues in designing cache-efficient algorithms for

GEP problems are similar to those arising during the design of cache-efficient dy-

namic programming algorithms and hence are discussed in Section 2.3.

2.2.1 Known Results

A cache-oblivious dynamic programming algorithm for Floyd-Warshall’s APSP al-

gorithm is given in [95] (also in [39]). The algorithm runs in O
(
n3
)

time and incurs

O
(

n3

B
√

M

)
cache misses. Experimental results show that on some architectures the

algorithm runs up to 10 times faster than the standard Floyd-Warshall algorithm

even when the entire input matrix fits into the RAM.

Though Gaussian elimination, LU decomposition and matrix multiplication

are not dynamic programming algorithms, these computations have structural simi-

larity to Floyd-Warshall’s APSP (see Chapter 6). Known cache-oblivious algorithms

for Gaussian elimination for solving systems of linear equations are based on LU

decomposition. In [134, 19] cache-oblivious algorithms performing O
(

n3

B
√

M

)
I/O

operations are given for LU decomposition without pivoting, while the algorithm in

[120] performs LU decomposition with partial pivoting within the same I/O bound.

These algorithms use matrix multiplication and solution of triangular linear systems

as subroutines.

AnO (mnp) time andO
(
m + n + p + mn+np+mp

B
+ mnp

B
√

M

)
I/O cache-oblivious

algorithm for multiplying an m× n matrix by an n× p matrix is given in [52].

Our major contribution in this area is a unified framework that gives efficient

cache-oblivious algorithms for all problems above and possibly many others (see

Chapter 6) typically matching the best performance bounds for the corresponding

problem.

17

2.3 Cache-oblivious Dynamic Programming

We first give a brief overview of known results on cache-oblivious dynamic program-

ming and then list the key issues one should address in designing these algorithms.

2.3.1 Known Results

In [30] anO
(
n3
)

time andO
(

n3

B
√

M

)
I/O cache-oblivious algorithm based on Valiant’s

context-free language recognition algorithm [124], is given for simple-DP that in-

cludes algorithms for RNA secondary structure prediction [78], matrix chain multi-

plication, optimal polygon triangulation and optimal binary search tree construction.

A similar algorithm for simple-DP is also given in [117], and in [118] the algorithm

is extended for cache-efficient execution on a multicore programming model based

on IBM Cyclops64.

The cache-oblivious stencil computation technique presented in [54] can be

used as a dynamic programming algorithm for computing the length of a longest

common subsequence of two sequences of length n each in O
(
n2
)

time, O (n) space

and O
(

n2

BM

)
I/Os. This method, however, does not compute the subsequence.

2.3.2 Key Issues

Two of the major issues in developing efficient cache-oblivious dynamic programming

algorithms are as follows. Both issues are addressed in Chapters 6 and 8.

(a) Exploiting Both Temporal and Spatial Locality. Standard implementa-

tions of dynamic programming algorithms often fully exploit the spatial locality of

data since they mostly perform repeated sequential read/write operations on the

dynamic programming table. On some architectures sequential scans receive good

support from prefetchers. However, scanning the entire table over and over again

means that no significant portion of the table is retained in the cache for reuse, i.e,

any temporal locality inherent in the computation is ignored. Therefore, significant

improvement in the cache usage of these algorithms can be achieved if the temporal

locality can be exploited without giving up on the spatial locality.

(b) Exploiting Parallelism with Cache-efficiency. Parallelization is often de-

sirable in order to cope with the high computational cost of dynamic programming

algorithms. An open question is how to achieve both parallelism and cache-efficiency

18

simultaneously. One must also take into account that unlike in the sequential set-

ting, caches can now be either distributed or shared, and different approaches might

be needed for handling these two types of caches. We discuss this issue in some more

detail in the next section.

2.3.3 Caches on Parallel Machines

Symmetric Multiprocessors or SMPs are one of the most common multiprocessor

computer architectures in use today. On an SMP two or more identical processors

are connected to a single shared cache or main memory. Now-a-days Chip Multipro-

cessors or CMPs are also becoming commonplace. On a CMP multiple processors or

cores are placed on a single chip, and each core is accompanied with its own on-chip

private L1 cache. These CMPs which are also known as multicores, also have a large

on-chip L2 cache shared among all processors.

On a parallel machine with a shared cache, a cache-miss occurs when a pro-

cessor reads or writes a data item that is not in the shared cache. In order to reduce

such cache-misses algorithms or scheduling policies must be designed in such a way

that processors executing in parallel share cache blocks as much as possible. In con-

trast, on a parallel machine with distributed or private caches, all processors working

in parallel should access disjoint sets of cache blocks in order to reduce cache-misses

caused by transferring blocks back and forth between private caches. Thus for good

cache performance on shared and distributed caches algorithms and schedulers need

to employ different techniques for data sharing. The situation becomes even more

complicated on CMPs if the goal is to reduce cache misses for both distributed (L1)

and shared (L2) caches. In Chapters 6 and 8 we focus on reducing cache-misses on

shared and distributed caches separately.

19

Chapter 3

Cache-oblivious Buffer Heap and

its Applications

The distance is nothing;

it is only the first step that is difficult.

(Marie Anne du Deffand)

In this chapter we present the buffer heap, a cache-oblivious priority queue that supports

Delete, Delete-Min, and Decrease-Key operations in O
(

1
B

log2
N
M

)
amortized block transfers

from main memory, where M and B are the (unknown) cache size and block-size, respec-

tively, and N is the number of elements in the queue. We assume that the Decrease-Key

operation only verifies that the element does not exist in the priority queue with a smaller

key value, and hence it also supports the Insert operation in the same amortized bound.

The amortized time bound for each operation is O (log N).

Using the buffer heap we present cache-oblivious algorithms for undirected and

directed single-source shortest path (SSSP) problems for graphs with non-negative real

edge-weights. On a graph with n vertices and m edges, our algorithm for the undi-

rected case performs O
(
n + m

B
log2

n
M

)
block transfers and for the directed case performs

O
((

n + m
B

)
· log2

n
B

)
block transfers. Running time of both algorithms is O

(
(m+n) · log n

)
.

For both priority queues with Decrease-Key operation, and for SSSP problems on

general graphs, our results give the first non-trivial cache-oblivious bounds. Our results,

though not known to be optimal, provide substantial improvements over known trivial

bounds.

We also introduce the notion of a slim data structure which captures the situation

when only a limited portion of the cache which we call a slim cache, is available to the data

20

structure to retain data between data structural operations. We show that a buffer heap au-

tomatically adapts to such an environment and supports all operations in O
(

1
λ

+ 1
B

log2
N
λ

)

amortized block transfers each when the size of the slim cache is λ. We use buffer heaps

in this setting to improve the cache complexity of the cache-aware all-pairs shortest path

(APSP) problem on weighted undirected graphs.

3.1 Introduction

The single-source shortest path (SSSP) and the all-pairs shortest path (APSP)

problems are among the most important combinatorial optimization problems with

numerous practical applications (see Chapter 1 for definitions). Under the tradi-

tional von Neumann Model of computation which assumes a single layer of memory

with uniform access cost, the SSSP problem on a directed graph can be solved

efficiently in O (m + n log n) time by Dijkstra’s algorithm [43] implemented using

a Fibonacci heap [51]. For undirected graphs the problem can also be solved in

O (mα(m,n) + n min(log n, log log ρ)) time [99], where ρ is the ratio of the maxi-

mum and the minimum edge-weights in G, and α(m,n) is a certain natural inverse

of Ackermann’s function that evaluates to a small constant for all practical values

of m and n. Faster algorithms exist for special classes of graphs and graphs with

restricted edge-weights. Efficient APSP algorithms have also been developed for this

model [136].

As explained in Chapter 1, modern computers with deep memory hierarchies

differ significantly from the original von Neumann architecture, and demand cache-

efficient algorithms.

3.1.1 Cache-aware Shortest Path Algorithms

In recent years there has been considerable research on developing cache-efficient

graph algorithms (see [127, 77] for recent surveys). Several cache-efficient SSSP algo-

rithms have been developed [31, 83, 77, 89]. As explained in Section 2.1.3 of Chapter

2, in addition to a mechanism to remember visited vertices, cache-efficient imple-

mentations of virtually all SSSP algorithms require cache-efficient priority queues

supporting Decrease-Key operations.

Major known SSSP results for the two-level I/O model are summarized in

Table 3.3 under the caption “Cache-aware Results”. Kumar & Schwabe [83] were the

21

first to develop a cache-efficient version of Dijkstra’s SSSP algorithm for undirected

graphs. They use a tournament tree as a priority queue and perform some extra

book-keeping using an auxiliary priority queue in order to handle visited vertices.

A cache-efficient tournament tree supports a sequence of k Delete, Delete-Min and

Decrease-Key operations in O
(

k
B

log2
n
M

)
block transfers leading to an SSSP algo-

rithm incurring O
(
n + m

B
log2

n
M

)
cache-misses. The phase approach used in [31] im-

plements a priority queue with Decrease-Keys indirectly and results in an undirected

SSSP algorithm that beats Kumar & Schwabe’s algorithm when n = O
(
M log2

n
M

)
,

i.e., the set of vertices is not too large compared to the size of the cache. In [89]

Meyer & Zeh developed another undirected SSSP algorithm that works on graphs

with real edge-weights, but its performance depends on ρ, the ratio of the largest

and the smallest edge-weights in the graph. This algorithm outperforms Kumar &

Schwabe’s algorithm for sparse graphs, i.e., when m = O
(

B
log2 ρ

· n
)
. This algorithm

uses a hierarchical decomposition technique to reduce random accesses to adjacency

lists, and a priority queue called the bucket heap that is specifically designed for this

purpose. The bucket heap supports a sequence of k Delete, Delete-Min (Batched-

Delete-Min) and Decrease-Key operations in O
(
sort(k) + k

B
log2 ρ

)
cache-misses.

For directed graphs the survey paper [127] mentions a cache complexity of

O
(
(n + m

B
) · log2

n
B

)
for SSSP using a tournament tree. Using the phase approach

directed SSSP can be solved in O
(
n + mn

BM
log2

n
B

)
block transfers [31, 77].

A straight-forward method of computing APSP is to simply run an SSSP

algorithm from each of the n vertices of the graph. Arge et al. [13] proposed a

cache-aware APSP algorithm for undirected graphs with general non-negative edge-

weights that performs O
(
n ·
(√

mn
B

log n + sort(m)
))

block transfers when m =

O
(

B
log n
· n
)
. They use a priority queue structure called the multi-tournament-tree

which is created by bundling together a number of cache-efficient tournament trees.

The use of this structure reduces unstructured accesses to adjacency lists at the

expense of increasing the cost of each priority queue operation.

3.1.2 Cache-oblivious Shortest Path Algorithms

The cache-oblivious priority queue introduced by Arge et al. [11] and the fun-

nel heap introduced by Brodal & Fagerberg [22] support Insert and Delete-Min in

amortized optimal O
(

1
B

log M
B

N
B

)
cache-misses, where N is the number of elements

22

in the queue, but they do not support Decrease-Keys. Prior to our work no non-

trivial cache-oblivious results were known for priority queue with Decrease-Keys or

for SSSP on graphs. Very recently, however, Allulli et al. [7] obtained a cache-

oblivious SSSP algorithm for undirected sparse graphs with bounded edge-weights

by extending the cache-aware algorithm in [89] which outperforms our algorithm

when m = O
(

B
log2 ρ

· n
)

and ρ = 2o(B), where ρ is the ratio of the largest and the

smallest edge-weights.

I/O Model Priority Queue Decrease-Key Delete Delete-Min

Cache-aware Tournament Tree [83] O
`

1
B

log2
N
M

´

Cache-oblivious
Buffer Heap (our result)

(see also [24])
O

`
1
B

log2
N
M

´

Table 3.1: Amortized cache complexities for priority queues with Decrease-

Keys. (N = number of items in the queue)

I/O Model Slim Priority Queue Decrease-Key Delete Delete-Min

Cache-aware

Slim Tournament Tree
ˆ
1 ≤ λ ≤ B

2

˜

(component of

multi-tournament-tree [13])

O
`

1
λ

log2 N
´

Cache-oblivious
Slim Buffer Heap [1 ≤ λ ≤M]

(our result)
O

`
1
λ

+ 1
B

log2
N
λ

´

Table 3.2: Amortized cache complexities for slim priority queues with

Decrease-Keys. (λ = slim cache size, N = # items)

3.1.3 Our Results

Majority of the results included in this chapter were presented in two conference

papers [32, 33].

We introduce the buffer heap, the first cache-oblivious priority queue to sup-

port Decrease-Key operations. Independently of our work a similar data structure

was also presented in [24]. The buffer heap matches the cache complexity of the

cache-aware tournament tree (see Table 3.1), and we use it to obtain the first cache-

oblivious SSSP algorithms for weighted undirected and directed graphs matching

23

the cache performance of their cache-aware counterparts (see Table 3.3). Our cache-

miss bounds for SSSP problems are not very impressive for sparse graphs, but they

do provide dramatic improvements for moderately dense graphs. For example, for

undirected graphs, if m ≥ nB

log2 (n
B)

our algorithm reduces the number of cache-misses

by a factor of B

log2 (n
B)

over the naïve method. For directed graphs, we obtain the

same improvement if m ≥ nB.

We also introduce the notion of a slim data structure. This notion captures

the scenario where only a limited portion of the cache is available to store data

from the data structure; it is assumed, however, that while executing an individual

operation of the data structure, the entire cache is available for the computation.

We describe and analyze the slim buffer heap which is a slim data structure based

on the buffer heap (see Table 3.2 for a comparison with the only other similar data

structure known), and use it to improve the cache performance of the cache-aware

APSP algorithm for undirected graphs with general non-negative edge-weights given

in [13] to O
(
n ·
(√

mn
B

+ sort(m)
))

when m = O
(

nB
log2 n

)
(see Table 3.3). Recall

that sort(m) is the cache complexity of sorting m data items. For general values of

m our algorithm performs O
(
n ·
(√

mn
B

+ m
B

log m
B

))
block transfers. We also believe

that the notion of a slim data structure is of independent interest.

In this chapter we show that the slim buffer heap can be made oblivious of

the slim cache size without sacrificing its performance. In fact, we show that when a

regular buffer heap (i.e., a buffer heap which is not restricted to using a slim cache)

is run in an environment that limits the amount λ of cache space available to it to

store data between data structural operations, it automatically adapts to this new

environment and matches the performance bounds of a slim buffer heap with a slim

cache of size λ.

3.1.4 Organization of the Chapter

In Section 3.2, we define a slim data structure. In Section 3.3, we present the

cache-oblivious buffer heap as a slim data structure, prove the correctness of its

implementation and analyze its cache and time complexities. In Section 3.4, we

discuss three major applications of buffer heap. In Sections 3.4.1 and 3.4.2 we use

the buffer heap to obtain cache-oblivious SSSP algorithms for weighted undirected

and directed graphs, respectively. In Section 3.4.3 we describe the application of

24

Problem Cache-aware Results Cache-oblivious Results

Weighted

Undirected SSSP

O
`
n + m

B
log2

n
M

´
[83]

O
`
n + mn

BM
+ sort(m)

´
[31, 77]

O
`p

mn
B

log2 ρ + sort(m + n) log2 log2
nB
m

´
[89]

O
`
n + m

B
log2

n
M

´

(our result)

(see also [24])

Weighted

Directed SSSP

O
``

n + m
B

´
· log2

n
B

´
[127]

O
`
n + mn

BM
log2

n
B

´
[31, 77]

O
``

n + m
B

´
· log2

n
B

´
ˆ
M = Ω

`
B2

´˜

(our result)

Weighted

Undirected APSP

O
`
n ·

`p
mn
B

log2 n + sort(m)
´´

[13]

O
`
n ·

`p
mn
B

+ sort(m)
´´

(our result)

O
`
n ·

`
n + m

B
log2

n
M

´´

(derived from our

undirected SSSP

result above)

Table 3.3: Cache complexities for SSSP and APSP problems on weighted graphs.
(n = |V |, m = |E|)

buffer heap in obtaining an improved cache-aware APSP algorithm for weighted

undirected graphs. Finally, we present some concluding remarks in Section 3.5.

3.2 Slim Data Structures

A slim data structure is a data structure with a fixed-size footprint in the cache.

The area in the cache that holds the footprint is called the slim cache. By DS(λ)

we denote a data structure DS, in which a portion of size Θ (λ) is kept in the slim

cache. We continue to assume the behavior of the two-level I/O model, namely

(a) the size of the cache is M and (b) data is transferred between the cache and

the main memory in blocks of size B. Thus 1 ≤ λ ≤ M ; and the data structural

operations must assume that the portion of the data structure that is not stored in

the slim cache is stored in a main memory divided into blocks of size B, and thus

accessing anything outside the slim cache may cause cache-misses. While executing

a data structural operation the operation can use all free cache space for temporary

25

computation, but after the operation completes only the data in the slim cache is

preserved for reuse by the next operation on the data structure.

Some existing data structures can be viewed trivially as slim data structures.

For example, Arge et al. [13] analyzed each component tournament tree of the multi-

tournament-tree as supporting Decrease-Key, Delete and Delete-Min operations in

O
(

1
λ

log N
)

amortized cache-misses each for 1 ≤ λ ≤ B
2 ; this can be viewed as a

slim data structure for this range of values for λ.

Although our main motivation behind introducing the notion of slim data

structures was to obtain the APSP result in Section 3.4.3, we believe that the need

for slim data structures could arise in other applications. A typical application

would be one in which a number of data structures need to be kept in the cache

simultaneously, and thus only a limited portion of the cache can be dedicated to

each data structure.

In the next section we present our cache-oblivious buffer heap, and analyze

its performance as a slim data structure.

3.3 The Buffer Heap

In this section we present the Buffer Heap, a cache-oblivious priority queue that

supports Delete, Delete-Min and Decrease-Key operations in O
(

1
B

log N
M

)
amortized

cache-misses each, where N is the number of items in the priority queue. A Delete(x)

operation deletes element x from the queue if it exists and a Delete-Min() operation

retrieves and deletes an element with the minimum key from the queue. A Decrease-

Key(x, kx) operation inserts the element x with key kx into the queue if x does not

already exist in the queue, otherwise it replaces the smallest key k′x of x in the queue

with kx provided kx < k′x, and deletes all remaining keys of x in the queue. For

simplicity of exposition, we assume that all keys in the data structure are distinct.

When analyzed as a slim data structure with a slim cache of size λ, we show

that a buffer heap supports each of its three operations in O
(

1
λ

+ 1
B

log2
N
λ

)
amor-

tized cache-misses. The buffer heap, however, remains oblivious of the parameter

λ; the external application using the data structure may choose to maintain a slim

cache, i.e., impose a restriction on the value of λ. When a buffer heap is restricted to

use a slim cache, we call it a Slim Buffer Heap and denote it by SBH(λ), otherwise

we call it a Regular Buffer Heap. Note that since a buffer heap is not aware of the ex-

26

istence of a slim cache, both types of buffer heap (slim and regular) have exactly the

same implementation, the only difference is in their analysis. A regular buffer heap

can be viewed as a slim buffer heap with a slim cache of size λ = Θ (M) = Ω (B).

A regular buffer heap matches the cache complexity of a tournament tree

[83], its only cache-aware counterpart that supports the same operations. It has

been shown in [13] that a slim version of the tournament tree (a component of the

multi-tournament-tree introduced in [13]) supports Delete, Delete-Min and Decrease-

Key operations in O
(

1
λ

log N
)

amortized cache-misses each when restricted to use

a slim cache of size λ ∈
[
1, B

2

]
. Hence, a slim buffer heap improves over the cache

complexity of a slim tournament tree.

3.3.1 Structure

A buffer heap on N items consists of r = 1 + ⌈log2 N⌉ levels. For 0 ≤ i ≤ r − 1,

level i consists of an element buffer Bi and an update buffer Ui. Each element in Bi

is of the form (x, kx), where x is the element id and kx is its key. Each update or

operation in Ui is augmented with a timestamp indicating the time of its insertion

into the data structure.

At any time, the following invariants are maintained:

Invariant 3.3.1.

(a) Each Bi (0 ≤ i < r) contains at most 2i elements.

(b) Each Ui (0 ≤ i < r) contains at most 2i updates.

Invariant 3.3.2.

(a) Key of every element in Bi (0 ≤ i < r − 1) is no larger than the key of

any element in Bi+1.

(b) All updates applicable to Bi (0 ≤ i < r−1) that are not yet applied, reside

in U0, U1, . . . , Ui.

Invariant 3.3.3.

(a) Elements in each Bi are kept sorted in ascending order by element id.

(b) Updates in each Ui are divided into (a constant number of) segments with

updates in each segment sorted in ascending order by element id and timestamp.

All buffers are initially empty.

27

3.3.2 Layout

The element buffers are stored in a stack SB with elements of Bi placed above

elements of Bj for all i < j. Elements of the same Bi occupy contiguous space in

the stack with an element (x1, k1) stored above another element (x2, k2) provided

x1 < x2. Similarly, update buffers are placed in another stack SU where updates in

any Ui are stored above those in all Uj with j > i. Updates in a single buffer occupy

a contiguous region in the stack. For 0 ≤ i ≤ r−1, the segments of Ui are stored one

above another in the stack, and updates in each segment are stored sorted from top

to bottom first by element id and then by timestamp. An array As of size r stores

information on the buffers. For 0 ≤ i ≤ r− 1, As[i] contains the number of elements

in Bi, and the number of segments in Ui along with the number of updates in each

segment.

The buffer heap uses O (N) space.

3.3.3 Operations

In this section we describe how Delete, Delete-Min and Decrease-Key operations are

implemented.

A Decrease-Key operation is performed by the Decrease-Key function (i.e.,

Function 3.3.1) which inserts it into U0 augmented with the current timestamp.

Further processing is deferred to the next Delete-Min operation except that the

Fix-U function may be called to restore invariant 3.3.1(b) (i.e., overflowing update

buffers) for the structure. A Delete operation is performed by the Delete function

(i.e., Function 3.3.2) in exactly the same way.

The Fix-U function uses a function called Apply-Updates. When called

with a parameter i, Apply-Updates (i.e., Function 3.3.5) applies the updates in Ui

on the elements of Bi, and empties Ui by moving the updates from Ui to Ui+1. It also

moves any overflowing elements from Bi to Ui+1 as Sink operations. A Sink(x, kx)

operation is used to move an element (x, kx) from Bi to Bi+1 through Ui+1.

The Fix-U function (i.e., Function 3.3.6) is called with parameter i when

Ui overflows. This function starts at level i and continues calling Apply-Updates

on each successive level until it reaches a level j such that Uj+1 does not over-

flow when Apply-Updates(j) completes execution. It collects all elements left

in Bi, Bi+2, . . . , Bj in a temporary buffer B′ and returns B′ leaving these element

28

buffers empty.

Every call to Fix-U is followed by a call to the Redistribute function (i.e.,

Function 3.3.7) which redistributes the elements returned by Fix-U to the shallowest

element buffers.

The Delete-Min function (i.e., Function 3.3.3) executes a Delete-Min op-

eration by first calling the Find-Min function to find an element with the minimum

key in the data structure, and then calling the Delete function to delete this ele-

ment.

The Find-Min function (i.e., Function 3.3.4) works by finding the shallowest

element buffer Bk that is left non-empty after applying the updates in Uk (by calling

Apply-Updates). The Fix-U function is then called to fix overflowing update

buffers, if any. The elements left in Bk along with the elements returned by Fix-U

are distributed to the shallowest element buffers by calling Redistribute.

After each operation the Reconstruct function (i.e., Function 3.3.8) is

called. This function reconstructs the entire data structure periodically. It remem-

bers the number of elements Ne in the structure immediately after the last recon-

struction, and keeps track of the number of new operations No performed since then.

Initially Ne is set to 0. When No = ⌊Ne
2 ⌋+ 1, the data structure is rebuilt by calling

Apply-Updates for each level, emptying the update buffers and distributing the

remaining elements to the shallowest possible levels. The objective of the function

is to ensure that the number of levels r in the structure is always within ±1 of

log2 N , where N is the current number of elements in the structure. This invariant

is maintained because r can decrease by at most 1 since the last reconstruction (this

happens if all ⌊Ne
2 ⌋ + 1 operations are Delete or Delete-Min operations), and can

increase by at most 1 (if all those operations are Decrease-Keys).

Correctness

We prove the correctness of all buffer heap operations below.

Lemma 3.3.1. Buffer heap correctly supports three external-memory priority queue

operations, namely, Decrease-Key, Delete and Delete-Min operations, on its ele-

ments.

Proof. We will prove that the Decrease-Key/Delete function correctly inserts

29

Function 3.3.1. Decrease-Key(x, kx)

[Inserts a Decrease-Key operation into the structure, that decreases the key of element x to kx. If
x does not already exist in the structure, this operation results in the insertion of x with key kx.]

1. insert the operation into U0 augmented with current timestamp maintaining inv. 3.3.3(b)

2. B′ ← ∅, i← 0 {list B′ stores elements returned by Fix-U}
Fix-U(i, B′) {fix Ui (i.e, restore invariant 3.3.1(b)) in case of overflow}

3. Redistribute(B′) {redistribute elements in B′ to shallowest element buffers}
4. Reconstruct() {reconstruct the data structure periodically}

Decrease-Key Ends

Function 3.3.2. Delete(x)

[Inserts a Delete operation into the structure, that deletes element x from the structure if exists.]

Same as Function 3.3.1 (Decrease-Key) above

Delete Ends

Function 3.3.3. Delete-Min() [Extracts element with the smallest key from the structure.]

1. (x, kx)← Find-Min() {find the element with the minimum key}
2. if kx 6= +∞ then Delete(x) {delete x from the data structure if nonempty}
3. return (x, kx)

Delete-Min Ends

Function 3.3.4. Find-Min() [Returns the element with the smallest key in the structure.]

1. i← −1

repeat

(i) i← i + 1

(ii) Apply-Updates(i) {apply the updates in Ui on the elements in Bi}
until (|Bi| > 0) ∨ (i = r − 1)

2. if |Bi| = 0 then {the data structure has become empty}
(i) (x, kx)← (_ , +∞), r ← 1 {will return +∞ as the minimum key}

3. else {the data structure is nonempty}
(i) B′ ← Bi, i← i + 1

Fix-U(i, B′) {fix Ui (i.e, restore invariant 3.3.1(b)) in case of overflow}
(ii) Redistribute(B′) {redistribute elements in B′ to shallowest element buffers}

(iii) (x, kx)← the element in B0 {B0 has the element with the minimum key}

4. return (x, kx)

Find-Min Ends

30

Function 3.3.5. Apply-Updates(i)

[Applies the updates in Ui on the elements in Bi, move remaining updates from Ui to Ui+1 if
i < r − 1, and after applying the updates moves overflowing elements from Bi to Ui+1 as Sinks.

Preconditions: All invariants hold except possibly 3.3.1(b) for Ui. All Uj , j ∈ [0, i− 1] are empty.

Postconditions: All invariants hold except possibly 3.3.1(b) for Ui+1. All Uj , j ∈ [0, i] are empty.]

1. merge the segments of Ui

2. if (|Bi| = 0) ∧ (i < r − 1) then {if i is not the last level and Bi is empty}
(i) empty Ui by moving the contents of Ui as a new segment of Ui+1

3. else

(i) if i = r − 1 then k← +∞ else k ← largest key in Bi

(ii) scan Bi and Ui simultaneously, and for each op ∈ Ui: {apply the updates in Ui on Bi}
(a) if op = Delete(x) then remove any element (x, kx) from Bi if exists

(b) if op = Decrease-Key(x, kx)/Sink(x, kx) then

- replace any (x, k′
x) ∈ Bi with (x, min(kx, k′

x))

- copy (x, kx) to Bi if no (x, k′
x) exists in Bi and kx ≤ k

(iii) if i < r − 1 then {move appropriate updates from Ui to Ui+1}
(a) copy each Decrease-Key(x, kx) in Ui, not applied in step 3(ii)(b) to Ui+1

(b) for each Delete(x) and each Decrease-Key(x, kx) in Ui that was applied in
step 3(ii)(b) copy a Delete(x) to Ui+1

(iv) if |Bi| > 2i then {restore invariant 3.3.1(a) if violated}
(a) if i = r − 1 then r ← r + 1

(b) keep the 2i elements with the smallest 2i keys in Bi and move each remaining
element (x, kx) to Ui+1 as Sink(x, kx)

(v) Ui ← ∅

Apply-Updates Ends

Function 3.3.6. Fix-U(i, B′)

[Fixes all overflowing update buffers in levels i and up. Update buffer Ui overflows if |Ui| > 2i (see
invariant 3.3.1(b)). For each overflowing Ui collects contents of Bi in B′ after applying Ui on Bi.

Preconditions: All invariants hold except invariant 3.3.1(b) for Ui. All Uj for 0 ≤ j < i are empty.

Postconditions: All invariants hold. If k is the largest index for which the while loop in line 1
was executed, then all Uj for 0 ≤ j ≤ k are empty. The contents of all Bj for i ≤ j ≤ k after
applying all applicable updates on them are collected in B′ leaving those buffers empty.]

1. while (i < r) ∧
`
|Ui| > 2i

´
do

(i) Apply-Updates(i) {apply the updates in Ui on the elements in Bi}
(ii) empty Bi by merging it with B′ {collect in B′ the elements remaining in Bi}

(iii) i← i + 1

Fix-U Ends

31

Function 3.3.7. Redistribute(B′)

[Distributes the elements in B′ to the shallowest element buffers maintaining invariants 3.3.1(a),
3.3.2(a) and 3.3.3(a).

Preconditions: All invariants hold. All Bi and Ui with 0 ≤ i ≤ k are empty, where k is the
smallest integer such that 2k+1 − 1 ≥ |B′|. No key value in the data structure is smaller than any
key value in B′.

Postconditions: All invariants hold. All update buffers remain unchanged, but
Sk

i=0Bi = B′.]

1. i← largest integer such that 2i − 1 < |B′|
2. while i ≥ 0 do

(i) move |B′|−2i +1 elements with the largest |B′|−2i +1 keys from B′ to Bi maintaining
invariant 3.3.3(a)

(ii) i← i− 1

Redistribute Ends

Function 3.3.8. Reconstruct()

[Reconstructs the data structure when No =
¨

Ne

2

˝
+ 1, where Ne is the number of elements in the

data structure immediately after the last reconstruction (Ne = 0 initially), and No is the number
of operations since the last reconstruction/initialization of the data structure.]

1. if No =
¨

Ne

2

˝
+ 1 then

(i) B′ ← ∅
for i← 0 to r − 1 do

(a) Apply-Updates(i) {apply the updates in Ui on the elements in Bi}
(b) merge Bi with B′ {collect in B′ the elements remaining in Bi}

Bi ← ∅
(ii) Redistribute(B′) {redistribute elements in B′ to shallowest element buffers}

(iii) r ← i, where i is the largest level such that |Bi| > 0

Reconstruct Ends

the corresponding Decrease-Key/Delete operation into the buffer heap, and the

Delete-Min function correctly extracts the element with the minimum key from

the buffer heap, while correctly applying all relevant Decrease-Key and Delete oper-

ations, and maintaining all invariants.

Before proving the correctness of the three functions mentioned above we

must establish the correctness of Apply-Updates and Fix-U which are called as

subroutines by all of them. The Apply-Updates function is at the core of all buffer

heap functionality.

32

Apply-Updates. When called with parameter i, Apply-Updates applies all up-

dates in Ui on the elements in Bi under the assumption that all invariants hold

initially except possibly invariant 3.3.1(b) for Ui. All Uj for 0 ≤ j < i are assumed

to be empty.

Observe that since invariant 3.3.2(b) holds initially and for 0 ≤ j < i, |Uj | = 0,

all updates applicable to Bi must reside in Ui. For each element x, this function

considers all updates in Ui that are applicable to x in increasing order of timestamp,

i.e., in the order in which they were inserted into the data structure. For each such

op ∈ Ui taken in order Apply-Updates does the following.

• op = Delete(x): If any (x, kx) exists in Bi it is deleted. If this element did

not exist in Bi initially then it must have been inserted into Bi by a Decrease-

Key(x, kx)/Sink(x, kx) operation in Ui earlier in the order. Irrespective of whether

this Delete(x) operation was able to delete an element from Bi or not, it is moved to

Ui+1 without changing its timestamp which ensures that any remaining occurrence

of x in the data structure inserted by operations with earlier timestamps is deleted.

• op = Decrease-Key(x, kx): If some (x, k′x) appears in Bi it is replaced with

(x,min (kx, k′x)). However, if element x does not appear in Bi, (x, kx) is inserted

into Bi provided kx ≤ k, where k is the largest key in Bi (k = +∞ if i is the

last level). Observe that if x initially existed in Bi but does not exist now, then

it must have been deleted by some Delete(x) operation in Ui earlier in the order.

Since each Decrease-Key(x, kx) operation that cannot be applied to Bi must have

kx > k, it must be applicable to some element buffer in Bi+1, Bi+2, . . . , Br−1, and

so it is moved to Ui+1 in order to ensure that it is applied to the appropriate ele-

ment buffer. For each Decrease-Key(x, kx) operation that is applied to Bi, we copy

a Delete(x) operation with the same timestamp to Ui+1 so that all occurrences of x

in Bi+1, Bi+2, . . . , Br−1 inserted by Decrease-Key(x, kx) /Sink(x, kx) operations with

earlier timestamps are deleted.

• op = Sink(x, kx): If some (x, k′x) appears in Bi it is replaced with (x,min (kx, k′x)),

otherwise (x, kx) is inserted into Bi. Since a Sink(x, kx) operation is used to move

element (x, kx) from Bi−1 to Bi, we will always have kx ≤ k, where k is the largest

key in Bi (k = +∞ if i is the last level), and so these updates are not applicable to

element buffers in higher levels, i.e., Apply-Updates does not need to carry these

updates to Ui+1.

33

Clearly, Apply-Updates never violates invariants 3.3.2 and 3.3.3. However,

it can violate invariant 3.3.1(a) if |Bi| > 2i holds after the updates. It fixes this

violation by keeping only the 2i elements with the smallest 2i keys in Bi and moving

the remaining elements to Ui+1 as Sink operations. Each such overflowing item

(x, kx) is moved to Ui+1 as a Sink(x, kx) operation with the current timestamp so

that existing operations in the data structure cannot prevent this operation from

inserting (x, kx) into Bi+1.

Thus after the function terminates all invariants continue to hold except

possibly invariant 3.3.1(b) for Ui+1. Since all updates from Ui are either moved to

Ui+1 or discarded, |Uj | = 0 holds for j ∈ [0, i].

Fix-U. This function is called with parameter i when Ui overflows. It makes the

same assumptions as Apply-Updates. Starting from level i it continues to call

Apply-Updates for each level until it reaches a level j such that Uj+1 does not

overflow when Apply-Updates(j) terminates, i.e., the data structure does not have

any overflowing update buffers and thus all invariants hold. For i ≤ k ≤ j, this

function collects in a temporary buffer B′ the contents of each Bj after applying Uj

to it leaving Bj empty, and returns B′. The correctness of Fix-U follows directly

from the correctness of Apply-Updates.

Decrease-Key(x, kx)/Delete(x). The function inserts the corresponding

Decrease-Key(x, kx) /Delete(x) operation into U0 augmented with the current times-

tamp so that it is treated by the data structure as the most recent operation. This

insertion does not violate any invariants except possibly invariant 3.3.1(b) for U0,

i.e., U0 overflows. This violation is fixed by calling Fix-U with parameter i = 0.

Upon return from Fix-U all invariants hold. The set B′ of elements returned by

Fix-U does not have any key value larger than any key in the data structure, and

Fix-U leaves enough empty element buffers at the shallowest possible levels so that

the elements in B′ can be distributed to those buffers without violating any invari-

ant. The Redistribute function performs this distribution. The Reconstruct

function reconstructs the entire data structure periodically. Thus the correctness

of Decrease-Key/Delete follows from the correctness of Fix-U, Redistribute

and Reconstruct. We have already argued the correctness of Fix-U. The proofs

of correctness of Redistribute and Reconstruct are straight-forward and hence

are omitted.

34

Delete-Min(). The Delete-Min function first calls Find-Min in order to find

the element with the minimum key in the entire data structure, and then calls

Delete in order to delete this element. We have already argued correctness of

Delete, and hence we only need to prove Find-Min correct.

Observe that if invariant 3.3.2 holds, the smallest level k such that Bk is non-

empty after applying all updates in U0, U1, . . . , Uk on Bk will contain the element

with the smallest key in the entire data structure. The Find-Min function builds on

this observation. Starting from level 0 it calls Apply-Updates for each level until

it reaches the first level k with |Bk| 6= 0 upon return from Apply-Updates. At this

point all invariants hold except possibly invariant 3.3.1(b) for Uk+1. The overflowing

Uk+1 is fixed by calling Fix-U for level k +1. All elements returned by Fix-U along

with the contents of Bk are distributed to the shallowest possible element buffers by

Redistribute. At this point all invariants hold, B0 contains exactly one element

and U0 is empty. Therefore, the element in B0 which is returned by Find-Min is,

indeed, the element with the smallest key. �

Cache Complexity

In this section we will view the buffer heap as a slim data structure with a slim

cache of size Θ (λ) and denote it by SBH(λ). The slim cache is assumed to be large

enough to store B0, B1, . . . , Bt and U0, U1, . . . , Ut+1, where t = log (λ + 1)− 1. The

remaining buffers reside in external memory.

The following two observations will be useful in our analyses.

Observation 3.3.1. For i ∈ [1, r − 1],

(a) Each Sink operation in Ui can be mapped to a unique Decrease-Key/Sink

operation that existed in Ui−1 but does not exist in Ui; and

(b) Ui cannot contain more Sink operations than Delete operations.

It is not difficult to see that Observation 3.3.1(a) is valid since each Sink op-

eration in Ui is generated by an element evicted from Bi−1 due to overflow, and each

eviction from Bi−1 can be viewed as caused by a unique Decrease-Key/Sink opera-

tion in Ui−1 that inserted an element into Bi−1. After the insertion the responsible

Decrease-Key/Sink operation ceases to exist: if it is a Decrease-Key operation it is

converted to a Delete operation, and if it is a Sink operation it is simply discarded.

35

The implication of Observation 3.3.1(a) is that every existing Sink operation in the

queue can be traced back to a unique Decrease-Key operation following a chain of

Sinks.

We know that the unique Decrease-Key operation responsible for the gener-

ation of any given Sink operation in Ui was converted to a Delete at the time it was

applied on an element buffer, and it is not difficult to see that this Delete operation

must now reside in Ui. Thus each Sink operation in Ui maps to a unique Delete

operation in Ui, and Observation 3.3.1(b) follows.

The following lemma which implies that merging the segments of Ui (in line

1 of Apply-Updates) incurs only O
(

1
B

)
amortized cache-misses per operation in

Ui, will be crucial in proving the cache-complexity of buffer heap operations.

Lemma 3.3.2. For 1 ≤ i ≤ r − 1, every empty Ui receives batches of updates at

most a constant number of times before Ui is applied on Bi and emptied again.

Proof. Since |U1| ≤ 2, U1 cannot receive more than two batches of updates before it

overflows, and thus the lemma holds for i = 1. Hence, for the rest of proof we will

assume i > 1.

Update buffer Ui receives at most two batches of updates whenever the ex-

ecution of a Decrease-Key/Delete/Delete-Min function reaches level i − 1.

If the execution continues and reaches level i then Ui is applied on Bi, and thus

emptied. If the execution terminates at level i − 1 but leaves Bi−1 empty, the next

time an execution reaches level i−1 will continue to level i and empty Ui. Therefore,

it suffices to consider only executions that terminate at level i − 1 and leave Bi−1

nonempty. Let E be such an execution. We will show that E increases the number of

updates in Ui by at least 2i−2 which implies that executions can terminate at level

i− 1 at most four times without emptying Bi−1 before Ui overflows (since |Ui| ≤ 2i)

and is thus emptied by Fix-U.

For j ∈ [0, r − 1], let uj and u′j denote the number of updates in Uj immedi-

ately before the start of E and immediately after the termination of E , respectively,

and let δuj = u′j − uj. For j ∈ [0, i − 1], we denote by u′′j the number of updates

in Uj immediately before E reaches level j (i.e., E has already pushed all updates

and overflowing elements from level j − 1 to level j if j > 0). Let b′j (j ∈ [0, r − 1])

be the number of elements in Bj immediately after E terminates. We will prove the

following.

36

(i > 1) ∧
(

b′i−1 6= 0
)
⇒
(

δui ≥ 2i−2
)

(3.3.1)

Now in order to establish equation 3.3.1 we consider the following two cases.

Case 1
(
u′′i−1 < 2i−1

)
: Let E ′ be the last execution before E that reached level i− 1

(and possibly continued to higher levels). Execution E has reached level i−1 because

all Bj , j ∈ [0, i − 2] have become empty which were left full by E ′. Hence, at least
∑i−2

j=0 2j = 2i−1−1 elements have been deleted from the structure since E ′ completed

execution, i.e., u′′i−1 includes at least 2i−1 − 1 ≥ 2i−2 Delete operations all of which

will be moved to Ui and thus δui ≥ 2i−2.

Case 2
(
u′′i−1 ≥ 2i−1

)
: Since an update buffer cannot contain more Sink operations

than Delete operations (see Observation 3.3.1(b)), u′′i−1 includes at least 2i−1

2 = 2i−2

Delete/Decrease-Key operations and thus δui ≥ 2i−2.

Hence, equation 3.3.1 and consequently the lemma follow. �

The following lemma gives the cache complexity of the operations supported by a

slim buffer heap:

Lemma 3.3.3. A slim buffer heap with a slim cache of size λ (i.e., SBH(λ)) sup-

ports Delete, Delete-Min and Decrease-Key operations in O
(

1
λ

+ 1
B

log2
N
λ

)
amor-

tized cache-misses each, where N is the number of elements in the structure.

Proof. For 0 ≤ i ≤ r − 1, let ui be the number of operations in Ui and let di be the

number of Decrease-Key operations among them. By ∆ we denote the number of

Decrease-Key, Delete and Delete-Min operations performed on the data structure

since its last construction/reconstruction. If H is the current state of SBH(λ), we

define the potential of H as follows:

Φ(H) =

r−1∑

i=0

(
1

B
· (r − i) +

2

λ
· 1

2max (i−t,0)

)
· (ui + di) +

(
r

B
+

1

λ

)
·∆,

where t = log (λ + 1)− 1.

As in the original I/O analysis of Buffer Heap operations in [32], the key

observation is that operations in update buffers always move downward and at each

37

level they participate in a constant number of scans. The first term under the sum-

mation in Φ(H) captures this flow of data. The main reason for adding the second

term is to ensure that after every Θ (λ) new operations enough potential is accumu-

lated to account for the extra cache-miss in accessing data outside the slim cache.

Also Φ(H) has been designed so that the potential gain due to a new Decrease-Key

operation is more than that for a new Delete operation. This uneven distribution

of potential is based on the observation that after a Decrease-Key operation has

been applied successfully on some Bi it turns into a Delete operation and possibly

generates an additional Sink operation in Ui+1 (see Observation 3.3.1 and its impli-

cations). The last term in Φ(H) gathers potentials for the next reconstruction of the

data structure.

We compute the amortized cost of each buffer heap operation below.

Reconstruction. Let us first consider the amortized cost of reconstruction (i.e., the

Reconstruct function). At the time of reconstruction ∆ =
⌊

Ne
2

⌋
+ 1, where Ne is

the number of elements in the structure immediately after the last reconstruction.

Thus
⌈

Ne
2

⌉
− 1 ≤ ∑r−1

i=0 |Bi| ≤
⌊

3Ne
2

⌋
+ 1 implying ∆ = Θ

(∑r−1
i=0 |Bi|

)
. If during

the reconstruction operation no buffer outside the slim cache is accessed then no

cache-miss occurs. Therefore, we will only consider the case in which some element

buffer above level t is accessed. In that case ∆ = Ω (λ).

Accessing the first data outside the slim cache incurs O (1) cache-misses. The

actual cache complexity of Apply-Updates when called with a parameter i in step

1(i)(a) of Reconstruct is O
(
|Ui|+|Bi|

B

)
= O

(
∆
B

)
, since the merge operations in

step 1 of Apply-Updates can be performed in O
(
|Ui|
B

)
cache-misses (implied by

Lemma 3.3.2); steps 2(i), 3(i), 3(ii) and 3(iii) involve a constant number of scans

of Bi and Ui incurring O
(
|Ui|+|Bi|

B

)
cache-misses; and step 3(iv) can be performed

in O
(
|Bi|
B

)
cache-misses using a linear I/O selection algorithm [104]. The buffer Bi

can be merged with B′ in step 1(i)(b) of Reconstruct in O
(
|Bi|+|B′|

B

)
= O

(
∆
B

)

cache-misses. Therefore, the actual cache complexity of step 1(i) of Reconstruct

is O
(
1 + r

B
·∆
)
. The actual cost of the Redistribute function in step 1(ii) of

Reconstruct isO
(

r
B
·∆
)

since the while loop in step 2 of Redistribute iterates

O (r) times and in each iteration scans each element of B′ at most a constant number

of times if a linear I/O selection algorithm is used. Thus the actual cache complexity

of reconstruction is O
(
1 + r

B
·∆
)
.

38

Since all update buffers are emptied during reconstruction and ∆ = Ω (λ),

the potential drop is Ω
((

1
λ

+ r
B

)
·∆
)

= Ω
(
1 + r

B
·∆
)
. Thus the amortized cost of

reconstruction is O
(
1 + r

B
·∆
)
− Ω

(
1 + r

B
·∆
)
≤ 0.

Decrease-Key/Delete. The increase in potential due to the insertion of a Decrease-

Key operation into U0 is 5
λ

+ 3
B
· r, and due to the insertion of a Delete operation

is 3
λ

+ 2
B
· r. If no element buffer of level higher than t is accessed in step 2 of the

Decrease-Key/Delete function then no cache-miss occurs (except in the Re-

construct function in step 4 whose amortized cost has already been shown to be

≤ 0). So we only need to consider the case when a Bi with i > t is accessed.

Let j be the largest value of i for which the while loop in step 1 of Fix-U was

executed. The actual cost of Apply-Updates when called with a parameter i in

step 1(i) of Fix-U isO
(
|Ui|+|Bi|

B

)
= O

(
2i

B

)
. The buffer Bi can be merged with B′ in

step 1(ii) of Fix-U in O
(
|Bi|+|B′|

B

)
= O

(
2i

B

)
cache-misses. Therefore, Fix-U incurs

at most
∑j

i=0O
(

2i

B

)
= O

(
2j

B

)
cache-misses in total. Also |B′| = O

(
2j
)

when Fix-

U returns. Hence, the actual number of cache-misses incurred by Redistribute

in step 3 of Decrease-Key/Delete for redistributing the elements in B′ is at

most O
(

2j

B

)
+
∑j

i=0O
(

2i

B

)
= O

(
2j

B

)
assuming a linear I/O selection algorithm

is used. Therefore, including the O (1) cache-misses incurred for accessing the first

data outside the slim cache, the actual cost of steps 1–3 of a Decrease-Key/Delete

operation is O
(
1 + 2j

B

)
.

Since Uj was full before Apply-Updates was called in step 1(i) of Fix-U,

the drop of potential due to the movement of these |Uj | ≥ 2j updates to Uj+1 is

Ω
(
2j ·

(
2
λ
· 1

2j+1−t + 1
B

))
= Ω

(
1 + 2j

B

)
. Therefore, this potential drop can compen-

sate for the actual cost of executing steps 1–3 of Decrease-Key/Delete.

Thus the amortized cost of a Decrease-Key/Delete operation is O
(

1
λ

+ r
B

)
=

O
(

1
λ

+ 1
B

log2 N
)
. But since accessing the first t levels incurs no cache-misses, the

amortized cost is O
(

1
λ

+ 1
B
{log2 N − t}

)
= O

(
1
λ

+ 1
B

log2
N
λ

)
.

Delete-Min. The Delete-Min function calls the Find-Min function followed by a

possible call to the Delete function. We have already shown that the amortized cost

of a Delete operation is O
(

1
λ

+ 1
B

log2
N
λ

)
. We will show below that the amortized

cost of finding the minumum is ≤ 0.

Let j be the largest value of i for which Apply-Updates(i) was called by

Find-Min. If |Uj | ≥ 2j immediately before Apply-Updates(j) was called (i.e.,

39

called inside Fix-U in step 3(i) of Find-Min), then the analysis is similar to that

for Decrease-Key/Delete operation. Hence, here we will only consider the case when

|Uj | < 2j , i.e., Apply-Updates(j) was called in step 1(ii) of Find-Min.

As before, we will assume that j > t. In this case, using an analysis similar

to that for Decrease-Key/Delete, one can show that the actual cache complexity of

Find-Min is O
(
1 + 2j

B

)
.

Let bj be the number of elements in Bj before Apply-Updates(j) was called.

Then in order to compute the potential drop we need to consider the following two

cases.

(i) bj > 0: Observe that in this case the last Redistribute function call that dis-

tributed elements from level j or higher must have left B0, B1, . . . , Bj−1 completely

full, and hence at least
∑j−1

i=02i = 2j − 1 elements have been deleted from the struc-

ture since last time Bj was accessed. Therefore, immediately before the current call

to Apply-Updates(j), Uj must have included at least 2j − 1 Delete operations, all

of which were moved to Uj+1. Hence, the potential drop due to the movement of

these operations is Ω
(
(2j − 1) ·

(
2
λ
· 1

2j+1−t + 1
B

))
= Ω

(
1 + 2j

B

)
.

(ii) bj = 0: This can only happen when j = r − 1. Observe that level j was created

due to an overflow in Bj−1 and the overflowing elements from Bj−1 was pushed into

Uj as Sink operations. Therefore, at least 2j−1 elements have been deleted from the

structure since this level was created, and as in case (i) this implies a potential drop

of Ω
(
1 + 2j

B

)
.

The amortized cost of Find-Min is thus O
(
1 + 2j

B

)
− Ω

(
1 + 2j

B

)
≤ 0.

Therefore, a Delete-Min operation incurs O
(

1
λ

+ 1
B

log2
N
λ

)
amortized cache-

misses. �

The following corollary follows by replacing λ with Θ (M) = Ω (B) in Lemma

3.3.3.

Corollary 3.3.1. A buffer heap supports Delete, Delete-Min and Decrease-Key op-

erations in O
(

1
B

log2
N
M

)
amortized cache-misses each using O(N) space, where N

is the current number of elements in the structure.

40

Time Complexity

The internal memory time complexities of slim buffer heap operations turn out to

be independent of M , B and the slim cache size λ, and are given by the following

lemma.

Lemma 3.3.4. A slim buffer heap supports Delete, Delete-Min and Decrease-Key

operations in O (log N) amortized time each, where N is the number of elements in

the structure.

Proof. The proof uses the following potential function:

Φ′(H) =
r−1∑

i=0

(r − i) · (ui + di) + r ·∆,

where H is the current state of the data structure, and ui, di and ∆ are as

defined in the proof of Lemma 3.3.3.

The rest of the proof is similar to that of Lemma 3.3.3 but is simpler, and

hence is omitted. �

Additional Priority Queue Operations

It is straight-forward to augment a slim buffer heap with the following priority queue

operations without changing its performance bounds.

Change-Key(x, kx). This operation changes the key value of element x to kx,

and is implemented by performing a Delete(x) operation immediately followed

by a Decrease-Key(x, kx) operation. If kx ≤ k′x, where k′x is the old key of x,

then the Delete operation acts simply like the Delete operation generated by the

Decrease-Key operation immediately after its application, and thus works correctly.

If kx > k′x, then the Delete operation first deletes x, after which the Decrease-

Key operation reinserts it with the new key value. Since the Delete operation has a

smaller timestamp than the Decrease-Key it cannot delete the new key value inserted

by the Decrease-Key, and hence works correctly.

Relative-Increase(x, δx). This operation increases the key value of x by δx if

it exists in the priority queue. It is implemented in the same way as the Change-

Key operation above, but the Decrease-Key operation does not know the key value

41

Function 3.4.1. Undirected-SSSP(G, w, s, d)

{Kumar & Schwabe’s algorithm [83] with buffer heap}
[Given an undirected graph G with vertex set V (each vertex is identified with a unique integer
in [1, |V |), edge set E, a weight function w : E → ℜ and a source vertex s ∈ V , this function
cache-obliviously computes the shortest distance from s to each vertex v ∈ V and stores it in d[v].]

1. perform the following initializations:

(i) Q← ∅, Q′ ← ∅ {Q and Q′ are both regular buffer heaps; Q contains items of

the form (x, kx) and Q′ contains items of the form ((x, y), kx,y)}
(ii) for each v ∈ V do d[v]← +∞

(iii) Decrease-Key(Q)(s, 0) {insert vertex s with key (i.e., distance) 0 into Q}

2. while Q 6= ∅ do

(i) (u, k)← Find-Min(Q)(), ((u′, v′), k′)← Find-Min(Q′)()

(ii) if k ≤ k′ then {a new shortest distance (k) has been found }
(a) Delete(Q)(u), d[u]← k {k is the shortest distance from s to u}
(b) for each (u, v) ∈ E do

Decrease-Key(Q)(v, d[u] + w(u, v)) {relax edge (u, v)}
Decrease-Key(Q′)((u, v), d[u] + w(u, v)) {guard for spurious update on u}

else {k > k′: shortest distance to u′ has already been computed}
(a) Delete(Q)(u′), Delete(Q′)((u′, v′)) {remove spurious vertex u′}

Undirected-SSSP Ends

kx initially and instead knows δx. However, as soon as the Delete(x) operation

preceding the Decrease-Key finds the element x, kx is updated to k′x + δx, where k′x
is the old key value of x discovered by the Delete. The Decrease-Key operation is

then applied as usual.

3.4 Buffer Heap Applications

In this section we discuss three major applications of buffer heap. In Sections 3.4.1

and 3.4.2 we consider cache-oblivious SSSP algorithms for weighted undirected and

directed graphs, respectively. These algorithms use regular buffer heaps, that is

they do not impose any restriction on the size of the slim cache (i.e., assume slim

cache size, λ = Θ (M) = Ω (B)). In Section 3.4.3 we discuss a cache-aware APSP

algorithm for weighted undirected graphs. This algorithm uses a data structure built

on slim buffer heaps.

42

3.4.1 Cache-oblivious Undirected SSSP

The cache-aware undirected SSSP algorithm by Kumar & Schwabe [83] (see [77] for a

description and proof of correctness) can be made cache-oblivious by replacing both

the primary and the auxiliary cache-aware priority queues used in that algorithm

with buffer heaps. The primary priority queue is used to perform the standard

operations for shortest path computation, and the auxiliary priority queue is used to

correct for spurious updates performed on the primary priority queue. The auxiliary

priority queue treats edges, instead of vertices, as its elements, and whenever a vertex

with final distance d[u] is settled, for each (u, v) ∈ E, a Decrease-Key((u, v), d[u] +

w(u, v)) operation is performed on the auxiliary priority queue. The resulting cache-

oblivious algorithm, i.e., Kumar & Schwabe’s algorithm with buffer heaps, is given

in Function 3.4.1 (Undirected-SSSP).

Cache Complexity. The algorithm incursO
(

m
B

log2
n
M

)
cache-misses for theO (m)

priority queue operations it performs. In addition to that it incurs O
(
n + m

B

)
cache-

misses for accessing O (n) adjacency lists. The cache complexity of the algorithm is

thus O
(
n + m

B
log2

n
M

)
.

3.4.2 Cache-oblivious Directed SSSP

In this section we describe a cache-oblivious implementation of Dijkstra’s directed

SSSP algorithm [43] with a regular buffer heap used as a priority queue. Additionally,

we use a cache-oblivious Buffered Repository Tree1 (BRT) described in [11], in order

to prevent any vertex whose shortest distance from the source vertex has already

been determined, from being reinserted into the priority queue. A BRT maintains

O (m) elements with keys in the range [1 . . . n] under the operations Insert(v, u) and

Extract(u). An Insert(v, u) operation inserts a new element v with key u into the

BRT, while an Extract(u) operation reports and deletes from the data structure

all elements v with key u. The Insert and Extract operations are supported in

O
(

1
B

log2 n
)

and O (log2 n) amortized cache-misses, respectively (or in O
(

1
B

log2
n
B

)

and O
(
log2

n
B

)
amortized cache-misses, respectively, assuming a tall cache).

The resulting cache-oblivious implementation of Dijkstra’s algorithm is given

in Function 3.4.2 (Directed-SSSP).

1Buffered Repository Trees have been used for breadth-first search and depth-first search in the
cache-aware setting in [25] and in the cache-oblivious setting in [11]

43

Function 3.4.2. Directed-SSSP(G, w, s, d)

[Given a directed graph G with vertex set V (each vertex is identified with a unique integer in
[1, |V |]), edge set E, a weight function w : E → ℜ and a source vertex s ∈ V , this function
cache-obliviously computes the shortest distance from s to each vertex v ∈ V and stores it in d[v].]

