Copyright by

Wandi Zhang
2019

The Dissertation Committee for Wandi Zhang Certifies that this is the approved version of the following Dissertation:

Transition-Metal Catalyzed Redox Triggered C-C Bond Forming Reactions via Carbonyl Addition

Committee:

Michael J. Krische, Supervisor

Stephen F. Martin

Hung-Wen (Ben) Liu

Emily L. Que

Simon M. Humphrey

Transition-Metal Catalyzed Redox Triggered C-C Bond Forming Reactions via Carbonyl Addition

by

Wandi Zhang

Dissertation

Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Dedication

To my parents

Acknowledgements

First, I must thank Prof. Krische for the guidance and mentorship during my graduate studies. Thank you for creating such a thriving research environment which allow me to develop skills to be a chemist.

The work included in this dissertation won't be done without the collaboration of many talented and hardworking Krische group members and UT chemistry department staff. I am grateful for the opportunity to work with Tao, and Khao when I just joined the group for their mentorship and instruction on projects. I also must thank Weijie, Hongde, Johannes, James, Ming, Rob, Will, Brian for their support and collaboration on projects. Thanks are also due to Steve, Angela, and Vincent for their assistant with NMR studies and solving X-ray crystal structures.

Finally, I would like to thank my friends and family for their encouragement and support. To my parents: Your unconditional love and understanding has carried me through both good times and bad. Cannot wait to see you in the commencement. To Tom, Ryan, Hiroki: I'm so grateful for our friendship both in and out of lab. So lucky for working in the same lab/office with you and I really enjoyed it. To Xue and Mengxuan, my BFF: Thank you girls for always being there for me even though we are far apart.

Abstract
 Transition-Metal Catalyzed Redox Triggered C-C Bond Forming Reactions via Carbonyl Addition

Wandi Zhang, Ph.D.

The University of Texas at Austin, 2019

Supervisor: Michael J. Krische

Carbon-carbon ($\mathrm{C}-\mathrm{C}$) bonds construct the skeleton of all organic molecules. Hence, the development of new efficient methods of $\mathrm{C}-\mathrm{C}$ bond formation is of great significance in organic chemistry. Since the discovery of the Grignard reaction, carbonyl addition has been an established method for $\mathrm{C}-\mathrm{C}$ bond formation. In classical carbonyl additions, premetalated reagents or stoichiometric metallic reductants are required. By taking advantage of the native reducing capability of alcohols, our lab has developed methods that exploit alcohols and π-unsaturates to generate transient electrophile-nucleophile pairs to directly convert lower alcohols to higher alcohol. Efforts have been focused on the development of transition metal-catalyzed redox-triggered coupling reactions of primary alcohols and aldehydes to π-unsaturates as well as aryl iodides. Modern methods to construct new C-C bonds in highly selective manner via carbonyl addition were undertaken.

Table of Contents

List of Tables x
List of Figures xiii
List of Schemes xiv
Chapter 1: Metal-Catalyzed Reductive Coupling of Aryl Halides and Carbonyl Compounds beyond Nozaki-Hiyama-Kishi Reaction. 1
1.1 Introduction and Historical Perspective 1
1.2 Reductive Coupling with Aldehydes 3
1.2.1 Nickel 3
1.2.2 Palladium 8
1.2.3 Rhodium 10
1.2.4 Cobalt 12
1.3 Reductive Coupling with Ketones 13
1.3.1 Palladium 13
1.3.2 Nickel 17
1.4 Reductive Coupling with Acid Chlorides and Anhydrides 18
1.4.1 Cobalt 18
1.4.2 Palladium 20
1.5 Reductive Coupling with Carbon Dioxide 22
1.5.1 Palladium 22
1.5.2 Nickel 28
1.5.3 Copper 31
1.6 Reductive Coupling with Isocyanates and Other Carbonyl Sources 32
1.6.1 Nickel 32
1.6.2 Palladium 37
1.7 Conclusion 38
Chapter 2: Enantioselective Ruthenium Catalyzed Redox-Triggered Carbonyl Allylation Using Alkynes as Chiral Allylmetal Equivalents via Allene Hydrometalation 39
2.1 Introduction 39
2.2 Reaction Development and Scope 41
2.3 Mechanism and Discussion 45
2.4 Conclusion 47
2.5 Experimental Details 48
Chapter 3: Siloxy-Crotylation of Primary Alcohols by Coupling with Propargyl Ethers via Novel Hydride Shift Enabled Formation of Allylruthenium from Alkynes 117
3.1 Introduction 117
3.2 Reaction Development and Scope 119
3.3 Mechanism and Discussion 125
3.4 Conclusion 128
3.5 Experimental Details 129
Chapter 4: Iridium Catalyzed (Z) - Selective Siloxy-Allylation of Primary Alcohols by Coupling with Terminal Propargyl Ether via 1,2-Hydride Shift Mechanism 234
4.1 Introduction 234
4.2 Reaction Development and Scope 235
4.3 Mechanism and Discussion 239
4.4 Conclusion 242
4.5 Experimental Details 243
Chapter 5: Ruthenium Catalyzed Redox-Triggered Carbonyl anti-(α-Amino)allylationby Coupling with Acetylenic Pyrrole311
5.1 Introduction 311
5.2 Reaction Development and Scope 312
5.3 Mechanism and Discussion 316
5.4 Conclusion 317
5.5 Experimental Details 317
Chapter 6: Enantioselective Iridium Catalyzed anti-(α-Aryl)allylation of Fluoral Hydrate and Difluoroacetaldehyde Ethyl Hemiacetal 396
6.1 Introduction 396
6.2 Reaction Development and Scope 397
6.3 Mechanism and Discussion 402
6.4 Conclusion 403
6.5 Experimental Details 404
Chapter 7: Rhodium Catalyzed Formate Mediated Reductive Coupling of Aldehydes and Aryl Iodides 557
7.1 Introduction 557
7.2 Reaction Development and Scope 558
7.3 Mechanism and Discussion 562
7.4 Conclusion 564
7.5 Experimental Details 565
References 623

List of Tables

Table 2.1 Selective Optimizations of Formation of Branched Adduct 2.3a by Partitioning of Hydrometalation and Oxidative Pathways. 42

Table 2.2 Diastereoselective and Enantioselective Formation of Branched Homoallylic Alcohol 2.3a-2.31.

Table 2.3 Diastereoselective and Enantioselective Formation of Branched Homoallylic Alcohol 2.3m-2.3r.44

Table 2.4 Crystal data and structure refinement for 2.3m. 106
Table 2.5 Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{2 . 3 m}$. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.107

Table 2.6 Bond lengths $\left[\AA\right.$] and angles [${ }^{\circ}$] for 2.3m... 109
Table 2.7 Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{2 . 3 m}$. The anisotropic displacement factor exponent takes the form: $-2 p^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h\right.$ k a* b* U^{12}].. 112

Table 2.8 Hydrogen coordinates ($\mathrm{x} 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \mathrm{x}\right.$ 10^{3}) for 2.3m... 113

Table 2.9 Torsion angles [${ }^{\circ}$] for 2.3m... 115
Table 2.10 Hydrogen bonds for 2.3m [\AA and ${ }^{\circ}$]. .. 116
Table 3.1 Diastereoselective and Enantioselective Formation of 1,4-Diols 3.1a3.50

Table 3.2 Formation of trans-2,3-Disubstituted Furans 3.6a, 3.6c, 3.6e, 3.6f, 3.6k,
3.6m from Diol Adducts. .123

Table 3.3 Formation of trans-4,5-Disubstituted γ-Butyrolactones 3.7a, 3.71, and 3.7p from C-C Coupling Adducts. 124

Table 3.4. Crystal data and structure refinement for $\mathbf{3 . 5}$ c.
Table 3.5. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{3 . 5 c} . U(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor. ... 223

Table 3.6. Bond lengths $[\AA]$ and angles [${ }^{\circ}$] for 3.5c. ... 224
Table 3.7. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 3.5c. The anisotropic displacement factor exponent takes the form: $-2 p^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h\right.$ k a* b* U^{12}].. 227
Table 3.8. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters

$$
\left(\AA^{2} \times 10^{3}\right) \text { for 3.5c... } 228
$$

Table 3.9. Torsion angles [${ }^{\circ}$] for $\mathbf{3 . 5 c}$. 229
Table 3.10. Hydrogen bonds for 3.5c [\AA and ${ }^{\circ}$]. 230
Table 4.1 Selective Optimization for Formation of γ-Hydroxy Enol Silane 4.3c. 236
Table 4.2 Iridium Catalyzed Formation of γ-Hydroxy Enol Silanes 4.3a-4.31. 238
Table 5.1 Diastereoselective and Enantioselective Formation of 1,4-Diols 3.1a-
3.50 313
Table 5.2. Crystal data and structure refinement for 5.4b. 385Table 5.3. Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacementparameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{5 . 4 b} . U(e q)$ is defined as one third of the traceof the orthogonalized Uij tensor. .. 386
Table 5.4. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for 5.4b 387
Table 5.5. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{5 . 4 b}$. The anisotropicdisplacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{*} U^{11}+\ldots+2 h\right.$$\left.\mathrm{ka}^{*} \mathrm{~b}^{*} \mathrm{U}^{12}\right]$.389

Table 5.6. Hydrogen coordinates ($\mathrm{x} 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \mathrm{x}\right.$
\qquad
Table 5.7. Torsion angles [${ }^{\circ}$] for $\mathbf{5 . 4 b}$. .391

Table 5.8. Hydrogen bonds for 5.4b [\AA and ${ }^{\circ}$]. ... 392
Table 6.1 Correlation between Enantioselectivity with Carbonyl Electrophilicity in Carbonyl reductive (α-Aryl)allylation. ... 397

Table 6.2 Iridium Catalyzed Enantioselective Reductive Coupling of Fluoral Hydrate 6.1i to Form CF_{3}-Bearing Adducts 6.4a-6.41.. 399

Table 6.3 Iridium Catalyzed Enantioselective Reductive Coupling of Difluoroacetaldehyde Ethyl Hemiacetal $\mathbf{6 . 1 j}$ to Form CHF_{2}-Bearing Adducts 6.5a6.51. .400

Table 7.1 Selected Optimization Experiments for Carbonyl Arylation to Form
\qquad
Table 7.2 Formate Mediated Reductive Coupling of Aldehydes 7.1a-7.1u to Aryl Iodides 7.2a-7.2u to Form Adducts 7.3a-7.3u. 561

List of Figures

Figure 2.1 View of 2.3m showing the atom labeling scheme. Displacement ellipsoids are scaled to the 50% probability level. 116

Figure 3.1 Enantioselective Carbonyl Crotylation Strategies................................... 118
Figure 3.2. View of $\mathbf{3 . 5} \mathbf{c}$ showing the atom labeling scheme. Displacement ellipsoids are scaled to the 50% probability level. .231

Figure 4.1 Enantioselective Carbonyl Crotylation Strategies................................... 235
Figure 5.1 Classical Carbonyl (α-Amino)allylation and Catalytic Carbonyl (α Amino)allylation via Coupling of Alcohols with Alkyne..................... 312

Figure 5.2. View of $\mathbf{5 . 4 b}$ showing the atom labeling scheme. Displacement ellipsoids are scaled to the 50% probability level. 393

Figure 6.1 Proposed Stereochemical Model for Iridium Catalyzed Enantioselective Carbonyl anti-(α-aryl)allylation. .402
Figure 7.1 Carbonyl Arylation Strategies Comparison. 558

List of Schemes

Scheme 1.1 Carbonyl Arylation via Arylmetal Reagents and Metal Catalyzed

$$
\text { Reductive Coupling Strategies... } 2
$$

Scheme 1.2 Ni/Cr-Catalyzed Aryl Halide-Aldehyde Reductive Coupling. 4
Scheme 1.3 Catalytic Mechanism for Ni/Cr-Catalyzed Aryl Halide-Aldehyde Reductive Coupling. ... 5

Scheme 1.4 Ni-Catalyzed Aryl Halide-Aldehyde Reductive Coupling for Form Alcohol Adducts.

Scheme 1.5 Catalytic Mechanism for Ni-Catalyzed Aryl Halide-Aldehyde Reductive Coupling... 7

Scheme 1.6 Ni-Catalyzed Reductive Coupling of o-Haloesters with Aldehydes to Form Phthalide Derivatives. .7

Scheme 1.7 Pd/Cr-Catalyzed Reductive Coupling of Aryl Halides with
\qquad
Scheme 1.8 Pd-Catalyzed Intramolecular Reductive Coupling of Aryl Iodides with Aldehydes.

Scheme 1.9 Pd-Catalyzed Reductive Coupling of Aryl Bromides with Paraformaldehyde.10

Scheme 1.10 Rh-Catalyzed Reductive Coupling of Aryl Iodides with Aldehydes in
Water. 10
Scheme 1.11 Catalytic Mechanism of Rh-Catalyzed Reductive Coupling of Aryl Iodides with Aldehydes in Water. 11
Scheme 1.12 Rh-Catalyzed Formate Mediated Reductive Coupling of Aryl Iodides with Aldehydes. 12

Scheme 1.13 Catalytic Mechanism of Rh-Catalyzed Formate Mediated Reductive Coupling of Aryl Iodides with Aldehydes in Water
 12

Scheme 1.14 Co-Catalyzed Reductive Coupling of o-Haloesters with Aldehydes to Form Phthalide Derivatives.

Scheme 1.15 Pd-Catalyzed Intramolecular Reductive Coupling of Aryl Halides with Aldehydes to Form the Cyclization Adducts. 14

Scheme 1.16 Proposed Mechanism for α-Arylation and Carbonyl Addition of 2-
\qquad
Scheme 1.17 Pd-Catalyzed Intramolecular Reductive Coupling of Aryl Halides with Aldehydes to Form 3-Hydroxy-2-Oxindoles. 16

Scheme 1.18 Ni-Catalyzed Intramolecular Reductive Coupling of Aryl Halides with Ketones17

Scheme 1.19 Co-Catalyzed Reductive Coupling of Aryl Bromides with Acid Chloride to Form Aromatic Ketones.19

Scheme 1.20 Co-Catalyzed Reductive Coupling of Aryl Bromides with Acid Anhydrides to Form Aromatic Ketones.19

Scheme 1.21 Pd-Catalyzed Reductive Coupling of Aryl Iodides and Acetic Anhydride to Form Acetophenones.21

Scheme 1.22 Proposed Mechanism for Pd-Catalyzed Reductive Coupling of Aryl Iodides and Acetic Anhydride to Form Acetophenones.

Scheme 1.23 Pd-Catalyzed Reductive Coupling of Aryl Iodides and Acetic Formic Anhydride to Form Aldehydes.21

Scheme 1.24 Pd-Catalyzed Reductive Coupling of Aryl Bromides and Carbon Dioxide to Form Carboxylic Acids.23

Scheme 1.25 Proposed Mechanism for Pd-Catalyzed Reductive Coupling of Aryl Bromides and Carbon Dioxide to Form Carboxylic Acids............... 23

Scheme 1.26 Pd-Catalyzed Reductive Coupling of Aryl Halides and Carbon Dioxide to Form Aldehydes. .25

Scheme 1.27 Proposed Mechanism for Pd-Catalyzed PMHS Mediated Reductive Coupling of Aryl Halides and Carbon Dioxide to Form Aldehydes 25

Scheme 1.28 Pd- and Photoredox-Catalyzed Reductive Coupling of Aryl Halides and Carbon Dioxide to Form the Corresponding Methyl Esters. 27

Scheme 1.29 Proposed Mechanism for Pd- and Photoredox-Catalyzed Reductive
Coupling of Aryl Halides and Carbon Dioxide to Form the Corresponding Methyl Ester.27

Scheme 1.30 Nickel Catalyzed Reductive Coupling of Aryl Halides and Carbon Dioxide to Form Carboxylic Acids.29

Scheme 1.31 Proposed Mechanism for Nickel Catalyzed Reductive Coupling of Aryl Halides and Carbon Dioxide to Form Carboxylic Acids.30

Scheme 1.32 Proposed Mechanism for Nickel-Photo Dual Catalyzed Reductive Coupling of Aryl Bromides and Carbon Dioxide to Form Carboxylic Acids.31

Scheme 1.33 Copper Catalyzed Reductive Coupling of Aryl Iodides and Carbon Dioxide to Form Carboxylic Acids.32

Scheme 1.34 Nickel Catalyzed Reductive Coupling of Aryl Halides and
\qquad
Scheme 1.35 Nickel Catalyzed Reductive Coupling of Aryl Iodides and Acetals to Form Diaryl Ethers. .34

Scheme 1.36 Photoredox, HAT, and Nickel Catalyzed Reductive Coupling of Aryl Bromides and Alcohols to Form Benzylic Alcohols. 35

Scheme 1.37 Palladium Catalyzed Reductive Coupling of Aryl Halides and Carbon
\qquad
Scheme 2.1 Enantioselective Carbonyl Allylation Strategies. 40
Scheme 2.2 Proposed General Catalytic Mechanism and Deuterium Labeling
\qquad
Scheme 3.1 Redox-Triggered Formation of Linear and Branched Homoallylic Alcohols via Alkyne-to-Allene Isomerization. 119

Scheme 3.2 Redox-Triggered Siloxyl Crotylation by Coupling of Proparyl Ether 3.1a and p-Bromobenzyl Alcohol 3.2c. .. 120

Scheme 3.3 Coupling of Propargyl Ether 3.1b and 3.1c with 3.2c to Form Diols.... 122
Scheme 3.4 Elaboration of Coupling Adducts. 125

Scheme 3.5 Deuterium Labelling Experiments and Proposed Hydride Shift
Mechanism. 126

Scheme 3.6 Proposed Ruthenium Catalyzed Carbonyl Siloxy-Crotylation Catalytic
\qquad
Scheme 4.1 Elaboration of Coupling Adducts to Form γ-Lactones and Furans.239

Scheme 4.2 Deuterium Labelling Experiments to Probe Reaction Mechanism. 240
Scheme 4.3 Proposed Iridium Catalyzed Carbonyl Siloxy-Crotylation Catalytical
Cycle .241

Scheme 5.1 Deprotection of Coupling Adducts to the Corresponding N-BocProtected Amino Alcohols315

Scheme 5.2 Competition Experiments Corroborating Rapid Reversible
Dehydrogenation with Respect to Carbonyl Addition.

Scheme 6.1 Synthesis of d-Hyoscyamine Derivatives 6.8a, and 6.8b. .401

Scheme 7.1 Deuterium Labelling Experiments and Proposed Catalytic Mechanism for Formate Mediated Arylation. .563

Chapter 1: Metal-Catalyzed Reductive Coupling of Aryl Halides and Carbonyl Compounds beyond Nozaki-Hiyama-Kishi Reaction

1.1 Introduction and Historical Perspective

Constructing new carbon-carbon(C-C) bonds is one of the most important tasks for organic chemists since the skeleton of organic molecules is constructed of C-C bonds. Among the C-C bond forming methods, carbonyl addition reactions, especially carbonyl allylation, have been broadly used currently in organic synthesis. ${ }^{1-8}$ Carbonyl addition reactions mediated by pre-formed organometallic reagents became a milestone in organic synthesis since the seminal work of Butlerov ${ }^{9,10}$ (1863), Reformatsky ${ }^{11}$ (1887), and Grignard ${ }^{12}$ (1900). Nevertheless, the issues of safety, requirement of cryogenic conditions, disposal of stoichiometric metal byproducts, low chemoselectivity and tolerance of functional groups, as well as the low accessibility of the premetalated nucleophiles complicate their applications in large-scale synthesis. Notably, the organometallic reagents are usually prepared from the corresponding organic halides, ${ }^{13}$ which are much more readily available. Therefore, the metal-catalyzed reductive coupling of organic halides with carbonyl compounds is more desirable when contrasted with the use of premetalated nucleophiles in carbonyl addition. The reductive coupling of organic halides with carbonyl compounds also represents a class of cross-electrophile coupling reactions ${ }^{14}$, which depict the deviation from traditional nucleophilic carbonyl addition with organometallic reagents and allow people to explore more chemical space.

In 1977, Nozaki and Hiyama reported the chromium(II)-mediated Barbier-type coupling of allyl halides with aldehydes to form homoallylic alcohols, ${ }^{15}$ which was the initial report of Nozaki-Hiyama-Kishi (NHK) reaction. In 1986, Nozaki ${ }^{16}$ and Kishi ${ }^{17}$ independently found that nickel(II) chloride functioned as a catalyst in the NHK reaction.

The discovery of this reaction has had a huge impact on organic synthesis strategy, ${ }^{18,19}$ but also revealed the feasibility of metal-catalyzed reductive coupling of organic halides with carbonyl compounds without employing pre-formed nucleophiles. The requirement of stoichiometric amounts of the toxic chromium(II) salts limits the application of NHK reaction on a practical scale. Consequently the metal-catalyzed reductive coupling of organic halides with carbonyl compounds utilizing cheaper and more benign reductants has been explored in recent years. However, when compared with metal-catalyzed redoxneutral couplings of aryl halides and aldehydes to form ketone products, which has been extensively studied by many research groups and can be conducted under different metal catalyst systems (palladium, ${ }^{20-29}$ rhodium, ${ }^{30,31}$ nickel, ${ }^{32,33}$ photo-redox, ${ }^{34}$ and cobalt ${ }^{35}$), metal-catalyzed reductive coupling is more challenging due to the choice of reductants (Scheme 1.1).

Scheme 1.1 Carbonyl Arylation via Arylmetal Reagents and Metal Catalyzed Reductive Coupling Strategies.

Classical C=O Arylation via Arylmetal Reagents

C=O Arylation via Metal Catalyzed Reductive Coupling

In this review, the metal-catalyzed reductive coupling of aryl halides with carbonyl compounds, including aldehydes, ketones, carbon dioxide, acid chlorides, anhydrides, isocyanates and other carbonyl sources, are surveyed and organized on the basis of metal catalysts. Related reductive coupling to gaseous carbon monoxide to produce aldehydes ${ }^{36-}$ ${ }^{47}$, which is also referred as carbonylation or formylation, is not discussed here, and the reader is referred to the provided literature.

1.2 Reductive Coupling with Aldehydes

1.2.1 Nickel

Following the original report of the NHK coupling of aryl halides and aldehydes, ${ }^{15}$ catalytic NHK reactions had been studied by several research groups due to usage of the toxicity of divalent chromium salts (Scheme 1.2). Related NHK reaction catalytic in nickel/chromium was first developed by Fürstner and co-workers ${ }^{48,49}$ in 1996 using manganese as reducing agent to reduce $\mathrm{Cr}(\mathrm{III})$ to $\mathrm{Cr}(\mathrm{II})$ and chlorosilane as oxophile to cleave the stable $\mathrm{O}-\mathrm{Cr}(\mathrm{III})$ bond and release $\mathrm{Cr}(\mathrm{III})$. Upon aqueous workup with $\mathrm{Bu}_{4} \mathrm{NF}$, alcohol adducts were obtained by coupling of aryl iodides and aldehydes. Later in 1999 and 2001, electroreductive coupling of aryl bromides/chlorides and aldehydes with iron anode in the presence of nickel and chromium catalysts was reported by Durrandetti and co-workers ${ }^{50,51}$. Further studies by Kishi and co-workers ${ }^{52}$, $\mathrm{Ni} / \mathrm{Cr}$-mediated reductive coupling of iodobenzene with aldehyde was reported by using manganese as reductant together with $\mathrm{Zr}(\mathrm{Cp})_{2} \mathrm{Cl}_{2}$ to dissociate the chromium alkoxide and regenerate chromium catalyst. The loading of nickel and chromium was $0.2 \mathrm{~mol} \%$ and $1 \mathrm{~mol} \%$ respectively, and excellent isolated yields were obtained. In 2015, Berkessel and co-workers reported an efficient protocol for coupling of aryl iodides with aldehydes under nickel catalysis. ${ }^{53}$
$\mathrm{Mn} / \mathrm{Cr}$ alloy was used as terminal reductant instead of the classical combination of manganese powder and chromium salt, and TMSCl was used as dissociating agent.

Scheme 1.2 Ni/Cr-Catalyzed Aryl Halide-Aldehyde Reductive Coupling.

A General mechanism for $\mathrm{Ni} / \mathrm{Cr}$-catalyzed aryl halide-aldehyde reductive coupling has been proposed (Scheme 1.3). Oxidative addition of aryl halide to nickel(0) to form arylnickel(II) intermediate, which underwent transmetalation with chromium(III) to generate arylchromium(III) intermediate. Nucleophilic carbonyl addition afforded the chromium(III) alkoxide, which was converted to the final alcohol adduct and release chromium(III) with the help of dissociation agents. Reducing agents converted chromium(III) back to chromium(II), which reentered the catalytic cycle.

Scheme 1.3 Catalytic Mechanism for $\mathrm{Ni} / \mathrm{Cr}$-Catalyzed Aryl Halide-Aldehyde Reductive Coupling.

In 2000, the first chromium-free (diphenylphosphino)ethane-modified nickel catalyzed zinc mediated direct arylation of benzaldehydes was reported by Cheng and coworkers (Scheme 1.4). ${ }^{54}$ The chelating ligands was found crucial in promoting the coupling, and monodentate phosphine ligands were ineffective. A catalytic mechanism was proposed (Scheme 1.5). First, reduction of $\mathrm{Ni}(\mathrm{II})$ to $\mathrm{Ni}(0)$ by zinc followed by oxidative addition of aryl bromide provided arylnickel(II) species. Substitution of bromide ligand on nickel center with aldehyde and subsequent carbonyl insertion to the Ni-Ar bond generated

Scheme 1.4 Ni-Catalyzed Aryl Halide-Aldehyde Reductive Coupling for Form Alcohol Adducts.

nickel alkoxide intermediate. Transmetalation with zinc bromides released the zinc alkoxide and regenerated $\mathrm{Ni}(\mathrm{II})$ catalyst. In 2015, diazabutadiene ligands were found to be effectively promoting the nickel catalyzed reductive coupling of aryl bromides and chlorides with benzaldehydes in good to excellent yields by Voskoboynikov and coworkers. ${ }^{55}$ Recently, Weix and co-workers reported nickel complexes of bipyridine and Pybox catalyzed addition of aryl bromides to aromatic and aliphatic aldehydes with zinc metal as reducing agent. ${ }^{56}$ Less reactive and more steric hindered aldehyes, as well as bulky aryl bromide were able to form the resesponding couping adducts with good to excellent
yields. Not only aryl bromies, aryl iodide could give comparable efficiency in the reaction. While when aryl chloride was used instead, couping adduct was isolated but with much

Scheme 1.5 Catalytic Mechanism for Ni-Catalyzed Aryl Halide-Aldehyde Reductive Coupling.

Scheme 1.6 Ni-Catalyzed Reductive Coupling of o-Haloesters with Aldehydes to Form Phthalide Derivatives.

lower yield even at hight temperature; aryl triflate could not engage in the coupling under the standard conditions. Also a very broad substrate scope was demonstrated in this work.

In 2004, Cheng and co-workers reported reductive coupling of o-Haloesters with aldehydes in the presence of $\mathrm{Ni}(\mathrm{dppe}) \mathrm{Br}_{2}$, and phthalide derivatives were obtained with moderate to good yields (Scheme 1.6). ${ }^{57}$ When 2-iodobenzoate was subjected to the same reaction conditions, much lower yields were obtained, which was due to more homocoupling byproducts of both reactants were generated.

1.2.2 Palladium

The first palladium(0) catalyzed chromium mediated electroreductive coupling of aryl halides and benzaldehydes was reported by Grigg and co-workers in 1997 (Scheme 1.7). ${ }^{58}$ Catalytic amount of $\mathrm{CrCl}_{2}(10 \mathrm{~mol} \%)$ was required and LiClO_{4} was used as oxophile to cleave O-Cr bond. Similar yields were obtained from coupling with aryl bromide and aryl iodide

Scheme 1.7 Pd/Cr-Catalyzed Reductive Coupling of Aryl Halides with Benzaldehydes.

In 2014, palladium catalyzed intramolecular addition of aryl iodides to aldehyde reported by Solé, Fernández and co-workers (Scheme 1.8). ${ }^{59}$ Simple PPh_{3}-modefied palladium enabled the formation of diverse tetrahydroisoquinolin-4-ols with triethylamine as reducing agent. Notably, lower halide was demonstrated to be compatible under the

Scheme 1.8 Pd-Catalyzed Intramolecular Reductive Coupling of Aryl Iodides with Aldehydes.

standard conditions. According to DFT calculations, reaction mechanism was proposed through oxidative addition of aryl iodide to $\operatorname{Pd}(0)$ followed by the nucleophilic addition to aldehyde. Due to the coordination of palladium with nitrogen atom in the palladium alkoxide intermediate, β-hydride elimination was not sterically favored, which explained why ketone products were not observed.

In the same year, Beller and co-workers reported palladium catalyzed carbonylation of aryl bromides with paraformaldehyde to form aldehydes and esters ${ }^{60}$. Paraformaldehyde was used as a carbon monoxide surrogate and subjected to the aryl bromide with $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}$, dppb, $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{Et}_{3} \mathrm{SiH}$ as reducing agent in DMF at $100^{\circ} \mathrm{C}$ to deliver benzaldehydes. Introduction of N_{2} gas was to avoid the evaporation of paraformaldehyde from the reaction mixture to increase the reaction efficiency. When alcohols were used as the solvent instead of DMF, the corresponding esters were obtained under the same catalytic system without $\mathrm{Et}_{3} \mathrm{SiH}$.

Scheme 1.9 Pd-Catalyzed Reductive Coupling of Aryl Bromides with Paraformaldehyde.

1.2.3 Rhodium

Insertion of aldehyde carbonyl group to rhodium-aryl complex to form rhodium alkoxide was reported to by Hartwig and co-workers in 2002. ${ }^{61}$ The first rhodium catalyzed arylation of aldehydes by coupling with aryl iodides was reported by Li and co-workers in 2014 (Scheme 1.10)..62 NHC ligands showed unique high efficiency in the coupling, and the reaction was carried out in water. The mechanism for this method was proposed to proceed through transmetalation of arylzinc intermediate, which was generated in situ, to rhodium (I) to form arylrhoium (I) species (Scheme 1.11). Coordination of reactant

Scheme 1.10 Rh-Catalyzed Reductive Coupling of Aryl Iodides with Aldehydes in Water.

Scheme 1.11 Catalytic Mechanism of Rh-Catalyzed Reductive Coupling of Aryl Iodides with Aldehydes in Water.

aldehyde followed by carbonyl insertion into the $\mathrm{Rh}-\mathrm{Ar}$ bond generated rhodium alkoxide, which upon protonolysis, secondary alcohols was released and regenerate the active catalyst $\mathrm{Rh}(\mathrm{I})$. Another rhodium catalyzed reductive coupling of aryl iodide with aldehydes was recently reported by Krische and co-workers by using sodium formate as terminal reductant, which represented the first example of intermolecular carbonyl arylation via transfer hydrogenative reductive coupling (Scheme 1.12). ${ }^{63}$ A very broad range of alcohol adducts were obtained, and the reaction was not sensitive to the substituted on the benzaldehydes. Notably, lower halides and protic functional groups were tolerated under the standard conditions. The catalytic mechanism was proposed based on the results of deuterium study (Scheme 1.13). Oxidative addition of aryl iodide to rhodium(I) to form arylrhodium(III) intermediate. Coordination of aldehyde to Rh (III) followed by carbonyl insertion afforded the rhodium alkoxide intermediate. Ligand exchange with formate followed by β-hydride elimination and further reductive elimination to release the coupling adduct, as well as close the catalytic cycle.

Scheme 1.12 Rh-Catalyzed Formate Mediated Reductive Coupling of Aryl Iodides with Aldehydes.

Scheme 1.13 Catalytic Mechanism of Rh-Catalyzed Formate Mediated Reductive Coupling of Aryl Iodides with Aldehydes in Water.

1.2.4 Cobalt

There's only one report on cobalt catalyzed reductive coupling of o-iodobenzoates with benzaldehydes to form phthalides with good yields in 2007 by Cheng and co-workers (Scheme 1.14). ${ }^{64}$ Enantiomeric enriched phthalides up to 98% ee were obtained when (S,S)-dipamp was used. Notably, when cinnamyl aldehyde was subjected to the coupling condition with 2 -iodobenzoate, coupling adduct was isolated in 65% yield, which indicated

Scheme 1.14 Co-Catalyzed Reductive Coupling of o-Haloesters with Aldehydes to Form Phthalide Derivatives.

that aldehyde carbonyl group competed effectively with the double bond in the insertion step. The reaction was proposed undergo a $\mathrm{Co}(\mathrm{I}) / \mathrm{Co}(\mathrm{III})$ catalytic cycle.

1.3 Reductive Coupling with Ketones

1.3.1 Palladium

Palladium catalyzed reductive coupling of aryl halides with ketones are all intramolecular cyclization. The first example of Grignard-type nucleophilic addition of aryl bromides to ketones was reported by Yamamoto and co-workers in 2000 (Scheme $1.15)^{65}$. In the presence of $\operatorname{Pd}(\mathrm{OAc})_{2}$ and PCy_{3}, o-bromophenyl ketones were converted to the cyclization adducts with 1-hexanol as reductant. Other alcohols, such as 1-pentanol and 1-propanol gave equally efficiency in the reaction as reductant. Both aromatic and aliphatic

Scheme 1.15 Pd-Catalyzed Intramolecular Reductive Coupling of Aryl Halides with Aldehydes to Form the Cyclization Adducts.

$\mathrm{n}=1,2$

DMF, $135^{\circ} \mathrm{C}$

PhMe or THF, $110^{\circ} \mathrm{C}$
$\mathrm{Pd}(\mathrm{OAc})_{2}$ (5 mol\%)

$R=P h, 82 \%$ yield $R=i P r, 76 \%$ yield

65\% yield

62\% yield (cis)

ketones underwent the arylation, which could get access to five- and six-member ring containing products. In 2001, Solé, Bonjoch and co-workers reported triethylamine mediated intramolecular annulation of 2-haloanilines and ketones ${ }^{66}$. From the carbonyl addition adducts, which were further subjected to trifluoroacetic acid, indole derivatives were obtained in good yields. In the course of studies, a competing cyclization pathway, which is enolate arylation, was observed and found to be depending on the structure of the starting amino-ketone. Through further studies ${ }^{67}$, the catalytic mechanism for the intramolecular cyclization was proposed (Scheme 1.16). Oxidative addition of aryl halide to palladium(0) to form the four-membered azapalladacycle, which could undergo facile addition to the carbonyl group. The carbonyl addition is a consequence of the coordination of amino group to palladium, which facilitated the chelation between carbonyl and palladium and further triggered the carbonyl addition to for the palladium alkoxide intermediate.

Scheme 1.16 Proposed Mechanism for α-Arylation and Carbonyl Addition of 2Haloanilino Ketones.

In 2010, Kündig and co-workers reported the synthesis of 3-hydroxyindoles via palladium catalyzed intramolecular cyclization of aryl halides to α-ketoamides in the presence of $n \mathrm{BuOH}$ as terminal reductant with good yields (Scheme 1.17) ${ }^{68}$. Aryl bromide and iodide could both engage in the reductive cyclization with similar isolated yields obtained. In 2015, Krische and co-workers reported the hydrogen-mediated reductive cyclization of haloketones to form 3-hydroxy-2-oxindoles ${ }^{69}$. By using DiPPF-modified palladium, in combination with hydrogen gas as reductant, not only aryl substituted

Scheme 1.17 Pd-Catalyzed Intramolecular Reductive Coupling of Aryl Halides with Aldehydes to Form 3-Hydroxy-2-Oxindoles.

hydroxy oxindoles could be obtained with good yield, heteroaryl and alkyl substituted adducts were isolated with moderate to good yields. Notably, α-ketoamide derived from 2-amino-3-bromopyridine gave good yield under the standard conditions. The asymmetric version of the synthesis of 3-hydroxyindoles with (R)-DifluorPhos-modified palladium complex was reported by Shibasaki, Kanai and co-workers in 2011^{70}. When aryl iodide was used, moderate yield and excellent enantioselectivity was obtained. To improve the
reaction efficiency, aryl triflate was used instead of aryl iodide and good yield and high level of enantioselectivity was obtained.

1.3.2 Nickel

In 2011, nickel catalyzed intramolecular reductive coupling of aryl chloride and α ketoamides mediated by $\mathrm{Me}_{2} \mathrm{Zn}$ in DME was reported by Jia, Gao and co-workers (Scheme $1.18)^{71}$. C-Cl bond was successfully activated by electron-rich, bulky phosphine ligand PCy_{3}-modified nickel complex. When $\mathrm{Et}_{3} \mathrm{~B}$ and Zn dust were applied as reductant in the coupling, no desired product was observed. Both aryl chloride and bromides could engage in the carbonyl arylation under standard conditions and comparable yields were obtained.

Scheme 1.18 Ni-Catalyzed Intramolecular Reductive Coupling of Aryl Halides with Ketones.

Notably, chlorine substituents on the aromatic rings remain untouched during the nickel catalyzed reductive coupling, which could be utilized in cross-coupling reaction for further functionalization. Further studies by Jia and co-workers demonstrated the formation of 3hydroxyoxindole and dihydroquinolinone via nickel-catalyzed zinc mediated intramolecular reductive nucleophilic addition of aryl bromides to ketoamides ${ }^{72}$. In this transformation, monodentate phosphine ligand, such as PCy_{3}, was not as effective as bidentate chelating ligands, for example, 2, ${ }^{\prime}$ '-bipyridine(bpy). When α-ketoamides were subjected to the standard conditions, excellent yields of the desired adduct 3hydroxyoxindoles were obtained. When β-ketoamides were subjected to the standard conditions, dihydroquinolinones were isolated with good yields when at least one methyl group at α-position due to Thorpe-Ingold effect. Also, bromine, chlorine, and fluorine substituents on the aromatic rings were tolerated.

1.4 Reductive Coupling with Acid Chlorides and Anhydrides

1.4.1 Cobalt

Acid Chlorides are considered ideal carbonyl compounds for reductive coupling reaction due to the higher reactivity. In 2003, Gosmini and co-workers reported the first example of cobalt catalyzed zinc mediated reductive coupling of aryl bromides with acid chloride, which could be used for preparation of aromatic ketones (Scheme 1.19) ${ }^{73}$. This 2-stpes protocol could be conducted in two different manner for the preparation of aryl zinc intermediate, electrochemical and chemical preparations. The mechanism of the reaction was proposed via oxidative addition of acid chloride to $\mathrm{Co}(\mathrm{I})$ complex to form the Co (III), which was further converted to arylcobalt(III) via transmetalation with arylzinc reagent
formed in the first step. Final reductive elimination released the aromatic ketones and regenerated $\mathrm{Co}(\mathrm{I})$ to close the catalytic cycle.

Related cobalt catalyzed reductive coupling of aryl bromides with acid anhydrides were discovered by Gosmini and co-workers in 2004 (Scheme 1.20) ${ }^{74}$. Aromatic ketones could be obtained in on step due to the lower reactivity of acid anhydride comparing with acid chlorides. Arylzinc was prepared in situ under the presence of CoBr_{2}, allyl chloride and trifluoroacetic acid from aryl bromides and zinc dust. Catalytic amount of allyl chloride was need in order to enhance the yield of arylzinc species and suppress the formation of reductive dehalogenation adducts. Trifluoroacetic acid was added to activate zinc dust.

Scheme 1.19 Co-Catalyzed Reductive Coupling of Aryl Bromides with Acid Chloride to Form Aromatic Ketones.

Chemical preparation

Electrochemical preparation

Scheme 1.20 Co-Catalyzed Reductive Coupling of Aryl Bromides with Acid Anhydrides to Form Aromatic Ketones.

1.4.2 Palladium

In 2003, Cacchi and co-workers reported the first palladium catalyzed reductive coupling of aryl iodide with acetic anhydride to synthesize acetophenones(Scheme 1.21) ${ }^{75}$. The use of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ in combination with Hünig's base as reductant, and LiCl in DMF at $100^{\circ} \mathrm{C}$ led to the reductive coupling of acetic anhydride with a wide range of aryl iodides. With LiCl added in the reaction mixture, formation of homocoupling adducts from aryl iodides was suppressed. For the aryl iodides with strong electron-withdrawing substituents, biaryl byproducts from the homocoupling of aryl iodides were isolated in significant yield, even with LiCl in presence. The catalytic mechanism was proposed (Scheme 1.22). Oxidative addition of aryl iodides to palladium(0) followed by carbonyl insertion to the aryl-Pd bond delivered alkoxy-palladium intermediate. Acetophenone adduct was released via β-elimination and palladium(0) was regenerated by tertiary amine mediated reduction.