1. for each v ∈ V do

Lv ← { u | (u, v) ∈ E } {Lv is the set of vertices from which v has an incoming edge}
L′

v ← { 〈u, w(v, u)〉 | (v, u) ∈ E } {L′
v is the set of vertices to which v has an outgoing edge}

sort the items in both Lv and L′
v by vertex number

2. perform the following initializations:

(i) Q← ∅, D ← ∅ {Q is a regular buffer heap that contains items of the form (x, kx) and

D is a BRT capable of containing key values in the range [1 . . . |V |]}
(ii) for each v ∈ V do d[v]← +∞

(iii) Decrease-Key(Q)(s, 0) {insert vertex s with key (i.e., distance) 0 into Q}

3. while Q 6= ∅ do

(i) (u, k)← Delete-Min(Q)(), d[u]← k {k is the shortest distance from s to u}
(ii) L′′

u ← Extract(D)(u) {set of settled vertices to which u has an outgoing edge}
sort L′′

u by vertex number

(iii) scan L′
u and L′′

u simultaneously and for each v ∈ L′
u such that v /∈ L′′

u do

Decrease-Key(Q)(v, k + w(u, v)) {relax edge (u, v) to the yet-to-settle vertex v}
(iv) for each v ∈ Lu do

Insert(D)(u, v) {mark neighbor u of v as settled}

Directed-SSSP Ends

Correctness. A standard implementation of Dijkstra’s directed SSSP algorithm is

through the use of a priority-queue Q with Decrease-Key. Priority-queue Q stores

all vertices that are not yet settled (i.e., vertices whose shortest path length from the

source vertex has not yet been finalized), and in each iteration of the algorithm, a

vertex u is extracted from Q with a Delete-Min operation. The vertex u is provably

settled at this point, and for each edge (u, v) such that v is not settled, i.e., such

that v is on Q, a suitable Decrease-Key operation is performed on v in Q.

Our implementation of Dijkstra’s algorithm (Directed-SSSP) differs from

the standard implementation in two ways, both with an eye to improving cache-

efficiency. Firstly, we use a regular buffer heap instead of a standard priority queue.

Secondly, instead of accessing a vertex directly in order to determine whether it is

settled or not, we use a BRT D to perform these operations cache-efficiently and

44

thus avoid a potential cache-miss during each such operation.

Since we have already proved the correctness of buffer heap (see Lemma

3.3.1), if we simply replace Q with a regular buffer heap in the standard implemen-

tation of Dijkstra’s algorithm the implementation will still be correct. For i ∈ [1, n],

let u′i denote the i-th vertex extracted from the priority queue in this implementa-

tion, and let V ′i be the set of vertices on which Decrease-Key operations are per-

formed immediately after this extraction. Let ui and Vi have similar definitions for

Directed-SSSP. Therefore, assuming the correctness of BRT operations (see [11]),

correctness of Directed-SSSP will follow if we can prove the following claim.

Claim 3.4.1. For i ∈ [1, n], ui = u′i and Vi = V ′i .

Proof. Let Si = { uj | 1 ≤ j ≤ i } for i ∈ [0, n]. Then clearly V ′i =
{

v | (u′i, v) ∈
E ∧ v /∈ Si−1

}
.

Since u1 = u′1 = s and D is initially empty, the claim trivially holds for i = 1.

Now suppose it holds up to some value j ∈ [0, n− 1] of i. We will show that it holds

for i = j + 1.

Since the claim holds for all i ≤ j, immediately before the extraction of

the (j + 1)-th vertex from the priority queue, the state of the priority queue in both

implementations, i.e., the standard implementation with buffer heap and Directed-

SSSP, are exactly the same. Hence, uj+1 = u′j+1.

Let Uj+1 be the set of vertices extracted from D in iteration j + 1 of the

while loop in Directed-SSSP. Since the claim was true up to iteration j, for

each v ∈ Sj with (uj+1, v) ∈ E, an element uj+1 with key value v was inserted

into D in step 3(iv) at some point during the first j iterations. Hence, Uj+1 ⊇
{ v | (uj+1, v) ∈ E ∧ v ∈ Sj }. Again since D was initially empty and only set-

tled vertices insert items into it, Uj+1 = { v | (uj+1, v) ∈ E ∧ v ∈ Sj }. Therefore,

Vj+1 = { v | (uj+1, v) ∈ E } \ Uj+1 = V ′j+1.

Hence, the claim holds for all i ∈ [1, n]. �

Therefore, Directed-SSSP is a correct implementation of Dijkstra’s algo-

rithm.

Cache Complexity. The following lemma gives the cache-complexity of Directed-

SSSP.

45

Lemma 3.4.1. Single source shortest paths in a directed graph can be computed

cache-obliviously in O
(
(n + m

B
) · log2

m
B

)
cache-misses using a buffer heap under the

tall cache assumption.

Proof. In step 1, all sets Lv and L′v can be generated with their items in appropri-

ately sorted order after a constant number of sorting and scanning phases incurring

O
(
n + m

B
log2

m
B

)
cache-misses.

In step 3, the algorithm performs n Delete-Min and m Decrease-Key opera-

tions on Q, and n Extract and m Insert operations on D incurring O
(

m+n
B

log2
n
M

)

and O
(
n log2

n
B

+ m
B

log2
n
B

)
cache-misses, respectively. All lists in step 3(ii) can

be sorted in O
(

m
B

log2
n
B

)
cache-misses in total, and the total cache-misses incurred

by all scans in steps 3(iii) and 3(iv) is O
(
n + m

B

)
.

Therefore, overall cache complexity of Directed-SSSP isO
(
(n + m

B
) · log2

m
B

)
.

�

Directed SSSP with Cache-oblivious Tournament Tree. In Appendix A we

present the cache-oblivious tournament tree (COTT) which supports the same set

of operations (Delete, Delete-Min and Decrease-Key) as the buffer heap. Although

COTT has weaker bounds than buffer heap, it is a simpler data structure, and can

be used instead of buffer heap in the directed SSSP algorithm to achieve the same

level of cache-efficiency as with buffer heap.

3.4.3 Cache-aware Undirected APSP

In this section we introduce a compound priority queue data structure based on slim

buffer heap, called the Multi-Buffer-Heap (MBH), and use this structure for cache-

efficient computation of APSP on an undirected graph with general non-negative

edge-weights.

A multi-buffer-heap is constructed as follows. Let λ < B and let L = B
λ
.

We pack the slim caches of Θ(L) slim buffer heaps SBH(λ) into a single cache

block. We call this block the multi-slim-cache and the resulting structure a multi-

buffer-heap. By the analysis in section 3.3.3 this structure supports Delete, Delete-

Min and Decrease-Key operations on each of its component slim buffer heaps in

O
(

L
B

+ 1
B

log2
NL
B

)
amortized cache-misses each.

46

For computing APSP we take the approach described in [13]. It solves APSP

by working on all n underlying SSSP problems simultaneously, and each individual

SSSP problem is solved using Kumar & Schwabe’s algorithm for weighted undirected

graphs [83]. For 1 ≤ i ≤ n, this approach requires a priority queue pair (Qi, Q
′
i),

where the i-th pair belongs to the i-th SSSP problem. These n priority queue

pairs are implemented using Θ(n
L
) multi-buffer-heaps. The algorithm proceeds in n

rounds. In each round it loads the multi-slim-cache of each MBH, and for each MBH

extracts a settled vertex with minimum distance from each of the Θ(L) priority queue

pairs it stores. It sorts the extracted vertices by vertex indices. It then scans this

sorted vertex list and the sorted sequences of adjacency lists in parallel to retrieve

the adjacency lists of the settled vertices of this round. Another sorting phase moves

all adjacency lists to be applied to the same MBH together. Then all necessary

Decrease-Key operations are performed by cycling through the multi-buffer-heaps

once again. At the end of the algorithm the extracted vertices along with their

computed distance values are sorted to produce the final distance matrix.

Cache Complexity. In each round the multi-slim-caches of all multi-buffer-heaps

are loaded into the cache in O
(

n
L

)
cache-misses. Accessing all required adjacency

lists over O (n) rounds incurs O (n · sort(m)) cache-misses, and a total of O
(
mn ·

(
1
λ

+ 1
B

log2
n
λ

))
cache-misses are incurred by all O (mn) priority queue operations

performed by this algorithm. The final distance matrix can be sorted inO (n · sort(n))

cache-misses. Thus the total cache complexity of this algorithm is O
(
n ·
(

n
L

+ m
λ

+

m
B

log2
n
λ

+ sort(m)
))

. Using L =
√

nB
m
≥ 1, we obtain the following:

Lemma 3.4.2. Using multi-buffer-heaps, APSP on undirected graphs with non-

negative real edge weights can be solved in O
(
n ·
(√

mn
B

+ sort(m)
))

cache-misses

and O
(
n2
)

space when m ≤ nB
(log n)2 .

In conjunction with the cache-efficient APSP algorithm for sufficiently dense

graphs implied by the SSSP results in [83, 32] we obtain the following corollary.

Corollary 3.4.1. APSP on an undirected graph with non-negative real edge weights

can be solved in O
(
n ·
(√

mn
B

+ m
B

log n
B

))
cache-misses and O

(
n2
)

space. The num-

ber of cache-misses is reduced to O
(

mn
B

log n
B

)
when m ≥ nB

(log n
B)

2 .

47

3.5 Conclusion

In this chapter we presented the buffer heap, the first cache-oblivious priority queue

that supports Decrease-Key operations and used it to obtain the first cache-oblivious

SSSP algorithms for weighted undirected and directed graphs, and an improved

cache-aware APSP algorithm for weighted undirected graphs. All our cache-oblivious

results match the cache complexity of their best cache-aware counterparts. However,

open questions still remain. For example:

1. The only known lower bound on the cache complexity of cache-oblivious pri-

ority queue operations is Ω
(

1
B

log M
B

N
M

)
amortized which is trivially derived

from the sorting lower bound. The buffer heap improves the upper bound

from trivial O (log N) to O
(

1
B

log N
M

)
amortized. But there is still a gap be-

tween this new upper bound and known lower bound. An open problem is to

eliminate this gap.

2. The known cache-miss lower bound for the SSSP problem is Ω
(

m
n
· sort(n)

)

[92]. Though our SSSP algorithms improve significantly over known upper

bounds, they are not known to be optimal.

- The n term in the cache complexity of our cache-oblivious undirected

SSSP algorithm results from unstructured accesses to adjacency lists.

Though some progress has been made in reducing this overhead for bounded-

weight graphs [7, 89], nothing is known for graphs with general edge-

weights.

- The n log n term in the cache complexity of our cache-oblivious directed

SSSP algorithm results from the overhead of remembering visited vertices.

Perhaps a completely new technique for handling this problem will be able

to reduce this overhead significantly.

3. The n
√

mn
B

term in the cache complexity of the weighted undirected APSP

algorithm described in Section 3.4.3 arises from unstructured accesses to ad-

jacency lists. Though we show in Chapter 5 that we can get rid of this term

completely for unweighted undirected graphs, achieving the same for weighted

graphs still remains an open question.

48

Chapter 4

Experimental Results: Priority

Queues for Efficient SSSP

Computation

Part of the inhumanity of the computer is that,

once it is competently programmed and working

smoothly, it is completely honest.

(Isaac Asimov)

A key ingredient in a cache-efficient implementation of Dijkstra’s single-source shortest path

(SSSP) algorithm is the cache-efficiency of the priority-queue it uses. In this chapter we

report the results of an experimental study on how the cache-efficiency of priority queues

affects the performance of Dijkstra’s SSSP algorithm.

We implemented two different versions of the cache-oblivious buffer heap and used

them in three slightly different versions of Dijkstra’s algorithm. We compared the perfor-

mance of these three algorithms with the performance of Dijkstra’s algorithm using several

traditional priority queues, as well as some highly optimized cache-aware priority queues.

Our experimental results suggest that on low-diameter real-weighted sparse graphs

(i.e., Gn,m and power-law), a streamlined version of buffer heap is a better choice than any

other priority queue we used in our experiments, except for the highly optimized cache-

aware sequence heap which runs faster. However, our streamlined buffer heap which we call

auxiliary buffer heap, is cache-oblivious and also simpler to implement than sequence heap.

When the computation is out-of-core, an external-memory version of Dijkstra’s algorithm

49

implemented with a buffer heap and an auxiliary buffer heap performs the best.

For high-diameter graphs of geometric nature such as real-world road networks,

Dijkstra’s algorithm with traditional priority queues perform almost as well as any cache-

efficient priority queue when the computation is in-core.

4.1 Introduction

Dijkstra’s single-source shortest path (SSSP) algorithm is the most widely used al-

gorithm for computing shortest paths in practice, and virtually all other SSSP algo-

rithms are directly or indirectly based on Dijkstra’s algorithm. A key ingredient in

the efficient execution of Dijkstra’s algorithm is the efficiency of the priority queue it

uses. In this chapter we present an experimental study on how the cache-efficiency

of priority queues affects the performance of several cache-efficient and traditional

implementations of Dijkstra’s algorithm.

We consider the following three implementations of Dijkstra’s algorithm.

Dijkstra-Dec. The standard implementation of Dijkstra’s algorithm that uses a

priority queue with Decrease-Key operations (see Function B.0.2 in the Appendix).

Dijkstra-NoDec. An implementation that uses a priority queue with only Insert

and Delete-Min operations (see Function B.0.3 in the Appendix).

Dijkstra-Ext. An external-memory implementation for undirected graphs that

uses two priority queues: one with Decrease-Key operations, and the other one sup-

porting only Insert and Delete-Min operations (see Function 3.4.1 in Chapter 3).

We also include the following Dijkstra implementation which was used as the bench-

mark solver for the “9th DIMACS Implementation Challenge – Shortest Paths” [1].

Dijkstra-Buckets. An implementation of Dijkstra’s algorithm with a priority

queue based on a bucketing structure. This algorithm works only on graphs with

integer edge-weights.

We implemented the following cache-oblivious priority queues.

Buffer Heap (cache-oblivious). Our cache-oblivious priority queue with Decrease-

Key operations introduced in Chapter 3.

50

Auxiliary Buffer Heap (cache-oblivious). A streamlined version of buffer heap

that supports only Insert and Delete-Min operations.

We also coded the following two traditional priority queues with Decrease-Keys.

Standard Binary Heap [132]. Perhaps the most widely used priority queue.

Pairing Heap [50]. Considered to be the most efficient pointer based priority queue

in practice and very simple to implement.

The above two priority queues were studied in [90] along with several others in

the context of implementing the Prim-Dijkstra MST algorithm which has the same

structure as Dijkstra’s SSSP algorithm, and pairing heap was always found to be

superior to all other priority queues considered in that experiment while standard

binary heap performed better than the remaining priority queues in most cases.

We include the following two highly optimized array-based priority queues

implemented by Peter Sanders [109]. They do not support Decrease-Key operations.

Bottom-up Binary Heap [131]. This is a highly optimized binary heap imple-

mentation that uses a bottom-up Delete-Min heuristic. The code is optimized not

to have any redundant memory accesses or computations even in its assembler code.

Aligned 4-ary Heap [84] (cache-aware). This implementation also uses a

bottom-up Delete-Min heuristic, and data is aligned to cache blocks to reduce cache-

misses. It is a cache-aware priority queue.

It has been shown in [84] that array-based priority queues like the binary heap and the

4-ary heap outperform pointer-based heap data structures on modern architectures.

Finally, we include the following highly optimized cache-aware priority queue

implemented by Peter Sanders [109]. It has been shown in [109] that it outperforms

both bottom-up binary heap and the aligned 4-ary heap.

Sequence Heap [109] (cache-aware). This priority queue is based on a multi-way

merging technique like other external-memory priority queues, but highly optimized

to have excellent performance in cached memory.

We performed our experiments on undirected Gn,m and directed power-law graphs, as

51

well as on some real-world graphs from the benchmark instances of the 9th DIMACS

Implementation Challenge [1].

The experiments in this chapter were performed in collaboration with under-

graduate students Lingling Tong [122], David Lan Roche [85] and Mo Chen.

4.1.1 Summary of Experimental Results

We describe the highlights of our experimental results in Section 4.5. Briefly here

are the conclusions of our experimental study:

• For low-diameter real-weighted sparse graphs such as Gn,m and power-law:

– When the computation was in-core, the “no Decrease-Key” variant of

Dijkstra’s algorithm (i.e., Dijkstra-NoDec) with an auxiliary buffer

heap as a priority queue ran faster than all other implementations with

traditional priority queues including the DIMACS solver (Dijkstra-

Buckets). However, Dijkstra-NoDec implemented with the highly

optimized cache-aware sequence heap ran 20-35% faster than the auxil-

iary buffer heap implementation.

– When the computation was out-of-core, the external-memory implemen-

tation of Dijkstra’s algorithm (Dijkstra-Ext) with the buffer heap and

the auxiliary buffer heap as priority queues performed the best.

• For high-diameter graphs of geometric nature such as real-world road networks,

Dijkstra’s algorithm with traditional priority queues performed almost as well

as any cache-efficient priority queue when the computation was in-core.

4.1.2 Organization of the Chapter

In Section 4.2 we give an overview of the priority queues we used in our experiments

and in Section 4.3 the three different ways in which Dijkstra’s algorithm was run

using these priority queues. We discuss our experimental setup in Section 4.4, and

in Section 4.5 we discuss our experimental results.

52

Priority Queue Insert/Decrease-Key Delete Delete-Min

Standard Binary Heap [132]

(worst-case bounds)
O (log N) O (log N) O (log N)

Two-Pass Pairing Heap [50, 97] O
“
22

√
log log N

”
O (log N) O (log N)

Buffer Heap

(Chapter 3)
O

`
1
B

log N
M

´
O

`
1
B

log N
M

´
O

`
1
B

log N
M

´

Table 4.1: Amortized I/O bounds for priority queues with Decrease-Keys (N = # items

in queue, B = block size, M = size of the cache/internal-memory).

Priority Queue Insert/Delete-Min

Bottom-up Binary Heap [131]

(worst-case bounds)
O (log2 N)

Aligned 4-ary Heap [84]

(worst-case bounds)
O (log4 N)

Sequence Heap [109]

(cache-aware)

O
`

1
B

logk
N
m

´

where, k = Θ (M/B) and m = Θ(M)

Auxiliary Buffer Heap

(cache-oblivious, this chapter)
O

`
1
B

log N
M

´

Table 4.2: Amortized I/O bounds for priority queues without Decrease-

Keys (N = # items in queue, B = block size, M = size of the

cache/internal-memory).

4.2 Overview of Priority Queues

I/O complexities of all priority queues in our experiments are listed in Tables 4.1

and 4.2.

4.2.1 Internal-Memory Priority Queues

We implemented standard binary heap and pairing heap. Both were implemented

so that they allocate and deallocate space from at most two arrays. Pointers were

reduced to indices to the array. This allows us to limit the amount of internal-memory

available to the priority queue during out-of-core computations using STXXL (see

Section 4.4).

53

Standard Binary Heap

We implemented the standard binary heap [132, 37]. However, we allocated nodes

from a separate array and the heap stores only indices to those nodes. This ensures

that whenever a new element is inserted all necessary information about it is stored

at a location which remains static as long as the element remains in the heap. The

pointer/index to this location is returned to the calling application (i.e., the SSSP

algorithm). For future updates (i.e., Decrease-Key operations) on the element the

calling application supplies this index to the binary heap data structure so that the

data structure can perform the update by accessing all necessary information on that

element directly.

Standard binary heap supports Insert, Delete, Delete-Min and Decrease-Key

operations in O (log N) time and I/O bounds each.

Pairing Heap

We implemented two variants of the pairing heap: two-pass and multi-pass [50].

These two implementations differ only in the way the Delete-Min operation is per-

formed. The two-pass variant has better theoretical bounds than the multi-pass

variant and also ran faster in our experiments. We have also implemented the auxil-

iary two-pass and the auxiliary multi-pass variants of the pairing heap [115]. In our

experiments the auxiliary variants of the pairing heap ran only marginally (around

4%) faster than the corresponding primary variants, and so we will report results

only for two-pass pairing heap.

The two-pass pairing heap supports Delete and Delete-Min operations in

O (log N) and Decrease-Key operations in O
(
2
√

log log N
)

amortized time and I/O

bounds each. The two-pass variant also has a known amortized lower bound of

Ω (log log N) time and I/O for the Decrease-Key operation.

Bottom-up Binary Heap

The bottom-up binary heap is a variant of binary heap which uses a bottom-up Delete-

Min heuristic [131]. Compared to the traditional binary heap implementation, this

variant performs only half the number of comparisons on an average during a Delete-

Min operation.

54

We used the highly optimized implementation of bottom-up binary heap by

Peter Sanders [109] that has no redundant memory accesses or computations even

in its assembler code. This implementation supports only Insert and Delete-Min

operations.

4.2.2 Cache-aware Priority Queues

Both of the following two priority queues support only Insert and Delete-Min oper-

ations.

Aligned 4-ary Heap

The aligned 4-ary heap is an array-based priority queue like the binary heap, and

in [84] it was shown to outperform pointer based heap data structures. This is a

cache-aware priority queue that needs to know the block size B of the cache, and

aligns its data to cache blocks. The data alignment ensures that accessing any data

element incurs at most one cache-miss. It supports Insert and Delete-Min operations

in O (log4 N) worst-case time and O (log4 N) amortized block transfers each. In our

experiments we used the optimized implementation of aligned 4-ary heap by Peter

Sanders with the bottom-up Delete-Min heuristic [131].

Sequence Heap

The sequence heap is a cache-aware priority queue developed by Peter Sanders [109].

The priority queue is based on k-way merging for some appropriate k. When the

cache is fully associative, k is chosen to be Θ
(

M
B

)
, and for some m = Θ (M) and

R =
⌈
logk

N
m

⌉
, it can perform N Insert and up to N Delete-Min operations in 2R

B
+

O
(

1
k

+ log k
m

)
amortized cache-misses and O (log N + log R + log m + 1) amortized

time each. For α-way set associative caches k is reduced by O
(
B

1
α

)
.

We used Peter Sanders’ own highly optimized implementation of the sequence

heap accompanied with the paper [109]. In this implementation the k-way merging

procedure is implemented using a loser tree [81]. The sequence heap maintains a

small bottom-up binary heap known as the insertion heap, for quick insertion into

the data structure. When the insertion heap gets full it is merged with the main

heap. A small sorted deletion buffer is also maintained for quick deletion from the

55

data structure. Peter Sanders suggests that 128 is a good value for k for most current

architectures, and we used this value in our experiments.

4.2.3 Cache-oblivious Buffer Heap and Auxiliary Buffer Heap

Buffer Heap

In our implementation of the buffer heap we made several design choices which do

not necessarily guarantee the best worst-case behavior but perform reasonably well

in practice. One of our major goals was to keep the implementation as simple as

possible.

Size of Update Buffer. Our preliminary experiments suggested that the overhead

of maintaining the theoretical invariant on the sizes of update buffers slows down the

operations by about 50%. Therefore, we chose to keep the sizes of update buffers

unrestricted. This increases the amortized time per operation to O
(

1
B

log2 N
)

(up

from O
(

1
B

log2
N
M

)
).

Periodic Reconstruction. Theoretically, periodic reconstruction ensures that the

I/O complexity of buffer heap operations depends on the number of items currently

in the data structure and not on the total number of operations performed on it.

However, in our preliminary experiments the overhead of periodic reconstruction

slowed down the buffer heap operations by about 33%. Therefore, we chose not to

reconstruct the data structure periodically.

Sorting U0. We used randomized quicksort [73, 37] to sort the contents of U0

when a Delete-Min operation is performed. Randomized quicksort is simple, in-place

and with high probability runs in O (N log N) time and performs O
(

N
B

log2 N
)

I/O

operations on a sequence of N elements and thus does not degrade the asymptotic

performance of buffer heap. We chose not to use optimal cache-oblivious sorting

algorithms [52] for the purpose since they are complicated to implement, have more

overhead and are not essential in order to guarantee the I/O bounds of buffer heap.

Selection Algorithm for Redistribution. A selection algorithm is required to

partition the elements collected for redistribution after a Delete-Min operation is

performed. We used the classical randomized selection algorithm [72, 37] (the one

typically used in randomized quicksort) which is in-place and runs in Θ (N) expected

time and performs Θ
(

N
B

)
expected I/O operations on a sequence of N elements.

56

Single Stack Implementation. We stored all buffers in a single stack with the

update buffer on top of the element buffer of the same level. All temporary space

was allocated on top of the stack. Using a single stack instead of multiple arrays

has the advantage that it can benefit more from the limited number of prefetchers

available for the caches. This also allowed us to limit the amount of internal-memory

available to the data structure during our out-of-core experiments using STXXL (see

Section 4.4).

Pipelining. For each level i we visit during a Delete-Min operation we first merge

the segments of Ui and then apply this merged sequence on Bi (see Section 4.2.3).

In our implementation of buffer heap we pipelined the output of the merge phase

directly to the application phase which saved several extra scans over the updates.

Detailed description of most of our design choices for the buffer heap is avail-

able in the undergraduate honors thesis of Lingling Tong [122].

Auxiliary Buffer Heap

We designed the auxiliary buffer heap, which is a streamlined version of the buffer

heap that supports only Insert and Delete-Min operations. The amortized I/O

complexity of each operation in our implementation is O
(

1
B

log2 N
)

and these op-

erations have low overhead compared to buffer heap operations. Major features of

this implementation are as follows.

No Selection. In auxiliary buffer heap the contents of all buffers are kept sorted

by key value instead of element id and time stamp as in buffer heap. As a result

during the redistribution step after a Delete-Min operation we do not need to use

a selection algorithm to partition the elements which saves a constant factor in I/O

complexity.

Insertion and Delete-Min Buffers. We maintain two small constant size buffers:

one for insertions and the other one for deletions (i.e., Delete-Mins). Whenever a

new element is inserted into the priority queue we simply collect it in the insertion

buffer. The delete-min buffer holds the smallest few elements in the priority queue

(not considering the elements in the insertion buffer) in sorted order. Whenever

the insertion buffer gets full or a Delete-Min operation needs to be performed, the

insertion buffer is sorted and all its elements with key value larger than the largest

57

key in the delete-min buffer are pushed into the priority queue. The remaining

elements in the insertion buffer are merged with the delete-min buffer. If the delete-

min buffer becomes full in the process, the overflowing elements are inserted into the

priority queue. If the deletion buffer becomes empty, we fill it up (not necessarily

to its capacity) with elements from the priority queue during the next Delete-Min

operation.

Efficient Merge. We use the optimized 3-way merge technique described in [109]

for merging the contents of an update buffer with the (at most two) segments of the

update buffer in the next higher level.

Less Space. Auxiliary buffer heap uses less space than buffer heap since it does

not need to store timestamps with each element.

The Auxiliary buffer heap also incorporates all relevant optimizations that were

applied on buffer heap.

4.3 Choice of Algorithms for the SSSP problem

For our study we chose to consider only the performance of Dijkstra algorithm since it

is the most widely used SSSP algorithm. We implemented three versions of Dijkstra’s

algorithm, the versions differing in the way the priority queue was used. More

detailed descriptions of all three versions are given in Appendix B. Table 4.3 lists

the I/O complexities of the versions we implemented.

Dijkstra-Dec. This is the standard implementation of Dijkstra’s algorithm

using a priority queue that supports Decrease-Key operations. This method

can also be used with a priority queue that does not support Decrease-Key but

supports Delete, which takes a pointer to an element in the priority queue and

deletes it.

Dijkstra-NoDec. This is a slightly modified version of Dijkstra’s algorithm

that works with a priority queue that only supports Delete-Min and Insert

operations. We implemented this with the priority queues in Table 4.2. We did

not implement the provably optimal cache-oblivious priority queues in [11, 22]

since they appear to be more complicated to implement.

58

Implementation Base Routine Priority Queue(s) I/O Complexity

BinH Dijkstra-Dec
Standard

Binary Heap
O (m + (n + D) · log n)

PairH Dijkstra-Dec
Two-Pass

Pairing Heap
O

“
m + n · log n + D · 22

√
log log n

”

BH Dijkstra-Dec Buffer Heap O
`
m + n+D

B
· log (n + D)

´

FBinH Dijkstra-NoDec
Bottom-up

Binary Heap
O (m + (n + D) · log (n + D))

Al4H Dijkstra-NoDec
Aligned

4-ary Heap
O (m + (n + D) · log (n + D))

SeqH Dijkstra-NoDec Sequence Heap

O
`
m + n+D

B
· logk

n
m

´
,

where,

k = Θ(M/B) and m = Θ (M)

Aux-BH Dijkstra-NoDec
Auxiliary

Buffer Heap
O

`
m + n+D

B
· log (n + D)

´

Dual-BH

Dijkstra-Ext

(undirected

graphs only)

Buffer Heap

& Auxiliary

Buffer Heap

O
`
n + n+m

B
· log m

´

DIMACS

Dijkstra-Bucket

(integer

edge-weights)

Buckets with

Caliber Heuristic

O (m + n)

(expected)

Table 4.3: Different implementations of Dijkstra’s algorithm evaluated in this chapter, where D
(≤ m) is the number of Decrease-Keys performed by Dijkstra-Dec and B is the block size.

Dijkstra-Ext for undirected graphs. This is an implementation of Dijkstra’s

algorithm on undirected graphs that uses two external-memory priority queues,

of which at least one supports the Decrease-Key operation (see Function 3.4.1

in Chapter 3). This gives the best theoretical I/O complexity for Dijkstra’s

algorithm on sparse undirected graphs.

We also included the following implementation of Dijkstra’s algorithm which was

used as the benchmark solver for the “9th DIMACS Implementation Challenge –

Shortest Paths” [1].

Dijkstra-Buckets This implementation uses a priority queue based on a

bucketing structure along with a heuristic to speed-up execution, and works

only on graphs with integer edge-weights.

59

4.4 Experimental Set-up

We ran all our experiments on a dual processor 3.06 GHz Intel Xeon shared memory

machine with 4 GB of RAM and running Ubuntu Linux 5.10 “Breezy Badger”. Each

processor had an 8 KB L1 data cache (4-way set associative) and a shared on-chip

512 KB unified L2 cache (8-way). For both caches the block transfer size (i.e., cache

line size) was 64 bytes.

The machine was connected to a 73.5 GB 10K RPM Fujitsu MAP3735NC

hard disk with an 8 MB data buffer. The average seek time for reads and writes

were 4.5 and 5.0 ms, respectively. The maximum data transfer rate (to/from media)

was 106.9 MB/s.

We used the Cachegrind profiler [112] for simulating cache effects. The ma-

chine was exclusively used for experiments (i.e., no other programs were running on

it), and in the absence of explicit instructions for using both processors, our programs

were automatically ran on a single processor.

We implemented all algorithms in C++ using a uniform programming style,

and compiled using the g++ 3.3.4 compiler with optimization level -O3.

For out-of-core experiments we used STXXL library version 0.9. The STXXL

library [40, 41] is an implementation of the C++ standard template library STL

for external memory computations, and is used primarily for experimentation with

huge data sets. The STXXL library maintains its own fully associative cache in

RAM with pages from the disk. We compiled STXXL with DIRECT-I/O turned on,

which ensures that the OS does not cache the data read from or written to the hard

disk. We also configured STXXL (more specifically the STXXL vectors we used) to

use LRU as the paging strategy.

We store the entire graph in a single vector so that the total amount of

internal-memory available to the graph during out-of-core computations can be reg-

ulated by changing the STXXL parameters of the vector. The initial portion of the

vector stores information on the vertices in increasing order of vertex id (each ver-

tex is assumed to have a unique integer id from 1 to n) and the remaining portion

stores the adjacency lists of the vertices in the same order. We store two pieces of

information for each vertex: its distance value from the source vertex and a pointer

to its adjacency list. For SSSP algorithms based on internal-memory priority queues

with Decrease-Keys (e.g., standard binary heap and pairing heap) we also store the

60

pointer returned by the priority queue when the vertex is inserted into it for the first

time. This pointer is used by all subsequent Decrease-Key operations performed on

the vertex. For each edge in the adjacency list of a vertex we store the other endpoint

of the edge and the edge-weight. Each undirected edge (u, v) is stored twice: once

in the adjacency list of u and again in the adjacency list of v. For each graph we use

a one-time preprocessing step that puts the graph in the format described above.

Graph Classes Considered.

We ran our experiments on three classes of graphs. The synthetic graphs were

generated using the generators (PR [98] and GT [15]) contributed by 9th DIMACS

Implementation Challenge participants [1, 15, 98].

Undirected Gn,m (PR [98]). The Gn,m distribution chooses a graph uniformly

at random from all graphs with n labeled vertices and m edges [47]. Such a graph

can be constructed by choosing m random edges with equal probability (and with

replacement) from all possible (n× n− n) edges (the PR-generator avoids choosing

self-loops).

Directed Power-Law Graphs (GT [15]). The GT-generator generates random

graphs with power-law degree distributions and small-world characteristics using the

recursive matrix (R-MAT) graph model [28]. The model has four non-zero param-

eters a, b, c and d with a + b + c + d = 1. Given the number of vertices n and

the number of edges m, the GT-generator starts off with an empty n× n adjacency

matrix for the graph, recursively divides the matrix into four quadrants, and dis-

tributes the edges to the top-left, top-right, bottom-left and bottom-right quadrants

with probabilities a, b, c and d, respectively. It has been conjectured in [28] that

many real-world graphs have a : b ≈ 3 : 1, a : c ≈ 3 : 1 and a ≥ d, and accordingly

we have used a = 0.45, b = c = 0.15 and d = 0.25 which are also the default values

used by the GT-generator. The resulting graph is directed.

Undirected U.S. Road Networks ([111]). These are undirected weighted graphs

representing the road networks of 50 U.S. states and the District of Columbia. Edge

weights are given both as the spatial distance between the endpoints (i.e., the great

circle distance in meters between the endpoints) and as the travel time between

them (i.e., spatial distance divided by some average speed that depends on the road

61

category). Merging all networks produces a graph containing about 24 million nodes

and 29 million edges.

4.5 Experimental Results

Unless specified otherwise, all experimental results presented in this section are av-

erages of three independent runs from three random sources on a randomly chosen

graph from the graph class under consideration, and they do not include the cost

of the one-time preprocessing step that puts the graph in the format described in

Section 4.4. A brief overview of the results for Gn,m is as follows:

• When the computation is in-core Aux-BH runs consistently faster than all other

implementations except for the highly optimized cache-aware SeqH. Though

BH runs slower than all implementations based on Dijkstra-NoDec, it is

the fastest among the implementations based on Dijkstra-Dec. Moreover,

for graphs of fixed size, the denser the graph, the narrower the performance

gap between BH and Dijkstra-NoDec-based implementations.

On the other extreme, Dual-BH is the slowest of all implementations, typically

running 8 to 16 times slower than all other implementations.

• The story is different for out-of-core computations. When the computation is

fully external (i.e., neither the vertex set nor the priority queues completely

fit in internal-memory), and the graph is not too dense, all three buffer heap

based implementations (BH, Aux-BH and Dual-BH) run faster than all other

implementations with Dual-BH running the fastest (we did not include SeqH

in our out-of-core experiments due to the difficulty in making it compatible

with STXXL).

We must mention here that due to time constraints we performed our out-of-

core experiments on small instances of Gn,m and kept the block size B and

internal-memory size M artificially small (i.e., B = 4 KB and M = 4 MB).

In practice, B and M have values in the range of megabytes and gigabytes,

respectively, and we expect that for such practical values of B and M Dual-BH

will handily beat all other implementations for edge densities that are likely

to occur in sparse graphs that arise in practice. However, though Dual-BH is

62

the fastest for out-of-core computations, it will still be very slow in a practical

setting unless its theoretical I/O complexity is improved even further.

4.5.1 In-Core Results for Gn,m

We consider graphs in which we keep the average degree of vertices fixed and vary

the number of edges (by varying the number of vertices), and also graphs in which

we keep the number of edges fixed and vary the average degree of vertices (again by

varying the number of vertices).

Gn,m with Fixed Average Degree

Figure 4.1 shows the in-core performance of all implementations (except Dual-BH

which was much slower than all others in-core) on Gn,m with a fixed average degree

8, i.e., m
n

= 8.

Running Times. Figures 4.1(a) and 4.1(b) plot the running times of the imple-

mentations as n is varied from 215 to 222. In this range SeqH consistently performed

better than all other implementations, and Aux-BH was consistently the second

fastest. The SeqH implementation ran around 25% faster than Aux-BH. The DI-

MACS solver ran faster than the remaining implementations, and was up to 25%

slower than Aux-BH. Both FBinH and Al4H ran at almost the same speed, and

were consistently 25% slower than Aux-BH. The three implementations based on

priority queues with Decrease-Keys, namely BH, BinH and PairH, ran at least 50%

slower than all other implementations. Among these three implementations BH was

the fastest for n ≥ 128 K, and run up to 25% faster than the remaining two. The

slowest of all implementations was BinH.

Cache Performance. Figures 4.1(c) and 4.1(d) plot the L2 cache misses incurred

by different implementations (except Dual-BH). As expected, cache-aware SeqH in-

curred the fewest cache-misses followed by Aux-BH. The BH implementation in-

curred more cache-misses than Aux-BH, but almost always fewer than the remain-

ing implementations including FBinH which uses the highly optimized bottom-up

binary heap.

Figure 4.1(d) shows that as n grows larger the cache performances of BH de-

grade with respect to BinH and PairH which can be explained as follows. In practice,

63

In-Core Performance on Gn,m with Fixed Average Degree 8 (i.e., m/n = 8)�� ������ �	
� ���� ����� ���� ���� �� !"#
(a) Absolute Running Times

$%&$
&%'$'%

(') *+) &',) '%*) %&') &$'+) '$+,) +$-*)./0123 45 6237892:;<=>?@ABCADE
(b) Running Times w.r.t. Aux-BH

FGFFGHIGF
IGHJGFJGH

KJ L MN L IJO L JHM L HIJ L IFJN L JFNO L NFPM LQRSTUV WX YUVZ[\U]_̀̂abcdefg^ga gh_ijklm g
(c) L2 Misses

nonpnqnrn
sntnunvnwn

qp x tr x opv x pst x sop x onpr x pnrv xyz{|}~ �� �}~���}���������������
(d) L2 Misses w.r.t. Aux-BH

���������������
������������

�� � �� � ��� � ��� � ��� � ���� � ���� ����� ¡ ¢£ ¤ ¡¥¦§ ¨©ª«¬®̄°±²±³ ±́µ¶·̧¹º ±
Figure 4.1: In-core performance of algorithms on Gn,m with fixed average degree 8.

64

Time for Priority Queue Operations Only on Gn,m with Fixed Average Degree 8 (i.e., m/n = 8)»¼½¾¿À ÁÂÃÄÅ ÆÇÈÉ ÊËÌÍ
(a) Absolute Time

ÎÏÎÎÏÐÑÏÎÑÏÐÒÏÎÒÏÐ
ÓÏÎÓÏÐÔÏÎÔÏÐÐÏÎ

ÓÒ Õ ÖÔ Õ ÑÒ× Õ ÒÐÖ Õ ÐÑÒ Õ ÑÎÒÔ Õ ÒÎÔ× Õ ÔÎØÖ ÕÙÚÛÜÝÞ ßà áÝÞâãäÝåæçæèéêëìíêëîæïðæèñ
(b) Time w.r.t. Aux-BH

òóòòóôòóõòóöòó÷
øóòøóôøóõøóö

ùô ú öõ ú øô÷ ú ôûö ú ûøô ú øòôõ ú ôòõ÷ ú õòüö úýþÿ��� �� �������	
�
��������
������ ������
�

Figure 4.2: Time for priority queue operations only on Gn,m with fixed avg. degree 8.

both BinH and PairH support Decrease-Key operations more efficiently than Delete-

Min operations, while for buffer heap that is not the case. Since all Dijkstra-Dec-

based implementations perform exactly the same number of Decrease-Key operations

(our experimental results suggest that this number is ≈ 0.8n for Gn,m with average

degree 8), and with the increase of n the cache misses incurred by a Decrease-Key

operation on a buffer heap increases at a more rapid rate than that on any internal-

memory priority queue in our experiment, the cache-performance of BH degrades as

a whole with respect to that of BinH and PairH as n increases. We believe that the

cache behavior of Aux-BH can also be explained similarly. Surprisingly, however,

Figure 4.1(b) shows that the running times of both BH and Aux-BH improve with

respect to most other implementations as n increases. We believe this happens be-

cause of the prefetchers in Intel Xeon. As the operations of both buffer heap and

the auxiliary buffer heap involve only sequential scans they benefit more from the

prefetchers than the internal-memory heaps. The cachegrind profiler does not take

hardware prefetching into account and as a result, Figures 4.1(c) and 4.1(d) failed

65

In-Core Performance on Gn,m with m Fixed to 4 Million�� �� !"# $%&' ()*+, -./01 2345 6789 :;<=>?
(a) Absolute Running Times

@A@@ABCA@CABDA@
DABEA@EABFA@

DAB B C@ DB B@ C@@ DB@ B@@ CG@@@HIJKLM NO PLMQRSLT U V WXY Z[\]̂_̀abcade
(b) Running Times w.r.t. Aux-BH

fgffghigfigh
jgfjghkgf

jgh h if jh hf iff jhf hff ilfffmnopqr st uqrvwxqy z { |}~ �������������� �������� �
Figure 4.3: In-core performance of algorithms on Gn,m with m fixed to 4 million.

to reveal their impact.

Priority Queue Performance Only. For Aux-BH, FBinH, Al4H and SeqH, Fig-

ures 4.2(a) and 4.2(b) plot the total time taken for executing only the priority queue

operations while computing SSSP with Dijkstra-NoDec. We observe that se-

quence heap operations are more than 2 times faster than auxiliary buffer operations,

and auxiliary buffer heap operations are about 40-50% faster than bottom-up binary

heap and aligned 4-ary heap operations. However, since SSSP computation has other

overheads (e.g., cache-misses due to unstructured accesses to adjacency lists), too,

SSSP computation with sequence heap is only 25% faster than that with auxiliary

buffer heap which, in turn, is only around 25% faster than SSSP computation with

bottom-up binary heap and aligned 4-ary heap (see Figures 4.1(a) and 4.1(b)).

66

In-Core Performance on Power-Law Graphs�� ������ ���� ���� ¡¢£¤¥ ¦§̈ © ª«¬ ®¯°±²³
(a) Absolute Runtimes on Power-Law Graphs with m/n = 4

µ́¶·̧¹´
¹µ¹¶¹·¹¸

ºµ » ·¶ » ¹µ¸ » µ¼· » ¼¹µ » ¹´µ¶ » µ´¶¸ » ¶´½· »¾¿ÀÁÂÃ ÄÅ ÆÂÃÇÈÉÂÊËÌÍÎÏÐÑÒÓÑÔÕ
(b) Runtimes (w.r.t. Aux-BH) on Power-Law Graphs with m/n = 4

Ö×ØÖ×ÙÚ×ÖÚ×ÛÚ×ÜÚ×Ø
Ú×ÙÛ×ÖÛ×ÛÛ×ÜÛ×Ø

ÝÛ Þ ØÜ Þ ÚÛÙ Þ ÛßØ Þ ßÚÛ Þ ÚÖÛÜ Þ ÛÖÜÙ Þ ÜÖàØ Þáâãäåæ çè éåæêëìåíîïðñòóôõö÷î÷ñ ÷øïùúûüý
(c) Absolute Runtimes on Power-Law Graphs with m = 1 Million

þÿþþÿ�þÿ�þÿ�þÿ�
þÿ�þÿ�þÿ�þÿ�

�ÿ� � �þ �� �þ �þþ ��þ �þþ�	
�� �� ������� � � ��� ������ !"#!$%
(d) Runtimes (w.r.t. Aux-BH) on Power-Law Graphs with m = 1 Million

&'&&'()'&
)'(*'&*'(

*'(()& *((&)&& *(& (&&+,-./0 12 3/0456/7 8 9 :;< =>?@ABCDEFG>GA GH?IJKLM G
Figure 4.4: In-core performance of algorithms on power-law graphs.

67

Gn,m with Fixed Number of Edges

Figures 4.3(a) and 4.3(b) plot running times as the number of vertices is increased

from 2500 to 1 million while keeping m fixed to 4 million (i.e. average degree is

decreased from 1600 down to 4). As before, SeqH consistently ran the fastest fol-

lowed by Aux-BH. Though initially AuxBH ran only slightly faster than BH, its

performance improved as n increased. This observation can be explained as follows.

Table B.2 (in Appendix B) shows that Dijkstra-Dec (and hence BH) performs

2n + D priority queue operations and Dijkstra-NoDec (and thus Aux-BH) per-

forms 2n + 2D priority queue operations, where D is the number of Decrease-Key

operations performed by Dijkstra-Dec. However, empirical evidence (which we

have not included in this dissertation) suggest that Dijkstra-Dec performs slightly

more than O (n log m) Decrease-Key and Insert operations in addition to n Delete-

Min operations, that is, D ≈ O (n log m). Hence, for smaller n, the difference

between the number of priority queue operations performed by BH and Aux-BH is

also smaller, and the cost of other overheads (e.g., accessing the adjacency lists)

dominate (see Table B.1 in Appendix B). As a result, the performance gap between

BH and Aux-BH is narrower for smaller n. The relative performance of BH and

FBinH/Al4H can be explained similarly. As the average degree of the graph de-

creases down to 160, performance of the DIMACS solver degrades significantly, but

after that its performance improves dramatically.

Remarks on Dual-BH. In all our in-core experiments, Dual-BH ran considerably

slower than all other implementations which can be attributed to the fact that it

performs significantly more priority queue operations compared to any of them (see

Table B.2 in Appendix B). For example, in our experiments on Gn,m with aver-

age degree 8, Dual-BH consistently performed at least 6 times more priority queue

operations than all other implementations.

4.5.2 In-Core Results for Power-Law Graphs

In Figures 4.4(a) and 4.4(b), we plot the running times of different implementations

on power-law graphs with fixed average degree 4 as the number of vertices is varied.

Figures 4.4(c) and 4.4(d) plot running times as the average degree of the graph is

varied by keeping the number of edges fixed to 1 million. The trends in both cases

are similar to those observed for Gn,m in Section 4.5.1.

68

Out-of-Core Performance on Gn,m with m = 2 Million (B = 4 KB and M = 4 MB)NO PQRSTU VWXYZ [\]^ _`abcde
(a) Absolute I/O Wait Times

fgffhffiff
jffklfffklgff

kf gm mf kff gmf mff klfffnopqrs tu vrswxyrz { | }~� �����������������
(b) I/O Wait Times w.r.t. Dual-BH

���������������
������������

�� �� �� ��� ��� ��� ����������� �� ��� ¡¢�£ ¤ ¥ ¦§¨ ©ª«¬®̄°°̄±²³́µ´°¶́·®̧¹º»¼
(c) Block Transfers

½¾¿ÀÁ
ÂÃÄÅÆ

¾½ ¿Â Â½ ¾½½ ¿Â½ Â½½ ¾Ç½½½ÈÉÊËÌÍ ÎÏ ÐÌÍÑÒÓÌÔ Õ Ö ×ØÙ ÚÛÜÝÞßàáâãäåæáäçèéêëì
(d) Block Transfers w.r.t. Dual-BH

íîííîïðîíðîï
ñîíñîïòîí

ðí ñï ïí ðíí ñïí ïíí ðóíííôõö÷øù úû üøùýþÿø� � � ��� ���	
������������� ����� ���
�

Figure 4.5: Out-of-core performance on Gn,m with m fixed to 2 million.

69

4.5.3 Out-of-Core Results for Gn,m

We report our experimental results for fully external computation where neither

the vertex set nor the edge set completely fits in internal memory, and the priority

queue is too large to fit in internal memory. We fixed the amount of internal memory

available to store the graph and the priority queue separately by fixing the STXXL

parameters of the corresponding vectors. We fixed the block size B to 4 KB and

internal-memory size M to 4 MB. We have not included SeqH in these experiments

because it was quite difficult to reimplement it in order to make it compatible with

STXXL.

Figures 4.5(a) and 4.5(b) show I/O wait time of different implementations

on Gn,m as the average degree of the graph is varied while keeping the number of

edges fixed to 2 million. The Dual-BH which ran considerably slower than all other

implementations in a similar in-core experiment (see Section 4.5.1), performed the

best in the current experiment. As Table 4.3 shows Dual-BH is the most I/O-efficient

implementation for sparse graphs, and in the current setting the block size B and

the access latency of the external memory are large enough to hide the overheads

of Dual-BH which were exposed during in-core experiments. When the graph is

not too dense (m/n < 40), Dual-BH was slightly faster than both BH and Aux-

BH, and around 30-40% faster than FBinH and A4lH. We believe this is due to

their O (m) I/O overhead for accessing the graph data structure compared to only

O
(
n + m

B

)
I/O operations performed by Dual-BH for the same (see Table B.1 in

Appendix B). Figures 4.5(c) and 4.5(d) which plot the number of blocks transferred

by different implementations support our claim. They show that both BH and Aux-

BH perform more than 2 times more block transfers than Dual-BH, while FBinH

and Al4H perform more than 2.5 times more.

We believe that the performance of Dual-BH will improve even further com-

pared to other implementations under more memory intensive situation.

4.5.4 Performance on Real-World Graphs

In Table 4.4 we tabulate the performance of different implementations on road net-

works of different regions of the United States. These regional networks were down-

loaded from the DIMACS Challenge 9 website [1]. We chose the physical distance

between the endpoints as the weight of each edge.

70

Running Time in Milliseconds

Region

(n, m)
Aux-BH FBinH Al4H SeqH BinH PairH BH DIMACS

New York City

(0.26× 106,

0.73× 106)

91 82 94 76 104 156 336 82

San Francisco

Bay Area

(0.32× 106,

0.80× 106)

106 96 107 87 120 179 381 94

Colorado

(0.44× 106,

1.06× 106)

149 132 149 121 171 242 532 137

Florida

(1.07× 106,

2.71× 106)

374 336 379 310 441 612 1, 328 353

Northwest USA

(1.21× 106,

2.84× 106)

445 420 456 381 540 761 1, 578 455

Northeast USA

(1.52× 106,

3.90× 106)

614 579 633 529 738 1, 037 2, 084 645

California

and Nevada

(1.89× 106,

4.66× 106)

746 688 783 645 876 1, 266 2, 531 791

Great Lakes

(2.76× 106,

6.89× 106)

1, 138 1, 063 1, 172 986 1, 329 1, 958 3, 779 1, 213

Eastern USA

(3.60× 106,

8.78× 106)

1, 642 1, 563 1, 686 1, 453 1, 966 2, 731 5, 150 1, 842

Western USA

(6.26× 106,

15.25 × 106)

3, 139 3, 019 3, 210 2, 792 3, 698 5, 096 9, 665 3, 654

Central USA

(14.08 × 106,

34.29 × 106)

12, 109 11, 854 12, 341 11, 326 13, 965 17, 236 27, 450 15, 225

Table 4.4: Running time (in milliseconds) of each implementation on US road networks
(TIGER/Line). The datasets were downloaded from DIMACS Challenge 9 website [1].

71

The SeqH implementation was the fastest followed by FBinH. Though for

smaller networks Aux-BH was slower than the DIMACS benchmark code, it ran

faster for larger networks. For the largest networks in the set, namely Central USA,

Aux-BH was only 7% slower than SeqH. Among all implementations BH was the

slowest.

The road networks are almost planar and their edge distributions ensure that

nodes are connected to only nearby nodes on the plane. Since Dijkstra’s algorithm

only stores fringe nodes in the priority queue, the nature of these graphs keep the

size of the priority queue very small. Empirical evidence suggests that in our ex-

periments the priority queues were so small in size that they often fit in L2 cache.

In the absence of any significant savings in L2 misses, other overheads in the im-

plementations of buffer heap caused BH run slower than all internal-memory heap

based implementations. As the size of the graph grew the performance of BH im-

proved with respect to other implementations which makes sense since the size of

the priority queue tends to grow as the graph becomes larger.

72

Chapter 5

Cache-efficient Unweighted and

Bounded-weight APSP

One day Alice came to a fork in the road

and saw a Cheshire cat in a tree.

Which road do I take? she asked.

Where do you want to go? was his response.

I don’t know, Alice answered.

Then, said the cat, it doesn’t matter.

(Lewis Carroll in Alice in Wonderland)

In this chapter we present several new cache-efficient algorithms for finding all-pairs shortest

paths in an n-node, m-edge undirected graph. For all-pairs shortest paths and diameter in

unweighted undirected graphs we present cache-oblivious algorithms with O (n · sort(m))

cache-misses, where sort(m) is the number of cache-misses incurred for sorting m items.

We also present efficient cache-aware algorithms that find paths between all pairs of vertices

in an unweighted graph with lengths within a small additive constant of the shortest path

length. For weighted undirected graphs we present a cache-aware exact algorithm that

incurs O
(

n2

β
2

3

+ n · sort(m)

)
cache-misses, where β =

(
n

m log ρ

)
· B, ρ is the ratio of the

largest and the smallest edge-weights, and B is the block size between the cache and the

main memory. The algorithm assumes β ≥ 1.

All of our results improve earlier results known for these problems. For approximate

all-pairs shortest paths we provide the first nontrivial results. Our diameter result uses

O (m + n) extra space, and all of our other algorithms use O
(
n2
)

space.

73

5.1 Introduction

In Chapter 3 we presented a cache-efficient algorithm for solving the all-pairs short-

est path (APSP) problem on undirected graphs with general edge-weights. In this

chapter we consider undirected graphs with unweighted and bounded-weight edges,

and provide algorithms with provably better cache performance.

Recall that given a (directed or undirected) graph G with vertex set V , edge

set E, and a non-negative real-valued weight function w over E, the APSP problem

seeks to find a path of minimum total edge-weight between every pair of vertices in

V . For unweighted graphs the APSP problem is also called the all-pairs breadth-

first-search (AP-BFS) problem.

5.1.1 Cache-aware APSP Algorithms

The simplest method of computing AP-BFS (or APSP) is to simply run a BFS

(or single source shortest path (SSSP) algorithm, respectively) from each of the n

vertices of the graph. On unweighted undirected graphs BFS can be performed

in O
(
min{n,

√
mn
B
}+ sort(m)

)
block transfers [92, 88]. On undirected graphs with

real edge-weights the SSSP problem can also be solved in O
(√

nm
B
· log ρ+sort(m)+

MST (n,m)
)

cache-misses [89], where ρ is the ratio of the largest and the smallest

edge-weights, and MST (n,m) is the cache complexity of computing a minimum

spanning tree on a graph with n vertices and m edges. The cache complexity of AP-

BFS (or APSP) is obtained by multiplying the cache complexity of BFS (or SSSP,

resp.) by n.

Arge et al. [13] proposed a cache-aware algorithm for AP-BFS on undirected

graphs that incurs only O (n · sort(m)) cache-misses. Their algorithm works by

clustering nearby vertices in the graph, and running concurrent BFS from all ver-

tices of the same cluster. This same algorithm can be used to compute unweighted

diameter of the graph in the same cache-miss bound and O
(√

mnB
)

additional

space. They also present another algorithm for computing the unweighted diameter

of sparse graphs in O
(
sort(kn2B

1
k)
)

cache-misses and O (kn) space for any integer

k, 3 ≤ k ≤ log B.

For undirected graphs with general non-negative edge-weights Arge et al.

[13] proposed an APSP algorithm that incurs only O
(
n · (

√
mn
B
· log n + sort(m))

)

cache-misses provided m = O
(

B
log n
· n
)
. They use a priority queue structure called

74

the Multi-Tournament-Tree which is created by bundling together a number of cache-

efficient Tournament Trees [83]. This reduces unstructured accesses to adjacency lists

at the expense of increasing the cost of each priority queue operation.

5.1.2 Cache-oblivious APSP Algorithms

No non-trivial cache-oblivious algorithm is known for the AP-BFS and the APSP

problems except for the method of running BFS and SSSP, respectively, from each

of the n vertices. In this model, BFS on an undirected graph can be performed

in O
(√

nm
B

+ n
B

log m
B

+ MST (n,m)
)

cache-misses [24], and SSSP on an undirected

graph with non-negative real-valued edge-weights can be solved in O
(
n + m

B
log n

M

)

cache-misses using our cache-oblivious buffer heap (see Chapter 3). Very recently,

Allulli et al. [7] obtained a cache-oblivious SSSP algorithm for undirected sparse

graphs with real edge-weights by extending the cache-aware algorithm in [89] which

incurs O
(√

nm
B
· log ρ + n

B
log m

B
+ MST (n,m)

)
cache-misses. The cache complex-

ity of the corresponding all-pairs version of the problem is obtained by multiplying

the cache complexity of the single-source version by n.

5.1.3 Our Results

Majority of the results included in this chapter were presented in a conference paper

[33], and are tabulated in Table 5.1.

In Section 5.2 we present a simple cache-oblivious algorithm for computing

AP-BFS on unweighted undirected graphs in O (n · sort(m)) cache-misses, matching

the cache complexity of its cache-aware counterpart [13]. We use this algorithm to

compute the diameter of an unweighted undirected graph in the same cache-miss

bound and O (n + m) space. Our cache-oblivious algorithm is arguably simpler than

the cache-aware algorithm in [13] and it has a better space bound for computing the

diameter.

In Section 5.3 we present the first nontrivial cache-efficient algorithm to com-

pute approximate APSP on unweighted undirected graphs with small additive error.

Our algorithm is based on a flat-memory algorithm in [44] that runs in T (m,n, k) =

O
(

k ·
(

m
n log n

) 1
k · n2 log n

)
time, and produces estimated distances with an addi-

tive error of at most 2(k − 1), where k ∈ [2, log n] is an integer. Our algorithm has

75

Problem Known New

Unweighted

APSP

cache-misses

O (n · sort(m))

extra space

O
“√

mnB
”

([13])

cache-oblivious

cache-misses

O (n · sort(m))

extra space

O (n)

Approximate

unweighted APSP

with additive

error 2(k − 1)

(int k ∈ [2, log n])

none

O
“

T (m,n,k)
B

”
if log n ≥ B

8
, and

O
„

T (m,n,k)
B

+
“

T (m,n,k)
B

· n
k

” 2

3

«
otherwise,

where, T (m,n, k) = O
„

k
“

m
n log n

” 1

k
n2 log n

«

is the runtime of the original flat-memory

implementation of the algorithm (see [44]),

and m ≥ n log n

Bounded-weight

APSP

O
„

n2

β
1

2

+ n · sort(m)

«
,

when m = O
“

B
log ρ
· n

”
;

here β =
“

n
m log ρ

”
·B ≥ 1

(trivial using [89])

O
„

n2

β
2

3

+ n · sort(m)

«
,

when m = O
“

B
log ρ
· n

”
;

O
„

n2

β
3

4

· 1

log
1

4 ρ
+ n · sort(m)

«
,

when m = O
„

B

max{log ρ,log2 n} · n
«

Table 5.1: Cache-miss bounds for APSP problems on undirected graphs. Here, ρ is the ratio
of the largest and the smallest edge-weights in the graph. All algorithms are cache-aware unless
specified otherwise.

the same error bounds, is cache-aware, and incurs O
(
T (m,n,k)

B
+
(
T (m,n,k)

B
· n

k

) 2
3

)

cache-misses provided m ≥ n log n. Additionally, if log n ≥ B
8 also holds, which is

typically the case for shallower levels of the memory hierarchy (e.g., L1 and L2), the

algorithm incurs only O
(
T (m,n,k)

B

)
cache-misses. Our approximate algorithm per-

forms fewer block transfers than the O (n · sort(m)) I/O exact AP-BFS algorithm

when m > max

{
k

k
k−1 ,

(
B

log n

) k
3k−2

}
· n log n.

In Section 5.4, we present a cache-aware APSP algorithm for weighted undi-

rected graphs incurring O
(

n2

β
2
3

+ n · sort(m)

)
cache-misses, where β =

(
n

m log ρ

)
·B,

and ρ is the ratio of the largest and the smallest edge-weights in the graph. The algo-

rithm assumes that β ≥ 1. The best known previous bound of O
(

n2

β
1
2

+ n · sort(m)

)

is obtained trivially by running Meyer & Zeh’s bounded-weight undirected SSSP al-

gorithm [89] once from every vertex. Our algorithm also builds on Meyer & Zeh’s

76

SSSP algorithm and improves over the trivial bound when m = O
(

B
log ρ
· n
)
. We

also show that the cache-complexity of the algorithm can be further improved to

O
(

n2

β
3
4
· 1

log
1
4 ρ

+ n · sort(m)

)
provided m = O

(
B

max{ log ρ, log2 n } · n
)

.

The results in Sections 5.2 and 5.3 appeared in the conference paper [33],

while the result in Section 5.4 is new.

5.1.4 Organization of the Chapter

In Section 5.2 we present our cache-oblivious exact APSP algorithm, and in Section

5.3 our cache-aware approximate APSP algorithm for unweighted undirected graphs.

In Section 5.4 we describe our cache-aware APSP algorithm for weighted undirected

graphs.

5.2 Cache-oblivious APSP and Diameter for Unweighted

Undirected Graphs

In this section we present a cache-oblivious algorithm for computing all-pairs short-

est paths and diameter in an unweighted undirected graph. The algorithm uses

Munagala and Ranade’s cache-oblivious BFS algorithm [92] as a subroutine which

we describe first.

5.2.1 Munagala and Ranade’s Cache-oblivious BFS Algorithm

Given an unweighted undirected graph G = (V,E) and a source vertex s ∈ V ,

Munagala & Ranade’s algorithm [92] computes the BFS level of each vertex v ∈ V

with respect to s. For i ∈ [0, n− 1], let L(i) denote the set of vertices at BFS level i,

and let N(L(i)) be the set of vertices adjacent to the vertices in L(i). The set L(−1)

is assumed to be empty. The algorithm starts by setting L(0)← { s }, and then for

1 ≤ i ≤ n− 1, incrementally computes L(i) from L(i− 1), L(i− 2) and N(L(i− 1))

assuming that L(i− 1) and L(i− 2) have already been computed.

Function 5.2.1 implements the algorithm. Summing up the cache-misses in-

curred by different steps we obtain O
(∑n−1

i=1 (|L(i)|+ sort (|N(L(i− 1))|))+sort(|Q|)
)
.

Since |Q| =
∑n−1

i=0 |L(i)| = n,
∑n−2

i=0 |N(L(i))| ≤ m and
∑n−2

i=0 sort (|N(L(i))|) ≤
sort

(∑n−2
i=0 |N(L(i))|

)
, the cache complexity of the algorithm reduces to O

(
n +

77

sort(m)
)
. The algorithm uses O (n + m) space.

5.2.2 Cache-oblivious APSP for Unweighted Undirected Graphs

In this section we describe a cache-oblivious APSP algorithm for unweighted undi-

rected graphs which incurs only O (n · sort(m)) cache-misses.

Let G = (V,E) be an unweighted undirected graph. By d(u, v) we denote

the shortest distance between u, v ∈ V . Our algorithm is based on the following

observation which follows from triangle inequality and the fact that d(u, v) = d(v, u)

in an undirected graph:

Observation 5.2.1. For any three vertices u, v and x in G,

d(u, x) − d(u, v) ≤ d(v, x) ≤ d(u, x) + d(u, v).

Suppose for some u ∈ V we have already computed d(u, x) for ∀x ∈ V . We sort the

adjacency lists of G in non-decreasing order by d(u, ·), and by A(r) we denote the

portion of this sorted list containing adjacency lists of vertices x with d(u, x) = r.

Now if v is another vertex in V then Observation 5.2.1 implies that the adjacency

list of any vertex x with d(v, x) = i, must reside in some A(r), where r ∈ [i −
d(u, v), i + d(u, v)]. Therefore, we can compute d(v, x) for ∀x ∈ V by calling MR-

BFS with source vertex v, but in step 2(a) of MR-BFS, instead of constructing

N(L(i−1)) by |L(i−1)| independent accesses to the adjacency lists of G, we construct

N(L(i− 1)) by simultaneously scanning L(i− 1) and A(r) for r ∈ [max{ 0, i− 1−
d(u, v) },min{ n−1, i−1+d(u, v) }]. The resulting algorithm (Incremental-BFS)

is given as Function 5.2.2.

Step 1 of Incremental-BFS incursO (sort(m)) cache-misses. In step 2 each

A(r) is scanned O (d(u, v)) times, and so is each L(i− 1). Therefore, the number of

cache-misses caused by step 2 is O
(

1
B
·
(∑n

i=1 |L(i− 1)|+∑n−1
r=0 |A(r)|

)
· d(u, v) +

sort(m)
)
. Since each vertex appears in exactly one L(i− 1) and each edge appears

in exactly one A(r), we have
∑n

i=1 |L(i− 1)| = n ≤ m and
∑n−1

r=0 |A(r)| = m. Thus

the cache complexity of step 2 reduces to O
(

m
B
· d(u, v) + sort(m)

)
which is also the

overall cache complexity of Incremental-BFS.

Since Incremental-BFS is actually an implementation of Munagala and

Ranade’s algorithm [92], its correctness follows from the correctness of that algo-

78

Function 5.2.1. MR-BFS(G, s) {Munagala & Ranade’s cache-oblivious BFS algorithm [92]}
[Given an unweighted undirected graph G with vertex set V , edge set E, and a source vertex s ∈ V ,
this function cache-obliviously computes the BFS level of each vertex v ∈ V w.r.t. s, and store it
in d[v]. Let n = |V | and m = |E|.]

1. ∀v∈V d[v]←∞
L(−1)← ∅, L(0)← { s } {for i ∈ [0, n− 1], L(i) will contain the vertices at BFS level i}
S ← { (s, 0) } {at the start of iteration i ∈ [1, n] of the for loop in step 2,

S = { (v, j) | j ∈ [0, i− 1] ∧ v ∈ L(j) }}
2. for i← 1 to n− 1 do

(i) Construct N(L(i− 1)) by concatenating the adjacency lists of the vertices in L(i− 1)

{for a set of vertices S, N(S) is a multiset of all vertices adjacent to S}
(ii) Remove duplicates from N(L(i− 1)) by sorting it by vertex indices, followed by a,

scan, and let L′(i) be the resulting set

(iii) Construct L(i) = L′(i) \ {L(i− 1)∪L(i− 2)} by scanning L′(i), L(i− 1) and L(i− 2)

(iv) Construct S ← S ∪ { (v, i) | v ∈ L(i) } by a single scan of L(i) and appending to S

3. Update d[v] for all v ∈ V by sorting S by vertex indices, followed by a scan

4. return d

MR-BFS Ends

Function 5.2.2. Incremental-BFS(G, u, v, d(u, ·))

[Given an unweighted undirected graph G with vertex set V , edge set E, two vertices u, v ∈ V , and
d(u, w) for all w ∈ V , this algorithm computes d(v,w) for all w ∈ V . We assume that E is given
as a set of adjacency lists, and by Adj(x) we denote the adjacency list of x ∈ V . Let n = |V | and
m = |E|.]

1. Sort E: for any x, y ∈ V , Adj(x) is placed before Adj(y) provided 〈 d(u, x), x 〉 < 〈 d(u, y), y 〉.
Let E′ be the sorted E. Let A(r), r ∈ [0, n), be the section of E′ containing Adj(x) of
∀x ∈ V with d(u, x) = r.

2. Compute d(v, x) for ∀x ∈ V by calling MR-BFS(G′ = (V, E′), v), but step 2(a) of

MR-BFS replaced with:

N(L(i− 1))← ∅
for r ← max{ 0, i− 1− d(u, v) } to min{ n− 1, i− 1 + d(u, v) } do

Scan L(i− 1) and A(r) to append { Adj(x) | x ∈ L(i− 1) ∧ Adj(x) ∈ A(r) }
to N(L(i− 1))

3. return d(v, ·)
Incremental-BFS Ends

79

Function 5.2.3. AP-BFS(G)

[Given an unweighted undirected graph G with vertex set V and edge set E, this function cache-
obliviously computes the shortest distance d(u, v) between every pair of vertices u, v ∈ V . Let
n = |V | and m = |E|.]

1. Perform the following initializations:

(i) T ← a spanning tree of G

(ii) ET ← an Euler Tour of T

(iii) Mark the first occurrence of each vertex on ET .

Let v1, v2, . . . , vn be the marked vertices in the order they appear on ET .

2. d(v1, ·)←MR-BFS(G, v1)

3. for i← 2 to n do

d(vi, ·)← Incremental-BFS(G, vi−1, vi , d(vi−1, ·))

4. return d

AP-BFS Ends

rithm, and from Observation 5.2.1 which guarantees that the adjacency lists of all

x ∈ L(i− 1) in step 2 of Incremental-BFS are found in the set of A(r)’s scanned.

We can use Incremental-BFS to perform BFS cache-efficiently from all v ∈
V . The following observation each part of which follows trivially from the properties

of spanning trees, Euler tours and shortest paths, is central to this extension:

Observation 5.2.2. If ET is an Euler tour of a spanning tree of an unweighted

undirected graph G = (V,E) with n vertices, then

(a) number of edges between any two x, y ∈ V on ET is an upper bound on

d(x, y) in G,

(b) ET has O (n) edges, and

(c) each vertex x ∈ V appears at least once in ET .

The extension is outlined in Function 5.2.3 (AP-BFS) which works as follows. It

first constructs an Euler tour ET of a spanning tree of the input graph G, and then

marks the first occurrence of each vertex of G on ET . Let v1, v2, . . . , vn be the

marked vertices in the order they appear on ET . The algorithm first calls MR-BFS

to compute d(v1, x) for ∀x ∈ V . Then for 2 ≤ i ≤ n, it calls Incremental-BFS

to compute d(vi, x) for ∀x ∈ V using the d(vi−1, ·) values computed in the previous

step.

Correctness. Correctness of AP-BFS follows from the correctness of MR-BFS

80

and Incremental-BFS. Moreover, Observation 5.2.2(c) ensures that BFS will be

performed from each v ∈ V .

Space Complexity. Since the algorithm outputs Θ
(
n2
)

pairwise distances it uses

Θ
(
n2
)

space.

Cache Complexity. Steps 1(a) and 1(b) of AP-BFS can be performed cache-

obliviously inO (min {n + sort(m), sort(m) · log2 log2 n}) andO (sort(n)) cache-misses,

respectively [11], while step 1(c) incurs O (sort(E)) cache-misses. The number of

cache-misses incurred by steps 2 and 3 areO (n + sort(m)) andO
(

m
B

∑n
i=2 d(vi−1, vi)+

n · sort(m)
)
, respectively. Since by Observations 5.2.2(a) and 5.2.2(b) we have

∑n
i=2 d(vi−1, vi) = O (n), the cache complexity of step 3, and consequently of the

entire algorithm reduces to O (n · sort(m)).

5.2.3 Cache-oblivious Unweighted Diameter for Undirected Graphs

The AP-BFS algorithm can be used to find the unweighted diameter of an undirected

graph cache-obliviously in O (n · sort(m)) cache-misses. We no longer need to output

all Θ
(
n2
)

pairwise distances, and each iteration of step 3 of AP-BFS only requires

the Θ (n) distances computed in the previous iteration or in step 2. Thus the space

requirement is only Θ (n) in addition to the O (m) space required to handle the

adjacency lists.

5.3 Cache-aware Approximate APSP for Unweighted Undi-

rected Graphs

In this section we present a family of efficient cache-aware algorithms Approx-

AP-BFSk for approximating all distances in an unweighted undirected graph with

an additive error of at most 2(k − 1), where k ∈ [2, log n] is an integer. The er-

ror is one sided. If δ(u, v) denotes the shortest distance between any two vertices

u and v in the graph, and δ̂(u, v) denotes the estimated distance between u and

v produced by the algorithm, then δ(u, v) ≤ δ̂(u, v) ≤ δ(u, v) + 2(k − 1). This

family of algorithms is the cache-efficient version of the family of T (m,n, k) =

O
(

k ·
(

m
n log n

) 1
k · n2 log n

)
time approximate shortest path algorithms (apaspk)

introduced by Dor et al. [44] which is the most efficient algorithm available for solv-

81

ing the problem in the traditional flat-memory model. The function Approx-AP-

BFSk incurs O
(
T (m,n,k)

B
+
(
T (m,n,k)

B
· n

k

) 2
3

)
cache-misses provided m ≥ n log n.

Additionally, if log n ≥ B
8 also holds, the cache-complexity of the algorithm reduces

to O
(
T (m,n,k)

B

)
.

5.3.1 Dor et al.’s Approximate AP-BFS for Flat-Memory Model

The approximate APSP algorithm (apaspk) for the traditional flat-memory model

given in [44], receives an unweighted undirected graph G = (V,E) as input, and

outputs an approximate shortest distance δ̂(u, v) between every pair of vertices u, v ∈
V with a positive additive error of at most 2(k − 1).

Function 5.3.1 (DHZ-Approx-AP-BFSk) gives a high level overview of the

algorithm. Recall that a set of vertices D is said to dominate a set U if every vertex

in U has a neighbor in D (see step 2(a) of the algorithm). The algorithm maintains

the invariant that after the i-th iteration of the outermost for loop in step 3, the

approximate distance computed by the algorithm from each u ∈ Di to each v ∈ V

has an additive error of at most 2(i − 1). Thus after the k-th iteration a surplus

2(k − 1) distance is computed between every pair of vertices in G.

5.3.2 Our Cache-efficient Algorithm

Our algorithm adapts the Dor et al. algorithm (DHZ-Approx-AP-BFSk) to obtain

a cache-efficient implementation. In our adaptation use the same sequence of values

for 〈s1, s2, . . . , sk−1〉 as in the original algorithm. In Section 5.3.3 we describe a

cache-efficient implementation of step 2 of DHZ-Approx-AP-BFSk .

The cache complexity of DHZ-Approx-AP-BFSk depends on the cache-

efficiency of the SSSP algorithm used in step 3. Therefore, we replace each SSSP

algorithm with a more cache-efficient BFS algorithm by transforming each Gi(u)

to an unweighted graph G′i(u) of comparable size. But in order to preserve the

shortest distances from u to other vertices in Gi(u), we replace the weighted edges of

Gi(u) with a set of directed unweighted edges. This makes the graph G′i(u) partially

directed, and we modify existing external-memory undirected BFS algorithms to

handle the partial directedness in G′i(u) efficiently. This is described in section 5.3.4.

There are two ways to apply the BFS: either we can run an independent

BFS from each u ∈ Di as in step 3 of DHZ-Approx-AP-BFSk, or we can run

82

Function 5.3.1. DHZ-Approx-AP-BFSk(G)

{Dor et al.’s internal-memory approximate AP-BFS algorithm [44]}
[Given an unweighted undirected graph G with vertex set V and edge set E, this function computes

an approximate shortest distance bδ(u, v) between every pair of vertices u, v ∈ V with a positive
additive error of at most 2(k− 1). We assume that for any vertex v ∈ V , deg(v) denotes its degree.
Let n = |V | and m = |E|.]

1. for i← 1 to k − 1 do si ← m
n

`
n log n

m

´ i
k

2. Decompose G to produce the following sets:

(i) D1, D2, . . . , Dk, where Dk = V , and for i ∈ [1, k), Di ⊆ V dominates ∀v ∈ V with
deg(v) ≥ si

(ii) E1, E2, . . . , Ek, where E1 = E, and

for i ∈ (1, k], Ei = {(u, v)|(u, v) ∈ E ∧min{deg(u), deg(v)} ≤ si−1}
(iii) E∗ ⊆ E bearing witness that each Di dominates the vertices of degree at least si

3. for i← 1 to k do

(i) for each u ∈ Di do

(a) Construct weighted graph Gi(u) = (V, Ei ∪ E∗ ∪ ({u} × V)) with the following
edge-weights:
• edges in Ei ∪E∗ are assigned unit weight
• each edge (u, v) in {u} × V is assigned the current known shortest u to v

distance as weight

(b) Run SSSP from u on Gi(u)

4. Return the smallest distance computed between every pair of vertices in step 3

DHZ-Approx-AP-BFSk Ends

BFS incrementally from the vertices of Di as in Section 5.2.2. Running independent

BFS is more cache-efficient when |Di| is smaller (i.e., value of i is smaller), and

incremental BFS is more cache-efficient when G′i(u) is sparser (i.e., value of i is

larger). Therefore, we choose a value of i at which switching from independent BFS

to incremental BFS minimizes the cache complexity of the entire algorithm. The

overall algorithm is described in Section 5.3.5.

5.3.3 Cache-efficient Graph Decomposition

A set of vertices D is said to dominate a set U if every vertex in U has a neighbor

in D. It has been shown in [5] that there is always a set of size O
(

n log n
s

)
that

dominates all the vertices of degree at least s in an undirected graph, and in [44]

it has been shown that this set can be found deterministically in O (n + m) time.

83

Function 5.3.2. Dominate(G, s)

[Given an undirected graph G = (V, E) and a degree threshold s, this algorithm outputs a pair
〈 D, E∗ 〉, where D is a set of size O

`
n log n

s

´
that dominates the vertices of degree at least s in G,

and E∗ ⊆ E is a set of size O (n) such that for every u ∈ V with degree at least s, there is an edge
(u, v) ∈ E∗ with v ∈ D. Here, n = |V | and m = |E|.]

1. for each u ∈ V do

Au ← { v | (u, v) ∈ E } {Au is the set of neighbors of u}
Lu ← { v | (u, v) ∈ E ∧ deg(v) ≥ s } {Lu is the set of neighbors of u with degree ≥ s}
Sort Lu by vertex indices

2. Perform the following initializations:

(i) D ← ∅, E∗ ← ∅
(ii) T ← ∅ {T is a BRT capable of containing key values in the range [1 . . . n]}

(iii) Q← ∅ {a buffer heap that supports Insert, Delete-Max and Relative-Decrease}
for each u ∈ V do

Insert(Q)(〈 u, deg(u) 〉, |Lu|) {insert each u ∈ V into Q with |Lu| as the key}
3. (〈 u, deg(u) 〉, d)← Delete-Max(Q)() {u has maximum number (d) of undominated

while d > 0 do neighbors with degree ≥ s}
(i) D ← D ∪ {u}

(ii) L′
u ← Extract(T)(u) {extract all dominated neighbors of u with degree ≥ s}

Sort L′
u by vertex indices

(iii) L′′
u ← L′

u \ Lu {L′′
u is the set of undominated neighbors of u with degree ≥ s}

(iv) if deg(u) ≥ s then

for each v ∈ Au do

Relative-Decrease(Q)(v, 1) {v loses an undominated neighbors}
Insert(T)(u, v) {mark neighbor u of v as dominated}

(v) for each v ∈ L′′
u do

E∗ ← E∗ ∪ {(u, v)} {edge (u, v) is the witness that u dominates v}
for each x ∈ Av do

Relative-Decrease(Q)(x, 1) {v loses an undominated neighbors}
Insert(T)(v, x) {mark neighbor v of x as dominated}

(vi) (u, d)← Delete-Max(Q)()

4. return 〈 D, E∗ 〉
Dominate Ends

84

Function 5.3.3. Decompose(G, 〈s1, s2, . . . , sk−1〉)

[Given an undirected graph G = (V, E) and a decreasing sequence s1, s2, . . . , sk−1 of degree thresh-
olds, this algorithm outputs a sequence of edge sets E1 ⊇ E2 ⊇ . . . ⊇ Ek, where E1 = E and for
1 < i ≤ k the set Ei contains edges that touch vertices of degree at most si−1. It also outputs
dominating sets D1, D2, . . . , Dk, and an edge set E∗. For 1 ≤ i < k the set Di dominates all vertices
of degree greater than si, while Dk is simply V . The set E∗ ⊆ E is such that if deg(u) > si then
there exists an edge (u, v) ∈ E∗ with v ∈ Di, where deg(u) denotes the degree of vertex u.]

1. Construct the lexicographically sorted list

E′ = { 〈 u, v, d 〉 | (u, v) ∈ E ∧ d = min{ deg(u), deg(v) } }
2. E1 ← E

for i← 2 to k do Ei ← { (u, v) | 〈 u, v, d 〉 ∈ E′ ∧ d ≤ si−1 }
3. for i← 1 to k − 1 do 〈 Di, E∗

i 〉 ← Dominate(G, si)

Dk ← V , E∗ ← ∪k−1
i=1 E∗

i

4. return 〈 〈 D1, D2, . . . , Dk 〉 , 〈 E1, E2, . . . , Ek 〉 , E∗ 〉
Decompose Ends

In this section we present a cache-efficient implementation of the greedy algorithm

described in [44] for computing this set. The resulting implementation, which we

call Dominate (Function 5.3.2), incurs O
((

n + m
B

)
· log n

)
cache-misses and runs

in O ((n + m) · log n) time.

The Dominate function receives an undirected graph G = (V,E) and a

degree threshold s as inputs, and outputs a pair (D,E∗), where D is a set of size

O
(

n log n
s

)
dominating the set of vertices of degree at least s in G, and E∗ ⊆ E[G]

is a set of size O (n) such that for every u ∈ V with degree at least s, there is an

edge (u, v) ∈ E∗ with v ∈ D.

The greedy algorithm in [44] starts with an empty set D, and for each u ∈ V ,

a list of neighbors of u with degree at least s that are yet to be dominated by the

vertices of D. Each vertex is inserted into a priority queue with the number of its

‘yet to be dominated neighbors’ as the key. The algorithm then enters a loop in each

iteration of which a vertex with the largest key is extracted from the priority queue

and added to D. If a vertex u (with degree ≥ s) now becomes dominated we update

the ‘yet to be dominated neighbors’ lists and keys of all neighbors of u.

In our cache-efficient implementation of the algorithm described above, we use

our cache-oblivious buffer heap (see Chapter 3) as a priority queue which supports

Insert, Delete-Max and Relative-Decrease operations in O (log N) amortized time

and O
(

1
B

log N
M

)
amortized cache-misses each, where N is the number of elements

85

in the priority queue. An Insert(Q)(x, kx) operation inserts the element x with key

value kx into the priority queue Q, a Delete-Max(Q)() extracts an element with

the largest key from Q, and a Relative-Decrease(Q)(x, δx) operation decreases

the current key of x in Q by δx ≥ 0.

Additionally, we use a Buffered Repository Tree (BRT) [11] which for each

vertex of G keeps track of the set of its neighbors currently dominated by D. A

BRT maintains O (m) elements with keys in the range [1 . . . n] under the operations

Insert and Extract. An Insert(T)(v, u) operation inserts a new element v with

key u into the BRT T , while an Extract(T)(u) operation reports and deletes

from T all elements v with key u. The Insert and Extract operations are supported

in O
(

1
B

log n
)

and O (log n) amortized cache-misses, respectively. Amortized time

bound of each operation is O (log n).

In our cache-efficient implementation, i.e., in the Dominate function, we use

the above two data structures as follows. For each u ∈ V , we first construct its

adjacency list Au and the set Lu of neighbors of u with degree at least s. We start

with an empty dominating set D, and an empty BRT T which for each u ∈ V , will

maintain the subset of Lu currently dominated by D. A buffer heap Q is used to keep

track for each u ∈ V , the number of its neighbors in Lu that are not yet dominated

by D. Initially, we insert each u into Q with |Lu| as its key. Every time a vertex u

with the maximum key is extracted from Q and the key is nonzero, we add u to D,

and update Q and T to reflect this change. If deg(u) ≥ s, then for each v ∈ Au, we

update Q and T to indicate that one more neighbor (u) of v is now dominated by D,

that is, we decrease the key value of v in Q by 1, and insert u with key value v into

T . We extract from T the set L′u of neighbors of u that have degree at least s and

are dominated by D \ {u}, and construct from it the set L′′u = Lu \L′u. Each vertex

v ∈ L′′u will be dominated by u through the edge (u, v), and we add (u, v) to E∗. For

each x ∈ Av, we also update the entries of x in Q and T to take into account that

neighbor v of x is now dominated by D.

Correctness of Dominate follows from the correctness of the greedy algo-

rithm in [44] which it implements, and also from the correctness of buffer heap

operations (see Chapter 3) and the BRT structure (see [11]).

Cache Complexity of Dominate. Step 1 can be implemented in a constant

number of sorting and scanning phases on V and E, and thus incurs O
(
sort(n +

86

m) + scan(n + m)
)

= O (sort(m)) cache-misses. Steps 2 and 3 perform at most

2n+m operations on Q which cause O
(

m+n
B

log m+n
M

)
= O

(
m
B

log m
M

)
cache-misses.

At most n Extract and m Insert operations are performed on T in step 3 in-

curring O
((

n + m
B

)
log n

)
cache-misses. The sorting and scanning phases in step

3 incur O (sort(n + m) + scan(n + m)) = O (sort(m)) cache-misses. The overall

cache complexity of Dominate is thus O
((

n + m
B

)
log n + m

B
log m

M
+ sort(m)

)
=

O
((

n + m
B

)
log n

)
.

We present another function, called Decompose (see Function 5.3.3), which

is a cache-efficient implementation of a function with the same name described in

[44], and uses Dominate as a subroutine. The function receives an undirected graph

G = (V,E), and a decreasing sequence s1 > s2 > . . . > sk−1 of degree thresholds as

inputs. It produces a decreasing sequence of edge sets E1 ⊇ E2 ⊇ . . . ⊇ Ek, where

E1 = E, and for 1 < i ≤ k, the set Ei contains edges that touch vertices of degree

at most si−1. Clearly, |Ei| ≤ nsi−1 for 1 < i ≤ k. This function also produces a

sequence of dominating sets D1,D2, . . . ,Dk, and an edge set E∗. For 1 ≤ i < k, the

set Di dominates all vertices of degree at least si, while Dk is simply V . The set

E∗ ⊆ E is a set of edges such that if the degree of a vertex u is at least si then there

exists an edge (u, v) ∈ E∗ with v ∈ Di. Clearly, |E∗| ≤ kn. The implementation is

simple, and so we do not describe it here (see Function 5.3.3 for details).

Cache Complexity of Decompose. The sorted list E′ in step 1 can be con-

structed in a constant number of sorting and scanning phases on V and E, and

thus incurs O (sort(m)) cache-misses. Step 2 scans E′ exactly k − 1 times causing

O
(
k · m

B

)
cache-misses. Step 3 calls Dominate k − 1 times resulting in O

(
k · (n +

m
B

) · log n
)

cache-misses. The cache complexity of Decompose is thus O
(
k · (n +

m
B

) · log n + k · m
B

+ sort(m)
)

= O
(
k · (n + m

B
) · log n

)
.

5.3.4 Replacing SSSP with BFS for Cache-efficiency

In step 3 of DHZ-Approx-AP-BFSk , for i = 1, 2, . . . , k, an SSSP algorithm is run

from each u ∈ Di on a graph Gi(u) = (V,Ei(u)), where Ei(u) = Ei∪E∗∪ ({u}×V).

The edges Ei ∪ E∗ are the original edges of the graph. But the edges {u} × V are

not necessarily the edges of the input graph, and to such an edge (u, v) an weight

of δ̂(u, v) is attached, where δ̂(u, v) is the current best known upper bound on the

shortest distance from u to v in G. Initially, δ̂(u, v) = 1 if (u, v) ∈ E and δ̂(u, v) =∞

87

t

v’ v’n

yx

u 1 v’2

δ(δ(u,y

v’ v’

u,x

t t+1 −1

) = 1) =

Figure 5.1: The directed unweighted edges that replace the undirected weighted
edges of Gi(u).

otherwise.

Since BFS can be made more cache-efficient than SSSP, we replace the SSSP

in step 3 with a BFS algorithm. But this requires us to transform the weighted

graph Gi(u) into an unweighted graph of comparable size.

Transforming Gi(u) into an Unweighted Graph. Since the distances we com-

pute are non-negative integers smaller than n, we can, in fact, transform Gi(u) into

an unweighted graph G′i(u) by introducing n − 2 new vertices along with at most

2n − 3 new unweighted directed edges instead of the weighted undirected edges of

{u} × V while preserving the shortest distances from u to all other vertices in V .

We introduce n − 2 new vertices v′2, v
′
3, . . . , v

′
n−1, and introduce the directed edges

(u, v′2), (v
′
2, v
′
3), (v

′
3, v
′
4), . . . , (v

′
n−2, v

′
n−1). For each v ∈ V with δ̂(u, v) = 1, we add

a directed edge (u, v), and for each v ∈ V with 2 ≤ δ̂(u, v) = t ≤ n − 1, we add a

directed edge (v′t, v) (see Figure 5.1). The resulting graph G′i(u) is partially directed.

We have the following lemma:

Lemma 5.3.1. The unweighted partially directed graph G′i(u) obtained from the

weighted undirected graph Gi(u) = (V,Ei(u)) preserves the shortest distances from u

to all other vertices in V .

Proof. We observe that for every v ∈ V to which a finite upper bound on the

shortest distance from u is known, we introduce exactly one u to v path containing

only directed edges. Let us call a path that contains no directed edges old path, and a

path that contains at least one directed edge new path. Now suppose G′i(u) contains

a shortest path from u to some vertex v ∈ V that is shorter than the shortest u to

v path in Gi(u). This path must be of the form P1 · P2, where P1 is a subpath (new

or old) from u to some vertex x ∈ V (x 6= u, v) , and P2 is a subpath (new) from

x to v. But since u is the only entry point to the new directed edges introduced in

88

G′i(u), P2 must contain a path from u to v. Thus the path P1 ·P2 is not simple, and

so cannot be a shortest path. �

Handling the Partial Directedness in G′i(u). We can modify the MR-BFS

algorithm in section 5.2.1 to correctly handle the partial directedness in G′i(u) with

only O (scan(m) + sort(n)) additional cache-misses, and thus without degrading its

cache complexity. The algorithm will receive G′i(u) as an undirected graph, and will

implicitly handle the edges that are intended to be directed. It must ensure the

following.

(a) L(i) must not contain any other v′j’s except v′i+1, and

(b) if BFS level of a vertex v is < i, any edge (v′i+1, v) must not force v to be

included in L(i).

Ensuring (a) is straight-forward, but in order to ensure (b) we use an cache-optimal

priority queue supporting Insert and Delete-Min [10] that keeps track of the vis-

ited vertices connected to the v′j’s. The modifications are detailed in Modified-

MR-BFS. It performs at most one Insert and one Delete-Min for each edge of the

form (v′j , v), and thus causes O (sort(n)) extra cache-misses [10]. An additional

O (scan(m)) cache-misses result from scanning the adjacency lists.

Correctness of Modified-MR-BFS. Since the correctness of MR-BFS has

already been proved in section 5.2.1, in order to prove the correctness of Modified-

MR-BFS we only need to show that it correctly handles the partial directedness

implicit in its input graph. To show this we need to prove that if the BFS level of a

vertex v is less than i, then no edge of the form (v′i+1, v) can force v to be included

in L(i). In iteration i, we insert each vertex v ∈ L(i − 1) into Q with a key j ≥ i

provided the edge (v′j+1, v) exists. Then we extract from Q each vertex v that has

an incoming edge from v′i+1. These vertices must have BFS level less than i and are

excluded from L(i). Vertices can be extracted from Q using Delete-Min operations

because initially (before iteration 1) Q is empty, and iteration i never inserts into

Q any vertex with a key value less than i, and these insertions always precede the

Delete-Min operations in the same iteration.

89

Function 5.3.4. Modified-MR-BFS(G′
i(u), u)

[The input graph G′
i(u) = (V, E) is given as an undirected graph but with implicit directed edges

as discussed in section 5.3.4. This algorithm is a version of Munagala & Ranade’s BFS algorithm
modified to perform BFS on this implicitly partially directed graph from the source vertex u. For
each vertex v ∈ V , its BFS level is stored in d[v]. Let n = |V | and m = |E|.]

1. ∀v∈V d[v]←∞
Q← ∅ {a cache-optimal priority queue supporting Insert, Find-Min and Delete-Min}
L(−1)← ∅, L(0)← { s } {for i ∈ [0, n− 1], L(i) will contain the vertices at BFS level i}
S ← { (s, 0) } {at the start of iteration i ∈ [1, n] of the for loop in step 2,

S = { (v, j) | j ∈ [0, i− 1] ∧ v ∈ L(j) }}
2. for i← 1 to n− 1 do

(i) for each v ∈ L(i− 1) do

for each (v, v′
j+1) ∈ Av with j ≥ i do {Av is the adjacency list of v}

Insert(Q)(v, j) {insert v into Q with key j}
(ii) P ← ∅, (v, k)← Find-Min(Q)()

while k = i do {extract all vertices with key value i from Q}
Delete-Min(Q)(), P ← P ∪ { v }
(v, k)← Find-Min(Q)()

Sort P by vertex indices

(iii) Construct N(L(i− 1)) by concatenating the adjacency lists of the vertices in L(i− 1)

{for a set of vertices S, N(S) is a multiset of all vertices adjacent to S}
(iv) Remove duplicates and all v′

j ’s from N(L(i− 1)),

and let L′(i) be the resulting set

(v) Construct L(i) = L′(i) \ {L(i− 1) ∪ L(i− 2) ∪ P} ∪ { v′
i+1 } by scanning the lists

(vi) Construct S ← S ∪ { (v, i) | v ∈ L(i) }

3. Update d[v] for all v ∈ V by sorting S by vertex indices, followed by a scan

4. return d

Modified-MR-BFS Ends

5.3.5 Cache-efficient Approximate AP-BFS

As pointed out in Section 5.3.2, there are two ways of applying the BFS in step 3 of

DHZ-Approx-AP-BFSk: either we can run BFS independently from each vertex

in Di as in DHZ-Approx-AP-BFSk, or we can run BFS incrementally from the

vertices of Di using the strategy used in AP-BFS (see Section 5.2.2).

We present the algorithm Independent-BFS which when called with Di as

a parameter constructs the implicitly partially directed unweighted graph G′i(u) for

each u ∈ Di and runs Mehlhorn & Meyer’s sublinear I/O BFS algorithm [88] on G′i(u)

90

from u. The cache complexity of Mehlhorn & Meyer’s algorithm is O
(√

mn
B

+ m
B
·

log n
)

as opposed to the O (n + sort(m)) cache complexity of Munagala & Ranade’s

algorithm (MR-BFS in Section 5.2.1), and thus it performs better on sparse graphs.

Mehlhorn & Meyer’s algorithm is based on MR-BFS, and can be modified in ex-

actly the same way to handle the implicit partial directedness in G′i(u). The cache

complexity of Independent-BFS is thus O
(

Di ·
(√

n|Ei|
B

+ |Ei|
B
· log n

))
.

The algorithm Interdependent-BFS when called with parameter Di, con-

structs G′i(u) for each u ∈ Di, and then runs Modified-MR-BFS (Section 5.3.4)

incrementally on G′i(u) from each u using the technique used in AP-BFS (Sec-

tion 5.2.2). The main differences between Interdependent-BFS and AP-BFS

are: Interdependent-BFS uses a different range for locating the adjacency lists,

works on a slightly different graph in each iteration, each graph it works on is par-

tially directed, and runs BFS only from the vertices in Di. The cache complexity of

Interdependent-BFS is O
(
|Ei|
B
· (n + i · |Di|) + |Di| · sort(|Ei|)

)
.

We observe that running Independent-BFS in step 3 of DHZ-Approx-

AP-BFSk is more cache-efficient when |Di| is smaller and G′i(u) is denser (i.e., value

of i is smaller), and Interdependent-BFS is more cache-efficient when |Di| is

larger and G′i(u) is sparser (i.e., value of i is larger). If we use Independent-BFS

for all values of i, it will incur a total ofO
(

n2√
B

+ T (m,n,k)
B

)
cache-misses, and running

Interdependent-BFS for all values of i causes a total of O
(

mn
B

+ T (m,n,k)
B

)
cache-

misses, where T (m,n, k) = O
(

k ·
(

m
n log n

) 1
k · n2 log n

)
. Therefore, we can do better

if we take a hybrid approach: starting from i = 1 we run Independent-BFS up

to some value l of i, and then we switch to Interdependent-BFS. We call this

parameter l a switching parameter, and choose its value in order to minimize the

cache complexity of the entire algorithm. The overall algorithm is given in Approx-

AP-BFSk.

Correctness of Approx-AP-BFSk. The correctness of Approx-AP-BFSk fol-

lows from the following:

(a) correctness of DHZ-Approx-AP-BFSk,

(b) lemma 5.3.1,

(c) correctness of Modified-MR-BFS,

91

Function 5.3.5. Independent-BFS(G = (V, E), Di, Ei, E∗, Lδ)

[Invoked by Approx-AP-BFS. See Approx-AP-BFS for the definition of the parameters. Per-
forms BFS independently from each vertex u ∈ Di on a graph constructed from V , Ei and E∗, and
the information in the list Lδ of current best upper bounds on all-pairs shortest distances in the
original graph G. It updates Lδ with the computed distances. Here, n = |V | and m = |E|.]

1. L′
δ ← ∅

Sort Di by vertex indices

2. for each u ∈ Di do

(i) Retrieve from Lδ the current best upper bound bδ(u, v) on the shortest distance from
u to each v ∈ V

(ii) Construct G′
i(u) = (V ′, E′) as follows:

(a) V ′ ← V ∪ {v′
2, v

′
3, . . . , v

′
n−1}

(b) E′ ← Ei ∪ E∗ ∪ { (u, v′
2) } ∪ { (v′

t, v
′
t+1) | t ∈ [2, n− 2] }

∪
n

(u, v) | v ∈ V ∧ bδ(u, v) = 1
o

∪
n

(v′
t, v) | v ∈ V ∧ 1 < bδ(u, v) = t <∞

o

(iii) Run on G′
i(u) the sublinear I/O BFS in [88] modified to handle the partial directedness

in the graph, and append the computed shortest distances to L′
δ

3. Update Lδ by sorting L′
δ appropriately and scanning the two lists simultaneously

4. return Lδ

Independent-BFS Ends

(d) correctness of Mehlhorn & Meyer’s BFS algorithm [88] modified to handle

the type partial directedness in the input graph as described in Section

5.3.4, and

(e) the guarantee that in step 3(d) of Interdependent-BFS, all adjacency

lists are found within the range searched.

Proof of (a) can be found in [44]. Proofs of (b) and (c) are given in Section

5.3.4. Proof of (d) follows from the proof of (c) since Mehlhorn & Meyer’s algorithm

builds on Munagala & Ranade’s BFS algorithm [92] (MR-BFS in Section 5.2.1),

and the modifications required are exactly the same.

We only need to prove (e). For 1 ≤ i ≤ k, and u, v ∈ V , let δi(u, v) be the

value of δ̂(u, v) after running BFS from all vertices of Di. It has been shown in [44]

that if u ∈ Di and v ∈ V , DHZ-Approx-AP-BFSk maintains δ(u, v) ≤ δi(u, v) ≤
δ(u, v) + 2(i − 1). The algorithm Approx-AP-BFSk also clearly maintains this

invariant up to level l. The first vertex in Dl+1 also computes its distances with

92

Function 5.3.6. Interdependent-BFS(G = (V, E), Di, Ei, E∗, 〈 v1, v2, . . . , vn 〉, Lδ)

[Invoked by Approx-AP-BFS. See Approx-AP-BFS for the definition of the parameters. Per-
forms BFS from each u ∈ Di on a graph constructed from V , Ei and E∗, and the information in
the list Lδ of current best upper bounds on all-pairs shortest distances in G. BFS is performed on
the vertices of Di in the order they appear in 〈v1, v2, . . . , vn〉, and distance information obtained
from the BFS run immediately preceding the current run is used to reduce cache-miss overhead.
List Lδ is updated with the computed distances. Here, n = |V | and m = |E|.]

1. L′
δ ← ∅

Permute Di

Let 〈u1, u2, . . . , u|Di|〉 be the vertices in Di in the order they appear in 〈v1, v2, . . . , vn〉
2. (i) Construct G′

i(u1) = (V ′
1 , E′

1) as in steps 2(a) and 2(b) of Independent-BFS,

but with u1 instead of u

(ii) d(u1, ·)←Modified-MR-BFS(G′
i(u1), u1)

Append d(u1, ·) to L′
δ

3. for j ← 2 to |Di| do

(i) Construct G′
i(uj) = (V ′

j , E′
j) as in steps 2(a) and 2(b) of Independent-BFS,

but with uj instead of u

(ii) Sort A′ = { (v′
r, v) | (v′

r, v) ∈ E′
j } to place (v′

p, x) before (v′
q, y) provided 〈p, x〉 < 〈q, y〉

(iii) Sort E′ = E′
j \A′ to place (x, x′) before (y, y′) if 〈d(uj−1, x), x, x′〉 < 〈d(uj−1, y), y, y′〉.

Let A(p) be the section of E′ containing edges (x, x′) for ∀x ∈ V with d(uj−1, x) = p.

(iv) Find d(uj , ·) by calling Modified-MR-BFS((V ′
j , E′ ∪A′), uj),

but compute each N(L(q − 1)) as follows:

N(L(q − 1))← ∅, ∆← d(uj−1, uj) + 2(i− 1)

for r ← max{ 0, q − 1−∆ } to min{ n− 1, q − 1 + ∆ } do

Scan L(q−1), A(r) and A′, and append { y | x ∈ L(q − 1) ∧ (x, y) ∈ A(r) ∪A′ }
to N(L(q − 1))

Append the computed shortest distances to L′
δ

4. Update Lδ by sorting L′
δ appropriately and scanning the two lists simultaneously

5. return Lδ

Interdependent-BFS Ends

surplus error of at most 2l. This is the base case. Now suppose all distances were

calculated with surplus error of at most 2(i− 1) up to the (j − 1)-th vertex uj−1 of

some Di, where 1 < j ≤ |Di| and l < i ≤ k. We will now prove that for uj ∈ Di the

adjacency lists will be found within the range in step 3(iv) of Interdependent-

BFS. Let v be any vertex in V . We have the following three invariants from DHZ-

Approx-AP-BFSk:

93

Function 5.3.7. Approx-AP-BFSk(G , l)

[Given an unweighted undirected graph G = (V, E) and a switching parameter l, this algorithm
computes the shortest distance between every pair of vertices in G with additive error of at most
2(k − 1). Let n = |V | and m = |E|.]

1. Perform the following initializations:

(i) for i← 1 to k − 1 do si ← m
n

`
n log n

m

´ i
k

(ii) 〈〈D1, D2, . . . , Dk〉 , 〈E1, E2, . . . , Ek〉 , E∗〉 ← Decompose(G, 〈s1, s2, . . . , sk−1〉)
(iii) Sort E so that (u1, v1) is placed before (u2, v2) provided 〈 u1, v1 〉 < 〈 u2, v2 〉.
(iv) Scan E to produce a sorted list Lδ (with the same ordering as E) of approximate

distances bδ(u, v), where u, v ∈ V , and bδ(u, v)← 1 if (u, v) ∈ E, bδ(u, v)←∞ otherwise.

2. for i← 1 to l do

Lδ ← Independent-BFS(G, Di, Ei, E∗, Lδ)

3. (i) Perform the following initializations:

(a) T ← a spanning tree of G

(b) ET ← an Euler Tour of T

(c) Mark the first occurrence of each vertex on ET .
Let v1, v2, . . . , vn be the marked vertices in the order they appear on ET .

(ii) for i← l + 1 to k do

Lδ ← Interdependent-BFS(G, Di, Ei, E∗, 〈 v1, v2, . . . , vn 〉, Lδ)

4. return Lδ

Approx-AP-BFSk Ends

δ(uj−1, uj) ≤ δi(uj−1, uj) ≤ δ(uj−1, uj) + 2(i− 1)

δ(uj−1, v) ≤ δi(uj−1, v) ≤ δ(uj−1, v) + 2(i− 1)

δ(uj , v) ≤ δi(uj , v) ≤ δ(uj , v) + 2(i− 1)

We also have the following two triangle inequalities:

δ(uj−1, v) ≤ δ(uj−1, uj) + δ(uj , v)

δ(uj , v) ≤ δ(uj , uj−1) + δ(uj−1, v)

From the five inequalities above, we get

δi(uj−1, v)− δi(uj−1, uj)− 2(i− 1) ≤ δi(uj , v) ≤ δi(uj−1, v) + δi(uj−1, uj) + 2(i− 1)

Therefore the range used in step 3(iv) of Interdependent-BFS is sufficient

for finding the corresponding adjacency lists. Note that distances for the first vertex

94

in any Di, l < i ≤ k, are computed correctly (with surplus error of at most 2(i− 1))

assuming that distances for all vertices in all Dj ’s with 1 ≤ j ≤ l are already

computed correctly (with surplus error of at most 2(j − 1)).

Cache Complexity of Approx-AP-BFSk. We note that |Di| = O
(

n log n
si

)
for

i ∈ [1, k− 1], |Dk| = n, |E1| = m, |Ei| ≤ nsi−1 for i ∈ [2, k], and |E∗| ≤ kn. We also

have si = m
n
·αi for i ∈ [1, k − 1], where α = (n log n

m
)

1
k . The assumption m ≥ n log n

ensures that the degree sequence 〈 s1, s2, . . . , sk−1 〉 is decreasing, and also that

|E∗| ≤ nsk−1 for k ∈ [2, log n].

Cache complexity of step 1 is dominated by the cache performance of De-

compose, and so this step incurs O
(
k ·
(
n + m

B

)
· log n

)
cache-misses.

For i = 1 to l, iteration i of step 2 calls Independent-BFS with Di as

a parameter which in turns runs the O
(√

n|Ei|
B

+ |Ei|
B

log n

)
I/O BFS algorithm

by Mehlhorn & Meyer [88] (modified as outlined in Modified-MR-BFS to han-

dle the partial directedness implicit in the input graph) from each vertex u ∈ Di

on the graph G′i(u). Thus this step incurs O
(∑l

i=1 |Di| ·
(√

n|Ei|
B

+ |Ei|
B

log n

))
=

O
(

l
k
· T (m,n,k)

B
+ n2 log n

√
n

Bmαl+1

)
cache-misses, where T (m,n, k) = O

(
k·
(

m
n log n

) 1
k ·

n2 log n
)
.

Cache complexity of step 3 is determined by the cache performance of step

3(ii). For i = l + 1 to k, iteration i of step 3(ii) calls Interdependent-BFS with

Di as a parameter incurring O
(
|Ei|
B
· (n + i · |Di|) + |Di| · sort(|Ei|)

)
cache-misses.

Cache complexity of step 3(b) is thusO
(∑k

i=l+1

(
|Ei|
B
· (n + i · |Di|) + |Di| · sort(|Ei|)

))

= O
(

k−l
k
· T (m,n,k)

B
+ mnαl−1

B

)
.

Therefore, the cache complexity of Approx-AP-BFSk isO
(
T (m,n,k)

B
+

√
n3 log2 n
Bmαl+1 +

mnαl−1

B

)
. We determine the optimal value of l by equating the last two terms of

this expression, and get l = log (Bn3 log2 n)−log (m3α)
3 log α

+ 1. For this value of l the

cache complexity of the algorithm is O
(
T (m,n,k)

B
+
(
T (m,n,k)

B
· n

k

) 2
3

)
. Furthermore,

if log n ≥ B
8 also holds, the cache complexity reduces to O

(
T (m,n,k)

B

)
.

95

5.4 Cache-aware APSP for Bounded-weight Undirected

Graphs

In this Section, we present a cache-aware APSP algorithm for real-weighted undi-

rected graphs. On a graph with n vertices and m edges our algorithm incurs

O
(

n2

β
2
3

+ n · sort(m)

)
cache-misses, where β =

(
n

m log ρ

)
· B and ρ is the ratio of

the largest and the smallest edge-weights in the graph. We assume that β ≥ 1. Our

algorithm builds on Meyer & Zeh’s bounded-weight undirected SSSP algorithm [89],

and improves over O
(

n2

β
1
2

+ n · sort(m)

)
, i.e., the best known previous cache-miss

bound for the problem, when m = O
(

B
log ρ
· n
)
. We also show that the cache com-

plexity of our algorithm can be further improved to O
(

n2

β
3
4
· 1

log
1
4 ρ

+ n · sort(m)

)

when m = O
(

B

max{ log ρ, log2 n } · n
)

.

5.4.1 Meyer & Zeh’s Bounded-weight Undirected SSSP Algorithm

Given a weighted undirected graph G = (V,E) with the smallest and the largest

edge-weights 1 and ρ, respectively, a source vertex s ∈ V , and a parameter µ,

Meyer & Zeh’s algorithm computes the shortest distance from s to all vertices in

V in O
(

n
µ

+ µm
B

log ρ + sort(m) log log nB
m

)
cache-misses. The algorithm has the

following two phases.

Clustering Phase. The vertex set V is partitioned into a set of clusters
{

V1, V2,

. . ., Vq

}
, and the adjacency lists of the vertices in each cluster Vj are placed in a

separate cluster file Fj. The category of a cluster Vj is defined as the smallest integer i

such that Vj is completely contained in a connected component of Gi = (V,Ei), where

Ei =
{

(u, v) ∈ E | w(u, v) < 2i
}
. The computed cluster partition is guaranteed to

have the following properties:

1. q = O
(

n
µ

)
,

2. if Vj is a category-i cluster then no edge (u, v) with w(u, v) < 2i−1 exists such

that u ∈ Vj and v ∈ Vj , and

3. no category-i cluster has diameter greater than 2iµ.

96

In fact, in order to maintain the correctness and the performance bounds of

the algorithm it suffices to guarantee the following instead of property 3:

3′. If u is a vertex nearest to s in a cluster Vj , then no vertex in Vj is at a distance

greater than 2iµ from u.

This phase incurs O
(

n
B

log ρ + sort(m) log log nB
m

)
cache-misses (see [89]).

Shortest Path Phase. At a very high level, this phase is similar to Dijkstra’s

SSSP algorithm. However, relaxation of edges of settled vertices are delayed as

much as possible, and the first time an edge of a vertex in some cluster Vj is relaxed

the entire cluster file Fj is loaded into a set of hot pools. Then all edges from Vj

that need to be relaxed in future can be extracted from the hot pools without any

random access. If v is a vertex in Vj nearest to s and v has an edge of weight 1 then

Fj is loaded as soon as v is settled.

The cache-complexity of this phase is O
(

n
µ

+ µm
B

log ρ + sort(m)
)

(see [89]),

where the n
µ

term results from the O
(

n
µ

)
random accesses needed to load the cluster

files into the hot pools.

5.4.2 Our Bounded-weight Undirected APSP Algorithm

In order to perform APSP on a bounded-weight undirected graph using Meyer &

Zeh’s SSSP algorithm, we need to compute a cluster partition only once, and then

execute the shortest path phase once from each of the n vertices. The resulting

algorithm incurs O
(
n ·
(

n
µ

+ µm
B

log ρ + sort(m)
))

cache-misses, which reduces to

O
(

n2

β
1
2

+ n · sort(m)

)
for µ = β

1
2 , where β =

(
n

m log ρ

)
·B ≥ 1.

We can improve the cache-complexity of the APSP algorithm described above

by reducing the number of unstructured accesses required to load the cluster files

into hot pools. In fact, for each of the n SSSP computations we can predict the exact

order in which the cluster files will be loaded, and thus eliminate the unstructured

accesses to the set of cluster files altogether. Our algorithm has three phases:

Clustering Phase. We compute a cluster partition P =
{

V1, V2, . . . , Vq

}
of V

in exactly the same way as in Meyer & Zeh’s SSSP algorithm (see Section 5.4.1),

where q = O
(

n
µ

)
.

97

Prediction Phase. For any v ∈ V and j ∈ [1, q], let uv,j be a vertex in Vj nearest

to v, and let ∆v,j be the shortest distance from v to uv,j . We compute uv,j and ∆v,j

for all v and j as follows.

The computation in this phase proceeds in q iterations. In iteration j ∈ [1, q],

we compute ∆(v, Vj) for all v ∈ V . In this iteration, we construct a new graph

G′ = (V ′, E′) from G by adding a new vertex u to V and |Vj| new unit weight

undirected edges (u, v), v ∈ Vj to E. Observe that the cluster partition P computed

in the clustering phase remains valid for this new graph, i.e., properties 1, 2 and 3′ of

cluster partitions described in Section 5.4.1 are not violated. Therefore, we execute

the shortest path phase of Meyer & Zeh’s algorithm (see Section 5.4.1) from u on

G′ with cluster partition P , and compute the shortest distance d(u, v) from u to all

v ∈ V in G′. Clearly, ∆v,j = d(u, v)− 1 for all v ∈ V . Let u′ be the vertex following

u on the shortest u to v path computed by the algorithm. Then u′ is a vertex in Vj

nearest to v, and we set uv,j = u′.

After the ∆v,j and uv,j values have been computed for all v and j, we sort

them, and for each v ∈ V , construct a list Lv of 〈 j, uv,j , ∆v,j 〉 triplets sorted in

non-decreasing order of ∆v,j values.

Shortest Path Phase. In this phase, we consider each vertex s ∈ V once and

perform the following computation.

We first construct the graph Gs = (Vs, Es) from G = (V,E) as follows.

We add q new vertices u1, u2, . . . , uq to V , and q new undirected edges (u1, us,1),

(u2, us,2), . . ., (uq, us,q) of unit weight to E. It is straight-forward to see that addition

of these new vertices and edges do not change the shortest distance from s to any

v ∈ V , and also that P remains a valid cluster partition of the vertices in Gs (i.e.,

properties 1, 2 and 3′ mentioned in Section 5.4.1 are not violated). Using the Ls list

constructed in the prediction phase, we construct a sorted list L′s of cluster files in

which cluster file Fi is placed ahead of Fj provided ∆s,i < ∆s,j. We now run the

shortest path phase of Meyer & Zeh’s SSSP algorithm (see Section 5.4.1) on Gs from

s using P as the cluster partition, and thus compute the shortest distance from s to

each vertex in V . Observe that since each us,j has an edge (i.e., (uj , us,j)) of unit

weight, the cluster file Fj will be loaded into the hot pools as soon as us,j settles.