In 2004, Cacchi and co-workers reported palladium catalyzed reductive coupling of aryl iodides with a mixed anhydride, acetic formic anhydride, which could be readily prepared from acetyl chloride and sodium formate (Scheme 1.23$)^{76}$. In the presence of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$, dppe, Hünig's base and $\mathrm{Et}_{3} \mathrm{SiH}$ as reducing agent in MeCN at $60^{\circ} \mathrm{C}$, diverse aryl iodides with various functional groups, including, ether, ester, amide, carboxylic acid and keton, were converted to aldehydes with good yields. For electron pool aryl iodides, LiCl was added to obtain higher yields. This protocol demonstrated the palladium catalyzed carbonylation of aryl halides could be achieved by coupling with acetic formic anhydride instead of using pressurized toxic carbon monoxide gas.

Scheme 1.21 Pd-Catalyzed Reductive Coupling of Aryl Iodides and Acetic Anhydride to Form Acetophenones.

Scheme 1.22 Proposed Mechanism for Pd-Catalyzed Reductive Coupling of Aryl Iodides and Acetic Anhydride to Form Acetophenones.

Scheme 1.23 Pd-Catalyzed Reductive Coupling of Aryl Iodides and Acetic Formic Anhydride to Form Aldehydes.

Arl

1.5 Reductive Coupling with Carbon Dioxide

1.5.1 Palladium

In 2009, Martin and co-workers discovered the first palladium catalyzed reductive carboxylation of aryl bromides with carbon dioxide to form benzoic acids (Scheme 1.24) ${ }^{77}$. In this catalytic process, diethylzinc was used as reducing agent. The choice of ligand is crucial in promoting the efficient nucleophilic addition to carbon dioxide. The use of DMA favored the carboxylation over other byproducts. The best isolation yield (64\%) of carboxylic acid adduct was obtained when the reaction was conducted under higher pressure of carbon dioxide (10 atm). Aryl bromides with diverse substituents were subjected to the optimal conditions and the desired reductive coupling adducts were delivered smoothly with moderate to good yields. Various functional groups, including amine, ether, thioether, olefin, ester, ketone, aldehyde, epoxide, and heterocycle, were tolerated. Notably, aryl chloride remained untouched under the standard conditions. The palladium catalyzed mechanism for the reductive coupling of aryl bromides with carbon dioxide was proposed based on the experimental results (Scheme 1.25). Initially, oxidative addition of aryl bromides to palladium(0) followed by carbon dioxide carbonyl insertion into the aryl-Pd bond delivered palladium carboxylate B. Subsequent transmetalation with diethyl zinc released the zinc carboxylate C , which was further converted to the carboxylic acid via workup, and palladium(II) complex D. Final reductive elimination regenerated the palladium(0) catalyst and closed the catalytic cycle.

Scheme 1.24 Pd-Catalyzed Reductive Coupling of Aryl Bromides and Carbon Dioxide to Form Carboxylic Acids.

Scheme 1.25 Proposed Mechanism for Pd-Catalyzed Reductive Coupling of Aryl Bromides and Carbon Dioxide to Form Carboxylic Acids.

In 2014, Liu and co-workers reported the Pd / C-catalyzed direct formylation of aryl iodides by reductive coupling with carbon dioxide (Scheme 1.26$)^{78}$. Due to the thermodynamic stability of carbon dioxide, direct functionalization is usually not easy. While it was found that hydrosilylation of carbon dioxide made it could be functionalized under relative milder conditions. In the presence of Pd / C, poly(methylhydrosiloxane) (PMHS), and DBU, reductive coupling of aryl iodides with carbon dioxide in acetonitrile under $80^{\circ} \mathrm{C}$ delivered the desired aldehydes with moderate to good isolation yields. The use of DBU as base is important for the formation of aldehydes. When inorganic carbonates
were used as base in the reaction, no aldehydes were obtained and biaryl compounds were isolated with high yields, which formed via homocoupling of aryl iodides. A wide range of aryl iodides were subjected to the reaction condition and aldehydes were obtained with moderate to good yields. Ortho-substituents didn't affect the reaction efficiency. Notably, electron-poor aryl iodides didn't engage in the coupling effectively due to the competing dehalogenation pathway. The catalytic mechanism for the silane mediated formation of aldehydes by coupling of aryl iodide and carbon dioxide was proposed (Scheme 1.27). Initially, oxidative addition of aryl iodide to palladium(0) led to the formation arylpalladium(II) complex B. Formation of silyl formate C from carbon dioxide and PMHS in the presence of DBU was confirmed by ${ }^{1} \mathrm{H}$ NMR analysis. Addition of aryl group to silyl formate C generated aldehyde together with silyloxylpalladium complex D , which further reacted with PMHS to form polysiloxane E and palladium(II) hydride. Upon DBU facilitated reductive elimination of HI , palladium(0) was regenerated.

Later in 2016, further studies by Liu and co-workers discovered a more general and efficient palladium catalytic system for formylation of aryl halides with carbon dioxides mediated by PMHS ${ }^{79}$. In the presence of 1,3-bis(diphenylphosphino)propane-modified palladium dichloride complex with DBU, less reactive aryl bromides were converted to aromatic aldehydes with good yields in DMF at $100^{\circ} \mathrm{C}$. Aryl iodides were also successfully converted to the corresponding adducts under same reaction conditions at slightly lower temperature $\left(80^{\circ} \mathrm{C}\right)$.

Scheme 1.26 Pd-Catalyzed Reductive Coupling of Aryl Halides and Carbon Dioxide to Form Aldehydes.

Scheme 1.27 Proposed Mechanism for Pd-Catalyzed PMHS Mediated Reductive Coupling of Aryl Halides and Carbon Dioxide to Form Aldehydes

D

In 2017, visible-light-driven carboxylation of aryl halides with carbon dioxide was reported by Iwasawa and co-workers using palladium and photoredox dual catalysis (Scheme 1.28$)^{80}$. Notably, the reaction was conducted under 1 atm carbon dioxide and light irradiation in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{PhXPhos}, \operatorname{Ir}(\mathrm{ppy})_{2}(\mathrm{dtbpy})\left(\mathrm{PF}_{6}\right), \mathrm{Cs}_{2} \mathrm{CO}_{3}$ as base, and Hünig's base as reductant in DMA at rt , which were very mild conditions. A wide range of aryl bromides and chlorides were converted to carboxylic acids, which were further treated with trimethylsilyldiazomethane $\left(\mathrm{TMSCHN}_{2}\right)$ to give the corresponding methyl esters. Steric hindered aryl halide 2,4,6-triisopropylbromobenzene was converted to the corresponding methyl ester with 76% yield. The activation of $\mathrm{C}-\mathrm{Br}$ bond was achieved selectively in the presence of $\mathrm{C}-\mathrm{Cl}$ bond, which was demonstrated with formation of 4-chlorobenzoate from 4-chlorobromobenzene. The mechanism for this transformation was proposed with two major possible pathways (Scheme 1.29). After the oxidative addition of aryl halide to palladium(0) to form arylpalladium(II) complex B, two possible palladium species were proposed. One was palladium(II) carboxylate species formed by direct insertion of carbon dioxide into Ar-Pd bond (pathway a), which underwent photoredox-catalyzed one-electron reduction to form palladium(I) carboxylate species D. Subsequent one-electron reduction of complex D released the coupling adduct and regenerated palladium(0). Another possible pathway was via coordination of carbon dioxide to form palladium(II) complex E, which underwent one-electron reduction first to form arylpalladium(I) complex F (pathway b). Subsequent addition of aryl group to carbon dioxide gave the palladium(I) carboxylate intermediate D , which underwent same process to close the catalytic cycle.

Scheme 1.28 Pd- and Photoredox-Catalyzed Reductive Coupling of Aryl Halides and Carbon Dioxide to Form the Corresponding Methyl Esters.
$\mathrm{Pd}(\mathrm{OAc})_{2}(2.5 \mathrm{~mol} \%)$ PhXPhos or tBuXPhos($5 \mathrm{~mol} \%$)

Scheme 1.29 Proposed Mechanism for Pd- and Photoredox-Catalyzed Reductive Coupling of Aryl Halides and Carbon Dioxide to Form the Corresponding Methyl Ester.

D

1.5.2 Nickel

In 2012, Tsuji and co-workers reported the first nickel catalyzed reductive carboxylation of aryl chlorides to form benzoic acids under mild conditions (Scheme $1.30)^{81}$. It was found that in the presence of $\mathrm{NiCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{PPh}_{3}, \mathrm{Et}_{4} \mathrm{NI}$, manganese powder aryl chlorides were converted to benzoic acids with good to excellent yield in 1,3-dimethyl-2-imidazolidinone (DMI) at room temperature under 1 atm carbon dioxide. Addition of PPh_{3} was found to enhance the reaction efficiency by improving yield and suppressing formation of byproduct. When $\mathrm{Et}_{4} \mathrm{NI}$ was omitted, desired coupling product was obtained only in trace amount. The role of catalytic amount of $\mathrm{Et}_{4} \mathrm{NI}$ was believed to assist the electron transfer from manganese metal to nickel via the bridging of the iodide ion. Diverse aryl chlorides were evaluated under the standard conditions, and various functional groups, including silyl ether, ester, amide, boronic ester and ketone, were tolerant. Aryl bromide, tosylate and triflate were converted to the same carboxylation products under similar reaction conditions. A possible catalytic mechanism was proposed (Scheme 1.31). Zero valent nickel was generated in situ from nickel(II) through reduction. Oxidative addition of aryl chloride to nickel(0) gave arylnickel(II) species, which was reduced to arylnickel(I) by manganese metal. Subsequent insertion of carbon dioxide to aryl-Ni bond to delivere nickel carboxylate intermediate followed by reduction regenerated zero valent nickel and released coupling adduct. Later in 2013, DFT studies on the nickel catalyzed carboxylation of aryl chloride with carbon dioxide were conducted by Sakaki and co-workers ${ }^{82}$. Formation of arylnickel(I) intermediate was proved to be the key intermediate for the carboxylation reaction.

In 2016, Durandetti and co-workers reported the direct carbonylation of aryl tosylates with carbon dioxide by nickel catalysis ${ }^{83}$. It was found that in the presence of NiBr_{2} (bipy), and manganese powder, aryl tosylates could be converted to carboxylic acids
in DMF under 1 atm carbon dioxide at $60^{\circ} \mathrm{C}$. When aryl iodide was subjected to the standard conditions at room temperature, benzoic acid was obtained with good yield.

Scheme 1.30 Nickel Catalyzed Reductive Coupling of Aryl Halides and Carbon Dioxide to Form Carboxylic Acids.

 neocuprioine

HEH

Scheme 1.31 Proposed Mechanism for Nickel Catalyzed Reductive Coupling of Aryl Halides and Carbon Dioxide to Form Carboxylic Acids.

In 2017, carboxylation of aryl bromides and triflates with carbon dioxide by nickelphoto dual catalysis, whereas $\mathrm{K}_{2} \mathrm{CO}_{3}$ was used as the source of carbon dioxide, was reported by König and co-workers ${ }^{84}$. In the combination of $\mathrm{NiBr}_{2} \cdot$ glyme, neocuprioine, organic photosensitizer and Hantzsch ester (HEH) as reducing agent, carboxylation adducts of aryl bromides were obtained in moderate to good yield under room temperature with visible-light irradiation. A broad range of functional groups, including free alcohol, ether, ester, ketone, Boc-protected aniline, and cyano group, were tolerant under the standard conditions. Heteroaromatic bromides were also successfully converted to the corresponding heteroaromatic carboxylic acids with moderate yields. Catalytic mechanism was also proposed through insertion of carbon dioxide into arylnikel(I) intermediate (Scheme 1.32).

Scheme 1.32 Proposed Mechanism for Nickel-Photo Dual Catalyzed Reductive Coupling of Aryl Bromides and Carbon Dioxide to Form Carboxylic Acids.

1.5.3 Copper

There's only one report on copper catalyzed carboxylation of aryl iodide with carbon dioxide by Daugulis and co-workers in 2013 (Scheme 1.33) ${ }^{85}$. It was found that with CuI , DMEDA or TMEDA and $\mathrm{Et}_{2} \mathrm{Zn}$ as reductant, aryl iodides were converted to the corresponding carboxylic acid with 1 atm carbon dioxide at 25 or $70^{\circ} \mathrm{C}$. Diverse aryl bromides were evaluated under the standard conditions, and carboxylic acids with various functional groups, such as ketone, ester, and hydroxy group, were obtained with moderate to good yields. Steric hindered substrate iodomesitylene engaged in the reductive coupling effectively. Aryl iodides could be selectively activated by copper catalyst in the presence of lower halides. The possible reaction mechanism was proposed by starting with reduction of copper(I) to zero valent copper by $\mathrm{Et}_{2} \mathrm{Zn}$. Oxidative addition of aryl iodide to zero valent copper afforded arylcopper(I) species, which reacted with carbon dioxide to form copper(I)
carboxylate intermediate. Reduction of copper(I) carboxylate with $\mathrm{Et}_{2} \mathrm{Zn}$ regenerated the zero valent copper and released the coupling adduct.

Scheme 1.33 Copper Catalyzed Reductive Coupling of Aryl Iodides and Carbon Dioxide to Form Carboxylic Acids.

\qquad

ArCOOCu ${ }^{1} \quad \mathrm{ArCu}^{\prime}$

1.6 Reductive Coupling with Isocyanates and Other Carbonyl Sources

1.6.1 Nickel

Isocyanate derivatives are very reactive species, which are potential good electrophiles for reductive coupling reactions ${ }^{86}$. The first nickel catalyzed reductive coupling of aryl iodides with isocyanates was reported by Cheng and co-worker in 2005
(Scheme 1.34$)^{87}$. Treatment of methyl ortho-iodobenzoate with aryl iodides in combination with NiBr_{2} (dppe), dppe, $\mathrm{Et}_{3} \mathrm{~N}$, and zinc as reductant in acetonitrile at $80^{\circ} \mathrm{C}$, led to formation of isoindoline-1,3-dione with moderate to excellent yields. The catalytic system could be applied to simple aryl iodides and bromides for the reductive coupling with isocyanates to form amides. It was observed that aryl bromides led to higher yields comparing with aryl iodides, which was due to more dimerization products of aryl halides were obtained when aryl iodides were used.

In 2014, Martin and co-workers reported a nickel catalyzed reductive amidation by coupling of pivalates or tosylates with isocyanates ${ }^{88}$. Limited aryl chlorides were also evaluated under reductive coupling conditions, and good yields were obtained in the presence of $\mathrm{NiCl}_{2} \cdot$ glyme, dppf, NaI , and Mn powder as reductant at room temperature. Addition of NaI suppressed the competing dimerization, which was observed in other literature.

Scheme 1.34 Nickel Catalyzed Reductive Coupling of Aryl Halides and Isocyanates.

Other than the carbonyl compounds mentioned above, acetals used as carbonyl equivalent in the nickel catalyzed reductive coupling with aryl iodides was reported by Doyle and co-workers in 2015(Scheme 1.35) ${ }^{89}$. Diaryl ethers bearing diverse functional groups were obtained in the presence of $\mathrm{NiCl}_{2} \cdot \mathrm{DME}, \mathrm{bpp}, \mathrm{TMSCl}$, and Zn as reductant in DMA at room temperature. The catalytic mechanism was proposed initiated by oxidative addition of aryl iodide to $\mathrm{Ni}(0)$ to form arylnickel(II) intermediate. Addition of α-oxy radical generated from acetel to arylnickel(II) delivered nickel(III) species. Subsequent reductive elimination released the diaryl ether and regenerated nickel(I), which was reduced back to zero valent form by metal zinc.

Scheme 1.35 Nickel Catalyzed Reductive Coupling of Aryl Iodides and Acetals to Form Diaryl Ethers.

In 2018, MacMillan and co-workers reported photoredox, HAT, and nickel catalyzed direct coupling of aryl bromides with primary alcohols to for benzylic alcohols(Scheme 1.36$)^{90}$. The reaction mechanism began with photoexcitation of

Scheme 1.36 Photoredox, HAT, and Nickel Catalyzed Reductive Coupling of Aryl Bromides and Alcohols to Form Benzylic Alcohols.

iridium(III) photocatalyst, which could oxidize HAT catalyst quinuclidine to deliver the radical cation and iridium(II) complex. Lewis acid facilitated deprotonation followed by hydrogen atom abstraction afforded α-alkoxy radical, which could combine with arylnickel(II) generated through oxidative addition of aryl bromide to nickel(0). Subsequent reductive elimination furnished benzylic alcohol and nickel(I) species, which was reduced to zero valent form by iridium(II) via single-electron transfer.

1.6.2 Palladium

In 2013, Manabe and co-workers reported a palladium catalyzed reductive carbonylation of aryl halides with N -formylsaccharin as carbon monoxide surrogate (Scheme 1.37) ${ }^{91}$. N-formylsaccharin was first developed by Cossy and co-workers and used as formylating agent of amines ${ }^{92}$. In the same year, Skrydstrup and co-workers reported a protocol to synthesize aryl aldehydes by reductive coupling of aryl halides with 9 -methylfluorene-9-carbonyl chloride (COgen) ${ }^{93}$. In the presence of $\mathrm{Pd}(\mathrm{dba})_{2}, \mathrm{PCy}_{3} \mathrm{HBF}_{4}$, TBAI, and $\mathrm{HCO}_{2} \mathrm{~K}$ as reductant, diverse aryl bromide and iodides were converted to aryl aldehydes with good to excellent yields. Notably, isotope labeled aryl aldehydes could be obtained when $\mathrm{DCO}_{2} \mathrm{~K}$ or ${ }^{13} \mathrm{COgen}$ were used in the coupling.

Scheme 1.37 Palladium Catalyzed Reductive Coupling of Aryl Halides and Carbon Monoxide Surrogates.

1.7 Conclusion

Metal-catalyzed reductive coupling of aryl halides with carbonyl compounds were developed as an alternative to addition of organometallic reagents but challenges remain. For example, enantioselective reductive coupling of aryl halides with carbonyl compounds has not been exploited much and only one example showed above. Also, reductive coupling via hydrogen autotransfer will be a more ideal protocol considering about reaction economy.

Chapter 2: Enantioselective Ruthenium Catalyzed Redox-Triggered Carbonyl Allylation Using Alkynes as Chiral Allylmetal Equivalents via Allene Hydrometalation*

2.1 Introduction

Carbonyl addition reactions are one of the most important methods to construct new carbon-carbon (C-C) bond, and especially carbonyl allylation has been widely used in organic synthesis. ${ }^{1}$ In enantioselective carbonyl allylation, preformed allylmetal reagents modified by chiral auxiliaries were first proved to be efficient. ${ }^{2}$ Achiral allylmetal reagents used together with chiral catalysts became an alternative to chiral allylmetal reagents. ${ }^{3}$ Nozaki-Hiyama-Kishi type allylation ${ }^{4}$ by direct coupling of aldehydes with allylic halides was developed, which allows people to form the new $\mathrm{C}-\mathrm{C}$ bond without intervening preformed metal reagents, but the use of toxic chromium(II) salts was not ideal. Also metal catalyzed umpoled reactions ${ }^{5}$ coupling with allylic carboxylates usually require stoichiometric metallic reductants. In recent years, Krische group has developed transition metal catalyzed redox-neutral enantioselective carbonyl allylations ${ }^{6}$ by exploiting the reductive property of alcohols, which enable direct conversion of primary alcohols to secondary alcohols, and different pronucleophiles (allylic carboxylates, ${ }^{7}$ dienes, ${ }^{8}$ and allenes ${ }^{9}$) were able to engage in carbonyl allylation reactions (Scheme 2.1).

In 2009, Obora and Ishii reported iridium catalyzed carbonyl aryl allylation by coupling of 1-aryl-1-propynes and alcohols, where alkynes was proposed to go through iridium catalyzed isomerization to allenes followed by hydrometalation to form iridium allyl intermediate. ${ }^{10}$ In 2014, Krische group reported the ruthenium catalyzed formation of (Z)-homoallylic alcohols by coupling of primary alcohol and 2-alkynes via alkyne to allene isomerization followed by allene carbonyl oxidative coupling. ${ }^{11}$ So in this chapter,

[^0]enantioselective and diastereoselective carbonyl allylation was described by suppressing oxidative coupling to favor hydrometalation pathway in coupling of alkynes and alcohols.

Scheme 2.1 Enantioselective Carbonyl Allylation Strategies.
Chiral Allvimetal Reagents: Hoffmann 1978 onward

Chiral [M] or Chiral Catalyst

$$
>90 \% \text { ee }
$$

many variations

Redox-Trigaered Allviation: Krische 2008 onward

Prior Work vs This Work: linear vs branched allylation adducts

2.2 Reaction Development and Scope

Starting from the established condition for the formation of linear (Z)-homoallylic alcohol 2.4a by coupling of 4-methyl-2-pentyne 2.1a and p-bromobenzyl alcohol 2.2a, it was found that addition of catalytic amount of $\mathrm{Bu}_{4} \mathrm{NI}$ suppressed the formation of linear homoallylic alcohol 2.4a (Table 2.1, entry 2). By introducing of bidentate phosphine ligand dppf, a mixture of both linear adduct 2.4a and desired branched adduct 2.3a was obtained (Table 2.1, entry 3). Combination of catalytic $\mathrm{Bu}_{4} \mathrm{NI}$ and dppf gave only branched homoallylic alcohol 2.3a in 83\% yield as a 15:1 (anti:syn) diastereomeric mixture (Table 2.1, entry 4). By screening of different bidentate phosphine ligands, single antidiastereomer of branched adduct 2.3a could be obtained with more electron rich ligands, like dippf and dCypb (Table 2.1, entry 5 and 7).

With these promising results, diverse chiral chelating phosphine ligands were examined. Good level of enantioselectivity was obtained with utilizing the Josiphos ligands SL-J009-1 and SL-J002-1 (Table 2.1, entry 8 and 9). By lowering the loading of additive 2,4,6-tri(2-propyl)-phenylsulfonic acid ($5 \mathrm{~mol} \%$), desired branched allylation product 2.3a was obtained in excellent yield and enantiomeric excess using both SL-J009-1 and SL-J002-1 (Table 2.1, entry 10 and 11).

SL-J009-1 was used as the optimal ligand in this transformation due to the generality in substrate scope. Catalytic amount of the 2,4,6-tri(2-propyl)-phenylsulfonic acid was necessary in the reaction because it suppressed the formation of over-oxidation ketone product. Also, in the absence of 2-PrOH, lower yield of desired product 2.3a was obtained due to the accumulation of unreacted aldehyde, which formed from oxidation of the primary alcohol 2.2a in situ.

With the optimized condition in hand, a variety range of alcohols 2.2a-2.2I were

Table 2.1 Selective Optimizations of Formation of Branched Adduct 2.3a by Partitioning of Hydrometalation and Oxidative Pathways.

$\mathrm{H}_{2} \mathrm{Ru}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}(5 \mathrm{~mol} \%)$				
		$\begin{gathered} 2,4,6-(2-\mathrm{Pr})_{3} \mathrm{PhSO}_{3} \mathrm{H} \\ (10 \mathrm{~mol} \%) \end{gathered}$	H	OH
		$\begin{gathered} \text { ligand (5 mol\%) } \\ \text { 2-PrOH (200 mol\%) } \end{gathered}$		
2.1a	2.2a	THF (0.2 M), $95{ }^{\circ} \mathrm{C}$	2.3a, via allene	2.4a, via allene-C=O
(300 mol \%)	(100 mol \%)	24 h	hydrometallation	oxidative coupling
	$\mathrm{Ar}=p-\mathrm{BrPh}$			
Entry	$\mathrm{Bu}_{4} \mathrm{NI}$	ligand	2.3a (yield, dr)	2.4 a (yield, $\mathrm{Z}: E$)
$1^{\text {b }}$	-	-	-	70\%, >20:1
2	(10 mol\%)	-	-	24\%, 10:1
3	-	dppf	21\%, 7:1	16\%, 5:1
4	(10 mol\%)	dppf	83\%, 15:1	-
5	(10 mol\%)	dippf	57\%, >20:1	-
6	(10 mol\%)	dppb	36\%, 13:1	-
7	(10 mol\%)	dCypb	49\%, >20:1	-
8	(10 mol\%)	SL-J009-1	59\%, >20:1, 84\% ee	
9	(10 mol\%)	SL-J002-1	86\%, >20:1, 80% ee	-
$10^{\text {c }}$	(10 mol\%)	SL-J002-1	86\%, >20:1, 94% ee	
$11^{\mathrm{c}, \mathrm{d}}$	(10 mol\%)	SL-J009-1	79\%, >20:1, 94\% ee	
		R2	$\mathrm{PR}_{2} \quad \mathrm{R}_{2} \mathrm{P}$	
	, $\mathrm{R}=\mathrm{Ph}$	dppb, R = Ph	h SL-J002-1,	1, $\mathrm{R}=\mathrm{Ph}$
	f, $\mathrm{R}=2-\mathrm{Pr}$	dCypb, R =	Cy SL-J009-1,	1, R = Cy

${ }^{\text {a }}$ Yields are material isolated by silica gel chromatography. See supporting Information for further experimental details. ${ }^{\mathrm{b}} 2,4,6-\left(2-\mathrm{Pr}_{3} \mathrm{PhSO}_{3} \mathrm{H}(14 \mathrm{~mol} \%) .{ }^{c} 2,4,6-(2-\mathrm{Pr})_{3} \mathrm{PhSO}_{3} \mathrm{H}(5\right.$ mol\%). ${ }^{\mathrm{d}}$ THF (1.0 M).
evaluated and were able to engage in the formation of branched homoallylic alcohols (Table 2.2). Benzylic alcohols 2.2a-2.2f were converted to the allylation adducts 2.3a-2.3f

Table 2.2 Diastereoselective and Enantioselective Formation of Branched Homoallylic Alcohol 2.3a-2.31.
(200
${ }^{\text {a }}$ Yields are material isolated by silica gel chromatography. Diastereoselectivities were determined by ${ }^{1} \mathrm{H}$ NMR analysis of crude reaction mixtures. See supporting Information for further experimental details. ${ }^{\mathrm{b}} 2$ - PrOH was omitted. ${ }^{\mathrm{c}} 125^{\circ} \mathrm{C} .{ }^{\mathrm{d}} 48 \mathrm{~h}$.
in good yields with complete anti-diastereoselectivity and excellent enantioselectivity. Notably, bromine was tolerable under our condition without formation of dehalogenative

Table 2.3 Diastereoselective and Enantioselective Formation of Branched Homoallylic Alcohol 2.3m-2.3r.

${ }^{\text {a }}$ Yields are material isolated by silica gel chromatography. Diastereoselectivities were determined by ${ }^{1} \mathrm{H}$ NMR analysis of crude reaction mixtures. See supporting Information for further experimental details. ${ }^{\mathrm{b}} 72 \mathrm{~h} .{ }^{\mathrm{c}} 75{ }^{\circ} \mathrm{C}$. ${ }^{\mathrm{d}} 2-\mathrm{PrOH}$ was omitted. ${ }^{\mathrm{e}} 7.5 \mathrm{~mol} \%$ of $\mathrm{H}_{2} \mathrm{Ru}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}, \mathrm{ArSO}_{3} \mathrm{H}$, SL-J009-1, and $15 \mathrm{~mol} \% \mathrm{Bu}_{4} \mathrm{NI} .{ }^{\mathrm{f}} 48 \mathrm{~h}$.
adduct. Para-, meta-, and ortho-substituents containing alcohols provided adducts 2.3a, $\mathbf{2 . 3} \mathbf{c - 2 . 3 f}$. For allylic alcohols $\mathbf{2 . 2 g - 2 . 2 i}$, which could be converted to the corresponding aldehydes catalyzed by transition metal through internal redox isomerization, adducts $\mathbf{2 . 3 g}$ $\mathbf{2 . 3 i}$ were also formed in highly stereoselective manner. Also, aliphatic alcohols 2.3j-2.31 gave slightly lower yields but still excellent level of diastereo- and enantioselectivity.

To further explore the scope for this transformation, a series of 2-propynes bearing tert-butyl (2.1b), 4-(N-Boc-piperidinyl) (2.1c) and phenyl (2.1d) moieties were evaluated under the optimal condition by coupling with both benzylic and aliphatic alcohol 2.2a and $\mathbf{2 . 2}$, respectively. Desired allylation products $\mathbf{2 . 3 m - 2 . 3 r}$ were obtained with moderate to good yields and good to excellent enantioselectivity.

2.3 Mechanism and Discussion

The reaction was proposed to proceed through the catalytic cycle below (Scheme 2.2). Ruthenium catalyst, derived from acid-base reaction of $\mathrm{H}_{2} \mathrm{Ru}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$ and sulfonic acid, was converted to ruthenium alkoxide through ligand exchange. Subsequent β-hydride elimination released aldehyde and ruthenium hydride. Allylruthenium species were formed via hydrometalation of transient allene ${ }^{12}$, which formed by isomerization 2propyne. Such allylruthenium species were undergoing rapid isomerization between σ-allyl and π-allyl haptomers. Coordination of aldehyde to the (E)- σ-allylruthenium species triggered the carbonyl addition to form the homoallylic ruthenium alkoxide through a closed transition structure. Protonolysis facilitated by the sulfonic acid released the homoallylic alcohol and closed the catalytic cycle. The proposed mechanism was supported by the deuterium labeling studies. $\mathrm{Bu}_{4} \mathrm{NI}$ in the reaction helped to suppressed oxidative coupling pathway due to the strong σ-donicity of iodide ligand on ruthenium, which may destabilize ruthenium(0).

Scheme 2.2 Proposed General Catalytic Mechanism and Deuterium Labeling Experiment Results.

2.4 Conclusion

In summary, a ruthenium-catalyzed formation of enantiomeric enriched homoallylic alcohols was reported, where 2-alkynes were used as reservoir for allenes. It's noticed that subtle changes in the reaction could lead to the partition of different mechanism pathways-oxidative coupling vs hydrometalation. And this process further expanded the scope for π-unsaturated compounds engaging in transition metal catalyzed redox-triggered carbonyl allylation reactions.

2.5 EXPERIMENTAL DETAILS

General Information

All reactions were run under an atmosphere of argon, unless otherwise indicated. Resealable pressure tubes ($13 \times 100 \mathrm{~mm}$) were purchased from Fischer Scientific (catalog number $14-959-35$ C) and were flame dried followed by cooling in a desiccator or under a stream of argon prior to use. Tetrahydrofuran (THF) was dried over sodium metal, benzophenone, and distilled immediately prior to use. $\mathrm{RuH}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ were prepared according to literature procedure. 1 All ligands were used as received from Strem Chemicals Inc. Alcohols were purified by distillation or recrystallization immediately prior to use. Preparative column chromatography employing Silicycle silica gel $(40-63 \mu \mathrm{~m})$ was performed according to the method of Still. 2 Analytical thin-layer chromatography (TLC) was carried out using 0.25 mm commercial silica gel plates (Dynamic Absorbents F254). Visualization was accomplished with UV light followed by dipping in Seebach's stain solution then heating. Purification of reactions was carried out by flash chromatography using Silicycle silica gel (40-63 $\mu \mathrm{m}$).

Spectroscopy, Spectrometry, and Data Collection

Infrared spectra were recorded on a Perkin-Elmer 1600 spectrometer. Low-resolution mass spectra (LRMS) were obtained on a Karatos MS9 and are reported as m / z (relative intensity). Accurate masses are reported for the molecular ion ($\mathrm{M}+\mathrm{H}, \mathrm{M}+\mathrm{Na}$), or a suitable fragment ion. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra were recorded with a Varian Gemini (400 MHz) spectrometer. Chemical shifts are reported in delta (δ) units, parts per million (ppm) downfield from tetramethylsilane or ppm relative to the center of the singlet at 7.26 ppm for deuteriochloroform. Data reported as multiplicity ($\mathrm{s}=$ singlet, d $=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet). Integration and coupling constants were reported in Hertz (Hz). Carbon-13 nuclear magnetic resonance $\left({ }^{13} \mathrm{C}\right.$ NMR) spectra were recorded with a Varian Gemini (100 MHz) spectrometer and were routinely run with broadband decoupling. Chemical shifts are reported in delta (δ) units, ppm relative to the center of the triplet at 77.16 ppm for deuteriochloroform.

Experimental Details and Spectral Data

General Procedure for the Couplings of Alcohols 2.2a-2.21 and Alkynes
To a resealable pressure tube (ca. 13 x 100$)$ was added $\mathrm{H}_{2} \mathrm{Ru}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}(9.2 \mathrm{mg}, 0.010$ $\mathrm{mmol}, 5 \mathrm{~mol} \%$), SL-J009-1 ligand ($5.6 \mathrm{mg}, 0.010 \mathrm{mmol}, 5 \mathrm{~mol} \%$), Bu4NI ($7.4 \mathrm{mg}, 0.020$ $\mathrm{mmol}, 10 \mathrm{~mol} \%$) and 2,4,6-tri(2-propyl)phenylsulfonic acid ($2.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 5$ $\mathrm{mol} \%$). At this stage solid alcohol coupling partners ($0.20 \mathrm{mmol}, 100 \mathrm{~mol} \%$) were added. The tube was then sealed with a rubber septum and purged with argon. THF ($0.20 \mathrm{~mL}, 1$ M concentration with respect to alcohols) was then added. At this stage, liquid alcohol coupling partners ($0.20 \mathrm{mmol}, 100 \mathrm{~mol} \%$) were added. 2-propylalcohol ($31 \mu \mathrm{~L}, 0.40 \mathrm{mmol}$, $200 \mathrm{~mol} \%$) was then added. Alkynes ($0.60 \mathrm{mmol}, 300 \mathrm{~mol} \%$) was added via syringe and the rubber septum was quickly replaced with a screw cap. The mixture was then heated at $95^{\circ} \mathrm{C}$ for the time stated. After cooling to room temperature, the mixture was concentrated in vacuo. The residue was subjected to flash column chromatography $\left(\mathrm{SiO}_{2}\right)$, under the conditions noted, to afford the corresponding branched homoallylic alcohols.

The residue was subjected to flash column chromatography for purification $\left(\mathrm{SiO}_{2}, 300 \mathrm{~mL}\right.$ of EtOAc: Hexanes $=1: 5$) to furnish the title compound $(42.5 \mathrm{mg}, 79 \%, d r=>20: 1)$ as a yellow oil.
$\underline{\mathbf{R}}_{\mathbf{f}}=0.37$ (Hexanes: $\mathrm{Et}_{2} \mathrm{O}=4: 1$).
Spectral data is reported for the major isomer.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.50-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 2 \mathrm{H}), 5.84-5.72(\mathrm{~m}$, $1 \mathrm{H}), 5.31(\mathrm{dd}, J=10.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{ddd}, J=17.1,2.1,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{dd}, J=$ $8.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.41(\mathrm{~m}, 1 \mathrm{H}), 0.86(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.84$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$).
$\left.\xrightarrow{{ }^{13} \mathbf{C} \text { NMR }(100 ~ M H z, ~} \mathrm{CDCl}_{3}\right): \delta 142.0,135.4,131.6,128.7,121.5,120.8,74.1,59.1,27.7$, 22.0, 17.6.

LRMS (CI) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrO}[\mathrm{M}+\mathrm{H}]^{+}: 269 / 271$, Found: 269/271.
FTIR (neat): $3432,3388,2959,2904,1638,1592,1486,1190,1070,1009,915,818 \mathrm{~cm}^{-}$
$\underline{\text { HPLC }}($ Chiralcel AD-H column, hexanes: $i-\mathrm{PrOH}=99.5: 0.5,0.50 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm})$, ee $=$ 94\%.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}=-41.3\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$

(1S,2S)-2-isopropyl-1-phenylbut-3-en-1-ol (2.3b).

The residue was subjected to flash column chromatography for purification $\left(\mathrm{SiO}_{2}, 300 \mathrm{~mL}\right.$ of EtOAc: Hexanes $=1: 12$) to furnish the title compound ($31.2 \mathrm{mg}, 82 \%, d r=>20: 1$) as a yellow oil.
$\underline{\mathbf{R}}_{\mathbf{f}}=0.56(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
Spectral data is reported for the major isomer.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.36-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.81(\mathrm{dt}, J=17.1,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.31$ $(\mathrm{dd}, J=10.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{dd}, J=17.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{dd}, J=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.16(\mathrm{td}, J=9.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.52-1.40(\mathrm{~m}, 1 \mathrm{H}), 0.85(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 142.9,135.9,128.5,127.8,127.0,120.4,74.8,59.0,27.7$, 22.1, 17.4.

LRMS (CI) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}[\mathrm{M}-\mathrm{OH}]^{+}: 173$, Found: 173.
FTIR (neat): $3439,3071,3028,2929,1612,1591,1454,1368,1194,1001,913,764,700$ cm^{-1}.
$\underline{\text { HPLC }}($ Chiralcel AD-H column, hexanes: $i-\mathrm{PrOH}=99: 1,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=95 \%$.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}=-83.4\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$

(1S,2S)-2-isopropyl-1-(p-tolyl)but-3-en-1-ol (2.3c).

The residue was subjected to flash column chromatography for purification $\left(\mathrm{SiO}_{2}, 300 \mathrm{~mL}\right.$ of EtOAc: Hexanes $=1: 12$) to furnish the title compound ($31.1 \mathrm{mg}, 76 \%, d r=>20: 1$) as a yellow oil.
$\underline{\mathbf{R}}_{\mathbf{f}}=0.56(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
Spectral data is reported for the major isomer.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 2 \mathrm{H}), 5.81(\mathrm{dt}, J=$ $17.1,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{dd}, J=10.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{ddd}, J=17.1,2.2,0.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.57 (dd, $J=8.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.34$ (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.17(\mathrm{td}, J=9.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.02$ $(\mathrm{d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.52-1.39(\mathrm{~m}, 1 \mathrm{H}), 0.89-0.84(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H})$.
$\xrightarrow{{ }^{13} \mathbf{C} \text { NMR }}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 139.9,137.5,136.0,129.2,127.0,120.3,74.7,58.9,27.7$, 22.1, 21.3, 17.3.

LRMS (CI) Calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}[\mathrm{M}-\mathrm{OH}]^{+}: 187$, Found: 187.
FTIR (neat): $3452,2957,2925,2871,1637,1514,1194,1000,911,814,675 \mathrm{~cm}^{-1}$.
$\underline{\text { HPLC }}($ Chiralcel AD-H column, hexanes: $i-\mathrm{PrOH}=99: 1,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=95 \%$.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}=-105.3\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$

DAD1 B, sig=210,8 Ref=360,100 (TAOITAO_1SAMPLE 2014-12-04 15-06-091025-0701.D)

(1S,2S)-2-isopropyl-1-(4-methoxyphenyl)but-3-en-1-ol (2.3d).

The residue was subjected to flash column chromatography for purification $\left(\mathrm{SiO}_{2}, 300 \mathrm{~mL}\right.$ of EtOAc: Hexanes $=1: 7$) to furnish the title compound ($32.2 \mathrm{mg}, 73 \%, d r=>20: 1$) as a yellow oil.
$\underline{\mathbf{R}}_{\mathbf{f}}=0.39(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
Spectral data is reported for the major isomer.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.30-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.85(\mathrm{~m}, 2 \mathrm{H}), 5.81(\mathrm{dt}, J=$ $17.1,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{dd}, J=10.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{ddd}, J=17.1,2.1,0.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.55(\mathrm{dd}, J=8.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{td}, J=9.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~d}, J=2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 1.53-1.38(\mathrm{~m}, 1 \mathrm{H}), 0.82(\mathrm{t}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.2,136.0,135.0,128.2,120.3,113.9,74.4,58.9,55.4$, 27.7, 22.1, 17.2.

LRMS (CI) Calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 221$, Found: 221.
FTIR (neat): $3446,3072,2999,2873,1612,1586,1512,1367,1246,1174,1035,833 \mathrm{~cm}^{-}$ 1.
$\underline{\text { HPLC }}$ (Chiralcel AD-H column, hexanes: $i-\mathrm{PrOH}=99: 1,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=95 \%$. $[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}=-92.3\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$

The residue was subjected to flash column chromatography for purification ($\mathrm{SiO}_{2}, 300 \mathrm{~mL}$ of EtOAc: Hexanes $=1: 7$) to furnish the title compound ($35.1 \mathrm{mg}, 75 \%, d r=>20: 1$) as a yellow oil.
$\underline{\mathbf{R}}_{\underline{f}}=0.31(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
Spectral data is reported for the major isomer.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.81-6.71(\mathrm{~m}, 2 \mathrm{H}), 5.94(\mathrm{~s}, 2 \mathrm{H}), 5.86-$ $5.71(\mathrm{~m}, 1 \mathrm{H}), 5.31(\mathrm{dd}, J=10.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{dd}, J=17.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.38(\mathrm{~m}, 1 \mathrm{H}), 0.83(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~d}, J$ $=2.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 147.8,147.1,136.8,135.8,120.6,120.4,108.0,107.1$, 101.1, 74.6, 58.9, 27.6, 22.0, 17.2.