Since the cluster files in L′s are sorted in the order the us,j vertices settle, loading

all cluster files requires only a sequential scan of L′s.

98

The correctness of our algorithm directly follows from the correctness of

Meyer & Zeh’s SSSP algorithm [89] and the description above.

Cache Complexity. The clustering phase incurs O
(

n
B

log ρ + sort(m) log log nB
m

)

cache-misses (see [89]). In the prediction phase, each iteration of SSSP computation

incurs O
(

n
µ

+ µm
B

log ρ + sort(m)
)

cache-misses (see [89]), and there are q = O
(

n
µ

)

such iterations. Constructing the Lv lists requires sorting n × q triplets and thus

incurs O (sort(nq)) = O
(
sort

(
n2

µ

))
cache-misses. In each iteration of the short-

est path phase, constructing the L′s list requires a constant number of sorting and

scanning steps involving the Ls list and the cluster files, and thus incurs O (sort(m))

cache-misses. The SSSP computation step can now load the cluster files in sequential

scan of L′s, and thus incurs only O
(

µm
B

log ρ + sort(m)
)

cache-misses.

The overall cache-complexity of the algorithm is thus O
((

n
µ

)2
+n· µm

B
log ρ+

n · sort(m)

)
. We choose µ = β

1
3 , where β =

(
n

m log ρ

)
· B ≥ 1, and the cache-

complexity reduces to O
(

n2

β
2
3

+ n · sort(m)

)
.

5.4.3 An Improved Algorithm

We can improve the cache performance of the APSP algorithm described in Section

5.4.2 even further by implementing the SSSP computations in its prediction phase

using multi-buffer-heaps (see Section 3.4.3 of Chapter 3).

Multi-buffer-heaps (MBH) are constructed from slim buffer heaps. A slim

buffer heap (SBH) is a priority queue that supports Delete, Delete-Min and Decrease-

Key operations, but it is allowed to retain only a small portion of its data items in

the cache between data structural operations. The area in the cache that holds

these data items is called a slim cache. By λ we denote the size of the slim cache,

and assume that λ < B. An MBH is constructed by packing the slim caches of

L = B
λ

slim buffer heaps into a single cache block. This cache block is called the

multi-slim-cache. This structure supports each priority queue operation on each of

its component SBH in O
(

L
B

+ 1
B

log2
NL
B

)
amortized cache-misses, where N is the

number of items in the SBH (see Chapter 3).

Now the improved prediction phase is implemented as follows. We work on

the q = O
(

n
µ

)
underlying SSSP problems (see Section 5.4.2) simultaneously (as in

99

[13]), and solve each of them using Kumar & Schwabe’s SSSP algorithm [83]. This

approach requires a priority queue pair for each SSSP problem. These q priority

queue pairs are implemented using q
L

multi-buffer-heaps. The phase proceeds in n

rounds. In each round it loads the multi-slim-cache of each MBH, and extracts a

settled vertex with the minimum distance from each of the L priority queue pairs

it stores. The extracted vertices are sorted by vertex indices. The adjacency lists

of the settled vertices of this round are extracted by scanning the sorted vertex list

and the sorted sequences of adjacency lists in parallel. Another sorting phase moves

all adjacency lists to be applied to the same MBH together. Then all necessary

Decrease-Key operations are performed by cycling through the multi-buffer-heaps

once again. At the end of the phase the Lv lists are constructed as in Section 5.4.2.

Cache Complexity. It is straight-forward to show that the prediction phase as de-

scribed above incurs O
(
n ·
(

n
µL

+ mL
µB

+ m
µB

log2
nL
B

+ sort(m)
))

cache-misses (see

Section 3.4.3 of Chapter 3 for details), which reduces to O
(

n2

µ

√
m
nB

+ n · sort(m)
)

for L =
√

nB
m

> 1 and m = O
(

B
log2 n

· n
)
. Including the cache-misses incurred

by the clustering and the shortest path phases (see Section 5.4.2), we get the over-

all cache complexity of the algorithm O
(

n2

µ

√
m
nB

+ n · µm
B

log ρ + n · sort(m)
)
. We

choose µ =
(

β
log ρ

) 1
4
, where β =

(
n

m log ρ

)
·B ≥ 1, and the cache-complexity reduces

to O
(

n2

β
3
4
· 1

log
1
4 ρ

+ n · sort(m)

)
for m = O

(
B

max{ log ρ, log2 n } · n
)

.

5.5 Conclusion

In this chapter we have presented the first cache-oblivious APSP algorithm for un-

weighted graphs, and also the the first nontrivial algorithms for approximate APSP

on unweighted graphs, and exact APSP on bounded-weight graphs. All our results

are for graphs with undirected edges. However, several open questions still exist.

For example:

1. While it is not clear whether our exact AP-BFS algorithm in Section 5.2 is

cache-optimal, our approximate AP-BFS algorithm in Section 5.3 and the exact

APSP algorithm in Section 5.4 are very unlikely to be so. Therefore, it is highly

likely that algorithms with better cache performance can still be developed for

the latter two problems.

100

2. Efficient cache-oblivious algorithms are yet to be developed for the approximate

AP-BFS and the bounded-weight exact APSP problems.

3. An obvious open question is: how to extend these algorithms to handle directed

graphs cache-efficiently?

101

Chapter 6

The Cache-oblivious Gaussian

Elimination Paradigm

What appear to be different elementary particles are

actually different “notes” on a fundamental string.

The universe – being composed of an enormous number of

these vibrating strings – is akin to a cosmic symphony.

(Brian Greene in The Elegant Universe)

In this chapter we introduce the cache-oblivious Gaussian Elimination Paradigm (GEP) to

obtain efficient cache-oblivious algorithms for several important problems that have algo-

rithms with triply-nested loops similar to those that occur in Gaussian elimination. These

include Gaussian elimination and LU-decomposition without pivoting, all-pairs shortest

paths and matrix multiplication.

We prove several important properties of the cache-oblivious framework for GEP,

which we denote by I-GEP. We build on these results to obtain C-GEP, a completely general

cache-oblivious implementation of GEP that applies to any code in GEP form, and which has

the same time and I/O bounds as I-GEP, while using a modest amount of additional space.

We then analyze a parallel implementation of the framework and its caching performance

for both shared and distributed caches.

‘Tiling’, an important loop transformation technique employed by optimizing com-

pilers in order to improve temporal locality in nested loops, is a cache-aware method that

does not adapt to all levels in a multi-level memory hierarchy. The cache-oblivious GEP

framework (either I-GEP or C-GEP) produces system-independent cache-efficient code for

102

triply nested loops of the form that appears in Gaussian elimination without pivoting, and

is potentially applicable to being used by optimizing compilers for loop transformation.

6.1 Introduction

In this chapter we use GEP or the Gaussian Elimination Paradigm to denote a class

of problems that can be solved using a construct similar to the computation in Gaus-

sian elimination without pivoting. Traditional algorithms that use this construct

fully exploit the spatial locality of data but they fail to exploit the temporal local-

ity, and they run in O
(
n3
)

time, use O
(
n2
)

space and incur O
(

n3

B

)
cache-misses.

We present a framework for in-place cache-oblivious execution of several important

special cases of GEP including Gaussian elimination and LU-decomposition without

pivoting, all-pairs shortest paths and matrix multiplication; this framework can also

be adapted to solve important non-GEP dynamic programming problems such as a

class of dynamic programs termed as ‘simple-DP’ [30] which includes algorithms for

RNA secondary structure prediction [78], matrix chain multiplication and optimal

binary search tree construction. This framework takes full advantage of both spatial

and temporal locality of data to incur only O
(

n3

B
√

M

)
cache-misses while still run-

ning in O
(
n3
)

time and without using any extra space. We denote this framework

as I-GEP.

We establish several properties of I-GEP, and then build on these results to

derive C-GEP, which has the same time and I/O bounds as I-GEP, but unlike I-GEP

is a provably correct cache-oblivious implementation of GEP in its full generality.

However, C-GEP uses a modest amount of extra space.

We also consider generalized versions of three major I-GEP applications:

Gaussian elimination without pivoting, Floyd-Warshall’s APSP, and matrix mul-

tiplication. Short proofs of correctness for these applications can be obtained using

results we prove for I-GEP. We also provide an algorithm for transforming simple

DP to I-GEP.

One potential application of I-GEP and C-GEP framework is in compiler

optimizations for the memory hierarchy. ‘Tiling’ is a powerful loop transforma-

tion technique employed by optimizing compilers that improves temporal locality in

nested loops. However, this technique is cache-aware, and thus does not produce

machine-independent code nor does it adapt simultaneously to multiple levels of the

103

memory hierarchy. In contrast, the cache-oblivious GEP framework produces I/O-

efficient portable code for a form of triply nested loops that occurs frequently in

practice.

6.1.1 The Gaussian Elimination Paradigm (GEP)

Let c[1 . . . n, 1 . . . n] be an n× n matrix with entries chosen from an arbitrary set S,

and let f : S × S × S × S → S be an arbitrary function. The algorithm G given

in Figure 6.1 modifies c by applying a given set of updates of the form c[i, j] ←
f(c[i, j], c[i, k], c[k, j], c[k, k]), where i, j, k ∈ [1, n]. By 〈i, j, k〉 (1 ≤ i, j, k ≤ n) we

denote an update of the form c[i, j] ← f(c[i, j], c[i, k], c[k, j], c[k, k]), and we let ΣG

denote the set of such updates that the algorithm needs to perform.

In view of the structural similarity between the construct in G and the com-

putation in Gaussian elimination without pivoting, we refer to this computation as

the Gaussian Elimination Paradigm or GEP. Many practical problems fall in this

category, for example: all-pairs shortest paths, LU decomposition, and Gaussian

elimination without pivoting. Other problems can be solved using GEP through

structural transformation, including simple dynamic program [30] and matrix mul-

tiplication.

We note the following properties of G, which are easily verified by inspection:

Given ΣG, G applies each 〈i, j, k〉 ∈ ΣG on c exactly once, and in a specific order.

Given any two distinct updates 〈i1, j1, k1〉 ∈ ΣG and 〈i2, j2, k2〉 ∈ ΣG, the update

〈i1, j1, k1〉 will be applied before 〈i2, j2, k2〉 if k1 < k2, or if k1 = k2 and i1 < i2, or if

k1 = k2 and i1 = i2 but j1 < j2.

The running time of G is O
(
n3
)

provided both the test 〈i, j, k〉 ∈ ΣG and the

update 〈i, j, k〉 in line 4 can be performed in constant time. The cache complexity

is O
(

n3

B

)
provided the only cache misses, if any, incurred in line 4 are for accessing

c[i, j], c[i, k], c[k, j] and c[k, k]; i.e., neither the evaluation of 〈i, j, k〉 ∈ ΣG nor the

evaluation of f incurs any additional cache misses.

In the rest of the chapter we assume, without loss of generality, that n = 2q

for some integer q ≥ 0.

104

G(c, 1, n)

(The input c[1 . . . n, 1 . . . n] is an n×n matrix. Function f(·, ·, ·, ·) is a problem-specific function,
and ΣG is a problem-specific set of updates to be applied on c.)

1. for k← 1 to n do

2. for i← 1 to n do

3. for j ← 1 to n do

4. if 〈i, j, k〉 ∈ ΣG then c[i, j]← f(c[i, j], c[i, k], c[k, j], c[k, k])

Figure 6.1: GEP: Triply nested for loops typifying code fragment with structural
similarity to the computation in Gaussian elimination without pivoting.

F(X, k1, k2)

(X is a 2q × 2q square submatrix of c such that X[1, 1] = c[i1, j1] and X[2q , 2q] = c[i2, j2] for
some integer q ≥ 0. Function F assumes the following:
(a) i2 − i1 = j2 − j1 = k2 − k1 = 2q − 1
(b) [i1, i2] 6= [k1, k2] ⇒ [i1, i2] ∩ [k1, k2] = ∅ and [j1, j2] 6= [k1, k2] ⇒ [j1, j2] ∩ [k1, k2] = ∅.

The initial call to F is F(c, 1, n) for an n× n input matrix c, where n is a power of 2.)

1. if TX,[k1,k2] ∩ ΣG = ∅ then return {ΣG is the set of updates performed by G

in Figure 6.1, and TX,[k1,k2] = {〈i, j, k〉|i ∈ [i1, i2] ∧ j ∈ [j1, j2] ∧ k ∈ [k1, k2]}
¯

2. if k1 = k2 then

3. c[i1, j1]← f(c[i1, j1], c[i1, k1], c[k1, j1], c[k1, k1])

4. else {The top-left, top-right, bottom-left and bottom-right quadrants

of X are denoted by X11, X12, X21 and X22, respectively.}
5. km ←

¨
k1+k2

2

˝

6. F (X11, k1, km), F (X12, k1, km), F (X21, k1, km), F (X22, k1, km) {forward pass}
7. F (X22, km + 1, k2), F (X21, km + 1, k2), F (X12, km + 1, k2), F (X11, km + 1, k2)

{backward pass}

Figure 6.2: Cache-oblivious I-GEP. For several special cases of f and ΣG in Figure
6.1, we show that F performs the same computation as G (see Section 6.3), though
there are some cases of f and ΣG where the computations return different results.

22

X 11 X 12

X

(a) (b)
kk1

<_ <_ km

X

km k<_ <_ k2+ 1

21 X 22

X 11 X 12

X 21

Figure 6.3: Processing order of quadrants of X
by F : (a) forward pass, (b) backward pass.

105

6.1.2 Related Work

Known cache-oblivious algorithms for Gaussian elimination for solving systems of

linear equations are based on LU decomposition. In [134, 19] cache-oblivious algo-

rithms performing O
(

n3

B
√

M

)
I/O operations are given for LU decomposition without

pivoting, while the algorithm in [120] performs LU decomposition with partial piv-

oting within the same I/O bound. These algorithms use matrix multiplication and

solution of triangular linear systems as subroutines. Our algorithm for Gaussian

elimination without pivoting (see Section 6.3.1) is not based on LU decomposition,

i.e., it does not call subroutines for multiplying matrices or solving triangular linear

systems, and is thus arguably simpler than existing algorithms.

An O (mnp) time and O
(
m + n + p + mn+np+mp

B
+ mnp

B
√

M

)
I/O algorithm for

multiplying an m× n matrix by an n× p matrix is given in [52].

In [30], an O
(
n3
)

time and O
(

n3

B
√

M

)
I/O cache-oblivious algorithm based

on Valiant’s context-free language recognition algorithm [124], is given for simple-DP.

A cache-oblivious algorithm for Floyd-Warshall’s APSP algorithm is given in

[95] (see also [39]). The algorithm runs in O
(
n3
)

time and incurs O
(

n3

B
√

M

)
cache

misses. Our I-GEP implementation of Floyd-Warshall’s APSP (see Section 6.3.3)

produces exactly the same algorithm.

The main attraction of the Gaussian Elimination Paradigm is that it unifies

all problems mentioned above and possibly many others under the same framework,

and presents a single I/O-efficient cache-oblivious solution (see C-GEP in Section

6.4) for all of them.

6.1.3 Organization of the Chapter

Majority of the results in this chapter appeared in two conference papers [34, 35].

In Section 6.2, we present and analyze an O
(

n3

B
√

M

)
I/O in-place cache-

oblivious algorithm, called I-GEP, which solves several important special cases of

GEP. We prove some theorems relating the computation in I-GEP to the computa-

tion in GEP. In Section 6.3, we describe generalized versions of three major appli-

cations of I-GEP (Gaussian elimination without pivoting, matrix multiplication and

Floyd-Warshall’s APSP). Succinct proofs of correctness of these I-GEP implemen-

tations can be obtained using results from Section 6.2.

In Section 6.4, we present cache-oblivious C-GEP, which solves G in its full

106

generality with the same time and I/O bounds as I-GEP, but uses n2 +n extra space

(recall that n2 is the size of the input/output matrix c). In Section 6.5 we present

parallel I-GEP (and C-GEP) and analyze its performance on both distributed and

shared caches.

We consider the potential application of the GEP framework in compiler

optimizations in Section 6.6.

Section 6.7 contains detailed treatment of one additional application of I-

GEP, namely the ‘simple DP’. Finally, we present some concluding remarks in Section

6.8.

6.2 I-GEP: In-place Cache-oblivious Solution to Some

Important Cases of GEP

In this section we analyze I-GEP, a recursive function F given in Figure 6.2 that

is cache-oblivious, computes in-place, and is a provably correct implementation of

GEP in Figure 6.1 for several important special cases of f and ΣG including Floyd-

Warshall’s APSP, Gaussian elimination without pivoting and matrix multiplication.

(This function F does not solve GEP in its full generality, however.) We call this im-

plementation I-GEP to denote an initial attempt at a general cache-oblivious version

of GEP as well as an in-place implementation, in contrast to the other implementa-

tion (C-GEP) which we give in Section 6.4 that solves GEP in its full generality but

uses a modest amount of additional space.

The inputs to F are a square submatrix X of c[1 . . . n, 1 . . . n], and two indices

k1 and k2. The top-left cell of X corresponds to c[i1, j1], and the bottom-right cell

corresponds to c[i2, j2]. These indices satisfy the following constraints:

Input Conditions 6.2.1. If X ≡ c[i1 . . . i2, j1 . . . j2], k1 and k2 are the inputs to F

in Figure 6.2, then

(a) i2 − i1 = j2 − j1 = k2 − k1 = 2q − 1 for some integer q ≥ 0

(b) [i1, i2] 6= [k1, k2] ⇒ [i1, i2] ∩ [k1, k2] = ∅ and [j1, j2] 6= [k1, k2] ⇒
[j1, j2] ∩ [k1, k2] = ∅

Let U ≡ c[i1 . . . i2, k1 . . . k2] and V ≡ c[k1 . . . k2, j1 . . . j2]. Then for every

entry c[i, j] ∈ X, c[i, k] can be found in U and c[k, j] can be found in V . Input

107

condition (a) requires that X, U and V must all be square matrices of the same

size. Input condition (b) requires that
(
X ≡ U

)
∨
(
X ∩ U = ∅

)
, i.e., either

U overlaps X completely, or does not intersect X at all. Similar constraints are

imposed on V , too.

The base case of F occurs when k1 = k2, and the function updates c[i1, j1]

to f(c[i1, j1], c[i1, k1], c[k1, j1], c[k1, k1]). Otherwise it splits X into four quadrants

(X11,X12,X21 and X22), and recursively updates the entries in each quadrant in

two passes: forward (line 6) and backward (line 7). The processing order of the

quadrants are shown in Figure 6.3. The initial function call is F(c, 1, n).

6.2.1 Properties of I-GEP

We prove two theorems that reveal several important properties of F. Theorem 6.2.1

states that F and G are equivalent in terms of the updates applied, i.e., both of

them apply exactly the same updates on the input matrix exactly the same number

of times. The theorem also states that both F and G apply the updates applicable

to any fixed entry in the input matrix in exactly the same order. However, it does

not say anything about the total order of the updates. Theorem 2 identifies the

exact states of c[i, k], c[k, j] and c[k, k] (in terms of the updates applied on them)

immediately before c[i, j] is updated to f(c[i, j], c[i, k], c[k, j], c[k, k]). One impli-

cation of this theorem is that the total order of the updates as applied by F and G

can be different.

Recall that in Section 6.1.1 we defined ΣG to be the set of all updates 〈i, j, k〉
performed by the original GEP algorithm G in Figure 6.1. Analogously, for the

transformed cache-oblivious algorithm F, let ΣF be the set of all updates 〈i, j, k〉
performed by F(c, 1, n).

We assume that each instruction executed by F receives a unique time stamp,

which is implemented by initializing a global variable t to 0 before the algorithm

starts execution, and incrementing it by 1 each time an instruction is executed. By

the quadruple 〈i, j, k, t〉 we denote an update 〈i, j, k〉 that was applied at time t. Let

ΠF be the set of all updates 〈i, j, k, t〉 performed by F(c, 1, n).

The following theorem states that F applies each update performed by G

exactly once, and no other updates; it also identifies a partial order on the updates

performed by F.

108

.321 4 x

q
2

z.

. . . .321 4 x ... z.

. . . x321 4 . q
2

(x,z)π (z,x)π

.

1 4 x2

q
2

z.3
q

2

z

Figure 6.4: Evaluating π(x, z) and π(z, x) for x > z: Given x, z ∈ [1, 2q] such that
x > z, we start with an initial sequence of 2q consecutive integers in [1, 2q], and keep
splitting the segment containing both x and z at midpoint until x and z fall into
different segments. The largest integer in z’s segment gives the value of π(x, z), and
that in x’s segment gives the value of π(z, x).

Theorem 6.2.1. Let ΣG, ΣF and ΠF be the sets as defined above. Then

(a) ΣF = ΣG, i.e., both F and G perform the same set of updates;

(b) 〈i, j, k, t1〉 ∈ ΠF ∧ 〈i, j, k, t2〉 ∈ ΠF ⇒ t1 = t2, i.e., function F performs

each update 〈i, j, k〉 at most once; and

(c) 〈i, j, k′1, t1〉 ∈ ΠF ∧ 〈i, j, k′2, t2〉 ∈ ΠF ∧ k′2 > k′1 ⇒ t2 > t1, i.e.,

function F updates each c[i, j] in increasing order of k values.

Proof. (Sketch.) 〈i, j, k〉 ∈ ΣF ⇒ 〈i, j, k〉 ∈ ΣG holds by the check in line 1 of

Figure 6.2.

The reverse direction of (a) can be proved by forward induction on q, while

parts (b) and (c) can be proved by backward induction on q, where n = 2q. �

We now introduce some terminology as well as two functions π and δ which

will be used later in this section to identify the exact states of c[i, k], c[k, j] and

c[k, k] at the time when F is about to apply 〈i, j, k〉 on c[i, j].

Definition 6.2.1. Let n = 2q for some integer q > 0.

(a) An aligned subinterval for n is an interval [a, b] with 1 ≤ a ≤ b ≤ n such

that b − a + 1 = 2r for some nonnegative integer r ≤ q and a = c · 2r + 1 for some

integer c ≥ 0. The width of the aligned subinterval is 2r.

(b) An aligned subsquare for n is a pair of aligned subintervals [a, b], [a′, b′]

with b− a = b′ − a′.

109

The following observation can be proved by (reverse) induction on r, starting

with q, where n = 2q.

Observation 6.2.1. Consider the call F (c, 1, n). Every recursive call is on an

aligned subsquare of c, and every aligned subsquare of c of width 2r for r ≤ q is

invoked in exactly n/2r recursive calls on disjoint aligned subintervals [k1, k2] of

length 2r each.

Definition 6.2.2. Let x, y, and z be integers, 1 ≤ x, y, z ≤ n.

(a) For x 6= z or y 6= z, we define δ(x, y, z) to be b for the largest aligned

subsquare [a, b], [a, b] that contains (z, z), but not (x, y). If x = y = z we define

δ(x, y, z) to be z − 1.

We will refer to the [a, b], [a, b] subsquare as the aligned subsquare S(x, y, z)

for z with respect to (x, y); analogously, S′(x, y, z) is the largest aligned subsquare

[c, d], [c′, d′] that contains (x, y) but not (z, z).

(b) For x 6= z, the aligned subinterval for z with respect to x, I(x, z), is

the largest aligned subinterval [a, b] that contains z but not x; similarly the aligned

subinterval for x with respect to z, I(z, x), is the largest aligned subinterval [a′, b′]

that contains x but not z;

We define π(x, z) to be the largest index b in the aligned subinterval I(x, z) if

x 6= z, and π(x, z) = z − 1 if x = z.

Figures 6.4 and 6.5 illustrate the definitions of π and δ respectively. For

completeness, more formal definitions of δ and π are given in Appendix C. The

following observation summarizes some simple properties that follow from Definition

6.2.2.

Observation 6.2.2.

(a) If x 6= z or y 6= z then δ(x, y, z) ≥ z, and if x 6= z then π(x, z) ≥ z; I(x, z)

and I(z, x) have the same length while S(x, y, z) and S′(x, y, z) have the same size;

and S(x, y, z) is always centered along the main diagonal while S′(x, y, z) in general

will not occur along the main diagonal.

(b) If x = y = z then δ(x, y, z) = z − 1, and if x = z then π(x, z) = z − 1.

Part (a) in the following lemma will be used to pin down the state of c[k, k]

at the time when update 〈i, j, k〉 is about to be applied, and parts (b) and (c) can be

used to pin down the states at that time of c[i, k] and c[k, j], respectively. As with

110

(),(x,y,z)δ (x,y,z)δ≡c

(x,y)≡a

P

1
2
3

321

a
c

b

(z,z)≡b

q−1
2

q
2

q−1
2

q
2

Figure 6.5: Evaluating δ(x, y, z): Given x, y, z ∈ [1, 2q] (where q ∈ Z
+), such that

x 6= z ∨ y 6= z, we start with an initial square P [1 . . . 2q, 1 . . . 2q], and keep splitting
the square (initially the entire square P) containing both P [x, y] and P [z, z] into
subsquares (quadrants) until P [x, y] and P [z, z] fall into different subsquares. The
largest coordinate in P [z, z]’s subsquare at that point gives the value of δ(x, y, z).

Observation 6.2.1, this lemma can be proved by backward induction on q. As before

the initial call is to F(c, 1, n).

Lemma 6.2.1. Let i, j, k be integers, 1 ≤ i, j, k ≤ n, with not all i, j, k having the

same value.

(a) There is a recursive call F(X, k1, k2) with k ∈ [k1, k2] in which the aligned

subsquares S(i, j, k) and S′(i, j, k) will both occur as (different) subsquares of X being

called in steps 6 and 7 of the I-GEP pseudocode. The aligned subsquare S(i, j, k) will

occur only as either X11 or X22 while S′(i, j, k) can occur as any one of the four

subsquares except that it is not the same as S(i, j, k).

If S(i, j, k) occurs as X11 then k ∈ [k1, km] and δ(i, j, k) = km; if S(i, j, k)

occurs as X22 then k ∈ [km + 1, k2] and δ(i, j, k) = k2.

(b) If j 6= k, let T (i, j, k) be the largest aligned subsquare that contains (i, k)

but not (i, j) and let T ′(i, j, k) be the largest aligned subsquare that contains (i, j)

but not (i, k). There is a recursive call F(X, k′1, k
′
2) with k ∈ [k′1, k

′
2] in which the

111

aligned subsquares T (i, j, k) and T ′(i, j, k) will both occur as (different) subsquares

of X being called in steps 6 and 7 of the I-GEP pseudocode. The set {T (i, j, k),

T ′(i, j, k)} is either {X11, X12} or {X21, X22}, and π(j, k) = k′, where k′ is the

largest integer such that (i, k′) belongs to T (i, j, k).

(c) If i 6= k, let R(i, j, k) be the largest aligned subsquare that contains (k, j)

but not (i, j) and let R′(i, j, k) be the largest aligned subsquare that contains (i, j)

but not (k, j). There is a recursive call F(X, k′′1 , k′′2) with k ∈ [k′′1 , k′′2] in which the

aligned subsquares R(i, j, k) and R′(i, j, k) will both occur as (different) subsquares

of X being called in steps 6 and 7 of the I-GEP pseudocode. The set {R(i, j, k),

R′(i, j, k)} is either {X11, X21} or {X12, X22}, and π(i, k) = k′′, where k′′ is the

largest integer such that (k′′, j) belongs to R(i, j, k).

Let ck(i, j) denote the value of c[i, j] after all updates 〈i, j, k′〉 ∈ ΣG with

k′ ≤ k have been performed by F, and no other updates have been performed on it.

We now present the second main theorem of this section.

Theorem 6.2.2. Let δ and π be as defined in Definition 6.2.2. Then immedi-

ately before function F performs the update 〈i, j, k〉 (i.e., before it executes c[i, j] ←
f(c[i, j], c[i, k], c[k, j], c[k, k])), the following hold:

• c[i, j] = ck−1(i, j),

• c[i, k] = cπ(j,k)(i, k),

• c[k, j] = cπ(i,k)(k, j),

• c[k, k] = cδ(i,j,k)(k, k).

Proof. We prove each of the four claims by turn.

c[i, j]: By Theorem 6.2.1, for any given i, j ∈ [1, n] the value of c[i, j] is

updated in increasing value of k, hence at the time when update 〈i, j, k〉 is about to

be applied, the state of c[i, j] must equal ck−1(i, j).

c[k, k]: Assume that either k 6= i or k 6= j, and consider the state of c[k, k]

when update 〈i, j, k〉 is about to be applied. Let S(i, j, k) and S′(i, j, k) be as specified

in Definition 6.2.2, and consider the recursive call F(X, k1, k2) with k ∈ [k1, k2] in

which S(i, j, k) and S′(i, j, k) are both called during the execution of lines 6 and 7 of

112

the I-GEP code (this call exists as noted in Lemma 6.2.1). Also, as noted in Lemma

6.2.1, the aligned subsquare S(i, j, k) (which contains position (k, k) but not (i, j))

will occur either as X11 or X22.

If S(i, j, k) occurs as X11 when it is invoked in the pseudocode, then by

Lemma 6.2.1 we also know that k ∈ [k1, km], and S′(i, j, k) will be invoked as

X12,X21 or X22 in the same recursive call. Thus, c[k, k] will have been updated

by all 〈i, j, k′〉 ∈ ΣG for which (k′, k′) ∈ S(i, j, k), before update 〈i, j, k〉 is applied to

c[i, j] in the forward pass. By Definition 6.2.2 the largest integer k′ for which (k′, k′)

belongs to S(i, j, k) is δ(i, j, k). Hence the value of c[k, k] that is used in update

〈i, j, k〉 is cδ(i,j,k)(k, k).

Similarly, if S(i, j, k) occurs as X22 when it is invoked in the pseudocode,

then k ∈ [km + 1, k2], and S′(i, j, k) will be invoked as X11,X12 or X21 in the same

recursive call. Since the value of k is in the higher half of [k1, k2], the update 〈i, j, k〉
will be performed in the backward pass in line 7, and hence c[k, k] will have been

updated by all 〈i, j, k′〉 ∈ ΣG with k′ ≤ k2. As above, by Definition 6.2.2, δ(i, j, k) is

the largest value of k′ for which (k′, k′) belongs to S(i, j, k), which is k2, hence the

value of c[k, k] that is used in update 〈i, j, k〉 is cδ(i,j,k)(k, k).

Finally, if i = j = k, we have c[k, k] = ck−1(i, j) = cδ(i,j,k)(k, k) by definition

of δ(i, j, k).

c[i, k] and c[k, j]: Similar to the proof for c[k, k] but using parts (b) and (c)

of Lemma 6.2.1. �

6.2.2 Cache Complexity

Let Q(n) be an upper bound on the number of block transfers performed by F on

an input of size n× n. It is not difficult to see that

Q(n) ≤
{
O
(
n + n2

B

)
if n2 ≤ γM ,

8Q
(

n
2

)
otherwise;

(6.2.1)

where γ is the largest constant sufficiently small that four
√

γM×√γM submatrices

fit in the cache. The solution to the recurrence is Q(n) = O
(
1 + n2

B
+ n3

M
+ n3

B
√

M

)
=

O
(
1 + n2

B
+ n3

B
√

M

)
(assuming a tall cache, i.e., M = Ω

(
B2
)
).

Since I-GEP can be used for multiplying matrices, it follows from the I/O

113

lower bound of matrix multiplication [74] that the cache complexity of I-GEP is, in

fact, tight for any algorithm that performs Θ
(
n3
)

operations in order to implement

the general version of the GEP computation as defined in Section 6.1.1.

Below we prove a more general upper bound on the cache-misses incurred by

function F, which will be used in Section 6.7.1 to determine the cache complexity of

the I-GEP implementation of ‘Simple-DP’. The following theorem assumes that F

is called on an n×n input matrix c (i.e., called as F(c, 1, n)), but considers only the

cache misses incurred for applying the updates 〈i, j, k〉 ∈ ΣG with c[i, j] ∈ X, where

X is an m ×m submatrix of c. Thus the implicit assumption is that immediately

before any such update 〈i, j, k〉 is applied on c[i, j], each of c[i, k], c[k, j] and c[k, k]

has the correct value (as implied by Theorem 6.2.2) even if it does not belong to X.

Theorem 6.2.3. Let X be an m × m submatrix of c, where c is the n × n input

matrix to F. Then the number of cache misses incurred by F while applying all

updates 〈i, j, k〉 ∈ ΣG with c[i, j] ∈ X is O
(

m2n

B
√

M

)
, assuming that X is too large to

fit in the cache, and that the cache is tall (i.e., M = Ω
(
B2
)
).

Proof. Let Xe be an aligned subsquare of c of largest width 2r such that four such

subsquares completely fit in the cache, i.e., λ · 4r ≤ M < λ · 4r+1 for some suitable

constant λ. We know from Observation 6.2.1 that Xe will be invoked in exactly
n
2r recursive calls of F on disjoint aligned subintervals of [k1, k2] of length 2r each.

The number of cache misses incurred in fetching Xe into the cache along with all

(at most three) other aligned subsquares required for updating the entries of Xe is

O
(
2r + 2r×2r

B

)
, since at most 1 cache miss will occur for accessing each row of the

subsquares, and O
(

2r×2r

B

)
cache misses for scanning in all entries. Thus the total

cache misses incurred by all n
2r recursive calls on Xe is O

(
n
2r ×

(
2r + 2r×2r

B

))
=

O
(
n + n

√
M

B

)
, since 2r × 2r = Θ (M).

Now since X is an m×m subsquare of c, and all recursive calls on an 2r× 2r

subsquare incur O
(
n + n

√
M

B

)
cache misses, the number of cache misses incurred

by all recursive calls updating the entries of X is Θ
(

m2

2r×2r

)
× O

(
n + n

√
M

B

)
=

O
(

m2n

B
√

M
+ m2n

M

)
= O

(
m2n

B
√

M

)
(since M = Ω

(
B2
)
). �

114

F(X, k1, k2) {F ∈ {A,B1, B2, C1, C2, D1, D2, D3, D4}; see column 1 of Figure 6.7.}
(X is a 2q × 2q square submatrix of c such that X[1, 1] = c[i1, j1] and X[2q , 2q] = c[i2, j2] for
some integer q ≥ 0. Function F assumes the following:
(a) i2 − i1 = j2 − j1 = k2 − k1 = 2q − 1
(b) [i1, i2] 6= [k1, k2] ⇒ [i1, i2] ∩ [k1, k2] = ∅ and [j1, j2] 6= [k1, k2] ⇒ [j1, j2] ∩ [k1, k2] = ∅
(c) P (F) (see Figure 6.8)

The initial call to F is A(c, 1, n) for an n× n input matrix c, where n is a power of 2.)

1. if TX,[k1,k2] ∩ ΣG = ∅ then return˘
TX,[k1,k2] = {〈i, j, k〉|i ∈ [i1, i2] ∧ j ∈ [j1, j2] ∧ k ∈ [k1, k2]},

and ΣG is the set of updates performed by G in Figure 6.1}
2. if k1 = k2 then

3. c[i1, j1]← f(c[i1, j1], c[i1, k1], c[k1, j1], c[k1, k1])

4. else {The following function calls are determined from the table in Figure 6.7.

The top-left, top-right, bottom-left and bottom-right quadrants of X

are denoted by X11, X12, X21 and X22, respectively.}
5. km ←

¨
k1+k2

2

˝

6. F11(X11, k1, km), F12(X12, k1, km), F21(X21, k1, km), F22(X22, k1, km) {forward pass}
7. F ′

22(X22, km + 1, k2), F ′
21(X21, km + 1, k2), F ′

12(X12, km + 1, k2), F ′
11(X11, km + 1, k2)

{backward pass}

Figure 6.6: Cache-oblivious I-GEP reproduced from Figure 6.2, but here F is as-
sumed to be a template function that can be instantiated to any of the 9 functions
given in Figure 6.8. The recursive calls in lines 6 and 7 are replaced with appropriate
instantiations of F which can be determined from Figure 6.7.

6.2.3 Time and Space Complexities

Since I-GEP is in-place, its space complexity is determined by the size of its input

matrices which is clearly Θ
(
n2
)
. Time complexity of I-GEP is given by the following

recurrence relation, where T (n) denotes the running time of I-GEP on an input of

size n× n.

T (n) ≤
{
O (1) if n ≤ 1,

8T
(

n
2

)
+O (1) otherwise;

(6.2.2)

Solving, we get T (n) = O
(
n3
)
.

6.2.4 Static Pruning of I-GEP

The test in line 1 of Figure 6.2 enables function F to decide during runtime whether

the current recursive call is necessary or not, and thus avoid taking unnecessary

115

F F11 F12 F21 F22 F ′
22 F ′

21 F ′
12 F ′

11

A A B1 C1 D1 A B2 C2 D4

Bi (i = 1, 2) Bi Bi Di Di Bi Bi Di+2 Di+2

Ci (i = 1, 2) Ci D2i−1 Ci D2i−1 Ci D2i Ci D2i

Di (i ∈ [1, 4]) Di Di Di Di Di Di Di Di

Figure 6.7: Functions recursively called by F in Figure 6.6.

F P (F)

A i1 = k1 ∧ j1 = k1

B1 i1 = k1 ∧ j1 > k2

B2 i1 = k1 ∧ j2 < k1

C1 i1 > k2 ∧ j1 = k1

C2 i2 < k1 ∧ j1 = k1

D1 i1 > k2 ∧ j1 > k2

D2 i1 > k2 ∧ j2 < k1

D3 i2 < k1 ∧ j1 > k2

D4 i2 < k1 ∧ j2 < k1

Figure 6.8: Function spe-
cific pre-condition P (F) for
F in Figure 6.2.

U

B B C C

D D D D

1 2 1 2

4321

A

U

V

V

U X X U

VV U X

V V

X U

X
V

X U

V
X

X
V

X U

U

Figure 6.9: Relative positions of Y ≡
c[i1 . . . i2, k1 . . . k2] and Z ≡ c[k1 . . . k2, j1 . . . j2]
w.r.t. X ≡ c[i1 . . . i2, j1 . . . j2] assumed by different
instantiations of F.

branches in its recursion tree. However, if the update set ΣG is available offline

(which is usually the case), we can eliminate some of these unnecessary branchings

from the code during the transformation of G to F, and thus save on some overhead.

We can perform this type of static pruning of F as follows.

Recall that X ≡ c[i1 . . . i2, j1 . . . j2] is the input submatrix, and [k1, k2] is

the range of k-values supplied to F, and they satisfy the input conditions 6.2.1.

Let U ≡ c[i1 . . . i2, k1 . . . k2] and V ≡ c[k1 . . . k2, j1 . . . j2]. Then for every entry

c[i, j] ∈ X, c[i, k] can be found in U and c[k, j] can be found in V . From input

condition 6.2.1(a) we know that X, U and V must all be square matrices of the

same dimensions. Input condition 6.2.1(b) requires that each of U and V either

overlaps X completely, or does not intersect X at all. These conditions on the

116

inputs to F implies nine possible arrangements (i.e., relative positions) of X, U and

V . For different arrangements of these matrices we give a different name to F. Figure

6.9 identifies each of the nine names (A, B1, B2, C1, C2, D1, D2, D3 and D4) with

the corresponding arrangement of the matrices. Each of these nine functions will

be called an instantiation of F. Given an instantiation F′ of F, Figure 6.8 expresses

the corresponding arrangement of X, U and V as a relationship P (F ′) among the

indices i1, i2, j1, j2, k1 and k2. Function A assumes that both U and V overlap X,

i.e., all required c[i, k] and c[k, j] values can be found in X. Functions B1 and B2

both assume that V and X overlap, but B1 assumes that U lies to the left of X, and

B2 assumes that U lies to the right of X. Functions C1 and C2 are called when U

and X overlap, but V and X do not. Function C1 is called when V lies above X,

C2 is called otherwise. Functions D1, D2, D3, and D4 assume that neither U nor V

overlap X, and each of them assumes different relative positions of U and V with

respect to X.

In Figure 6.6 we reproduce F from Figure 6.2, but replace the recursive calls

in lines 6 and 7 with instantiations of F. By Fpq (p, q ∈ [1, 2]), we denote the

instantiation of F that processes quadrant Xpq in the forward pass (line 6), and by

F′pq (p, q ∈ [1, 2]) we denote the same in the backward pass (line 7). For each of

the nine instantiations of the calling function F, Figure 6.7 associates Fpq and F′pq

(p, q ∈ [1, 2]) with appropriate instantiations.

A given computation need not necessarily make all recursive calls in lines 6

and 7. Whether a specific recursive call to a function F′ (say) will be made or not

depends on P (F ′) (see Figure 6.8) and the GEP instance at hand. For example,

if i ≥ k holds for every update 〈i, j, k〉 ∈ ΣG, then we do not make any recursive

call to function C2 since the indices in the updates can never satisfy P (C2). The

I-GEP implementation of the code for Gaussian elimination without pivoting can

employ static pruning very effectively, in which case, we can eliminate all recursive

calls except for those to A, B1, C1 and D1.

The initial function call is A(c, 1, n) (F instantiated to A).

6.3 Applications of Cache-oblivious I-GEP

In this section we consider I-GEP for three major GEP instances. Though the C-

GEP implementation given in Section 6.4 works for all instances of f and ΣG, it uses

117

extra space, and is slightly more complicated than I-GEP. Our experimental results

in Chapter 7 also show that I-GEP performs slightly better than both variants of

C-GEP. Hence an I-GEP implementation is preferable to a C-GEP implementation

if it can be proved to work correctly for a given GEP instance.

We consider the following applications of I-GEP in this section.

• In Section 6.3.1 we consider I-GEP for a class of applications that includes

Gaussian elimination without pivoting, where we restrict ΣG but allow f to be

unrestricted.

• In Section 6.3.2 we consider a class of applications where we do not impose

any restrictions on ΣG, but restrict f to receive all its inputs except the first

one (i.e., except c[i, j]) from matrices that remain unmodified throughout the

computation. An important problem in this class is matrix multiplication.

• In Section 6.3.3 we consider I-GEP for path computations over closed semirings

which includes Floyd-Warshall’s APSP algorithm [48] and Warshall’s algorithm

for finding transitive closures [128]. For this class of problems we restrict both

f and ΣG.

At the end of this chapter (Section 6.7) we consider another application of

I-GEP, namely the simple-DP.

6.3.1 Gaussian Elimination without Pivoting

Gaussian elimination without pivoting is used in the solution of systems of linear

equations and LU decomposition of symmetric positive-definite or diagonally domi-

nant real matrices [37]. We represent a system of n− 1 equations in n− 1 unknowns

(x1, x2, . . . , xn−1) using an n × n matrix c, where the i’th (1 ≤ i < n) row repre-

sents the equation ai,1x1 + ai,2x2 + . . . + ai,n−1xn−1 = bi. The method proceeds in

two phases. In the first phase, an upper triangular matrix is constructed from c by

successive elimination of variables from the equations. This phase requires O
(
n3
)

time and O
(

n3

B

)
I/Os. In the second phase, the values of the unknowns are deter-

mined from this matrix by back substitution. It is straight-forward to implement

this second phase in O
(
n2
)

time and O
(

n2

B

)
I/Os, so we will concentrate on the

first phase.

118

G(c, 1, n)

(The input c[1 . . . n, 1 . . . n] is an n×n matrix. Function f(·, ·, ·, ·) is a problem-specific function,
and for Gaussian elimination without pivoting f(x, u, v, w) = x− u

w
× v.)

1. for k← 1 to n do

2. for i← 1 to n do

3. for j ← 1 to n do

4. if (k ≤ n− 2) ∧ (k < i < n) ∧ (k < j) then c[i, j]← f(c[i, j], c[i, k], c[k, j], c[k, k])

Figure 6.10: A more general form of the first phase of Gaussian elimination without
pivoting.

The first phase is an instantiation of the GEP code in Figure 6.1. In Fig-

ure 6.10 we give a computation that is a more general form of the computation

in the first phase of Gaussian elimination without pivoting in the sense that the

update function f in Figure 6.10 is arbitrary. The if condition in line 4 ensures

that i > k and j > k hold for every update 〈i, j, k〉 applied on c, i.e., ΣG =

{〈i, j, k〉 : (1 ≤ k ≤ n− 2) ∧ (k < i < n) ∧ (k < j ≤ n)}.
The correctness of the I-GEP implementation of the code in Figure 6.10 can

be proved by induction on k using Theorem 6.2.2 and by observing that each c[i, j]

(1 ≤ i, j ≤ n) settles down (i.e., is never modified again) before it is ever used on

the right hand side of an update.

As described in Section 6.2.4, we can apply static pruning on the resulting

I-GEP implementation to remove unnecessary recursive calls from the pseudocode.

A similar method solves LU decomposition without pivoting within the same

bounds. Both algorithms are in-place. Our algorithm for Gaussian elimination is

arguably simpler than existing algorithms since it does not use LU decomposition

as an intermediate step, and thus does not invoke subroutines for multiplying ma-

trices or solving triangular linear systems, as is the case with other cache-oblivious

algorithms for this problem [134, 19, 120].

119

1. for k← 1 to n do

2. for i← 1 to n do

3. for j ← 1 to n do

4. c[i, j]← c[i, j]

+ a[i, k]× b[k, j]

1. for k← 1 to n do

2. for i← 1 to n do

3. for j ← 1 to n do

4. if 〈i, j, k〉 ∈ ΣG then

c[i, j]← f(c[i, j], a[i, k], b[k, j], d[k, k])

{a, b, d 6= c}
(a) (b)

Figure 6.11: (a) Modified matrix multiplication algorithm, (b) A more general form
of the algorithm in Figure 6.11(a).

6.3.2 Matrix Multiplication

We consider the problem of computing C = A × B, where A, B and C are n × n

matrices. Though standard matrix multiplication does not fall into GEP, it does

after the small structural modification shown in Figure 6.11(a) (index k is in the

outermost loop in the modified algorithm, while in the standard algorithm it is in

the innermost loop); correctness of this transformed code is straight-forward.

The algorithm in Figure 6.11(b) generalizes the computation in step 4 of

Figure 6.11(a) to update c[i, j] to a new value that is an arbitrary function of

c[i, j], a[i, k], b[k, j] and d[k, k], where matrices a, b, d 6= c.

The correctness of the I-GEP implementation of the code in Figure 6.11(b)

follows from Theorem 6.2.1 and from the observation that matrices a, b and d remain

unchanged throughout the computation.

6.3.3 Path Computations Over a Closed Semiring

An algebraic structure known as a closed semiring [4] serves as a general framework

for solving path problems in directed graphs. In [4], an algorithm is given for finding

the set of all paths between each pair of vertices in a directed graph. Both Floyd-

Warshall’s algorithm for finding all-pairs shortest paths [48] and Warshall’s algorithm

for finding transitive closures [128] are instantiations of this algorithm.

Consider a directed graph G = (V,E), where V = {v1, v2, . . . , vn}, and each

edge (vi, vj) is labeled by an element l(vi, vj) of some closed semiring (S,⊕,⊙, 0, 1).

If (vi, vj) /∈ E, l(vi, vj) is assumed to have a value 0. The path-cost of a path is

defined as the product (⊙) of the labels of the edges in the path, taken in order.

The path-cost of a zero length path is 1. For each pair vi, vj ∈ V , c[i, j] is defined

120

Initial Values:

∀1≤i,j≤nc[i, j] =

1 if i = j,
l (vi, vj) otherwise.

(a)

Computation of Path Costs:

1. for k← 1 to n do

2. for i← 1 to n do

3. for j ← 1 to n do

4. c[i, j]← c[i, j]⊕ (c[i, k]⊙ c[k, j])

(b)

Figure 6.12: Computation of path costs over a closed semiring (S,⊕,⊙, 0, 1): (a)
Initialization of c, (b) Computation of path costs.

to be the sum of the path-costs of all paths going from vi to vj. By convention,

the sum over an empty set of paths is 0. Even if there are infinitely many paths

between vi and vj (due to presense of cycles), c[i, j] will still be well-defined due to

the properties of a closed semiring.

The algorithm given in Figure 6.12(b), which is an instance of GEP, computes

c[i, j] for all pairs of vertices vi, vj ∈ V . This algorithm performs O
(
n3
)

operations

and uses O
(
n2
)

space. Floyd-Warshall’s APSP is a specialization of the algorithm

in Figure 6.12(b) in that it performs computations over a particular closed semiring

(ℜ,min,+,+∞, 0).

Correctness of I-GEP Implementation of Figure 6.12(b). Recall that c0(i, j)

is the initial value of c[i, j] received by the I-GEP function F in Figure 6.2, and

ck(i, j) (1 ≤ i, j ≤ n) denotes the value of c[i, j] after all updates 〈i, j, k′〉 ∈ ΣG with

k′ ≤ k, and no other updates have been performed on it by F.

For i, j ∈ [1, n] and k ∈ [0, n], let P k
i,j denote the set of all paths from vi to vj

with no intermediate vertex higher than vk, and let Qk
i,j be the set of all paths from

vi to vj that have contributed to the computation of ck(i, j).

The correctness of the I-GEP implementation of the code in Figure 6.12(b)

follows from the following lemma, which can be proved by induction on k using

Theorems 6.2.1 and 6.2.2.

Lemma 6.3.1. For all i, j, k ∈ [1, n], Qk
i,j ⊇ P k

i,j .

Since for i, j ∈ [1, n], Pn
i,j contains all paths from vi to vj, we have Qn

i,j ⊆
Pn

i,j , which when combined with Qn
i,j ⊇ Pn

i,j obtained from lemma 6.3.1, results in

Qn
i,j = Pn

i,j .

121

6.4 C-GEP: Extension of I-GEP to Full Generality

In order to express mathematical expressions with conditionals in compact form,

in this section we will use Iverson’s convention [75, 82, 62] for denoting values of

Boolean expressions. In this convention we use |E| to denote the value of a Boolean

expression E , where |E| = 1 if E is true and |E| = 0 if E is false1.

6.4.1 A Closer Look at I-GEP

Recall that ck(i, j) denotes the value of c[i, j] after all updates 〈i, j, k′〉 ∈ ΣG with

k′ ≤ k, and no other updates have been applied on c[i, j] by F, where i, j ∈ [1, n]

and k ∈ [0, n]. Let ĉk(i, j) be the corresponding value for G, i.e., let ĉk(i, j) be the

value of c[i, j] immediately after the k-th iteration of the outer for loop in G, where

i, j ∈ [1, n] and k ∈ [0, n].

In the following table, we tabulate the exact states of c[i, j], c[i, k], c[k, j] and

c[k, k] immediately before G or F applies an update 〈i, j, k〉 ∈ ΣG. Entries in the

2nd column are determined by inspecting the code in Figure 6.1, while those in the

3rd column follows from Theorem 6.2.2.

Cell G F

c[i, j] ĉk−1(i, j) ck−1(i, j)

c[i, k] ĉk−|j≤k|(i, k) cπ(j,k)(i, k)

c[k, j] ĉk−|i≤k|(k, j) cπ(i,k)(k, j)

c[k, k] ĉk−|(i<k) ∨ (i=k ∧ j≤k)|(k, k) cδ(i,j,k)(k, k)

Table 6.1: States of c[i, j], c[i, k], c[k, j] and c[k, k]

immediately before applying 〈i, j, k〉 ∈ ΣG.

It follows from Definition 6.2.2 that for i, j < k, π(j, k) 6= k − |j ≤ k|,
π(i, k) 6= k−|i ≤ k| and δ(i, j, k) 6= k−|(i < k) ∨ (i = k ∧ j ≤ k)|. Therefore, though

both G and F start with the same input matrix, at certain points in the computation

F and G would supply different input values to f while applying the same update

〈i, j, k〉 ∈ ΣG, and consequently f could return different output values. Whether the

final output matrix returned by the two algorithms are the same depends on f , ΣG

and the input values.

1Iversion actually used [E] to denote the value of a Boolean expression E . But we use |E| instead,
since square brackets are used extensively for other purposes in this dissertation.

122

As an example, consider a 2 × 2 input matrix c, and let ΣG = {〈i, j, k〉|1 ≤
i, j, k ≤ 2}. Then G will compute the entries in the following order: ĉ1(1, 1),

ĉ1(1, 2), ĉ1(2, 1), ĉ1(2, 2), ĉ2(1, 1), ĉ2(1, 2), ĉ2(2, 1), ĉ2(2, 2); on the other hand, F

will compute in the following order: c1(1, 1), c1(1, 2), c1(2, 1), c1(2, 2), c2(2, 2),

c2(2, 1), c2(1, 2), c2(1, 1). Since both G and F use the same input matrix, the

first 5 values computed by F will be correct, i.e., c1(1, 1) = ĉ1(1, 1), c1(1, 2) =

ĉ1(1, 2), c1(2, 1) = ĉ1(2, 1), c1(2, 2) = ĉ1(2, 2) and c2(2, 2) = ĉ2(2, 2). However,

the next value, i.e., the final value of c[2, 1], computed by F is not necessarily

correct, since F sets c2(2, 1) ← f(c1(2, 1), c2(2, 2), c1(2, 1), c2(2, 2)), while G sets

ĉ2(2, 1) ← f(ĉ1(2, 1), ĉ1(2, 2), ĉ1(2, 1), ĉ1(2, 2)). For example, if initially c[1, 1] =

c[1, 2] = c[2, 1] = 0 and c[2, 2] = 1, and f just returns the sum of its input values,

then F will output c[2, 1] = 8, while G will output c[2, 1] = 2.

6.4.2 C-GEP using 4n
2 Additional Space

We first define a quantity τij, which plays a crucial role in the extension of I-GEP

to the completely general C-GEP.

Definition 6.4.1. For 1 ≤ i, j, l ≤ n, we define τij(l) to be the largest integer

l′ ≤ l such that 〈i, j, l′〉 ∈ ΣG provided such an update exists, and 0 otherwise. More

formally, for all i, j, l ∈ [1, n], τij(l) = max l′ {l′ | l′ ≤ l ∧ 〈i, j, l′〉 ∈ ΣG ∪ {〈i, j, 0〉}}.

The significance of τ of can be explained as follows. We know from Theorem

6.2.1 that both F and G apply the updates 〈i, j, k〉 in increasing order of k values.

Hence, at any point of time during the execution of F (or G) if c[i, j] is in state

cl(i, j) (ĉl(i, j), resp.), where l 6= 0, then 〈i, j, τij(l)〉 is the update that has left

c[i, j] in this state. We also note the difference between π (defined in Definition

6.2.2) and τ : we know from Theorem 6.2.2 that immediately before applying 〈i, j, k〉
function F finds c[i, k] in state cπ(j,k)(i, k), and from the definition of τ we know that

〈i, k, τik(π(j, k))〉 is the update that has left c[i, k] in this state. Similar observation

holds for δ defined in Definition 6.2.2.

We extend I-GEP to full generality by modifying F in Figure 6.2 so that it

performs updates according to the second column of Table 6.1 instead of the third

column. As described below, we achieve this by saving suitable intermediate values

of the entries of c in auxiliary matrices as F generates them. Note that for all i, j, k ∈

123

H(X, k1, k2)

(X is a 2q × 2q submatrix of c such that X[1, 1] = c[i1, j1] and X[2q , 2q] = c[i2, j2] for some
integer q ≥ 0. Matrices u0, u1, v0 and v1 are global, and each initialized to c before the initial
call to H is made. Similar to F in Figure 6.2, H assumes the following:
(a) i2 − i1 = j2 − j1 = k2 − k1 = 2q − 1
(b) [i1, i2] 6= [k1, k2] ⇒ [i1, i2] ∩ [k1, k2] = ∅ and [j1, j2] 6= [k1, k2] ⇒ [j1, j2] ∩ [k1, k2] = ∅

The initial call to H is H(c, 1, n) for an n× n input matrix c, where n is a power of 2.)

1. if TX,[k1,k2] ∩ ΣG = ∅ then return˘
TX,[k1,k2] = {〈i, j, k〉|i ∈ [i1, i2] ∧ j ∈ [j1, j2] ∧ k ∈ [k1, k2]},

and ΣG is the set of updates performed by G in Figure 6.1}
2. if k1 = k2 then

3. i← i1, j ← j1, k ← k1

4. c[i, j]← f(c[i, j], u|j>k|[i, k], v|i>k|[k, j], u|(i>k) ∨ (i=k ∧ j>k)|[k, k])

5. if k = τij(j − 1) then u0[i, j]← c[i, j]

{τij(l) = max l′ {l′ | l′ ≤ l ∧ 〈i, j, l′〉 ∈ ΣG ∪ {〈i, j, 0〉}}}
6. if k = τij(j) then u1[i, j]← c[i, j]

7. if k = τij(i− 1) then v0[i, j]← c[i, j]

8. if k = τij(i) then v1[i, j]← c[i, j]

9. else {The top-left, top-right, bottom-left and bottom-right quadrants

of X are denoted by X11, X12, X21 and X22, respectively.}
10. km ←

¨
k1+k2

2

˝

11. H(X11, k1, km), H(X12, k1, km), H(X21, k1, km), H(X22, k1, km) {forward pass}
12. H(X22, km + 1, k2), H(X21, km + 1, k2), H(X12, km + 1, k2), H(X11, km + 1, k2)

{backward pass}

Figure 6.13: C-GEP: A cache-oblivious implementation of GEP (i.e., G in Figure
6.1) that works for all f and ΣG.