LRMS (CI) Calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 235$, Found: 235.
FTIR (neat): $3446,3073,2958,2874,1638,1610,1503,1441,1243,1038,916,810 \mathrm{~cm}^{-}$ 1
$\underline{\text { HPLC }}$ (Chiralcel OD-H column, hexanes: $i-\mathrm{PrOH}=99: 1,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=96 \%$.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathrm{D}}=-77.1\left(\mathrm{c}=1.72, \mathrm{CHCl}_{3}\right)$

The residue was subjected to flash column chromatography for purification $\left(\mathrm{SiO}_{2}, 300 \mathrm{~mL}\right.$ of EtOAc: Hexanes $=1: 5$) to furnish the title compound ($33.5 \mathrm{mg}, 76 \%, d r=>20: 1$) as a yellow oil.
$\underline{\mathbf{R}}_{\mathbf{f}}=0.28(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
Spectral data is reported for the major isomer.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.31(\mathrm{dd}, J=7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.96$ $(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{dd}, J=8.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{dt}, J=17.1,10.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.22(\mathrm{dd}, J=10.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-4.97(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.29-2.23(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.49(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 156.9,136.7,131.3,128.4,128.1,120.8,119.1,110.7$, 70.5, 57.6, 55.4, 28.2, 22.0, 18.1.

LRMS (CI) Calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 221$, Found: 221.
FTIR (neat): $3452,2956,2871,1601,1588,1490,1464,1237,1049,1030,912,753 \mathrm{~cm}^{-}$ ${ }^{1}$.

HPLC (Chiralcel OD-H column, hexanes: $i-\mathrm{PrOH}=99: 1,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=95 \%$. $[\alpha]^{\mathbf{2 5}}{ }_{\mathrm{D}}=-60.4\left(\mathrm{c}=1.57, \mathrm{CHCl}_{3}\right)$

(3S,4S)-3-isopropyl-6-methylhepta-1,5-dien-4-ol (2.3g).

The residue was subjected to flash column chromatography for purification $\left(\mathrm{SiO}_{2}, 250 \mathrm{~mL}\right.$ of $\mathrm{Et}_{2} \mathrm{O}$: Pentane $=1: 7$) to furnish the title compound ($25.6 \mathrm{mg}, 76 \%, d r=>20: 1$) as a colorless oil.
$\underline{\mathbf{R}}_{\boldsymbol{f}}=0.32\left(5: 1\right.$ Hexanes : $\left.\mathrm{Et}_{2} \mathrm{O}\right)$.
Spectral data is reported for the major isomer.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.74(\mathrm{td}, J=17.1,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dt}, J=10.3,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.18-5.05(\mathrm{~m}, 2 \mathrm{H}), 4.30(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.72$ $(\mathrm{s}, 3 \mathrm{H}), 1.54(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{dd}, J=6.8,1.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{dd}, J=6.8,1.7 \mathrm{~Hz}$, $3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 136.43,136.25,126.52,119.83,68.55,57.72,27.97$, 26.10, 22.05, 18.50, 17.79.

LRMS (CI) Calcd. for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 169$, Found: 169.
FTIR (neat): $3390,2959,2928,1676,1638,1449,1385,1026,913,743 \mathrm{~cm}^{-1}$.
GC (cyclosil-B: Initial temperature: $50{ }^{\circ} \mathrm{C} ; 130{ }^{\circ} \mathrm{C}$, rate: $1^{\circ} \mathrm{C} / \mathrm{min}$), ee $=95 \%$.
$[\alpha]^{\mathbf{2 5}}{ }_{\mathrm{D}}=-3.2\left(\mathrm{c}=0.73, \mathrm{CHCl}_{3}\right)$

(3S,4S,E)-3-isopropyl-6,10-dimethylundeca-1,5,9-trien-4-ol (2.3h).

The residue was subjected to flash column chromatography for purification $\left(\mathrm{SiO}_{2}, 200 \mathrm{~mL}\right.$ of $10 \% \mathrm{EtOAc} /$ Hexanes) to furnish the title compound ($42.6 \mathrm{mg}, 90 \%, d r=>20: 1$) as a colorless oil.
$\underline{\mathbf{R}}_{\underline{f}}=0.50(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
Spectral data is reported for the major isomer.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.74(\mathrm{dt}, J=17.1,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=10.3,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.18-5.10(\mathrm{~m}, 2 \mathrm{H}), 5.07(\mathrm{tt}, J=6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{ddd}, J=9.1,8.0,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.22-2.00(\mathrm{~m}, 4 \mathrm{H}), 1.90-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.67(\mathrm{~d}, J=1.3 \mathrm{~Hz}$, $3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, 3H).
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 139.70,136.28,131.77,126.45,124.11,119.81,68.49$, 57.77, 39.90, 27.98, 26.36, 25.83, 22.11, 17.84, 17.77, 16.81.

LRMS (CI) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 237$, Found: 237.
FTIR (neat): $3423,3073,2958,2927,2870,1669,1638,1446,1383,1027,1001,909,684$ cm^{-1}.

HPLC (Chiralcel OD-H column, hexanes: $i-\mathrm{PrOH}=99.5: 0.5,0.50 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=$ 96\%.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}=-15.9\left(\mathrm{c}=1.33, \mathrm{CHCl}_{3}\right)$

(3R,4S,E)-4-isopropyl-1-phenylhexa-1,5-dien-3-ol (2.3i).

The residue was subjected to flash column chromatography for purification $\left(\mathrm{SiO}_{2}, 250 \mathrm{~mL}\right.$ of 1:9 $\mathrm{Et}_{2} \mathrm{OAc}$: Hexanes) to furnish the title compound ($29.0 \mathrm{mg}, 67 \%, d r=>20: 1$) as a colorless oil.
$\underline{\mathbf{R}}_{\mathbf{f}}=0.50(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
Spectral data is reported for the major isomer.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.43-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.20(\mathrm{~m}$, $1 \mathrm{H}), 6.61(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=15.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{dt}, J=17.1,10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.30(\mathrm{dd}, J=10.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{ddd}, J=17.1,2.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{td}, J=7.5$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{ddd}, J=9.7,7.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~d}, J=2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 0.93(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 136.88,135.92,131.82,130.98,128.69,127.81,126.66$, 119.96, 73.32, 57.63, 27.96, 21.88, 17.97.
$\underline{\text { LRMS }}$ (CI) Calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 217$, Found: 217.
FTIR (neat): 3422, 3073, 2957, 2870, 1637, 1494, 1449, 1386, 1002, 966, 751, $693 \mathrm{~cm}^{-1}$.
$\underline{\text { HPLC }}$ (Chiralcel AD-H column, hexanes: $i-\mathrm{PrOH}=99: 1,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=96 \%$.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}=+10.0\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$

(3S,4R)-3-isopropyldec-1-en-4-ol (2.3j).

In modification to the general procedure, $2-\mathrm{PrOH}$ was omitted. The reaction was heated for 48 hours at $125^{\circ} \mathrm{C}$, concentrated in vacuo. The residue was subjected to flash column chromatography $\left(\mathrm{SiO}_{2}, 250 \mathrm{~mL}\right.$ of 1:15 $\mathrm{Et}_{2} \mathrm{O}$: Hexanes) to furnish the title compound (28.6 $\mathrm{mg}, 72 \%, d r=>20: 1$) as a pale yellow liquid.
$\underline{\mathbf{R}}_{\underline{f}}=0.74$ (1:5 of $\mathrm{Et}_{2} \mathrm{O}$: Hexanes).
Spectral data is reported for the major isomer.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.69(\mathrm{dt}, J=17.2,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{dd}, J=10.3,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.06(\mathrm{dd}, J=17.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 1 \mathrm{H}), 1.81(\mathrm{dt}, J=13.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-$ $1.64(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.21(\mathrm{~m}, 11 \mathrm{H}), 0.92(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.91-0.87(\mathrm{~m}, 3 \mathrm{H}), 0.85(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 136.66,118.88,71.26,56.86,35.35,32.02,29.57,27.89$, 25.73, 22.79, 21.62, 19.29, 14.24.

LRMS (CI) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 199$, Found: 199.
FTIR (neat): 3389, 2956, 2928, 1638, 1467, 1368, 1144, 1038, 1003, 911, $725 \mathrm{~cm}^{-1}$.
HPLC Enantiomeric excess was determined by HPLC analysis of the 4-nitro-benzoate of product (Chiralcel AD-H column, hexanes: $i-\mathrm{PrOH}=99: 1,0.50 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=$ 93\%.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}} \mathbf{D}=+15.0\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$

(3R,4S)-4-isopropyl-1-phenylhex-5-en-3-ol (2.3k).

In modification to the general procedure, $2-\mathrm{PrOH}$ was omitted and the reaction was heated at $125^{\circ} \mathrm{C}$. The residue was subjected to flash column chromatography $\left(\mathrm{SiO}_{2}, 250 \mathrm{~mL}\right.$ of $1: 16 \mathrm{Et}_{2} \mathrm{O}$: Hexanes) to furnish the title compound ($28.4 \mathrm{mg}, 65 \%, d r=>20: 1$) as a yellow liquid.
$\underline{\mathbf{R}}_{\underline{f}}=0.46(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
Spectral data is reported for the major isomer.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.29(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.14(\mathrm{~m}, 3 \mathrm{H}), 5.71(\mathrm{dt}, J=$ $17.2,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{dd}, J=10.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{dd}, J=17.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-$ $3.61(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{ddd}, J=13.7,10.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{ddd}, J=13.7,9.9,6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.89-1.67(\mathrm{~m}, 4 \mathrm{H}), 1.47(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, 3 H).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.46,136.42,128.58,128.50,125.90,119.18,70.72$, 57.00, 37.17, 32.24, 27.89, 21.61, 19.12.

LRMS (CI) Calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}[\mathrm{M}-\mathrm{OH}]^{+}: 201$, Found: 201.
FTIR (neat): $3363,3067,2955,2926,1637,1603,1455,1385,1044,1003,914,699 \mathrm{~cm}^{-}$ 1
$\underline{\text { HPLC }}$ (Chiralcel AD-H column, hexanes: $i-\operatorname{PrOH}=99: 1,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=94 \%$.

$$
[\boldsymbol{\alpha}]^{25}{ }_{\mathrm{D}}=+26.4\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right)
$$

(3R,4S)-1-(benzyloxy)-4-isopropylhex-5-en-3-ol (2.31).

In modification to the general procedure, $2-\mathrm{PrOH}$ was omitted and the reaction was heated at $125^{\circ} \mathrm{C}$. The residue was subjected to flash column chromatography $\left(\mathrm{SiO}_{2}, 250 \mathrm{~mL}\right.$ of $1: 16 \mathrm{Et}_{2} \mathrm{O}$: Hexanes) to furnish the title compound ($32.7 \mathrm{mg}, 66 \%, d r=>20: 1$) as a yellow liquid.
$\underline{\mathbf{R}}_{\underline{f}}=0.40(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
Spectral data is reported for the major isomer.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.37-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.74(\mathrm{dt}, J=17.2,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.17$ (dd, $J=10.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{ddd}, J=17.2,2.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 3.99-3.92$ $(\mathrm{m}, 1 \mathrm{H}), 3.76-3.60(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.60$ $(\mathrm{m}, 2 \mathrm{H}), 0.95(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 138.19,137.17,128.57,127.82,118.09,73.44,70.76$, 69.36, 57.48, 35.34, 28.01, 21.41, 19.91.

LRMS (CI) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 249$, Found: 249.
FTIR (neat): $3491,3067,2954,2926,1496,1386,1095,1028,913,737,697 \mathrm{~cm}^{-1}$.
$\underline{\text { HPLC }}$ (Chiralcel OD-H column, hexanes: $i-\mathrm{PrOH}=99: 1,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=96 \%$.
$[\alpha]^{\mathbf{2 5}}{ }_{\mathrm{D}}=+21.6\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$

(1S,2R)-1-(4-bromophenyl)-2-(tert-butyl)but-3-en-1-ol (2.3m).

The residue was subjected to flash column chromatography for purification $\left(\mathrm{SiO}_{2}, 200 \mathrm{~mL}\right.$ of $10 \% \mathrm{EtOAc} /$ Hexanes) to furnish the title compound ($42.5 \mathrm{mg}, 75 \%, d r=>20: 1$) as a pale white solid.
$\underline{\mathbf{R}}_{\mathbf{f}}=0.49(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
Spectral data is reported for the major isomer.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.44-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 2 \mathrm{H}), 5.89(\mathrm{dt}, J=$ $17.2,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{dd}, J=10.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-5.01(\mathrm{~m}, 1 \mathrm{H}), 4.65(\mathrm{dd}, J=17.2$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{dd}, J=10.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.5,133.8,131.2,128.0,120.8,119.7,72.9,62.3,33.2$, 28.9 .

LRMS (CI) Calcd. for C14H19BrO [M+H] ${ }^{+}: 283 / 285$, Found: 283/285.
FTIR (neat): $3459,3073,2955,2905,1636,1592,1487,1366,1230,1072,1010,917,776$ cm^{-1}.

MP $55.6-56.2^{\circ} \mathrm{C}$
HPLC (Chiralcel OD-H column, hexanes: $i-\mathrm{PrOH}=95: 5,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=94 \%$.
$[\alpha]^{25}{ }_{\mathrm{D}}=-10.5\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$

tert-butyl 4-((1S,2R)-1-(4-bromophenyl)-1-hydroxybut-3-en-2-yl)piperidine-1carboxylate (2.3n).

In modification to the general procedure, the reaction was extended for 72 hours. The residue was subjected to flash column chromatography $\left(\mathrm{SiO}_{2}, 200 \mathrm{~mL}\right.$ of 30% $\mathrm{Et}_{2} \mathrm{O} /$ Hexanes followed by 150 mL of $40 \% \mathrm{Et}_{2} \mathrm{O} /$ Hexanes) to furnish the title compound ($53.3 \mathrm{mg}, 65 \%, d r=>20: 1$) as a yellow liquid.
$\underline{\mathbf{R}}_{\mathbf{f}}=0.30\left(50 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ Hexanes $)$.
Spectral data is reported for the major isomer.
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.49-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 2 \mathrm{H}), 5.73(\mathrm{dt}, J=$ $17.1,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{dd}, J=10.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{dd}, J$ $=6.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 2 \mathrm{H}), 2.63-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.11-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.13$ (m, 14H).
${ }^{13}$ C NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 154.88,142.07,135.24,131.56,128.41,121.51,120.53$, 79.47, 73.19, 57.80, 36.50, 34.82, 28.59, 25.43.

LRMS (ESI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{BrNO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 434, Found: 434.
FTIR (neat): $3424,2976,2930,1667,1485,1428,1366,1166,1071,751 \mathrm{~cm}^{-1}$.
HPLC (Chiralcel AD-H column, hexanes: $i-\mathrm{PrOH}=95: 5,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=90 \%$.
$[\alpha]^{\mathbf{2 5}}{ }_{\mathbf{D}}=-5.66\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$

(1S,2R)-1-(4-bromophenyl)-2-phenylbut-3-en-1-ol (2.30).

In modification to the general procedure, the reaction was heated at $75^{\circ} \mathrm{C}$ for 72 hours. The residue was subjected to flash column chromatography $\left(\mathrm{SiO}_{2}, 300 \mathrm{~mL}\right.$ of 5% $\mathrm{EtOAc} / \mathrm{Hexanes}$) to furnish the title compound ($40.6 \mathrm{mg}, 67 \%, d r=>20: 1$) as a yellow liquid.
$\underline{\mathbf{R}}_{\underline{f}}=0.56(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
Spectral data is reported for the major isomer.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.06-6.98(\mathrm{~m}$, $4 \mathrm{H}), 6.27-6.18(\mathrm{~m}, 1 \mathrm{H}), 5.36-5.18(\mathrm{~m}, 2 \mathrm{H}), 4.80(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{t}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.35(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 140.9,140.3,137.6,131.1,128.7,128.5,128.4,127.0$, 121.4, 119.0, 76.7, 59.5.

LRMS (CI) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrO}[\mathrm{M}+\mathrm{H}]^{+}: 303 / 305$, Found: 303/305.
FTIR (neat): $3402,3082,2974,2904,1636,1559,1405,1226,1071,1010,819,700 \mathrm{~cm}^{-}$ ${ }^{1}$.

HPLC (Chiralcel OD-H column, hexanes: $i-\mathrm{PrOH}=95: 5,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=86 \%$.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}=+19.8\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$

(3R,4R)-3-(tert-butyl)dec-1-en-4-ol (2.3p).

In modification to the general procedure, $2-\mathrm{PrOH}$ was omitted and the reaction was heated for 72 hours, concentrated in vacuo. The residue was subjected to flash column chromatography $\left(\mathrm{SiO}_{2}, 250 \mathrm{~mL}\right.$ of 1:9 $\mathrm{Et}_{2} \mathrm{O}$: Hexanes) to furnish the title compound (25.9 $\mathrm{mg}, 61 \%, d r=>20: 1$) as a pale yellow liquid.
$\underline{\mathbf{R}}_{\underline{f}}=0.50$ (1:5 of $\mathrm{Et}_{2} \mathrm{O}$: Hexanes).
Spectral data is reported for the major isomer.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.85(\mathrm{dt}, J=17.2,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{dd}, J=10.3,2.5$
$\mathrm{Hz}, 1 \mathrm{H}), 4.99(\mathrm{dd}, J=17.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 1 \mathrm{H}), 1.65(\mathrm{dd}, J=10.2,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.45-1.23(\mathrm{~m}, 10 \mathrm{H}), 1.09-1.00(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{{ }^{13} \mathbf{C} \text { NMR }}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 135.4,118.7,71.0,59.2,37.9,32.8,32.0,29.4,28.7,26.1$, 22.8, 14.2.

LRMS (ESI) Calcd. for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 213$, Found: 213.
FTIR (neat): $3415,2954,2930,2858,1637,1466,1364,1006,913,727 \mathrm{~cm}^{-1}$.
HPLC Enantiomeric excess was determined by HPLC analysis of the 4-nitro-benzoate of product (Chiralcel OD-H column, hexanes: $i-\mathrm{PrOH}=99: 1,0.50 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=$ 90\%.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathrm{D}}=+21.8\left(\mathrm{c}=0.57, \mathrm{CHCl}_{3}\right)$

tert-butyl 4-((3R,4R)-4-hydroxydec-1-en-3-yl)piperidine-1-carboxylate (2.3q).

In modification to the general procedure, the loading of Ruthenium catalyst was 7.5%. The reaction was omitted $2-\mathrm{PrOH}$ and heated for 48 hours, concentrated in vacuo. The residue was subjected to flash column chromatography $\left(\mathrm{SiO}_{2}, 200 \mathrm{~mL}\right.$ of $30 \% \mathrm{Et}_{2} \mathrm{O} /$ Hexanes followed by 150 mL of $40 \% \mathrm{Et}_{2} \mathrm{O} / \mathrm{Hexanes}$) to furnish the title compound ($46.1 \mathrm{mg}, 68 \%$, $d r=>20: 1$) as a yellow oil.
$\underline{\mathbf{R}}_{\mathrm{f}}=0.33\left(50 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ Hexanes $)$.
Spectral data is reported for the major isomer.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.68(\mathrm{dt}, J=17.2,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{dd}, J=10.3,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.03(\mathrm{dd}, J=17.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{dd}, J=10.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-$ $2.57(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.46-1.07(\mathrm{~m}, 22 \mathrm{H}), 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 154.9,136.1,119.0,79.4,70.4,55.1,36.2,35.9,32.0$, $30.5,30.0,29.5,28.6,26.3,25.9,25.3,22.8,14.2$.

LRMS (ESI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{37} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 362$, Found: 362.
FTIR (neat): $3471,2952,2853,1673,1427,1366,1172,1073,911,669 \mathrm{~cm}^{-1}$.
HPLC (Chiralcel OD-H column, hexanes: $i-\mathrm{PrOH}=97: 3,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=96 \%$.
$[\alpha]^{\mathbf{2 5}}{ }_{\mathrm{D}}=+5.7\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$

(3R,4R)-3-phenyldec-1-en-4-ol (2.3r).

In modification to the general procedure, the reaction was omitted 2-PrOH and heated for 48 hours, concentrated in vacuo. The residue was subjected to flash column chromatography $\left(\mathrm{SiO}_{2}, 300 \mathrm{~mL}\right.$ of $5 \% \mathrm{EtOAc} /$ Hexanes $)$ to furnish the title compound (40.1 $\mathrm{mg}, 77 \%, d r=>20: 1)$ as a yellow oil.
$\underline{\mathbf{R}}_{\underline{f}}=0.65(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
Spectral data is reported for the major isomer.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 3 \mathrm{H}), 6.12(\mathrm{ddd}, \mathrm{J}=$ $17.0,10.3,9.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.23 (ddd, $J=10.4,1.6,0.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.20 (ddd, $J=17.0,1.7,0.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.82-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=9.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.52$ $-1.12(\mathrm{~m}, 10 \mathrm{H}), 0.85(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 141.85,138.51,128.83,128.13,126.77,118.00,74.10$, 57.57, 34.54, 31.94, 29.37, 25.82, 22.73, 14.22.

LRMS (ESI) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 233$, Found: 233.
FTIR (neat): $3430,2926,2856,1637,1493,1453,1066,995,916,678 \mathrm{~cm}^{-1}$.
$\underline{\text { HPLC }}($ Chiralcel AD-H column, hexanes: $i-\mathrm{PrOH}=99: 1,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=90 \%$.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}=-44.9\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$

Crystallographic Material for Coupling product 2.3m

X-ray Experimental for $\mathrm{C}_{14} \mathrm{H}_{\mathbf{1 9}} \mathbf{O B r}$ (2.3m)

Crystals grew as clusters of clear, colorless prisms by slow evaporation from hexane and pentane. The data crystal was cut from a larger crystal and had approximate dimensions; $0.31 \times 0.30 \times 0.14 \mathrm{~mm}$. The data were collected at $-140^{\circ} \mathrm{C}$ on a Nonius Kappa CCD diffractometer using a Bruker AXS Apex II detector and a graphite monochromator with MoK α radiation $(\lambda=0.71073 \AA)$. Reduced temperatures were maintained by use of an Oxford Cryosystems 600 low-temperature device. A total of 1280 frames of data were collected using ω and ϕ-scans with a scan range of 1° and a counting time of 51 seconds per frame. Details of crystal data, data collection and structure refinement are listed in Table 1. Data reduction were performed using SAINT V8.27B. ${ }^{13}$ The structure was solved by direct methods using SUPERFLIP ${ }^{14}$ and refined by full-matrix least-squares on F^{2} with anisotropic displacement parameters for the non-H atoms using SHELXL-2013. ${ }^{15}$ Structure analysis was aided by use of the programs PLATON98 ${ }^{16}$ and WinGX. ${ }^{17}$ The hydrogen atoms were calculated in idealized positions. The absolute configuration was determined by anomalous dispersion effects.

The function, $\Sigma \mathrm{w}\left(\left|\mathrm{F}_{\mathrm{O}}\right|^{2}-\left|\mathrm{F}_{\mathrm{c}}\right|^{2}\right)^{2}$, was minimized, where $\mathrm{w}=1 /\left[\left(\sigma\left(\mathrm{F}_{\mathrm{O}}\right)\right)^{2}+\right.$ $\left.(0.021 * \mathrm{P})^{2}+(2.4901 * \mathrm{P})\right]$ and $\mathrm{P}=\left(\left|\mathrm{F}_{\mathrm{O}}\right|^{2}+2\left|\mathrm{~F}_{\mathrm{c}}\right|^{2}\right) / 3 . \mathrm{R}_{\mathrm{W}}\left(\mathrm{F}^{2}\right)$ refined to 0.0614 , with $\mathrm{R}(\mathrm{F})$ equal to 0.0318 and a goodness of fit, $\mathrm{S},=1.01$. Definitions used for calculating $R(F), R_{W}\left(F^{2}\right)$ and the goodness of fit, S, are given below. ${ }^{18}$ The data were checked for secondary extinction but no correction was necessary. Neutral atom scattering factors and values used to calculate the linear absorption coefficient are from the International Tables for X-ray Crystallography (1992). ${ }^{19}$ All figures were generated using SHELXTL/PC. ${ }^{20}$ Tables of positional and thermal parameters, bond lengths and angles, torsion angles and figures are found elsewhere.

Table 2.4 Crystal data and structure refinement for $\mathbf{2 . 3 m}$.

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole
$\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{BrO}$
283.20

133(2) K
$0.71073 \AA$
orthorhombic
C 222_{1}
$\mathrm{a}=14.3605(7) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=16.2960(7) \AA \quad \beta=90^{\circ}$.
$\mathrm{c}=24.0795(10) \AA \quad \gamma=90^{\circ}$.
5635.1(4) \AA^{3}

16
$1.335 \mathrm{Mg} / \mathrm{m}^{3}$
$2.898 \mathrm{~mm}^{-1}$
2336
$0.310 \times 0.300 \times 0.140 \mathrm{~mm}$
2.500 to 27.623°.
$-18<=\mathrm{h}<=18,-21<=\mathrm{k}<=21,-30<=1<=31$
71234
$6493[\mathrm{R}(\mathrm{int})=0.0720]$
99.8 \%

Numerical
0.742 and 0.595

Full-matrix least-squares on F^{2}
6493 / 0 / 298
1.011
$R_{I}=0.0318, w R_{2}=0.0560$
$R_{I}=0.0542, w R_{2}=0.0614$
0.006(8)
n /a
0.307 and -0.335 e. \AA^{-3}

Table 2.5 Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{2 . 3 m} . U(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
Br 1	$2739(1)$	$2598(1)$	$7154(1)$	$47(1)$
C 1	$6106(2)$	$4599(1)$	$5695(1)$	$31(1)$
C 1	$5455(2)$	$3750(2)$	$6424(1)$	$24(1)$
C 2	$4633(2)$	$4199(2)$	$6454(2)$	$31(1)$
C 3	$3833(3)$	$3865(2)$	$6675(1)$	$34(1)$
C 4	$3849(3)$	$3068(2)$	$6865(1)$	$32(1)$
C 5	$4649(3)$	$2603(2)$	$6841(1)$	$33(1)$
C 6	$5444(3)$	$2949(2)$	$6625(1)$	$28(1)$
C 7	$6323(3)$	$4096(2)$	$6169(1)$	$26(1)$
C 8	$6916(2)$	$4608(2)$	$6578(1)$	$24(1)$
C 9	$6496(2)$	$5440(2)$	$6672(1)$	$27(1)$
C 10	$6054(2)$	$5670(2)$	$7121(2)$	$39(1)$
C 11	$7969(2)$	$4650(2)$	$6432(2)$	$34(1)$
C 12	$8462(3)$	$5155(3)$	$6881(2)$	$63(1)$
C 13	$8395(3)$	$3794(2)$	$6441(2)$	$47(1)$
C 14	$8157(3)$	$5028(3)$	$5864(2)$	$60(1)$
Br 2	$1269(1)$	$5391(1)$	$6468(1)$	$48(1)$
O 2	$5572(2)$	$6114(1)$	$5317(1)$	$31(1)$
C 15	$4153(2)$	$6349(2)$	$5855(1)$	$23(1)$
C 16	$3647(3)$	$5801(2)$	$5541(1)$	$29(1)$
C 17	$2801(3)$	$5500(2)$	$5721(1)$	$31(1)$
C18	$2449(2)$	$5771(2)$	$6226(1)$	$30(1)$
C19	$2939(2)$	$6316(2)$	$6545(1)$	$32(1)$
C20	$3795(2)$	$6598(2)$	$6361(1)$	$29(1)$
C21	$5087(2)$	$6684(2)$	$5666(1)$	$24(1)$
C22	$4974(2)$	$7502(2)$	$5356(1)$	$22(1)$
C23	$4463(2)$	$7389(2)$	$4818(1)$	$25(1)$
C24	$3748(3)$	$7823(2)$	$4657(2)$	$34(1)$
C25	$5890(2)$	$8008(2)$	$5279(2)$	$27(1)$
C26	$6447(3)$	$8036(2)$	$5819(2)$	$41(1)$

Table 2.5 Continued

C 27	$5620(3)$	$8881(2)$	$5117(2)$	$36(1)$
C 28	$6517(2)$	$7658(2)$	$4818(1)$	$32(1)$

Table 2.6 Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $\mathbf{2 . 3 m}$.

Br1-C4	1.900(4)	C13-H13C	0.98
O1-C7	$1.438(4)$	C14-H14A	0.98
O1-H1	0.84	C14-H14B	0.98
C1-C2	$1.389(5)$	C14-H14C	0.98
C1-C6	$1.392(4)$	Br2-C18	$1.897(3)$
C1-C7	1.500(5)	O2-C21	1.433(4)
C2-C3	$1.379(5)$	O2-H2A	0.84
C2-H2	0.95	C15-C16	1.377(5)
C3-C4	$1.377(5)$	C15-C20	1.384(4)
C3-H3	0.95	C15-C21	1.518(5)
C4-C5	$1.378(5)$	C16-C17	1.380(5)
C5-C6	$1.375(5)$	C16-H16	0.95
C5-H5	0.95	C17-C18	1.387(5)
C6-H6	0.95	C17-H17	0.95
C7-C8	1.548(5)	C18-C19	1.370(5)
C7-H7	1.00	C19-C20	$1.385(5)$
C8-C9	$1.500(5)$	C19-H19	0.95
C8-C11	$1.553(5)$	C20-H20	0.95
C8-H8	1.00	C21-C22	1.537(4)
C9-C10	1.307(5)	C21-H21	1.00
C9-H9	0.95	C22-C23	1.498(4)
C10-H10A	0.95	C22-C25	1.564(5)
C10-H10B	0.95	C22-H22	1.00
C11-C13	1.524(5)	C23-C24	$1.306(5)$
C11-C14	$1.525(5)$	C23-H23	0.95
C11-C12	1.532(5)	C24-H24A	0.95
C12-H12A	0.98	C24-H24B	0.95
C12-H12B	0.98	C25-C27	1.525(5)
C12-H12C	0.98	C25-C26	1.529(5)
C13-H13A	0.98	C25-C28	1.538(5)
C13-H13B	0.98	C26-H26A	0.98

Table 2.6 Continued

C26-H26B	0.98	C9-C8-C11	112.7(3)
C26-H26C	0.98	C7-C8-C11	114.5(3)
C27-H27A	0.98	C9-C8-H8	105.9
C27-H27B	0.98	C7-C8-H8	105.9
C27-H27C	0.98	C11-C8-H8	105.9
C28-H28A	0.98	C10-C9-C8	125.3(3)
C28-H28B	0.98	C10-C9-H9	117.3
C28-H28C	0.98	C8-C9-H9	117.3
C7-O1-H1	109.5	C9-C10-H10A	120.0
C2-C1-C6	117.8(3)	C9-C10-H10B	120.0
C2-C1-C7	121.9(3)	H10A-C10-H10B	120.0
C6-C1-C7	120.2(3)	C13-C11-C14	108.1(3)
C3-C2-C1	121.3(3)	C13-C11-C12	107.2(3)
C3-C2-H2	119.3	C14-C11-C12	109.6(4)
C1-C2-H2	119.3	C13-C11-C8	110.3(3)
C4-C3-C2	119.1(4)	C14-C11-C8	113.1(3)
C4-C3-H3	120.4	C12-C11-C8	108.3(3)
C2-C3-H3	120.4	C11-C12-H12A	109.5
C3-C4-C5	121.2(3)	C11-C12-H12B	109.5
C3-C4-Br1	119.2(3)	H12A-C12-H12B	109.5
C5-C4-Br1	119.6(3)	C11-C12-H12C	109.5
C6-C5-C4	118.9(3)	H12A-C12-H12C	109.5
C6-C5-H5	120.5	H12B-C12-H12C	109.5
C4-C5-H5	120.5	C11-C13-H13A	109.5
C5-C6-C1	121.6(3)	C11-C13-H13B	109.5
C5-C6-H6	119.2	H13A-C13-H13B	109.5
C1-C6-H6	119.2	C11-C13-H13C	109.5
O1-C7-C1	111.1(3)	H13A-C13-H13C	109.5
O1-C7-C8	108.5(2)	H13B-C13-H13C	109.5
C1-C7-C8	113.5(3)	C11-C14-H14A	109.5
O1-C7-H7	107.9	C11-C14-H14B	109.5
C1-C7-H7	107.9	H14A-C14-H14B	109.5
C8-C7-H7	107.9	C11-C14-H14C	109.5
C9-C8-C7	111.2(3)	H14A-C14-H14C	109.5

Table 2.6 Continued

H14B-C14-H14C	109.5	C25-C22-H22	105.8
C21-O2-H2A	109.5	C24-C23-C22	125.1(3)
C16-C15-C20	118.6(3)	C24-C23-H23	117.5
C16-C15-C21	122.4(3)	C22-C23-H23	117.5
C20-C15-C21	119.1(3)	C23-C24-H24A	120.0
C15-C16-C17	121.4(3)	C23-C24-H24B	120.0
C15-C16-H16	119.3	H24A-C24-H24B	120.0
C17-C16-H16	119.3	C27-C25-C26	108.8(3)
C16-C17-C18	118.9(3)	C27-C25-C28	108.2(3)
C16-C17-H17	120.5	C26-C25-C28	108.6(3)
C18-C17-H17	120.5	C27-C25-C22	107.9(3)
C19-C18-C17	120.7(3)	C26-C25-C22	110.8(3)
C19-C18-Br2	119.9(3)	C28-C25-C22	112.5(3)
C17-C18-Br2	119.4(3)	C25-C26-H26A	109.5
C18-C19-C20	119.4(3)	C25-C26-H26B	109.5
C18-C19-H19	120.3	H26A-C26-H26B	109.5
C20-C19-H19	120.3	C25-C26-H26C	109.5
C15-C20-C19	121.0(3)	H26A-C26-H26C	109.5
C15-C20-H20	119.5	H26B-C26-H26C	109.5
C19-C20-H20	119.5	C25-C27-H27A	109.5
O2-C21-C15	111.8(3)	C25-C27-H27B	109.5
O2-C21-C22	109.2(2)	H27A-C27-H27B	109.5
C15-C21-C22	111.4(3)	C25-C27-H27C	109.5
O2-C21-H21	108.1	H27A-C27-H27C	109.5
C15-C21-H21	108.1	H27B-C27-H27C	109.5
C22-C21-H21	108.1	C25-C28-H28A	109.5
C23-C22-C21	111.4(3)	C25-C28-H28B	109.5
C23-C22-C25	112.0(3)	H28A-C28-H28B	109.5
C21-C22-C25	115.2(3)	C25-C28-H28C	109.5
C23-C22-H22	105.8	H28A-C28-H28C	109.5
C21-C22-H22	105.8	H28B-C28-H28C	109.5

Table 2.7 Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{2 . 3 m}$. The anisotropic displacement factor exponent takes the form: $-2 p^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right.$]

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
Br 1	$50(1)$	$50(1)$	$40(1)$	$11(1)$	$1(1)$	$-18(1)$
O 1	$57(2)$	$17(1)$	$18(1)$	$2(1)$	$-2(1)$	$-3(1)$
C 1	$39(2)$	$16(2)$	$18(2)$	$-2(1)$	$-4(2)$	$-2(1)$
C 2	$42(2)$	$19(2)$	$31(2)$	$5(2)$	$-3(2)$	$-4(2)$
C 3	$42(2)$	$26(2)$	$35(2)$	$2(2)$	$-5(2)$	$-1(2)$
C 4	$42(2)$	$30(2)$	$24(2)$	$4(2)$	$-4(2)$	$-10(2)$
C 5	$57(2)$	$22(2)$	$22(2)$	$10(2)$	$-5(2)$	$-7(2)$
C 6	$43(2)$	$21(2)$	$22(2)$	$4(1)$	$-3(2)$	$1(2)$
C 7	$44(2)$	$15(2)$	$19(2)$	$2(1)$	$4(2)$	$2(2)$
C 8	$31(2)$	$19(2)$	$22(2)$	$0(1)$	$3(1)$	$2(1)$
C 9	$29(2)$	$21(2)$	$32(2)$	$-5(2)$	$-4(1)$	$-1(2)$
C 10	$38(2)$	$34(2)$	$44(2)$	$-12(2)$	$0(2)$	$5(2)$
C 11	$33(2)$	$30(2)$	$40(2)$	$3(2)$	$9(2)$	$4(2)$
C 12	$25(2)$	$74(4)$	$91(4)$	$-34(3)$	$-1(2)$	$3(2)$
C 13	$38(2)$	$41(2)$	$62(3)$	$3(2)$	$14(2)$	$12(2)$
C 14	$49(3)$	$63(3)$	$69(3)$	$26(3)$	$24(2)$	$-4(2)$
Br 2	$47(1)$	$54(1)$	$44(1)$	$2(1)$	$8(1)$	$-16(1)$
O 2	$47(2)$	$19(1)$	$27(1)$	$3(1)$	$10(1)$	$13(1)$
C 15	$32(2)$	$14(2)$	$21(2)$	$1(1)$	$-2(1)$	$6(1)$
C 16	$44(2)$	$21(2)$	$22(2)$	$-4(1)$	$3(2)$	$3(2)$
C 17	$46(2)$	$21(2)$	$27(2)$	$-4(2)$	$-3(2)$	$-8(2)$
C 18	$37(2)$	$23(2)$	$29(2)$	$6(2)$	$2(2)$	$1(2)$
C 19	$43(2)$	$31(2)$	$21(2)$	$-5(2)$	$7(2)$	$1(2)$
C 20	$38(2)$	$23(2)$	$24(2)$	$-5(1)$	$-1(2)$	$-1(2)$
C 21	$33(2)$	$21(2)$	$18(2)$	$-3(1)$	$0(1)$	$8(2)$
C 22	$26(2)$	$18(2)$	$23(2)$	$-3(1)$	$2(1)$	$5(1)$
C 23	$27(2)$	$21(2)$	$26(2)$	$2(2)$	$3(1)$	$-1(2)$
C 24	$32(2)$	$33(2)$	$36(2)$	$4(2)$	$-2(2)$	$2(2)$
C 25	$28(2)$	$21(2)$	$32(2)$	$-4(2)$	$1(2)$	$1(2)$
C 26	$38(2)$	$40(2)$	$44(2)$	$-13(2)$	$-6(2)$	$-3(2)$
C 27	$35(2)$	$20(2)$	$55(3)$	$-2(2)$	$6(2)$	$-4(2)$
C 28	$28(2)$	$28(2)$	$39(2)$	$-4(2)$	$1(2)$	$2(2)$

Table 2.8 Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 2.3m.

	x	y	z	U(eq)
H1	5956	4297	5427	46
H2	4623	4746	6319	37
H3	3278	4180	6695	41
H5	4651	2053	6970	40
H6	6000	2633	6612	34
H7	6712	3626	6038	31
H8	6878	4317	6943	29
H9	6557	5832	6382	33
H10A	5978	5296	7420	46
H10B	5809	6210	7147	46
H12A	9132	5168	6805	95
H12B	8353	4904	7245	95
H12C	8216	5716	6880	95
H13A	9075	3838	6418	70
H13B	8162	3478	6124	70
H13C	8223	3517	6787	70
H14A	7913	5589	5855	91
H14B	7849	4699	5576	91
H14C	8829	5038	5795	91
H2A	5705	5692	5501	46
H16	3885	5627	5192	35
H17	2465	5114	5504	38
H19	2694	6500	6890	38
H20	4141	6968	6585	34
H21	5477	6785	6003	29
H22	4559	7848	5594	27
H23	4676	6969	4576	30
H24A	3514	8249	4887	40
H24B	3462	7713	4309	40
H26A	6994	8387	5770	61
H26B	6648	7480	5918	61
H26C	6056	8257	6117	61
H27A	5235	9122	5411	55
H27B	5267	8871	4769	55
H27C	6184	9212	5068	55
113				

Table 2.8 Continued

H28A	7104	7964	4808	47
H28B	6201	7708	4459	47
H28C	6646	7078	4894	47

Table 2.9 Torsion angles [${ }^{\circ}$] for $\mathbf{2 . 3 m}$.

C6-C1-C2-C3	$0.1(5)$	C20-C15-C16-C17	$-0.2(5)$
C7-C1-C2-C3	$178.0(3)$	C21-C15-C16-C17	$179.6(3)$
C1-C2-C3-C4	$-0.6(5)$	C15-C16-C17-C18	$1.3(5)$
C2-C3-C4-C5	$0.3(5)$	C16-C17-C18-C19	$-1.2(5)$
C2-C3-C4-Br1	$-178.5(3)$	C16-C17-C18-Br2	$177.9(3)$
C3-C4-C5-C6	$0.5(5)$	C17-C18-C19-C20	$0.0(5)$
Br1-C4-C5-C6	$179.3(3)$	Br2-C18-C19-C20	$-179.2(3)$
C4-C5-C6-C1	$-1.0(5)$	C16-C15-C20-C19	$-1.1(5)$
C2-C1-C6-C5	$0.7(5)$	C21-C15-C20-C19	$179.1(3)$
C7-C1-C6-C5	$-177.3(3)$	C18-C19-C20-C15	$1.2(5)$
C2-C1-C7-O1	$-37.0(4)$	C16-C15-C21-O2	$-29.2(4)$
C6-C1-C7-O1	$140.9(3)$	C20-C15-C21-O2	$150.6(3)$
C2-C1-C7-C8	$85.6(4)$	C16-C15-C21-C22	$93.2(4)$
C6-C1-C7-C8	$-96.5(4)$	C20-C15-C21-C22	$-87.0(3)$
O1-C7-C8-C9	$47.6(3)$	O2-C21-C22-C23	$57.8(4)$
C1-C7-C8-C9	$-76.4(3)$	C15-C21-C22-C23	$-66.1(3)$
O1-C7-C8-C11	$-81.6(3)$	O2-C21-C22-C25	$-71.1(3)$
C1-C7-C8-C11	$154.4(3)$	C15-C21-C22-C25	$164.9(3)$
C7-C8-C9-C10	$105.5(4)$	C21-C22-C23-C24	$129.8(4)$
C11-C8-C9-C10	$-124.3(4)$	C25-C22-C23-C24	$-99.5(4)$
C9-C8-C11-C13	$170.1(3)$	C23-C22-C25-C27	$67.0(4)$
C7-C8-C11-C13	$-61.4(4)$	C21-C22-C25-C27	$-164.3(3)$
C9-C8-C11-C14	$-68.6(4)$	C23-C22-C25-C26	$-174.0(3)$
C7-C8-C11-C14	$59.9(4)$	C21-C22-C25-C26	$-45.3(4)$
C9-C8-C11-C12	$53.0(4)$	C23-C22-C25-C28	$-52.2(4)$
C7-C8-C11-C12	$-178.5(3)$	C21-C22-C25-C28	$76.4(3)$

Table 2.10 Hydrogen bonds for $\mathbf{2 . 3 m}$ [\AA and ${ }^{\circ}$].

D-H...A	d(D-H)	d(H...A)	d(D...A)	$<$ (DHA)
O1-H1...O2\#1	0.84	1.99	$2.807(3)$	163.9
O2-H2A...O1	0.84	1.93	$2.742(3)$	162.2

Symmetry transformations used to generate equivalent atoms:
\#1 $\mathrm{x},-\mathrm{y}+1,-\mathrm{z}+1$

Figure 2.1 View of $\mathbf{2 . 3 m}$ showing the atom labeling scheme. Displacement ellipsoids are scaled to the 50% probability level.

Chapter 3: Siloxy-Crotylation of Primary Alcohols by Coupling with Propargyl Ethers via Novel Hydride Shift Enabled Formation of Allylruthenium from Alkynes*

3.1 Introduction

Polyketides are important sources for discovery of medicine due to their bioactivities. ${ }^{1}$ In the present, all polyketide drugs, except one, are prepared through fermentation or modification of fermentation products. ${ }^{2}$ Only very small portion (less than 5\%) of the bacteria are able to culture, which limit the further study on the polyketides. ${ }^{3}$ Chemical synthesis for the polyketides synthesis is still in demand for more efficient and economic routes. Carbonyl crotylation has been used broadly in the construction of polyketides. ${ }^{4}$ While most of the enantioselective carbonyl crotylation protocols require chiral auxiliaries or preformed crotylmetal nucleophiles (Figure 3.1, eq A). ${ }^{5}$ Krische group has introduced the redox-triggered carbonyl addition, by which primary alcohols can be directly converted to secondary alcohols by coupling with π-unsaturated compounds in diastereoselective and enantioselective manner ${ }^{6}$ (Figure 3.1, eq B).

Recently, our group published ruthenium catalyzed coupling of alcohols and 2-alkynes to furnish the formation of both linear ${ }^{7}$ and branched homoallylic alcohols ${ }^{8}$ (Scheme 3.1). Both protocols went through the alkyne-to-allene isomerization facilitated by ruthenium catalysis. Inspired by these results, in this chapter, the first enantioselective and diastereoselective alkynes mediated carbonyl crotylation (Figure 3.1, eq C) was described and a novel mechanism for the formation of π-allylmetal species from alkyne without intervening allene intermediate was proposed (Figure 3.1, eq D).

[^1]Chiral Allvimetal Reagents: Hoffmann 1978 onward

Prior Work: Diastereo- and Enantioselective Redox-Triggered Carbonyl Crotylation Redox Pair

This Work: Diastereo- Enantioselective Alkyne-Mediated Carbonyl Crotylation

Novel Mechanism: Direct Conversion of Alkyne to π-Allyl wihtout Intervening Allenes

Figure 3.1 Enantioselective Carbonyl Crotylation Strategies.

Scheme 3.1 Redox-Triggered Formation of Linear and Branched Homoallylic Alcohols via Alkyne-to-Allene Isomerization.

3.2 REACTION DEVELOPMENT AND SCOPE

Treatment of propargyl ether 3.1a and p-bromobenzyl alcohol 3.2c under the condition used in asymmetric formation of branched homoallylic alcohols, ${ }^{8}$ carbonyl siloxy-crotylation product 3.3c was obtained with 70% yield and complete region- and diastereoselectivity as a 3:1 (Z:E) mixture of olefin geometrical isomers. Notably, both Z- and E-olefin isomers showed good enantiomeric enrichment, 87% ee and 94% ee, respectively. Further optimization was conducted, and it's found that slightly higher loading of the sulfonic acid additive ($7.5 \mathrm{~mol} \%$) at lower temperature ($85^{\circ} \mathrm{C}$) was optimal (Scheme 3.2). Due to the not complete olefin geometry selectivity, treatment of the C-C coupling adduct 3.3c with TBAF to cleave the TIPS silyl protecting group followed by reduction with NaBH_{4} provided diol 3.5c. The absolute stereochemistry was determined in analogy to $\mathbf{3 . 5} \mathbf{c}$ by X-ray diffraction analysis.

With the optimized condition in hand, a variety range of alcohols 3.2a-3.20 were

Scheme 3.2 Redox-Triggered Siloxyl Crotylation by Coupling of Proparyl Ether 3.1a and pBromobenzyl Alcohol 3.2c.

Table 3.1 Diastereoselective and Enantioselective Formation of 1,4-Diols 3.1a-3.50.

3.5m, 70% Yield ${ }^{\text {b,d }}$ $>20: 1 \mathrm{dr}, 90 \%$ ee

3.5n, 81% Yield ${ }^{\text {b,d }}$ >20:1 dr, 90\% ee

3.50, 67% Yield ${ }^{\text {b,d }}$ >20:1 dr, 90\% ee
${ }^{\mathrm{a}}$ Yields are material isolated by silica gel chromatography. Diastereoselectivities were determined by ${ }^{1} \mathrm{H}$ NMR analysis of crude reaction mixtures. See supporting Information for further experimental details. ${ }^{\mathrm{b}} 48 \mathrm{~h} .{ }^{\mathrm{c}} \mathrm{H}_{2} \mathrm{Ru}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}(6 \mathrm{~mol} \%)$, $\mathrm{SL}-\mathrm{J} 009-1(6 \mathrm{~mol} \%), \mathrm{ArSO}_{3} \mathrm{H}(9 \mathrm{~mol} \%)$, and $\mathrm{Bu}_{4} \mathrm{NI}(12 \mathrm{~mol} \%)$. ${ }^{\mathrm{d}} 2$ - PrOH was omitted.
tested coupling with propargyl ether $\mathbf{3 . 1} \mathbf{a}$, and converted to diols $\mathbf{3 . 5 a} \mathbf{- 3 . 5 0}$ with complete regio and anti-diastereoselectivity and uniformly good enantioselectivity. And not only methyl substituted propargyl ether 3.1a, ehtyl- and phenyl-substituted propargyl ether, 3.1b and 3.1c, also gave the desired diol adducts $\mathbf{3 . 5}$ p and $\mathbf{3 . 5 q}$ with BINAP modified ruthenium catalyst in good enantioselective manner (Scheme 3.3, eq 1 and eq 2).

Scheme 3.3 Coupling of Propargyl Ether 3.1b and 3.1c with 3.2c to Form Diols

To demonstrate the utility of this transformation, diols 3.5a, 3.5c, 3.5e, 3.5f, 3.5k, and $\mathbf{3 . 5 m}$, were treated with p -toluenesulfonyl chloride in pyridine resulting in mono-tosylation of the primary alcohol, which spontatneously cyclized to form the trans-2,3-disubstituted furans 3.6a, $\mathbf{3 . 6}$, 3.6e, 3.6f, 3.6k, and $\mathbf{3 . 6 m}$ (Table 3.2). In type I polyketide natural products, 2,3-disubstituted furans with 3-methyl substituents were frequently found as as substructures. ${ }^{9}$

Table 3.2 Formation of trans-2,3-Disubstituted Furans 3.6a, 3.6c, 3.6e, 3.6f, 3.6k, 3.6m from Diol Adducts.

${ }^{\mathrm{a}}$ Yields are material isolated by silica gel chromatography. See supporting Information for further experimental details.

Also, coupling of alcohols 3.2a, 3.2I, and 3.2p with propargyl ether 3.1a under the standard condition followed by removal of TIPS protecting group resulted in the crude hemiacetals, which were treated with PCC gave the trans-4,5-disubstituted γ-butyrolactones 3.7a, 3.71, and 3.7p. The formation of $\mathbf{3 . 7 p}$ represents a total synthesis of $(+)$-trans-whiskey lactone from simple starting material pentanol. ${ }^{10}$

The crude hemiacetal, obtained under standard condition followed by the TBAF treatment, can be converted to trans-4,5-disubstituted-2,3-dehydrofuran 3.8a by treated with mesyl chloride in trimethylamine (Scheme 3.4, eq 3). Finally, the crude hemiacetal can be converted to enoate 3.9a with complete E-olefin selectivity by treated with Wittig reagent (Scheme 3.4, eq 4).

Table 3.3 Formation of trans-4,5-Disubstituted γ-Butyrolactones 3.7a, 3.71, and 3.7p from C-C Coupling Adducts.

${ }^{a}$ Yields are material isolated by silica gel chromatography. See supporting Information for further experimental details.

Scheme 3.4 Elaboration of Coupling Adducts.

3.3 Mechanism and Discussion

By comparing with the formation of branched homoallylic alcohol ${ }^{8}$, coupling of propargyl ether 3.1a with primary alcohols didn't go through the mono-substituted allene 3.1d intermediate. Initially, the mechanism of this transformation was assumed to proceed through alkyne 3.1a to disubstituted allene 3.1e or diene 3.1f isomerization under ruthenium catalysis. However, the deuterium labeling experiment results didn't support for allene 3.1e and 3.1f intermediates. When deuterio-3.2c was used in the coupling with 3.1a under standard conditions, H_{b} and H_{d} should get deuterium incorporation if allene or diene intermediates were involved. And when deuterio-3.1a and 3.2c were subjected to the standard conditions, deuterium was transferred to H_{a} and H_{b}. These data clearly indicated 1,2-hydride shift mechanism (Scheme 3.5). ${ }^{11,12,13}$

A general catalytic mechanism for this asymmetric carbonyl siloxy-crotylation was proposed (Scheme 3.6). The ruthenium (II) complex $\mathrm{LnRu}(\mathrm{II}) \mathrm{X}_{2}$ was converted to ruthenium alkoxide via ligand exchange with the primary alcohol, which was followed by β-hydride elimination to generate aldehyde and $\mathrm{LnRu}(\mathrm{II}) \mathrm{HX}$. Reductive elimination of HX gave $\mathrm{Ru}(0)$ complex. The strong π-backbonding between $\operatorname{Ru}(0)$ and bound alkyne 3.1a

Scheme 3.5 Deuterium Labelling Experiments and Proposed Hydride Shift Mechanism.

Proposed Hydride Shift Mechanism

Allenes 3.1b, 3.1c and Diene 3.1d Inconsistent with Product Structure or ${ }^{2} \mathrm{H}$-Labelling Results

induced 1,2-hydride shift, which delivered the vinyl ruthenium(II) carbene species. Also the $\mathrm{n} \rightarrow$ σ^{*} interaction between the oxygen lone pair and the propargylic C-H bond played an important role in the 1,2-hydride shift. The vinyl ruthenium(II) carbene species was converted to nucleophilic siloxy-substituted allylruthenium(II) complex by protonation. The σ-allylruthenium haptomer, where ruthenium resided on the carbon adjacent to oxygen, was added to aldehyde through a Zimmerman-Traxler transition structure to form

Scheme 3.6 Proposed Ruthenium Catalyzed Carbonyl Siloxy-Crotylation Catalytic Cycle.

homoallylic ruthenium(II) alkoxide. Protonolysis cleavage released the carbonyl addition product and closed the catalytic cycle.

3.4 Conclusion

In summary, a ruthenium catalyzed redox-triggered carbonyl siloxy-crotylation mediated by alkyne through novel 1,2-hydride shift mechanism was reported. Complete regio- and diastereoselectivity, as well as high enantioselectivity, were achieved. From the coupling adducts, enantiomeric enriched diols, furans, and lactones were able to be accessed.

3.5 Experimental Details

General Information

All reactions were run under an atmosphere of argon, unless otherwise indicated. Resealable pressure tubes (13x100 mm) were purchased from Fischer Scientific (catalog number 14-95935C) and were flame dried followed by cooling in a desiccator or under a stream of argon prior to use. Tetrahydrofuran (THF) was dried over sodium metal, benzophenone, and distilled immediately prior to use. $\mathrm{RuH}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ were prepared according to literature procedure. 1 All ligands were used as received from Strem Chemicals Inc. Alcohols were purified by distillation or recrystallization immediately prior to use. Preparative column chromatography employing Silicycle silica gel $(40-63 \mu \mathrm{~m})$ was performed according to the method of Still. 2 Analytical thinlayer chromatography (TLC) was carried out using 0.25 mm commercial silica gel plates (Dynamic Absorbents F254). Visualization was accomplished with UV light followed by dipping in Seebach's stain solution then heating. Purification of reactions was carried out by flash chromatography using Silicycle silica gel ($40-63 \mu \mathrm{~m}$).

Spectroscopy, Spectrometry, and Data Collection

Infrared spectra were recorded on a Perkin-Elmer 1600 spectrometer. Low-resolution mass spectra (LRMS) were obtained on a Karatos MS9 and are reported as m / z (relative intensity). Accurate masses are reported for the molecular ion $(\mathrm{M}+\mathrm{H}, \mathrm{M}+\mathrm{Na})$, or a suitable fragment ion. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra were recorded with a Varian Gemini (400 MHz) spectrometer. Chemical shifts are reported in delta (δ) units, parts per million (ppm) downfield from tetramethylsilane or ppm relative to the center of the singlet at 7.26 ppm for deuteriochloroform. Data reported as multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet). Integration and coupling constants were reported in Hertz (Hz). Carbon-13 nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectra were recorded with a Varian Gemini (100 MHz) spectrometer and were routinely run with broadband decoupling. Chemical shifts are reported in delta (δ) units, ppm relative to the center of the triplet at 77.16 ppm for deuteriochloroform.

Experimental Details and Spectral Data

General Procedure for the Couplings of Alcohols 2.2a-2.21 and Alkynes

To a resealable pressure tube (ca. 13×100) was added $\mathrm{H}_{2} \mathrm{Ru}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}(9.2 \mathrm{mg}, 0.010 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, SL-J009-1 ligand ($5.6 \mathrm{mg}, 0.010 \mathrm{mmol}, 5 \mathrm{~mol} \%$), Bu ${ }_{4} \mathrm{NI}(7.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and 2,4,6-tri($2-$ propyl)phenylsulfonic acid ($4.2 \mathrm{mg}, 0.015 \mathrm{mmol}, 7.5 \mathrm{~mol} \%$). At this stage solid alcohol coupling partners $(0.20 \mathrm{mmol}, 100 \mathrm{~mol} \%)$ were added. The tube was then sealed with a rubber septum and purged with argon. THF ($0.20 \mathrm{~mL}, 1 \mathrm{M}$ concentration with respect to alcohols) was then added. At this stage, liquid alcohol coupling partners ($0.20 \mathrm{mmol}, 100 \mathrm{~mol} \%$) were added. 2-propylalcohol ($31 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%$) was then added. Alkyne 1a ($0.60 \mathrm{mmol}, 300 \mathrm{~mol} \%$) was added via syringe and the rubber septum was quickly replaced with a screw cap. The mixture was then heated at $85^{\circ} \mathrm{C}$ for the time stated. After cooling to room temperature, the mixture was passed through a short silica pad, washed the pad with EA, and concentrated in vacuo. The residue was dissolved in THF (2.0 mL) and TBAF (1.0 M in THF, 0.2 mL) was added at $0^{\circ} \mathrm{C}$. The mixture was stirred at r.t for 30 min , then $\mathrm{NaBH}_{4}(14.8 \mathrm{mg}, 0.4 \mathrm{mmol}), \mathrm{EtOH}(1.0 \mathrm{~mL})$ were added. After 1 h , the reaction was quenched by $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$, and extracted by EA. Organic layer was washed by water, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was subjected to flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent Hexanes: $\left.\mathrm{EA}=2: 1\right)$ to afford the corresponding crotylation products.

(1S,2S)-2-methyl-1-phenylbutane-1,4-diol (3.5a).

The residue was subjected to flash column chromatography for purification to furnish the title compound ($37.8 \mathrm{mg}, 70 \%, d r=>20: 1$) as a white solid.
$\underline{\mathbf{R}}_{\mathbf{f}}=0.3$ (50\% EtOAc/Hexanes).
Spectral data is reported for the major isomer.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.38-7.24(\mathrm{~m}, 5 \mathrm{H}), 4.41(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.74(\mathrm{~m}, 1 \mathrm{H})$, $3.71-3.61(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.55(\mathrm{~m}$, $1 \mathrm{H}), 0.78(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 143.75,128.46,127.70,126.79,79.40,61.10,38.54,36.34,17.48$.
LRMS (CI) Calcd. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 203$, Found: 203.
FTIR (neat): $3355,3288,2874,1456,1052,1021,1000,768,700 \mathrm{~cm}^{-1}$.
HPLC (Chiralcel OD-H column, hexanes: $i-\mathrm{PrOH}=95: 5,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=91 \%$.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathrm{D}}=-41.3\left(\mathrm{c}=0.75, \mathrm{CHCl}_{3}\right)$
M.P. $91.3-92.3^{\circ} \mathrm{C}$

(1S,2S)-2-methyl-1-(p-tolyl)butane-1,4-diol (3.5b).

The residue was subjected to flash column chromatography for purification to furnish the title compound ($24.8 \mathrm{mg}, 64 \%, d r=>20: 1$) as a white solid.
$\underline{\mathbf{R}}_{\mathbf{f}}=0.3(50 \% \mathrm{EtOAc} /$ Hexanes $)$.
Spectral data is reported for the major isomer.
${ }^{\mathbf{1}}{ }^{\mathbf{H}} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.21(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{~d}, \mathrm{~J}=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.86-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.74-3.61(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 2 \mathrm{H}), 1.99(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.88-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.55(\mathrm{~m}, 1 \mathrm{H}), 0.78(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 140.77,137.42,129.18,126.71,79.34,61.27,38.43,36.52,21.26$, 17.49.

LRMS (CI) Calcd. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 217$, Found: 217.
FTIR (neat): $3314,3016,2970,1739,1365,1229,1217 \mathrm{~cm}^{-1}$.
HPLC (Chiralcel OD-H column, hexanes: $i-\operatorname{PrOH}=95: 5,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=93 \%$.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathrm{D}}=-51.8\left(\mathrm{c}=0.65, \mathrm{CHCl}_{3}\right)$
M.P. $117-118.6^{\circ} \mathrm{C}$

DAD1 B, Sig=210,8 Ref=360,100 (TAOITAO 2015-03-26 11-56-16l002-0301.D)

The residue was subjected to flash column chromatography for purification to furnish the title compound ($39.8 \mathrm{mg}, 76 \%, d r=>20: 1$) as a white solid.
$\underline{\mathbf{R}}_{\mathbf{f}}=0.3(50 \% \mathrm{EtOAc} /$ Hexanes $)$.
Spectral data is reported for the major isomer.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}\right.$, Methanol- $\left.d_{4}\right): \delta 7.47(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{~d}, J$ $=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.51(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.26(\mathrm{~m}, 1 \mathrm{H})$, $0.81(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, Methanol- d_{4}): $\delta 144.57,132.02,129.74,121.62,78.81,61.13,38.41,36.07$, 16.54.

LRMS (CI) Calcd. for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{BrNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 281$, Found: 281.
FTIR (neat): 2959, 2929, 2856, 1484, 1050, 1011, $825 \mathrm{~cm}^{-1}$.
$\underline{\text { HPLC }}$ (Chiralcel OD-H column, hexanes: $i-\mathrm{PrOH}=95: 5,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=92 \%$.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathrm{D}}=-6.4\left(\mathrm{c}=0.7, \mathrm{CHCl}_{3}\right)$
M.P. $146.1-147.4^{\circ} \mathrm{C}$

(1S,2S)-1-(4-fluorophenyl)-2-methylbutane-1,4-diol (3.5d).

The residue was subjected to flash column chromatography for purification to furnish the title compound ($27.7 \mathrm{mg}, 75 \%, d r=>20: 1$) as a white solid.
$\underline{\mathbf{R}}_{\mathbf{f}}=0.3$ (50\% EtOAc/Hexanes).
Spectral data is reported for the major isomer.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.32-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.06-6.99(\mathrm{~m}, 2 \mathrm{H}), 4.41(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.81 (ddd, $J=10.6,6.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.68$ (ddd, $J=10.7,7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-1.91$ (m, 1H), $1.85-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.56(\mathrm{~m}, 1 \mathrm{H}), 0.78(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.37,160.93,139.40,139.37,128.22,128.14,115.21,115.00$, 78.56, 60.91, 38.49, 36.03, 17.20.
$\underline{{ }^{19} \text { F NMR }\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta-115.17 .}$
LRMS (CI) Calcd. for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{FNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 221, Found: 221.
FTIR (neat): $3336,1604,1509,1222,1056,1033,1013,836 \mathrm{~cm}^{-1}$.
HPLC (Chiralcel OD-H column, hexanes: $i-\operatorname{PrOH}=95: 5,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=92 \%$.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathrm{D}}=+10.0\left(\mathrm{c}=0.32, \mathrm{CHCl}_{3}\right)$
M.P. $114.7-115.9^{\circ} \mathrm{C}$

(1S,2S)-1-(3-methoxyphenyl)-2-methylbutane-1,4-diol (3.5e).

The residue was subjected to flash column chromatography for purification to furnish the title compound ($31.5 \mathrm{mg}, 75 \%, d r=>20: 1$) as a colorless oil.
$\underline{\mathbf{R}}_{\mathbf{f}}=0.3(50 \% \mathrm{EtOAc} /$ Hexanes $)$.
Spectral data is reported for the major isomer.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.24(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.78(\mathrm{~m}, 1 \mathrm{H})$, $4.35(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.78-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.01-2.87(\mathrm{~m}$, $2 \mathrm{H}), 1.97(\mathrm{p}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.53(\mathrm{~m}, 1 \mathrm{H}), 0.78(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.71,145.53,129.39,119.23,112.99,112.30,79.26,60.99$, 55.34, 38.50, 36.32, 17.50.

LRMS (CI) Calcd. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 233$, Found: 233.
FTIR (neat): $3448,3016,2970,1739,1435,1366,1229,1216 \mathrm{~cm}^{-1}$.
HPLC (Chiralcel OD-H column, hexanes: $i-\operatorname{PrOH}=95: 5,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=92 \%$.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathrm{D}}=-29.0\left(\mathrm{c}=0.76, \mathrm{CHCl}_{3}\right)$

(1S,2S)-1-(benzo[d][1,3]dioxol-5-yl)-2-methylbutane-1,4-diol (3.5f).

The residue was subjected to flash column chromatography for purification to furnish the title compound ($23.7 \mathrm{mg}, 63 \%, d r=>20: 1$) as a white solid.
$\underline{\mathbf{R}}_{\mathbf{f}}=0.3(50 \% \mathrm{EtOAc} /$ Hexanes $)$.
Spectral data is reported for the major isomer.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.95(\mathrm{~s}, 2 \mathrm{H}), 4.32(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.72-3.64(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{~s}, 2 \mathrm{H}), 1.94$ (hept, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.85-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.57(\mathrm{~m}, 1 \mathrm{H}), 0.77(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 147.71,146.90,137.73,120.11,107.90,106.88,100.96,79.17$, 61.07, 38.48, 36.41, 17.38.

LRMS (CI) Calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 247$, Found: 247.
FTIR (neat): $3323,2890,1488,1246,1037,1006,932,823 \mathrm{~cm}^{-1}$.
HPLC (Chiralcel AS-H column, hexanes: $i-\mathrm{PrOH}=95: 5,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=94 \%$.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathrm{D}}=-58.7\left(\mathrm{c}=0.48, \mathrm{CHCl}_{3}\right)$
M.P. $97.3-98.6^{\circ} \mathrm{C}$

(1S,2S)-2-methyl-1-(0-tolyl)butane-1,4-diol (3.5g)

The residue was subjected to flash column chromatography for purification to furnish the title compound ($23.6 \mathrm{mg}, 61 \%, d r=>20: 1$) as a white solid.
$\underline{\mathbf{R}}_{\mathbf{f}}=0.4(50 \% \mathrm{EtOAc} /$ Hexanes $)$.
Spectral data is reported for the major isomer.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.42(\mathrm{dd}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{td}, J=7.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16$ (td, $J=7.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13$ (dd, $J=7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.73$ (m, 1 H), 3.66 (ddd, $J=10.8,7.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~s}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.02$ (hept, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), $1.90-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.61(\mathrm{~m}, 1 \mathrm{H}), 0.81(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 141.99,135.06,130.37,127.18,126.30,126.22,75.18,61.06$, 38.02, 36.22, 19.49, 17.40.

LRMS (CI) Calcd. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 217$, Found: 217.
FTIR (neat): 2958, 2923, 1460, 1378, 1054, 1012, 756, $729 \mathrm{~cm}^{-1}$.
HPLC (Chiralcel OD-H column, hexanes: $i-\operatorname{PrOH}=95: 5,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=87 \%$.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathrm{D}}=-37.9\left(\mathrm{c}=0.44, \mathrm{CHCl}_{3}\right)$
M.P. $84.6-86.7^{\circ} \mathrm{C}$

(1S,2S)-1-(2-chlorophenyl)-2-methylbutane-1,4-diol (3.5h).

The residue was subjected to flash column chromatography for purification to furnish the title compound ($29.1 \mathrm{mg}, 68 \%, d r=>20: 1$) as a colorless oil.
$\underline{\mathbf{R}}_{\mathrm{f}}=0.5(50 \% \mathrm{EtOAc} /$ Hexanes $)$.
Spectral data is reported for the major isomer.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.52(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28$ (dd, $J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.74(\mathrm{~m}$, $1 \mathrm{H}), 3.68-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{bs}, 1 \mathrm{H}), 2.69(\mathrm{bs}, 1 \mathrm{H}), 2.09(\mathrm{hept}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.69(\mathrm{~m}$, $1 \mathrm{H}), 1.68-1.56(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 141.23,132.45,129.33,128.38,128.19,126.95,74.73,60.67$, 37.38, 35.01, 16.92.

LRMS (CI) Calcd. for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NaClO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 237$, Found: 237.
FTIR (neat): $3315,2958,2922,2850,1438,1049,1023,735 \mathrm{~cm}^{-1}$.
HPLC (Chiralcel AS-H/AS-H column, hexanes: $i-\mathrm{PrOH}=95: 5,0.5 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=91 \%$.
$[\alpha]^{\mathbf{2 5}}{ }_{\mathrm{D}}=-19.2\left(\mathrm{c}=0.53, \mathrm{CHCl}_{3}\right)$

(3S,4S,E)-3,5-dimethyl-6-phenylhex-5-ene-1,4-diol (3.5i).

The residue was subjected to flash column chromatography for purification to furnish the title compound ($29.7 \mathrm{mg}, 72 \%, d r=>20: 1$) as a colorless liquid.
$\underline{\mathbf{R}}_{\mathrm{f}}=0.3(50 \% \mathrm{EtOAc} /$ Hexanes $)$.
Spectral data is reported for the major isomer.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.18(\mathrm{~m}, 1 \mathrm{H})$, $6.47(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{ddd}, J=10.8,8.1,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.76(\mathrm{~s}, 2 \mathrm{H}), 1.97-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.86-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.58(\mathrm{~m}$, $1 \mathrm{H}), 0.90(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 139.37,137.42,128.97,128.12,127.52,126.51,83.42,61.24$, 36.78, 34.64, 17.82, 12.98.
$\underline{\text { LRMS (CI) Calcd. for } \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 243 \text {, Found: } 243 . . . ~(2)}$
FTIR (neat): 2959, 2923, 1147, 1378, 1057, 1008, 750, $699 \mathrm{~cm}^{-1}$.
$\underline{\text { HPLC }}$ (Chiralcel OD-H column, hexanes: $i-\operatorname{PrOH}=95: 05,1 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$), ee $=90 \%$.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}=+42.4\left(\mathrm{c}=0.11, \mathrm{CHCl}_{3}\right)$

(3S,4S)-3,6-dimethylhept-5-ene-1,4-diol (3.5j).

The residue was subjected to flash column chromatography for purification to furnish the title compound ($23.1 \mathrm{mg}, 73 \%, d r=>20: 1$) as a colorless oil.
$\underline{\mathbf{R}}_{\mathrm{f}}=0.3(50 \% \mathrm{EtOAc} /$ Hexanes $)$.
Spectral data is reported for the major isomer.
${ }^{1}{ }^{1}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.19(\mathrm{dp}, J=9.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=9.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83$ $-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.69-3.57(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 2 \mathrm{H}), 1.79-1.65(\mathrm{~m}, 8 \mathrm{H}), 1.62-1.51(\mathrm{~m}, 1 \mathrm{H}), 0.86$ $(\mathrm{d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 136.01,126.76,73.00,61.23,37.63,36.76,26.04,18.52,16.66$.
LRMS (CI) Calcd. for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 181$, Found: 181.
FTIR (neat): 3016, 2970, 1739, 1366, 1229, $1217 \mathrm{~cm}^{-1}$.
$\underline{\text { HPLC }}$ (Chiralcel AD-H column, hexanes: $i-\operatorname{PrOH}=95: 5,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=94 \%$.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathrm{D}}=+3.8\left(\mathrm{c}=0.61, \mathrm{CHCl}_{3}\right)$

($3 S, 4 S, E$)-3,6,10-trimethylundeca-5,9-diene-1,4-diol (3.5k).

The residue was subjected to flash column chromatography for purification to furnish the title compound ($42.3 \mathrm{mg}, 72 \%, d r=>20: 1$) as a colorless oil.
$\underline{\mathbf{R}}_{\mathbf{f}}=0.3(50 \% \mathrm{EtOAc} /$ Hexanes $)$.
Spectral data is reported for the major isomer.
${ }^{1}{ }^{1}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.19(\mathrm{dq}, J=9.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-5.03(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{dd}, J=$ $9.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{ddd}, J=11.0,6.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.60(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.00(\mathrm{~m}, 4 \mathrm{H})$, $1.81-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.66(\mathrm{~m}, 6 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.58-1.54(\mathrm{~m}, 1 \mathrm{H}), 0.86(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 139.39,131.85,126.69,124.07,72.92,61.27,39.86,37.69,36.85$, 26.48, 25.83, 17.84, 16.86, 16.62.
$\underline{\text { LRMS (CI) Calcd. for } \mathrm{C}_{14} \mathrm{H}_{26} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 249 \text {, Found: } 249 . . . ~ . ~}$
FTIR (neat): 2970, 1739, 1448, 1366, 1229, $1217 \mathrm{~cm}^{-1}$.
HPLC (Chiralcel OD-H column/OD-H column, hexanes: $i-\mathrm{PrOH}=95: 5,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=96 \%$.
$[\alpha]^{25}{ }_{\mathrm{D}}=-6.8\left(\mathrm{c}=0.54, \mathrm{CHCl}_{3}\right)$

(3S,4S,E)-3-methyl-6-phenylhex-5-ene-1,4-diol (3.51).

The residue was subjected to flash column chromatography for purification to furnish the title compound ($29.7 \mathrm{mg}, 72 \%, d r=>20: 1$) as a white solid.
$\underline{\mathbf{R}}_{\mathrm{f}}=0.3(50 \% \mathrm{EtOAc} /$ Hexanes $)$.
Spectral data is reported for the major isomer.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.41-7.20(\mathrm{~m}, 5 \mathrm{H}), 6.57(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{dd}, J=$ $15.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.71-3.63(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{~s}$, $2 \mathrm{H}), 1.91-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.55(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 136.81,131.54,131.15,128.71,127.80,126.59,60.87,37.18$, 36.17, 16.79.
$\underline{\text { LRMS (CI) Calcd. for } \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 229 \text {, Found: } 229 . . . ~}$
FTIR (neat): $3260,3025,2970,2944,1739,1449,1366,1228,1217,1011,970,693 \mathrm{~cm}^{-1}$.
HPLC (Chiralcel OD-H column, hexanes: $i-\mathrm{PrOH}=90: 10,1 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$), ee $=93 \%$.
$\left[\boldsymbol{\alpha} \mathbf{]}^{\mathbf{2 5}}{ }_{\mathbf{D}}=+8.2\left(\mathrm{c}=0.65, \mathrm{CHCl}_{3}\right)\right.$
M.P. $84.5-86^{\circ} \mathrm{C}$

(3S,4R)-3-methyl-6-phenylhexane-1,4-diol (3.5m).

The residue was subjected to flash column chromatography for purification to furnish the title compound ($14.5 \mathrm{mg}, 0.1 \mathrm{mmol}$ scale, $70 \%, d r=>20: 1$) as a colorless oil.
$\underline{\mathbf{R}}_{\mathbf{f}}=0.3(50 \% \mathrm{EtOAc} /$ Hexanes $)$.
Spectral data is reported for the major isomer.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.15(\mathrm{~m}, 3 \mathrm{H}), 3.76(\mathrm{ddd}, J=10.6,6.6$, $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{ddd}, J=10.6,7.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.40(\mathrm{~m}, 1 \mathrm{H}), 2.85(\mathrm{ddd}, J=13.7,9.9$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.56(\mathrm{~m}, 3 \mathrm{H}), 1.92-1.51(\mathrm{~m}, 5 \mathrm{H}), 0.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 142.40,128.57,128.53,125.93,75.34,60.50,36.76,36.39,35.34$, 32.45, 16.62.
$\underline{\text { LRMS (CI) Calcd. for } \mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 231 \text {, Found: } 231 . ~}$
FTIR (neat): 3026, 2970, 2946, 1739, 1454, 1366, 1229, 1217, 1052, $698 \mathrm{~cm}^{-1}$.
HPLC (Chiralcel OD-H column, hexanes: $i-\operatorname{PrOH}=95: 5,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=90 \%$.
$\left[\boldsymbol{\alpha} \mathbf{]}^{\mathbf{2 5}}{ }_{\mathbf{D}}=+17.8\left(\mathrm{c}=0.73, \mathrm{CHCl}_{3}\right)\right.$

(3S,4R)-3-methyldecane-1,4-diol (3.5n).

The residue was subjected to flash column chromatography for purification to furnish the title compound ($30.5 \mathrm{mg}, 81 \%, d r=>20: 1$) as a colorless oil.
$\underline{\mathbf{R}}_{\underline{f}}=0.3(50 \% \mathrm{EtOAc} /$ Hexanes $)$.
Spectral data is reported for the major isomer.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.75(\mathrm{ddd}, J=11.3,6.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{ddd}, J=10.7,7.0,5.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.44-3.35(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{~s}, 2 \mathrm{H}), 1.75-1.17(\mathrm{~m}, 14 \mathrm{H}), 0.93(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.90-$ $0.85(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 76.03,60.54,36.53,35.36,34.59,32.00,29.55,25.97,22.78$, 16.73, 14.23.
$\underline{\text { LRMS (CI) Calcd. for } \mathrm{C}_{11} \mathrm{H}_{24} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 211 \text {, Found: } 211 . ~}$
FTIR (neat): 2970, 2928, 1739, 1456, 1366, 1229, $1217 \mathrm{~cm}^{-1}$.
$\underline{\text { HPLC }}$ (Chiralcel OD-H column, hexanes: $i-\operatorname{PrOH}=95: 5,1 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$), ee $=90 \%$.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathrm{D}}=-2.1\left(\mathrm{c}=0.62, \mathrm{CHCl}_{3}\right)$

(3S,4R)-7,7,7-trifluoro-3-methylheptane-1,4-diol (3.50).

The residue was subjected to flash column chromatography for purification to furnish the title compound ($26.8 \mathrm{mg}, 67 \%, d r=>20: 1$) as a colorless oil.
$\underline{\mathbf{R}}_{\mathrm{f}}=0.3$ (50\% EtOAc/Hexanes).
Spectral data is reported for the major isomer.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.86-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{ddd}, J=9.3,6.1$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 2 \mathrm{H}), 2.47-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.55(\mathrm{~m}, 5 \mathrm{H}), 0.97(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 74.47,60.40,37.10,35.29,31.12,30.83,30.55,30.26,27.02$, 26.99, 16.60.
${ }^{19} \mathbf{F} \mathbf{N M R}\left(378 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 66.34$.
LRMS (CI) Calcd. for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NaF}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 223$, Found: 223.
FTIR (neat): $2970,1739,1366,1252,1229,1217,1138,1031 \mathrm{~cm}^{-1}$.
$\underline{\mathbf{G C}}$ (cyclosil-B: Initial temperature: $110^{\circ} \mathrm{C}$, rate: $1^{\circ} \mathrm{C} / \mathrm{min}$, End temperature: $150^{\circ} \mathrm{C}$), ee $=90 \%$.
$[\alpha]^{\mathbf{2 5}}{ }_{\mathrm{D}}=-4.7\left(\mathrm{c}=0.63, \mathrm{CHCl}_{3}\right)$

(1S,2S)-1-(4-bromophenyl)-2-ethylbutane-1,4-diol (3.5p).

The residue was subjected to flash column chromatography for purification to furnish the title compound ($34.3 \mathrm{mg}, 63 \%, d r=>20: 1$) as a white solid.
$\underline{\mathbf{R}}_{\mathbf{f}}=0.3(50 \% \mathrm{EtOAc} /$ Hexanes $)$.
Spectral data is reported for the major isomer.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.54(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.74 (ddd, $J=10.6,6.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.58 (ddd, $J=10.6,6.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.35$ (s, 1H), $1.78-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.40-1.14(\mathrm{~m}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 143.08,131.35,128.20,121.01,76.00,60.69,45.26,31.68,23.66$, 11.43.

LRMS (CI) Calcd. for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{BrNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 295$, Found: 295.
FTIR (neat): $3299,2886,1070,1057,1008,838,686,669 \mathrm{~cm}^{-1}$.
$\underline{\text { HPLC }}$ (Chiralcel OD-H column, hexanes: $i-\operatorname{PrOH}=95: 5,1 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$), ee $=96 \%$.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathrm{D}}=-30.0\left(\mathrm{c}=0.45, \mathrm{CHCl}_{3}\right)$
M.P. $134.9-135.9^{\circ} \mathrm{C}$

(1S,2R)-1-(4-bromophenyl)-2-phenylbutane-1,4-diol (3.5q).