[1, n], F computes ck−|j≤k|(i, k), ck−|i≤k|(k, j) and ck−|(i<k) ∨ (i=k ∧ j≤k)|(k, k) before

it computes ck(i, j) since we know from Observation 6.2.2 that π(j, k) ≥ k− |j ≤ k|,
π(i, k) ≥ k − |i ≤ k| and δ(i, j, k) ≥ k − |(i < k) ∨ (i = k ∧ j ≤ k)| for

all i, j, k ∈ [1, n]. However, these values could be overwritten before F needs to use

them. In particular, we may lose certain key values as summarized in the observation

below which follows from Theorem 6.2.1 and the definition of τ .

Observation 6.4.1. Immediately before F applies the update 〈i, j, k〉 ∈ ΣG:

(a) if τik (π(j, k)) > k − |j ≤ k| then c[i, k] may not necessarily contain

ck−|j≤k|(i, k);

124

(b) if τkj (π(i, k)) > k − |i ≤ k| then c[k, j] may not necessarily contain

ck−|i≤k|(i, k); and

(c) if τkk (δ(i, j, k)) > k− |(i < k) ∨ (i = k ∧ j ≤ k)| then c[k, k] may not

necessarily contain ck−|(i<k) ∨ (i=k ∧ j≤k)|(k, k).

If the condition in Observation 6.4.1(a) holds, we must save ck−|j≤k|(i, k) as

soon as it is generated so that it can be used later by 〈i, j, k〉. However, ck−|j≤k|(i, k)

is not necessarily generated by 〈i, k, k − |j ≤ k|〉 since this update may not exist

in ΣG in the first place. If τij(k − |j ≤ k|) 6= 0, then 〈i, k, τij(k − |j ≤ k|)〉 is the

update that generates ck−|j≤k|(i, k), and we must save this value after applying this

update and before some other update modifies it. If τij(k − |j ≤ k|) = 0, then

ck−|j≤k|(i, k) = c0(i, k), i.e., update 〈i, j, k〉 can use the initial value of c[i, k]. A

similar argument applies to c[k, j] and c[k, k] as well.

Now in order to identify the intermediate values of each c[i, j] that must be

saved, consider the accesses made to c[i, j] when executing the original GEP code in

Figure 6.1.

Observation 6.4.2. The GEP code in Figure 6.1 accesses each c[i, j]:

(a) as c[i, j] at most once in each iteration of the outer for loop for applying

updates 〈i, j, k〉 ∈ ΣG;

(b) as c[i, k] only in the j-th iteration of the outer for loop, for applying

updates 〈i, j′, j〉 ∈ ΣG for all j′ ∈ [1, n];

(c) as c[k, j] only in the i-th iteration of the outer for loop, for applying

updates 〈i′, j, i〉 ∈ ΣG for all i′ ∈ [1, n]; and

(d) if i = j, as c[k, k] in the i-th iteration of the outer for loop for applying

updates 〈i′, j′, i〉 ∈ ΣG for all i′, j′ ∈ [1, n].

The updates in Observation 6.4.2(a) do not need to be stored separately,

since we know from Theorem 6.2.1 that both GEP and I-GEP apply the updates on

a fixed c[i, j] in exactly the same order.

Now consider the accesses to c[i, j] in parts (b), (c) and (d) of Observation

6.4.2. By inspecting the code in Figure 6.1 (see also the 2nd column of Table 6.1),

we observe that immediately before G applies the update 〈i, j′, j〉 in Observation

6.4.2(b), c[i, j] = ĉj−1(i, j) = ĉτij (j−1)(i, j) if j′ ≤ j, and c[i, j] = ĉj(i, j) = ĉτij (j)(i, j)

otherwise. Similarly, immediately before applying the update 〈i′, j, i〉 in Observation

6.4.2(c), c[i, j] = ĉi−1(i, j) = ĉτij (i−1)(i, j) if i′ ≤ i, and c[i, j] = ĉi(i, j) = ĉτij (i)(i, j)

125

otherwise. When G is about to apply an update 〈i′, j′, i〉 from Observation 6.4.2(d),

c[i, j] = ĉi−1(i, j) = ĉτij (i−1)(i, j) if i′ < i ∨ (i′ = i ∧ j′ ≤ j), and c[i, j] = ĉi(i, j) =

ĉτij(i)(i, j) otherwise.

Therefore, F must be modified to save the value of c[i, j] immediately after

applying the update 〈i, j, k〉 ∈ ΣG for k ∈ {τij(i− 1), τij(i), τij(j − 1), τij(j)}. Ob-

serve that since there are exactly n2 possible (i, j) pairs, we need to save at most

4n2 intermediate values.

In Figure 6.13 we present the modified version of F, which we call H. The

algorithm has exactly the same structure as F, i.e., it accepts the same inputs as

F (one square matrix X, and two integers k1 and k2) and assumes the same pre-

conditions on inputs, it decomposes the input matrix in exactly the same way, and

processes the submatrices in the same order using similar functions as F does. The

only difference between F and H is in the way the updates are performed. In line 3,

F updates c[i, j] using entries directly from c, i.e., it updates c[i, j] using whatever

values c[i, j], c[i, k], c[k, j] and c[k, k] have at the time of the update. In contrast, H

uses four n×n matrices u0, u1, v0 and v1 for saving appropriate intermediate values

computed for the entries of c as discussed above, which it uses for future updates. We

assume that each of the tests in lines 5–8 involving τij can be performed in constant

time without incurring any additional cache misses.

Cache Complexity & Running Time. The number of cache misses incurred

by H can be described using the same recurrence relation (6.2.1) that was used

to describe the cache misses incurred by F in Section 6.2, and hence the cache

complexity remains the same, i.e., O
(

n3

B
√

M

)
. Function H also has the same O

(
n3
)

running time as F, since it only incurs a constant overhead per update applied.

Correctness. Since Theorems 6.2.1 and 6.2.2 in Section 6.2 were proved based

on the structural properties of F and not on the actual form of the updates, they

continue to hold for H.

The correctness of H, i.e., that it correctly implements column 2 of Table

6.1 and thus G, follows directly from the following lemma, which can be proved by

induction on k using Theorems 6.2.1 and 6.2.2, and by observing that H saves all

required intermediate values in lines 5–8.

Lemma 6.4.1. Immediately before H performs the update 〈i, j, k〉, the following

hold: c[i, j] = ĉk−1(i, j), v|j>k|[i, k] = ĉk−|j≤k|(i, k), h|i>k|[k, j] = ĉk−|i≤k|(k, j) and

126

v|(i>k) ∨ (i=k ∧ j>k)|[k, k]) = ĉk−|(i<k) ∨ (i=k ∧ j≤k)|(k, k).

6.4.3 Reducing the Additional Space

We can reduce the amount of extra space used by H (Figure 6.13) by observing that

at any point during the execution of H we do not need to store more than n2 + n

intermediate values for future use. In fact, we will show that it is sufficient to use

four n
2 × n

2 matrices and two vectors of length n
2 each for storing intermediate values,

instead of using four n× n matrices.

Let U ≡ u0[1 . . . n, 1 . . . n], U ≡ u1[1 . . . n, 1 . . . n], V ≡ v0[1 . . . n, 1 . . . n] and

V ≡ v1[1 . . . n, 1 . . . n]. By U11, U12, U21 and U22 we denote the top-left, top-right,

bottom-left and bottom-right quadrants of U , respectively. We identify the quad-

rants of U , V and V similarly. For i ∈ [1, 2], let Di and Di denote the diagonal

entries of Uii and U ii, respectively.

Now consider the initial call to H, i.e., H(X, k1, k2) where X = c, k1 = 1

and k2 = n. We show below that the forward pass in line 11 of this call can be

implemented using only n2 + n extra space. A similar argument applies to the

backward pass (line 12) as well.

The first recursive call H(X11, k1, k2) in line 11 will generate U11, U11, V11,

V 11, D1 and D1. The amount of extra space used by this recursive call is thus

n2 +n. The entries in U11 and V11, however, will not be used by any future updates,

and hence can be discarded. The second recursive call H(X12, k1, k2) will use U11,

D1 and D1, and generate V12 and V 12 in the space freed by discarding U11 and

V11. Each update 〈i, j, k〉 applied by this recursive call retrieves u|j>k|[i, k] from

U11, v|i>k|[k, j] from V12 or V 12, and u|(i>k) ∨ (i=k ∧ j>k)|[k, k] from D1 or D1. Upon

return from H(X12, k1, k2) we can discard the entries in U11 and V12 since they will

not be required for any future updates. The next recursive call H(X12, k1, k2) will

use V 11, D1 and D1, and generate U21 and U21 in the space previously occupied by

U11 and V12. Each update performed by this recursive call retrieves u|j>k|[i, k] from

U21 or U21, v|i>k|[k, j] from V 11, and u|(i>k) ∨ (i=k ∧ j>k)|[k, k] from D1 or D1. The

last function call H(X22, k1, k2) in line 11 will use U21, V 12, D1 and D1 for updates,

and will not generate any intermediate values. Thus line 11 can be implemented

using only four additional n
2 × n

2 matrices and two vectors of length n
2 each.

Therefore, H can be implemented to work with any arbitrary f and arbitrary

ΣG at the expense of only n2 + n extra space. The running time and the cache

127

complexity of this implementation remain O
(
n3
)

and O
(

n3

B
√

M

)
, respectively.

6.5 Parallel I-GEP and C-GEP

In this section we consider parallel implementations of I-GEP and C-GEP. It is not

difficult to observe that the second and third calls to F in line 5 of the pseudocode for

I-GEP given in Figure 6.2 can be performed in parallel while maintaining correctness

and all properties we have established for I-GEP; similarly the second and third calls

to F in line 6 can be performed in parallel. A similar observation holds for lines 11

and 12 of H. The resulting parallel code performs a sequence of 6 parallel calls (four

calling F or H once and two calling F or H twice), and hence with p processors its

parallel execution time is O
(
n3/p + nlog2 6

)
.

In Figure 6.14 we present a better parallel implementation of I-GEP. In this

figure we have explicitly referred to the different types of functions invoked by I-GEP

based on the relative values of the i, j, and k intervals. Here we use the notation

introduced in Section 6.2.4 and summarized in Figures 6.6, 6.7, 6.8 and 6.9. The four

types of functions (i.e., A, Bl, Cl and Dl) differ in the amount and type of overlap

the input matrices X, U and V have among them (note that only the diagonal entries

of W are used). Function A assumes that all three matrices overlap, while function

Dl expects completely non-overlapping matrices. Function Bl assumes that only X

and V overlap, while Cl assumes overlap only between X and U . Intuitively, the

less the overlap among the input matrices the more flexibility the function has in

ordering its recursive calls, and thus leading to better parallelism. The initial call is

to an input of type A, where the intervals for i, j and k are identical.

We now analyze the parallel execution time for I-GEP on function A. Let

TA(n) = T∞ denote the parallel running time when A is invoked with an unbounded

number of processors on an n × n matrix. Let TB(n), TC(n) and TD(n) denote the

same for Bi, Ci and Di, respectively. We will assume for simplicity that TA(1) =

TB(1) = TC(1) = TD(1) = O (1). Hence we have the following recurrences:

TA(n) ≤ 2(TA (n/2) + max {TB (n/2) , TC (n/2)}+ TD (n/2)) +O (1)

TB(n) ≤ 2 (TB (n/2) + TD (n/2)) +O (1)

128

A(X, U, V, W)

(Each of X, U , V and W points to the same 2q × 2q square submatrix of c for some integer q ≥ 0. The
initial call to A is A(c, c, c, c) for an n× n input matrix c, where n is assumed to be a power of 2.)

1. if TXUV ∩ ΣG = ∅ then return {TXUV = { updates on X using (i, k) ∈ U and (k, j) ∈ V },
and ΣG is the set of updates performed by iterative GEP}

2. if X is a 1× 1 matrix then X ← f(X, U, V, W)

else {X11, X12, X21 and X22 are the top-left, top-right, bottom-left

and bottom-right quadrants of X, respectively.}
3. A(X11, U11, V11, W11)

4. parallel : B1(X12, U11, V12, W11), C1(X21, U21, V11, W11)

5. D1(X22, U21, V12, W11)

6. A(X22, U22, V22, W22)

7. parallel : B2(X21, U22, V21, W22), C2(X12, U12, V22, W22)

8. D4(X11, U12, V21, W22)

Bl(X, U, V, W) { l ∈ {1, 2} }
(X ≡ V ≡ c[i1..i2, j1..j2] and U ≡ W ≡
c[i1..i2, k1..k2], where i2 − i1 = j2 − j1 = k2 − k1

= 2q − 1 for some integer q ≥ 0, [i1, i2] = [k1, k2]
and [j1, j2] ∩ [k1, k2] = ∅.)

1. if TXUV ∩ ΣG = ∅ then return

2. if X is a 1× 1 matrix then

X ← f(X, U, V, W)

else

3. parallel : Bl(X11, U11, V11, W11)

Bl(X12, U11, V12, W11)

4. parallel : Dl(X21, U21, V11, W11)

Dl(X22, U21, V12, W11)

5. parallel : Bl(X21, U22, V21, W22)

Bl(X22, U22, V22, W22)

6. parallel : Dl+2(X11, U12, V21, W22)

Dl+2(X12, U12, V22, W22)

Cl(X, U, V, W) { l ∈ {1, 2} }
(X ≡ U ≡ c[i1..i2, j1..j2] and V ≡ W ≡
c[k1..k2, j1..j2], where i2 − i1 = j2 − j1 = k2 − k1

= 2q − 1 for some integer q ≥ 0, [j1, j2] = [k1, k2]
and [i1, i2] ∩ [k1, k2] = ∅.)

1. if TXUV ∩ΣG = ∅ then return

2. if X is a 1× 1 matrix then

X ← f(X, U, V, W)

else

3. parallel : Cl(X11, U11, V11, W11)

Cl(X21, U21, V11, W11)

4. parallel : D2l−1(X12, U11, V12, W11)

D2l−1(X22, U21, V12, W11)

5. parallel : Cl(X12, U12, V22, W22)

Cl(X22, U22, V22, W22)

6. parallel : D2l(X11, U12, V21, W22)

D2l(X21, U22, V21, W22)

Dl(X, U, V, W) { l ∈ {1, 2, 3, 4} }
(X ≡ c[i1..i2, j1..j2], U ≡ c[i1..i2, k1..k2], V ≡ c[k1..k2, j1..j2] and W ≡ c[k1..k2, k1..k2], where i2 − i1
= j2 − j1 = k2 − k1 = 2q − 1 for some integer q ≥ 0, [i1, i2] ∩ [k1, k2] = ∅, and [j1, j2] ∩ [k1, k2] = ∅.)

1. if TXUV ∩ ΣG = ∅ then return

2. if X is a 1× 1 matrix then X ← f(X, U, V, W)

else

3. parallel : Dl(X11, U11, V11, W11), Dl(X12, U11, V12, W11),

Dl(X21, U21, V11, W11), Dl(X22, U21, V12, W11)

4. parallel : Dl(X11, U12, V21, W22), Dl(X12, U12, V22, W22),

Dl(X21, U22, V21, W22), Dl(X22, U22, V22, W22)

Figure 6.14: Multithreaded I-GEP. Initial call is A(c, c, c, c) on an n×n matrix
c, where n is a power of 2.

129

TC(n) ≤ 2 (TC (n/2) + TD (n/2)) +O (1)

TD(n) ≤ 2TD (n/2) +O (1)

Solving these recurrences we obtain T∞ = O
(
n log2 n

)
, and thus the following the-

orem based on “Brent’s theorem” [20]:

Theorem 6.5.1. When executed with p processors, multithreaded I-GEP performs

T1 = O
(
n3
)

work and terminates in T1
p

+ T∞ = O
(

n3

p
+ n log2 n

)
parallel steps on

an n× n input matrix.

A similar parallel algorithm with the same parallel time bound applies to

C-GEP.

For specific applications of I-GEP, the actual recursive function calls may not

take the most general form analyzed above (see Section 6.2.4). For instance, only

a subset of the calls are made for Gaussian elimination without pivoting. However,

the parallel time bound remains the same as in Theorem 6.5.1 for this problem as

well as for all-pairs shortest paths. On the other hand, for matrix multiplication, we

can perform all four recursive calls in each of steps 5 and 6 of Figure 6.6 in parallel

and hence the parallel time bound is reduced to O
(

n3

p
+ n

)
. Note that this matrix

multiplication computation does not assume associativity of addition.

We have implemented this multithreaded version of I-GEP for Floyd-Warshall’s

APSP, square matrix multiplication and Gaussian elimination w/o pivoting in pthreads,

and we report some experimental results in Chapter 7.

6.5.1 Cache Complexity

We first consider distributed caches, where each processor has its own private cache,

and then a shared cache, where all processors share the same cache.

Distributed Caches. Part (b) of the following lemma is obtained by considering

the schedule that executes each subproblem of size n√
p
× n√

p
entirely on a single

processor. This schedule gives a better result than the one given in part (a) for

the work-stealing scheduler Cilk [53]; the bound in part (a) is obtained by applying

a result in [55] on the caching performance of parallel algorithms whose sequential

cache complexity is a concave function of work.

130

Lemma 6.5.1. Consider multithreaded I-GEP executed with p processors, each with

a private cache of size M and block size B.

(a) When executed by Cilk, with high probability I-GEP incurs O
(

n3

B
√

M
+

(p·n log2 n)
1
3 n2

B
+ p · n log2 n

)
cache misses.

(b) There exists a deterministic schedule which incurs only O
(

n3

B
√

M
+
√

p · n2

B

)

cache misses.

Shared Caches. Here we consider the case when the p processors share a single

cache of size Mp. Part (a) of lemma 6.5.2 below is obtained using a general result for

shared caches given in [18] for a PDF (parallel depth first search) schedule. Better

bounds are obtained in part (b) of lemma 6.5.2 through the following hybrid depth-

first schedule.

Let G denote the computation DAG of I-GEP (i.e., function A), and let C(G)
denote a new DAG obtained from G by contracting each subDAG of G corresponding

to a recursive function call on an r× r submatrix to a supernode, where r is a power

of 2 such that
√

p ≤ r < 2
√

p. The subDAG in G corresponding to any supernode v

is denoted by S(v).

Now the hybrid scheduling scheme is applied on G as follows. The scheduler

executes the nodes (i.e., supernodes) of C(G) under 1df-schedule [18]. However, for

each supernode v, the scheduler uses a pdf-schedule with all p processors in order

to execute the subDAG S(v) of G before moving to the next supernode. This leads

to the following.

Lemma 6.5.2. For p ≥ 1 let multithreaded I-GEP execute Tp parallel steps and

incur Qp cache misses with p processors and on a shared ideal cache of Mp blocks.

Then

(a) With a pdf-schedule, Qp ≤ Q1 if Mp ≥M1 + Θ
(
pn log2 n

)
.

(b) With the hybrid depth-first schedule,

i. Qp ≤ Q1 if Mp ≥M1 + Θ (p),

ii. If M1 = Mp then Qp = O(Q1) provided p = O(Mp).

(c) For both schedules, Tp = O
(

n3

p
+ n log2 n

)
.

Proof. (sketch) (a) This part follows from a general result for shared caches given

131

F(v) A Bi (i = 1, 2) Ci (i = 1, 2) Di (i ∈ [1, 4])

n(F(v)) n
r

(
n
r

)2 − n
r

(
n
r

)2 − n
r

(
n
r

)3 − 2
(

n
r

)2
+ n

r

s(F(v)) O
(
r log2 r

) O (r log r) O (r log r) O (r)

Table 6.2: Properties of supernodes in C(G): for a given supernode v, F(v) denotes
the recursive function represented by subDAG S(v) in G while n(F(v)) and s(F(v))
denote the number of supernodes in C(G) representing F(v) and the number of
parallel steps required to execute F(v), respectively.

in [18] which states that under pdf-schedule Qp ≤ Q1 provided Mp ≥ M1 +

Θ (p · T∞(n)).

(b.i) Since for each supernode v in C(G) the subDAG S(v) in G accesses at

most Θ
(
r2
)

locations of the input matrix, when executing S(v) under pdf-schedule

no more than Θ
(
r2
)

= Θ (p) nodes can become premature [18] simultaneously. Since

supernodes are executed one at a time, having Mp ≥M1 + Θ (p) ensures that there

is always enough space in the shared cache to accommodate the premature nodes

without ever incurring any extra cache misses. Therefore, Qp ≤ Q1.

(b.ii) Suppose Mp = M1 = M . Since the hybrid schedule never creates

more than Θ (p) simultaneous premature nodes (see part (a)), we can set aside Θ (p)

locations in the shared cache for holding the premature nodes. The effective cache

size thus reduces to M −Θ (p), and assuming M−Θ (p) = Ω (M)⇒ p = O (M), the

number of cache misses incurred by multithreaded I-GEP is Qp ≤ O
(

n3

B
√

M−Θ(p)

)
=

O (Q1).

(c) The claimed parallel running time for pdf-schedule follows from the re-

sults in [18]. Therefore, we restrict our attention to the hybrid scheduler below.

Observe that G has Θ
(
n3
)

nodes, and each subDAG in G corresponding to

supernodes in C(G) has Θ
(
r3
)

nodes. Therefore, C(G) has only Θ
((

n
r

)3)
nodes.

For a given supernode v, let F(v) denote the recursive function represented

by subDAG S(v) in G. Let n(F(v)) and s(F(v)) denote the number of supern-

odes in C(G) representing F(v) and the number of parallel steps required to execute

F(v), respectively. The values of n(F(v)) and s(F(v)) for F(v) ∈ {A,Bi, Ci,Di}
are tabulated in Table 6.2 (the calculations are not difficult and are omitted for

brevity). Therefore, the number of parallel steps required to execute all supernodes

is
∑
F(v)∈{A,Bi,Ci,Di} n(F(v)) × s(F(v)) = O

(
n3

r2 + n2

r
log r + n log r

)
= O

(
n3

p
+

132

n log2 n
)

(since p ≤ n2).

Since C(G) has only Θ
((

n
r

)3)
nodes, the number of steps required to execute

C(G) under 1df-schedule is O
((

n
r

)3)
= O

(
n3

p
√

p

)
. Therefore, the total number

of parallel steps required to execute multithreaded I-GEP under the hybrid depth-

first schedule is O
(

n3

p
+ n3

p
√

p
+ n log2 n

)
= O

(
n3

p
+ n log2 n

)
= O

(
T1
p

+ T∞
)

since

T1 = n3 and T∞ = O
(
n log2 n

)
. �

6.6 Cache-oblivious GEP and Compiler Optimization

‘Tiling’ is a powerful loop transformation technique employed by optimizing com-

pilers for improving temporal locality in nested loops [91]. This transformation

partitions the iteration-space of nested loops into a series of small polyhedral areas

of a given tile size which are executed one after the other. Tiling a single loop re-

places it by a pair of loops, and if the tile size is T then the inner loop iterates T

times, and the outer loop has an increment equal to T (assuming that the original

loop had unit increments). This transformation can be applied to arbitrarily deep

nested loops. Figure 6.15(b) shows a tiled version of the triply nested loop shown in

Figure 6.15(a) that occurs in matrix multiplication [91].

Cache performance of a tiled loop depends on the chosen tile size T . Choice

of T , in turn, crucially depends on (1) the type of the cache (direct mapped or set

associative), (2) cache size, (3) block transfer size (i.e., cache line size), and (4) the

loop bounds [91, 133]. Thus tiling is a highly system-dependent technique. Moreover,

since only a single tile size is chosen, tiling cannot be optimized for all levels of a

memory hierarchy simultaneously.

The I-GEP code in Figure 6.2 and the C-GEP code given in Figure 6.13 can

be viewed as cache-oblivious versions of tiling for the triply nested loops of the form

as shown in Figure 6.1. The nested loop in Figure 6.1 has an n × n × n iteration-

space. Both I-GEP and C-GEP are initially invoked on this n × n × n cube, and

at each stage of recursion they partition the input cube into 8 equal-sized subcubes,

and recursively process each subcube. Hence, at some stage of recursion, they are

guaranteed to generate subcubes of size T ′ × T ′ × T ′ such that T
2 < T ′ ≤ T , where

T is the optimal tile size for any given level of the memory hierarchy. Thus for each

level of the memory hierarchy both I-GEP and C-GEP cache-obliviously choose a

133

1. for i← 1 to n do

2. for j ← 1 to n do

3. for k ← 1 to n do

4. c[i, j]← c[i, j]

+ a[i, k]× b[k, j]

(a)

1. for i← 1 to n by T do {T is the tile size}
2. for j ← 1 to n by T do

3. for k ← 1 to n by T do

4. for i′ ← i to min(i + T − 1, n) do

5. for j′ ← j to min(j + T − 1, n) do

6. for k′ ← k to min(k + T − 1, n) do

7. c[i′, j′]← c[i′, j′]+a[i′, k′]×b[k′, j′]

(b)
Figure 6.15: (a) Traditional matrix multiplication algorithm, (b) Tiled version of
the matrix multiplication algorithm of part (a) [91].

tile size that is within a constant factor of the optimal tile size for that level. We

can, therefore, use I-GEP and C-GEP as cache-oblivious loop transformations for

the memory hierarchy.

C-GEP. C-GEP is a legal transformation for any nested loop that conforms to

the GEP format given in Figure 6.1. In order to apply this transformation the

compiler must be able to evaluate τij(i− 1), τij(i), τij(j − 1) and τij(j) for all i, j ∈
[1, n]. For most practical problems this is straight-forward; for example, when ΣG =

{〈i, j, k〉 | i, j, k ∈ [1, n]} which occurs in path computations over closed semirings

(see Section 6.3.3), or even if the computation is not over a closed semiring, we have

τij(l) = l for all i, j, l ∈ [1, n].

I-GEP. Though C-GEP is always a legal transformation for GEP loops, I-GEP is

not. Due to the space overhead of C-GEP, I-GEP should be the transformation of

choice wherever it is applicable. Moreover, experimental results (see Chapter 7) sug-

gest that I-GEP outperforms C-GEP in both in-core and out-of-core computations.

We will now look at some general conditions under which I-GEP is a legal

transformation for a given GEP code. Consider the general GEP code in Figure 6.1.

Recall the definition of π from Section 6.2, and the definition of τij from Section 6.4.2

(Definition 6.4.1). The following lemma follows from Observations 6.4.1 and 6.4.2

in Section 6.4.2, and also from the observation that I-GEP will correctly implement

GEP if for each c[i, j] and each update in ΣG that uses c[i, j] on the right hand

side, c[i, j] retains the correct value needed for that update until I-GEP applies the

update.

134

Lemma 6.6.1. If τij(π(k, i)) ≤ i − |k ≤ i| for all 〈i, k, j〉 ∈ ΣG, and τij(π(k, j)) ≤
j − |k ≤ j| for all 〈k, j, i〉 ∈ ΣG, then I-GEP is a legal transformation for the GEP

code in Figure 6.1.

6.7 An Additional Application of Cache-oblivious I-GEP

In Section 6.3 we considered three major applications of I-GEP. In this section we

consider a class of dynamic programs called ‘simple DP’ [30] that includes important

problems such as RNA secondary structure prediction, matrix chain multiplication

and construction of optimal binary search trees. In Section 6.7.1 we show how simple

DP can be decomposed into a sequence of I-GEP instances using a decomposition

technique from [57], we argue the correctness of our decomposition and prove bounds

on its cache performance.

6.7.1 Simple Dynamic Programs

In [30], the term simple dynamic program was used to denote a class of dynamic

programming problems over a nonassociative semiring (S, min, +, ∞)2 which can

be solved in O
(
n3
)

time using the dynamic program shown in Figure 6.16. Its ap-

plications include RNA secondary structure prediction, optimal matrix chain multi-

plication, construction of optimal binary search trees, and optimal polygon triangu-

lation. An O
(

n3

B
√

M

)
I/O cache-oblivious algorithm based on Valiant’s context-free

language recognition algorithm [124] was given in [30] for this class of problems.

In this section, we consider a more general version of simple DP, which is

called the parenthesis problem in [57], and is described as follows (the generalization

comes from the additional term w(i, k, j)):

c[i, j] =

{
xj if 0 ≤ i = j − 1 < n,

mini<k<j {c[i, k] + c[k, j] + w(i, k, j)} if 0 ≤ i < j − 1 < n;
(6.7.3)

where xj ’s are assumed to be given for j ∈ [1, n]. We also assume that w(·, ·, ·) is a

function that can be computed in-core without incurring any cache misses.

2In a nonassociative semiring min is an associative, commutative and idempotent binary oper-
ator; + is a nonassociative and noncommutative binary operator; ∞ is the identity for min and
annihilator for +; and the operators distribute over each other.

135

1. for i← 0 to n− 1 do c[i, i + 1]← xi+1

2. for d← 2 to n do

3. for i← 0 to n− d do

4. j ← i + d, c[i, j]←∞
5. for k ← i + 1 to j − 1 do

6. c[i, j]← min{c[i, j], c[i, k] + c[k, j]}

Figure 6.16: The O
(
n3
)

time simple DP algo-
rithm.

We describe below a method that transforms the dynamic program given in

6.7.3 to a sequence of dynamic programs in GEP. In this method the upper triangular

matrix c is decomposed into (forward) diagonal strips of horizontal width n
1
4 , and

the entries in c are computed one strip at a time starting from the largest (leftmost)

strip. The computation for each strip involves min-plus matrix multiplication and

dynamic programs that can be solved with cache-oblivious I-GEP. The resulting

algorithm runs in O
(
n3
)

time and O
(

n3

B
√

M

)
I/Os. Unlike I-GEP, however, this

algorithm uses a modest amount
(
O
(
n1.75

)
= o

(
n2
))

of extra space. This method

is based on a parallel algorithm for the parenthesis problem given in [57]. There are,

however, two major differences between the transformation described here and the

algorithm in [57].

(i) We reorder the execution of some of the steps in the algorithm (without af-

fecting its correctness) for better space utilization.

(ii) We reduce computations involving 4-dimensional arrays to computations on

2-dimensional arrays (see step 2.1) so that GEP can be applied (since GEP

works on a 2-dimensional input matrix).

We now describe the transformation. The recurrence relation in 6.7.3 can be

viewed as computing a binary tree of minimum weight [126] in which

(a) each vertex is given a unique label (i, j), 0 ≤ i < j ≤ n,

(b) leaves are labeled (i, i + 1), i ∈ [0, n − 1] in order from left to right with xi+1

being the weight of leaf (i, i + 1), and

(c) each internal node (i, j) has weight w(i, k, j), left child (i, k) and right child

(k, j) for some k ∈ [i+1, j−1], and its descendant leaves are labeled (i′, i′+1)

for i ≤ i′ < j.

136

For each (i, j) with 0 ≤ i < j ≤ n, the dynamic program given by 6.7.3

computes in c[i, j] the cost g(i, j) of the optimal (i.e., minimum-weight) binary tree

rooted at (i, j). A partial tree T is defined to be a tree rooted at some vertex (i, j) with

the subtree rooted at one of its non-leaf nodes (r, s) deleted. Then (r, s) is said to be

the gap of T . Let L(r, j, i, j), r > i, be the cost of the partial tree rooted at (i, j) with

gap (r, j) such that (r, j) is the right child of (i, j). Let L(i, s, i, j), s < j, be defined

similarly. Then L(r, j, i, j) = g(i, r) + w(i, r, j), and L(i, s, i, j) = g(s, j) + w(i, s, j).

For all other cases L(r, s, i, j) is assumed to be +∞. Let L∗(r, s, i, j) be the cost of

the optimal partial tree rooted at (i, j) with gap (r, s).

Initially, g(i, i + 1) is given for all i ∈ [0, n − 1], and g(i, j) = +∞ for all

others, and L∗(r, s, i, j) is initialized to +∞ for all r, s, i, j.

Given two n × n × n × n 4-dimensional ‘matrices’ L1 and L2, the product

L3 = L1L2 is defined for all 0 ≤ i ≤ r < s ≤ j ≤ n as in [57]:

L3(r, s, i, j) = min
i≤k1≤r,s≤k2≤j

{L1(r, s, k1, k2) + L2(k1, k2, i, j)}

The upper triangular matrix c is decomposed into forward diagonal strips

of horizontal width n
1
4 each, and the entries in c are computed using the following

steps:

Step 1. The g values in the first (leftmost) strip of width n
1
4 is computed using

Rytter’s algorithm [107]. This takes O
(
n2.25 log n

)
time and O

(
n2.25 log n

B

)
I/Os

since a straight-forward implementation of Rytter’s algorithm involves only linear

scans (i.e., no random accesses).

Now starting from the second strip the following two steps are executed for

each strip until the last one. This is unlike [57], where the first step (Step 2.1) is

executed for all strips, followed by the execution of the second step (Step 2.2) for

all strips, thus optimizing parallel computation time. Interleaving these two steps as

we do below allows space reuse in sequential computations, and thus reduces space

requirement.

Step 2.1. We compute L∗ of the strip (i.e., all entries L∗(r, s, i, j), where both (i, j)

and (r, s) belong to the strip, and i ≤ r < s ≤ j) recursively as follows. Let S be

a strip of width ν (initially ν = n
1
4), and let S1 and S2 be strips of width ν

2 each

such that they compose S, and the diagonals of S1 are larger than those of S2. We

recursively compute L∗ of S1 followed by the recursive computation of L∗ of S2, and

137

then we combine these results to compute L∗ of S.

We set L(r, j, i, j) = g(i, r) + w(i, r, j) and L(i, s, i, j) = g(s, j) + w(i, s, j)

initially. For these initializations g(i, r) and g(s, j) are retrieved from the first strip

since r − i ≤ n
1
4 and j − s ≤ n

1
4 .

Let GS , G1 and G2 be L∗ of S, S1 and S2, respectively, and let LS be L

in strip S. Then as shown in [57], GS = G2LSG1. These multiplications involve

computations using four dimensional arrays. We reduce these multiplications to

computations using two dimensional arrays as follows.

There are at most nν entries in a strip S of width ν. We assign an index

to each entry. The first entry in the first row gets index 1, and then we assign

indices using consecutive integers such that entries in higher-numbered rows get

higher indices, and within the same row entries in higher-numbered columns get

higher indices. Thus there are at most nν indices. Now let X be an nν×nν matrix.

We copy each entry from LS corresponding to the strip S to X. Suppose (i, j), (r, s) ∈
S. Then if r− i ≤ ν and j−s ≤ ν, we copy LS(r, s, i, j) to X[id(i, j), id(r, s)], where

id(i, j) and id(r, s) are the indices assigned to (i, j) and (r, s), respectively. Thus the

entries from LS corresponding to the strip S of horizontal width ν form a forward

diagonal strip of horizontal width ν2 in X. However, instead of allocating space for

the entire nν×nν matrix X, we store this horizontal strip in an nν×ν2 rectangular

matrix. We apply similar transformations to strips S1 and S2, too. We can then

easily multiply those larger strips in two dimensions.

There are several useful properties of the matrix multiplications performed in

this step using the larger strips. First, the multiplication is min-plus, i.e., performing

the same update on the same location several times do not affect the final result.

Second, updates applicable on the same location can be applied in any order. Third,

the updates are somewhat local, i.e., an entry in the output matrix depends only

on entries that are horizontally or vertically at most at a distance ν2 from the

corresponding entry in the input matrix. Therefore, we divide the strip of width ν2

in X into O
(

n
ν

)
squares of size 2ν2 × 2ν2 each such that the last ν2 rows of each

square overlaps with the first ν2 rows of the square below it.

Therefore, GS = G2LSG1 can be computed using O
(

n
ν

)
multiplications in-

volving 2ν2×2ν2 matrices, each of which can be implemented cache-obliviously using

I-GEP to incur only O
(

ν6

B
√

M

)
I/Os. For the entire strip the number of cache misses

138

is thus O
(

n
ν
× ν6

B
√

M

)
= O

(
nν5

B
√

M

)
. For ν = n

1
4 , the I/O complexity is O

(
n2.25

B
√

M

)
.

Since the number of cache misses decreases by a constant factor as width decreases,

the total number of cache misses is O
(

n2.25

B
√

M

)
. The amount of extra space used is

O
(
nν × ν2

)
= O

(
n1.75

)
, which is reused by this step for processing every strip of c.

Step 2.2. Let S be a strip of width ν for which we want to compute g, and let S′ be

the strip of width lν for which g has already been computed (i.e., all previous strips).

Then g values for strip S can be computed by the following steps. For (i, j) ∈ S,

g′(i, j) = min
j−lν≤k≤i+lν

{g(i, k) + g(k, j) + w(i, k, j)} .

And for (i, j), (r, s) ∈ S,

g(i, j) = min
i≤r,s≤j

{
g′(r, s) + L∗(r, s, i, j)

}
(6.7.4)

In the step for computing g′(i, j) we only need to consider those (i, r) and

(s, j) such that (i, r), (s, j) ∈ S′. The computation is again min-plus, and the output

is updated using entries directly from the input which is unchanged. Therefore,

we can implement this step cache-obliviously using I-GEP as in Section 6.3.2, and

update only the entries in S. We observe that S can be completely covered by O
(

n
ν

)

non-overlapping squares of size ν × ν each. From Theorem 6.2.3 we know that I-

GEP incurs O
(

ν2n

B
√

M

)
cache misses for updating only the entries of any particular

ν × ν square. Hence, total number of cache misses incurred for computing g′ for S

is O
(

n
ν
× ν2n

B
√

M

)
= O

(
n2ν

B
√

M

)
. For ν = n

1
4 , the I/O complexity is thus O

(
n2.25

B
√

M

)
.

Now consider the step that computes g from g′. Before executing this step

we copy the entries of g′ corresponding to strip S to a linear array g′′ such that for

any (r1, s1), (r2, s2) ∈ S, g′(r1, s1) appears before g′(r2, s2) in g′′ provided r1 < r2,

or r1 = r2 and s1 < s2. Recall from Step 2.1 that for each (i, j) ∈ S, all L∗(r, s, i, j)

values with i ≤ r, s ≤ j occupy a single row of width ν2 in an nν ×nν array X, and

the ordering of the L∗(r, s, i, j) values in that row is exactly similar to the ordering

of the g′(r, s) values in g′′. Hence for every (i, j) ∈ S, we can compute g(i, j) just

by scanning the corresponding row in X and the relevant portion of length O
(
ν2
)

from the linear array g′′ and pairing up appropriate entries from these two sources

according to 6.7.4. Since there are O (nν) pairs of (i, j)’s in S, computing all g

values for S will incur O
(
nν
(
1 + ν2

B

))
= O

(
nν + nν3

B

)
cache misses, which is

139

O
(
n1.25 + n1.75

B

)
for ν = n

1
4 .

Since there are O
(
n0.75

)
strips of width n

1
4 , step 2 will be executed O

(
n0.75

)

times, and the total number of cache misses incurred by this step will be thus

O
(
n0.75 ×

(
n2.25

B
√

M
+ n1.25 + n1.75

B

))
= O

(
n3

B
√

M
+ n2 + n2.5

B

)
. The I/O complexity

of the entire algorithm is, therefore, O
(

n2.25 log n
B

+ n3

B
√

M
+ n2 + n2.5

B

)
= O

(
n3

B
√

M

)
,

provided n = Ω(M) and M = Ω
(
B2
)
.

The correctness of the transformation described above follows from the cor-

rectness of the parallel algorithm for the parenthesis problem given in [57], and from

the observation that interleaved execution of steps 2.1 and 2.2 for different strips as

above (from the largest to the smallest strip) does not affect the correctness of the

algorithm. We observe that step 2.1 correctly computes L∗ values for every strip

since it uses only the g values for the first strip which are computed in step 1 and

thus always available. Step 2.2 correctly computes g values for the current strip

since it uses only g values of larger strips and L∗ values of the current strip, and the

order in which we execute steps 2.1 and 2.2 ensures that these values are already

computed.

6.8 Conclusion

We have presented a cache-oblivious framework for problems that can be solved using

a construct similar to the computation in Gaussian elimination without pivoting (i.e.,

using a GE-type construct). We have proved that this framework can be used to

obtain efficient in-place cache-oblivious algorithms for several important classes of

practical problems. We have also shown that if we are allowed to use only n2 + n

extra space, where n2 is the size of the input matrix, we can obtain an efficient cache-

oblivious algorithm for any problem that can be solved using a GE-type construct.

In addition to the practical problems solvable using this framework, it also has the

potential of being used by optimizing compilers for loop transformation [91].

However, many important open questions still exist. For example:

1. Can we extend cache-oblivious I-GEP to solve function G in Figure 6.1 in its

full generality without using any extra space, or at least using o
(
n2
)

space?

2. Can we obtain general cache-oblivious frameworks for other variants of G (for

example, for those shown in Figure 6.17)?

140

Gijk(c, 1, n)

(The input c[1 . . . n, 1 . . . n] is an n× n matrix. Function f(·, ·, ·, ·) is a
problem-specific function, and ΣGijk

is a problem-specific set of updates
to be applied on c.)

1. for i← 1 to n do

2. for j ← 1 to n do

3. for k ← 1 to n do

4. if 〈i, j, k〉 ∈ ΣGijk
then

c[i, j]← f(c[i, j], c[i, k], c[k, j], c[k, k])

Gikj(c, 1, n)

(The input c[1 . . . n, 1 . . . n] is an n× n matrix. Function f(·, ·, ·, ·) is a
problem-specific function, and ΣGikj

is a problem-specific set of updates
to be applied on c.)

1. for i← 1 to n do

2. for k← 1 to n do

3. for j ← 1 to n do

4. if 〈i, j, k〉 ∈ ΣGikj
then

c[i, j]← f(c[i, j], c[i, k], c[k, j], c[k, k])

Figure 6.17: Two simple variants of GEP (Figure 6.1) ob-
tained by rearranging the for loops.

3. Are there simpler transformations of ‘simple DP’ (or the parenthesis problem)

and the gap problem to GEP?

141

Chapter 7

Experimental Results: Gaussian

Elimination Paradigm

You have to do the best with what God gave you.

(Mrs. Gump)

In this chapter we present extensive experimental results for both in-core and out-of-core

performance of several algorithms derived from our cache-oblivious Gaussian Elimination

Paradigm (GEP) introduced in Chapter 6. We consider three major applications of GEP,

namely, square matrix multiplication, Gaussian elimination without pivoting and Floyd-

Warshall’s all-pairs shortest paths. We implement both sequential and parallel versions of

our algorithms, and compare them with finely-tuned cache-aware BLAS code for matrix

multiplication and Gaussian elimination without pivoting. Our results indicate that cache-

oblivious GEP offers an attractive trade-off between efficiency and portability.

7.1 Introduction

In Chapter 6 we introduced a framework for efficient cache-oblivious execution of

a class problems solvable using a construct similar to the computation in Gaussian

elimination without pivoting. We denote this class as the Gaussian Elimination

Paradigm (GEP). We presented an in-place cache-oblivious algorithm called I-GEP

which solves several important special cases of GEP including Gaussian elimination

and LU-decomposition without pivoting, Floyd-Warshall’s all-pairs shortest paths

142

and square matrix multiplication. We also presented C-GEP, which has the same

time and I/O bounds as I-GEP, but unlike I-GEP can solve any instance of GEP.

However, C-GEP uses a modest amount of extra space. We described and analyzed

both the sequential and parallel implementations of I-GEP and C-GEP.

In this chapter we present empirical results showing that both I-GEP and

C-GEP significantly outperform traditional iterative implementations of GEP espe-

cially in out-of-core computations, although improvements in computation time are

already realized during in-core computations. We also include some experimental

results on our pthreads implementation of parallel I-GEP. Finally, we compare per-

formance of I-GEP with that of highly optimized cache-aware BLAS routines for

square matrix multiplication and Gaussian elimination without pivoting. Our re-

sults show that our implementation of I-GEP runs moderately slower than native

BLAS; however, I-GEP performs fewer number of cache misses, is much simpler to

code, easily supports pthreads and is portable across machines.

7.1.1 Organization of the Chapter

We describe our experimental setup in Section 7.2. In Section 7.3 we present all

of our experimental results: in Section 7.3.1 we present results comparing C-GEP,

I-GEP and GEP for Floyd-Warshall, in Section 7.3.2 results comparing I-GEP to

BLAS routines, and in Section 7.3.3 experimental results on parallel I-GEP using

pthreads. Finally, we include some concluding remarks on our findings in Section

6.8.

7.2 Experimental Setup

We ran our experiments on the three architectures listed in Table 7.1. Each machine

can perform at most two double precision floating point operations per clock cycle.

The peak performance of each machine is thus measured in terms of GFLOPS (or

Giga FLoating point Operations Per Second) which is two times the clock speed of

the machine in GHz.

The Intel P4 Xeon machine is also equipped with a 73.5 GB Fujitsu MAP3735NC

hard disk (10K RPM, 4.5 ms avg. seek time, 64.1 to 107.86 MB/s data transfer rate)

[2]. Our out-of-core experiments were run on this machine. All machines run Ubuntu

Linux 5.10 “Breezy Badger”. Each machine was exclusively used for experiments.

143

Model Processors Speed
Peak

GFLOPS
(per proc)

L1 Cache L2 Cache RAM

Intel P4 Xeon 2 3.06 GHz 6.12
8 KB

(4-way)
512 KB
(8-way)

4 GB

AMD Opteron 250 2 2.4 GHz 4.8
64 KB
(2-way)

1 MB
(8-way)

4 GB

AMD Opteron 850
8

(4 dual-core)
2.2 GHz 4.4

64 KB
(2-way)

1 MB
(8-way)

32 GB

Table 7.1: Machines used for experiments. All block sizes (B) are 64 bytes.

We used the Cachegrind profiler [112] for simulating cache effects. For in-core

computations all algorithms were implemented in C using a uniform programming

style and compiled using gcc 3.3.4 with optimization parameter -O3 and limited loop

unrolling.

7.3 Experimental Results

We summarize our results below.

7.3.1 GEP, I-GEP and C-GEP for APSP

In this section we present experimental results comparing GEP, I-GEP and C-GEP

implementations of Floyd-Warshall’s APSP algorithm [48, 128] for both in-core and

out-of-core computations.

Out-of-Core Computation. For out-of-core computations we implemented GEP,

I-GEP and C-GEP in C++, and compiled using g++ 3.3.4 compiler with optimiza-

tion level -O3 and STXXL software library version 0.9 [41] for external memory

accesses. The STXXL library maintains its own fully associative cache in RAM with

pages from the disk, and allows users set the size of the cache (M) and the block

transfer size (B) manually. We compiled STXXL with DIRECT-I/O turned on so

that the OS does not cache data from hard disk.

When the computation is out-of-core I/O wait times dominate computation

times. In Figure 7.1(a) we keep n and B fixed and vary M . We observe that M has

almost no effect on the I/O wait time of GEP while that of both I-GEP and C-GEP

decrease as M increases. This result is consistent with theoretical predictions since

the cache complexity of GEP is independent of M and that of I-GEP and C-GEP

144

Out-of-Core Performance of GEP, I-GEP and C-GEP for Floyd-Warshall’s APSP on Intel P4 Xeon��� � !"# $%&'() *+, - ./012 3 45 6 4 7
(a) I/O Wait Time with n = 4096 and B = 64 KB as M Varies

8898998:99989:999899:999
;<=>?@A;BC D 8E ;<=>?@A;BC D F ;<=>?@A;BC D G ;<=>?@A;BC D HIJKLMN OPQJ R S TUVWXYZ[\Z]̂_̀̂ab c

(b) I/O Wait Time with n = 4096 and M = 2n2 bytes as M/B Varies

ddedeedfeeedefeeedeefeeedfeeefeee
gh ij dhk hli ldh dfehjmnopqr st uvswxy z { | } ~���������������� �

Figure 7.1: Comparison of out-of-core performance of GEP, I-GEP and C-GEP on
Intel Pentium 4 Xeon with a fast hard disk (10K RPM, 4.5 ms avg. seek time, 64
to 107 MB/s transfer rate).

vary inversely with
√

M . In general, the I/O wait time of GEP is several hundred

times more than that of I-GEP and C-GEP; for example, when only half of the

input matrix fits in internal memory GEP waits 500 times more than I-GEP, and

almost 180 times more than both variants of C-GEP. In Figure 7.1(b) we keep n

and M fixed, and vary M/B (by varying B), and observe that in general, I/O wait

times increase linearly with the increase of M/B. The theoretical I/O complexities

of all these algorithms vary inversely with B, which explains the observed trend.

However, when M/B is small, the number of page faults increases which affects the

cache performance of all algorithms.

In-Core Computation. In Figure 7.2 we plot the performance of GEP and I-GEP

on both Intel Xeon and AMD Opteron 250. We optimized I-GEP as described in

Section 7.3.2. On Intel Xeon I-GEP runs around 5 times faster than GEP while on

145

In-Core Performance of I-GEP and GEP for Floyd-Warshall’s APSP��� �����
(a) Rate of Execution on Intel Pentium 4 Xeon

����������������������������
��� ��� ¡¢�� ¡£�� ¢¡��� ¢¡��� ¢¡��� ¤¡¢�� ¤¡£�� �¡��� �¡��� �¡��� ¥¡¢�� ¥¡£�� £¡��� £¡��� £¡��� ¦¡¢�� ¦¡£�� �¡���§¨©ª«¬¨« ® ¯ °±²³³²́µ¶·³̧¹º»º¹¼́µ½¾ ¿ÀÁ»Â̧µÃ²±¹Ä
(b) Rate of Execution on AMD Opteron 250

ÅÆÅÅÇÅÅÈÅÅÉÅÅÊÅÅËÅÅÌÅÅÍÅÅÎÅÅÆÏÅÅÅ
ÐÑÑ ÒÑÑ ÓÔÕÑÑ ÓÔÖÑÑ ÕÔÑÑÑ ÕÔÐÑÑ ÕÔÒÑÑ ×ÔÕÑÑ ×ÔÖÑÑ ÐÔÑÑÑ ÐÔÐÑÑ ÐÔÒÑÑ ØÔÕÑÑ ØÔÖÑÑ ÖÔÑÑÑ ÖÔÐÑÑ ÖÔÒÑÑ ÙÔÕÑÑ ÙÔÖÑÑ ÒÔÑÑÑÚÛÜÝÞßÛàÞ á â ãäåææåçèéêæëìíîíìïçèðñ òóôîõëèöåäì÷

Figure 7.2: Comparison of I-GEP and GEP on Intel Xeon and AMD Opteron for
computing Floyd-Warshall’s all-pairs shortest paths. Both machines have two pro-
cessors, but only one was used.

AMD Opteron it runs around 4 times faster.

In Figure 7.3 we plot the relative performance of I-GEP and C-GEP on Intel

Xeon. As expected, both versions of C-GEP run slower and incur more L2 misses

than I-GEP, since they perform more write operations. However, this overhead

diminishes as n becomes larger. The (n2 + n)-space variant of C-GEP performs

slightly worse than the 4n2-space variant which we believe is due to the fact that the

(n2 + n)-space C-GEP needs to perform more initializations and reinitializations of

the temporary matrices (i.e., u0, u1, v0 and v1) compared to the 4n2-space C-GEP.

7.3.2 Comparison of I-GEP and BLAS Routines

We compared the performance of our I-GEP code for square matrix multiplication

and Gaussian elimination without pivoting on double precision floats with algorithms

146

In-Core Performance of C-GEP relative to I-GEP for Floyd-Warshall’s APSP on Intel P4 Xeonøùúûü ýþÿ�� � ��� � ��	
� � � � �
(a) Runtimes (w.r.t. I-GEP) on Intel Xeon

������������
������������

��� ��� ����� ����� ����� ���������� �!� " # $%&''(')*(+, -./0/1 /2 34567
(b) L2 Misses (w.r.t. I-GEP) on Intel Xeon

89889:;98;9:<98<9:=98=9:>98>9::98
<:? :;< ;@8<> <@8>A >@8B?CDEFGHDIG J K LMNOPQQRQ STUVUW UX YZ[\]

Figure 7.3: Comparison of in-core performance of I-GEP and C-GEP on Intel Pen-
tium 4 Xeon.

based on highly fine-tuned Basic Linear Algebra Subprograms (BLAS). We applied

the following major optimizations on our basic I-GEP routines before the comparison:

– In order to reduce the overhead of recursion we solve the problem directly

using a GEP-like iterative kernel as the input submatrix X received by the recursive

functions becomes very small. We call the size of X at which we switch to the

iterative kernel the base-size. On each machine the best value of base-size, i.e., for

which the implementation ran the fastest, was determined empirically. On Intel

Xeon it is 128× 128 and on AMD Opteron it is 64× 64.

– We use SSE2 (“Streaming SIMD Extension 2”) instructions for increased

throughput.

– For Gaussian elimination without pivoting we use a standard technique for

reducing the number of division operations to o
(
n3
)

(i.e., by moving the division

operations out of the innermost loops).

147

Comparison of I-GEP and GotoBLAS for Gaussian Elimination without Pivoting^_` abcde fghgijkl
(a) Rate of Execution on Intel Pentium 4 Xeon

mnmompmqmrm
smtmumvmnmm

wxx yxx z{|xx z{}xx |{xxx |{wxx |{yxx ~{|xx ~{}xx w{xxx w{wxx w{yxx �{|xx �{}xx }{xxx }{wxx }{yxx �{|xx �{}xx y{xxx��������� � � �
�����

(b) Rate of Execution on AMD Opteron 250

�����������
�����������

��� ��� ����� �� �� ����� ����� ����� ¡���� ¡� �� ����� ����� ����� ¢���� ¢� �� ���� ���� ���� £���� £� �� �����¤¥¦§¨©¥ª¨ « ¬
®̄°±²

Figure 7.4: Comparison of I-GEP and GotoBLAS on Intel Xeon and AMD Opteron
for performing Gaussian elimination without pivoting. Both machines have two
processors, but only one was used.

– We use the bit-interleaved layout (e.g., see [52, 29]) for reduced TLB misses.

More specifically, we arrange the base case size blocks in the bit-interleaved layout

with data within the blocks arranged in row-major layout. We include the cost of

converting to and from this format in the time bounds.

In Figure 7.5 we show the performance of square matrix multiplication on

AMD Opteron 250 with GEP (an optimized version), I-GEP and Native BLAS, i.e.,

BLAS generated for the native machine using the automated empirical optimization

tool ATLAS [102]. We report the results in ‘% peak’, e.g., an algorithm executing at

‘x% of peak’ spends x% of its execution time performing floating point operations

while remaining time is spent in other overheads including recursion, loops, cache

misses, etc. From the plots in Figure 7.5 we observe:

– Native BLAS executes at 78–83% of peak while I-GEP executes at 50–56%

148

Comparison of I-GEP and Native BLAS Square Matrix Multiplication Routines on AMD Opteron 250³´µ ¶·¸¹º »¼½¾¿À ÁÂÃÄ
(a) Rate of Execution

ÅÆÅÇÅÈÅÉÅÊÅ
ËÅÌÅÍÅÎÅ

ÏÐÐ ÑÐÐ ÒÓÔÐÐ ÒÓÕÐÐ ÔÓÐÐÐ ÔÓÏÐÐ ÔÓÑÐÐ ÖÓÔÐÐ ÖÓÕÐÐ ÏÓÐÐÐ ÏÓÏÐÐ ÏÓÑÐÐ ×ÓÔÐÐ ×ÓÕÐÐ ÕÓÐÐÐ ÕÓÏÐÐ ÕÓÑÐÐ ØÓÔÐÐ ØÓÕÐÐ ÑÓÐÐÐÙÚÛÜÝÞ ßÝàáâãÝäâ å æ ç
èéêëì

(b) L1 Misses

íîïð
ñòó

ôõõ öõõ ÷øùõõ ÷øúõõ ùøõõõ ùøôõõ ùøöõõ ûøùõõ ûøúõõ ôøõõõüýþÿ�� ��������� � 	
�������������
(c) L2 Misses

���������������������
��� ��� �� �� ��!�� ���� ���� ���� "� �� "�!�� �����#$%&'()'*+,-'., / 0 12345667689:;<=

(d) Instruction Cache References

>?>@>A>B>C>>C?>C@>CA>CB>
DEE FEE GHIEE GHJEE IHEEE IHDEE IHFEE KHIEE KHJEE DHEEELMNOPQ RPSTUVPWU X Y Z[\]̂_̀abacdefghij

Figure 7.5: Comparison of I-GEP and native BLAS square matrix multiplication
routines on a 2.4 GHz dual processor AMD Opteron 250 (one processor was used).

149

of peak. Traditional GEP reaches only 9–13% of peak. The GotoBLAS [60] which is

usually the fastest BLAS available for most machines (not shown in the plots) runs

at 85–88% of peak.

– I-GEP incurs fewer L1 and L2 misses than native BLAS.

– I-GEP executes more instructions than native BLAS.

We obtained similar results on Intel P4 Xeon.

In Figure 7.4 we plot the performance of Gaussian elimination without piv-

oting using GEP, I-GEP and GotoBLAS [60] on both Intel Xeon and AMD Opteron

250. (Recall that GotoBLAS is the fastest BLAS available for most machines.) We

used the LU decomposition (without pivoting) routine available in FLAME [66] to

implement Gaussian elimination without pivoting using GotoBLAS. On both ma-

chines GotoBLAS executes at around 75–83% of peak while I-GEP runs at around

45–55% of peak. Traditional GEP reaches only 7–9% of peak.

Recursive square matrix multiplication using an iterative base case similar

to our implementations is studied in [135]. The experimental results in [135] report

performance level of only about 35% of peak for Intel P4 Xeon which is significantly

lower than what we obtain for the same machine (50–58%). We conjecture that

our improved performance is partly due to our use of SSE2 instructions, especially

since [135] obtained performance levels of 60–75% for SUN UltraSPARC IIIi, IBM

Power 5 and Intel Itanium 2 using FMA instructions. These latter results nicely

complement our results for Intel P4 Xeon and AMD Opteron and further suggest

that reasonable performance levels can be reached for square matrix multiplication

on different architectures using relatively simple code that does not directly depend

on cache parameters.

Both our implementations and the ones in [135] experimentally determined

the best base-size since the overhead of recursion becomes excessive if the recursion

extends all the way down to size 1. In [135] this is viewed as not being purely cache-

oblivious; however we consider the fine-tuning of the base-size in recursive algorithms

to be a standard optimization during implementation.

7.3.3 Multithreaded I-GEP

We implemented multithreaded I-GEP using the standard pthreads library. We

varied the number of concurrent threads from 1 to 8 on an 8-processor AMD Opteron

150

Performance of I-GEP on an 8-processor AMD Opteron 850

as the Number of Concurrent Threads (i.e., Processor Usage) Vary

(a) Square Matrix Multiplication

klmn
opqr

l m n o p q r stuvwxy z{ |}yx~���������������� ������ ������������ ����� �
(b) Gaussian Elimination w/o Pivoting

����
����

� � � � � � � � ¡¢£¤¥ ¦§ ¨©¥¤ª«¬®̄̄°±²®³́µ¶·̧ ¹º»¸»¶ »²¼¶½̧́̄°̄°¾ ±¿ÀÁÂ »
(c) Floyd-Warshall’s APSP

ÃÄÅÆ
ÇÈÉÊ

Ä Å Æ Ç È É Ê ËÌÍÎÏÐÑ ÒÓ ÔÕÑÐÖ×ØÙÚÛÛÜÝÞÚßàáâãä åæçäçâ çÞèâéäÛàÜÛÜê Ýëìíî ç
Figure 7.6: Performance of I-GEP on an 8-processor AMD Opteron 850 for square
matrix multiplication, Gaussian elimination w/o pivoting and Floyd-Warshall’s all-
pairs shortest paths on 5000 × 5000 matrices as number of concurrent threads is
varied.

151

850 and used I-GEP to perform matrix multiplication, Gaussian elimination without

pivoting and Floyd-Warshall’s APSP on input 5000 × 5000 matrices. Threads were

created recursively as the computation progressed. We used the following simple

scheduling policy. Whenever a thread created a child thread and the number of

concurrent threads were still below the limit, we let the default scheduling policy on

Linux assign the thread to a processor. Otherwise we suspended the parent (current)

thread, ran the child thread to completion on the current processor and then resumed

executing the parent thread on the same processor.

In Figure 7.6 we plot the speed-up factors achieved by multithreaded I-GEP

over its unthreaded version as the number of concurrent threads is increased. For

square matrix multiplication I-GEP speeds up by a factor of 6 when the number

of concurrent threads increases from 1 to 8, while for Gaussian elimination without

pivoting and Floyd-Warshall’s APSP the speed-up factors are smaller, i.e., 5.33 and

5.73, respectively. As mentioned in Section 6.5, I-GEP for matrix multiplication

has more parallelism than I-GEP for Gaussian elimination without pivoting and

Floyd-Warshall’s APSP, which could explain the better speed-up factor for matrix

multiplication.

7.4 Discussion

We draw the following conclusions from our results:

– In our experiments I-GEP always outperformed both variants of C-GEP

(see Section 7.3.1). The 4n2-space variant of C-GEP almost always outperformed

the (n2 + n)-space variant, and it is also easier to implement. Therefore, if disk

space is not at a premium, the 4n2-space C-GEP should be used instead of the

(n2 +n)-space variant, and I-GEP is preferable to both variants of C-GEP whenever

applicable.

– When the computation is in-core, I-GEP runs about 5–6 times faster than

even some reasonably optimized versions of GEP. It has been reported in [94] that

I-GEP runs slightly slower than GEP on Intel P4 Xeon for Floyd-Warshall’s APSP

when the prefetchers are turned on. We believe that we get dramatically better

results for I-GEP in part because unlike [94] we arrange the entries of each base-

case submatrix in a prefetcher-friendly layout, i.e., in row-major order (see Section

7.3.2). Note that we include the cost of converting to and from this layout in the

152

time bounds we report.

– BLAS routines run about 1.5 times faster than I-GEP. However, I-GEP is

cache-oblivious and is implemented in a high level language, while BLAS routines

are cache-aware and employ numerous low-level machine-specific optimizations in

assembly language. The cache-miss results in Section 7.3.2 indicate that the cache

performance of I-GEP is at least as good as that of native BLAS. Hence the per-

formance gain of native BLAS over I-GEP is most likely due to optimizations other

than cache-optimizations.

– Our I-GEP/C-GEP code for in-core computations can be used for out-of-

core computations without any changes, while BLAS is optimized for in-core com-

putations only.

– I-GEP/C-GEP can be parallelized very easily, and speeds up reasonably

well as the number of processors (i.e., concurrent threads) increases. However, cur-

rent systems offer very limited flexibility in scheduling tasks to processors, and we

believe that performance of multithreaded I-GEP can be improved further if better

scheduling policies are used.

153

Chapter 8

Cache-oblivious Dynamic

Programs for Bioinformatics

I’ve got the world on a string, sittin’ on a rainbow...

(Ted Koehler & Harold Arlen,

Recorded by Frank Sinatra)

In this chapter we present efficient cache-oblivious sequential and parallel algorithms for

some well-studied string problems in bioinformatics:

1. LCS problem. The longest common subsequence between two given sequences;

2. Pairwise alignment. Optimal pairwise global sequence alignment using affine gap

penalty;

3. Median. Optimal alignment of three sequences using affine gap penalty;

4. RNA secondary structure prediction. Maximizing number of base pairs in RNA sec-

ondary structure with simple pseudoknots and also without pseudoknots.

5. Gap problem. Optimal pairwise alignment with general gap costs. We also consider

the least weight subsequence problem which can be viewed as a simpler version of the

gap problem.

For each of these problems we present sequential cache-oblivious algorithms that

match the best-known time complexity, match or improve the best-known space complexity,

and improve significantly over the cache-efficiency of earlier algorithms. We also show that

these algorithms are easily parallelizable, and we analyze their parallel performance.

154

Our methods are applicable to several other dynamic programs for string problems

in bioinformatics including local alignment, generalized global alignment with intermittent

similarities, multiple sequence alignment under several scoring functions such as ‘sum-of-

pairs’ objective function and RNA secondary structure prediction with simple pseudoknots

using energy functions based on adjacent base pairs.

In Chapter 9 we present experimental results on several of our cache-oblivious algo-

rithms mentioned above.

8.1 Introduction

Algorithms for sequence alignment and for RNA secondary structure prediction are

some of the most widely studied and widely-used methods in bioinformatics. Many

of these are dynamic programming algorithms that run in polynomial time under

the traditional von Neumann Model of computation which assumes a single layer

of memory with uniform access cost, and many have been further improved in their

space usage, mainly using a technique due to Hirschberg [70]. However, most of these

algorithms are deficient with respect to cache-efficiency, and thus do not deliver the

best performance on modern computers with multi-level memory hierarchy.

8.1.1 Our Results

In this chapter we consider two particular classes of dynamic programming problems:

one with ‘local dependencies’, and the other with ‘non-local dependencies’. In a

dynamic program with local dependencies the value of each cell in the DP table

depends only on values in adjacent cells, while in a dynamic program with non-local

dependencies this property is violated for some or all cells in the DP table.

Dynamic Programming with Local Dependencies. We first present an efficient

cache-oblivious framework for both sequential and parallel machines which solves a

general class of recurrence relations in 2- and 3-dimensions that are amenable to

solution by dynamic programs with local dependencies. In principle our framework

can be generalized to any number of dimensions, although we study explicitly only

the 2- and 3-dimensional cases. We use this framework to develop cache-oblivious

algorithms for several well-known string problems in bioinformatics, and show that

our algorithms are theoretically more cache-efficient than previous algorithms for

these problems. We also show that our parallel cache-oblivious algorithms can be

155

scheduled on both distributed and shared caches to achieve almost the same level

of cache-efficiency as their sequential counterparts. The string problems we consider

are:

• LCS (i.e., longest common subsequence): Given two sequences of length n each

our cache-oblivious algorithm finds the longest common subsequence in O
(
n2
)

time, O (n) space and O
(

n2

BM

)
cache-misses. On a machine with p processors a

parallel implementation of this algorithm performs O
(
n2
)

work and terminates

in O
(

n2

p
+ n

)
parallel steps.

• Global pairwise alignment with affine gap costs: On a pair of sequences of length

n each our cache-oblivious algorithm runs in O
(
n2
)

time, uses O (n) space

and incurs O
(

n2

BM

)
cache-misses. When executed with p processors a paral-

lel implementation of this algorithm performs O
(
n2
)

work and terminates in

O
(

n2

p
+ n

)
parallel steps.

• Median (i.e., optimal alignment of three sequences) with affine gap costs: Our

cache-oblivious algorithm runs in O
(
n3
)

time and O
(
n2
)

space, and incurs

only O
(

n3

B
√

M

)
cache-misses on three sequences of length n each. On a ma-

chine with p processors a parallel version of our algorithm performs O
(
n3
)

work and executes O
(

n3

p
+ n

)
parallel steps.

• RNA secondary structure prediction with simple pseudoknots: On an RNA se-

quence of length n, our cache-oblivious algorithm runs in O
(
n4
)

time, uses

O
(
n2
)

space and incurs O
(

n4

B
√

M

)
cache-misses, and parallel implementation

of our algorithm performs O
(
n4
)

work and terminates in O
(

n4

p
+ n log2 n

)

parallel steps when executed with p processors.

Our cache-oblivious framework can also be used to obtain efficient cache-

oblivious algorithms for several other string problems in bioinformatics including

local alignment, generalized global alignment with intermittent similarities, multiple

sequence alignment under several scoring functions such as ‘sum-of-pairs’ objective

function and RNA secondary structure prediction with simple pseudoknots using

energy functions based on adjacent base pairs.

Two features of our cache-oblivious framework are worth noting.

156

• Our cache-oblivious algorithms improve on the space usage of traditional dy-

namic programs for each of the problems we study, and match the space usage

of the Hirschberg-style space-reduced versions [70] of these traditional dynamic

programs. However, our space reduction is obtained through a divide-and-

conquer strategy that is quite different from the method used in [70]. Briefly,

our method computes the dynamic program table recursively in sub-blocks and

stores only the computed values at the boundary of the sub-block. This results

in the space saving, and we show that the stored values suffice to compute a

solution with optimal value.

• Our algorithms are simpler than the space-reduced versions of the traditional

dynamic programs, and hence are easier to code. Further, the recursive struc-

ture of our method gives rise to a good amount of parallelizism, which is also

very easy to expose using standard parallel constructs such as fork and join.

Dynamic Programming with Non-local Dependencies. Among dynamic pro-

grams with non-local dependencies, we consider dynamic programming algorithms

for the following problems:

• Gap problem (i.e., pairwise sequence alignment with general gap costs): On a

pair of sequences of length n each, our cache-oblivious algorithm runs in

O
(
n3
)

time, uses O
(
n2
)

space and incurs O
(

n3

B
√

M

)
cache-misses. A par-

allel implementation of our algorithm performs O
(
n3
)

work and terminates

in O
(

n3

p
+ nlog2 3

)
parallel steps on a machine with p processors. We present

scheduling schemes for cache-efficient execution of the parallel algorithm on

both distributed and shared caches.

• Basic RNA secondary structure prediction problem (i.e., w/o pseudoknots): We

show that given an RNA sequence of length n, an RNA secondary structure

(w/o pseudoknots) with the maximum number of base pairs can be found

cache-obliviously within the same sequential time, space and cache-miss bounds

as the gap problem described above.

Remarks. We note that often in practice biologists seek not a precise optimal

solution but biologically significant solutions that may be sub-optimal under the

157

optimization measure used to define the problem. However, often in such cases,

an algorithm for the precise optimal solution can be used as a subroutine in con-

junction with other methods that determine biological features not captured by the

combinatorial problem specification. Therefore, our algorithms are likely to be of

use to biologists even when biologically significant solutions are sought that are not

necessarily optimal under our definition.

8.1.2 Organization of the Chapter

In Section 8.2 we describe our results on the cache-oblivious framework that we will

use to solve the dynamic programming problems with local dependencies we consider

in this chapter. In Section 8.2.1 we describe and analyze the 3-dimensional version

of the framework, and in Section 8.2.2 we establish its I/O lower bound for arbitrary

dimensions. In Section 8.2.3 we describe and analyze the parallel implementation of

the framework for the 3-dimensional case, and present scheduling strategies for its

cache-efficient execution on both shared and distributed caches. In Section 8.2.4 we

describe how to use the cache-oblivious framework to obtain cache-oblivious algo-

rithms for longest common subsequence, global pairwise sequence alignment, median

and RNA secondary structure prediction with simple pseudoknots.

In Section 8.3 we consider two dynamic programming problems with non-local

dependencies. In Section 8.3.1 we describe and analyze sequential and parallel cache-

oblivious algorithms for solving the gap problem. In Section 8.3.2 we describe how

to solve the basic RNA secondary structure (w/o pseudoknots) prediction problem

cache-obliviously.

Preliminary versions of some of the results in this chapter, particularly the

LCS result in Section 8.2.4, the I/O lower bound in Section 8.2.2 and the sequential

algorithm for the gap problem in Section 8.3.1, appeared in a conference paper [34].

8.2 Cache-oblivious Dynamic Programs with Local De-

pendencies

Before providing a general recurrence defining the class of dynamic programs with

local dependencies we will consider in this chapter, let us look at a simple motivating

example.

158

A Motivating Example - The LCS DP. A sequence Z = z1z2 . . . zk is called a

subsequence of another sequence X = x1x2 . . . xn if there exists a strictly increasing

function f : [1, 2, . . . , k] → [1, 2, . . . , n] such that for all i ∈ [1, k], zi = xf(i). In the

Longest Common Subsequence (LCS) problem we are given two input sequences, and

we need to find a maximum-length subsequence common to both sequences.

Given two sequences S1 = s1,1s1,2 . . . s1,n and S2 = s2,1s2,2 . . . s2,n (for sim-

plicity, we assume equal-length sequences here), we define c[i1, i2] (0 ≤ i1, i2 ≤ n) to

be the length of an LCS of s1,1s1,2 . . . s1,i1 and s2,1s2,2 . . . s2,i2 . Then c[n, n] is the

length of an LCS of S1 and S2, and can be computed using the following recurrence

relation (see, e.g., [37]):

c[i1, i2] =

0 if i1 = 0 or i2 = 0,

c[i1 − 1, i2 − 1] + 1 if i1, i2 > 0 ∧ s1,i1 = s2,i2 ,

max { c[i1, i2 − 1], c[i1 − 1, i2] } if i1, i2 > 0 ∧ s1,i1 6= s2,i2 .

(8.2.1)

We can rewrite the recurrence above in the following form:

c[i1, i2] =

h (〈 i1, i2 〉) if i1 = 0 or i2 = 0,

f

(
〈 i1, i2 〉, 〈 s1,i1, s2,i2 〉,

c[i1 − 1 : i1, i2 − 1 : i2] \ c[i1, i2]

)
otherwise.

(8.2.2)

where h (·) is an initialization function that always returns 0, and f(·, ·, ·) is the

function that computes the value of each cell based on the values in adjacent cells

as follows.

f

(
〈 i1, i2 〉, 〈 s1,i1 , s2,i2 〉,

c[i1 − 1 : i1, i2 − 1 : i2] \ c[i1, i2]

)
=

c[i1 − 1, i2 − 1] + 1 if s1,i1 = s2,i2 ,

max

{
c[i1, i2 − 1],

c[i1 − 1, i2]

}

otherwise.

All computations above are performed in the domain of nonnegative integers (i.e.,

the set N of natural numbers).

Let us now extend recurrence 8.2.2 to arbitrary number of sequences and

arbitrary functions h and f .

A General Framework for DPs with Local Dependencies. Suppose we are

given the following.

159

• d ≥ 1 sequences Si = si,1si,2 . . . si,n, 1 ≤ i ≤ d, of length n each, with symbols

chosen from an arbitrary finite alphabet. We define the following (to be used

later).

– Given integers ij ∈ [0, n], j ∈ [1, d], we denote by i the sequence of d

integers i1, i2, . . . , id; and by 〈 i 〉 we denote the d-dimensional vector

〈 i1, i2, . . . , id 〉.
– By 〈 Si 〉 we denote the d-dimensional vector 〈 s1,i1, s2,i2 , . . . , sd,id 〉

containing the ij-th symbol of Sj in j-th position, where each ij ∈ [1, n].

• An arbitrary set U .

• An initialization function h(·) that accepts a vector 〈 i 〉 as input and outputs

an element from U .

• A function f(·, ·, ·) that accepts vectors 〈 i 〉 and 〈 Si 〉, and an ordered set of

2d − 1 elements from Σ, and returns an element of U .

Now suppose c[0 : n, 0 : n, . . . , 0 : n] is a d-dimensional matrix that can store elements

from the given set U , and we want to compute the entries of c using the following

dynamic programming recurrence.

c[i] =

{
h (〈 i 〉) if ∃ ij = 0,

f
(
〈 i 〉, 〈 Si 〉, c[i1 − 1 : i1, i2 − 1 : i2, . . . , id − 1 : id] \ c[i]

)
otherwise.

(8.2.3)

Function f can be arbitrary except that it is allowed to use exactly one cell

from its third argument to compute the final value of c[i1, i2, . . . , id] (though it can

consider all cells), and we call that specific cell the parent cell of c[i1, i2, . . . , id]. We

also assume that f does not access any memory locations in addition to those passed

to it as inputs except possibly some constant size local variables.

Typically, two types of outputs are expected when evaluating this recurrence:

(i) the value of c[n, n, . . . , n], and (ii) the traceback path starting from c[n, n, . . . , n].

The traceback path from any cell c[i1, i2, . . . , id] is the path following the chain of

parent cells through c that ends at some c[i′1, i
′
2, . . . , i

′
d] with ∃ i′j = 0.

Each cell of c can have multiple fields and in that case f must compute a

value for each field, though as before, it is allowed to use exactly one field from

its third argument to compute the final value of any field in c[i1, i2, . . . , id]. The

160

definition of traceback path extends naturally to this case, i.e., when the cells have

multiple fields.

Recurrence 8.2.3 can be evaluated iteratively in O
(
nd
)

time, O
(
nd
)

space

andO
(
nd/B

)
cache-misses. Though space can be reduced toO

(
nd−1

)
using Hirschberg’s

technique [70], the cache-complexity remains unchanged if the traceback path must

also be computed1.

In Section 8.2.1 we present a cache-oblivious algorithm for solving the 3-

dimensional version (i.e., d = 3) of recurrence 8.2.3 along with a traceback path in

O
(
n3
)

time, O
(
n2
)

space and O
(

n3

B
√

M

)
cache misses. It improves over the previous

best cache-miss bound by at least a factor of
√

M , and reduces space requirement

by a factor of n when compared with the traditional iterative solution. In Section

8.2.4 we use this algorithm to solve median of three sequences and RNA secondary

structure prediction with simple pseudoknots.

A cache-oblivious algorithm which is similar to the algorithm for solving the

3-dimensional recurrence but is simpler, solves the 2-dimensional version (i.e., d = 2)

of recurrence 8.2.3. We include this algorithm in Appendix D. This algorithm runs

in O
(
n2
)

time, uses O (n) space and incurs O
(

n2

BM

)
cache misses. It improves over

the previous best cache-complexity by a factor of at least M , and also improves over

the space complexity of the standard iterative DP by a factor of n. In Section 8.2.4

we use this algorithm for solving the LCS problem and for global pairwise sequence

alignment with affine gap costs.

8.2.1 Cache-oblivious Algorithm for Solving Recurrence 8.2.3 in

3D

Our algorithm works by decomposing the given cube c[1 : n, 1 : n, 1 : n] into

smaller subcubes, and is based on the observation that for any such subcube we can

recursively compute the entries on its output boundary (i.e., on its right, front and

bottom boundaries) provided we know the entries on its input boundary (i.e., entries

immediately outside of its left, back and top boundaries). Since the subcubes share

1If a traceback path is not required it is easy to reduce space requirement of the iterative
algorithm to O

`
nd−1

´
even without using Hirschberg’s technique (see, e.g., [37]), and when M =

Ω
`
Bd−1

´
, its cache-complexity can be improved to O

„
nd

BM
1

d−1

«
using the cache-oblivious stencil-

computation technique [54].

161

Function 8.2.1. Compute-Boundary-3D(X, Y, Z, L, B, T)

Input. Same as the input description of Compute-Traceback-Path-3D (Function 8.2.2 in
Figure 8.2).

Output. Returns 〈R,F, D〉, where R (≡ Q[r, 1 : r, 1 : r]), F (≡ Q[1 : r, r, 1 : r]) and D
(≡ Q[1 : r, 1 : r, r]) are the right, front and bottom boundaries of Q[1 : r, 1 : r, 1 : r], respectively.

1. if r = 1 then R = F = D ← f (〈 u, v, w 〉, 〈 X, Y, Z 〉, L ∪B ∪ T)

2. else

3. Extract L1,j,k from L, Bi,1,k from B, and Ti,j,1 from T , respectively, where i, j, k ∈ [1, 2]

4. subcube[1 : 8]← 〈〈1, 1, 1〉, 〈2, 1, 1〉, 〈1, 2, 1〉, 〈2, 2, 1〉, 〈1, 1, 2〉, 〈2, 1, 2〉, 〈1, 2, 2〉, 〈2, 2, 2〉〉
5. for l← 1 to 8 do

6. 〈 i, j, k 〉 ← subcube[l]

〈 Rijk, Fijk, Dijk 〉 ← Compute-Boundary-3D(Xi, Yj , Zk, L′
ijk, B′

ijk, T ′
ijk)

7. Compose R from R2,j,k, F from Fi,2,k, and D from Di,j,2, where i, j, k ∈ [1, 2]

8. return 〈 R, F, D 〉
Compute-Boundary-3D Ends

Figure 8.1: Evaluating recurrence 8.2.3 cache-obliviously for d = 3 without a trace-
back path. For simplicity, we assume n = 2q for some integer q ≥ 0. In ini-
tial call to Function D.0.5, X = x1x2 . . . xn, Y = y1y2 . . . yn, Z = z1z2 . . . zn,
L ≡ c[0, 0 : n, 0 : n], B ≡ c[0 : n, 0, 0 : n] and T ≡ c[0 : n, 0 : n, 0].

boundaries, when the output boundaries of all subcubes are computed the problem

of finding the traceback path through the entire cube is reduced to the problem

of recursively finding the fragments of the path through the subcubes. Though we

compute all Θ
(
n3
)

entries of c, at any stage of recursion we only need to save the

entries on the boundaries of the subcubes and thus use only O
(
n2
)

space. The

divide and conquer strategy also improves locality of computation and consequently

leads to an efficient cache-oblivious algorithm.

As noted before, Hirschberg’s technique [70] can also be used to solve recur-

rence 8.2.3 along with a traceback path. Unlike our algorithm, however, Hirschberg’s

approach decomposes the problem into two subproblems of typically unequal size,

and uses a complicated process involving the application of the traditional iterative

DP in both forward and backward directions to perform the decomposition. The

application of the iterative DP along with the fact that the subproblems are of-

ten unequal in size contributes to its inefficient cache usage. Moreover, the use of

both forward and backward DP, and particularly the need for combining the results

obtained from them complicates the implementation of Hirschberg’s technique for

162

Function 8.2.2. Compute-Traceback-Path-3D(X, Y, Z, L, B, T, P)

Input. Here r = |X| = |Y | = |Z| = 2t for some nonnegative integer t ≤ q, and Q[0 : r, 0 :
r, 0 : r] ≡ c[u − 1 : u + r − 1, v − 1 : v + r − 1, w − 1 : w + r − 1], X = xuxu+1 . . . xu+r−1,
Y = yvyv+1 . . . yv+r−1 and Z = zwzw+1 . . . zw+r−1 for some u, v and w (1 ≤ u, v, w ≤ n− r + 1).
The left, back and top boundaries of Q[1 : r, 1 : r, 1 : r] are stored in L (≡ Q[0, 0 : r, 0 : r]), B
(≡ Q[0 : r, 0, 0 : r]) and T (≡ Q[0 : r, 0 : r, 0]), respectively. Current traceback path is given in P .

Output. Returns the updated traceback path.

1. if P ∩Q = ∅ return P

2. if r = 1 then update P using recurrence 8.2.3

3. else { For i, j, k ∈ [1, 2], the left, right, front, back, top and bottom planes of subcube

Qijk are denoted by Lijk, Rijk, Fijk, Bijk, Tijk and Dijk, respectively. X1 and

X2 denote the 1st and the 2nd half of X, respectively (similarly for Y and Z).}
4. Extract L1,j,k from L, Bi,1,k from B, and Ti,j,1 from T , respectively, where i, j, k ∈ [1, 2]

{ L2,j,k ≡ R1,j,k, Bi,2,k ≡ Fi,1,k and Ti,j,2 ≡ Di,j,1 for i, j, k ∈ [1, 2] }
5. subcube[1 : 8]← 〈〈1, 1, 1〉, 〈2, 1, 1〉, 〈1, 2, 1〉, 〈2, 2, 1〉, 〈1, 1, 2〉, 〈2, 1, 2〉, 〈1, 2, 2〉, 〈2, 2, 2〉〉
6. for l← 1 to 7 do {forward pass (compute boundaries)}
7. 〈 i, j, k 〉 ← subcube[l]

〈 Rijk, Fijk, Dijk 〉 ← Compute-Boundary-3D(Xi, Yj , Zk, L′
ijk, B′

ijk, T ′
ijk)˘

if Lijk ≡ Q[i′, j1 : j2, k1 : k2] then L′
ijk ≡ Q[i′, j1 − 1 : j2, k1 − 1 : k2];

similarly for Bijk and Tijk. }
8. for l← 8 downto 1 do {backward pass (compute traceback path)}
9. 〈 i, j, k 〉 ← subcube[l]

P ← Compute-Traceback-Path-3D(Xi, Yj , Zk, L′
ijk, B′

ijk, T ′
ijk, P)

10. return P

Compute-Traceback-Path-3D Ends

Figure 8.2: Evaluating recurrence 8.2.3 cache-obliviously for d = 3 along with a
traceback path. For simplicity, we assume n = 2q for some integer q ≥ 0. In
initial call to Function 8.2.2, X = x1x2 . . . xn, Y = y1y2 . . . yn, Z = z1z2 . . . zn,
L ≡ c[0, 0 : n, 0 : n], B ≡ c[0 : n, 0, 0 : n], T ≡ c[0 : n, 0 : n, 0] and P = 〈(n, n, n)〉.

multiple simultaneous recurrences or recurrences with multiple fields. In contrast,

our algorithm always applies DP in one direction and thus is simpler to implement.

A method for applying Hirschberg’s space-reduction using forward-only DP is given

in [46], but it involves repeated linear scans and thus is not cache-efficient.

We describe below the two parts of our algorithm. The pseudocode for these

parts are given in Figures 8.1 and 8.2. The first part of our algorithm (i.e., the method

for computing the output boundary) has some similarity to the cache-oblivious stencil

computation algorithm described in [54] which, however, uses a different decompo-

163

sition scheme.

Compute-Boundary-3D. Given the input boundary of c[i1 : i2, j1 : j2, k1 :

k2] this function (Function 8.2.1) recursively computes its output boundary. For

simplicity of exposition we assume that i2− i1 = j2− j1 = k2− k1 = 2q − 1 for some

integer q ≥ 0.

If q = 0, the function can compute the output boundary directly using re-

currence 8.2.3, otherwise it decomposes its cubic computation space Q (initially

Q ≡ c[1 : n, 1 : n, 1 : n]) into 8 subcubes Qi,j,k, 1 ≤ i, j, k ≤ 2, where Qi,j,k denotes

the subcube that is i-th from the left, j-th from the back and k-th from the top. It

then computes the output boundary of each subcube recursively as the input bound-

ary of the subcube becomes available during the process of computation. After all

recursive calls terminate, the output boundary of Q is composed from the output

boundaries of the subcubes.

Analysis. Let I1(n) be the cache-complexity of Compute-Boundary-3D on input

sequences of length n each. Then

I1(n) =

O
(
n + n2

B

)
if n ≤

√
αM ,

8I1

(
n
2

)
+O

(
n + n2

B

)
otherwise;

where α is the largest constant sufficiently small that computation involving three

input sequences of length
√

αM each can be performed completely inside the cache.

Solving the recurrence we obtain I1(n) = O
(
n + n2

B
+ n3

M
+ n3

B
√

M

)
for all n. It is

straight-forward to show that the algorithm runs in O
(
n3
)

time and uses O
(
n2
)

space, and the cache complexity reduces to O
(

n3

B
√

M

)
when the cache is tall (i.e.,

M = Ω
(
B2
)
) and the space usage is too large for the cache (i.e., n2 = Ω (M)). In

contrast, though the standard iterative dynamic programming approach for comput-

ing the output boundary has the same time and space complexities (see, e.g., [37]

for a standard technique that allows the DP to be implemented in O
(
n2
)

space), it

incurs a factor of
√

M more cache-misses.

Compute-Traceback-Path-3D. Given the input boundary of c[i1 : i2, j1 :

j2, k1 : k2] and the entry point of the traceback path on the output boundary

this function (Function 8.2.2) recursively computes the entire path. Recall that a

traceback runs backwards, that is, it enters the cube through a point on the output

boundary and exits through the input boundary.

164

If q = 0, the traceback path can be updated directly using recurrence 8.2.3,

otherwise it performs two passes: forward and backward. In the forward pass it

computes the output boundaries of all subcubes except Q2,2,2 as in Compute-

Boundary-3D. After this pass the algorithm knows the input boundaries of all

eight subcubes, and the problem reduces to recursively extracting the fragments of

the traceback path from each subcube and combining them. In the backward pass

the algorithm starts at Q2,2,2 and updates the traceback path by calling itself recur-

sively on the subcubes in the reverse order of the forward pass. This backward order

of the recursive calls is essential since in order to find the traceback path through a

subcube the algorithm requires an entry point on its output boundary through which

the path enters the subcube and initially this point is known for only one subcube.

The subcubes are processed in the backward order because it ensures that the exit

point of the traceback path from one subcube can be used as the entry point of the

path to the next subcube in the sequence.

Analysis. Let I2(n) be the cache-complexity of Compute-Traceback-Path-3D

on input sequences of length n each. We observe that though the algorithm calls

itself recursively 8 times in the backward pass, at most 4 of those recursive calls

will actually be executed and the rest will terminate at line 1 of the algorithm (see

Figure 8.2)) since the traceback path cannot intersect more than 4 subcubes. Then,

I2(n) =

O
(
n + n2

B

)
if n ≤ √γM ,

4I2

(
n
2

)
+ 7I1

(
n
2

)
+O

(
n + n2

B

)
otherwise;

where γ is the largest constant sufficiently small that computation involving se-

quences of length
√

γM each can be performed completely inside the cache. Solving

the recurrence we obtain I2(n) = O
(
n + n2

B
+ n3

M
+ n3

B
√

M

)
for all n. The algorithm

runs in O
(
n3
)

time and uses O
(
n2
)

space, and I2(n) reduces to O
(

n3

B
√

M

)
when

M = Ω
(
B2
)

(i.e., the cache is tall) and n2 = Ω (M) (i.e., space usage is too large for

the cache). When compared with the cache-complexity of any existing algorithm for

finding the traceback path our algorithm improves it by at least a factor of
√

M , and

improves the space complexity by a factor of n when compared against the standard

dynamic programming solution.

Our algorithm can be easily extended to handle lengths that are not powers

of 2 within the same performance bounds. Thus we have the following theorem.

165

(a)

ïð
ïð ïñ ò ïð ó ïð

(b)

Figure 8.3: (I/O lower bound for DP implementing recurrence 8.2.3) (a) Compu-
tational DAG G implementing recurrence 8.2.3 for d = 2. The nodes colored white
represent input nodes. (b) Product graph L2 of two line graphs (L1), which is a
subDAG of DAG G shown in Figure 8.3(a). Hence, I/O lower bound for executing
L2 also holds for G.

Theorem 8.2.1. Given three sequences X, Y and Z of length n each, any recurrence

relation of the same form as recurrence 8.2.3 with d = 3 can be solved and a traceback

path can be computed in O
(
n3
)

time, O
(
n2
)

space and O
(
n + n2

B
+ n3

M
+ n3

B
√

M

)

cache misses.

If the cache is tall
(
i.e., M = Ω

(
B2
))

and the sequences are long
(
i.e., n =

Ω
(√

M
))

, the cache complexity of the algorithm reduces to O
(

n3

B
√

M

)
.

8.2.2 I/O Lower Bound

In this section we prove that our cache-oblivious algorithms for solving recurrence

8.2.3 for d = 2 and d = 3 are cache-optimal by showing that the following theorem

holds.

Theorem 8.2.2. For any d ≥ 2, any algorithm that implements the computation

defined by recurrence 8.2.3, must perform Ω

(
nd

BM
1

d−1

)
block transfers.

The lower bound in Theorem 8.2.2 follows from the I/O lower bound proved by Hong

& Kung [74] for executing the DAG obtained by taking the product of d directed

line graphs. Let L1 = (V,E) be a directed line graph, where V = { 1, 2, . . . , n }

166

and E = { (i, i + 1) | i ∈ [1, n − 1] }. Nodes in L1 represent operations, and edges

represent data-flow. The node with no incoming edges (i.e., node 1) is the unique

input and the node with no outgoing edges (i.e., node n) is the unique output. For

d ≥ 2, Ld is obtained by taking the product of d such L1’s (see Figure 8.3(b) for an

example with d = 2). Corollary 7.1 in [74] gives a lower bound on the number of

I/O operations Q required to execute Ld.

Corollary 7.1 in [74]. For the product Ld with d ≥ 2, Q = Ω

(
nd

M
1

d−1

)
.

The corollary above assumes that data is transferred to and from the cache in blocks

of size 1. For block size B, Q = Ω

(
nd

BM
1

d−1

)
.

Now let us consider the computation DAG G given by recurrence 8.2.3 (Figure

8.3(a) shows an example for d = 2). It is easy to see that Ld is, in fact, a subDAG

of G, and hence I/O lower bound for executing Ld also holds for G. Therefore,

Theorem 8.2.2 follows from the corollary above under the assumption that data is

transferred in blocks of size B.

8.2.3 Parallel Implementation of the Cache-oblivious Framework

The framework in Section 8.2 has a simple parallel implementation that for general

d performs O
(
nd
)

work, uses O
(
nd−1

)
space, incurs O

(
nd

BM
1

d−1

)
cache-misses and

terminates in O
(

nd

p
+ nlog2 (d+1) log n

)
parallel steps when run on p processors with

private caches. This parallelization is based on the observation that some of the

recursive function calls in the sequential algorithm can actually be executed in par-

allel; for example, in Compute-Boundary-3D (lines 5–6) and in the forward pass

of Compute-Traceback-Path-3D (lines 6–7) quadrants Q1,1,2, Q1,2,1 and Q2,1,1

can be evaluated in parallel followed by the parallel evaluation of quadrants Q1,2,2,

Q2,1,2 and Q2,2,1.

In this section we improve the parallel time complexity of our framework to

O
(

nd

p
+ nd

)
while keeping the other bounds unchanged from above. While the sim-

ple parallel implementation described above is both cache- and processor-oblivious,

the improved algorithms require the knowledge of p. We present two different par-

allel implementations for the 3-dimensional case for distributed and shared caches,

respectively. Implementation for general d is similar.

167

Distributed Caches

We consider a parallel machine with p processors with each processor having a private

cache of size M and block size B.

Par-Compute-Boundary-3D. This function decomposes its cubic computa-

tion space Q (≡ c[1 : n, 1 : n, 1 : n]) into r3 subcubes of size n
r
× n

r
× n

r
each, where

r = Θ
(
min(

√
p, n)

)
. By Qi,j,k (1 ≤ i, j, k ≤ r) we denote the subcube that is i-th

from the left boundary of Q, j-th from the back boundary and k-th from the top

boundary. Then the computation progresses in 3r−2 steps. In step t (1 ≤ t ≤ 3r−2)

output boundaries of all Qi,j,k with i + j + k = t + 2 are computed in parallel using

a modified version of Compute-Boundary-3D which for each cell on the output

boundary also computes the location where the traceback path from that cells hits

the input boundary.

For p ≤ n2, there are Θ
(√

p
)

steps of parallel subcube computations requir-

ing O
((

n√
p

)3)
time each, and thus the entire computation terminates in O

(√
p ×

(
n√
p

)3)
= O

(
n3

p

)
parallel time. For p > n2, there are Θ (n) steps of O (1) time

each and the computation completes in O (n) parallel time. The parallel time com-

plexity of the algorithm is thus O
(

n3

p
+ n

)
. It is straight-forward to show that the

algorithm performs O
(
n3
)

work and uses O
(
n2
)

space.

Since there are r3 calls to Compute-Boundary-3D on sequences of length
n
r

and since each of them is executed on a single processor, total number of cache-

misses incurred by all such calls is r3 ×O
(

n
r

+
(n

r)
2

B
+

(n
r)

3

M
+

(n
r)

3

B
√

M

)
= O

(
r2 · n +

r · n2

B
+ n3

M
+ n3

B
√

M

)
= O

(
p · n +

√
p · n2

B
+ n3

M
+ n3

B
√

M

)
.

Par-Compute-Traceback-Path-3D. This function is similar to the sequen-

tial Compute-Traceback-Path-3D given in Section 8.2.1 except for the following

differences.

Forward Pass: Instead of calling Compute-Boundary-3D described in Section

8.2.1 we call Par-Compute-Boundary-3D described in this section with all p

processors on each of the 8 subcubes (including Q2,2,2) sequentially.

Backward Pass: We know the cell through which the traceback path enters Q2,2,2.

Now using the extra information on traceback paths computed in the forward pass

we can find in constant time where the traceback path hits all other (at most three)

168

subcubes. Therefore, we can extract the fragments of the traceback path from all

(at most four) subcubes by calling Par-Compute-Traceback-Path-3D on each

of them with p
4 processors each.

Let Tp(n) denote the parallel running time of Par-Compute-Traceback-

Path-3D when called with p processors. Let T ′p(n) denote the same for Par-

Compute-Boundary-3D. Then for p ≤ n2,

Tp(n) ≤ 8 · T ′p
(n

2

)
+ +T p

4

(n

2

)
+ Θ

(
n2

p

)

Solving we obtain, Tp(n) = O
(

n3

p

)
. Therefore, for all values of p, Tp(n) =

O
(

n3

p
+ n

)
. The algorithm performs O

(
n3
)

work and uses O
(
n2
)

space. It can

be shown to incur O
(
p · n +

√
p · n2

B
+ n3

M
+ n3

B
√

M

)
cache-misses using a recurrence

similar to that for Compute-Traceback-Path-3D (in Section 8.2.1).

Therefore, we obtain the following theorem.

Theorem 8.2.3. There exists a parallel implementation of Compute-Traceback-

Path-3D that when executed on p ≥ 1 processors, each with a private cache of size

M and block size B, performs O
(
n3
)

work, uses O
(
n2
)

space, incurs O
(
p ·n+

√
p ·

n2

B
+ n3

M
+ n3

B
√

M

)
cache misses and terminates in O

(
n3

p
+ n

)
parallel steps.

Shared Caches

We consider a parallel machine with p processors sharing a cache of size M = Ω (p)

and block size B.

Our algorithm is similar to the sequential algorithm given in Section 8.2.1 un-

til we reach a subproblem involving sequences of length r, where r = Θ
(
min(

√
p, n)

)
.

At that point we solve the subproblem in O (r) parallel steps using the parallel al-

gorithm described in Section 8.2.3. Since there are O
((

n
r

)3)
such subproblems, the

parallel running time of the algorithm is O
((

n
r

)3) × O (r) = O
(

n3

p
+ n

)
. Since

r = Θ
(
min(

√
p, n)

)
= O

(√
M
)
, the cache complexity of this algorithm can be

shown to be O
(
n + n2

B
+ n3

M
+ n3

B
√

M

)
using recurrences similar to those in Section

8.2.1. The algorithm performs O
(
n3
)

work and uses O
(
n2
)

space. Thus we have

the following theorem.

169

Theorem 8.2.4. There exists a parallel implementation of Compute-Traceback-

Path-3D that when executed on p ≥ 1 processors with a shared cache of size M and

block size B, performs O
(
n3
)

work, uses O
(
n2
)

space, terminates in O
(

n3

p
+ n

)

parallel steps, and incurs O
(
n + n2

B
+ n3

M
+ n3

B
√

M

)
cache-misses provided p = O (M).

8.2.4 Applications of the Cache-oblivious Framework

In this section we describe how to apply the cache-oblivious framework described

in Section 8.2 in order to obtain cache-oblivious algorithms for longest common

subsequence, pairwise sequence alignment, median of three sequences, and RNA

secondary structure prediction with simple pseudoknots. As described in Section

8.2.3 once a problem is mapped to the framework it also immediately implies a

parallel cache-oblivious algorithm for the problem.

Longest Common Subsequence (LCS)

We introduced the LCS problem in Section 8.2. The classic iterative dynamic pro-

gramming solution to the LCS problem is based on recurrence 8.2.2 (or 8.2.1) given

in that Section which computes the length of an LCS along with a traceback path in

Θ
(
n2
)

time, O
(
n2
)

space and O
(

n2

B

)
cache misses, where n is the length of each

input sequence. Hirschberg’s algorithm [70] reduces the space complexity to O (n)

while keeping the other bounds unchanged.

Cache-oblivious Implementation. Recurrence 8.2.2 is an instance of the gen-

eral recurrence 8.2.3 for d = 2. Therefore, function Compute-Boundary-2D (see

Figure D.1 in Appendix D) can be used to compute the length of the LCS cache-

obliviously, and Compute-Traceback-Path-2D (see Figure D.2 in Appendix D)

can be used to extract an LCS. Thus the following claim follows from Theorem D.0.1

in Appendix D.

Claim 8.2.1. The longest common subsequence of two sequences of length n each

can be computed cache-obliviously in O
(
n2
)

time, O (n) space and O
(

n2

BM

)
cache

misses.

Cache-efficient parallel implementations of this algorithm can be obtained

using the techniques in Section 8.2.3.

170

Pairwise Global Sequence Alignment with Affine Gap Penalty

Sequence alignment plays a central role in biological sequence comparison, and can

reveal important relationships among organisms. Given two strings X = x1x2 . . . xm

and Y = y1y2 . . . yn over a finite alphabet Σ, an alignment of X and Y is a matching

M of sets {1, 2, . . . ,m} and {1, 2, . . . , n} such that if (i, j), (i′, j′) ∈ M and i < i′

hold then j < j′ must also hold [78]. The i-th letter of X or Y is said to be in a

gap if it does not appear in any pair in M . Given a gap penalty g and a mismatch

cost s(a, b) for each pair a, b ∈ Σ, the basic (global) pairwise sequence alignment

problem asks for a matching Mopt for which (m+n−|Mopt|)× g +
∑

(a,b)∈Mopt
s(a, b)

is minimized [78].

For simplicity of exposition we will assume m = n for the rest of this section.

The formulation of the basic sequence alignment problem favors a large num-

ber of small gaps while real biological processes favor the opposite. The alignment

can be made more realistic by using an affine gap penalty [61, 8] which has two

parameters: a gap introduction cost gi and a gap extension cost ge. A run of k gaps

incurs a total cost of gi + ge × k.

In [61] Gotoh presented an O
(
n2
)

time and O
(
n2
)

space DP algorithm for

solving the global pairwise alignment problem with affine gap costs. The algorithm

incurs O
(

n2

B

)
cache misses. The space complexity of the algorithm can be reduced to

O (n) using Hirschberg’s space-reduction technique [93] or the diagonal checkpoint-

ing technique described in [63]. However, the time and cache complexities remain

unchanged. Gotoh’s algorithm solves the following DP recurrences.

D(i, j) =

{
G(0, j) + ge if i = 0 ∧ j > 0

min {D(i− 1, j), G(i − 1, j) + gi}+ ge if i > 0 ∧ j > 0.
(8.2.4)

I(i, j) =

{
G(i, 0) + ge if i > 0 ∧ j = 0

min {I(i, j − 1), G(i, j − 1) + gi}+ ge if i > 0 ∧ j > 0.
(8.2.5)

G(i, j) =

0 if i = 0 ∧ j = 0

gi + ge × j if i = 0 ∧ j > 0

gi + ge × i if i > 0 ∧ j = 0

min {D(i, j), I(i, j), G(i − 1, j − 1) + s(xi, yj)} if i > 0 ∧ j > 0.

(8.2.6)

171

The optimal alignment cost is min {G(n, n),D(n, n), I(n, n)} and an optimal

alignment can be traced back from the smallest of G(n, n), D(n, n) and I(n, n).

Cache-oblivious Implementation. Recurrences 8.2.4 - 8.2.6 can be viewed as a

single recurrence evaluating a single matrix c[0 : n, 0 : n] with three fields: D,

I and G. When i = 0 or j = 0 each field of c[i, j] depends only on the indices i

and j, and constants gi and ge, and hence each such entry can be computed using a

function similar to h in the general recurrence 8.2.3 in Section 8.2. When both i and

j are positive, c[i, j] depends on xi, yj, the entries in c[i − 1 : i, j − 1 : j] \ c[i, j]

(i.e., in D(i − 1 : i, j − 1 : j) \ D(i, j), I(i − 1 : i, j − 1 : j) \ I(i, j) and

G(i− 1 : i, j − 1 : j) \G(i, j),), and constants gi and ge. Hence, in this case c[i, j]

can be computed using a function similar to function f in recurrence 8.2.3. Thus

recurrences 8.2.4 - 8.2.6 completely match the general recurrence 8.2.3 for d = 2

in Section 8.2. Therefore, function Compute-Boundary-2D (see Figure D.1 in

Appendix D) can be used to compute the optimal alignment cost cache-obliviously,

and function Compute-Traceback-Path-2D (see Figure D.2 in Appendix D) can

be used to extract the optimal alignment. Thus the following claim follows from

Theorem D.0.1 in Appendix D.

Claim 8.2.2. Optimal global alignment of two sequences of length n each can be

performed cache-obliviously using an affine gap cost in O
(
n2
)

time, O (n) space and

O
(

n2

BM

)
cache misses.

The cache-complexity of the our cache-oblivious algorithm is a factor of M

improvement over previous implementations [61, 93].

Efficient parallel implementations of this cache-oblivious algorithm for both

distributed and shared caches can be obtained using techniques described in Section

8.2.3. The resulting algorithms perform O
(
n3
)

work and terminate in O
(

n2

p
+ n

)

parallel steps, where p is the number of processors.

Median of Three Sequences

Given three sequences X, Y and Z, the median problem asks for a sequence W such

that the sum of the pairwise alignment costs of W with X, Y and Z is minimized.

The sequence W is called the median of the three given sequences. In this section

we will assume affine gap costs for the alignments.

172

In [80] Knudsen presented a dynamic programming algorithm for optimal

multiple alignment of any number of sequences related by a tree under affine gap

costs. The input sequences are assumed to be at the leaves of the tree, and the

optimal alignment cost is the minimum sum of pairwise alignment costs of the se-

quence pairs at the ends of each edge of the tree over all possible ancestral sequences

(i.e., the unknown sequences at the internal nodes of the tree). For N sequence of

length n each, the algorithm runs in O
(
16.81NnN

)
time and uses O

(
7.442N nN

)

space. For N = 3, Knudsen’s algorithm solves the median problem in O
(
n3
)

time

and space, and incurs O
(

n3

B

)
cache-misses. An Ukkonen-based algorithm for the

median problem is presented in [101], which performs well especially for sequences

whose (3-way) edit distance δ is small. On average, it requires O
(
n + δ3

)
time and

space [101].

Knudsen’s algorithm [80] for three sequences (say, X = x1x2 . . . xn, Y =

y1y2 . . . yn and Z = z1z2 . . . , zn) is a dynamic program over a three-dimensional

matrix K. Each entry K(i, j, k) is composed of 23 fields. Each field corresponds

to an indel configuration q, which describes how the last characters xi, yj and zk

are matched. A residue configuration defines how the next three characters of the

sequences will be matched. Each configuration is a vector e = (e1, e2, e3, e4), where

ei ∈ {0, 1}, 1 ≤ i ≤ 4. The entry ei, 1 ≤ i ≤ 3 indicates if the aligned character

of sequence i is a gap or a residue, while e4 corresponds to the aligned character

of the median sequence. There are 10 residue configurations out of 16 possible

ones. The recursive step calculates the value of the next entry by applying residue

configurations to each indel configuration. We define ν(e, q) = q′ if applying the

residue configuration e to the indel configuration q gives the indel configuration q′.

The recurrence relation used by Knudsen’s algorithm is:

K(i, j, k)q =

0 if i = j = k = 0 ∧ q = qo

∞ if i = j = k = 0 ∧ q 6= qo

mine,q′:q=ν(e,q′)

{
K(i′, j′, k′)q′ + Ge,q

+M(i′,j′,k′)→(i,j,k)

}
otherwise.

(8.2.7)

where qo is the configuration where all characters match, i′ = i− e1, j′ = j − e2 and

k′ = k−e3, M(i′,j′,k′)=(i,j,k) is the matching cost between characters of the sequences,

and Ge,q is the cost of introducing or extending the gap.

173

The M and G matrices can be pre-computed. Therefore, Knudsen’s algorithm

runs in O
(
n3
)

time and space with O
(

n3

B

)
cache-misses.

Cache-oblivious Algorithm. In order to make recurrence 8.2.7 match the general

recurrence 8.2.3 for d = 3 given in Section 8.2, we shift all characters of X, Y and

Z one position to the right, introduce a dummy character in front of each of those

three sequences, and obtain the following recurrence by modifying recurrence 8.2.7.

c[i, j, k]q =

∞ if i = 0 ∨ j = 0 ∨ k = 0

0 if i = j = k = 1 ∧ q = qo

∞ if i = j = k = 1 ∧ q 6= qo

mine,q′:q=ν(e,q′)

{
c[i′, j′, k′]q′ + Ge,q

+M(i′,j′,k′)→(i,j,k)

}

otherwise.

It is easy to see that K(i, j, k)q = c[i + 1, j + 1, k + 1]q for 0 ≤ i, j, k ≤ n and

any q. If i = 0 or j = 0 or k = 0 then c[i, j, k]q can be evaluated using a function

h(〈 i, j, k 〉) = ∞ as in the general recurrence 8.2.3. Otherwise the value of

c[i, j, k]q depends on the values of i, j, and k, values in some constant size arrays (G

and M), and on the cells to its left, back and top. Hence, in this case, c[i, j, k]q can be

evaluated using a function similar to f in recurrence 8.2.3 for d = 3. Therefore, the

above recurrence matches the 3-dimensional version of the general recurrence 8.2.3,

and function Compute-Boundary-3D (see Figure 8.1) can be used to compute the

matrix c and function Compute-Traceback-Path-3D (see Figure 8.2) to retrieve

an optimal alignment. Hence we claim the following using Theorem 8.2.1.

Claim 8.2.3. Optimal alignment of three sequences of length n each can be per-

formed and the median sequence under the optimal alignment can be computed cache-

obliviously using an affine gap cost in O
(
n3
)

time, O
(
n2
)

space and O
(

n3

B
√

M

)
cache

misses.

Using the techniques in Section 8.2.3 we obtain parallel implementations of

this cache-oblivious algorithm for both distributed and shared caches that on a p-

processor machine perform O
(
n2
)

work and terminate in O
(

n3

p
+ n

)
parallel steps.

174

RNA Secondary Structure Prediction with Pseudoknots

A single-stranded RNA can be viewed as a string X = x1x2 . . . xn over the alphabet

{A,U,G,C} of bases. An RNA strand tends to give rise to interesting structures

by forming complementary base pairs with itself. An RNA secondary structure (w/o

pseudoknots) is a planar graph with the nesting condition: if {xi, xj} and {xk, xl}
form base pairs and i < j, k < l and i < k hold then either i < k < l < j or

i < j < k < l [129, 106, 6]. An RNA secondary structure with pseudoknots is a

structure where this nesting condition is violated [106, 6].

In [6] Akutsu presented a DP to compute RNA secondary structures with

maximum number of base pairs in the presence of simple pseudoknots (see [6] for

definition) which runs in O
(
n4
)

time, O
(
n3
)

space and O
(

n4

B

)
cache-misses. In

this Section we improve its space and cache complexities to O
(
n2
)

and O
(

n4

B
√

M

)
,

respectively, without changing its time complexity.

We list below the DP recurrences used in Akutsu’s algorithm [6]. For every

pair (i0, k0) with 1 ≤ i0 ≤ k0 − 2 ≤ n − 2, recurrences 8.2.8 - 8.2.12 compute the

maximum number of base pairs in a pseudoknot with endpoints at the i0-th and

k0-th residues. The value computed by recurrence 8.2.12, i.e., Spseudo(i0, k0), is the

desired value. In recurrences 8.2.8 and 8.2.9, v(x, y) = 1 if (x, y) form a base pair,

otherwise v(x, y) = −∞. All uninitialized entries are assumed to have value 0.

SL(i, j, k) =

{
v(ai, aj) if i0 ≤ i < j ≥ k,

v(ai, aj) + SMAX(i− 1, j + 1, k) if i0 ≤ i < j < k.
(8.2.8)

SR(i, j, k) =

{
v(aj , ak) if i0 = i + 1 < j = k − 1,

v(aj , ak) + SMAX(i, j + 1, k − 1) if i0 ≤ i < j < k.
(8.2.9)

SM (i, j, k) = max

SL(i− 1, j, k), SM (i− 1, j, k),

SMAX(i, j + 1, k),

SM (i, j, k − 1), SR(i, j, k − 1)

if i0 ≤ i < j < k. (8.2.10)

SMAX(i, j, k) = max { SL(i, j, k), SM (i, j, k), SR(i, j, k) } (8.2.11)

175

Spseudo(i0, k0) = max
i0≤i<j<k≤k0

{ SMAX(i, j, k) } (8.2.12)

After computing all entries of SMAX for a fixed i0, all Spseudo(i0, k0) values

for k0 ≥ i0 + 2 can be computed using equation 8.2.12 in O
(
n3
)

time and space and

O
(

n3

B

)
cache-misses. Since there are n − 2 possible values for i0, all Spseudo(i0, k0)

can be computed in O
(
n4
)

time, O
(
n3
)

space and O
(

n4

B

)
cache-misses.

Finally, the following recurrence computes the optimal score S(1, n) for the

entire structure in O
(
n3
)

time, O
(
n2
)

space and O
(

n3

B

)
cache-misses [6].

S(i, j) = max

{
Spseudo(i, j), S(i + 1, j − 1) + v(ai, aj),

maxi<k≤j {S(i, k − 1), S(k, j)}

}
(8.2.13)

Recurrence 8.2.13 can be evaluated in onlyO
(

n3

B
√

M

)
cache-misses andO

(
n2
)

space without changing the other bounds using our GEP framework in Chapter 6.

Space Reduction. We now describe our space reduction result. Observe that eval-

uating recurrence 8.2.12 requires retaining all O
(
n3
)

values computed by recurrence

8.2.11. We avoid using this extra space by computing all required Spseudo(i0, k0) val-

ues on the fly while evaluating recurrence 8.2.11. We achieve this goal by introducing

recurrence 8.2.14, replacing recurrence 8.2.12 with recurrence 8.2.15 for S′pseudo, and

using S′pseudo instead of Spseudo for evaluating recurrence 8.2.13. All uninitialized

entries in recurrences 8.2.14 and 8.2.15 are assumed to have value −∞.