The residue was subjected to flash column chromatography for purification to furnish the title compound ($41 \mathrm{mg}, 64 \%, d r=>20: 1$).
$\underline{\mathbf{R}}_{\mathbf{f}}=0.3(50 \% \mathrm{EtOAc} /$ Hexanes $)$.
Spectral data is reported for the major isomer.
${ }^{1}{ }^{1}$ H NMR $\left(400 \mathrm{MHz}\right.$, Methanol- $\left.d_{4}\right) \delta 7.22-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.96(\mathrm{~m}$, $1 \mathrm{H}), 6.95-6.89(\mathrm{~m}, 4 \mathrm{H}), 4.58(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{ddd}, J=10.6,8.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.26-$ $3.15(\mathrm{~m}, 3 \mathrm{H}), 2.87(\mathrm{ddd}, J=11.5,8.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.75(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{{ }^{13} \mathbf{C}} \mathbf{N M R}\left(100 \mathrm{MHz}\right.$, Methanol- $\left.d_{4}\right): \delta 144.57,142.79,131.71,129.89,129.84,129.12,127.39$, 121.47, 78.79, 61.27, 51.78, 35.43.
$\underline{\text { LRMS (CI) Calcd. for } \mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BrNaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 343 \text {, Found: } 343 ~ . ~}$
FTIR (neat): $2362,1486,1070,1037,1008,818,756,700 \mathrm{~cm}^{-1}$.
$\underline{\text { HPLC }}$ (Chiralcel OD-H column, hexanes: $i-\operatorname{PrOH}=95: 5,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=90 \%$.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}=-1.3(\mathrm{c}=1.0$, Methanol $)$

$\underline{\text { 2,3-disubstituted furans } 3.6 \mathrm{a}, \mathbf{3 . 6 c}, \mathbf{3 . 6 e}, 3.6 \mathrm{f}, 3.6 \mathrm{k} \text { and } 3.6 \mathrm{~m}}$

To a solution of alcohol in pyridine $(0.4 \mathrm{M})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{TsCl}(1.5 \mathrm{eq})$ in one portion. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 hours and was allowed to warm to room temperature overnight. Once TLC indicated no alcohol left, pyridine was removed by vacuo and the residue was subjected to flash column chromatography (Alumina, basic, 60-325 Mesh, eluent Hexanes:EA $=$ 20:1) to afford the corresponding disubstituted furan products.

(2S,3S)-3-methyl-2-phenyltetrahydrofuran (3.6a).

The residue was subjected to flash column chromatography for purification to furnish the title compound ($81 \%, d r=>20: 1$) as a colorless liquid.
$\underline{\mathbf{R}}_{\mathbf{f}}=0.7$ (20\% EtOAc/Hexanes).
Spectral data is reported for the major isomer.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.21(\mathrm{~m}, 5 \mathrm{H}), 4.28(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{td}, J=8.3,7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.03(\mathrm{td}, J=8.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.15-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{dq}, J=$ $12.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.08(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.21,128.27,127.40,126.08,87.91,67.90,42.87,34.95,16.38$.
LRMS (CI) Calcd. for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 163$, Found: 163.
FTIR (neat): 1453, 1097, 1044, 1026, 995, 926, 751, $699 \mathrm{~cm}^{-1}$.
HPLC (Chiralcel OJ-H/OJ-H column, hexanes: $i-\mathrm{PrOH}=99: 1,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=91 \%$.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathrm{D}}=-9.7\left(\mathrm{c}=0.52, \mathrm{CHCl}_{3}\right)$

(2S,3S)-2-(4-bromophenyl)-3-methyltetrahydrofuran (3.6c).

The residue was subjected to flash column chromatography for purification to furnish the title compound ($78 \%, d r=>20: 1$) as a colorless liquid.
$\underline{\mathbf{R}}_{\mathbf{f}}=0.7(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
Spectral data is reported for the major isomer.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.08(\mathrm{td}, J=8.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{td}, J=8.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.94(\mathrm{~m}$, $1 \mathrm{H}), 1.77-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 141.35,131.36,127.74,121.11,87.21,67.92,43.02,34.85,16.25$.
LRMS (CI) Calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{BrO}[\mathrm{M}+\mathrm{H}]^{+}: 241$, Found: 241.
FTIR (neat): 2960, 2871, 1486, 1069, 1046, 1010, 819, $800 \mathrm{~cm}^{-1}$.
$\underline{\text { HPLC }}$ (Chiralcel AD-H/AD-H column, hexanes: $i-\operatorname{PrOH}=99: 1,0.5 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=92 \%$.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}=-1.8\left(\mathrm{c}=1.15, \mathrm{CHCl}_{3}\right)$

(2S,3S)-2-(3-methoxyphenyl)-3-methyltetrahydrofuran (3.6e).

The residue was subjected to flash column chromatography for purification to furnish the title compound ($80 \%, d r=>20: 1$) as a colorless liquid.
$\underline{\mathbf{R}}_{\mathbf{f}}=0.7$ (20\% EtOAc/Hexanes).
Spectral data is reported for the major isomer.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.79(\mathrm{~m}, 1 \mathrm{H}), 4.27$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{td}, J=8.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{td}, J=8.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.25$ $-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 159.66,144.03,129.24,118.43,112.85,111.45,87.75,67.90$, 55.19, 42.79, 34.91, 16.53.

LRMS (ESI) Calcd. for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 193$, Found: 193.
FTIR (neat): $1602,1585,1488,1455,1267,1158,1040,782 \mathrm{~cm}^{-1}$.
$\underline{\text { HPLC }}$ (Chiralcel OD-H column, hexanes: $i-\mathrm{PrOH}=99: 1,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=92 \%$.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}=+1.9\left(\mathrm{c}=0.52, \mathrm{CHCl}_{3}\right)$

5-((2S,3S)-3-methyltetrahydrofuran-2-yl)benzo[d][1,3]dioxole (3.6f).

The residue was subjected to flash column chromatography for purification to furnish the title compound ($82 \%, d r=>20: 1$) as a colorless liquid.
$\underline{\mathbf{R}}_{\underline{f}}=0.7(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
Spectral data is reported for the major isomer.
${ }^{1}{ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.86-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.80-6.75(\mathrm{~m}, 2 \mathrm{H}), 5.94(\mathrm{~s}, 2 \mathrm{H}), 4.18(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{td}, J=8.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{td}, J=8.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.15(\mathrm{~m}, 1 \mathrm{H})$, $2.08-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 147.70,146.89,136.04,119.65,107.91,106.52,100.89,87.85$, 67.73, 42.73, 34.87, 16.22.
$\underline{\text { LRMS (ESI) Calcd. for } \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: \text {207, Found: } 207 .}$
FTIR (neat): $1504,1487,1243,1096,1036,934,808,784 \mathrm{~cm}^{-1}$.
$\underline{\text { HPLC }}$ (Chiralcel AD-H column, hexanes: $i-\mathrm{PrOH}=99: 1,1 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$), ee $=92 \%$.
$[\alpha]^{\mathbf{2 5}}{ }_{\mathrm{D}}=+5.2\left(\mathrm{c}=0.58, \mathrm{CHCl}_{3}\right)$

(2S,3S)-3-methyl-2-((E)-7-methylocta-2,6-dien-2-yl)tetrahydrofuran (3.6k).

The residue was subjected to flash column chromatography for purification to furnish the title compound ($77 \%, d r=>20: 1$) as a colorless liquid.
$\underline{\mathbf{R}}_{\mathrm{f}}=0.7(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
Spectral data is reported for the major isomer.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.15(\mathrm{dq}, J=8.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.12-5.06(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{t}, J=8.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.93-3.81(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.07(\mathrm{~m}, 3 \mathrm{H}), 2.07-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.70$ $(\mathrm{d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.68(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.62-1.53(\mathrm{~m}, 4 \mathrm{H}), 0.99(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 140.32,131.50,124.60,124.04,82.24,66.96,40.71,39.76,34.78$, 26.43, 25.65, 17.66, 16.75, 15.90.

LRMS (ESI) Calcd. for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 209$, Found: 209.
FTIR (neat): 2958, 2926, 2871, 1452, 1376, 1101, 1032, 987, $913 \mathrm{~cm}^{-1}$.
$\underline{\text { HPLC }}$ (Chiralcel AD-H/AD-H column, hexanes: $i-\mathrm{PrOH}=99: 1,0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$), ee $=96 \%$.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}} \mathbf{D}=+3.9\left(\mathrm{c}=0.30, \mathrm{CHCl}_{3}\right)$

(2R,3S)-3-methyl-2-phenethyltetrahydrofuran (3.6m).

The residue was subjected to flash column chromatography for purification to furnish the title compound ($72 \%, d r=>20: 1$) as a colorless liquid.
$\underline{\mathbf{R}}_{\mathbf{f}}=0.7(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
Spectral data is reported for the major isomer.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 3 \mathrm{H}), 3.90-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.34$ (td, $J=8.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.85$ (ddd, $J=13.7,10.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.67$ (ddd, $J=13.7,10.5,6.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.15-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.69(\mathrm{~m}, 3 \mathrm{H}), 1.59-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 142.43,128.38,128.29,125.66,85.24,66.74,39.05,36.23,34.72$, 32.84, 17.23.

LRMS (ESI) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 191$, Found: 191.
FTIR (neat): 2957, 2927, 1454, 1106, 1039, 1013, 745, $699 \mathrm{~cm}^{-1}$.
$\underline{\text { HPLC }}$ (Chiralcel AD-H column, hexanes: $i-\mathrm{PrOH}=99: 1,0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$), ee $=90 \%$.
$\left[\boldsymbol{\alpha} \mathbf{]}^{\mathbf{2 5}}{ }_{\mathbf{D}}=+39.2\left(\mathrm{c}=0.31, \mathrm{CHCl}_{3}\right)\right.$

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	8.633		0.2052	6.22727	$5.05894 \mathrm{e}-1$	5.1916
2	10.208		0.2717	113.72086	6.97588	94.8084

General Procedure for Conversion of Alcohols 3.2a, 3.21, 3.2p to trans-4,5-disubstituted lact

 ones 3.7a, 3.71 and 3.7pTo a resealable pressure tube (ca. 13 x 100) was added $\mathrm{H}_{2} \mathrm{Ru}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}(9.2 \mathrm{mg}, 0.010 \mathrm{mmol}, 5$ $\mathrm{mol} \%$), SL-J009-1 ligand ($5.6 \mathrm{mg}, 0.010 \mathrm{mmol}, 5 \mathrm{~mol} \%$), $\mathrm{Bu} 4 \mathrm{NI}(7.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and 2,4,6-tri(2-propyl)phenylsulfonic acid ($4.2 \mathrm{mg}, 0.015 \mathrm{mmol}, 7.5 \mathrm{~mol} \%$). At this stage solid alcohol coupling partners ($0.20 \mathrm{mmol}, 100 \mathrm{~mol} \%$) were added. The tube was then sealed with a rubber septum and purged with argon. THF ($0.20 \mathrm{~mL}, 1 \mathrm{M}$ concentration with respect to alcohols) was then added. At this stage, liquid alcohol coupling partners ($0.20 \mathrm{mmol}, 100 \mathrm{~mol} \%$) were added. 2-propylalcohol ($31 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%$) was then added. Alkyne 1a ($0.60 \mathrm{mmol}, 300$ mol\%) was added via syringe and the rubber septum was quickly replaced with a screw cap. The mixture was then heated at $85^{\circ} \mathrm{C}$ for the time stated. After cooling to room temperature, the mixture was passed through a short silica pad, washed the pad with EA, and concentrated in vacuo. The residue was dissolved in THF (2.0 mL) and TBAF (1.0 M in THF, 0.2 mL) was added at $0^{\circ} \mathrm{C}$. The mixture was stirred at r.t for 30 min , and then quenched by water, extracted by DCM (3×1 mL). The organic layer was washed by brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic solvent was evaporated down to 2 mL and $4 \AA \mathrm{MS}(100 \mathrm{mg}), \mathrm{NaOAc}(8.2 \mathrm{mg}, 0.10 \mathrm{mmol})$ and $\mathrm{PCC}(129 \mathrm{mg}$, 0.60 mmol) were added, and the mixture was stirred at room temperature for 24 hours. The solvent was removed by vacuo, and the residue was subjected to flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent Hexanes: $\mathrm{EA}=5: 1$) to afford the corresponding lactone products.

(4S,5S)-4-methyl-5-phenyldihydrofuran-2(3H)-one (3.7a).

The residue was subjected to flash column chromatography for purification to furnish the title compound ($70 \%, d r=>20: 1$) as a colorless liquid.
$\underline{\mathbf{R}}_{\mathrm{f}}=0.2(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
Spectral data is reported for the major isomer.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.31(\mathrm{~m}, 5 \mathrm{H}), 4.94(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=16.9$, $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{dd}, J=16.9,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 176.07,137.93,128.69,125.90,88.13,39.81,37.21,16.49$.
LRMS (ESI) Calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 177$, Found: 177.
FTIR (neat): $1778,1278,1210,1140,998,946,756,699 \mathrm{~cm}^{-1}$.
HPLC (Chiralcel OD-H column, hexanes: $i-\operatorname{PrOH}=95: 5,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=91 \%$.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}=+1.1\left(\mathrm{c}=0.9, \mathrm{CHCl}_{3}\right)$

(4S,5S)-4-methyl-5-((E)-styryl)dihydrofuran-2(3H)-one (3.71).

The residue was subjected to flash column chromatography for purification to furnish the title compound ($76 \%, d r=>20: 1$) as a colorless liquid.
$\underline{\mathbf{R}}_{\mathrm{f}}=0.2(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
Spectral data is reported for the major isomer.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.70(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{dd}, J=15.9$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{ddd}, J=8.1,7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=16.9,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.33(\mathrm{~m}$, $1 \mathrm{H}), 2.27(\mathrm{dd}, J=16.9,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 176.07,135.62,133.88,128.70,128.42,126.73,125.18,87.46$, 37.32, 36.78, 16.50.

LRMS (ESI) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 203$, Found: 203.
FTIR (neat): $1775,1209,1156,986,968,939,750,693 \mathrm{~cm}^{-1}$.
HPLC (Chiralcel OD-H column, hexanes: $i-\operatorname{PrOH}=95: 5,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=93 \%$.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}=+47.5\left(\mathrm{c}=0.4, \mathrm{CHCl}_{3}\right)$

(4S,5R)-5-butyl-4-methyldihydrofuran-2(3H)-one (3.7p).

The residue was subjected to flash column chromatography for purification to furnish the title compound ($72 \%, d r=>20: 1$) as a colorless liquid.
$\underline{\mathbf{R}}_{\mathbf{f}}=0.2(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
Spectral data is reported for the major isomer.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.00(\mathrm{td}, J=8.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.13(\mathrm{~m}$, $2 \mathrm{H}), 1.72-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.30(\mathrm{~m}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.91$ (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 176.59,87.44,37.11,36.06,33.68,27.83,22.46,17.47,13.88$.
LRMS (ESI) Calcd. for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 157$, Found: 157.
FTIR (neat): $1775,1210,1170,1124,1077,984,942,926 \mathrm{~cm}^{-1}$.
HPLC (Chiralcel OD-H/OD-H/OD-H column, hexanes: $i-\mathrm{PrOH}=99: 1,0.5 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$), ee $=90 \%$.
$[\alpha]^{\mathbf{2 5}}{ }_{\mathrm{D}}=+59.6\left(\mathrm{c}=0.71, \mathrm{CHCl}_{3}\right)$

Formation of trans-4,5-disubstituted-2,3-dehydrofuran 3.8a

To a resealable pressure tube (ca. 13×100) was added $\mathrm{H}_{2} \mathrm{Ru}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}(9.2 \mathrm{mg}, 0.010 \mathrm{mmol}, 5$ $\mathrm{mol} \%$), SL-J009-1 ligand ($5.6 \mathrm{mg}, 0.010 \mathrm{mmol}, 5 \mathrm{~mol} \%$), $\mathrm{Bu}_{4} \mathrm{NI}(7.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and 2,4,6-tri(2-propyl)phenylsulfonic acid ($4.2 \mathrm{mg}, 0.015 \mathrm{mmol}, 7.5 \mathrm{~mol} \%$). THF ($0.20 \mathrm{~mL}, 1 \mathrm{M}$ concentration with respect to alcohols) was then added, followed by benzyl alcohol (0.20 mmol , $100 \mathrm{~mol} \%$), 2-propylalcohol ($31 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%$). Alkyne 1a ($0.60 \mathrm{mmol}, 300 \mathrm{~mol} \%$) was added via syringe and the rubber septum was quickly replaced with a screw cap. The mixture was then heated at $85^{\circ} \mathrm{C}$ for 48 hours. After cooling to room temperature, the mixture was passed through a short silica pad, washed the pad with EA, and concentrated in vacuo. The residue was dissolved in THF (2.0 mL) and TBAF (1.0 M in THF, 0.2 mL) was added at $0^{\circ} \mathrm{C}$. The mixture was stirred at r.t for 30 min , and then quenched by water, extracted by DCM ($3 \times 1 \mathrm{~mL}$). The organic layer was washed by brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic solvent was evaporated and THF (2 $\mathrm{mL})$ was added, followed by $\mathrm{MsCl}(45.6 \mathrm{mg}, 0.4 \mathrm{mmol})$ and triethyl amine ($121 \mathrm{mg}, 1.2 \mathrm{mmol}$). The mixture was refluxed for 1 hour and then quenched by $\mathrm{NH}_{4} \mathrm{Cl}$, extracted by ether ($3 \times 1 \mathrm{~mL}$). The organic layer was washed by water, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed by vacuo, and the residue was subjected to flash column chromatography (SiO_{2}, eluent Pentane: $\mathrm{Et}_{2} \mathrm{O}$ $=9: 1)$ to afford the dehydrofuran $8 \mathrm{a}(61 \%, d r=>20: 1)$ as colorless liquid.

(2S,3S)-3-methyl-2-phenyl-2,3-dihydrofuran (3.8a).

$\underline{\mathbf{R}}_{\mathrm{f}}=0.3(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
Spectral data is reported for the major isomer.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.45(\mathrm{dd}, J=2.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.97-4.90(\mathrm{~m}$, $2 \mathrm{H}), 3.04-2.90(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 144.74,142.41,128.51,127.70,125.46,105.78,90.15,45.93$, 20.78.

LRMS (ESI) Calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 161$, Found: 161.
FTIR (neat): $2359,2341,1140,1095,1011,721,697,669 \mathrm{~cm}^{-1}$.
HPLC (Chiralcel OD-H column, hexanes: $i-\mathrm{PrOH}=99: 1,0.5 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=91 \%$.
$[\alpha]^{\mathbf{2 5}}{ }_{\mathbf{D}}=+171.4\left(\mathrm{c}=0.34, \mathrm{CHCl}_{3}\right)$

Formation of 3.9a

To a resealable pressure tube (ca. 13×100) was added $\mathrm{H}_{2} \mathrm{Ru}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}(9.2 \mathrm{mg}, 0.010 \mathrm{mmol}, 5$ $\mathrm{mol} \%$), SL-J009-1 ligand ($5.6 \mathrm{mg}, 0.010 \mathrm{mmol}, 5 \mathrm{~mol} \%$), $\mathrm{Bu}_{4} \mathrm{NI}(7.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and 2,4,6-tri(2-propyl)phenylsulfonic acid ($4.2 \mathrm{mg}, 0.015 \mathrm{mmol}, 7.5 \mathrm{~mol} \%$). THF ($0.20 \mathrm{~mL}, 1 \mathrm{M}$ concentration with respect to alcohols) was then added, followed by benzyl alcohol (0.20 mmol , $100 \mathrm{~mol} \%$), 2-propylalcohol ($31 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%$). Alkyne 1a ($0.60 \mathrm{mmol}, 300 \mathrm{~mol} \%$) was added via syringe and the rubber septum was quickly replaced with a screw cap. The mixture was then heated at $85^{\circ} \mathrm{C}$ for 48 hours. After cooling to room temperature, the mixture was passed through a short silica pad, washed the pad with EA, and concentrated in vacuo. The residue was dissolved in THF ($4.0 \mathrm{~mL}, 0.05 \mathrm{M}$) and TBAF (1.0 M in THF, 0.2 mL) was added at $0^{\circ} \mathrm{C}$. The mixture was stirred at r.t for 30 min , and then (Carbethoxymethylene)triphenylphosphorane (208 $\mathrm{mg}, 0.6 \mathrm{mmol}$) was added. The mixture was stirred at room temperature for 36 hours. The solvent was removed by vacuo, and the residue was subjected to flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent Hexanes:EA $=6: 1)$ to afford $9 \mathrm{a}(71 \%, d r=>20: 1, E / Z=>20: 1)$ as colorless liquid.

Ethyl (5S,6S,E)-6-hydroxy-5-methyl-6-phenylhex-2-enoate (3.9a).

$\underline{\mathbf{R}}_{\mathbf{f}}=0.2(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
Spectral data is reported for the major isomer.
${ }^{1} \mathbf{H} \mathbf{~ N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.97(\mathrm{ddd}, J=15.6,8.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.85$ $(\mathrm{dd}, J=15.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.61-2.51(\mathrm{~m}, 1 \mathrm{H})$, $2.15(\mathrm{ddd}, J=14.2,8.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.77(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 166.58,147.83,143.08,128.38,128.36,127.73,126.56,122.80$, 78.34, 60.17, 39.68, 35.13, 15.98, 14.27.

LRMS (ESI) Calcd. for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 249$, Found: 249.
FTIR (neat): $1699,1651,1311,1270,1172,1041,982,762,701 \mathrm{~cm}^{-1}$.
HPLC (Chiralcel OD-H column, hexanes: $i-\mathrm{PrOH}=95: 5,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=91 \%$.
$[\alpha]^{\mathbf{2 5}}{ }_{\mathrm{D}}=-11.3\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right)$

Crystallographic Material for Coupling product 3.5c

X-ray Experimental for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{Br}$ (3.5c)

Crystals grew as clusters of clear, colorless prisms by slow evaporation from Ethyl Acetate and DCM. The data crystal was cut from a larger crystal and had approximate dimensions; 0.38 x $0.27 \times 0.08 \mathrm{~mm}$. The data were collected at $-140^{\circ} \mathrm{C}$ on a Nonius Kappa CCD diffractometer using a Bruker AXS Apex II detector and a graphite monochromator with $\mathrm{MoK} \alpha$ radiation ($\lambda=$ $0.71073 \AA$). Reduced temperatures were maintained by use of an Oxford Cryosystems 600 lowtemperature device. A total of 1011 frames of data were collected using ω and φ-scans with a scan range of 2° and a counting time of 48 seconds per frame. Details of crystal data, data collection and structure refinement are listed in Table 1. Data reduction were performed using SAINT V8.27B. ${ }^{14}$ The structure was solved by direct methods using SUPERFLIP ${ }^{15}$ and refined by fullmatrix least-squares on F2 with anisotropic displacement parameters for the non-H atoms using SHELXL-2013. ${ }^{16}$ Structure analysis was aided by use of the programs PLATON98 ${ }^{17}$ and WinGX. ${ }^{18}$ The hydrogen atoms bound to carbon atoms were calculated in idealized positions. The hydrogen atoms on the hydroxyl oxygen atoms were observed in a $\Delta \mathrm{F}$ map and refined with isotropic displacement parameters. The absolute structure was determined by the method of Flack. ${ }^{19}$ The Flack x parameter refined to $0.006(9)$. This assignment was confirmed by use of the Hooft y-parameter ${ }^{20}$, which refined to $0.013(5)$.

The function, $\Sigma \mathrm{w}(|\mathrm{Fo}| 2-|\mathrm{Fc}| 2) 2$, was minimized, where $\mathrm{w}=1 /\left[(\sigma(\mathrm{Fo})) 2+\left(0.0221^{*} \mathrm{P}\right) 2\right]$ and $\mathrm{P}=(|\mathrm{Fo}| 2+2|\mathrm{Fc}| 2) / 3 . \mathrm{R}_{\mathrm{w}}\left(\mathrm{F}^{2}\right)$ refined to 0.0506 , with $\mathrm{R}(\mathrm{F})$ equal to 0.0271 and a goodness of fit, $S,=1.01$. Definitions used for calculating $R(F), R_{w}\left(F^{2}\right)$ and the goodness of fit, S, are given below. ${ }^{21}$ The data were checked for secondary extinction but no correction was necessary. Neutral atom scattering factors and values used to calculate the linear absorption coefficient are from the International Tables for X-ray Crystallography (1992). ${ }^{22}$ All figures were generated using SHELXTL/PC. ${ }^{5}$ Tables of positional and thermal parameters, bond lengths and angles, torsion angles and figures are found elsewhere.

Table 3.4. Crystal data and structure refinement for 3.5c.

Empirical formula	$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{Br} \mathrm{O}_{2}$
Formula weight	259.14
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	monoclinic
Space group	P 21
Unit cell dimensions	$\mathrm{a}=5.7323(12) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=7.920(2) \AA \quad \beta=98.524(6)^{\circ}$.
	$\mathrm{c}=12.149(2) \AA \quad \gamma=90^{\circ}$.
Volume	545.5(2) Å3
Z	2
Density (calculated)	$1.578 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$3.740 \mathrm{~mm}^{-1}$
F(000)	264
Crystal size	$0.384 \times 0.272 \times 0.084 \mathrm{~mm}$
Theta range for data collection	3.081 to 33.184°.
Index ranges	$-8<=\mathrm{h}<=8,-12<=\mathrm{k}<=12,-17<=1<=18$
Reflections collected	24040
Independent reflections	$3850[\mathrm{R}(\mathrm{int})=0.0432]$
Completeness to theta $=25.242^{\circ}$	99.6 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00 and 0.700
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3850 / 1 / 137
Goodness-of-fit on F2	1.006
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$R_{1}=0.0271, w R_{2}=0.0487$
R indices (all data)	$R_{1}=0.0366, w R_{2}=0.0506$
Absolute structure parameter	0.006(9)
Extinction coefficient	n / a
Largest diff. peak and hole	0.666 and -0.452 e. \AA^{-3}

Table 3.5. Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \mathrm{x}\right.$ 10^{3}) for $\mathbf{3 . 5} \mathbf{c}$. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
C1	$8039(4)$	$5546(3)$	$3656(2)$	$14(1)$
C2	$8445(4)$	$4948(3)$	$2624(2)$	$15(1)$
C3	$6838(4)$	$3832(3)$	$2054(2)$	$14(1)$
C4	$4841(4)$	$3314(3)$	$2492(2)$	$12(1)$
C5	$4472(4)$	$3944(3)$	$3523(2)$	$14(1)$
C6	$6072(4)$	$5061(3)$	$4110(2)$	$15(1)$
C7	$3115(3)$	$2064(5)$	$1870(1)$	$13(1)$
C8	$4239(4)$	$335(3)$	$1754(2)$	$14(1)$
C9	$2425(4)$	$-909(3)$	$1157(2)$	$14(1)$
C10	$3389(4)$	$-2686(3)$	$1082(2)$	$16(1)$
C11	$5293(6)$	$-338(3)$	$2897(2)$	$33(1)$
O1	$2288(3)$	$2826(2)$	$807(1)$	$18(1)$
O2	$1669(3)$	$-3674(2)$	$387(1)$	$19(1)$
Br1	$10228(1)$	$7057(1)$	$4472(1)$	$21(1)$

Table 3.6. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for 3.5c.

C1-C6	1.382(3)
C1-C2	1.391(3)
C1-Br1	1.903(2)
C2-C3	1.386(3)
C2-H2	0.95
C3-C4	1.394(3)
C3-H3	0.95
C4-C5	1.393(3)
C4-C7	1.519(3)
C5-C6	1.392(3)
C5-H5	0.95
C6-H6	0.95
C7-O1	1.441(3)
C7-C8	1.529(4)
C7-H7	1.00
C8-C11	1.526(3)
C8-C9	1.534(3)
C8-H8	1.00
C9-C10	1.520(3)
C9-H9A	0.99
C9-H9B	0.99
C10-O2	1.432(3)
C10-H10A	0.99
C10-H10B	0.99
C11-H11A	0.98
C11-H11B	0.98
C11-H11C	0.98
O1-H1O	0.81(3)
O2-H5O	0.78(3)
C6-C1-C2	121.36(19)
C6-C1-Br1	118.75(16)
C2-C1-Br1	119.89(17)
C3-C2-C1	118.7(2)

Table 3.6 Continued

C3-C2-H2	120.7
C1-C2-H2	120.7
C2-C3-C4	121.31(19)
C2-C3-H3	119.3
C4-C3-H3	119.3
C5-C4-C3	118.72(19)
C5-C4-C7	120.38(19)
C3-C4-C7	120.89(17)
C6-C5-C4	120.8(2)
C6-C5-H5	119.6
C4-C5-H5	119.6
C1-C6-C5	119.1(2)
C1-C6-H6	120.4
C5-C6-H6	120.4
O1-C7-C4	106.0(2)
O1-C7-C8	112.30(18)
C4-C7-C8	112.18(17)
O1-C7-H7	108.7
C4-C7-H7	108.7
C8-C7-H7	108.7
C11-C8-C7	110.12(17)
C11-C8-C9	110.78(18)
C7-C8-C9	110.71(17)
C11-C8-H8	108.4
C7-C8-H8	108.4
C9-C8-H8	108.4
C10-C9-C8	113.33(17)
C10-C9-H9A	108.9
C8-C9-H9A	108.9
C10-C9-H9B	108.9
C8-C9-H9B	108.9
H9A-C9-H9B	107.7
O2-C10-C9	108.45(17)
O2-C10-H10A	110.0

Table 3.6 Continued

C9-C10-H10A	110.0
O2-C10-H10B	110.0
C9-C10-H10B	110.0
H10A-C10-H10B	108.4
C8-C11-H11A	109.5
C8-C11-H11B	109.5
H11A-C11-H11B	109.5
C8-C11-H11C	109.5
H11A-C11-H11C	109.5
H11B-C11-H11C	109.5
C7-O1-H1O	$110(2)$
C10-O2-H5O	$111(2)$

Table 3.7. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 3.5c. The anisotropic displacement factor exponent takes the form: $-2 p^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*}\right.$ U^{12}]

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
C 1	$12(1)$	$9(1)$	$17(1)$	$-2(1)$	$-6(1)$	$0(1)$
C2	$11(1)$	$16(1)$	$18(1)$	$0(1)$	$1(1)$	$0(1)$
C3	$17(1)$	$13(1)$	$12(1)$	$-3(1)$	$2(1)$	$2(1)$
C4	$11(1)$	$9(1)$	$14(1)$	$0(1)$	$-2(1)$	$2(1)$
C5	$14(1)$	$12(1)$	$16(1)$	$1(1)$	$2(1)$	$1(1)$
C6	$16(1)$	$16(1)$	$11(1)$	$-2(1)$	$0(1)$	$3(1)$
C7	$13(1)$	$11(1)$	$14(1)$	$-2(1)$	$-2(1)$	$-2(1)$
C8	$15(1)$	$9(1)$	$15(1)$	$0(1)$	$-4(1)$	$1(1)$
C9	$15(1)$	$10(1)$	$17(1)$	$-2(1)$	$-3(1)$	$0(1)$
C10	$15(1)$	$14(2)$	$19(1)$	$0(1)$	$-4(1)$	$-1(1)$
C11	$51(2)$	$14(1)$	$26(1)$	$1(1)$	$-23(1)$	$-2(1)$
O1	$20(1)$	$10(1)$	$20(1)$	$3(1)$	$-11(1)$	$-2(1)$
O2	$21(1)$	$7(1)$	$25(1)$	$-2(1)$	$-9(1)$	$0(1)$
Br1	$16(1)$	$18(1)$	$26(1)$	$-8(1)$	$-6(1)$	$-2(1)$

Table 3.8. Hydrogen coordinates ($\mathrm{x} 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 3.5c.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
H2	9796	5298	2317	18
H3	7103	3412	1351	17
H5	3113	3607	3829	17
H6	5813	5484	4814	18
H7	1748	1925	2287	16
H8	5541	470	1297	16
H9A	1043	-950	1558	17
H9B	1876	-487	396	17
H10A	4880	-2653	762	20
H10B	3718	-3194	1833	20
H11A	4023	-570	3334	50
H11B	6367	506	3283	50
H11C	6164	-1381	2807	50
H1O	$1210(50)$	$2280(50)$	$490(20)$	$33(8)$
H5O	$1900(60)$	$-4640(40)$	$480(30)$	$32(9)$

Table 3.9. Torsion angles $\left[{ }^{\circ}\right]$ for $\mathbf{3 . 5}$ c.

C6-C1-C2-C3	$-0.6(3)$
Br1-C1-C2-C3	$179.19(16)$
C1-C2-C3-C4	$0.3(3)$
C2-C3-C4-C5	$0.1(3)$
C2-C3-C4-C7	$-178.8(2)$
C3-C4-C5-C6	$-0.4(3)$
C7-C4-C5-C6	$178.6(2)$
C2-C1-C6-C5	$0.3(3)$
Br1-C1-C6-C5	$-179.43(16)$
C4-C5-C6-C1	$0.2(3)$
C5-C4-C7-O1	$122.3(2)$
C3-C4-C7-O1	$-58.8(3)$
C5-C4-C7-C8	$-114.8(2)$
C3-C4-C7-C8	$64.1(3)$
O1-C7-C8-C11	$174.6(2)$
C4-C7-C8-C11	$55.3(3)$
O1-C7-C8-C9	$-62.6(2)$
C4-C7-C8-C9	$178.12(17)$
C11-C8-C9-C10	$-53.8(3)$
C7-C8-C9-C10	$-176.23(19)$
C8-C9-C10-O2	$-172.37(17)$

Table 3.10. Hydrogen bonds for 3.5c $\left[\AA\right.$ and ${ }^{\circ}$].

D-H...A	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{H} . . \mathrm{A})$	$\mathrm{d}(\mathrm{D} . . . \mathrm{A})$	$<$ (DHA)
O1-H1O...O2\#1	$0.81(3)$	$1.98(3)$	$2.772(2)$	$170(4)$
O2-H5O...O1\#2	$0.78(3)$	$2.05(3)$	$2.832(2)$	$175(3)$

Symmetry transformations used to generate equivalent atoms:
\#1-x,y+1/2,-z \#2 $\mathrm{x}, \mathrm{y}-1, \mathrm{z}$

Figure 3.2. View of 3.5c showing the atom labeling scheme. Displacement ellipsoids are scaled to the 50% probability level.

Isotopic Labeling Studies

Chapter 4: Iridium Catalyzed (Z) - Selective Siloxy-Allylation of Primary Alcohols by Coupling with Terminal Propargyl Ether via 1,2-Hydride Shift Mechanism*

4.1 Introduction

Carbonyl addition is broadly used in chemical synthesis to construct new C-C bonds. ${ }^{1}$ To come up with an alternative way of using organometallic reagents and metallic reductants, Krische group has developed a broad system of redox-triggered carbonyl addition reactions by merging carbonyl addition and transfer hydrogenation, which allows the direct conversion of primary alcohols to secondary alcohols. ${ }^{2}$ Different π-unsaturated compounds were proved to be able to engage the carbonyl addition reactions, and many of them are abundant chemical feedstocks, such as butadiene ${ }^{3}$ and allyl acetate. ${ }^{4}$

In recent work from the group, internal alkynes were found to engage in the carbonyl allylation reactions serving as pronucleophiles by different mechanisms. ${ }^{5,6,7}$ One possible mechanism was proceeding through alkyne-to-allen isomerization followed by either oxidative coupling ${ }^{5}$ or hydrometalation ${ }^{6}$ pathways. The other possible mechanism was involving 1,2-hydride shift enabled formation of π-allylmetal species directly from alkynes. ${ }^{7}$ In this chapter, we reported that terminal alkyne, unsubstituted proparyl ether 4.1a, mediated (Z)-selective carbonyl siloxyallylation via 1,2-hydride shift mechanism. This protocol represented the divergence from the classical acetylide carbonyl addition reactions ${ }^{8,9}$, and allowed formation of homoenolate equivalents ${ }^{10,11}$ from propargyl ethers; also demonstrated the generality of 1,2-hydride shift mechanism for the formation of π-allylmetal species in the context of transition metal catalysis (Figure 4.1).

[^2]Classical Carbonvl Addition Chemistry of Terminal Alkynes

>500 reports, including asymmetric variants ${ }^{11,12}$

This Work: Iridium Catalyzed Siloxy-Allylation

Figure 4.1 Enantioselective Carbonyl Crotylation Strategies.

4.2 Reaction Development and Scope

Exposure of propargyl ether 4.1a to p-bromobenzyl alcohol 4.2c with $2.5 \mathrm{~mol} \%$ $[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2}$ and $5 \mathrm{~mol} \%(\mathrm{R})$-BINAP in toluene at $95^{\circ} \mathrm{Cgave}$ the desired γ-hydroxy enol silane 4.3c with complete (Z)-selectivity in 14% yield and 87% enantiomeric excess (Table 4.1, entry 1). Introduction of catalytic amount of $\mathrm{Bu}_{4} \mathrm{NI}$ was found to be helpful in improving both yield and ee (Table 4.1, entry 2). Catalytic amount of $\mathrm{Ph}_{3} \mathrm{CCO}_{2} \mathrm{H}$ was found to have a beneficial effect on the conversion (Table 4.1, entry 3). By combining $\mathrm{Bu}_{4} \mathrm{NI}$ and $\mathrm{Ph}_{3} \mathrm{CCO}_{2} \mathrm{H}, 47 \%$ yield and 90% ee was obtained (Table 4.1, entry 4). The conversion was further improved to 86% yield with 91% ee by

Table 4.1 Selective Optimization for Formation of γ-Hydroxy Enol Silane 4.3c.

	Entry	4.1	Ligand	$\mathrm{Bu}_{4} \mathrm{NI}$	$\mathrm{Ph}_{3} \mathrm{CCO}_{2} \mathrm{H}$	3c (Yield, $Z: E$)	ee\%
	1	4.1a, $300 \mathrm{~mol} \%$	(R)-BINAP	-	-	14\%, >20:1	87
	2	4.1a, $300 \mathrm{~mol} \%$	(R)-BINAP	$10 \mathrm{~mol} \%$	-	21\%, >20:1	92
	3	4.1a, $300 \mathrm{~mol} \%$	(R)-BINAP	-	$5 \mathrm{~mol} \%$	23\%, >20:1	87
	4	4.1a, $300 \mathrm{~mol} \%$	(R)-BINAP	$10 \mathrm{~mol} \%$	$5 \mathrm{~mol} \%$	47\%, >20:1	90
	5	4.1a, $300 \mathrm{~mol} \%$	(R)- H_{8}-BINAP	$10 \mathrm{~mol} \%$	$5 \mathrm{~mol} \%$	55\%, >20:1	91
	6	4.1a, $400 \mathrm{~mol} \%$	(R)-BINAP	$10 \mathrm{~mol} \%$	$5 \mathrm{~mol} \%$	64\%, >20:1	93
\Rightarrow	7	4.1a, $400 \mathrm{~mol} \%$	(R)- H_{8}-BINAP	$10 \mathrm{~mol} \%$	$5 \mathrm{~mol} \%$	86\%, >20:1	91
	8	4.1a, $400 \mathrm{~mol} \%$	(R)- H_{8}-BINAP	$10 \mathrm{~mol} \%$	-	38\%, >20:1	88
	9	4.1a, $400 \mathrm{~mol} \%$	(R)- H_{8}-BINAP	-	$5 \mathrm{~mol} \%$	58\%, >20:1	85
	10	4.1a, $400 \mathrm{~mol} \%$	(R)-SEGPHOS	$10 \mathrm{~mol} \%$	$5 \mathrm{~mol} \%$	30\%, >20:1	96
	11	4.1a, $400 \mathrm{~mol} \%$	(R)-MeO-BIPHEP	$10 \mathrm{~mol} \%$	$5 \mathrm{~mol} \%$	47\%, >20:1	94
	12	4.1a, $400 \mathrm{~mol} \%($	R)-C3-TUNEPHOS	$10 \mathrm{~mol} \%$	$5 \mathrm{~mol} \%$	32\%, >20:1	91
	13	4.1a, $400 \mathrm{~mol} \%$	(R)-BIPHEMP	$10 \mathrm{~mol} \%$	$5 \mathrm{~mol} \%$	48\%, >20:1	86
	$14^{\text {b }}$	4.1a, $400 \mathrm{~mol} \%$	(R)- H_{8}-BINAP	-	$5 \mathrm{~mol} \%$	83\%, >20:1	84
	15	4.1b, $400 \mathrm{~mol} \%$	(R)- H_{8}-BINAP	$10 \mathrm{~mol} \%$	$5 \mathrm{~mol} \%$	36\%, >20:1	90
	16	4.1c, $400 \mathrm{~mol} \%$	(R)- H_{8}-BINAP	$10 \mathrm{~mol} \%$	$5 \mathrm{~mol} \%$	56\%, >20:1	91

(R)-BINAP

(R)-SEGPHOS

(R)-H8-BINAP

(R)-C3-TUNEPHOS

(R)-BIPHEMP

(R)-MeO-BIPHEP
${ }^{a}$ Yields are of material isolated by silica gel chromatography. See supporting Information for further details. ${ }^{\text {b }}[\operatorname{Ir}(\operatorname{cod}) I]_{2}$
using (R)- H_{8}-BINAP and higher loading of propargyl ether 4.1a (Table 4.1, entry 7). Other chiral ligands within structural neighborhood were also evaluated (Table 4.1, entries 10-13), even though in some cases higher enantioselectivity was obtained but the yield was not relatively low comparing with (R)- H_{8}-BINAP. Notably, when $[\operatorname{Ir}(\operatorname{cod}) I]_{2}$ was used in the absence of $\mathrm{Bu}_{4} \mathrm{NI}$, similar isolation yield was obtained, which suggested the role of $\mathrm{Bu}_{4} \mathrm{NI}$ involved in the formation of iodide modified iridium catalyst (Table 4.1, entry 14).