SP (i, j, k) =

{
max { SMAX(i, j, k), SP (i, j + 1, k) } if i0 ≤ i < j < k,

SP (i, j + 1, k) if i0 ≤ i ≥ j < k.
(8.2.14)

S′pseudo(i0, k0) = max

{
S′pseudo(i0, k0 − 1),

maxi0≤i<k0−1 {SP (i, i0 + 1, k0)}

}
if k0 ≥ i0 + 2. (8.2.15)

We claim that recurrence 8.2.15 computes exactly the same values as recur-

rence 8.2.12.

Claim 8.2.4. For 1 ≤ i0 ≤ k0 − 2 ≤ n− 2, S′pseudo(i0, k0) = Spseudo(i0, k0).

176

Proof. (sketch) We obtain the following by simplifying recurrence 8.2.14.

SP (i, j, k) =

{
maxmax {i+1,j}≤j′<k { SMAX(i, j′, k) } if i0 ≤ i ∧ j < k,

−∞ otherwise.

Therefore, maxi0≤i<k0−1 {SP (i, i0 + 1, k0)} = maxi0≤i<j<k0 { SMAX(i, j, k0) }.
We can now evaluate S′pseudo(i0, k0) by induction on k0. For k0 ≥ i0 + 2,

S′pseudo(i0, k0) = max

{
S′pseudo(i0, k0 − 1), max

i0≤i<k0−1
{SP (i, i0 + 1, k0)}

}

= max

{
max

i0≤i<j<k≤k0−1
{SMAX(i, j, k)}, max

i0≤i<j<k0

{SMAX(i, j, k0)}
}

= max
i0≤i<j<k≤k0

{SMAX(i, j, k)} = Spseudo(i0, k0)

�

Now observe that in order to evaluate recurrence 8.2.15 we only need the

values SP (i, j, k) for j = i0 + 1, and each entry (i, j, k) in recurrences 8.2.8 - 8.2.11

and 8.2.14 depends only on entries (·, j, ·) and (·, j +1, ·). Therefore, we will evaluate

the recurrences for j = n first, then for j = n− 1, and continue down to j = i0 + 1.

Observe that in order to evaluate for j = j′ we only need to retain the O
(
n2
)

entries

computed for j = j′ + 1. Thus for a fixed i0 all SP (i, i0 + 1, k) and consequently

all relevant S′pseudo(i0, k0) can be computed using only O
(
n2
)

space, and the same

space can be reused for all n values of i0.

The time and cache complexities of the algorithm remain unchanged from

[6].

Cache-oblivious Algorithm. The evaluation of recurrences 8.2.8 - 8.2.11 and

8.2.14 can be viewed as evaluating a single n × n × n matrix c with five fields:

SL, SR, SM , SMAX and SP . If we replace all j with n − j + 1 in the resulting

recurrence it conforms to recurrence 8.2.3 for d = 3. Therefore, for any fixed i0 we

can use the Compute-Boundary-3D function in Figure 8.1 to compute all entries

SP (i, i0 +1, k) and consequently all relevant S′pseudo(i0, k0) values. All S′pseudo(i0, k0)

values can be computed by n applications (i.e., once for each i0) of Compute-

Boundary-3D (see Figure 8.1).

For any given pair (i0, k0) the pseudoknot with the optimal score can be traced

177

back cache-obliviously by calling Compute-Traceback-Path-3D (see Figure 8.2).

Thus from Theorem 8.2.1 we obtain the following claim.

Claim 8.2.5. Given an RNA sequence of length n, a secondary structure that has the

maximum number of base pairs in the presence of simple pseudoknots can be computed

cache-obliviously in O
(
n4
)

time, O
(
n2
)

space and O
(

n4

B
√

M

)
cache misses.

Parallel Cache-oblivious Implementation. As mentioned before, all S′pseudo(i0, k0)

values can be computed by n applications of Compute-Boundary-3D, and we ob-

serve that all these n function calls can be made in parallel. We know from Section

8.2.3 that Par-Compute-Boundary-3D executes O (n) parallel steps when called

with an unbounded number of processors on an RNA sequence of length n. Since

Compute-Boundary-3D performs O
(
n3
)

work and used O
(
n2
)

space, n parallel

applications of this function will perform O
(
n4
)

work, use O
(
n3
)

space and execute

O
(

n4

p
+ n

)
parallel steps when executed with p processors. After computing all

S′pseudo(i0, k0) values a pseudoknot with the optimal score is determined using recur-

rence 8.2.13 which can be solved in O
(
n3
)

work, O
(
n2
)

pace and O
(

n3

p
+ n log2 n

)

parallel steps using our cache-oblivious parallel GEP framework [35]. Finally, the

optimal pseudoknot thus determined can be traced back in a single call of Par-

Compute-Traceback-Path-3D which performs O
(
n3
)

work, uses O
(
n2
)

space

and executes O
(

n3

p
+ n

)
parallel steps when called with p processors. Therefore,

we can claim the following.

Claim 8.2.6. Given an RNA sequence of length n and p processors, a secondary

structure that has the maximum number of base pairs in the presence of simple

pseudoknots can be computed cache-obliviously in O
(
n4
)

work, O
(
n3
)

space and

O
(

n4

p
+ n log2 n

)
parallel steps while incurring only O

(
n4

B
√

M

)
cache-misses on both

distributed and shared caches.

Extensions. In [6] the basic dynamic program for simple pseudoknots has been

extended to handle energy functions based on adjacent base pairs within the same

time and space bounds. Our cache-oblivious technique as described above can be

adapted to solve this extension within the same improved bounds as for the basic

DP. An O
(
n4−δ

)
time approximation algorithm for the basic DP has also been

proposed in [6], and our techniques can be used to improve the space (sequential)

178

and cache complexity of the algorithm to O
(
n2
)

(from O
(
n3
)
) and O

(
n4−δ

B
√

M

)
(from

O
(

n4−δ

B

)
), respectively.

8.3 Cache-oblivious Dynamic Programs with Non-local

Dependencies

In this section we consider two dynamic programming problems, namely the gap

problem and the basic RNA secondary structure prediction problem, which unlike the

problems in the previous section, compute the value of each cell in the DP table

from a non-constant number of cells, not all of which are adjacent to the cell being

computed.

8.3.1 The Gap Problem

The gap problem [56, 57, 129] is a generalization of the edit distance problem that

arises in molecular biology, geology, and speech recognition. When transforming a

string X = x1x2 . . . xm into another string Y = y1y2 . . . yn, a sequence of consecutive

deletes corresponds to a gap in X, and a sequence of consecutive inserts corresponds

to a gap in Y . In many applications the cost of such a gap is not necessarily equal

to the sum of the costs of each individual deletion (or insertion) in that gap. In

order to handle this general case two new cost functions w and w′ are defined, where

w(p, q) (0 ≤ p < q ≤ m) is the cost of deleting xp+1 . . . xq from X, and w′(p, q)

(0 ≤ p < q ≤ n) is the cost of inserting yp+1 . . . yq into X. The substitution function

S(xi, yj) is the same as that of the standard edit distance problem.

Let D[i, j] denote the minimum cost of transforming Xi = x1x2 . . . xi into

Yj = y1y2 . . . yj (where 0 ≤ i ≤ m and 0 ≤ j ≤ n) under this general setting. Then

D[i, j] =

0 if i = j = 0,

w(0, j) if i = 0, 1 ≤ j ≤ n,

w′(0, i) if j = 0, 1 ≤ i ≤ m,

min

{
D[i− 1, j − 1] + S(xi, yj),

E[i, j], F [i, j]

}

if i, j > 0;

(8.3.16)

179

Function 8.3.1. Recursive-Gap(C)

[We assume that C is a square submatrix of D, and the top-left cell of C corresponds to D[i, j]
for some i, j ∈ [1, n]. We also assume that the dimension of C is a power of 2. This function
recursively computes the entries of C according to recurrence 8.3.16.]

1. if C is a 1× 1 matrix then

2. D[i, j]← min (D[i, j], D[i− 1, j − 1] + S(xi, yj))

3. else

4. Recursive-Gap(C11) {compute top-left quadrant}
5. Apply-E(C12, C11), Recursive-Gap(C12) {compute top-right quadrant}
6. Apply-F(C21, C11), Recursive-Gap(C21) {compute bottom-left quadrant}
7. Apply-E(C22, C21), Apply-F(C22, C12)

Recursive-Gap(C22) {compute bottom-right quadrant}

Recursive-Gap Ends

Function 8.3.2. Apply-E(A, B)

[A and B are two non-overlapping 2t × 2t sub-
matrices of D, where t is a nonnegative integer.
A[1, 1] corresponds to D[i, j], and B[1, 1] cor-
responds to D[i, q] for some 1 ≤ i ≤ n and
1 ≤ q < j ≤ n. This function updates the en-
tries of A using the entries of B according to
the equation defining E[i, j].]

1. if t = 0 then

2. D[i, j]← min

„
D[i, j],

D[i, q] + w(q, j)

«

3. else

4. Apply-E(A11, B11)

Apply-E(A11, B12)

5. Apply-E(A12, B11)

Apply-E(A12, B12)

6. Apply-E(A21, B21)

Apply-E(A21, B22)

7. Apply-E(A22, B21)

Apply-E(A22, B22)

Apply-E Ends

Function 8.3.3. Apply-F(A, B)

[A and B are two non-overlapping 2t × 2t sub-
matrices of D, where t is a nonnegative integer.
A[1, 1] corresponds to D[i, j], and B[1, 1] cor-
responds to D[p, j] for some 1 ≤ p < i ≤ n and
1 ≤ j ≤ n. This function updates the entries
of A using the entries of B according to the
equation defining F [i, j].]

1. if t = 0 then

2. D[i, j]← min

„
D[i, j],

D[p, j] + w′(p, i)

«

3. else

4. Apply-F(A11, B11)

Apply-F(A11, B21)

5. Apply-F(A12, B12)

Apply-F(A12, B22)

6. Apply-F(A21, B11)

Apply-F(A21, B21)

7. Apply-F(A22, B12)

Apply-F(A22, B22)

Apply-F Ends

Figure 8.4: Cache-oblivious algorithm for the gap problem. The initial function call
is Recursive-Gap(D) with all D[i, j] for i, j ∈ [1, n] initialized to +∞ and the
remaining entries initialized according to recurrence 8.3.16.

180

where E[i, j] = min
0≤q<j

{ D[i, q] + w(q, j) }, (8.3.17)

and F [i, j] = min
0≤p<i

{
D[p, j] + w′(p, i)

}
. (8.3.18)

Assuming m = n, this problem can be solved in O
(
n3
)

time using O
(
n2
)

space [56];

this algorithm incurs O
(

n3

B

)
cache-misses.

Cache-oblivious Algorithm

We observe from recurrence 8.3.16 that for 1 ≤ i, j ≤ n each D[i, j] depends only

on the entries in D[0 : i, 0 : j] \ D[i, j]. The following cache-oblivious recursive

decomposition scheme of the computation space ensures that all entries in D[0 :

i, 0 : j] \D[i, j] are computed before computing D[i, j].

We assume for simplicity that m = n = 2t for some integer t ≥ 0. We first

initialize all D[i, j] for i, j ∈ [1, n] to +∞ while the remaining entries are initialized

according to recurrence 8.3.16. Then we call Recursive-Gap with C ≡ D[1 :

n, 1 : n] as the input matrix. If C is a 1 × 1 matrix, we can compute this entry

directly using recurrence 8.3.16 (in line 2). Otherwise, we decompose C into four

quadrants: top-left (C11), top-right (C12), bottom-left (C21) and bottom-right (C22).

We observe that entries in C11 do not depend on the entries in any other quadrant,

and hence can be computed recursively by calling Recursive-Gap on it (see line

4). The entries in C11 contribute in computing the entries in C12 through equation

8.3.17, and the entries in C21 through equation 8.3.18. We first recursively update

C12 using equation 8.3.17 with the entries in C11 (by calling Apply-E in line 5).

After these updates C12 no longer depends on the entries in any other quadrant, and

is solved recursively by calling Recursive-Gap (see line 5). In line 6, we first call a

recursive function Apply-F which updates the entries in C21 using equation 8.3.18

with the entries in C11, and then complete the update of C21 by calling Recursive-

Gap. The entries in C22 depend on C21 through equation 8.3.17, and on C12 through

equation 8.3.18. Therefore, we first update C22 by calling Apply-E with C21 and

Apply-F with C12, and finally call Recursive-Gap on C22 to complete updating

the quadrant.

181

Cache Complexity. Let I(n) and I ′(n) be the cache complexities of Recursive-

Gap and Apply-E/Apply-F, respectively, on an input of size n× n. Then

I ′(n) =

{
O
(
n + n2

B

)
if n2 ≤ γ′M ,

8I ′
(

n
2

)
otherwise;

I(n) =

{
O
(
n + n2

B

)
if n2 ≤ γM ,

4I
(

n
2

)
+ 4I ′

(
n
2

)
otherwise;

where, γ′ and γ are suitable constants. Solving the recurrences we obtain I ′(n) =

O
(
n + n2

B
+ n3

M
+ n3

B
√

M

)
and I(n) = O

(
n + n2

B
+ n3

M
+ n3

B
√

M

)
for all values of n.

All three functions run in O
(
n3
)

time and use O
(
n2
)

space. Hence, we have

the following theorem.

Theorem 8.3.1. The generalized gap problem (i.e., recurrence 8.3.16) on a pair of

sequences of length n each, can be solved cache-obliviously in O
(
n3
)

time, O
(
n2
)

space and O
(
n + n2

B
+ n3

M
+ n3

B
√

M

)
cache misses.

Parallel Cache-oblivious Implementation

We observe that steps 5 and 6 of Recursive-Gap can be executed in parallel while

the first function calls in steps 4 – 7 of both Apply-E and Apply-F can also be

executed in parallel followed by the parallel execution of the second function calls in

those four steps. Let Tp(n,m) denote the parallel running time of Recursive-Gap

when called with p processors, but recursive calls on inputs of size m×m (1 ≤ m ≤ n)

are executed entirely on a single processor. Let T ′p(n,m) denote the same for Apply-

E/Apply-F. Then clearly, for all p ≥ 1, Tp(n, n) = O
(
n3
)

and T ′p(n, n) = O
(
n3
)
,

and also for all m ∈ [1, n], T1(n,m) = O
(
n3
)

and T ′1(n,m) = O
(
n3
)
. We also have,

T ′∞(n,m) ≤ 2 ·T ′∞
(n

2
,m
)

+ 8 and T∞(n,m) ≤ 3 ·T∞
(n

2
,m
)

+ 3 ·T ′∞
(n

2
,m
)

+ 8.

Solving the recurrences we obtain T ′∞(n) = O
(
nm2

)
and T∞(n) = O

((
n
m

)log2 3 ·m3
)
.

Therefore, using “Brent’s theorem” [20],

Tp(n,m) = O
(

T1(n,m)

p
+ T∞(n,m)

)
= O

(
n3

p
+
(n

m

)log2 3
·m3

)
.

Putting m = 1, we get Tp(n, 1) = O
(

n3

p
+ nlog2 3

)
.

182

We first consider cache-efficient execution of this parallel algorithm on dis-

tributed caches, where each processor has its own private cache of size M , and then

on a shared cache, where all processors share the same cache of size M .

Distributed Caches. For good performance on distributed caches, we want m as

large as possible (to reduce data transfer between caches), but at the same time

do not want Tp(n,m) to degrade too much. The value of m that keeps Tp(n,m)

at O
(

n3

p

)
can be calculated by equating n3

p
and

(
n
m

)log2 3 · m3, which gives m =

n/p
1

log2
8
3 . Let α = 1

log2
8
3

. There are
(

n
m

)3
recursive calls on inputs of size m×m each

incurring O
(
m + m2

B
+ m3

B
√

M

)
cache-misses. Thus the total number of cache-misses

incurred is
(

n
m

)3×O
(
m + m2

B
+ m3

M
+ m3

B
√

M

)
= O

(
p2α · n + pα · n2

B
+ n3

M
+ n3

B
√

M

)
.

Therefore, we have the following theorem.

Theorem 8.3.2. There exists a parallel implementation of Recursive-Gap that

when executed on p ≥ 1 processors, each with a private cache of size M and block

size B, terminates in O
(

n3

p
+ nlog2 3

)
parallel steps and incurs O

(
p2α ·n+ pα · n2

B
+

n3

M
+ n3

B
√

M

)
cache misses, where α = 1

log2
8
3

≈ 0.7067.

Shared Caches. For good performance on shared caches we want the processors

share as much data as possible. We achieve this goal as follows.

Let G denote the computational DAG of Recursive-Gap, and let C (G) be

the DAG obtained by contracting each subDAG of G corresponding to a recursive

function call (Recursive-Gap or Apply-E or Apply-F) on inputs of size m ×m

to a supernode. For any supernode v ∈ C (G), the subDAG of G corresponding to v

is denoted by S (v).

Now we use the following hybrid scheduling scheme. The nodes of C (G) are

executed under 1df-schedule [18]. However, for each supernode v, the nodes in the

subDAG S (v) are executed under pdf-schedule [18] with all p processors before

moving to the next supernode.

The parallel execution time of Recursive-Gap under the scheduling scheme

described above can be computed as follows. Let NG(n,m), NE(n,m) and NF (n,m)

denote the number of recursive calls to Recursive-Gap, Apply-E and Apply-

F, respectively, on inputs of size m × m when the initial call to Recursive-Gap

was on inputs of size n × n. It is not difficult to see that NG(n,m) =
(

n
m

)2

183

and NE(n,m) = NF (n,m) = 1
2 ·
((

n
m

)3 −
(

n
m

)2)
. The parallel running time of

Recursive-Gap is then NG(n,m)× Tp(m, 1) + NE(n,m)× T ′p(m, 1) + NF (n,m)×
T ′p(m, 1) = O

(
n3

p
+ n3

m2 + n2

m
log2

4
3

)
.

A 1df-schedule schedule on the original DAG G incurs I(n) = O
(
n+ n2

B
+ n3

M
+

n3

B
√

M

)
cache-misses. Both the 1df-schedule and the hybrid scheduling scheme exe-

cute the supernodes of G in the same order though the order of execution of the nodes

withing any given supernode may differ. Since the subproblem corresponding to any

supernode uses Θ
(
m2
)

space, the hybrid schedule will incur no more cache-misses

than the 1df-schedule provided we have Θ
(
m2
)

additional cache space. Therefore,

if we set aside Θ
(
m2
)

locations from the cache and execute Recursive-Gap under

the hybrid scheduling scheme on a reduced cache of size M − Θ
(
m2
)
, it will incur

O (I(n)) cache-misses provided M −Θ
(
m2
)

= Θ (M).

Therefore, setting m =
√

p we have the following theorem.

Theorem 8.3.3. There exists a parallel implementation of Recursive-Gap that

when executed on p ≥ 1 processors with a shared cache of size M and block size B,

terminates in O
(

n3

p
+ n2

p
log2

2√
3

+ nlog2 3

)
parallel steps and incurs O

(
n + n2

B
+ n3

M
+

n3

B
√

M

)
cache misses, provided p = O (M).

The Least Weight Subsequence Problem

The least weight subsequence problem [71, 57] which is defined by the following

dynamic programming recurrence, can be viewed as a one dimensional version of the

gap problem:

D[j] =

{
0 if j = 0,

min0≤i<j (D[i] + w(i, j)) otherwise;
(8.3.19)

where w is a real-valued function. This problem can be solved cache-obliviously

in O
(
n2
)

time, using O (n) space and incurring O
(

n2

BM

)
cache misses using a one

dimensional version of Recursive-Gap, provided either w(i, j) is a function of j−i,

or it can be generated on the fly in constant time without incurring any additional

cache misses.

This problem arises in optimum paragraph formation and in finding a mini-

mum height B-tree [57].

184

8.3.2 RNA Secondary Structure Prediction without Pseudoknots

As mentioned in Section 8.2.4, an RNA string X = x1x2 . . . xn forms complementary

base pairs with itself, and often gives rise to interesting shapes with the following

nesting condition: if {xi, xj} and {xk, xl} form base pairs and i < j, k < l and i < k

hold then either i < k < l < j or i < j < k < l holds [129, 106, 6]. These shapes

are known as RNA secondary structures (w/o pseudoknots). Given an RNA string,

the basic RNA secondary structure prediction problem asks for an RNA secondary

structure (w/o pseudoknots) with the maximum number of base pairs. Let R[i, j]

denote the maximum number of base pairs in a secondary structure formed by the

RNA substrand xixi+1 . . . xj . Then the following recurrence can be used to compute

R[i, j] for all i, j ∈ [1, n] [78].

R[i, j] =

{
0 if i ≥ j − 4,

max { R[i, j − 1], P [i, j] } otherwise;
(8.3.20)

where P [i, j] = max
i < k < j − 1,

{xk, xj} is a base pair

{
1 + R[i, k − 1]

+ R[k + 1, j − 1]

}
(8.3.21)

The above recurrence has the same structure as the recurrence for the parenthesis

problem [57]. In Section 6.7.1 of Chapter 6 we show how to transform the dynamic

program for the parenthesis problem into a sequence of dynamic programs in the

Gaussian Elimination Paradigm (GEP), and thus solve the problem in O
(
n3
)

time

and O
(

n3

B
√

M

)
cache misses. The resulting algorithm uses O

(
n1.75

)
space in addition

to the O
(
n2
)

space for the input matrix. Therefore, we have the following claim.

Claim 8.3.1. Given an RNA sequence of length n, a secondary structure (without

pseudoknots) that has the maximum number of base pairs can be computed cache-

obliviously in O
(
n3
)

time, O
(
n2
)

space and O
(

n3

B
√

M

)
cache misses.

8.4 Conclusion

In this chapter we presented a general cache-oblivious framework for a class of widely

encountered dynamic programming problems with local dependencies, and applied

185

it to obtain efficient cache-oblivious algorithms for several important string problems

in bioinformatics, namely the longest common subsequence problem, global pairwise

sequence alignment and median (both with affine gap costs), and RNA secondary

structure prediction with simple pseudoknots. We show that our algorithms are

theoretically more cache-efficient than the previous algorithms for these problems.

Our algorithms can be parallelized with very little effort and they show good par-

allel performance in practice. Our framework can also be applied to several other

dynamic programming problems in bioinformatics including local alignment, gener-

alized global alignment with intermittent similarities, multiple sequence alignment

under several scoring functions such as ‘sum-of-pairs’ objective function and RNA

secondary structure prediction with simple pseudoknots using energy functions based

on adjacent base pairs.

We also presented sequential and parallel cache-oblivious algorithms for pair-

wise sequence alignment with general gap costs, and a sequential cache-oblivious

algorithm for solving the basic RNA secondary structure (w/o pseudoknots) predic-

tion problem.

186

Chapter 9

Experimental Results:

Cache-oblivious DP for

Bioinformatics

It doesn’t matter how beautiful your theory is,

it doesn’t matter how smart you are.

If it does not agree with experiment, it’s wrong.

(Richard Feynman)

In this chapter we present experimental results on our cache-oblivious algorithms for pairwise

sequence alignment, the median problem and RNA secondary structure prediction with

simple pseudoknots presented in Chapter 8.

All our cache-oblivious code run faster on current desktop machines than the best

previous implementations for these problems. Our empirical results also show good perfor-

mance for the parallel implementations of our algorithms for the first two problems.

9.1 Introduction

In Chapter 8 we presented cache-oblivious sequential and parallel algorithms for sev-

eral important dynamic programming problems in bioinformatics, and proved theo-

retical bounds on their performance. In this chapter we present experimental results

on three of our cache-oblivious algorithms presented in Chapter 8, namely, pairwise

187

sequence alignment, the median problem and RNA secondary structure prediction

with simple pseudoknots. Our experimental results show that all our algorithms run

faster on current desktop machines than the best previous algorithm for the prob-

lem. For the first two problems we compare our code to publicly available software

written by others, and for the last problem our comparison is to our implementation

of the best previous algorithm (due to Akutsu [6]). We also include empirical results

showing good performance for the parallel implementations of our algorithms for the

first two problems.

The experiments on the median problem were performed in collaboration

with undergraduate student Hai-Son Le [87].

9.1.1 Organization of the Chapter

In Section 9.2 we describe our experimental setup, and in Section 9.3 we present our

experimental results. In Sections 9.3.1, 9.3.2 and 9.3.3 we describe our experimental

results on pairwise sequence alignment, the median problem and RNA secondary

structure prediction with simple pseudoknots, respectively. Finally, in Section 9.4

we present some general remarks on our findings.

9.2 Experimental Setup

Machine Processors Speed L1 Cache L2 Cache RAM

Intel P4 Xeon 2 3.06 GHz
8 KB

(4-way, B = 64 B)
512 KB

(8-way, B = 64 B)
4 GB

AMD Opteron 250 2 2.4 GHz
64 KB

(2-way, B = 64 B)
1 MB

(8-way, B = 64 B)
4 GB

AMD Opteron 850
8

(4 dual-core)
2.2 GHz

64 KB
(2-way, B = 64 B)

1 MB
(8-way, B = 64 B)

32 GB

Table 9.1: Machines used for experiments.

We ran our experiments on the machines listed in Table 9.1. All machines ran

Ubuntu Linux 5.10. All our algorithms were implemented in C++ (compiled with

g++ 3.3.4), while some software packages we used for comparison were written in C

(compiled with gcc 3.3.4). Optimization parameter -O3 was used in all cases. Each

machine was exclusively used for experiments (i.e., no other programs were running

on them). The Cachegrind profiler [112] was used for simulating cache effects.

188

Algorithm Comments Time Space Cache Misses

PA-CO
our cache-oblivious algorithm

(see Section 8.2.4 of Chapter 8)
O

`
n2

´
O (n) O

“
n2

BM

”

PA-FASTA
linear-space implementation of Gotoh’s
algorithm [93] available in fasta2 [96]

O
`
n2

´
O (n) O

“
n2

B

”

Table 9.2: Pairwise sequence alignment algorithms used in our experiments.

9.3 Experimental Results

We describe our experimental results below.

9.3.1 Pairwise Global Sequence Alignment with Affine Gap Penalty

We performed experimental evaluation of the implementations listed in Table 9.2:

PA-CO is our implementation of our linear-space cache-oblivious algorithm given in

Section 8.2.4 of Chapter 8, and PA-FASTA is the implementation of the linear-space

version of Gotoh’s algorithm [93] available in the fasta2 package [96].

In order to reduce the overhead of recursion in PA-CO, instead of stopping

the recursion at r = 1 in Compute-Boundary-2D and Compute-Traceback-

Path-2D, we stopped at r = 256, and solved the subproblem using the traditional

iterative method.

Sequential Performance. We performed our experiments on AMD Opteron 250

and Intel P4 Xeon. On both machines only one processor was used.

In most cases PA-FASTA ran about 20%-30% slower than PA-CO on AMD

Opteron and up to 10% slower on Intel Xeon. We summarize our results below.

Random Sequences. We ran both implementations on randomly generated equal-

length string-pairs over { A,C,G, T } both on AMD Opteron 250 (see Figure 9.1(a))

and Intel P4 Xeon (see Figure 9.1(b)). We varied string lengths from 1 K to 512 K.

In our experiments, PA-FASTA always ran slower than PA-CO on AMD Opteron

(around 27% slower for sequences of length 512 K) and generally the relative perfor-

mance of PA-CO improved over PA-FASTA as the length of the sequences increased.

The trend was almost similar on Intel Xeon except that the improvement of PA-CO

over PA-FASTA was more modest. We also obtained some anomalous results for

n ≈ 10, 000 which we believe is due to architectural affects.

Real-World Sequences. We ran PA-CO and PA-FASTA on CFTR DNA sequences of

189

Running Times of Pairwise Sequence Algorithms (Normalized w.r.t. Cache-Oblivious Algorithm)

on Random Sequencesôõö÷õøùõ úûüýþ
(a) Runtimes on AMD Opteron 250

ÿ��ÿÿ���ÿ��ÿÿ�����ÿÿ��ÿ����ÿ�������ÿ�������ÿ
� � � � � � � � �	 � �� � 	� � ��� � ��	 � ��� �
������ ������ � � ������������ �� ��!"�#�$%&�&� &'()*+, -&

&
(b) Runtimes on Intel P4 Xeon

./01/.1/21/31/4
1/02/.2/22/3

1 5 2 5 3 5 0 5 14 5 62 5 43 5 120 5 274 5 712 589:;9<=9 >9<?@A B C DEFGGHGIJHKL MGNEKOPHQLRSTETJ TUVWXYZ T
Figure 9.1: Comparison of running times of our cache-oblivious pairwise alignment al-
gorithm (PA-CO) with the linear-space implementation of Gotoh’s algorithm available in
FASTA [96] (PA-FASTA). All running times are normalized w.r.t. that of PA-CO. Figure
(a) plots running times on AMD Opteron 250 and Figure (b) on Intel P4 Xeon. Each data
point is the average of 3 independent runs on randomly generated strings over { A, T, G, C }.

lengths between 1.3 million to 1.8 million [119] on AMD Opteron, and PA-FASTA

ran 20%-30% slower than PA-CO on these sequences (see Table 9.3). Though proper

alignment of these genomic sequences require more sophisticated cost functions, run-

ning times of PA-CO and PA-FASTA on these sequences give us some idea on the

relative performance of these implementations on very long sequences.

Cache Performance. We measured the number of L1 and L2 cache-misses incurred

by both PA-FASTA and PA-CO on random sequences (see Figure 9.2). Though PA-

FASTA causes fewer cache-misses than PA-CO when the input fits into the cache, it

incurs significantly more misses than PA-CO as the input size grows beyond cache

size. On AMD Opteron PA-FASTA incurs up to 300 times more L1 misses and

2500 times more L2 misses than PA-CO, while on Intel Xeon the figures are 10

190

Sequence pairs with lengths

(106)

human/baboon (1.80/1.51)

human/chimp (1.80/1.32)

baboon/chimp (1.51/1.32)

human/rat (1.80/1.50)

rat/mouse (1.50/1.49)

Running times of pairwise alignment algorithms

on CFTR DNA Sequences [119] (on AMD Opteron)

PA-FASTA (t1) PA-CO (t2) ratio (t1
t2

)

20h 34m 17h 23m 1.18

19h 51m 15h 25m 1.29

16h 43m 12h 43m 1.31

24h 1m 18h 16m 1.31

16h 49m 13h 55m 1.21

Table 9.3: Comparison of running times (on AMD Opteron 250) of our cache-
oblivious pairwise alignment algorithm (PA-CO in col 3) with the linear-space
implementation of Gotoh’s algorithm available in FASTA [96] (PA-FASTA in col
2) on CFTR DNA sequences [119]. Column 4 gives the ratio of the running time
of PA-FASTA to that of PA-CO. Each number in columns 2 and 3 is the time for
a single run.

Ratio of Cache Misses Incurred by PA-FASTA to that Incurred by PA-CO for Random Sequences[\]^_`a [b]^_`a
(a) AMD Opteron 250

cdcecdecedccecdcceccdccefcccdccecfcccdcc
e g h g i g j g ek g lh g ki g ehj g hmk gnopqorso toruvw x y z{|}~����|�����~������ ���������������� �

(b) Intel P4 Xeon

�������������������������������
� � � � � � � � �� � �� � �� � ��� � ��� ���� �¡¢� £�¡¤¥¦ § ¨ ©ª«¬®®̄°«°±²³́µµ²µ¶¶ ·̧¹³º¹»¼¹½̧¹³¾¿À ¶

Figure 9.2: Ratio of cache-misses incurred by PA-FASTA to that incurred by PA-CO (see
Table 9.2) on random sequences for both L1 and L2 caches. Data was obtained using
Cachegrind [112].

191

Speed-up Factors Achieved by Multithreaded Cache-Oblivious Pairwise Alignment Algorithm

on AMD Opteron 250 as the Number of Concurrent Threads (p) VaryÁ Â Ã Á Â ÄÁ Â Å Á Â Æ Á Â Ç
ÈÉÈÈÉÊËÉÈËÉÊÌÉÈÌÉÊ
ÍÉÈÍÉÊÎÉÈÎÉÊÊÉÈ

Ï Ð ËÑ Ð ÍÌ Ð ÑÎ Ð ËÌÏ Ð ÌÊÑ Ð ÊËÌ Ð ËÒÈÌÎ ÐÓÔÕÖÔ×ØÔ ÙÔ×ÚÛÜ Ý Þ ßàáââãäåáæçèéêë ìíêëîçïðñâãòóëóé óôõö÷
Figure 9.3: Speed-up factors (w.r.t. unthreaded code) achieved by multithreaded cache-
oblivious pairwise alignment algorithm as number of threads (p) vary. The results were
obtained on an 8-processor Opteron 850 with randomly generated strings over { A, T, G, C }.

and 1000, respectively. Observe that the larger the cache the larger the cache-miss

ratio which follows theoretical predictions since we know that PA-CO should incur

fewer cache-misses on larger caches while cache performance of PA-FASTA should

be independent of cache size.

Parallel Performance. In Figure 9.3 we plot the speed-up factors achieved by the

parallel (multithreaded) implementation of PA-CO w.r.t. its sequential (unthreaded)

implementation on an 8-processor AMD opteron 850. This is the straight-forward

O
(

n2

p
+ nlog2 3 log n

)
time parallel implementation described in the first paragraph

of Section 8.2.3 in Chapter 8. The number of concurrent threads (i.e., the number

of available processors p) was varied from 1 to 8, and the length of the sequences

was varied from 8 K to 1024 K. We used the standard pthreads library for multi-

threading. Threads were created recursively as the computation progressed, and the

simple scheduling policy described in Section 7.3.3 of Chapter 7 was used.

The experimental results show that PA-CO achieves reasonable speed-up as

the number of processors increases, and for a fixed number of processors the speed-up

factor improves as the length of the sequence grows. For example, with 8 processors

the algorithm achieves a speed-up factor of 1.7 when n = 8 K, but achieves a speed-

up factor of about 5 when n = 1024 K.

192

9.3.2 Median of Three Sequences

We performed experimental evaluation of the implementations listed in Table 9.4.

Among the five implementations MED-CO implements our quadratic-space cache-

oblivious median algorithm described in Section 8.2.4 of Chapter 8, MED-Knudsen

is Knudsen’s cubic-space median algorithm [80] implemented by Knudsen himself

[79], and MED-H is our quadratic-space implementation (see Hai-Son Le’s under-

graduate honors thesis [87]) of Knudsen’s algorithm based on Hirschberg’s space-

reduction technique. Between the remaining two MED-ukk.alloc is the O
(
n + δ3

)
-

space (where δ is the 3-way edit distance of sequences) Ukkonen-based median algo-

rithm described in [101], and MED-ukk.checkp is the space-reduced version of MED-

ukk.alloc based on checkpointing technique. Both algorithms were implemented by

Powell [100],

Algorithm Comments Time Space
Cache
Misses

MED-CO
our cache-oblivious algorithm

(see Section 8.2.4 of Chapter 8)
O

`
n3

´
O

`
n2

´
O

“
n3

B
√

M

”

MED-Knudsen
Knudsen’s implementation

of his algorithm [79]
O

`
n3

´
O

`
n3

´
O

“
n3

B

”

MED-H
our implementation [87]
of MED-Knudsen with

Hirschberg’s space-reduction
O

`
n3

´
O

`
n2

´
O

“
n3

B

”

MED-ukk.alloc
Powell’s implementation [100]
of an O

`
δ3

´
-space algorithm

(δ = 3-way edit dist. of sequences)

O
`
n + δ3

´

(avg.)
O

`
n + δ3

´
O

“
δ3

B

”

MED-ukk.checkp
Powell’s implementation [100]
of an O

`
δ2

´
-space algorithm

(δ = 3-way edit dist. of sequences)

O
„

n log δ
+δ3

«

(avg.)
O

`
n + δ2

´
O

“
δ3

B

”

Table 9.4: Median algorithms used in our experiments.

In order to reduce the overhead of recursion in MED-CO, instead of stopping

the recursion at r = 1 in Compute-Boundary-3D and Compute-Traceback-

Path-3D, we stopped the recursion at r = 64 on both Intel Xeon and AMD Opteron,

and solved the problem by calling a sub-routine similar to Knudsen’s algorithm at

that point. Implementing MED-H, the quadratic-space version of Knudsen’s algo-

rithm based on Hirschberg’s space-reduction technique, was substantially difficult

compared to our quadratic-space algorithm MED-CO. Detailed discussion of the

difficulties in implementing MED-H can be found in Hai-Son Le’s undergraduate

honors thesis [87].

193

We will first compare the sequential performance of our cache-oblivious al-

gorithm MED-CO with the three publicly available code: MED-Knudsen, MED-

ukk.alloc and MED-ukk.checkp. Then we will compare the performance MED-CO

and MED-Knudsen with our reduced-space implementation of Knudsen’s algorithm

(MED-H) in order to study the effects of space-reduction and cache-efficiency on the

performance of MED-Knudsen.

Sequential Performance. We performed our experiments on AMD Opteron 250

and Intel P4 Xeon. Only a single processor was used on each machine.

We used a gap insertion cost of 3 (i.e., gi = 3), a gap extension cost of 1 (i.e.,

ge = 1) and a mismatch cost of 1 in all experiments.

Overall, MED-Knudsen ran about 1.5-2.5 times slower than MED-CO on

both machines, and MED-ukk.alloc and MED-ukk.checkp were even slower. Further-

more, due to their high space overhead MED-Knudsen, MED-ukk.alloc and MED-

ukk.checkp could not be run on any machine for sequences longer than 640. We

summarize our results below.

Random Sequences. We ran all implementations on random (equal-length) sequences

of length 64i, 1 ≤ i ≤ 16 on AMD Opteron (see Figure 9.4(a)) and Intel Xeon (see

Figure 9.4(b)). On both machines MED-CO ran the fastest, and MED-Knudsen,

MED-ukk.alloc and MED-ukk.checkp crashed as they ran out of memory for se-

quences longer than 384, 256 and 640, respectively.

On Intel Xeon, MED-CO was the fastest. It ran at least 1.45 times faster

than MED-Knudsen. Both MED-ukk.alloc and MED-ukk.checkp ran at least 2 times

slower than MED-CO for length 64, and continued to slow down even further with

increasing sequence length. They ran up to 3.3 times (for length 256) and 4.8 times

(for length 640) slower than MED-CO, respectively. The trends were similar on AMD

Opteron and MED-CO ran at least 2.5, 3.4 and 4.2 times faster than MED-Knudsen,

MED-ukk.alloc and MED-ukk.checkp, respectively.

Real-World Sequences. We ran all algorithms (except MED-H) on triplets of 16S

bacterial rDNA sequences from the Pseudanabaena group [42] (see Table 9.5). All

experiments were run on Intel Xeon.

Triplets 1–5 in Table 9.5 were formed by choosing three sequences of length

less than 500 from the group at random, while triplet 6 was formed manually for

reasons to be explained in the next paragraph. On triplets 1–5, MED-Knudsen ran

194

Performance of Median Algorithms (Normalized w.r.t. Cache-Oblivious Algorithm)

on Random Sequencesøùúûüýþÿ��ý ��������	

�� ������������� ������
(a) Runtimes on AMD Opteron 250

��� ��!��"��#��$��%��
&' ()* (+)),& -). -*' ''* ,() ,/& &'. /.' /&* *-) *+& +&. (0.)'12342562 72589: ; < =>?@@A@BCADE F@G>DHIAJEKLM>MC MNOPQRST M

(b) Runtimes on Intel P4 Xeon

UVUUVWXVUXVWYVUYVWZVUZVW[VU[VWWVU
\] _̀̂ â_ _b\ c_d c̀]]]̀ b̂_ be\ \]d ed] e\̀ c̀_ à\ a\d ^fd_]ghijhklh mhknop q r stuvvwvxywz{ |v}tz~�w�{���t�y �������� �

Figure 9.4: Comparison of performance of our cache-oblivious median algorithm (MED-
CO) with Knudsen’s implementation of his algorithm [80] available in [79] (MED-Knudsen),
and Powell’s implementation of two algorithms [101] available in [100] (MED-ukk.alloc and
MED-ukk.checkp). Figures (a) and (b) plot running times of the algorithms on AMD
Opteron 250 and Intel P4 Xeon, respectively. figure for MED-CO. Due to their high space
overhead MED-Knudsen, MED-ukk.alloc and MED-ukk.checkp could not be run for se-
quences longer than 640 on any machine. Each data point is the average of 3 independent
runs on random strings over { A, T, G, C }.

around 35–50% slower and MED-ukk.checkp up to 3.2 times slower than MED-CO.

Running time of MED-ukk.checkp w.r.t. MED-CO degraded as the alignment cost

increased. MED-ukk.alloc which requires space cubic in the alignment cost could

not be run on triplets with alignment cost larger than 299, that is, on triplets 2–5.

On triplet 5 MED-Knudsen also crashed due to its high space requirement which is

cubic in the sequence length.

The sequences in triplet 6 were chosen manually in order to keep their align-

ment cost small. We used this triplet in order to verify the theoretical prediction

that MED-ukk.alloc and MED-ukk.checkp would run faster on triplets with small

195

Running times (in sec) on Intel Xeon for random triples of 16S Bacterial

rDNA Sequences from the Pseudanabaena Group [42] (runtime w.r.t. MED-CO)

No. Lengths
Alignment

Cost
MED-Knudsen MED-ukk.alloc MED-ukk.checkp MED-CO

1
367, 387,

388
299 722 (1.48) 512 (1.05) 601 (1.23) 487 (1.00)

2
378, 388,

403
324 752 (1.42) − (−) 769 (1.45) 529 (1.00)

3
342, 367,

389
339 611 (1.35) − (−) 863 (1.91) 451 (1.00)

4
342, 370,

474
432 764 (1.44) − (−) 1, 701 (3.20) 531 (1.00)

5
370, 388,

447
336 − (−) − (−) 824 (1.49) 553 (1.00)

6
367, 388,

389
260 695 (1.42) 330 (0.67) 380 (0.77) 491 (1.00)

Table 9.5: Comparison of running times (on Intel Xeon) of four algorithms on 16S bacterial
rDNA sequences from the Pseudanabaena group [42]: our cache-oblivious median algorithm
(MED-CO in col 7), Knudsen’s implementation of his algorithm [79] (MED-Knudsen in col
4), and Powell’s implementation of two Ukkonen-based algorithms [100] (MED-ukk.alloc
and MED-ukk.checkp in cols 5 and 6, respectively). Triplets 1–5 were formed by choosing
random sequences of length less than 500 from the group while triplet 6 was formed by
choosing sequences manually in order to keep the alignment cost small. Each number outside
parentheses in columns 4–7 is the time for a single run, and the ratio of that running time to
the corresponding running time for MED-CO is given within parentheses. A ‘−’ in a column
denotes that the corresponding algorithm could not be run due to high space overhead.

alignment costs since unlike MED-CO whose running time is cubic in the sequence

length, running times of those two algorithms are cubic in the 3-way edit distance

of the input sequences (see Table 9.4). The alignment cost of triplet 6 is 260, and as

Table 9.4 shows both MED-ukk.alloc and MED-ukk.checkp, indeed, ran faster than

MED-CO on this triplet.

Overall, our experimental results suggest that MED-CO is always a better

choice than MED-Knudsen, and a better choice than the two Ukkonen-based algo-

rithms (MED-ukk.alloc and MED-ukk.checkp) when the alignment cost is moder-

ately large.

Effects of Space-reduction and Cache-efficiency. In Figures 9.5(a) and 9.5(b)

we plot the running times of Knudsen’s algorithm (MED-Knudsen), a Hirschberg-

196

Improvements in the Running Time of a Median Algorithm (MED-Knudsen) on Random Sequences

with Space-reduction (MED-H) and Cache-efficiency (MED-CO)

(Normalized w.r.t. MED-CO)����������� ����� ������
(a) Runtimes on AMD Opteron 250

 ¡ ¡¢£¡ £¡¢¤¡ ¤¡¢¥¡ ¥¡¢¦¡
§̈ ©ª« ©¬ª ª§ ®ª̄ ®«̈ ¨̈« ©ª °§ §̄̈ °̈̄ °§« «®ª «¬§ ¬§̄ ©±ª̈̄²³´µ³¶·³ ¸³¶¹º» ¼ ½ ¾¿ÀÁÁÂÁÃÄÂÅÆ ÇÁÈ¿ÅÉÊÂËÆÌÍÎ¿ÎÄ ÎÏÐÑÒÓÔÕ Î

(b) Runtimes on Intel P4 Xeon

Ö×ÖÖ×ØÙ×ÖÙ×Ø
Ú×ÖÚ×ØÛ×Ö

ÜÝ Þßà Þáß ßâÜ ãßä ãàÝ ÝÝà âÞß âåÜ ÜÝä åäÝ åÜà àãß àáÜ áÜä ÞæäßÝçèéêèëìè íèëîïð ñ ò óôõöö÷öøù÷úû üöýôúþÿ÷�û���ô�ù ������	
 �
Figure 9.5: Improvements in the performance of a median algorithm (i.e., MED-Knudsen:
Knudsen’s implementation of his algorithm [80]) as its space requirement is reduced (with a
Hirschberg-style implementation of Knudsen’s algorithm (MED-H)), and as both its space
usage and cache performance are improved using our cache-oblivious median algorithm
(MED-CO). Figures (a) and (b) plot running times of the algorithms on AMD Opteron 250
and Intel P4 Xeon, respectively. Each data point is the average of 3 independent runs on
random strings over { A, T, G, C }.

style space-reduced version of the same algorithm (MED-H), and our space-efficient

cache-oblivious algorithm (MED-CO) on random sequences. As the plots show, after

simply reducing the space usage from O
(
n3
)

(MED-Knudsen) to O
(
n2
)

(MED-

H), the median algorithm runs faster and can handle much longer sequences. For

space-intensive algorithms reducing space usage can improve its cache performance

significantly since now the data fits in lower cache levels and thus incurs fewer cache-

misses. The plots also show that we can improve the running time of the algorithm

even further by improving its cache performance even more, that is, using our space-

efficient cache-oblivious algorithm. On AMD Opteron running time of Knudsen’s

197

algorithm improves by 40% after space-reduction (MED-H), and a further 30% after

improving the cache-efficiency using our cache-oblivious implementation (MED-CO).

Similar trend is also observed on Intel P4 Xeon.

Speed-up Factors Achieved by Multithreaded Cache-Oblivious Median

Algorithm on AMD Opteron 850 as the Number of Concurrent Threads (p) Vary� � � � �� � � � � � � � �
������������
���������

��� ��� ��� ���������� !� "� #$% & ' ()*++,-.*/0123455 6734809:;+,<5452 5*=>? 55
Figure 9.6: Speed-up factors (w.r.t. unthreaded code) achieved by multithreaded cache-
oblivious median algorithm on 8-processor Opteron 850 as number of threads (p) vary.
Sequences were randomly generated strings over { A, T, G, C }.

Parallel Performance. Figure 9.6 plots the speed-up factors achieved by multi-

threaded (parallel) MED-CO w.r.t. its sequential implementation on an 8-processor

AMD opteron 850. We implemented the simple O
(

n3

p
+ n2 log n

)
time parallel al-

gorithm described in the first paragraph of Section 8.2.3 in Chapter 8. The number

of concurrent threads (i.e., the number of available processors p) was varied from

1 to 8, and the sequences lengths from 27 (128) to 210 (1024). The multithreaded

code was implemented using the standard pthreads library. We used the strategy

described in Section 7.3.3 of Chapter 7 for creating and scheduling threads.

Experimental results show that MED-CO speeds up better than the cache-

oblivious pairwise alignment algorithm PA-CO in Section 9.3.1 as the number of

processors grows. For example, with 8 processors MED-CO achieves a speed-up

factor of around 5.5 when the sequence length is only 1024, while PA-CO requires

sequences of length 1024 K in order to reach a speed-up factor of 5 (see Figure 9.3).

9.3.3 RNA Secondary Structure Prediction with Pseudoknots

We implemented the algorithms in Table 9.6 (all are sequential) for computing all

values of Spseudo or S′pseudo (i.e., we compute the optimal scores only, we do not

198

traceback the pseudoknots). We ran all experiments on Intel Xeon using a single

processor.

Algorithm Comments Time Space
Cache
Misses

RNA-CO
our cache-oblivious algorithm

(see Section 8.2.4 of Chapter 8)
O

`
n4

´
O

`
n2

´
O

“
n4

B
√

M

”

RNA-CS Akutsu’s original cubic-space algorithm [6] O
`
n4

´
O

`
n3

´
O

“
n4

B

”

RBA-QS
Our iterative quadratic-space version

of Akutsu’s algorithm
(see Section 8.2.4 of Chapter 8)

O
`
n4

´
O

`
n2

´
O

“
n4

B

”

Table 9.6: RNA secondary structure prediction algorithms used in our experiments.

In order to reduce the overhead of recursion in RNA-CO, instead of executing

line 1 of the algorithm for r = 1 (see Figure 8.2 in Chapter 8), we stopped as soon

as we reached r ≤ 64 and solved the problem directly using our iterative quadratic-

space variant RNA-QS.

Overall RNA-QS ran about 50% slower than RNA-CO and RNA-CS ran up

to 7 times slower than RNA-CO for sequence lengths it could handle. For sequences

longer than 512 RNA-CS could not be run due to lack of memory space. We sum-

marize our results below.

Random Sequences. We ran all three algorithms on randomly generated string-pairs

over { A,U,G,C } (see Figure 9.7). The lengths of the strings were varied from

64 to 2048. However, due to lack of space RNA-CS could not be run for strings

longer than 512. In our experiments RNA-CO ran the fastest while RNA-CS was

the slowest. Though both RNA-QS and RNA-CS have the same time and cache-

complexity, RNA-QS ran significantly faster than RNA-CS (e.g., ≈ 4.5 times faster

for length 512). We believe this happened because even for small sequence lengths

RNA-CS overflows the L2 cache, and most of its data reside in the slower RAM,

while both RNA-QS and RNA-CO still work completely inside the faster L2 cache.

For strings of length 512 RNA-CO ran about 35% faster than RNA-QS and about

7 times faster than RNA-CS. The performance of RNA-CO improved over that of

both RNA-CS and RNA-QS as the length increased.

Real-World Sequences. We ran all three implementations on a set of 24 bacterial

5S rRNA sequences obtained from [27]. The average length of the sequences was

118, and the average running times of RNA-CS, RNA-QS and RNA-CO on each

199

Running Times (w.r.t. Cache-Oblivious Algorithm) for Random Sequences on Intel P4 Xeon@ABCDE FGHIJK LMNOPQ

RSRTSRUSRVSRWSRXSRYSRZSR[SR

YW TU[UXY XTU T\RUW U\RW[]^_`^ab^ c^adef g h i
jkllmlnompq rlsjptumvqwxyjyo y

z{|}~��

Figure 9.7: Comparison of running times of three algorithms for RNA secondary
structure prediction with simple pseudoknots on Intel P4 Xeon: our cache-oblivious
algorithm (RNA-CO), Akutsu’s algorithm [6] (RNA-CS) and our quadratic-space
version of Akutsu’s algorithm (RNA-QS). All running times are normalized w.r.t.
RNA-CO. Due to its high space overhead RNA-CS could not be run for sequences
longer than 512. Each data point is the average of 3 independent runs on random
strings over { A, U, G, C }.

sequence were 1.46 sec, 0.45 sec and 0.35 sec, respectively. We also ran RNA-QS

and RNA-CO on a set of 10 bacterial (spirochaetes) 16S rRNA sequences of average

length 1509. The RNA-CS implementation could not be run on these sequences due

to space limitations. On these sequences RNA-CO took 1 hour 38 minutes while

RNA-QS took 2 hours 38 minutes on the average (see Table 9.3.3).

9.4 Discussion

We observed that the method used to implement the base case of a cache oblivious

algorithm affects its performance. In order to reduce the overhead of recursion the

base case is implemented using a nonrecursive algorithm (typically the traditional

iterative dynamic programming algorithm). If the traceback path is not required the

traditional iterative DP can be easily implemented to use a factor of n less space than

the case when the traceback path is required (see [37]). That’s why the base case of

RNA-CO (an implementation of our RNA secondary structure prediction algorithm

200

Runtimes of algorithms for RNA secondary structure prediction with simple pseudoknots

on Intel Xeon for Bacterial (Spirochaetes) 16S rRNA Sequences [27]

Organism
Length

(n)

Quadratic Space

(RNA-QS)

Cache-oblivious

(RNA-CO)
RNA-QS
RNA-CO

Brevinema andersonii 1443 2h 14m 1h 22m 1.64

Borrelia burgdorferi 1530 2h 48m 1h 44m 1.62

Borrelia burgdorferi 1537 2h 48m 1h 45m 1.60

Borrelia hermsii 1523 2h 43m 1h 41m 1.61

Brachyspira hyodysenteriae 1463 2h 21m 1h 27m 1.61

Cristispira CP1 1491 2h 30m 1h 33m 1.62

Leptonema illini 1526 2h 45m 1h 42m 1.61

Leptospira interrogans 1508 2h 37m 1h 38m 1.61

Spirochaeta aurantia 1520 2h 42m 1h 41m 1.60

Treponema pallidum (rRNA A) 1549 2h 54m 1h 48m 1.60

Average 1509 2h 38m 1h 38m 1.61

Table 9.7: Comparison of running times of two algorithms for RNA secondary structure
prediction with simple pseudoknots on Intel P4 Xeon: our cache-oblivious algorithm
(RNA-CO), and our quadratic-space version of Akutsu’s algorithm (RNA-QS). Inputs
were Bacterial (Spirochaetes) 16S rRNA sequences [27] with an average length of 1509.
Akutsu’s cubic space algorithm could not be run because these sequences are too long
for it. Each number in columns 2 and 3 represents time for a single run.

which does not compute a traceback path) was implemented using a quadratic-space

algorithm while that of MED-CO (our median algorithm that computes a traceback

path) was implemented using a cubic-space algorithm. Though the size of the base

case is a constant and thus does not affect asymptotic running times, execution of

the base case can flood the smaller cache levels if it uses a space-intensive algorithm

and thus can increase the running time of the algorithm by degrading its cache

performance. We believe this is one of the reasons why the performance MED-CO

relative to its counterparts was not as impressive as that of RNA-CO. However, we

also implemented the base case of MED-CO using a Hirschberg-style quadratic-space

implementation of the standard cubic-space DP, and our experimental results (not

included in this dissertation) show that the space-reduced base case does not improve

the running time of MED-CO. We believe this happens because for small problem

sizes such as the base case the overhead of the Hirschberg-based implementation

dominates its running time and consequently it fails to improve over the running

time of the simple iterative DP.

We believe that in addition to being faster and more cache-efficient our cache-

oblivious algorithms are simpler to implement than Hirschberg’s space-reduction

201

technique. As explained in Section 8.2.1 of Chapter 8, complicated recurrence rela-

tions and recurrence relations with multiple fields increase the difficulties of imple-

menting Hirschberg’s algorithm, but they do not complicate the implementation of

our algorithms.

One of the major advantages of our cache-oblivious algorithms is that they are

parallelizable with very little extra effort. In contrast, iterative algorithms such as

MED-Knudsen and MED-ukk.alloc (see Section 9.3.2) are not parallelizable without

substantial modifications. Though algorithms obtained using Hirschberg-style space-

reduction techniques (e.g., PA-FASTA in Section 9.3.1, and MED-H and MED-

ukk.checkp in Section 9.3.2) can be parallelized, the computation-space is divided

only into two subproblems and substantial amount of sequential computation is

performed before the next level of recursive subdivision. The sequential computation

along with the fact that the decomposition is often unbalanced drastically reduces

the amount of parallelism. Moreover, as described above, it is not always easy to

apply Hirschberg’s technique.

202

Chapter 10

Conclusion

The Lord of the path benignly smiles: Silly boy,

my path does not end at the bamboo groves of your

village, or below the banyan tree of Biru Roy the

bandit, or at the crossing of the Dhalchite. Beyond

the farmlands of Sonadanga, across the Ichamati,

skirting around the lagoons of Modhukhali – filled

with lotuses – crossing the Betravati ferry – my

pathway spreads on and on – from land to land, from

sunrise to sunset, from the familiar to the obscure.

Let’s move on.

(Bibhutibhusan Banerjee in Pather Panchali,

adapted from a translation by Naresh Guha)

In this final chapter we summarize the major ideas and results of this thesis, and

also discuss some future research directions.

10.1 Summary

In this dissertation we focussed on developing cache-efficient and cache-oblivious

algorithms and data structures for problems in three separate domains: graph prob-

lems, problems in the Gaussian Elimination Paradigm (GEP), and problems with

dynamic programming algorithms. We concentrated on shortest path problems in

203

the first domain, and for computation-intensive problems in the last two domains

we also concentrated on obtaining efficient parallel cache-oblivious algorithms. For

problems in each domain, we performed extensive experimental evaluation of many

of our algorithms against best known existing algorithms.

One of the key problems in cache-oblivious shortest paths computation is

the lack of cache-oblivious priority queues supporting Decrease-Key operations. We

introduced the first cache-oblivious priority queue with Decrease-Keys, and used it

to obtain the first non-trivial cache-oblivious single-source shortest path algorithms

for both directed and undirected weighted graphs. Experimental results suggest that

shortest path algorithms based on a variant of our cache-oblivious priority queue run

faster than algorithms based on highly optimized traditional priority queues.