With the optimal conditions in hand, different primary alcohols were subjected to coupling with propargyl ether 4.1a. Benzyl alcohols 4.2a-4.2f were converted to $(Z)-\gamma$-hydroxy enol silane 4.3a-4.3f in excellent yield and uniformly high level of enantioselectivity. Different substituents positions were tolerated in the transformation. Allylic alcohols 4.2g-4.2i were able to engage in the coupling with propargyl ether 4.1a with good isolation yield and excellent enantioselectivity. Also, aliphatic alcohols $\mathbf{4 . 2 j} \mathbf{- 4 . 2 1}$ were successfully converted to the adduct $\mathbf{4 . 3 j} \mathbf{- 4 . 3 1}$ with slightly lower yields but still complete (Z)-selectivity and high enantioselectivity.

The absolute stereochemical structure of adduct 4.3a-4.31 was confirmed by subjecting 4.3a to silyl group cleavage followed by reduction to form (S)-1-phenylbutane-1,4-diol, which is a previous reported compound.

To demonstrate the utility of this protocol, the coupling adducts γ-hydroxy enol silanes 4.3a, 4.3c, 4.3e, 4.3h, and 4.3 j were converted to enantiomeric enriched γ-lactones 4.4a, 4.4c, 4.4e, $\mathbf{4 . 4 h}$, and $\mathbf{4 . 4} \mathbf{j}$ by treatment of TBAF to remove the TIPS group followed by PCC mediated oxidation (Scheme 4.1, eq 1). Additionally, m-CPBA mediated epoxidation of adducts 4.3a, 4.3c, 4.3e, $4.3 \mathrm{f}, 4.3 \mathrm{j}$, and 4.3 k occurred in a highly diastereoselective manner and delivered the trisubstituted furans 4.5a, 4.5c, 4.5e, 4.5f, 4.5j, and 4.5k (Scheme 4.1, eq 2).

Table 4.2 Iridium Catalyzed Formation of γ-Hydroxy Enol Silanes 4.3a-4.31.

	$[\mathrm{Ir}(\mathrm{cod}) \mathrm{Cl}]_{2}(2.5 \mathrm{~mol} \%)$ (R)- H_{8}-BINAP ($5 \mathrm{~mol} \%$)	
	$\begin{gathered} \mathrm{Ph}_{3} \mathrm{CCO}_{2} \mathrm{H}(5 \mathrm{~mol} \%) \\ \mathrm{Bu}_{4} \mathrm{NI}(10 \mathrm{~mol} \%) \end{gathered}$	
4.1a 4.2a-4.21	PhMe (1 M), $95{ }^{\circ} \mathrm{C}$	
(400 mol \%) (100 mol\%)		
4.2a, $R=P h$	4.2b, $\mathrm{R}=4-\mathrm{MePh}$	4.2c, $\mathrm{R}=4-\mathrm{BrPh}$
4.2d, $\mathrm{R}=2-\mathrm{MePh}$	4.2e, $\mathrm{R}=3-\mathrm{MeOPh}$	4.2f, $\mathrm{R}=$ 5-benzodioxole
4.2g, $\mathrm{R}=\mathrm{HC}=\mathrm{CHPh}$	4.2h, $\mathrm{R}=\mathrm{HC}=\mathrm{CMe}_{2}$	4.2i, $\mathrm{R}=\mathrm{HC}=\mathrm{CCH}_{2} \mathrm{OBn}$
4.2j, $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OBn}$	4.2k, $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{5} \mathrm{Me}$	4.21, $\mathrm{R}=c-\mathrm{Pr}$

4.3a, 93\% Yield >20:1 (Z:E), 94\% ee

4.3d, 85\% Yield >20:1 (Z:E), 95\% ee

4.3g, 78\% Yield >20:1 (Z:E), 94\% ee

4.3j, 68\% Yield ${ }^{\text {b }}$ >20:1 (Z:E), 85\% ee

4.3b, 84% Yield >20:1 (Z:E), 95\% ee

4.3e, 94% Yield >20:1 (Z:E), 95\% ee

4.3h, 67\% Yield >20:1 (Z:E), 96\% ee

4.3k, 64\% Yield ${ }^{\text {b }}$ >20:1 (Z:E), 90\% ee

4.3c, 86\% Yield >20:1 (Z:E), 91\% ee

4.3f, 91\% Yield >20:1 (Z:E), 94\% ee

4.3i, 75\% Yield >20:1 (Z:E), 92\% ee

4.3I, 63% Yield $^{\text {b }}$ >20:1 (Z:E), 95\% ee
${ }^{\mathrm{a}}$ Yields are material isolated by silica gel chromatography. See supporting Information for further experimental details. ${ }^{\text {b }}$ Adamantane carboxylic aicd was used instead of $\mathrm{Ph}_{3} \mathrm{CCO}_{2} \mathrm{H}$.

Scheme 4.1 Elaboration of Coupling Adducts to Form γ-Lactones and Furans.

4.3a, 4.3c, 4.3e,
4.3f, 4.3j, 4.3k
(100 mol \%)

4.5a, $\mathrm{R}=\mathrm{Ph}, 74 \%$ Yield
4.5c, $\mathrm{R}=p$ - $\mathrm{BrPh}, 73 \%$ Yield
4.5e, $\mathrm{R}=m$-MeOPh, 66% Yield
4.5f, R = 5-benzodioxole, 71\% Yield
4.5j, $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OBn}, 61 \%$ Yield
4.5k, $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{5} \mathrm{Me}, 63 \%$ Yield

4.3 Mechanism and Discussion

Deuterium labeling experiments were conducted to confirm the reaction mechanism. When propargyl ether 4.1a was treated with deuterio-4.2c under the standard conditions, deuterium was observed at the allylic $\left(\mathrm{H}_{\mathrm{c}}\right)$ and carbinol $\left(\mathrm{H}_{\mathrm{d}}\right)$ positions (Scheme 4.2, eq 3). When deuterio-4.1a was treated with p-bromobenzyl alcohol 4.2c under standard conditions, complete deuterium incorporation was observed at both vinylic $\left(\mathrm{H}_{\mathrm{a}}\right.$ and $\left.\mathrm{H}_{\mathrm{b}}\right)$ positions (Scheme 4.2, eq 4).

These data clearly indicated the catalytic mechanism via 1,2-hydride shift to form π allyliridium species (Scheme 4.3). Coordination of alkyne to the low-valent iridium(I) induced 1,2-hydride shift to form vinylcarbene II. It is worth mentioning that the $\mathrm{n} \rightarrow \sigma^{*}$ interaction between oxygen lone pair with the propargylic C-H bond is crucial in promoting

Scheme 4.2 Deuterium Labelling Experiments to Probe Reaction Mechanism.

1,2-hydride shift. Protonation of vinylcarbene II gave the siloxyallyliridium intermediate III. Coordination of aldehyde, formed in situ, to siloxyallylridium III triggered the carbonyl addition via closed transition structure to form homoallylic iridium alkoxide \mathbf{V}. Protonolysis of iridium alkoxide \mathbf{V} by reactant alcohol released the λ-hydroxyl enol silane and formed iridium alkoxide VI, which went through β-hydride elimination to generate aldehyde and iridium hydride species VII. Finally, reductive elimination of HX closed the catalytic cycle. A stereochemical model was proposed to rationalize the absolute stereoselective (Scheme 4.3).

Scheme 4.3 Proposed Iridium Catalyzed Carbonyl Siloxy-Crotylation Catalytical Cycle.

4.4 Conclusion

In summary, iridium catalyzed coupling of terminal propargyl ether 4.1a with primary alcohols to form γ-hydroxyl enol silanes with complete (Z)-selectivity and high enantioselectivity was reported. According to the deuterium labeling studies, 1,2-hydride shift mechanism was proposed in the catalytic cycle. This protocol expanded the scope for the π-unsaturated compounds in redox-triggered carbonyl allylation reactions, as well as represented the departure from classic carbonyl addition of terminal alkynes.

4.5 Experimental Details

General Information

All reactions were run under an atmosphere of argon, unless otherwise indicated. Resealable pressure tubes (13x100 mm) were purchased from Fischer Scientific (catalog number 14-95935C) and were flame dried followed by cooling in a desiccator or under a stream of argon prior to use. Tetrahydrofuran (THF) was dried over sodium metal, benzophenone, and distilled immediately prior to use. $\mathrm{RuH}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ were prepared according to literature procedure. 1 All ligands were used as received from Strem Chemicals Inc. Alcohols were purified by distillation or recrystallization immediately prior to use. Preparative column chromatography employing Silicycle silica gel (40-63 $\mu \mathrm{m}$) was performed according to the method of Still. 2 Analytical thinlayer chromatography (TLC) was carried out using 0.25 mm commercial silica gel plates (Dynamic Absorbents F254). Visualization was accomplished with UV light followed by dipping in Seebach's stain solution then heating. Purification of reactions was carried out by flash chromatography using Silicycle silica gel ($40-63 \mu \mathrm{~m}$).

Spectroscopy, Spectrometry, and Data Collection

Infrared spectra were recorded on a Perkin-Elmer 1600 spectrometer. Low-resolution mass spectra (LRMS) were obtained on a Karatos MS9 and are reported as m / z (relative intensity). Accurate masses are reported for the molecular ion $(\mathrm{M}+\mathrm{H}, \mathrm{M}+\mathrm{Na})$, or a suitable fragment ion. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra were recorded with a Varian Gemini (400 MHz) spectrometer. Chemical shifts are reported in delta (δ) units, parts per million (ppm) downfield from tetramethylsilane or ppm relative to the center of the singlet at 7.26 ppm for deuteriochloroform. Data reported as multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet). Integration and coupling constants were reported in Hertz (Hz). Carbon-13 nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectra were recorded with a Varian Gemini (100 MHz) spectrometer and were routinely run with broadband decoupling. Chemical shifts are reported in delta (δ) units, ppm relative to the center of the triplet at 77.16 ppm for deuteriochloroform.

Experimental Details and Spectral Data

General Procedure for the Couplings of Alcohols 4.2a-4.2 and 4.1a

To a resealable pressure tube (13×100) was added $[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2}(3.4 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, $(R)-\mathrm{H}_{8} \mathrm{BINAP}(6.3 \mathrm{mg}, 0.010 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Bu}_{4} \mathrm{NI}(7.4 \mathrm{mg}, 0.020 \mathrm{mmol}, 10 \mathrm{~mol} \%$), triphenylacetic acid ($2.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 5 \mathrm{~mol} \%$). At this stage solid alcohol coupling partners ($0.20 \mathrm{mmol}, 100 \mathrm{~mol} \%$) were added. The tube was sealed with a rubber septum and purged with argon. Toluene $(0.20 \mathrm{~mL}, 1 \mathrm{M})$ was added to the reaction vessel. At this stage, liquid alcohol coupling partners ($0.20 \mathrm{mmol}, 100 \mathrm{~mol} \%$) were added. Propargyl ether 4.1 a ($0.80 \mathrm{mmol}, 400$ mol\%) was added to the reaction vessel and the rubber septum was replaced with a screw cap. The mixture was heated at $95^{\circ} \mathrm{C}$ for 24 hours, at which point the reaction mixture was allowed to cool to room temperature. The solvents were removed in vacuo and the residue was subjected to column chromatography $\left(\mathrm{SiO}_{2}\right)$.

(S,Z)-1-phenyl-4-((triisopropylsilyl)oxy)but-3-en-1-ol (4.3a).

In accordance with the general procedure, the title compound was obtained in 93% yield (59.5 mg , $0.186 \mathrm{mmol}, \mathrm{Z}: E=>20: 1$) as a yellow liquid after column chromatography $\left(\mathrm{SiO}_{2} ; 6 \%\right.$ EtOAc/hexanes).
$\underline{\mathbf{R}}_{\mathbf{f}}=0.6(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.41-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.45(\mathrm{dt}, J=5.8,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.78-4.72(\mathrm{~m}, 1 \mathrm{H}), 4.47(\mathrm{td}, J=7.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{~d}, J=3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.20-1.12(\mathrm{~m}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.5,141.8,128.2,127.2,125.8,104.6,74.2,34.1,17.7,11.9$.
LRMS (ESI) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{NaO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 343$, Found: 343
FTIR (neat): $2943,2866,2874,1463,1116,1050,882,684,665 \mathrm{~cm}^{-1}$.
$\underline{\text { HPLC }}$ (Chiralcel OD-H column, hexanes: $i-\operatorname{PrOH}=99: 1,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=94 \%$.
$[\boldsymbol{\alpha}]^{\mathbf{2 8}}{ }_{\mathbf{D}}=25.7\left(\mathrm{c}=0.92, \mathrm{CHCl}_{3}\right)$

(S,Z)-1-(p-tolyl)-4-((triisopropylsilyl)oxy)but-3-en-1-ol (4.3b).

In accordance with the general procedure, the title compound was obtained in 84% yield (56.1 mg , $0.168 \mathrm{mmol}, \mathrm{Z}: E=>20: 1$) as a yellow liquid after column chromatography $\left(\mathrm{SiO}_{2} ; 7 \%\right.$ EtOAc/hexanes).
$\underline{\mathbf{R}}_{\mathbf{f}}=0.6(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.27(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.43(\mathrm{dt}, J=$ $5.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.74-4.69(\mathrm{~m}, 1 \mathrm{H}), 4.47(\mathrm{td}, J=7.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.56-$ $2.47(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.20-1.12(\mathrm{~m}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 141.7,141.6,136.8,128.9,125.7,104.7,74.0,34.0,21.1,17.7$, 11.9.

LRMS (ESI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{NaO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 357$, Found: 357.
FTIR (neat): 2943, 2866, 1654, 1463, 1248, 1162, 1052, 881, 817, 683, $666 \mathrm{~cm}^{-1}$.
HPLC (Chiralcel OD-H/OD-H column, hexanes: $i-\mathrm{PrOH}=99: 1,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=95 \%$.
$[\boldsymbol{\alpha}]^{\mathbf{2 9}}{ }_{\mathbf{D}}=-35.8\left(\mathrm{c}=0.80, \mathrm{CHCl}_{3}\right)$

(S,Z)-1-(4-bromophenyl)-4-((triisopropylsilyl)oxy)but-3-en-1-ol (4.3c).

In accordance with the general procedure, the title compound was obtained in 86% yield (68.5 mg , $0.172 \mathrm{mmol}, \mathrm{Z}: E=>20: 1$) as a yellow liquid after column chromatography $\left(\mathrm{SiO}_{2} ; 7 \%\right.$ EtOAc/hexanes).
$\underline{\mathbf{R}}_{\mathrm{f}}=0.55(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.48-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.44(\mathrm{dt}, J=5.8,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.75-4.68(\mathrm{~m}, 1 \mathrm{H}), 4.44(\mathrm{td}, J=7.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.45(\mathrm{~m}, 3 \mathrm{H}), 1.23-1.11(\mathrm{~m}, 3 \mathrm{H})$, $1.08(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 143.5,142.1,131.3,127.6,120.9,104.0,73.5,34.1,17.7,11.8$.
$\underline{\text { LRMS }}$ (ESI) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{BrNaO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 421$, Found: 421.
FTIR (neat): $2943,2866,1653,1463,1118,1059,1010,882,828,685 \mathrm{~cm}^{-1}$.
HPLC (Chiralcel AS-H/AS-H column, hexanes: $i-\mathrm{PrOH}=99: 1,0.5 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=91 \%$. $[\boldsymbol{\alpha}]^{30}{ }_{\mathrm{D}}=-24.1\left(\mathrm{c}=1.08, \mathrm{CHCl}_{3}\right)$

| 0 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 90 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

(S,Z)-1-(o-tolyl)-4-((triisopropylsilyl)oxy)but-3-en-1-ol (4.3d).

In accordance with the general procedure, the title compound was obtained in 85% yield (56.8 mg , $0.17 \mathrm{mmol}, ~ Z: E=>20: 1$) as a yellow liquid after column chromatography ($\mathrm{SiO}_{2} ; 5 \%$ EtOAc/hexanes).
$\underline{\mathbf{R}}_{\mathrm{f}}=0.5(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.53(\mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{td}, J=7.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16$ $(\mathrm{td}, J=7.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.46(\mathrm{dt}, J=5.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.00-4.94(\mathrm{~m}, 1 \mathrm{H})$, $4.52(\mathrm{td}, J=7.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.20-$ $1.13(\mathrm{~m}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 142.5,141.7,134.4,130.2,126.9,126.1,125.2,104.8,70.7,32.8$, 19.0, 17.7, 12.3, 11.9.

LRMS (ESI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{NaO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 357$, Found: 357.
FTIR (neat): 2944, 2866, 1654, 1463, 1121, 1104, 1047, 882, 745, $684 \mathrm{~cm}^{-1}$.
HPLC (Chiralcel AD-H/AD-H column, hexanes: $i-\mathrm{PrOH}=99: 1,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=95 \%$.
$[\boldsymbol{\alpha}]^{30}{ }_{\mathrm{D}}=-45.3\left(\mathrm{c}=1.14, \mathrm{CHCl}_{3}\right)$

(S,Z)-1-(3-methoxyphenyl)-4-((triisopropylsilyl)oxy)but-3-en-1-ol (4.3e).

In accordance with the general procedure, the title compound was obtained in 94% yield (65.8 mg , $0.188 \mathrm{mmol}, \mathrm{Z}: E=>20: 1$) as a yellow liquid after column chromatography $\left(\mathrm{SiO}_{2} ; 8 \%\right.$ EtOAc/hexanes).
$\underline{\mathbf{R}}_{\underline{f}}=0.45(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.27-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.97-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{ddd}, J=8.2,2.4$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{dt}, J=5.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{dd}, J=8.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{td}, J=7.5,5.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.65-2.39(\mathrm{~m}, 3 \mathrm{H}), 1.21-1.12(\mathrm{~m}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.60,146.29,141.80,129.22,118.13,112.78,111.15,104.56$, 74.08, 55.14, 34.08, 17.70, 11.86.
$\underline{\text { LRMS }}$ (ESI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{NaO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 373$, Found: 373.
FTIR (neat): $3443,2943,2866,1738,1653,1258,1115,1044,881,684 \mathrm{~cm}^{-1}$.
$\underline{\text { HPLC }}$ (Chiralpak IB column, hexanes: $i-\mathrm{PrOH}=99: 1,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=95 \%$.
$[\alpha]^{30}{ }_{\mathrm{D}}=-30.6\left(\mathrm{c}=1.17, \mathrm{CHCl}_{3}\right)$

(S,Z)-1-(benzo[d][1,3]dioxol-5-yl)-4-((triisopropylsilyl)oxy)but-3-en-1-ol (4.3f).

In accordance with the general procedure, the title compound was obtained in 91% yield (66.2 mg , $0.182, Z: E=>20: 1)$ as a yellow liquid after column chromatography $\left(\mathrm{SiO}_{2} ; 8 \% \mathrm{EtOAc} /\right.$ hexanes $)$.
$\underline{\mathbf{R}}_{\mathbf{f}}=0.45(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.90(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{ddd}, J=7.9,1.7,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.75$ $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{dt}, J=5.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 2 \mathrm{H}), 4.70-4.61(\mathrm{~m}, 1 \mathrm{H}), 4.44(\mathrm{td}, J=$ $7.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 1 \mathrm{H}), 1.19-1.11(\mathrm{~m}, 3 \mathrm{H}), 1.08$ (d, $J=6.8 \mathrm{~Hz}, 18 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.6,146.6,141.7,138.7,119.1,107.9,106.4,104.5,100.8$, 74.0, 34.1, 17.7, 11.9.

LRMS (ESI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{NaO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 387$, Found: 387.
FTIR (neat): $3402,2943,1738,1488,1241,1113,882,810,684 \mathrm{~cm}^{-1}$.
$\underline{\text { HPLC }}$ (Chiralcel AD-H/AD-H column, hexanes: $i-\mathrm{PrOH}=97: 3,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=94 \%$.
$[\boldsymbol{\alpha}]^{\mathbf{3 0}}{ }_{\mathrm{D}}=-20.1\left(\mathrm{c}=1.99, \mathrm{CHCl}_{3}\right)$

(S,1E,5Z)-1-phenyl-6-((triisopropylsilyl)oxy)hexa-1,5-dien-3-ol (4.3g)

In accordance with the general procedure, the title compound was obtained in 78% yield (54.0 mg , $0.156 \mathrm{mmol}, \mathrm{Z}: E=>20: 1)$ as a yellow liquid after column chromatography $\left(\mathrm{SiO}_{2} ; 6 \%\right.$ EtOAc/hexanes).
$\underline{\mathbf{R}}_{\mathbf{f}}=0.55(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.40-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{tt}, J=7.3,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=15.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{dt}, J=5.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{dd}, J=15.9,6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.52(\mathrm{td}, J=7.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.31(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{ddd}, J=7.5,6.2,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.12$ (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.21-1.11(\mathrm{~m}, 3 \mathrm{H}), 1.10-1.06(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 141.7,136.9,132.3,129.8,128.5,127.4,126.5,104.1,72.7,32.2$, 17.7, 11.9.

LRMS (ESI) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{NaO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 369$, Found: 369 .
FTIR (neat): 2943, 2866, 1460, 1654, 1463, 1249, 1120, 1093, 1045, 882, 747, 688, $666 \mathrm{~cm}^{-1}$.
$\underline{\text { HPLC }}$ (Chiralpak IB column, hexanes: $i-\mathrm{PrOH}=99: 1,1 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$), ee $=94 \%$.
$[\alpha]^{30}{ }_{\mathrm{D}}=-7.2\left(\mathrm{c}=0.83, \mathrm{CHCl}_{3}\right)$

(S,Z)-6-methyl-1-((triisopropylsilyl)oxy)hepta-1,5-dien-4-ol (4.3h).

In accordance with the general procedure, the title compound was obtained in 67% yield (39.9 mg , $0.134 \mathrm{mmol}, \mathrm{Z}: E=>20: 1$) as a yellow liquid after column chromatography $\left(\mathrm{SiO}_{2} ; 6 \%\right.$ EtOAc/hexanes).
$\underline{\mathbf{R}}_{\underline{f}}=0.55(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.41(\mathrm{dt}, J=5.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{dp}, J=8.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.45$ (ddd, $J=7.7,7.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.35(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.22(\mathrm{~m}, 1 \mathrm{H}), 1.79$ (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.69(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.19-1.11(\mathrm{~m}, 3 \mathrm{H}), 1.10-$ 1.07 (m, 18H).
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 141.3,134.8,127.8,104.6,68.6,32.2,25.8,18.2,17.7,11.9$.
LRMS (ESI) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{NaO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 321$, Found: 321 .
FTIR (neat): 2943, 2866, 1654, 1463, 1248, 1106, 1046, 882, 800, 684, $665 \mathrm{~cm}^{-1}$.
HPLC (Chiralcel OD-H/OD-H/OD-H column, hexanes: $i-\mathrm{PrOH}=99: 1,0.5 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=96 \%$.
$[\alpha]^{\mathbf{2 2}}{ }_{\mathrm{D}}=-14.7\left(\mathrm{c}=0.34, \mathrm{CHCl}_{3}\right)$

(S,1Z,5E)-7-(benzyloxy)-1-((triisopropylsilyl)oxy)hepta-1,5-dien-4-ol (4.3i).

In accordance with the general procedure, the title compound was obtained in 75% yield (58.5 mg , $0.15 \mathrm{mmol}, \mathrm{Z}: E=>20: 1$) as a yellow liquid after column chromatography $\left(\mathrm{SiO}_{2} ; 7 \%\right.$ EtOAc/hexanes).
$\underline{\mathbf{R}}_{\mathbf{f}}=0.3(50 \% \mathrm{EtOAc} /$ Hexanes $)$.
Spectral data is reported for the major isomer.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.34(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.43(\mathrm{dt}, J=5.8$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.84-5.80(\mathrm{~m}, 2 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 4.47(\mathrm{td}, J=7.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.17(\mathrm{~m}$, $1 \mathrm{H}), 4.03(\mathrm{dd}, J=4.2,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{ddd}, J=7.5,6.3,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.19-1.11(\mathrm{~m}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 141.6,138.3,135.8,128.3,127.8,127.6,126.8,104.1,72.1,72.0$, 70.3, 31.9, 17.7, 11.9.

LRMS (ESI) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{NaO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 413$, Found: 413.
FTIR (neat): $2943,2866,1653,1463,1248,1095,1066,882,735,685,666 \mathrm{~cm}^{-1}$.
$\underline{\text { HPLC }}$ (Chiralcel OD-H column, hexanes: $i-\mathrm{PrOH}=99: 1,1 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$), ee $=92 \%$.
$[\alpha]^{24}{ }_{\mathrm{D}}=+1.3\left(\mathrm{c}=0.77, \mathrm{CHCl}_{3}\right)$

(S,Z)-1-(benzyloxy)-6-((triisopropylsilyl)oxy)hex-5-en-3-ol (4.3j).

In accordance with the general procedure, the title compound was obtained in 68% yield (51.4 mg , $0.136 \mathrm{mmol}, \mathrm{Z}: E=>20: 1$) as a yellow liquid after column chromatography $\left(\mathrm{SiO}_{2} ; 8 \%\right.$ EtOAc/hexanes).
$\underline{\mathbf{R}}_{\underline{f}}=0.35(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform-d) $\delta 7.35-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.40(\mathrm{dt}$, $J=5.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.51(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{td}, J=7.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.75$
$-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.61(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.27(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.74(\mathrm{~m}$, $2 \mathrm{H}), 1.19-1.11(\mathrm{~m}, 3 \mathrm{H}), 1.07$ (d, $J=6.4 \mathrm{~Hz}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 141.02,138.14,128.39,127.62,127.61,104.91,73.23,71.02$, 69.00, 36.02, 31.73, 17.71, 11.88.
$\underline{\text { LRMS (ESI) Calcd. for } \mathrm{C}_{22} \mathrm{H}_{38} \mathrm{NaO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 401 \text {, Found: } 401 . ~}$
FTIR (neat): 2943, 2866, 1654, 1085, 882, 735, 687, $669 \mathrm{~cm}^{-1}$.
$\underline{\text { HPLC }}($ Chiralcel AD-H/AD-H column, hexanes: $i-\mathrm{PrOH}=99: 1,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm})$, ee $=85 \%$.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathrm{D}}=+3.5\left(\mathrm{c}=0.51, \mathrm{CHCl}_{3}\right)$

(R,Z)-1-((triisopropylsilyl)oxy)dec-1-en-4-ol (4.3k).

In accordance with the general procedure, the title compound was obtained in 64% yield (42.0 mg , $0.128 \mathrm{mmol}, \mathrm{Z}: E=>20: 1$) as a yellow liquid after column chromatography $\left(\mathrm{SiO}_{2} ; 4 \%\right.$ EtOAc/hexanes).
$\underline{\mathbf{R}}_{\boldsymbol{f}}=0.6(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.43(\mathrm{dt}, J=5.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{td}, J=7.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.69$ $-3.59(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.49-1.40(\mathrm{~m}, 3 \mathrm{H}), 1.36-1.24(\mathrm{~m}$, $7 \mathrm{H}), 1.20-1.12(\mathrm{~m}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 18 \mathrm{H}), 0.91-0.84(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 141.3,104.9,71.9,37.0,31.9,31.8,29.4,25.7,22.6,17.7,14.1$, 11.9 .

LRMS (ESI) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{40} \mathrm{NaO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 351.3$, Found: 351.3.
FTIR (neat): 2928, 2867, 1654, 1464, 1258, 1104, 1055, 882, $684,666 \mathrm{~cm}^{-1}$.
HPLC (Chiralcel AD-H column/AD-H column/AD-H column, hexanes: $i-\mathrm{PrOH}=99.7: 0.3,0.5$ $\mathrm{mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=90 \%$.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}} \mathbf{D}=+1.0\left(\mathrm{c}=0.99, \mathrm{CHCl}_{3}\right)$

(S,Z)-1-cyclopropyl-4-((triisopropylsilyl)oxy)but-3-en-1-ol (4.31).

In accordance with the general procedure, the title compound was obtained in 63% yield (35.8 mg , $0.126 \mathrm{mmol}, \mathrm{Z}: E=>20: 1$) as a yellow liquid after column chromatography $\left(\mathrm{SiO}_{2} ; 5 \%\right.$ EtOAc/hexanes).
$\underline{\mathbf{R}}_{\underline{f}}=0.55(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.42(\mathrm{dt}, J=5.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{td}, J=7.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.98$ $-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.20-1.13(\mathrm{~m}, 3 \mathrm{H}), 1.10-1.07$ $(\mathrm{m}, 18 \mathrm{H}), 0.98-0.89(\mathrm{~m}, 1 \mathrm{H}), 0.53-0.44(\mathrm{~m}, 2 \mathrm{H}), 0.36-0.28(\mathrm{~m}, 1 \mathrm{H}), 0.24-0.17(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 141.2,105.0,31.7,17.7,17.3,11.9,2.7,2.3$.
LRMS (ESI) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{NaO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 307.2$, Found: 307.2.
FTIR (neat): $2944,2867,1655,1464,1252,1113,1058,882,683,669 \mathrm{~cm}^{-1}$.
$\underline{\text { HPLC }}$ (Chiralcel OD-H column, hexanes: $i-\operatorname{PrOH}=99: 1,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), ee $=95 \%$.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}=+2.4\left(\mathrm{c}=0.41, \mathrm{CHCl}_{3}\right)$

General Procedure and Preparation of 4.4a, 4.4c, 4.4e, 4.4f, 4.4h, 4.4j

To a solution of adduct $4.3(0.20 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added TBAF $(0.22 \mathrm{~mL}, 110$ $\mathrm{mol} \%, 1 \mathrm{M}$ in THF) via syringe. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min , at which point water was added and the mixture was extracted by $\operatorname{DCM}(3 \times 1 \mathrm{~mL})$. The organic layer was washed by brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtered with the aid of DCM . The filtrate was evaporated to 2 mL and $4 \AA \mathrm{MS}(100 \mathrm{mg}), \mathrm{NaOAc}(8.2 \mathrm{mg}, 0.10 \mathrm{mmol})$ and PCC $(86.2 \mathrm{mg}, 0.40 \mathrm{mmol})$ were added, and the mixture was stirred at room temperature for 24 hours. The solvents were removed in vacuo and the residue was subjected to column chromatography $\left(\mathrm{SiO}_{2}\right)$ to afford the corresponding lactone products.

(S)-5-phenyldihydrofuran-2(3H)-one (4.4a).

In accordance with the general procedure, the title compound was obtained in 73% yield (23.7 mg , 0.146 mmol) as a colorless liquid after column chromatography ($\mathrm{SiO}_{2} ; 12 \% \mathrm{EtOAc} /$ hexanes $)$.
$\underline{\mathbf{R}}_{\mathbf{f}}=0.2(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.52(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.62(\mathrm{~m}, 3 \mathrm{H})$, $2.27-2.13$ (m, 1H).
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 176.9,139.3,128.8,128.4,125.3,81.2,31.0,29.0$.
LRMS (CI) Calcd. for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 163$, Found: 163.
FTIR (neat): $1770,1365,1216,1176,1141,1019,940,759,700 \mathrm{~cm}^{-1}$.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}=-48.9\left(\mathrm{c}=0.3, \mathrm{CHCl}_{3}\right)$

(S)-5-(4-bromophenyl)dihydrofuran-2(3H)-one (4.4c).

In accordance with the general procedure, the title compound was obtained in 87% yield (41.8 mg , 0.174 mmol) after column chromatography ($\mathrm{SiO}_{2} ; 12 \% \mathrm{EtOAc} /$ hexanes $)$.
$\underline{\mathbf{R}}_{\mathbf{f}}=0.2(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 2 \mathrm{H}), 5.46(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.72-2.61(\mathrm{~m}, 3 \mathrm{H}), 2.21-2.06(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 176.5,138.4,131.9,126.9,122.4,80.4,30.9,28.8$.
$\underline{\text { LRMS (ESI) Calcd. for } \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 241 \text {, Found: } 241 .}$
FTIR (neat): $1771,1365,1216,1173,1140,1010,938,806 \mathrm{~cm}^{-1}$.
$[\alpha]^{\mathbf{2 5}}{ }_{\mathrm{D}}=-32.0\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$

(S)-5-(3-methoxyphenyl)dihydrofuran-2(3H)-one (4.4e).

In accordance with the general procedure, the title compound was obtained in 85% yield (32.6 mg , $0.17 \mathrm{mmol})$ as a colorless liquid after column chromatography $\left(\mathrm{SiO}_{2} ; 14 \% \mathrm{EtOAc} /\right.$ hexanes $)$.
$\underline{\mathbf{R}}_{\underline{f}}=0.15(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.83(\mathrm{~m}, 3 \mathrm{H}), 5.49(\mathrm{dd}, J=8.0,6.1 \mathrm{~Hz}$, 1 H), $3.82(\mathrm{~s}, 3 \mathrm{H}), 2.71-2.60(\mathrm{~m}, 3 \mathrm{H}), 2.24-2.13(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 176.9,159.9,141.0,129.9,117.3,113.9,110.7,81.0,55.3,31.0$, 28.9.

LRMS (ESI) Calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}:$193, Found: 193.
FTIR (neat): $1772,1262,1157,1140,1031,909,789,698 \mathrm{~cm}^{-1}$.
$\left[\boldsymbol{\alpha} \mathbf{]}^{\mathbf{2 5}}{ }_{\mathbf{D}}=-32.3\left(\mathrm{c}=0.35, \mathrm{CHCl}_{3}\right)\right.$

(S)-5-(benzo[d][1,3]dioxol-5-yl)dihydrofuran-2(3H)-one (4.4f).

In accordance with the general procedure, the title compound was obtained in 79% yield (32.5 mg , 0.158 mmol) as a colorless liquid after column chromatography ($\mathrm{SiO}_{2} ; 14 \% \mathrm{EtOAc} /$ hexanes $)$.
$\underline{\mathbf{R}}_{\underline{f}}=0.15(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.83-6.78(\mathrm{~m}, 3 \mathrm{H}), 5.97(\mathrm{~s}, 2 \mathrm{H}), 5.41(\mathrm{dd}, J=8.5,6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.67-2.55(\mathrm{~m}, 3 \mathrm{H}), 2.24-2.10(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.7,148.1,147.8,133.0,119.2,108.3,106.0,101.3,81.3,31.0$, 29.1.
$\underline{\text { LRMS (ESI) Calcd. for } \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 229 \text {, Found: } 229 . . . ~}$
FTIR (neat): $1767,1504,1491,1446,1248,1176,1141,1035,931,910,805 \mathrm{~cm}^{-1}$.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}=-21.7\left(\mathrm{c}=0.6, \mathrm{CHCl}_{3}\right)$

(S)-5-(2-methylprop-1-en-1-yl)dihydrofuran-2(3H)-one (4.4h).

In accordance with the general procedure, the title compound was obtained in 77% yield (21.6 mg , $0.154 \mathrm{mmol})$ as a colorless liquid after column chromatography ($\mathrm{SiO}_{2} ; 10 \% \mathrm{EtOAc} /$ hexanes $)$.
$\underline{\mathbf{R}}_{\boldsymbol{f}}=0.25(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.23(\mathrm{dp}, J=8.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-5.12(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.50(\mathrm{~m}$, $2 \mathrm{H}), 2.40-2.30(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.73(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 177.2,139.8,122.8,77.6,29.3,29.2,25.7,18.4$.
LRMS (ESI) Calcd. for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 163$, Found: 163.
FTIR (neat): $1772,1376,1228,1217,1177,1007,913 \mathrm{~cm}^{-1}$.
$\left[\boldsymbol{\alpha} \boldsymbol{]}^{\mathbf{2 5}}{ }_{\mathbf{D}}=+57.1\left(\mathrm{c}=1.25, \mathrm{CHCl}_{3}\right)\right.$

(S)-5-(2-(benzyloxy)ethyl)dihydrofuran-2(3H)-one (4.4j).

In accordance with the general procedure, the title compound was obtained in 74% yield (32.6 mg , 0.148 mmol) as a colorless liquid after column chromatography ($\mathrm{SiO}_{2} ; 20 \% \mathrm{EtOAc} /$ hexanes $)$.
$\underline{\mathbf{R}}_{\mathrm{f}}=0.1$ ($20 \% \mathrm{EtOAc} /$ Hexanes).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.26(\mathrm{~m}, 5 \mathrm{H}), 4.77-4.64(\mathrm{~m}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=11.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.49(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.58(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, 1H), $2.41-2.27$ (m, 1H), $2.05-1.85(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 177.1,138.1,128.4,127.7,127.7,78.2,73.3,66.3,35.8,28.8$, 28.1.

LRMS (ESI) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 243$, Found: 243.
FTIR (neat): $1739,1365,1229,1217,1093,905,742 \mathrm{~cm}^{-1}$.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}} \mathbf{D}=+15.8\left(\mathrm{c}=0.4, \mathrm{CHCl}_{3}\right)$

General Procedure and Preparation of 4.5a, 4.5c, 4.5e, 4.5f, 4.5j, 4.5k

To a solution of adduct $4.3(0.20 \mathrm{mmol})$ in $\mathrm{DCM}(1.7 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ was added a solution of m CPBA ($0.22 \mathrm{mmol}, 110 \mathrm{~mol} \%$) in DCM $(1.0 \mathrm{~mL})$ over one hour via syringe pump. The reaction mixture was allowed to stir at $-20^{\circ} \mathrm{C}$ for 1 h , and then was allowed to stir at $0^{\circ} \mathrm{C}$ for 24 hours. To the reaction mixture was added saturated $\mathrm{NaHCO}_{3}(\mathrm{aq})$. The reaction mixture was transferred to a separatory funnel and the organic layer was washed with saturated $\mathrm{NaHCO}_{3}(\mathrm{aq})$, water, and brine. The organic layer was collected, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtered. The solvents were removed in vacuo and the residue was subjected to column chromatography $\left(\mathrm{SiO}_{2}\right)$.

(2R,3R,5S)-5-phenyl-2-((triisopropylsilyl)oxy)tetrahydrofuran-3-ol (4.5a).

In accordance with the general procedure, the title compound was obtained in 74% yield $(49.7 \mathrm{mg}$, 0.148 mmol) as a colorless liquid after column chromatography ($\mathrm{SiO}_{2} ; 16 \% \mathrm{EtOAc} /$ hexanes $)$.
$\underline{\mathbf{R}}_{\mathbf{f}}=0.5(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 1 \mathrm{H}), 5.44$ (s, 1H), $5.29(\mathrm{dd}, J=10.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.24(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{ddd}, J=13.3,6.2,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.18(\mathrm{ddd}, J=13.4,10.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.20-1.12(\mathrm{~m}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=$ $5.8 \mathrm{~Hz}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 142.8,128.1,127.3,126.6,103.1,81.2,78.8,41.0,17.9,17.8$, 12.0.

LRMS (ESI) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 337$, Found: 337.
FTIR (neat): $2943,2866,1463,1085,1065,1025,996,882,755,699,682 \mathrm{~cm}^{-1}$.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathrm{D}}=-53.3\left(\mathrm{c}=0.4, \mathrm{CHCl}_{3}\right)$

(2R,3R,5S)-5-(4-bromophenyl)-2-((triisopropylsilyl)oxy)tetrahydrofuran-3-ol (4.5c).