We considered the all-pairs shortest path problem on both weighted and

unweighted graphs. We used various techniques to reduce unstructured accesses to

adjacency lists, and consequently obtained all-pairs shortest path algorithms with

improved cache performance.

For the Gaussian Elimination Paradigm (GEP), we presented a general frame-

work for efficient cache-oblivious execution of any problem in GEP including Gaus-

sian elimination w/o pivoting, Floyd-Warshall’s APSP and matrix multiplication.

We also presented a parallel implementation of our framework, and provided schedul-

ing schemes for its cache-efficient execution on both distributed and shared caches

separately. We performed empirical comparison of several cache-oblivious algorithms

obtained using our framework with high-performance industrial-strength cache-aware

code. The results suggest that our cache-oblivious framework offers very good per-

formance along with simplicity and portability.

In the dynamic programming domain, we presented a general cache-oblivious

framework that gives efficient cache-oblivious sequential and parallel algorithms for

a number of important dynamic programming problems in bioinformatics including

optimal pairwise global sequence alignment and median of three sequences (both with

affine gap costs), and RNA secondary structure prediction with simple pseudoknots.

We also developed cache-oblivious sequential and parallel algorithms for optimal

pairwise alignment with general gap costs. All our algorithms improve significantly

over the cache-efficiency of earlier algorithms. We empirically compared most of our

algorithms with the best publicly available code written by others, and observed that

our algorithms run faster than these software.

204

In our experimental study of all three problem domains we considered, our

cache-oblivious algorithms and data structures consistently outperformed their tra-

ditional flat-memory counterparts. In the first two domains we also compared our

implementations with highly optimized cache-aware sequence heap and BLAS (Basic

Linear Algebra Subprograms) routines, respectively, while no such high performance

cache-aware softwares were available for the problems in the third domain. Though

these two cache-aware implementations performed better than our cache-oblivious

implementations, the performance gaps were always within reasonable limits, and

additionally our algorithms and data structures were easier to implement and more

portable. Thus our cache-oblivious results offer a very useful tradeoff between effi-

ciency on one hand, and simplicity and portability on the other.

10.2 Future Work

In this section we discuss several directions for further research to extend our work

presented in this thesis.

Cache-efficient Dynamic Graph Algorithms.

A dynamic graph algorithm maintains a data structure on a graph supporting two

types of operations: updates and queries. An update is a local change to the graph

(for example: edge insertion/deletion, or change of an edge-weight), and a query is

a question about a certain property of the current graph (for example: “what is the

shortest distance from node u to node n in the current graph?”). The objective is to

maintain structural information about the current graph in order to handle updates

and queries faster than recomputing from scratch.

Many real-world massive graphs (e.g., the web graph) are continuously chang-

ing in nature. Therefore, I/O-efficient fully dynamic (i.m., supporting both insertion

and deletion of nodes/edges) algorithms are needed to handle these graphs. At this

time, no external-memory algorithms are known for fundamental dynamic graph

problems except for a fully-dynamic undirected MSF algorithm given in [64, 65] that

requires either O
(√

n
B

)
or O

(
sort

(√
nlog2 B

))
I/Os per update in the worst case.

No results are known for the cache-oblivious model.

If a dynamic algorithm must answer a query as soon as it receives it, an

adversary can always choose a sufficiently large sequence of updates and queries

205

that will force the algorithm to incur Ω (1) (even in amortized sense) cache-misses

per query. Therefore, unlike some external-memory data structures used by static

graph algorithms, such as external-memory priority queues, an external-memory

dynamic graph data structure cannot support queries in o (1) amortized cache-misses.

An open question is whether this Ω (1) I/O barrier can be overcome if we allow

only batched queries, or only allow query sequences that can be decomposed into

sufficiently large subsequences of queries with high locality.

Automatic Generation of Cache-oblivious DP Algorithms.

Dynamic programs occur so frequently in practice that instead of trying to obtain an

efficient cache-oblivious implementation for each of them individually, it is natural

to ask the following question:

Does there exist a general method that given the recurrence relation associated

with any dynamic programming problem, can produce an efficient cache-oblivious

version of it?

This method must be able to

(a) decompose the given problem into smaller subproblems,

(b) determine any inter-dependence among the subproblems, and the order in

which the subproblems must be solved respecting their inter-dependence, and

(c) ensure that there is a separation between the space complexity and the time

complexity of the algorithm, i.e., the space complexity is asymptotically smaller

than the time complexity (since otherwise there will be no temporal locality

in memory accesses).

Any such method is likely to have enormous practical value.

Automating Cache-obliviousness - Compiler Optimizations for the Mem-

ory Hierarchy.

We are used to writing programs for the flat memory model which is arguably simpler

than writing programs for the cache-oblivious model, but is often very inefficient

in its cache usage. One way of having the best from both worlds is to allow the

206

users write code assuming a flat memory, and then use a compiler to port this code

to the cache-oblivious model. Unfortunately, however, though modern optimizing

compilers employ optimization techniques for improved cache-efficiency, they often

fail to produce portable system-independent (i.e., cache-oblivious) code [91, 133].

In contrast, cache-oblivious compiler optimizations will not only produce portable

code, the resulting code will also use all levels of a memory hierarchy efficiently.

Towards Resource-obliviousness - Parallel Cache-oblivious Model.

For increased efficiency through increased level of parallelism, computation is often

performed on multi-processor, multi-disk systems. Very recently, the cache-oblivious

model has been extended to analyze multithreaded cache-oblivious algorithms run on

multi-processor parallel machines both with shared caches [18] and with distributed

caches [55]. In Chapters 6 and 8 we presented efficient parallel cache-oblivious al-

gorithms for shared and distributed caches separately. But modern multi-core ar-

chitectures include both distributed (L1) and shared (L2) caches. Therefore, an

important open problem is to combine these two extreme cache models into a single

unified model, and thereby formulate a robust model for cache-oblivious computation

on multi-processor, multi-disk systems.

207

Appendix A

The Cache-oblivious Tournament

Tree

In Section 3.4.2 of Chapter 3 we used the cache-oblivious buffer heap as a priority

queue in order to solve the directed SSSP problem cache-obliviously. Here, we present

the cache-oblivious tournament tree (COTT) which is a priority queue supporting

the same set of operations (Delete, Delete-Min and Decrease-Key) as the buffer heap.

Although our bounds for COTT are weaker than those for buffer heap, COTT is

a simpler data structure, and may be more amenable to practical implementation.

Our directed SSSP algorithm runs just as efficiently with COTT as with buffer heap.

COTT is a cache-oblivious version of the cache-aware tournament tree in-

troduced by Kumar and Schwabe in [83]. This structure can contain only a pre-

determined set of elements which are initially inserted into fixed positions in the

structure with +∞ key value. While the cache-aware tournament tree of [83] with

N elements supports a sequence of k Delete, Delete-Min and Decrease-Key oper-

ations in at most O
(

k
B

log2
N
B

)
cache-misses, our cache-oblivious version supports

Delete and Delete-Min in O
(
log2

N
B

)
, and Decrease-Key operations in O

(
1
B

log2
N
B

)

amortized cache-misses, respectively, under the tall cache assumption.

A COTT with N elements is a static binary tree with N leaves numbered 1

through N from left to right. The root of the tree is denoted by R, and Tv denotes

the subtree rooted at any node v. Each node v stores an ordered pair (xv, kv), where

xv is an element corresponding to a leaf in Tv and kv is a key of xv. Each internal

node v has an associated stack Sv.

208

Function A.0.1. Delete(x)

[Delete element x from the COTT if exists.]

1. (Distribution Step) Follow the path from the root to the leaf corresponding to x. At each
internal node v with children v1 and v2 on this path pop all Decrease-Key operations from Sv

and distribute them to Sv1
and Sv2

, and also update (xv1
, kv1

) and (xv2
, kv2

) if necessary.
However, if a child node is a leaf, discard any Decrease-Key operation it receives after
updating the ordered pair stored in that leaf.

2. (Fixing Step) Set the key value of element x at the leaf to +∞ and propagate this change
along the leaf to root path from x. At each internal node v with children v1 and v2 on this
path, set (xv, kv) to (xv1

, kv1
) if kv1

≤ kv2
, otherwise set it to (xv2

, kv2
).

Delete Ends

The supported operations are propagated lazily from the root to appropriate

leaves and the following two invariants are maintained:

Invariant A.0.1. For each internal node v, each entry in Sv is a Decrease-Key

operation to be performed on a leaf of Tv. Thus the stacks associated with the nodes

on the path from a leaf to the root together contain all Decrease-Keys to be performed

on that leaf.

Invariant A.0.2. The ordered pair (xv, kv) stored in node v refers to the element xv

corresponding to a leaf in Tv, having the minimum key kv taking into account only

the operations (Delete, Delete-Min and Decrease-Key) seen by v so far. Thus, at

any time, the root of the tree stores the element with the minimum key value in the

whole tree.

Initially, the elements in all leaves are assigned a key value of +∞. All stacks

are empty and the ordered pair in each internal node refers to the leftmost leaf in

the corresponding subtree. Thus both invariants hold initially.

Decrease-Keys operations are performed lazily. Whenever a Decrease-Key

operation arrives, it is pushed on to the stack SR of the root node and the minimum

value at the root is updated if necessary. Thus, invariants A.0.1 and A.0.2 are

maintained.

A Delete-Min operation is a special case of the Delete operation: it reads

the ordered pair (xR, kR) from the root of the tree and performs a Delete(xR)

operation. A Delete(x) operation is performed as follows.

209

Lemma A.0.1. A COTT with N elements supports Delete/Delete-Min and Decrease-

Key operations.

(a) cache-obliviously in O (log2 N) and O
(

1
B

log2 N
)

amortized cache-misses, re-

spectively, without a tall cache.

(b) cache-obliviously in O
(
log2

N
B

)
and O

(
1
B

log2
N
B

)
amortized cache-misses, re-

spectively, with a tall cache.

(c) in O
(
log2

NB
M

)
and O

(
1
B

log2
NB
M

)
amortized cache-misses, respectively, in the

two-level I/O (cache-aware) model.

Proof.

(a) During a Delete or Delete-Min operation 2 nodes are accessed at each of the

O (log2 N) levels during the root to leaf path traversal in step 1 (distribution step)

and the same holds for step 2 (fixing step). We charge the O (1) cache-misses

for retrieving the node information and the stacks in each level to the current

Delete/Delete-Min operation. Thus each Delete/Delete-Min is charged forO (log2 N)

cache-misses in total. On the other hand, each Decrease-Key operation is pushed

and popped to a stack only once in each level which incurs O
(

1
B

)
cache-misses per

level. Each Decrease-Key operation also incurs O
(

1
B

)
amortized cache-misses during

its insertion into SR. Thus each Decrease-Key operation is charged for O
(

1
B

log2 N
)

amortized cache-misses in total.

(b) The claim follows from the observation that since N ≫ M , the tall cache as-

sumption implies log2 N = O
(
log2

N
B

)
.

(c) We modify COTT so that, for some q = log2 β M
B

, where β < 1 is a constant,

nodes in the first q− 1 levels do not have any stacks, and the topmost block of each

of the stacks in level q are kept in the cache.

�

The following lemma can be proved by replacing the buffer heap with a COTT

in the proof of lemma 3.4.1 in Chapter 3.

210

Lemma A.0.2. Single source shortest paths in a directed graph can be computed

cache-obliviously in O
(
(n + m

B
) · log2

m
B

)
cache-misses using a COTT under the tall

cache assumption.

211

Appendix B

Implementations of Dijkstra’s

SSSP Algorithm

In our shortest path experiments in Chapter 4, we considered the following three

implementations of Dijkstra’s SSSP algorithm.

Dijkstra’s SSSP Algorithm with Decrease-Keys (Dijkstra-Dec).

Dijkstra’s SSSP algorithm for directed graphs [43] works by maintaining an upper

bound on the shortest distance (a tentative distance) to every vertex from the source

vertex s and visiting the vertices one by one in non-decreasing order of tentative

distances (see function Dijkstra-Dec in Figure B.1). The next vertex to be visited

is the one with the smallest tentative distance extracted from the set of unvisited

vertices (with finite tentative distance) kept in a priority queue Q. After a vertex

has been extracted from Q it is considered settled, and each of its unvisited neighbors

is either inserted into Q with a finite tentative distance or has its tentative distance

updated if it already resides in Q. Dijkstra’s algorithm performs n Insert and Delete-

Min operations each and O (m− n) Decrease-Key operations on Q.

Using a binary heap that supports Insert, Decrease-Key and Delete-Min op-

erations in O (log n) time and I/O operations each Dijkstra’s algorithm can be imple-

mented to run in O ((n + m) · log n) time and perform O ((n + m) · log n) I/Os. If

a Fibonacci heap is used that supports Insert/Decrease-Key operations in constant

amortized time and I/Os, both the time and the I/O complexity of the algorithm re-

duces to O (m + n · log n). However, if a buffer heap is used as the priority queue Di-

212

jkstra’s algorithm runs in O ((n + m) · log n) time, but performs O
(
m + n+m

B
· log n

)

I/O operations which is a factor of Θ (log n) improvement over the I/O complexity

of Dijkstra’s algorithm with Fibonacci heap provided the graph is very sparse (i.e.,

m = O (n)), and B ≫ log n which typically holds for memory levels deeper in the

hierarchy such as the disk. See Table 4.3 for the I/O complexity of this algorithm

using the remaining priority queues in our experiment.

Dijkstra’s Algorithm without Decrease-keys (Dijkstra-NoDec).

It is straight-forward to implement Dijkstra’s algorithm using a priority queue that

supports only Insert and Delete-Min operations (see function Dijkstra-NoDec in

Figure B.1). The implementation performs O (m) Insert and Delete-Min operations

and runs in O (m · log n) time and performs O (m · log n) I/O operations using an

internal-memory priority queue. However, if a buffer heap or an auxiliary buffer

heap is used, the algorithm continues to run in O (m · log n) time but performs

O
(
m + m

B
· log m

)
I/O operations which a Θ (log n) factor improvement over the

I/O bound using an internal-memory priority queue if the graph is very sparse (i.e.,

m = O (n)) and B ≫ log n.

External-Memory Implementation of Dijkstra’s Algorithm for Undirected

Graphs (Dijkstra-Ext).

The traditional implementations of Dijkstra’s algorithm (see Figure B.1) do not per-

form Decrease-Key operations on vertices that are already settled, but in the process

they incur Θ (1) cache misses per edge. If one allows such Decrease-Key operations

then either one must be able to identify after each Delete-Min operation whether

the deleted vertex has been settled before which again causes Θ (m) additional cache

misses, or be able to remove those extra Decrease-Key operations from the priority

queue before they are extracted by a Delete-Min operation.

In [83] (see also [77]) Kumar & Schwabe presented an external-memory im-

plementation of Dijkstra’s algorithm for undirected graphs that allows spurious

Decrease-Key operations to be performed on the primary priority queue Q but uses

a mechanism to remove those operations from Q using an auxiliary priority queue Q′

(see Function 3.4.1 in Chapter 3). This mechanism eliminates the need for identify-

ing settled vertices directly and thus saves Θ (m) cache misses. The auxiliary priority

213

Function B.0.2. Dijkstra-Dec(G, w, s, d)

{Dijkstra’s SSSP algorithm [43] with a priority queue that supports Decrease-Keys}

1. perform the following initializations:

(i) Q← ∅
(ii) for each v ∈ V [G] do d[v]← +∞

(iii) Insert(Q)(s, 0)

2. while Q 6= ∅ do

(i) (u, k)← Delete-Min(Q)(), d[u]← k

(ii) for each (u, v) ∈ E[G] do

if d[u] + w(u, v) < d[v] then

if d[v] = +∞ then Insert(Q)(v, d[u] + w(u, v))

else Decrease-Key(Q)(v, d[u] + w(u, v))

d[v]← d[u] + w(u, v)

Dijkstra-Dec Ends

Function B.0.3. Dijkstra-NoDec(G, w, s, d)

{Dijkstra’s SSSP algorithm [43] with a priority queue that does not support Decrease-Keys}

1. perform the following initializations:

(i) Q← ∅
(ii) for each v ∈ V [G] do d[v]← +∞

(iii) Insert(Q)(s, 0)

2. while Q 6= ∅ do

(i) (u, k)← Delete-Min(Q)()

(ii) if k < d[u] then

d[u]← k

for each (u, v) ∈ E[G] do

if d[u] + w(u, v) < d[v] then Insert(Q)(v, d[u] + w(u, v)), d[v] ← d[u] +
w(u, v)

Dijkstra-NoDec Ends

Figure B.1: Given a directed graph G with vertex set V [G] (each vertex is identified
with a unique integer in [1, |V [G]|]), edge set E[G], a weight function w : E[G]→ ℜ
and a source vertex s ∈ V [G], both functions compute the shortest distance from s
to each vertex v ∈ V [G] and stores it in d[v].

214

queue only needs to support Insert and Delete-Min operations. The algorithm per-

forms m Decrease-Key operations and about n + m Delete operations on Q, and

about m Insert and Delete-Min operations each on Q′. This algorithm is the same

as Function 3.4.1 (i.e., Kumar & Schwabe’s algorithm with both Q and Q′ as buffer

heaps) in Chapter 3 with Decrease-Key(Q′) replaced with Insert(Q′), and Delete(Q′)

replaced with Delete-Min(Q′). We refer to the resulting function as Dijkstra-Ext.

The algorithm can be used to solve the SSSP problem on undirected graphs

cache-obliviously in O
(
n + m

B
log m

)
I/O operations by replacing Q with a buffer

heap and Q′ with an auxiliary buffer heap.

In Chapter 3 we show how to implement Dijkstra’s SSSP algorithm for di-

rected graphs cache-obliviously in O
(
(n + m

B
) · log n

B

)
I/Os under the tall cache as-

sumption. The implementation requires one additional data structure called the

buffered repository tree [25] for remembering settled vertices. Since we performed

our experiments mainly on sparse graphs for which implementations in Figure B.1

give better bounds we have not considered this implementation.

I/O Cost of Accessing the Graph Data Structure Only

Implementation
Accessing/updating

tentative distances
Accessing adjacency lists Total

Dijkstra-Dec n + m n + m
B

2n + m + m
B

Dijkstra-NoDec n + m + D n + m
B

2n + m + m
B

+ D

Dijkstra-Ext none n + m
B

n + m
B

Table B.1: I/O complexity of different implementations of Dijkstra’s algorithm for accessing

the graph data structure only, where D (≤ m) is the number of Decrease-Keys performed by

Dijkstra-Dec and B is the block size.

215

Number of Priority Queue Operations Performed

Implementation Insert Decrease-Key Delete/Delete-Min Total

Dijkstra-Dec n D n 2n + D

Dijkstra-NoDec n + D none n + D 2n + 2D

Dijkstra-Ext

Primary (Q)

none 2m n + 2m n + 4m

Auxiliary (Q′)

2m none 2m 4m

Total (Q & Q′)

2m 2m n + 4m n + 8m

Table B.2: Number of priority queue operations performed by different implemen-

tations of Dijkstra’s algorithm, where D (≤ m) is the number of Decrease-Keys

performed by Dijkstra-Dec.

Discussion on the Relative Performance of the Three Implementations.

Table B.1 lists the I/O cost of accessing the graph data structure by the three im-

plementations while Table B.2 lists the number of different priority queue operations

performed by them.

We observe that Dijkstra-NoDec performs slightly more I/O operations

for accessing the graph data structure as well as more priority queue operations

compared to Dijkstra-Dec. However, Dijkstra-NoDec can sometimes use a

more efficient priority queue than Dijkstra-Dec since unlike Dijkstra-Dec it

does not require the priority queue to support Decrease-Key operations. As a result

Dijkstra-NoDec is likely to run faster than Dijkstra-Dec for in-core computa-

tions on very sparse graphs. For example, consider running the two implementations

in-core on a large graph with m = Θ (n). In that case, D ≤ kn for some constant k

and log n > B, and Dijkstra-NoDec will run faster than Dijkstra-Dec provided

it uses a priority queue that runs at least 1 + k times faster than the priority queue

used by Dijkstra-Dec.

The external-memory implementation Dijkstra-Ext performs the smallest

number of I/O operations for accessing the graph data structure than the other two

implementations. However, this reduction in graph operations comes at the cost

of considerably increasing the number of priority queue operations performed. For

example, for Gn,m with average degree 8 for which D ≤ n typically holds, Dijkstra-

216

Ext performs at least 11 times more priority queue operations than Dijkstra-Dec.

However, if Dijkstra-Ext uses I/O-efficient priority queues such as the buffer heap

and the auxiliary buffer heap, and the block size B is sufficiently large then the

I/O cost of performing the priority queue operations will no longer dominate its

running time. In such a scenario (e.g., out-of-core computations) Dijkstra-Ext

will outperform the other two implementations because of the relatively smaller

number of graph operations it performs.

217

Appendix C

Formal Definitions of δ and π

In Section 6.2.1 of Chapter 6 we defined functions π and δ (see Definition 6.2.2)

based on the notions of aligned subintervals and aligned subsquares. Here we define

these two functions more formally in closed form.

Recall from Definition 6.2.2(a) that for x, y, z ∈ [1, n], δ(x, y, z) is defined as

follows.

• If x = y = z, then δ(x, y, z) = z − 1.

• If x 6= z or y 6= z, then δ(x, y, z) = b for the largest aligned subsquare [a, b], [a, b]

of c[1 . . . n, 1 . . . n] that contains (z, z), but not (x, y), and this subsquare is

denoted by S(x, y, z). Now consider the initial function call F(X, k1, k2) on c

with X ≡ c, k1 = 1 and k2 = n, where n = 2q for some integer q ≥ 0. We

know from Lemma 6.2.1(a) that if S(x, y, z) is one of the quadrants of X then

it must be either X11 or X22, otherwise S(x, y, z) must be entirely contained

in one of those two quadrants. Hence, in order to locate S(x, y, z) in X and

thus to calculate the value of δ(x, y, z) we need to consider the following four

cases:

(i) (z, z) ∈ X11 and (x, y) /∈ X11: X11 ≡ S(x, y, z) and δ(x, y, z) = 2q−1 by

definition.

(ii) (z, z) ∈ X22 and (x, y) /∈ X22: X22 ≡ S(x, y, z) and δ(x, y, z) = 2q by

definition.

218

(iii) (z, z) ∈ X11 and (x, y) ∈ X11: S(x, y, z) ∈ X11, and compute δ(x, y, z)

recursively from X11.

(iv) (z, z) ∈ X22 and (x, y) ∈ X22: S(x, y, z) ∈ X22, and compute δ(x, y, z)

recursively from X22.

Now for each integer u ∈ [1, 2q], define u′ = u−1 which is a q-bit binary number

u′qu
′
q−1 . . . u′2u

′
1. Then it is easy to verify that the following recursive function

ρ(x, y, z, q) captures the recursive method of computing δ(x, y, z) described

above, i.e., δ(x, y, z) = ρ(x, y, z, q) if x 6= z or y 6= z.

ρ (x, y, z, q) =

2q−1 if
(
x′q = 1 ∨ y′q = 1

)
∧ z′q = 0

2q if
(
x′q = 0 ∨ y′q = 0

)
∧ z′q = 1

ρ (x, y, z, q − 1) if x′q = y′q = z′q = 0,

2q−1 + ρ

(
x− 2q−1, y − 2q−1,

z − 2q−1, q − 1

)

if x′q = y′q = z′q = 1.

We can derive a closed form for ρ (x, y, z, q) from its recursive definition given

above. Let ⊡, ⊞, and ⊠ denote the bitwise AND, OR and XOR operators,

respectively, and define

(a) α(x, y, z) = 2⌊log2 {((x−1) ⊠ (z−1)) ⊞ ((y−1) ⊠ (z−1))}⌋,

(b) u = 2r − 1− u (bitwise NOT), and

(c) β(x, y, z) =
(
x− 1 ⊞ y − 1

)
⊡ (z − 1).

Then

ρ (x, y, z, q) =

⌊
z − 1

2α(x, y, z)

⌋
· 2α(x, y, z) + α(x, y, z) + α(x, y, z) ⊡ β(x, y, z)

(C.0.1)

Now we can formally define function δ : [1, 2q] × [1, 2q] × [1, 2q] → [0, 2q] as

219

follows.

δ(x, y, z) =

{
z − 1 if x = y = z,

ρ(x, y, z, q) otherwise (i.e., x 6= z ∨ y 6= z).

The explicit (nonrecursive) definition of δ is the following, based on C.0.1.

δ(x, y, z) =

{
z − 1 if x = y = z,⌊

z−1
2α(x,y,z)

⌋
· 2α(x, y, z) + α(x, y, z) + α(x, y, z) ⊡ β(x, y, z) otherwise.

From Definition 6.2.2(b), we have that function π : [1, 2q]× [1, 2q]→ [0, 2q] is

the specialization of δ to one dimension, hence we obtain:

π(x, z) = δ(x, x, z) =

{
z − 1 if x = z,

ρ(x, x, z, q) otherwise (i.e., x 6= z).

Using the closed form for ρ, we can write π in a closed form as follows:

π(x, z) =

{
z − 1 if x = z,⌊

z−1
2α′(x,z)

⌋
· 2α′(x, z) + α′(x, z) + x− 1 ⊡ (z − 1) ⊡ α′(x, z) otherwise;

where α′(x, z) = α(x, x, z) = 2⌊log2 {((x−1) ⊠ (z−1)⌋.

220

Appendix D

Cache-oblivious Algorithm for

Recurrence 8.2.3 in 2D

In Section 8.2.1 of Chapter 8 we described and analyzed an algorithm that solves

recurrence 8.2.3 in 3D. Here, in Figure D.2 we provide a cache-oblivious algorithm

similar to the one given in Section 8.2.1 which solves recurrence 8.2.3 in 2D along

with a traceback path.

Analysis. The following theorem can be proved by analyzing the time, space and

cache-complexities of the functions given in Figures D.1 and D.2. The analyses

are simpler than those given in Section 8.2.1 for our algorithm for solving the 3-

dimensional version of the general recurrence 8.2.3, and hence are omitted.

Theorem D.0.1. Given two sequences X and Y of length n each the two dimen-

sional version (i.e., d = 2) of recurrence 8.2.3 can be solved and a traceback path can

be computed in O
(
n2
)

time, O (n) space and O
(
1 + n

B
+ n2

BM

)
cache misses.

221

Function D.0.4. Compute-Boundary-2D(X, Y, L, T)

Input. Same as the input description of Compute-Traceback-Path-2D in Figure D.2.

Output. Returns an ordered tuple 〈R,D〉, where R (≡ Q[r, 1 : r]) and D (≡ Q[1 : r, r]) are
the right and bottom boundaries of Q[1 : r, 1 : r], respectively.

1. if r = 1 then R = D ← f (〈 u, v 〉, 〈 X, Y 〉, L ∪ T)

2. else

3. Extract L1,j from L, and Ti,1 from T , respectively, where i, j ∈ [1, 2]

4. quadrant[1 : 4]← 〈 〈 1, 1 〉, 〈 1, 2 〉, 〈 2, 1 〉, 〈 2, 2 〉 〉
5. for l← 1 to 4 do

6. 〈 i, j 〉 ← quadrant[l],

〈 Rij , Dij 〉 ← Compute-Boundary-2D(Xi, Yj , L′
ij , T ′

ij)

7. Compose R from R2,j , and D from Di,2, respectively, where i, j ∈ [1, 2]

8. return 〈 R, D 〉

Compute-Boundary-2D Ends

Figure D.1: Evaluating recurrence 8.2.3 cache-obliviously for d = 2 without a trace-
back path. We assume for simplicity that n = 2q for some integer q ≥ 0. In
initial call to Compute-Traceback-Path-2D, X = x1x2 . . . xn, Y = y1y2 . . . yn,
L ≡ c[0, 0 : n] and T ≡ c[0 : n, 0].

222

Function D.0.5. Compute-Traceback-Path-2D(X, Y, L, T, P)

Input. Here r = |X| = |Y | = 2t for some integer t ∈ [1, p], and Q[0 : r, 0 : r] ≡ c[u − 1 :
u + r− 1, v− 1 : v + r− 1], X = xuxu+1 . . . xu+r−1 and Y = yvyv+1 . . . yv+r−1 for some u and v
(1 ≤ u, v ≤ n− r + 1). The left and top boundaries of Q[1 : r, 1 : r] are in L (≡ Q[0, 0 : r])
and T (≡ Q[0 : r, 0]), respectively. The current traceback path is given in P .

Output. Returns the updated traceback path.

1. if P ∩Q = ∅ return P

2. if r = 1 then update P using recurrence 8.2.3 for d = 2

3. else { For i, j ∈ [1, 2], the left, right, top and bottom boundaries of quadrant Qij

are denoted by Lijk, Rijk, Tijk and Dijk, respectively. X1 and X2 denote

the 1st and the 2nd half of X, respectively (similarly for Y).}
4. Extract L1,j from L, and Ti,1 from T , where i, j ∈ [1, 2]

{ L2,j ≡ R1,j and Ti,2 ≡ Di,1 for i, j ∈ [1, 2] }
5. quadrant[1 : 4]← 〈 〈 1, 1 〉, 〈 1, 2 〉, 〈 2, 1 〉, 〈 2, 2 〉 〉
6. for l← 1 to 3 do {forward pass (compute boundaries)}
7. 〈 i, j 〉 ← quadrant[l],

〈 Rijk, Dijk 〉 ← Compute-Boundary-2D(Xi, Yj , L′
ijk, T ′

ijk)˘
if Lij ≡ Q[i′, j1 : j2] then L′

ij ≡ Q[i′, j1 − 1 : j2]; similarly for Bij and Tij .
¯

8. for l← 4 downto 1 do {backward pass (compute traceback path)}
9. 〈 i, j 〉 ← quadrant[l],

P ← Compute-Traceback-Path-2D(Xi, Yj , L′
ij , T ′

ijk, P)

10. return P

Compute-Traceback-Path-2D Ends

Figure D.2: Evaluating recurrence 8.2.3 cache-obliviously for d = 2 along with a
traceback path. We assume for simplicity that n = 2q for some integer q ≥ 0. In
initial call to Compute-Traceback-Path-2D, X = x1x2 . . . xn, Y = y1y2 . . . yn,
L ≡ c[0, 0 : n], T ≡ c[0 : n, 0] and P = 〈(n, n)〉.

223

Bibliography

[1] 9th DIMACS implementation challenge - shortest paths. url:

http://www.dis.uniroma1.it/~challenge9/.

[2] Fujitsu MAP3147NC/NP MAP3735NC/NP MAP3367NC/NP disk drives

product/maintenance manual.

[3] A. Aggarwal and J. Vitter. The input/output complexity of sorting and related

problems. Communications of the ACM.

[4] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer

Algorithms. Addison-Wesley, 1974.

[5] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast estimation pf

diameter and shortest paths (without matrix multiplication). SIAM Journal

on Computing, 28:1167–1181, 1999.

[6] T. Akutsu. Dynamic programming algorithms for RNA secondary structure

prediction with pseudoknots. Discrete Applied Mathematics, 104:45–62, 2000.

[7] L. Allulli, P. Lichodzijewski, and N. Zeh. A faster cache-oblivious shortest-path

algorithms for undirected graphs with bounded edge lengths. In Proceedings of

the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 910–

919, New Orleans, Louisiana, 2007.

[8] S. Altschul and B. Erickson. Optimal sequence alignment using affine gap

costs. Bulletin of Mathematical Biology, 48:603–616, 1986.

[9] ARC/INFO. Understanding GIS – the ARC/INFO method. ARC/INFO, 1993.

Rev. 6 for workstations.

224

[10] L. Arge. The buffer tree: A new technique for optimal I/O-algorithms (ex-

tended abstract). In Proceedings of the 4th International Workshop on Algo-

rithms and Data Structures, LNCS 955, pages 334–345. Springer-Verlag, 1995.

[11] L. Arge, M. Bender, E. Demaine, B. Holland-Minkley, and J. Munro. Cache-

oblivious priority queue and graph algorithm applications. In Proceedings of

the 24th ACM Symposium on Theory of Computing.

[12] L. Arge, G. Brodal, and L. Toma. On external-memory MST, SSSP, and multi-

way planar graph separation. In Proceedings of the 7th Scandinavian Workshop

on Algorithm Theory, LNCS 1851, pages 433–447. Springer-Verlag, 2000.

[13] L. Arge, U. Meyer, and L. Toma. External-memory algorithms for diame-

ter and all-pairs shortest-paths on sparse graphs. In Proceedings of the 31st

International Colloquium on Automata, Languages, and Programming, pages

146–157, Turku, Finland, 2004.

[14] P. Ashar and M. Cheong. Efficient breadth-first manipulation of binary deci-

sion diagrams. In Proceedings of the IEEE International Conference on Com-

puter Aided Design, pages 622–627, San Jose, California, 1994.

[15] D. Bader and K. Madduri. GTgraph: A suite of synthetic graph generators.

url: http://www-static.cc.gatech.edu/~kamesh/GTgraph/.

[16] V. Bafna and N. Edwards. On de novo interpretation of tandem mass spectra

for peptide identification. In Proceedings of the 7th Annual International Con-

ference on Research in Computational Molecular Biology, pages 9–18, Berlin,

Germany, 2003.

[17] R. Bellman. Dynamic Programming. The Princeton University Press, Prince-

ton, New Jersey, 1957.

[18] G. Blelloch and P. Gibbons. Effectively sharing a cache among threads. In

Proceedings of the 16th ACM Symposium on Parallelism in Algorithms and

Architectures, pages 235–244, Barcelona, Spain, 2004.

[19] R. Blumofe, M. Frigo, C. Joerg, C. Leiserson, and K. Randall. An analysis of

DAG-consistent distributed shared-memory algorithms. In Proceedings of the

225

8th ACM Symposium on Parallel Algorithms and Architectures, pages 297–308,

1996.

[20] R. Brent. The parallel evaluation of general arithmetic expressions. Journal

of the ACM, 21:201–206, 1974.

[21] G. Brodal. Cache-oblivious algorithms and data structures. In Proceedings of

the 9th Scandinavian Workshop on Algorithm Theory, LNCS 3111, pages 3–13,

Humlebæk, Denmark, 2004. Springer-Verlag.

[22] G. Brodal and R. Fagerberg. Funnel heap – a cache oblivious priority queue.

In Proceedings of the 13th Annual International Symposium on Algorithms and

Computation, LNCS 2518, Vancouver, BC, Canada. Springer-Verlag.

[23] G. Brodal and R. Fagerberg. On the limits of cache-obliviousness. In Pro-

ceedings of the 35th Annual ACM Symposium on Theory of Computing, pages

307–315, San Diego, California, 2003.

[24] G. Brodal, R. Fagerberg, U. Meyer, and N. Zeh. Cache-oblivious data struc-

tures and algorithms for undirected breadth-first search and shortest paths.

In Proceedings of the 3rd Scandinavian Workshop on Algorithm Theory, pages

480–492, Humlebæk, Denmark, July 2004.

[25] A. Buchsbaum, M. Goldwasser, S. Venkatasubramanian, and J. Westbrook.

On external memory graph traversal. In Proceedings of the 11th ACM-SIAM

Symposium on Discrete Algorithms, pages 859–860, 2000.

[26] A. Buchsbaum and J. Westbrook. Maintaining hierarchical graph views. In

Proceedings of the 11th ACM-SIAM Symposium on Discrete Algorithms, pages

566–575, 2000.

[27] J. Cannone, S. Subramanian, M. Schnare, J. Collett, L. D’Souza, Y. Du,

B. Feng, N. Lin, L. Madabusi, K. Muller, N. Pande, Z. Shang, N. Yu,

and R. Gutell. The comparative RNA web (CRW) site: An online

database of comparative sequence and structure information for ribosomal,

intron, and other RNAs. BioMed Central Bioinformatics, 3:2, 2002. url:

http://www.rna.icmb.utexas.edu/.

226

[28] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A recursive model for

graph mining. In Proceedings of the 4th SIAM International Conference on

Data Mining, Orlando, Florida, 2004.

[29] S. Chatterjee, A. Lebeck, P. Patnala, and M. Thotethodi. Recursive array

layouts and fast parallel matrix multiplication. In Proceedings of the 11th

ACM Symposium on Parallel Algorithms and Architectures, pages 222–231,

1999.

[30] C. Cherng and R. Ladner. Cache efficient simple dynamic programming. In

Proceedings of the International Conference on the Analysis of Algorithms,

pages 49–58, Barcelona, Spain, 2005.

[31] Y. Chiang, M. Goodrich, E. Grove, R. Tamassia, D. Vengroff, and J. Vitter.

External-memory graph algorithms. In Proceedings of the 6th ACM-SIAM

Symposium on Discrete Algorithms, pages 139–149, 1995.

[32] R. Chowdhury and V. Ramachandran. Cache-oblivious shortest paths in

graphs using buffer heap. In Proceedings of the 16th ACM Symposium on

Parallelism in Algorithms and Architectures, pages 245–254, Barcelona, Spain,

June 2004.

[33] R. Chowdhury and V. Ramachandran. External-memory exact and approxi-

mate all-pairs shortest paths in undirected graphs. In Proceedings of the 16th

ACM-SIAM Symposium on Discrete Algorithms, pages 735–744, Vancouver,

BC, Canada, 2005. More details can be found in the technical report with the

same title, TR-04-38, CS Dept., UT Austin, August 2004.

[34] R. Chowdhury and V. Ramachandran. Cache-oblivious dynamic programming.

In Proceedings of the 17th ACM-SIAM Symposium on Discrete Algorithms,

pages 591–600, Miami, Florida, 2006.

[35] R. Chowdhury and V. Ramachandran. The cache-oblivious gaussian elim-

ination paradigm: Theoretical framework, parallelization and experimental

evaluation. In Proceedings of the 19th ACM Symposium on Parallelism in

Algorithms and Architectures, pages 71–80, San Diego, California, 2007.

227

[36] T. Cormen. Virtual Memory for Data Parallel Computing. PhD thesis, Depart-

ment of Electrical Engineering and Computer Science, Massachusetts Institute

of Technology, 1992.

[37] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms.

The MIT Press, second edition, 2001.

[38] R. Cromp. An intelligent information fusion system for handling the archiving

and querying of terabyte–sized spatial databases. In S. Tate, editor, Report on

the Workshop on Data and Image Compression Needs and Uses in the Scientific

Community, pages 75–84. CESDIS Technical Report Series, 1993.

[39] P. D’Alberto and A. Nicolau. R-Kleene: a high-performance divide-and-

conquer algorithm for the all-pair shortest path for densely connected networks.

Algorithmica, 47(2):203–213, 2007.

[40] R. Dementiev. STXXL homepage, documentation and tutorial. url:

http://stxxl.sourceforge.net/.

[41] R. Dementiev, L. Kettner, and P. Sanders. STXXL: Standard template library

for XXL data sets. In Proceedings of the 13th Annual European Symposium on

Algorithms, LNCS 1004, pages 640–651. Springer-Verlag, 2005.

[42] T. DeSantis, I. Dubosarskiy, S. Murray, and G. Andersen. Comprehen-

sive aligned sequence construction for automated design of effective probes

(cascade-p) using 16S rDNA. Bioinformatics, 19:1461–1468, 2003. url:

http://greengenes.llnl.gov/16S/.

[43] E. Dijkstra. A note on two problems in connection with graphs. Numerische

Mathematik, 1:269–271, 1959.

[44] D. Dor, S. Halperin, and U. Zwick. All pairs almost shortest paths. SIAM

Journal on Computing, 29:1740–1759, 2000.

[45] S. Dreyfus and A. Law. The Art and Theory of Dynamic Programming. Aca-

demic Press Inc., 1977.

[46] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis.

Cambridge University Press, 1998.

228

[47] P. Erdös and A. Rényi. On the evolution of random graphs. Mat. Kuttató.

Int. Közl., 5:17–60, 1960.

[48] R. Floyd. Algorithm 97 (SHORTEST PATH). Communications of the ACM,

5(6):345, 1962.

[49] J. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer Graphics: Principles

& Practice. Addison-Wesley, 1999.

[50] M. Fredman, R. Sedgewick, D. Sleator, and R. Tarjan. The pairing heap: A

new form of self-adjusting heap. Algorithmica, 1:111–129, 1986.

[51] M. Fredman and R. Tarjan. Fibonacci heaps and their use in improved network

optimization algorithms. Journal of the ACM, 34:596–615, 1987.

[52] M. Frigo, C. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious

algorithms. In Proceedings of the 40th Annual Symposium on Foundations of

Computer Science, pages 285–297, 1999.

[53] M. Frigo, C. Leiserson, and K. Randall. The implementation of the Cilk-5

multithreaded language. In Proceedings of the ACM SIGPLAN Conference on

Programming Language Design and Implementation, pages 212–223, Montreal,

Canada, 1998.

[54] M. Frigo and V. Strumpen. Cache-oblivious stencil computations. In Pro-

ceedings of the 19th ACM International Conference on Supercomputing, pages

361–366, Cambridge, Massachusetts, 2005.

[55] M. Frigo and V. Strumpen. The cache complexity of multithreaded cache obliv-

ious algorithms. In Proceedings of the 18th ACM Symposium on Parallelism

in Algorithms and Architectures, pages 271–280, Cambridge, Massachusetts,

2006.

[56] Z. Galil and R. Giancarlo. Speeding up dynamic programming with applica-

tions to molecular biology. Theoretical Computer Science, 64:107–118, 1989.

[57] Z. Galil and K. Park. Parallel algorithms for dynamic programming recur-

rences with more than o (1) dependency. Journal of Parallel and Distributed

Computing, 21:213–222, 1994.

229

[58] R. Giegerich, C. Meyer, and P. Steffen. A discipline of dynamic programming

over sequence data. Science of Computer Programming, 51(3):215–263, 2004.

[59] G. Golub and C. Van Loan. Matrix Computations. The John Hopkins Univer-

sity Press, third edition, 1996.

[60] K. Goto. GotoBLAS, 2005. url: http://www.tacc.utexas.edu/resources/software.

[61] O. Gotoh. An improved algorithm for matching biological sequences. Journal

of Molecular Biology, 162:705–708, 1982.

[62] R. Graham, D. Knuth, and O. Patashnik. Concrete Mathematics: A Founda-

tion for Computer Science. Addison-Wesley, second edition, 1994.

[63] J. Grice, R. Hughey, and D. Speck. Reduced space sequence alignment. Com-

puter Applications in the Biosciences, 13(1):45–53, 1997.

[64] R. Grossi and G. Italiano. Efficient cross-trees for external memory. In J. Abello

and J. Vitter, editors, External Memory Algorithms and Visualization, pages

87–106. American Mathematical Society Press, Providence, RI, 1999.

[65] R. Grossi and G. Italiano. Revised version of “Efficient cross-trees for external

memory”. Technical Report TR-00-16, Dipartimento di Informatica, Università

de Pisa, Pisa, Italy, 2000.

[66] J. Gunnels, F. Gustavson, G. Henry, and R. van de Geijn. FLAME: For-

mal linear algebra methods environment. ACM Transactions on Mathematical

Software, 27(4):422–455, 2001.

[67] D. Gusfield. Algorithms on Strings, Trees and Sequences. Cambridge University

Press, New York, 1997.

[68] L. Haas and W. Cody. Exploiting extensible DBMS in integrated geographic

information systems. In Proceedings of the 2nd International Symposium on

Advances in Spatial Databases, LNCS 525, pages 423–450. Springer-Verlag,

1991.

[69] P. Hayes, D. Joyce, and P. Pathak. Ubiquitous learning – an application

of mobile technology in education. In Proceedings of the World Conference

230

on Educational Multimedia, Hypermedia and Telecommunications, volume 1,

Lugano, Switzerland.

[70] D. Hirschberg. A linear space algorithm for computing maximal common sub-

sequences. Communications of the ACM, 18(6):341–343, 1975.

[71] D. Hirschberg and L. Larmore. The least weight subsequence problem. SIAM

Journal on Computing, 16(4):628–638, 1987.

[72] C. Hoare. Algorithm 63 (PARTITION) and algorithm 65 (FIND). Communi-

cations of the ACM, 4(7):321–322, 1961.

[73] C. Hoare. Quicksort. Computer Journal, 5(1):10–15, 1962.

[74] J. Hong and H. Kung. I/O complexity: the red-blue pebble game. In Pro-

ceedings of the 13th Annual ACM Symposium on Theory of Computing, pages

326–333, 1981.

[75] K. Iversion. A Programming Language. Wiley, 1962.

[76] P. Kanellakis, S. Ramaswamy, D. Vengroff, and J. Vitter. Indexing for data

models with constraints and classes. In Proceedings of the 12th ACM Sympo-

sium on Principles of Database Systems, pages 233–243, 1993.

[77] I. Katriel and U. Meyer. Elementary graph algorithms in external memory. In

U. Meyer, P. Sanders, and J. Sibeyn, editors, Algorithms for Memory Hierar-

chies, LNCS 2625. Springer-Verlag.

[78] J. Kleinberg and E. Tardos. Algorithm Design. Addison-Wesely, 2005.

[79] B. Knudsen. Multiple parsimony alignment with “affalign”. Software package

multalign.tar.

[80] B. Knudsen. Optimal multiple parsimony alignment with affine gap cost using

a phylogenetic tree. In Proceedings of Workshop on Algorithms in Bioinfor-

matics, pages 433–446, 2003.

[81] D. Knuth. The Art of Computer Programming – Sorting and Searching, vol-

ume 3. Addison-Wesley, 1973.

231

[82] D. Knuth. Two notes on notation. American Mathematical Monthly, 99:403–

422, 1992.

[83] V. Kumar and E. Schwabe. Improved algorithms and data structures for solv-

ing graph problems in external memory. In Proceedings of the 8th IEEE Sym-

posium on Parallel and Distributed Processing, pages 169–177, 1996.

[84] A. LaMarca and L. R. The influence of caches on the performance of heaps.

Journal of Experimental Algorithmics, 1:4, 1996.

[85] D. Lan Roche. Experimental study of high performance priority queues,

2007. Undergraduate Honors Thesis, CS-TR-07-34, The University of Texas

at Austin, Department of Computer Sciences.

[86] R. Laurini and A. Thompson. Fundamentals of Spatial Information Systems.

Academic Press, 1992.

[87] H. Le. Algorithms for identification of patterns in biogeography and median

alignment of three sequences in bioinformatics, 2006. Undergraduate Hon-

ors Thesis, CS-TR-06-29, The University of Texas at Austin, Department of

Computer Sciences.

[88] K. Mehlhorn and U. Meyer. External-memory breadth-first search with sub-

linear I/O. In Proceedings of the 10th European Symposium on Algorithms,

LNCS 2461, pages 723–735. Springer-Verlag, 2002.

[89] U. Meyer and N. Zeh. I/O-efficient undirected shortest paths. In Proceedings

of the 11th European Symposium on Algorithms, LNCS 2832, pages 434–445.

Springer-Verlag, 2003.

[90] B. Moret and H. Shapiro. An empirical assessment of algorithms for construct-

ing a minimum spanning tree. In DIMACS Series on Discrete Mathematics

and Theoretical Computer Science. 1994.

[91] S. Muchnick. Advanced Compiler Design & Implementation. Morgan Kauf-

mann Publishers, Inc., 1997.

[92] K. Munagala and A. Ranade. I/O-complexity of graph algorithms. In Pro-

ceedings of the 10th ACM-SIAM Symposium on Discrete Algorithms, pages

687–694, 1999.

232

[93] E. Myers and W. Miller. Optimal alignments in linear space. Computer Ap-

plications in the Biosciences, 4(1):11–17, 1988.

[94] S. Pan, C. Cherng, K. Dick, and R. Ladner. Algorithms to take advantage

of hardware prefetching. In Proceedings of the 9th Workshop on Algorithm

Engineering and Experiments, pages 91–98, 2007.

[95] J. Park, M. Penner, and V. Prasanna. Optimizing graph algorithms for im-

proved cache performance. IEEE Transactions on Parallel and Distributed

Systems, 15(9):769–782, 2004.

[96] W. Pearson and D. Lipman. Improved tools for biological sequence comparison.

In Proceedings of the National Academy of Sciences of the USA, volume 85,

pages 2444–2448, 1988.

[97] S. Pettie. Towards a final analysis for pairing heaps. In Proceedings of the

46th Annual IEEE Symposium on Foundations of Computer Science, pages

174–183, 2005.

[98] S. Pettie and V. Ramachandran. Command line tools

generating various families of random graphs. url:

http://www.dis.uniroma1.it/~challenge9/code/Randgraph.tar.gz.

[99] S. Pettie and V. Ramachandran. Computing shortest paths with comparisons

and additions. In Proceedings of the 13th ACM-SIAM Symposium on Discrete

Algorithms, pages 713–722, San Francisco, CA, 2002.

[100] D. Powell. Software package align3str_checkp.tar.gz.

[101] D. Powell, L. Allison, and T. Dix. Fast, optimal alignment of three sequences

using linear gap cost. Journal of Theoretical Biology, 207(3):325–336, 2000.

[102] D. Powell, L. Allison, and T. Dix. Automated empirical optimization of soft-

ware and the ATLAS project. Parallel Computing, 27(1–2):3–35, 2001. url:

http://math-atlas.sourceforge.net.

[103] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling. Numerical Recipes:

The Art of Scientific Computing. Cambridge University Press, 1986.

233

[104] H. Prokop. Cache-oblivious algorithms. Master’s thesis, Department of Elec-

trical Engineering and Computer Science, MIT, June 1999.

[105] S. Ramaswamy and S. Subramanian. Path caching: A technique for optimal

external searching. In Proceedings of the 13th ACM Symposium on Principles

of Database Systems, pages 25–35, Vancouver, BC, Canada, 1994.

[106] E. Rivas and S. Eddy. A dynamic programming algorithm for RNA structure

prediction including pseudoknots. 285(5):2053–2068, 1999.

[107] W. Rytter. On efficient parallel computations for some dynamic programming

problems. Theoretical Computer Science, 59:297–307, 1988.

[108] H. Samet. The Design and Analyses of Spatial Data Structures. Addison-

Wesley, 1989.

[109] P. Sanders. Fast priority queues for cached memory. Journal of Experimental

Algorithmics, 5:1–25, 2000.

[110] P. Sanders. Memory hierarchies – models and lower bounds. In U. Meyer,

P. Sanders, and J. Sibeyn, editors, Algorithms for Memory Hierarchies, LNCS

2625. Springer-Verlag, 2003.

[111] P. Sanders and D. Schultes. United states road networks

(tiger/line). Data Source: U.S. Census Bureau, Washington, DC, url:

http://www.dis.uniroma1.it/~challenge9/data/tiger/.

[112] J. Seward and N. Nethercote. Valgrind (debugging and profiling tool for x86-

Linux programs). url: http://valgrind.kde.org/index.html.

[113] D. Sleator and R. Tarjan. Amortized efficiency of list update and paging rules.

Communications of the ACM, 28(2):202–208, 1985.

[114] M. Sniedovich. Dynamic Programming. The Marcel Dekker, Inc., New York,

NY, 1992.

[115] J. Stasko and J. Vitter. Pairing heaps: experiments and analysis. Communi-

cations of the ACM, 30:234–249, 1987.

234

[116] G. Strang. Linear Algebra and its Applications. Harcourt Brace Jovanovich,

third edition, 1988.

[117] G. Tan, S. Feng, and S. Ninghui. Cache oblivious algorithms for nonserial

polyadic programming. The Journal of Supercomputing, 39(2):227–249, 2007.

[118] G. Tan, S. Ninghui, and G. Gao. A parallel dynamic programming algorithm

on a multi-core architecture. In Proceedings of the 19th ACM Symposium

on Parallelism in Algorithms and Architectures, pages 135–144, San Diego,

California, 2007.

[119] J. Thomas, J. Touchman, R. Blakesley, G. Bouffard, S. Beckstrom-Sternberg,

E. Margulies, M. Blanchette, A. Siepel, P. Thomas, J. McDowell, B. Maskeri,

N. Hansen, M. Schwartz, R. Weber, W. Kent, D. Karolchik, T. Bruen, R. Be-

van, D. Cutler, S. Schwartz, L. Elnitski, J. Idol, A. Prasad, S. Lee-Lin,

V. Maduro, T. Summers, M. Portnoy, N. Dietrich, N. Akhter, K. Ayele, B. Ben-

jamin, K. Cariaga, C. Brinkley, S. Brooks, S. Granite, X. Guan, J. Gupta,

P. Haghihi, S. Ho, M. Huang, E. Karlins, P. Laric, R. Legaspi, M. Lim,

Q. Maduro, C. Masiello, S. Mastrian, J. McCloskey, R. Pearson, S. Stantripop,

E. Tiongson, J. Tran, C. Tsurgeon, J. Vogt, M. Walker, K. Wetherby, L. Wig-

gins, A. Young, L. Zhang, K. Osoegawa, B. Zhu, B. Zhao, C. Shu, P. De Jong,

C. Lawrence, A. Smit, A. Chakravarti, D. Haussler, P. Green, W. Miller, and

E. Green. Comparative analyses of multi-species sequences from targeted ge-

nomic regions. Nature, 424:788–793, 2003.

[120] S. Toledo. Locality of reference in LU decomposition with partial pivoting.

SIAM Journal on Matrix Analysis and Applications, 18(4):1065–1081, 1997.

[121] L. Toma and N. Zeh. I/O-efficient algorithms for sparse graphs. In U. Meyer,

P. Sanders, and J. Sibeyn, editors, Algorithms for Memory Hierarchies, LNCS

2625. Springer-Verlag, 2003.

[122] L. Tong. Implementation and experimental evaluation of the cache-oblivious

buffer heap, 2006. Undergraduate Honors Thesis, CS-TR-06-21, The University

of Texas at Austin, Department of Computer Sciences.

[123] J. Ullman and M. Yannakakis. The input/output complexity of transitive

closure. Annals of Mathematics and Artificial Intelligence, 3:331–360.

235

[124] L. Valiant. General context-free recognition in less than cubic time. Journal

of Compute and System Sciences, 10:308–315, 1975.

[125] D. Vengroff and J. Vitter. I/O–efficient scientific computation using TPIE. In

Proceedings of IEEE Symposium on Parallel and Distributed Computing, pages

74–77, 1995.

[126] V. Viswanathan, S. Huang, and H. Liu. Parallel dynamic programming. In

Proceedings of IEEE Conference on Parallel Processing, pages 497–500, 1990.

[127] J. Vitter. External memory algorithms and data structures: Dealing with

massive data. ACM Computing Surveys, 33(2):209–271, 2001.

[128] S. Warshall. A theorem on boolean matrices. Journal of the ACM, 9(1):11–12,

1962.

[129] M. Waterman. Introduction to Computational Biology. Chapman & Hall,

London, UK, 1995.

[130] J. Watson. The human genome project: Past, present and future. Science,

248:44–49, 1990.

[131] I. Wegner. BOTTOM-UP-HEAPSORT, a new variant of HEAPSORT, beat-

ing, on an average, QUICKSORT (if n is not very small). Theoretical Computer

Science, 118(1):81–98, 1993.

[132] J. Williams. Algorithm 232 (HEAPSORT). Communications of the ACM,

7:347–348, 1964.

[133] M. Wolf and M. Lam. A data locality optimizing algorithm. In Proceedings of

the ACM SIGPLAN 1991 Conference on Programming Language Design and

Implementation, pages 30–44, 1991.

[134] D. Womble, D. Greenberg, S. Wheat, and R. Riesen. Beyond core: Making

parallel computer I/O practical. In Proceedings of the 1993 DAGS/PC Sym-

posium, pages 56–63, 1993.

[135] K. Yotov, T. Roeder, K. Pingali, J. Gunnels, and F. Gustavson. An experimen-

tal comparison of cache-oblivious and cache-aware programs. In Proceedings

236

of the 19th ACM Symposium on Parallelism in Algorithms and Architectures,

pages 93–104, San Diego, California, 2007.

[136] U. Zwick. Exact and approximate distances in graphs – a survey. updated

version at http://www.cs.tau.ac.il/~zwick. In Proceedings of the 9th European

Symposium on Algorithms, LNCS 2161, pages 33–48. Springer-Verlag, 2001.

237

Vita

Rezaul Alam Chowdhury, the eldest son of Azam Chowdhury and Shajeda Kohinoor,

was born in Chittagong, a beautiful hilly city in Bangladesh lying on the banks

of the river Karnafuli near the shore of the Bay of Bengal. He graduated from

Bangladesh University of Engineering and Technology (BUET) in 1999 with a degree

in Computer Science & Engineering. After working for a couple of years in BUET he

entered the University of Texas at Austin to pursue a Ph.D. in Computer Sciences.

Permanent Address: 11/B NAEM Road

Flat 2a

Dhanmondi, Dhaka-1205

Bangladesh

This dissertation was typeset with LATEX2ε
1 by the author.

1LATEX2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of
the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin, and extended
by Bert Kay, James A. Bednar, and Ayman El-Khashab.

238