In accordance with the general procedure, the title compound was obtained in 73% yield (60.4 mg , $0.146 \mathrm{mmol})$ as a colorless liquid after column chromatography ($\mathrm{SiO}_{2} ; 15 \% \mathrm{EtOAc} /$ hexanes $)$.
$\underline{\mathbf{R}}_{\mathbf{f}}=0.3(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 2 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{dd}, J$ $=10.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dd}, J=13.3,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{ddd}, J=13.4$, $10.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 1 \mathrm{H}), 1.17-1.12(\mathrm{~m}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 142.0,131.2,128.3,121.1,103.2,80.5,78.6,41.0,17.9,17.8$, 12.0.

LRMS (ESI) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{BrO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 415$, Found: 415.
FTIR (neat): 2942, 2866, 1176, 1026, 1009, 995, 881, 816, $683,661 \mathrm{~cm}^{-1}$.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathrm{D}}=+37.8\left(\mathrm{c}=0.68, \mathrm{CHCl}_{3}\right)$

(2R,3R,5S)-5-(3-methoxyphenyl)-2-((triisopropylsilyl)oxy)tetrahydrofuran-3-ol (4.5e).

In accordance with the general procedure, the title compound was obtained in 66% yield (48.3 mg , 0.132 mmol) as a colorless liquid after column chromatography ($\mathrm{SiO}_{2} ; 15 \% \mathrm{EtOAc} /$ hexanes $)$.
$\underline{\mathbf{R}}_{\mathbf{f}}=0.3(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.04-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.81-6.76(\mathrm{~m}, 1 \mathrm{H}), 5.43$ $(\mathrm{s}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=10.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.22(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{ddd}, J=13.3,6.1$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{ddd}, J=13.3,10.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 1 \mathrm{H}), 1.18-1.12(\mathrm{~m}, 3 \mathrm{H}), 1.11-1.07$ (m, 18H).
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 159.6,144.5,129.1,118.8,113.0,111.8,103.3,81.0,78.7,55.2$, 40.9, 17.9, 17.8, 12.0.

LRMS (ESI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 367$, Found: 367.
FTIR (neat): $2944,2866,1464,1263,1078,1027,995,882,788,683 \mathrm{~cm}^{-1}$.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}=-29.4\left(\mathrm{c}=0.85, \mathrm{CHCl}_{3}\right)$

In accordance with the general procedure, the title compound was obtained in 71% yield (54.0 mg , 0.142 mmol) as a colorless liquid after column chromatography ($\mathrm{SiO}_{2} ; 15 \% \mathrm{EtOAc} /$ hexanes $)$.
$\underline{\mathbf{R}}_{\mathbf{f}}=0.4(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.01(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{ddd}, J=8.0,1.7,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.73$ (dd, $J=7.9,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.94-5.92(\mathrm{~m}, 2 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 5.20(\mathrm{dd}, J=10.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ $-4.21(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{ddd}, J=13.4,6.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{ddd}, J=13.5,10.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.74$ $(\mathrm{s}, 1 \mathrm{H}), 1.19-1.12(\mathrm{~m}, 3 \mathrm{H}), 1.11-1.07(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 147.7,146.8,136.8,120.0,107.7,107.3,103.0,100.9,81.2,78.7$, 41.09, 17.9, 17.8, 12.0.

LRMS (ESI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 381$, Found: 381.
FTIR (neat): 2943, 2866, 1488, 1446, 1247, 1080, 1025, 937, 882, 804, $682 \mathrm{~cm}^{-1}$.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathrm{D}}=-42.1\left(\mathrm{c}=0.87, \mathrm{CHCl}_{3}\right)$

(2R,3R,5S)-5-(2-(benzyloxy)ethyl)-2-((triisopropylsilyl)oxy)tetrahydrofuran-3-ol (4.5j).

In accordance with the general procedure, the title compound was obtained in 61% yield (48.1 mg , 0.122 mmol) as a colorless liquid after column chromatography ($\mathrm{SiO}_{2} ; 14 \% \mathrm{EtOAc} /$ hexanes $)$.
$\underline{\mathbf{R}}_{\mathbf{f}}=0.3(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.48$ (d, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-4.37(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.10(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=7.2,5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.03$ $-1.86(\mathrm{~m}, 4 \mathrm{H}), 1.27-1.23(\mathrm{~m}, 1 \mathrm{H}), 1.11-1.07(\mathrm{~m}, 3 \mathrm{H}), 1.07-1.03(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 138.5,128.3,127.6,127.5,102.5,78.2,76.3,73.03,67.7,38.1$, 38.0, 17.8(3), 17.7(7), 12.0.

LRMS (ESI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 395$, Found: 395.
FTIR (neat): $2942,2866,1101,1046,1009,994,882,832,736,683,659 \mathrm{~cm}^{-1}$.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}=-34.9\left(\mathrm{c}=0.43, \mathrm{CHCl}_{3}\right)$

(2R,3R,5S)-5-hexyl-2-((triisopropylsilyl)oxy)tetrahydrofuran-3-ol (4.5k).

In accordance with the general procedure, the title compound was obtained in 63% yield (43.3 mg , 0.126 mmol) as a colorless liquid after column chromatography ($\mathrm{SiO}_{2} ; 12 \% \mathrm{EtOAc} /$ hexanes $)$.
$\underline{\mathbf{R}}_{\underline{f}}=0.5(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.24(\mathrm{~s}, 1 \mathrm{H}), 4.28-4.19(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.96$ (ddd, $J=13.2,6.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{ddd}, J=13.3,9.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.57-$ $1.39(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.19(\mathrm{~m}, 8 \mathrm{H}), 1.11-1.01(\mathrm{~m}, 21 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 102.4,79.3,78.3,38.0,37.9,31.8,29.3,26.3,22.6,17.8(4)$, 17.7(7), 14.1, 12.0.

LRMS (ESI) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{41} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 345$, Found: 345 .
FTIR (neat): $2929,2866,1464,1107,1029,1010,994,882,683,657 \mathrm{~cm}^{-1}$.
$[\boldsymbol{\alpha}]^{\mathbf{2 5}}{ }_{\mathbf{D}}=-32.0\left(\mathrm{c}=0.75, \mathrm{CHCl}_{3}\right)$

Absolute Stereochemical Assignment of 4.3a

To a solution of $4.3 \mathrm{a}(0.2 \mathrm{mmol})$ in THF $(2.0 \mathrm{~mL})$ was added TBAF $(1.0 \mathrm{M}$ in THF, $0.2 \mathrm{~mL}, 100$ $\mathrm{mol} \%$) dropwise at $0^{\circ} \mathrm{C}$. The mixture was stirred at r.t for 30 min , then $\mathrm{NaBH}_{4}(14.8 \mathrm{mg}, 0.4 \mathrm{mmol}$), EtOH (1.0 mL) were added. After 1 h , the reaction was quenched by $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$, and extracted by EA. Organic layer was washed by water, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was subjected to flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent Hexanes:EA $=2: 1$) to afford diol 4.6a (95\%).
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.23(\mathrm{~m}, 5 \mathrm{H}), 4.70(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.58(\mathrm{~m}, 2 \mathrm{H})$, 3.10 (bs. 2H), $1.89-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.61(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 144.7,128.4,127.4,125.8,74.2,62.6,36.3,29.1$.
The spectroscopy data $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right.$ NMR $)$ matched the literature data ${ }^{1}$
Optical rotation of 4.6a: $[\alpha]^{25}{ }_{\mathrm{D}}=-31.0(\mathrm{c}=1.0, \mathrm{MeOH})(94 \% e e)$. Literature ${ }^{1}$ optical rotation for (S)-1-phenylbutane-1,4-diol: $[\alpha]^{20}{ }_{\mathrm{D}}=-33.5(\mathrm{c}=1.0, \mathrm{MeOH})(98.7 \% e e)$
4.6a was assigned to be (S)-1-phenylbutane-1,4-diol, therefor 4.3a was assigned to be (S, Z)-1-phenyl-4-((triisopropylsilyl)oxy)but-3-en-1-ol.

Isotopic Labeling Studies

Chapter 5: Ruthenium Catalyzed Redox-Triggered Carbonyl anti- $(\alpha-$ Amino)allylation by Coupling with Acetylenic Pyrrole*

5.1 Introduction

2-Amino alcohols are common moieties found in natural products and fine chemicals. ${ }^{1}$ While there are very few reports on the construction of 2-amino alcohol moieties. Barrett reported asymmetric syntheses of anti- β-amino alcohols by coupling of allylborane with aldehydes (Figure 5.1). ${ }^{2}$ To come up with an alternative to nonstabilized carbanion addition to carbonyl compounds, Krische group has developed a broad system of catalytic carbonyl addition reactions by coupling of carbonyl compounds with different π-unsaturated compounds, which allowed the direct conversion of primary alcohols to secondary alcohol. ${ }^{3}$

In 2009 , Krische group reported the carbonyl anti-(α-amino)allylation by coupling of N substituted allenes with aldehyde under ruthenium catalysis via 2-propanol mediated reductive coupling. ${ }^{4}$ Later, Krische group also reported the redox-neutral coupling between N-substituted allenes and primary alcohols under ruthenium catalysis, which also represented a byproduct free protocol. ${ }^{5}$ However, to achieve a good anti-diastereoselectivity, the protecting groups on the nitrogen atom are very crucial. Both p-nitrobenzenesulfonyl and 2,4-dimethyloxybenzyl protecting groups were required, so the elaboration of the coupling products was limited. A more desirable protecting group for amines was found, by which the amines was protect as 2,5 dimethylpyrrole and could be removed easily by treatment with hydroxylamine hydrochloride. ${ }^{6}$ Also, we found alkynes could be a precursor to allenes ${ }^{7,8}$ under ruthenium catalysis via isomerization, and then allenes were converted to π-allylruthenium species through hydrometalation. ${ }^{8}$

In this chapter, a more desirable allyl donor for carbonyl anti-(α-amino)allylation was reported, N-propynyl-2,5-dimethylpyrrole 5.1, which served as a pronucleophiles in carbonyl anti(α-amino) allylation (Scheme 5.1).

[^3]Prior Work: Classical Asymmetric Carbonyl Aminoallylation

This Work: Vicinal Amino Alcohols from N-Alkynes via Dual Catalysis

Figure 5.1 Classical Carbonyl (α-Amino) allylation and Catalytic Carbonyl (α-Amino) allylation via Coupling of Alcohols with Alkyne.

5.2 Reaction Development and Scope

Initially p-bromobenzyl alcohol 5.2a was subjected to acetylenic pyrrole 5.1 with $\mathrm{HClRu}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$ and bidentate phosphine ligands, and dippf was found to be the optimal ligand for this transformation. Further optimization of solvents and temperature, carbonyl (α amino)allylation product 5.3a was obtained with 83% yield and complete anti-diastereoselectivity.

Table 5.1 Diastereoselective and Enantioselective Formation of 1,4-Diols 3.1a-3.50.

5.2a, $\mathrm{R}=4-\mathrm{Br}$-Phenyl	5.2b, R = 4-F-Phenyl	5.2c, $\mathrm{R}=4-\mathrm{CF}_{3}$-Phenyl
5.2d, R = 4-MeO-Phenyl	5.2e, $\mathrm{R}=3-\mathrm{MeO}-$ Phenyl	5.2f, R = 2-Cl-Phenyl
5.2g, $\mathrm{R}=4-\mathrm{CO}_{2} \mathrm{Me}$-Phenyl	5.2h, $\mathrm{R}=4-\mathrm{Br}-3-\mathrm{NO}_{2}$-Phenyl	5.2i, R = 2-Furyl
5.2j, R = 2-Benzothienyl	5.2k, $\mathrm{R}=5$-(2-MeO-Pyridyl)	5.2I, $\mathrm{R}=5$-(2-Ph-Pyrimidyl)
5.2m, R = 5-(2-Ph-Oxazolyl)	5.2n, $\mathrm{R}=$ (trans) $-\mathrm{CH}=\mathrm{CHPh}$	5.2o, $\mathrm{R}=\mathrm{CH}=\mathrm{CMe}_{2}$
5.2p, $\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{5} \mathrm{Me}$	5.2q, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CF}_{3}$	5.2r, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHBoc}$
5.2s, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OBn}$	5.2t, $\mathrm{R}=\mathrm{CH}_{2}$ (c-Hexyl)	5.2u, R = c-Propyl

5.3a, 83% yield, $>20: 1 \mathrm{dr}$ 74% yield (1 mmol scale)

5.3d, 50\% yield $>20: 1 \mathrm{dr}$

5.3g, 73% yield $>20: 1 \mathrm{dr}$

5.3j, 87\% yield

$$
>20: 1 \mathrm{dr}
$$

5.3b, 75% yield $>20: 1 \mathrm{dr}$

5.3e, 71\% yield $>20: 1 \mathrm{dr}$

5.3h, 73\% yield $>20: 1 \mathrm{dr}$

5.3k, 70% yield $^{\text {b }}$
$>20: 1 \mathrm{dr}$

5.3c, 96% yield $>20: 1 \mathrm{dr}$

5.3f, 86% yield $>20: 1 \mathrm{dr}$

5.3i, 71% yield $^{\text {b }}$ $>20: 1 \mathrm{dr}$

5.3I, 94\% yield $>20: 1 \mathrm{dr}$

5.3m, 77\% yield $>20: 1 \mathrm{dr}$

5.3p, 62\% yield
$>20: 1 \mathrm{dr}$

5.3s, 61% yield $^{\text {c }}$ $>20: 1 \mathrm{dr}$

5.3n, 72% yield $^{\text {b }}$
$>20: 1 \mathrm{dr}$

5.3q, 73% yield $>20: 1 \mathrm{dr}$

5.3t, 75% yield $^{\text {c }}$ $>20: 1 \mathrm{dr}$

5.30, 73\% yield $>20: 1 \mathrm{dr}$

5.3r, 63\% yield $>20: 1 \mathrm{dr}$

5.3u, 63\% yield ${ }^{\text {c,d }}$
$>20: 1 \mathrm{dr}$
${ }^{\text {a}}$ Yields are material isolated by silica gel chromatography. See supporting Information for further experimental details. ${ }^{\mathrm{b}} 2-\mathrm{PrOH}(200 \mathrm{~mol} \%)$. ${ }^{\mathrm{c}} 48 \mathrm{~h}$. ${ }^{\mathrm{d}}$ Dioxane (1.0 M).

The optimal condition was applied to coupling of 5.1 with diverse primary alcohols (Table 5.1). Benzylic alcohols $5.2 \mathrm{a}-5.2 \mathrm{~h}$ and heterobenzylic alcohols $5.2 \mathrm{i}-5.2 \mathrm{~m}$ were converted to addition adduct with good to excellent yields. To our delight, different substituents on the aromatic rings were tolerable. Notably, different heterocycles, such as furan, benzothiophene, pyridine, pyrimidine, and oxazole, were tolerant under the standard condition. Allylic alcohols 5.2n-5.20 and aliphatic alcohols 5.2p-5.2u were also engaged in the coupling with good yields. The 1 mmol scale was conducted with p-bromobenzyl alcohol, and 74\% yield was obtained.

A side reaction was found during the formation of $\mathbf{5 . 3 i}, \mathbf{5 . 3 k}$ and $\mathbf{5 . 3 n}$, which was formation of α, β-unsaturated ketones. By introduction of 2-propanol, the side reaction was suppressed. The reaction could proceed not only in redox-neutral manner, but also reductive coupling mediated by 2-propanol. Exposure of acetylenic pyrrole 5.1 to p-bromobenzaldehyde with ruthenium catalyst, dippf and 2-propanol, comparable coupling yield was obtained (eq 1).

Deprotection of the coupling adducts were explored for $\mathbf{5 . 3 b}, \mathbf{5 . 3 n}$, and $\mathbf{5 . 3 q}$ derived from aromatic, allylic, and aliphatic alcohols $\mathbf{5 . 2 b}, \mathbf{5 . 2 n}$, and $\mathbf{5 . 2 q}$. The coupling adducts were treated with hydroxylamine hydrochloride in aqueous ethanol under heating, followed by N-Bocprotection of the resulting 2 -amino alochols. Vicinal amino alcohols $\mathbf{5 . 4 b}$, $\mathbf{5 . 4 n}$, and $\mathbf{5 . 4 q}$ were isolated in good yields (Scheme 5.1).

Scheme 5.1 Deprotection of Coupling Adducts to the Corresponding N-Boc-Protected Amino Alcohols.

Finally, to demonstrate the utility of this transformation, Boc-protected amino alcohol 5.4b was converted to α-amino- β-hydroxyl amino ester $\mathbf{5 . 5 b}$ via oxidative cleavage of alkene ${ }^{9}$ followed by treatment with TMS diazomethane (eq 2).

5.3 Mechanism and Discussion

To obtain further insight in this transformation, the competition experiments were conducted (Scheme 5.2). When equimolar quantities of alcohol 5.2a and aldehyde dehydro-5.2d were subjected to the standard reaction conditions, the coupling adducts $\mathbf{5 . 3} \mathbf{a}$ and $\mathbf{5 . 3 d}$ were produced with roughly $3: 1$ ratio. When the oxidation level of alcohol and aldehyde was inversed, similar coupling adduct ratio was obtained under the same reaction conditions. These data indicated that dehydrogenation of primary alcohols was rapid and reversible and carbonyl addition was the turnover limiting step.

5.2a
(100 mol \%)

dehydro-5.2a (100 mol \%)

dehydro-5.2d
($100 \mathrm{~mol} \%$)

5.2d
(100 mol \%)

$\xrightarrow[\begin{array}{c}\text { 5.1 (300 mol \%) } \\ \text { dippf }(5 \mathrm{~mol} \%) \\ \text { dioxane }(0.5 \mathrm{M}) \\ 125^{\circ} \mathrm{C}, 24 \mathrm{~h}\end{array}]{\substack{\mathrm{HCIRu}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}}}$

2.9:1 (5.3a:5.3d)

73\% yield

Scheme 5.2 Competition Experiments Corroborating Rapid Reversible Dehydrogenation with Respect to Carbonyl Addition.

5.4 Conclusion

In summary, anti-diastereoselective carbonyl (α-amino) allylation by coupling of primary alcohols and acetylenic pyrrole 5.1 under ruthenium catalysis was reported. The coupling proceeded through two discrete catalytic cycle: alkyne-to-allene isomerization and allene-carbonyl coupling via transfer hydrogenation. This process also represented a byproduct free protocol.

5.5 EXPERIMENTAL DETAILS

General Information

All reactions were run under an atmosphere of argon, unless otherwise indicated. Resealable pressure tubes ($13 \times 100 \mathrm{~mm}$) were purchased from Fischer Scientific (catalog number 14-95935C) and were flame dried followed by cooling in a desiccator or under a stream of argon prior to use. Tetrahydrofuran (THF) was dried over sodium metal, benzophenone, and distilled immediately prior to use. $\mathrm{RuH}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ were prepared according to literature procedure. 1 All ligands were used as received from Strem Chemicals Inc. Alcohols were purified by distillation or recrystallization immediately prior to use. Preparative column chromatography employing Silicycle silica gel $(40-63 \mu \mathrm{~m})$ was performed according to the method of Still. 2 Analytical thinlayer chromatography (TLC) was carried out using 0.25 mm commercial silica gel plates (Dynamic Absorbents F254). Visualization was accomplished with UV light followed by dipping in Seebach's stain solution then heating. Purification of reactions was carried out by flash chromatography using Silicycle silica gel ($40-63 \mu \mathrm{~m}$).

Spectroscopy, Spectrometry, and Data Collection

Infrared spectra were recorded on a Perkin-Elmer 1600 spectrometer. Low-resolution mass spectra (LRMS) were obtained on a Karatos MS9 and are reported as m / z (relative intensity). Accurate masses are reported for the molecular ion $(\mathrm{M}+\mathrm{H}, \mathrm{M}+\mathrm{Na})$, or a suitable fragment ion. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra were recorded with a Varian Gemini (400 MHz) spectrometer. Chemical shifts are reported in delta (δ) units, parts per million (ppm) downfield from tetramethylsilane or ppm relative to the center of the singlet at 7.26 ppm for deuteriochloroform. Data reported as multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet). Integration and coupling constants were reported in Hertz (Hz). Carbon-13 nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectra were recorded with a Varian Gemini (100 MHz) spectrometer and were routinely run with broadband decoupling. Chemical shifts are reported in delta (δ) units, ppm relative to the center of the triplet at 77.16 ppm for deuteriochloroform.

Experimental Details and Spectral Data

Preparation of Acetylenic Pyrrole 5.1

To a solution of propargyl amine ($2.75 \mathrm{~g}, 50 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and 2,5-hexanedione ($7.1 \mathrm{~g}, 50$ $\mathrm{mmol}, 100 \mathrm{~mol} \%$) in toluene ($25 \mathrm{~mL}, 2.0 \mathrm{M}$) was added acetic acid ($0.29 \mathrm{~mL}, 5 \mathrm{mmol}, 10 \mathrm{~mol} \%$) dropwise. The reaction mixture was allowed to reflux for 1 hour and then cooled to room temperature. The reaction mixture was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NaHCO}_{3}$, and brine. The solvent was removed in vacuo and afforded crude product as a brown solid. ${ }^{2}$ To the crude product dissolved in THF ($100 \mathrm{~mL}, 0.5 \mathrm{M}$) under argon was added tert- $\mathrm{BuOH}(4.74 \mathrm{~mL}, 50 \mathrm{mmol}$, $100 \mathrm{~mol} \%$) and tert-BuOK ($1.68 \mathrm{~g}, 15 \mathrm{mmol}, 30 \mathrm{~mol} \%$). The reaction was stirred at $50^{\circ} \mathrm{C}$ for 4 hours until complete consumption of starting material as monitored by TLC. The reaction mixture was filtered through a short pad of celite and then washed with EtOAc. The filtrate was then washed with $\mathrm{H}_{2} \mathrm{O}$. The solvent was removed in vacuo and the residue was subjected to column chromatography (SiO_{2}; hexanes). The title compound was obtained in 41% yield ($2.73 \mathrm{~g}, 20 \mathrm{mmol}$) as a colorless liquid.

2,5-dimethyl-1-(prop-1-yn-1-yl)-1H-pyrrole (5.1).

${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.80(\mathrm{~s}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 6 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 131.0,106.0,70.5,67.4,12.5,3.2$.

HRMS (ESI) Calcd. for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 134.0964$, Found: 134.0962.

FTIR (neat): $2919,2265,1537,1412,1372,1325,1210,1023,980,954,759 \mathrm{~cm}^{-1}$.

General Procedure for the Couplings of Alcohols 5.2a-5.2u and 5.1

To a resealable pressure tube $(13 \mathrm{x} 100)$ were added $\mathrm{HClRu}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}(9.5 \mathrm{mg}, 0.010 \mathrm{mmol}, 5$ $\mathrm{mol} \%$) and dippf ($4.2 \mathrm{mg}, 0.010 \mathrm{mmol}, 5 \mathrm{~mol} \%$). At this stage the solid alcohol coupling partners ($0.20 \mathrm{mmol}, 100 \mathrm{~mol} \%$) were added. The tube was sealed with a rubber septum and purged with argon. Dioxane $(0.40 \mathrm{~mL}, 0.5 \mathrm{M})$ was added to the reaction vessel. At this stage, the liquid alcohol coupling partners ($0.20 \mathrm{mmol}, 100 \mathrm{~mol} \%$) were added. Acetylenic pyrrole $5.1(0.60 \mathrm{mmol}, 300$ mol \%) was added to the reaction vessel and the rubber septum was quickly replaced with a screw cap. The mixture was allowed to stir at the indicated temperature for the indicated time. The reaction mixture was then allowed to cool to room temperature. The solvents were removed in vaсиo and the residue was subjected to column chromatography $\left(\mathrm{SiO}_{2}\right)$.

1 mmol Scale Procedure

To a resealable pressure tube were added $\mathrm{HClRu}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}(47.6 \mathrm{mg}, 0.050 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and dippf ($20.9 \mathrm{mg}, 0.050 \mathrm{mmol}, 5 \mathrm{~mol} \%$). At this stage the solid alcohol coupling partners (1.0 mmol , $100 \mathrm{~mol} \%)$ were added. The tube was sealed with a rubber septum and purged with argon. Dioxane $(2.0 \mathrm{~mL}, 0.5 \mathrm{M})$ was added to the reaction vessel. At this stage, the liquid alcohol coupling partners $(1.0 \mathrm{mmol}, 100 \mathrm{~mol} \%)$ were added. Acetylenic pyrrole $5.1(3.0 \mathrm{mmol}, 300 \mathrm{~mol} \%)$ was added to the reaction vessel and the rubber septum was quickly replaced with a screw cap. The mixture was allowed to stir at the indicated temperature for the indicated time. The reaction mixture was then allowed to cool to room temperature. The solvents were removed in vacuo and the residue was subjected to column chromatography $\left(\mathrm{SiO}_{2}\right)$.

From Aldehyde Oxidation Level

To a resealable pressure tube (13×100) were added $\operatorname{RuBr}(\mathrm{CO})_{3}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)(3.1 \mathrm{mg}, 0.010 \mathrm{mmol}, 5$ $\mathrm{mol} \%$) and dippf ($4.2 \mathrm{mg}, 0.010 \mathrm{mmol}, 5 \mathrm{~mol} \%$). At this stage the coupling partner aldehyde (0.2
mmol, $100 \mathrm{~mol} \%$) was added. The tube was sealed with a rubber septum and purged with argon. Dioxane ($0.4 \mathrm{~mL}, 0.5 \mathrm{M}$) was added to the reaction vessel. Acetylenic pyrrole $5.1(0.6 \mathrm{mmol}, 300$ $\mathrm{mol} \%$) was added to the reaction vessel followed by 2-propanol ($0.6 \mathrm{mmol}, 300 \mathrm{~mol} \%$) and the rubber septum was quickly replaced with a screw cap. The mixture was allowed to stir at the indicated temperature for the indicated time. The reaction mixture was then allowed to cool to room temperature. The solvents were removed in vacuo and the residue was subjected to column chromatography $\left(\mathrm{SiO}_{2}\right)$.

1-(4-bromophenyl)-2-(2,5-dimethyl-1H-pyrrol-1-yl)but-3-en-1-ol (5.3a).

In accordance with the general procedure at $125^{\circ} \mathrm{C}$ for 24 hours, the title compound was obtained in 83% yield ($53.2 \mathrm{mg}, d r=>20: 1$) as a yellow liquid after column chromatography $\left(\mathrm{SiO}_{2} ; 10 \%\right.$ EtOAc/hexanes).
Comparable yield and equivalent diastereoselectivity was observed when the reaction was conducted on 1 mmol scale (74% yield, $\mathrm{dr}=>20: 1$) and from aldehyde oxidation level (70% yield, $\mathrm{dr}=>20: 1$).
$\underline{\mathbf{R}}_{\mathbf{f}}=0.6(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.39-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.45(\mathrm{ddd}, J=16.9$, $10.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~s}, 2 \mathrm{H}), 5.39(\mathrm{dt}, J=10.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.18$ (dt, $J=17.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.05$ (dd, $J=9.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{ddt}, J=9.6,6.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~s}$, $6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 140.19,134.43,131.38,127.92,127.75,122.03,119.91,106.88$, 73.51, 64.18, 14.36.

HRMS (ESI) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]{ }^{+}: 320.0645$, Found: 320.0643.
FTIR (neat): $3462,2921,2360,1486,1395,1292,1072,1010,929,816,757 \mathrm{~cm}^{-1}$.

2-(2,5-dimethyl-1H-pyrrol-1-yl)- 1-(4-fluorophenyl)but-3-en-1-ol (5.3b).

In accordance with the general procedure at $125^{\circ} \mathrm{C}$ for 24 hours, the title compound was obtained in 75% yield ($38.9 \mathrm{mg}, d r=>20: 1$) as a yellow liquid after column chromatography $\left(\mathrm{SiO}_{2} ; 10 \%\right.$ EtOAc/hexanes).
$\underline{\mathbf{R}}_{\mathrm{f}}=0.41(20 \% \mathrm{EtOAc} /$ Hexanes $)$
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.11-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.47$ (ddd, $J=16.9$, $10.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 2 \mathrm{H}), 5.39(\mathrm{dd}, J=10.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{dd}, J=17.2,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.08(\mathrm{dd}, J=9.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-4.54(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 6 \mathrm{H})$.
$\underline{{ }^{19} \mathbf{F} \text { NMR }\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-114.2 .}$
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=246.2 \mathrm{~Hz}\right), 136.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.2 \mathrm{~Hz}\right), 134.6,127.9$, $127.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.0 \mathrm{~Hz}\right), 119.7,115.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21.4 \mathrm{~Hz}\right), 106.8,73.5,64.4,14.3$.

HRMS (ESI) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{FNO}^{+}[\mathrm{M}+\mathrm{H}]^{+}:$260.1451, Found: 260.1445 .
FTIR (neat): $3439,2970,2929,1739,1604,1509,1395,1292,1221,1043,854,834,752 \mathrm{~cm}^{-1}$.

$$
1
$$

30	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	(
			150					100	(ppm)	80	70	60	50	40	30	20	10	$($

\qquad

2-(2,5-dimethyl-1H-pyrrol-1-yl)-1-(4-(trifluoromethyl)phenyl)but-3-en-1-ol (5.3c).

In accordance with the general procedure at $125^{\circ} \mathrm{C}$ for 24 hours, the title compound was obtained in 96% yield ($59.4 \mathrm{mg}, d r=>20: 1$) as a yellow liquid after column chromatography $\left(\mathrm{SiO}_{2} ; 10 \%\right.$ EtOAc/hexanes).
$\underline{\mathbf{R}}_{\mathbf{f}}=0.40(20 \% \mathrm{EtOAc} /$ Hexanes $)$
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.47(\mathrm{ddd}, J=$ $17.0,10.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~s}, 2 \mathrm{H}), 5.42(\mathrm{dt}, J=10.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{dt}, J=17.2,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.14(\mathrm{dd}, J=9.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.57(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 6 \mathrm{H})$.
$\underline{{ }^{19} \text { F NMR }\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-62.5 .}$
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.1,134.2,130.2\left(\mathrm{q}, J_{C-F}=32.4 \mathrm{~Hz}\right), 128.0,126.4,125.2\left(\mathrm{q}, J_{C-}\right.$ $\left.{ }_{F}=3.8 \mathrm{~Hz}\right), 124.2\left(\mathrm{q}, J_{C-F}=272.0 \mathrm{~Hz}\right), 120.2,107.0,73.5,64.2,14.3$.

HRMS (ESI) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 310.1419$, Found: 310.1415 .
FTIR (neat): $3462,2970,1739,1395,1324,1164,1123,1068,928,836,759 \mathrm{~cm}^{-1}$.

\qquad

2-(2,5-dimethyl-1H-pyrrol-1-yl)-1-(4-methoxyphenyl)but-3-en-1-ol (5.3d).

In accordance with the general procedure at $125^{\circ} \mathrm{C}$ for 24 hours, the title compound was obtained in 50% yield ($27.1 \mathrm{mg}, d r=>20: 1$) as a yellow liquid after column chromatography $\left(\mathrm{SiO}_{2} ; 10 \%\right.$ EtOAc/hexanes).
$\underline{\mathbf{R}}_{\mathbf{f}}=0.29(20 \% \mathrm{EtOAc} /$ Hexanes $)$
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.08-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.79-6.73(\mathrm{~m}, 2 \mathrm{H}), 6.47(\mathrm{ddd}, J=17.2,10.4$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~s}, 2 \mathrm{H}), 5.36(\mathrm{dt}, J=10.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{dt}, J=17.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.07$ (dd, $J=9.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{ddt}, J=9.4,5.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.07 (s, 6H).
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.4,135.0,133.4,128.0,127.2,119.2,113.7,106.5,73.9,64.3$, 55.3, 14.4.

HRMS (ESI) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$: 294.1470, Found: 294.1452 .
FTIR (neat): $3458,2970,1738,1612,1512,1396,1373,1243,1036,925,828,750 \mathrm{~cm}^{-1}$.

2-(2,5-dimethyl-1H-pyrrol-1-yl)-1-(3-methoxyphenyl)but-3-en-1-ol (5.3e).

In accordance with the general procedure at $125^{\circ} \mathrm{C}$ for 24 hours, the title compound was obtained in 71% yield ($38.5 \mathrm{mg}, d r=>20: 1$) as a yellow liquid after column chromatography $\left(\mathrm{SiO}_{2} ; 7.5-\right.$ 10% EtOAc/hexanes).
$\underline{\mathbf{R}}_{\underline{f}}=0.37(20 \% \mathrm{EtOAc} /$ Hexanes $)$
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.15(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=8.0,2,2 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{t}, J=$ $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.48$ (ddd, $J=17.3,10.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~s}, 2 \mathrm{H}), 5.38(\mathrm{dt}, J=10.5,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.17(\mathrm{dt}, J=17.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{dd}, J=9.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{ddt}, J=9.4,6.1,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.5,142.9,134.8,129.3,128.1,119.5,118.1,114.2,111.1$, 106.6, 74.1, 64.1, 55.3, 14.3.
$\underline{\text { HRMS }}$ (ESI) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}:$294.1470, Found: 294.1457.
FTIR (neat): $3464,2934,1739,1602,1455,1395,1290,1256,1156,1038,925,750,698 \mathrm{~cm}^{-1}$.

1-(2-chlorophenyl)-2-(2,5-dimethyl-1H-pyrrol-1-yl)but-3-en-1-ol (5.3f).

In accordance with the general procedure at $125^{\circ} \mathrm{C}$ for 24 hours, the title compound was obtained in 86% yield ($47.4 \mathrm{mg}, d r=>20: 1$) as a yellow liquid after column chromatography $\left(\mathrm{SiO}_{2} ; 8 \%\right.$ EtOAc/hexanes).
$\underline{\mathbf{R}}_{\mathrm{f}}=0.43$ (20\% EtOAc/Hexanes)
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{dd}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33$ $-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.46(\mathrm{ddd}, J=17.0,10.4,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{~s}, 2 \mathrm{H}), 5.47(\mathrm{dd}, J=7.9,3.7 \mathrm{~Hz}, 1 \mathrm{H})$, 5.29 (dt, $J=10.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{dt}, J=17.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.01-4.94(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=$ $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.3,133.9,132.6,129.8,129.3,128.9,128.7,127.1,119.6$, 106.8, 72.3, 62.4, 14.5.
$\underline{\text { HRMS }}$ (ESI) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{ClNO}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 276.1155$, Found: 276.1147.
FTIR (neat): $3446,2970,1739,1439,1393,1287,1239,1034,927,751 \mathrm{~cm}^{-1}$.

methyl 4-(2-(2,5-dimethyl-1H-pyrrol-1-yl)-1-hydroxybut-3-en-1-yl)benzoate (5.3g)

In accordance with the general procedure at $125^{\circ} \mathrm{C}$ for 24 hours, the title compound was obtained in 73% yield ($43.7 \mathrm{mg}, d r=>20: 1$) as a yellow liquid after column chromatography $\left(\mathrm{SiO}_{2} ; 7.5 \%-\right.$ 15% EtOAc/hexanes).
$\underline{\mathbf{R}}_{\mathrm{f}}=0.22(20 \% \mathrm{EtOAc} /$ Hexanes $)$
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.47(\mathrm{ddd}, J=16.9,10.5$, $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~s}, 2 \mathrm{H}), 5.39(\mathrm{dt}, J=10.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{dt}, J=17.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.14$ (dd, $J=9.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{ddt}, J=9.4,6.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.03 ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.1,146.4,134.4,129.7,129.5,127.9,126.1,119.9,106.9,73.7$, 64.1, 52.2, 14.3.

HRMS (ESI) Calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 322.1419$, Found: 322.1414 .

FTIR (neat): $3461,2952,2359,1738,1707,1697,1395,1281,1111,1040,920,760,704 \mathrm{~cm}^{-1}$.

1-(4-bromo-3-nitrophenyl)-2-(2,5-dimethyl-1H-pyrrol-1-yl)but-3-en-1-ol (5.3h).

In accordance with the general procedure at $125^{\circ} \mathrm{C}$ for 24 hours, the title compound was obtained in 73% yield ($53.3 \mathrm{mg}, d r=>20: 1$) as a yellow liquid after column chromatography $\left(\mathrm{SiO}_{2} ; 7.5 \%-\right.$ 12.5\% EtOAc/hexanes).
$\underline{\mathbf{R}}_{\mathrm{f}}=0.28$ (20\% EtOAc/Hexanes)
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=8.3$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.45$ (ddd, $J=17.1,10.4,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.67$ (s, 2H), 5.46 (dt, $J=10.4,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.28(\mathrm{dt}, J=17.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{dd}, J=9.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{ddt}, J=9.6,6.5,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.56(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.6,142.3,134.6,133.7,130.9,127.8,123.2,121.0,113.5$, 107.6, 72.4, 64.1, 14.4.

FTIR (neat): $3458,2978,2928,1736,1707,1536,1393,1373,1357,1291,1243,1044,1031$, 930, $823,752 \mathrm{~cm}^{-1}$.

If l / jJij i j

2-(2,5-dimethyl-1H-pyrrol-1-yl)-1-(furan-2-yl)but-3-en-1-ol (5.3i).

In accordance with the general procedure at $125^{\circ} \mathrm{C}$ for 24 hours with 2- $\mathrm{PrOH}(200 \mathrm{~mol} \%)$, the title compound was obtained in 71% yield ($32.8 \mathrm{mg}, d r=>20: 1$) as a yellow liquid after column chromatography ($\mathrm{SiO}_{2} ; 10 \% \mathrm{EtOAc} /$ hexanes $)$.
$\underline{\mathbf{R}}_{\mathbf{f}}=0.4(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.33(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{ddd}, J=17.3,10.5,5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.23(\mathrm{dd}, J=3.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~s}, 2 \mathrm{H}), 5.33(\mathrm{dt}, J=10.5,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.17$ (dd, $J=9.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{dt}, J=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{ddt}, J=9.4,4.7,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.41(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 153.0,142.3,134.5,128.1,118.4,110.6,107.7,106.5,68.6,61.4$, 14.0.

HRMS (ESI) Calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NaNO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 254.1151$, Found: 254.1151 .
FTIR (neat): $3429,2926,2360,2342,1934,1397,1292,1150,1011,923,822,738 \mathrm{~cm}^{-1}$.

1-(benzo[b]thiophen-2-yl)-2-(2,5-dimethyl-1H-pyrrol-1-yl)but-3-en-1-ol (5.3j).

In accordance with the general procedure at $125^{\circ} \mathrm{C}$ for 24 hours, the title compound was obtained in 87% yield ($51.8 \mathrm{mg}, d r=>20: 1$) as a yellow liquid after column chromatography $\left(\mathrm{SiO}_{2} ; 5 \%-1\right.$ $0 \% \mathrm{EtOAc} /$ hexanes).
$\underline{\mathbf{R}}_{\mathrm{f}}=0.38$ (20\% EtOAc/Hexanes)
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.25(\mathrm{~m}, 2 \mathrm{H}), 6.80$ (d, $J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.45$ (ddd, $J=17.2,10.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~s}, 2 \mathrm{H}), 5.47$ (dd, $J=9.4,3.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.38(\mathrm{dt}, J=10.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{dt}, J=17.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{ddt}, J=9.3,5.6,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.70(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.2,139.6,139.3,134.2,128.3,124.3,123.7,122.5,121.3$, 119.4, 106.9, 71.2, 63.7, 14.4.

HRMS (ESI) Calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NOS}^{+}[\mathrm{M}+\mathrm{H}]^{+}:$298.1266, Found: 298.1255 .
FTIR (neat): $3446,2970,1739,1458,1395,1374,1236,1042,928,822,745 \mathrm{~cm}^{-1}$.

"11) Jum

2-(2,5-dimethyl-1H-pyrrol-1-yl)-1-(6-methoxypyridin-3-yl)but-3-en-1-ol (5.3k).

In accordance with the general procedure at $125^{\circ} \mathrm{C}$ for 48 hours, the title compound was obtained in 70% yield ($38.1 \mathrm{mg}, d r=>20: 1$) as a yellow liquid after column chromatography $\left(\mathrm{SiO}_{2} ; 20 \%\right.$ EtOAc/hexanes).
$\underline{\mathbf{R}}_{\underline{f}}=0.13(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.89(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=8.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{ddd}, J=16.7,10.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~s}, 2 \mathrm{H}), 5.38(\mathrm{dt}, J=10.5,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.16(\mathrm{dt}, J=17.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{ddt}, J=9.5,5.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.87$ (s, 3H), $2.62(\mathrm{~s}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.1,144.8,136.8,134.6,129.4,127.8,119.6,110.5,107.0$, 72.0, 64.0, 53.6, 14.4.

HRMS (ESI) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 273.1598$, Found: 273.1603.

FTIR (neat): $3389,2927,2358,1607,1493,1395,1289,1.24,928,829,757 \mathrm{~cm}^{-1}$.

2-(2,5-dimethyl-1H-pyrrol-1-yl)-1-(2-phenylpyrimidin-5-yl)but-3-en-1-ol (5.31).

In accordance with the general procedure at $125^{\circ} \mathrm{C}$ for 24 hours, the title compound was obtained in 94% yield ($60.0 \mathrm{mg}, d r=>20: 1$) as a yellow liquid after column chromatography $\left(\mathrm{SiO}_{2} ; 20 \%\right.$ EtOAc/hexanes).
$\underline{\mathbf{R}}_{\mathbf{f}}=0.14(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.38-8.34(\mathrm{~m}, 2 \mathrm{H}), 8.33(\mathrm{~s}, 2 \mathrm{H}), 7.51-7.42(\mathrm{~m}, 3 \mathrm{H}), 6.44(\mathrm{ddd}$, $J=17.2,10.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~s}, 2 \mathrm{H}), 5.43(\mathrm{dt}, J=10.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.27-5.19(\mathrm{~m}, 1 \mathrm{H}), 5.07$ (dd, $J=9.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.64$ (ddt, $J=9.6,5.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.23$ (d, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.05$ (s, $6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.2,155.4,137.2,134.0,131.8,131.0,128.7,128.3,127.6$, 120.3, 107.8, 70.6, 63.7, 14.4.

HRMS (ESI) Calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 320.1757$, Found: 320.1757.

FTIR (neat): $3260,2924,1584,1545,1430,1394,1291,1023,929,749,694 \mathrm{~cm}^{-1}$.

30	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10

2-(2,5-dimethyl-1H-pyrrol-1-yl)-1-(2-phenyloxazol-5-yl)but-3-en-1-ol (5.3m).

In accordance with the general procedure at $125^{\circ} \mathrm{C}$ for 24 hours, the title compound was obtained in 77% yield ($47.5 \mathrm{mg}, d r=>20: 1$) as a yellow liquid after column chromatography $\left(\mathrm{SiO}_{2} ; 20 \%\right.$ EtOAc/hexanes).
$\underline{\mathbf{R}}_{\mathbf{f}}=0.4(50 \% \mathrm{EtOAc} /$ Hexanes $)$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): \delta 7.91-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.41$ (ddd, $J=17.3,10.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~s}, 2 \mathrm{H}), 5 . .27(\mathrm{dt}, J=10.6,1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.20(\mathrm{dd}, J=10.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{ddt}, J=10.1,4.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{dt}, J=17.3$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.13$ (s, 6H).
${ }^{13} \mathbf{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 160.0,152.2,135.4,130.5,129.1,127.1,126.9,125.6,125.4$, 116.9, 106.2, 65.3, 60.4, 13.6.

HRMS (ESI) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 309.1598$, Found: 309.1603.

FTIR (neat): 3204, 3099, 2931, 1547, 1396, 1300, 1134, 1041, 977, 920, 824, 754, 713, $684 \mathrm{~cm}^{-}$ 1

MP: $183^{\circ} \mathrm{C}$ (decomp.)

(E)-4-(2,5-dimethyl-1H-pyrrol-1-yl)-1-phenylhexa-1,5-dien-3-ol (5.3n).

In accordance with the general procedure at $125^{\circ} \mathrm{C}$ for 24 hours with 2- $\mathrm{PrOH}(200 \mathrm{~mol} \%)$, the title compound was obtained in 72% yield ($38.5 \mathrm{mg}, d r=>20: 1$) as a yellow liquid after column chromatography ($\mathrm{SiO}_{2} ; 10 \% \mathrm{EtOAc} /$ hexanes $)$.
$\underline{\mathbf{R}}_{\mathbf{f}}=0.38(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.35-7.21(\mathrm{~m}, 5 \mathrm{H}), 6.63(\mathrm{dd}, J=16.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.41$ (ddd, J $=17.3,10.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{dd}, J=16.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 2 \mathrm{H}), 5.39(\mathrm{dt}, J=10.5,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.19(\mathrm{dt}, J=17.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.84-4.76(\mathrm{~m}, 1 \mathrm{H}), 4.61(\mathrm{ddt}, J=7.2,5.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.27$ (s, 6H), $2.09(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 136.6,134.9,131.4,128.8,128.6,128.2,127.9,126.7,118.9$, 106.9, 72.8, 63.2, 14.5.

HRMS (ESI) Calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 268.1696$, Found: 268.1700.
FTIR (neat): $3430,2924,1519,1494,1448,1395,1291,1113,1022,973,928,747,693 \mathrm{~cm}^{-1}$.

$$
\int_{n s}
$$

5	9	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0		4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0
				7.5	7.0	6.5	6.0	5.5	5.0	f1 (ppm)	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

30	170	160	150	140	130	120	110	100		80	70	60	50	40	30		
30	170		150	140	130	120	110	100	f1 (ppm)	80	70	60	50	40	30	20	10

3-(2,5-dimethyl-1H-pyrrol-1-yl)-6-methylhepta-1,5-dien-4-ol (5.30).

In accordance with the general procedure at $125^{\circ} \mathrm{C}$ for 24 hours, the title compound was obtained in 73% yield ($32.0 \mathrm{mg}, d r=>20: 1$) as a yellow liquid after column chromatography $\left(\mathrm{SiO}_{2} ; 7.5 \%-\right.$ $10 \% \mathrm{EtOAc} /$ hexanes).
$\underline{\mathbf{R}}_{\mathbf{f}}=0.40(20 \% \mathrm{EtOAc} /$ Hexanes $)$
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.35(\mathrm{ddd}, J=17.2,10.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~s}, 2 \mathrm{H}), 5.29(\mathrm{dt}, J=$ $10.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{ddq}, J=8.7,2.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{dt}, J=17.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{td}, J$ $=8.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{ddt}, J=9.1,5.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 6 \mathrm{H}), 1.68(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.64$ (d, $J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.59(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.7,135.0,128.3,124.3,118.4,106.4,69.4,62.9,26.1,18.3$, 14.4.

HRMS (ESI) Calcd. for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 220.1701$, Found: 220.1693.
FTIR (neat): $3439,2970,2929,1741,1444,1397,1292,1216,1021,992,924,827,749 \mathrm{~cm}^{-1}$.

30					

3-(2,5-dimethyl-1H-pyrrol-1-yl)dec-1-en-4-ol (5.3p).

In accordance with the general procedure at $125^{\circ} \mathrm{C}$ for 48 hours, the title compound was obtained in 62% yield ($30.9 \mathrm{mg}, d r=>20: 1$) as a yellow liquid after column chromatography $\left(\mathrm{SiO}_{2} ; 5 \%\right.$ EtOAc/hexanes).
$\underline{\mathbf{R}}_{\mathbf{f}}=0.55(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.29(\mathrm{ddd}, J=17.2,10.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~s}, 2 \mathrm{H}), 5.27$ (dt, $J=$ $10.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{dt}, J=17.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{ddt}, J=9.2,5.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{tq}, J=$ $9.5,6.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 6 \mathrm{H}), 1.82(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.31-1.18(\mathrm{~m}, 10 \mathrm{H}), 0.86(\mathrm{t}, J=6.9$ $\mathrm{Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 135.2,128.1,118.3,106.7,72.2,63.5,33.7,31.9,29.2,25.6,22.7$, 14.4, 14.2.

HRMS (ESI) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NaNO}[\mathrm{M}+\mathrm{Na}]^{+}: 272.1985$, Found: 272.1989 .

FTIR (neat): $3402,2926,2857,1519,1456,1397,1292,1022,925,821,753 \mathrm{~cm}^{-1}$.

3-(2,5-dimethyl-1H-pyrrol-1-yl)-7,7,7-trifluorohept-1-en-4-ol (5.3q).

In accordance with the general procedure at $125^{\circ} \mathrm{C}$ for 24 hours, the title compound was obtained in 73% yield ($38.1 \mathrm{mg}, d r=>20: 1$) as a yellow liquid after column chromatography $\left(\mathrm{SiO}_{2} ; 7.5 \%-\right.$ $10 \% \mathrm{EtOAc} /$ hexanes).
$\underline{\mathbf{R}}_{\mathbf{f}}=0.41(20 \% \mathrm{EtOAc} /$ Hexanes $)$
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.25(\mathrm{ddd}, J=16.8,10.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~s}, 2 \mathrm{H}), 5.33(\mathrm{dt}, J=$ $10.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{dt}, J=17.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{ddt}, J=9.4,6.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{tt}, J=$ $9.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.30$ (dddd, $J=20.4,9.3,4.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 6 \mathrm{H}), 2.17-2.02(\mathrm{~m}, 1 \mathrm{H})$, $1.97(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.55-1.40(\mathrm{~m}, 2 \mathrm{H})$.
$\underline{{ }^{19} \text { F NMR }}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-66.0$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 134.4,127.9,127.3\left(\mathrm{q}, J_{C-F}=276.4 \mathrm{~Hz}\right), 119.4,107.3,70.7,63.7$, $30.0\left(\mathrm{q}, J_{C-F}=29.0 \mathrm{~Hz}\right), 26.3\left(\mathrm{q}, J_{C-F}=3.3 \mathrm{~Hz}\right), 14.3$.

FTIR (neat): $3460,2934,1934,1740,1520,1452,1395,1290,1254,1138,1042,928,820,755$ cm^{-1}.

tert-butyl (4-(2,5-dimethyl-1H-pyrrol-1-yl)-3-hydroxyhex-5-en-1-yl)carbamate (5.3r).

In accordance with the general procedure at $125^{\circ} \mathrm{C}$ for 24 hours, the title compound was obtained in 63% yield ($38.9 \mathrm{mg}, d r=>20: 1$) as a yellow liquid after column chromatography $\left(\mathrm{SiO}_{2} ; 20 \%\right.$ EtOAc/hexanes).
$\underline{\mathbf{R}}_{\mathbf{f}}=0.17(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.35(\mathrm{ddd}, J=17.4,10.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~s}, 2 \mathrm{H}), 5.22(\mathrm{~d}, J=$ $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.51-4.39(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J$ $=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.47(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{dq}, J=14.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~s}$, $6 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.26(\mathrm{dq}, J=7.9,5.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{td}, J=12.1,11.7,6.7 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 157.9,135.8,128.2,116.8,106.6,80.1,68.8,61.9,36.6,35.3$, 28.4, 14.2.

HRMS (ESI) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 309.2173$, Found: 309.2171.

FTIR (neat): 3368, 2977, 2932, 2361, 1687, 1518, 1448, 1397, 1367, 1290, 1252, 1169, 1006, 923, $753 \mathrm{~cm}^{-1}$.

1-(benzyloxy)-4-(2,5-dimethyl-1H-pyrrol-1-yl)hex-5-en-3-ol (5.3s).

In accordance with the general procedure at $125^{\circ} \mathrm{C}$ for 48 hours, the title compound was obtained in 61% yield ($36.5 \mathrm{mg}, d r=>20: 1$) as a yellow liquid after column chromatography $\left(\mathrm{SiO}_{2} ; 5 \%\right.$ 10% EtOAc/hexanes).
$\underline{\mathbf{R}}_{\mathrm{f}}=0.38$ (20\% EtOAc/Hexanes)
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.33(\mathrm{ddd}, J=17.2,10.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.76$ $(\mathrm{s}, 2 \mathrm{H}), 5.24(\mathrm{dt}, J=10.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{dt}, J=17.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H})$, 4.46 (ddt, $J=11.8,4.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{tt}, J=9.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ (ddd, $J=9.5,5.4,4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.66-3.57(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 6 \mathrm{H}), 1.61(\mathrm{dtd}, J=14.9,9.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.43$ (dddd, $J=14.8$, $5.5,3.4,2.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.7,135.3,128.7,128.2,128.0,127.8,117.3,106.7,73.6,72.6$, 69.6, 62.5, 32.9, 14.3.

HRMS (ESI) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 300.1964$, Found: 300.1960.
FTIR (neat): 3472, 2928, 2863, 1739, 1454, 1397, 1291, 1241, 1092, 923, 820, 747, $698 \mathrm{~cm}^{-1}$.

$$
\mid \iiint \int 1 / \int \infty
$$

1-cyclohexyl-3-(2,5-dimethyl-1H-pyrrol-1-yl)pent-4-en-2-ol (5.3t).

In accordance with the general procedure at $125^{\circ} \mathrm{C}$ for 48 hours, the title compound was obtained in 75% yield ($39.2 \mathrm{mg}, d r=>20: 1$) as a yellow liquid after column chromatography $\left(\mathrm{SiO}_{2} ; 3 \%-\right.$ 5\% EtOAc/hexanes).
$\underline{\mathbf{R}}_{\mathrm{f}}=0.38$ (10\% EtOAc/Hexanes)
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.29(\mathrm{ddd}, J=17.3,10.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~s}, 2 \mathrm{H}), 5.27(\mathrm{dt}, J=$ $10.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{dt}, J=17.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{ddt}, J=9.3,5.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.17$ $(\mathrm{m}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 6 \mathrm{H}), 1.79(\mathrm{dd}, J=12.9,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.73-1.44(\mathrm{~m}, 4 \mathrm{H}), 1.31-1.04(\mathrm{~m}, 4 \mathrm{H})$, $1.04-0.85(\mathrm{~m}, 3 \mathrm{H}), 0.77(\mathrm{qd}, J=12.4,3.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 135.2,128.0,118.3,106.6,69.6,63.8,41.4,34.7,33.8,32.2$, 26.6(1), 26.5(7), 26.2, 14.3.

HRMS (ESI) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}:$284.1990, Found: 284.1985.
FTIR (neat): $3464,2922,2851,1741,1724,1447,1397,1241,1044,988,922,751,733 \mathrm{~cm}^{-1}$.

Abstract

$\begin{gathered} \underset{\sim}{\sim} \\ \stackrel{\sim}{\mid} \\ \stackrel{y}{n} \end{gathered}$	$\begin{gathered} \widetilde{\sim} \\ \stackrel{\infty}{7} \\ \stackrel{1}{\mid} \end{gathered}$	\hat{N}

O O | 30 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 9 | 1 |
| :--- |
| $f 1(\mathrm{ppm})$ | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | $($ | | |

In accordance with the general procedure at $125^{\circ} \mathrm{C}$ for 48 hours in dioxane $(1.0 \mathrm{M})$, the title compound was obtained in 63% yield $(25.9 \mathrm{mg}, d r=>20: 1)$ as a yellow liquid after column chromatography ($\mathrm{SiO}_{2} ; 10 \% \mathrm{EtOAc} /$ hexanes $)$.
$\underline{\mathbf{R}}_{\mathbf{f}}=0.42(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.35(\mathrm{ddd}, J=17.4,10.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~s}, 2 \mathrm{H}), 5.31(\mathrm{dt}, J=$ $10.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{dt}, J=17.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{ddt}, J=9.2,5.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.66$ (ddd, J $=9.3,6.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 6 \mathrm{H}), 1.81(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.78-0.61(\mathrm{~m}, 1 \mathrm{H}), 0.42-0.26(\mathrm{~m}$, $3 \mathrm{H}), 0.16-0.02(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 135.2,128.3,118.4,106.5,74.5,63.0,14.9,14.5,1.7,0.8$.

HRMS (ESI) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 206.1539$, Found: 206.1539.

FTIR (neat): $3444,3084,2930,1519,1398,1293,1138,1021,926,828,753 \mathrm{~cm}^{-1}$.

General Procedure and Preparation of 5.4b, 5.4n, 5.4q

To a solution of adduct $5.3(0.2 \mathrm{mmol}, 100 \mathrm{~mol} \%)$ in $\mathrm{EtOH}(4 \mathrm{~mL})$ was added hydroxylamine hydrochloride ($139 \mathrm{mg}, 2 \mathrm{mmol}, 1000 \mathrm{~mol} \%$) followed by $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$. The mixture was allowed to stir at $100^{\circ} \mathrm{C}$ for 24 hours. After cooled to room temperature, the reaction mixture was washed with 2 N aqueous NaOH and extracted three times with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo and the crude amine was dissolved in THF ($1 \mathrm{~mL}, 0.2 \mathrm{M}$). (Boc) $)_{2} \mathrm{O}(65.5 \mathrm{mg}, 0.3 \mathrm{mmol}$, $150 \mathrm{~mol} \%$) was subsequently added and the reaction mixture was allowed to stir at room temperature overnight. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added to the reaction mixture. The mixture was extracted three times with EtOAc. The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was then removed in vacuo, and the residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}: 20 \% \mathrm{EtOAc} / \mathrm{Hexanes}\right)$ to furnish the title compound.

tert-butyl (1-(4-fluorophenyl)-1-hydroxybut-3-en-2-yl)carbamate (5.4b).

In accordance with the general procedure, the title compound was obtained in 69% yield as a yellow solid after column chromatography ($\mathrm{SiO}_{2} ; 20 \% \mathrm{EtOAc} /$ hexanes $)$.
$\underline{\mathbf{R}}_{\underline{f}}=0.22(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.30(\mathrm{dd}, J=8.5,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.68$ (ddd, $J=16.8,10.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-5.06(\mathrm{~m}, 2 \mathrm{H}), 4.93-4.79(\mathrm{~m}, 2 \mathrm{H}), 4.43(\mathrm{~s}, 1 \mathrm{H}), 3.14(\mathrm{~s}, 1 \mathrm{H})$, 1.44 (s, 9H).
$\underline{{ }^{19} \text { F NMR }\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-115.06}$
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 162.4\left(\mathrm{~d}, J_{C-F}=245.7 \mathrm{~Hz}\right), 156.2,136.2\left(\mathrm{~d}, J_{C-F}=3.1 \mathrm{~Hz}\right), 133.2$, $128.1\left(\mathrm{~d}, J_{C-F}=8.0 \mathrm{~Hz}\right), 117.8,115.2\left(\mathrm{~d}, J_{C-F}=21.3 \mathrm{~Hz}\right), 80.2,75.8,58.9$, 28.5.

HRMS (ESI) Calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{FNNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 304.1319$, Found: 304.1328.

FTIR (neat): 3329, 2978, 2925, 1687, 1590, 1550, 1508, 1430, 1222, 1160, 1024, 837, 749, 694 cm^{-1}.

MP: $121-123^{\circ} \mathrm{C}$

\qquad

tert-butyl (E)-(4-hydroxy-6-phenylhexa-1,5-dien-3-yl)carbamate (5.4n).

In accordance with the general procedure, the title compound was obtained in 62% over two steps $(35.9 \mathrm{mg})$ as a yellow oil after column chromatography ($\mathrm{SiO}_{2} ; 15 \%-20 \% \mathrm{EtOAc} /$ hexanes $)$.
$\underline{\mathbf{R}}_{\mathbf{f}}=0.18$ (20\% EtOAc/Hexanes)
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.22(\mathrm{~m}$, $1 \mathrm{H}), 6.72-6.63(\mathrm{~m}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=16.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{ddd}, J=16.7,10.5,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.35-5.22(\mathrm{~m}, 2 \mathrm{H}), 4.94(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.51-4.27(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.1,136.6,134.0,132.1,128.7,128.0,126.8,126.7,117.7,80.1$, 74.8, 57.9, 28.5.

HRMS (ESI) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 312.1576$, Found: 312.1576.

FTIR (neat): 3350, 2982, 2927, 1740, 1682, 1524, 1447, 1367, 1250, 1166, 1000, 967, 922, 750 cm^{-1}.

$$
\|_{1}, 1,1, j
$$

tert-butyl (7,7,7-trifluoro-4-hydroxyhept-1-en-3-yl)carbamate (5.4q).

In accordance with the general procedure, the title compound was obtained in 68% over two steps as a yellow oil (38.5 mg) after column chromatography ($\mathrm{SiO}_{2} ; 20 \%-25 \% \mathrm{EtOAc} /$ hexanes $)$.
$\underline{\mathbf{R}}_{\mathbf{f}}=0.20(20 \% \mathrm{EtOAc} /$ Hexanes $)$
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.80(\mathrm{ddd}, J=17.1,10.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.37-5.22(\mathrm{~m}, 2 \mathrm{H}), 4.90$ (br s, 1 H), $4.18(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=9.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.47-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.20$ - $2.06(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$.
$\underline{{ }^{19} \text { F NMR }\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-66.4 .}$
${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.2,133.4,127.4\left(\mathrm{q}, J_{C-F}=276.0\right), 118.6,80.5,72.9,58.1,30.6$ $\left(\mathrm{q}, J_{C-F}=29.0\right), 28.5,25.7$.

HRMS (ESI) Calcd. for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 306.1293$, Found: 306.1292.

FTIR (neat): 3347, 2987, 2944, 1740, 1676, 1529, 1449, 1368, 1305, 1246, 1224, 1161, 1131, 1008, $935,859,769 \mathrm{~cm}^{-1}$.


```
#
```


Procedure and Preparation of S1

To a stirred solution of compound $\mathbf{5 . 4 b}(0.2 \mathrm{mmol}, 100 \mathrm{~mol} \%$) in anhydrous DMF ($1 \mathrm{~mL}, 0.2 \mathrm{M}$) were added imidazole ($0.6 \mathrm{mmol}, 300 \mathrm{~mol} \%$) and $\mathrm{TBSCl}(0.3 \mathrm{mmol}, 150 \mathrm{~mol} \%)$. The mixture was allowed to stir at $60^{\circ} \mathrm{C}$ for 15 hours. $\mathrm{H}_{2} \mathrm{O}$ was then added after the mixture cooled to room temperature. The mixture was extracted three times with EtOAc, and the combined organic layers was washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo and the residue was subjected to column chromatography $\left(\mathrm{SiO}_{2} ; 3 \%-5 \% \mathrm{EtOAc} / \mathrm{Hexanes}\right)$. The title compound was obtained as a colorless oil in 90% yield (71.3 mg).
$\underline{\mathbf{R}}_{\underline{f}}=0.64(20 \% \mathrm{EtOAc} /$ Hexanes $)$.
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.95(\mathrm{~m}, 2 \mathrm{H}), 5.72(\mathrm{ddd}, J=17.0,10.5$, $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{dt}, J=10.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{dt}, J=17.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 4.74(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~s}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}),-0.15(\mathrm{~s}, 3 \mathrm{H})$.
$\underline{{ }^{\mathbf{1 9}} \mathbf{F} \text { HMR }\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-115.6 . ~}$
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.2\left(\mathrm{~d}, J_{C-F}=244.8 \mathrm{~Hz}\right), 155.2,137.3\left(\mathrm{~d}, J_{C-F}=3.1 \mathrm{~Hz}\right), 133.23$, $128.1\left(\mathrm{~d}, J_{C-F}=8.0 \mathrm{~Hz}\right), 117.41,114.9\left(\mathrm{~d}, J_{C-F}=21.3 \mathrm{~Hz}\right) ., 79.61,75.96,59.65,28.55,25.96$, 18.35, -4.57, -5.06.
$\underline{\text { HRMS }}$ (ESI) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{FNaNO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 418.2192$, Found: 418.2184.

FTIR (neat): 2956, 2930, 2858, 1707, 1509, 1366, 1253, 1223, 1169, 1088, 992, 864, 837, 776, $669 \mathrm{~cm}^{-1}$.

\qquad

General Procedure and Preparation of 5.5b

To a stirred solution of compound $\mathbf{S 1}(0.15 \mathrm{mmol}, 100 \mathrm{~mol} \%)$ in $\mathrm{MeCN}: \mathrm{CCl}_{4}: \mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{~mL}$, $1: 1: 1.5,0.1 \mathrm{M})$ were added $\mathrm{NaIO}_{4}(0.75 \mathrm{mmol}, 500 \mathrm{~mol} \%)$ and $\mathrm{RuCl}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}(0.0075 \mathrm{mmol}, 5 \mathrm{~mol}$ $\%$). The mixture was allowed to stir at room temperature for 12 hours until the complete consumption of the starting material as monitored by TLC. The mixture was diluted with DCM, filtered through a short pad of celite and washed with DCM. The filtrate was washed with $\mathrm{H}_{2} \mathrm{O}$ and the aqueous phase was extracted three times with DCM. The combined organic layers was washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo and the residue was dissolved in $\mathrm{CHCl}_{3}: \mathrm{MeOH}(1.5 \mathrm{~mL}, 2: 1,0.1 \mathrm{M}) . \mathrm{TMSCH}_{2} \mathrm{~N}_{2}$ in hexanes $(0.15 \mathrm{~mL}$, $0.3 \mathrm{mmol}, 200 \mathrm{~mol} \%$) was then added dropwise. The mixture was allowed to stir at room temperature for 2 hours. The solvent was then removed in vacuo and the residue was subjected to column chromatography ($\mathrm{SiO}_{2} ; 3 \%-5 \% \mathrm{EtOAc} /$ Hexanes $)$. The title compound was obtained as a colorless oil in 65% yield over two steps (41.7 mg).
$\underline{\mathbf{R}}_{\underline{f}}=0.23(10 \% \mathrm{EtOAc} /$ Hexanes $)$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{dd}, J=8.4,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.22(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{dd}, J=8.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H})$, $0.88(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}),-0.14(\mathrm{~s}, 3 \mathrm{H})$.
$\underline{{ }^{19} \mathbf{F} \mathbf{N M R}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-115.0$.
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 170.4,162.4\left(\mathrm{~d}, J_{C-F}=245.7 \mathrm{~Hz}\right), 154.9,136.5\left(\mathrm{~d}, J_{C-F}=3.1 \mathrm{~Hz}\right)$, $128.0\left(\mathrm{~d}, J_{C-F}=8.1 \mathrm{~Hz}\right), 115.0\left(\mathrm{~d}, J_{C-F}=21.7 \mathrm{~Hz}\right), 80.1,75.2,60.9,52.0,28.4,25.8,18.2,-4.7,-$ 5.2.

HRMS (ESI) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{FNO}_{5} \mathrm{SiNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 450.2088$, Found: 450.2089.

FTIR (neat): 2954, 2928, 2852, 1712, 1606, 1509, 1365, 1253, 1222, 1156, 1088, 1015, 854, 837, $777,757,699 \mathrm{~cm}^{-1}$.

\qquad

Crystallographic Material for 5.4b

X-ray Experimental for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{FNO}_{3}$ (5.4b)
X-ray Experimental for complex $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~F}$: Crystals grew as long, very thin colorless needles by vapor diffusion of pentane into diethyl ether. The data crystal was cut from a longer crystal and had approximate dimensions; $0.32 \times 0.03 \times 0.02 \mathrm{~mm}$. The data were collected on an Agilent Technologies SuperNova Dual Source diffractometer using a μ-focus $\mathrm{Cu} \mathrm{K} \alpha$ radiation source (λ $=1.5418 \AA$) with collimating mirror monochromators. A total of 364 frames of data were collected using ω-scans with a scan range of 1° and a counting time of 53 seconds per frame with a detector offset of $+/-42.4^{\circ}$ and 120 seconds per frame with a detector offset of $+/-109.8^{\circ}$. The data were collected at 100 K using an Oxford 700 Cryostream low temperature device. Details of crystal data, data collection and structure refinement are listed in Table 1. Data collection, unit cell refinement and data reduction were performed using Agilent Technologies CrysAlisPro V 1.171.38.43f. ${ }^{12}$ The structure was solved by direct methods using SHELXT ${ }^{13}$ and refined by fullmatrix least-squares on F2 with anisotropic displacement parameters for the non-H atoms using SHELXL-2016/6. ${ }^{14}$ Structure analysis was aided by use of the programs PLATON ${ }^{15}$ and WinGX. ${ }^{16}$ The hydrogen atoms were calculated in ideal positions with isotropic displacement parameters set to 1.2 xUeq of the attached atom (1.5 xUeq for methyl hydrogen atoms). The hydrogen atoms bound to N 1 atoms was located in a $\Delta \mathrm{F}$ map and refined with an isotropic displacement parameter.

The function, $\Sigma \mathrm{w}\left(|\mathrm{Fo}|^{2}-|\mathrm{Fc}|^{2}\right)^{2}$, was minimized, where $\mathrm{w}=1 /\left[(\sigma(\mathrm{Fo}))^{2}+(0.0829 * \mathrm{P})^{2}+(1.279 * \mathrm{P})\right]$ and $\mathrm{P}=\left(|\mathrm{Fo}|^{2}+2|\mathrm{Fc}|^{2}\right) / 3 . \operatorname{Rw}\left(\mathrm{F}^{2}\right)$ refined to 0.226 , with $\mathrm{R}(\mathrm{F})$ equal to 0.0859 and a goodness of fit, $\mathrm{S},=1.12$. Definitions used for calculating $\mathrm{R}(\mathrm{F}), \operatorname{Rw}\left(\mathrm{F}^{2}\right)$ and the goodness of fit, S , are given below. ${ }^{17}$ The data were checked for secondary extinction effects but no correction was necessary. Neutral atom scattering factors and values used to calculate the linear absorption coefficient are from the International Tables for X-ray Crystallography (1992). ${ }^{18}$ All figures were generated using SHELXTL/PC. ${ }^{19}$ Tables of positional and thermal parameters, bond lengths and angles, torsion angles and figures are found elsewhere.

Table 5.2. Crystal data and structure refinement for $\mathbf{5 . 4 b}$.

Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{FN} \mathrm{O}_{3}$
Formula weight	281.32
Temperature	100(2) K
Wavelength	$1.54184 \AA$
Crystal system	orthorhombic
Space group	P $2122_{1}{ }_{1}$
Unit cell dimensions	$\mathrm{a}=5.0624(7) \AA \quad \alpha=90^{\circ}$.
	$b=10.961(3) \AA \quad \beta=90^{\circ}$.
	$\mathrm{c}=26.361(4) \AA \quad \gamma=90^{\circ}$.
Volume	$1462.8(5) \AA^{3}$
Z	4
Density (calculated)	$1.277 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.805 \mathrm{~mm}^{-1}$
F(000)	600
Crystal size	$0.320 \times 0.030 \times 0.020 \mathrm{~mm}^{3}$
Theta range for data collection	3.353 to 75.126°.
Index ranges	$-6<=\mathrm{h}<=5,-13<=\mathrm{k}<=13,-16<=1<=32$
Reflections collected	3095
Independent reflections	$2260[\mathrm{R}(\mathrm{int})=0.0495]$
Completeness to theta $=67.684^{\circ}$	98.3 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00 and 0.602
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2260 / 120 / 189
Goodness-of-fit on F^{2}	1.115
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$R_{1}=0.0859, w R_{2}=0.2060$
R indices (all data)	$R_{1}=0.1075, w R_{2}=0.2259$
Absolute structure parameter	-0.1(5)
Largest diff. peak and hole	0.410 and -0.349 e. \AA^{-3}

Table 5.3. Atomic coordinates $\left(\mathrm{x} 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\AA^{2} \mathrm{x}\right.$ 10^{3}) for $\mathbf{5 . 4 b}$. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x		y	z
C1	$7659(13)$	$4793(7)$	$4370(2)$	$29(1)$
C2	$8520(15)$	$5686(6)$	$4041(3)$	$32(2)$
C3	$7279(15)$	$6825(7)$	$4013(3)$	$38(2)$
C4	$5107(16)$	$7028(7)$	$4318(3)$	$40(2)$
C5	$4209(16)$	$6184(6)$	$4659(3)$	$36(2)$
C6	$5483(14)$	$5045(6)$	$4680(3)$	$31(2)$
C7	$8945(13)$	$3552(6)$	$4378(2)$	$29(1)$
C8	$7725(14)$	$2666(6)$	$3980(2)$	$29(1)$
C9	$9128(15)$	$1463(6)$	$3979(2)$	$31(2)$
C10	$8127(18)$	$409(7)$	$412(3)$	$42(2)$
C11	$5661(13)$	$3694(6)$	$3247(2)$	$27(1)$
C12	$4442(13)$	$4878(7)$	$2485(3)$	$32(2)$
C13	$2766(15)$	$3897(7)$	$2236(3)$	$34(2)$
C14	$6199(16)$	$5491(9)$	$2093(3)$	$44(2)$
C15	$2845(15)$	$5817(7)$	$2768(3)$	$36(2)$
N9	$7818(11)$	$3209(6)$	$3479(2)$	$28(1)$
O1	$8915(9)$	$2984(5)$	$4867(2)$	$30(1)$
O2	$3408(8)$	$3610(5)$	$3397(2)$	$31(1)$
O3	$6425(9)$	$4295(5)$	$2824(2)$	$33(1)$
F1	$3859(11)$	$8130(4)$	$4290(2)$	$54(1)$

Table 5.4. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $\mathbf{5 . 4 b}$.

C1-C2	1.379(10)	C14-H14B	0.98
C1-C6	$1.399(10)$	C14-H14C	0.98
C1-C7	1.508(10)	C15-H15A	0.98
C2-C3	$1.399(10)$	C15-H15B	0.98
C2-H2	0.95	C15-H15C	0.98
C3-C4	1.380(11)	N9-H9N	0.83(7)
C3-H3	0.95	O1-H1O	0.84
C4-F1	1.365(8)	C2-C1-C6	118.4(7)
C4-C5	$1.366(11)$	C2-C1-C7	120.8(6)
C5-C6	$1.406(10)$	C6-C1-C7	120.7(6)
C5-H5	0.95	C1-C2-C3	121.7(7)
C6-H6	0.95	C1-C2-H2	119.2
C7-O1	1.433(8)	C3-C2-H2	119.2
C7-C8	1.557(9)	C4-C3-C2	118.1(7)
C7-H7	1.0000	C4-C3-H3	121.0
C8-N9	1.450(9)	C2-C3-H3	121.0
C8-C9	1.497(9)	F1-C4-C5	118.8(7)
C8-H8	1.00	F1-C4-C3	118.7(7)
C9-C10	$1.309(10)$	C5-C4-C3	122.5(7)
C9-H9	0.95	C4-C5-C6	118.4(7)
C10-H10A	0.95	C4-C5-H5	120.8
C10-H10B	0.95	C6-C5-H5	120.8
C11-O2	1.210(8)	C5-C6-C1	120.9(7)
C11-O3	1.354(8)	C5-C6-H6	119.6
C11-N9	1.359(9)	C1-C6-H6	119.6
C12-O3	1.487(8)	O1-C7-C1	113.6(6)
C12-C15	1.507(11)	O1-C7-C8	109.3(6)
C12-C13	1.518(10)	C1-C7-C8	112.5(5)
C12-C14	1.522(10)	O1-C7-H7	107.0
C13-H13A	0.98	C1-C7-H7	107.0
C13-H13B	0.98	C8-C7-H7	107.0
C13-H13C	0.98	N9-C8-C9	110.2(6)
C14-H14A	0.98	N9-C8-C7	110.1(6)

Table 5.4 Continued

C9-C8-C7	$111.2(5)$	H13A-C13-H13B	109.5
N9-C8-H8	108.4	C12-C13-H13C	109.5
C9-C8-H8	108.4	H13A-C13-H13C	109.5
C7-C8-H8	108.4	H13B-C13-H13C	109.5
C10-C9-C8	$126.4(7)$	C12-C14-H14A	109.5
C10-C9-H9	116.8	C12-C14-H14B	109.5
C8-C9-H9	116.8	H14A-C14-H14B	109.5
C9-C10-H10A	120.0	C12-C14-H14C	109.5
C9-C10-H10B	120.0	H14A-C14-H14C	109.5
H10A-C10-H10B	120.0	H14B-C14-H14C	109.5
O2-C11-O3	$125.2(6)$	C12-C15-H15A	109.5
O2-C11-N9	$125.5(6)$	C12-C15-H15B	109.5
O3-C11-N9	$109.4(6)$	H15A-C15-H15B	109.5
O3-C12-C15	$111.0(6)$	C12-C15-H15C	109.5
O3-C12-C13	$109.5(6)$	H15A-C15-H15C	109.5
C15-C12-C13	$113.5(6)$	H15B-C15-H15C	109.5
O3-C12-C14	$101.7(5)$	C11-N9-C8	$123.0(6)$
C15-C12-C14	$110.4(7)$	C11-N9-H9N	$128(4)$
C13-C12-C14	$110.2(6)$	C8-N9-H9N	$108(4)$
C12-C13-H13A	109.5	C7-O1-H1O	109.5
C12-C13-H13B	109.5	C11-O3-C12	$120.7(5)$

Table 5.5. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 5.4b. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{*} U^{11}+\ldots+2 h k\right.$ $\left.a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U 12
C1	$25(3)$	$33(3)$	$29(3)$	$-2(3)$	$-6(3)$	$-3(3)$
C2	$30(3)$	$31(3)$	$35(3)$	$1(3)$	$-2(3)$	$-5(3)$
C3	$31(3)$	$34(4)$	$49(4)$	$7(3)$	$-3(3)$	$-7(3)$
C4	$40(4)$	$25(3)$	$53(4)$	$-4(3)$	$-5(3)$	$-3(3)$
C5	$36(4)$	$28(3)$	$43(4)$	$-8(3)$	$0(3)$	$2(3)$
C6	$24(3)$	$31(3)$	$37(3)$	$-1(3)$	$4(3)$	$-4(3)$
C7	$21(3)$	$33(3)$	$33(3)$	$2(3)$	$-1(3)$	$1(3)$
C8	$24(3)$	$31(3)$	$33(3)$	$4(3)$	$0(3)$	$1(3)$
C9	$36(4)$	$24(3)$	$33(3)$	$-4(3)$	$-7(3)$	$5(3)$
C10	$53(5)$	$31(4)$	$41(4)$	$2(3)$	$-2(4)$	$1(4)$
C11	$19(3)$	$25(3)$	$35(3)$	$-3(3)$	$-7(3)$	$1(3)$
C12	$16(3)$	$40(4)$	$40(3)$	$8(3)$	$-1(3)$	$0(3)$
C13	$29(4)$	$37(4)$	$37(3)$	$-1(3)$	$-7(3)$	$8(3)$
C14	$31(4)$	$61(5)$	$40(4)$	$20(4)$	$1(3)$	$0(4)$
C15	$31(4)$	$31(4)$	$45(4)$	$6(3)$	$-5(3)$	$-4(3)$
N9	$11(2)$	$36(3)$	$36(3)$	$0(2)$	$-3(2)$	$1(2)$
O1	$21(2)$	$39(3)$	$31(2)$	$3(2)$	$2(2)$	$3(2)$
O2	$13(2)$	$36(3)$	$43(3)$	$4(2)$	$1(2)$	$-1(2)$
O3	$18(2)$	$45(3)$	$34(2)$	$13(2)$	$0(2)$	$0(2)$
F1	$56(3)$	$23(2)$	$82(3)$	$3(2)$	$-2(3)$	$5(2)$

Table 5.6. Hydrogen coordinates ($\mathrm{x} 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \mathrm{x}\right.$ 10^{3}) for 5.4b.

	x		y	z
			$\mathrm{U}(\mathrm{eq})$	
H2	9992	5525	3828	38
H3	7913	7440	3791	45
H5	2759	6362	4875	43
H6	4858	4440	4908	37
H7	10839	3671	4283	35
H8	5834	2521	4072	35
H9	10919	1466	3872	37
H10A	6344	359	4222	50
H10B	9185	-306	4098	50
H13A	3920	3285	2080	52
H13B	1649	4268	1975	52
H13C	1649	3506	2492	52
H14A	7310	6104	2259	66
H14B	5096	5887	1835	66
H14C	7324	4877	1930	66
H15A	1414	5412	2954	54
H15B	2094	6402	2527	54
H15C	3989	6249	3008	54
H1O	7348	2834	4952	46
H9N	$9390(140)$	$3320(60)$	$3400(20)$	$8(14)$

Table 5.7. Torsion angles [${ }^{\circ}$] for $\mathbf{5 . 4 b}$.

C6-C1-C2-C3	$0.2(10)$
C7-C1-C2-C3	$177.2(6)$
C1-C2-C3-C4	$-1.4(11)$
C2-C3-C4-F1	$-179.2(7)$
C2-C3-C4-C5	$2.9(11)$
F1-C4-C5-C6	$179.1(7)$
C3-C4-C5-C6	$-2.9(11)$
C4-C5-C6-C1	$1.6(11)$
C2-C1-C6-C5	$-0.2(10)$
C7-C1-C6-C5	$-177.3(6)$
C2-C1-C7-O1	$148.9(6)$
C6-C1-C7-O1	$-34.2(8)$
C2-C1-C7-C8	$-86.3(7)$
C6-C1-C7-C8	$90.7(7)$
O1-C7-C8-N9	$-178.1(5)$
C1-C7-C8-N9	$54.7(7)$
O1-C7-C8-C9	$-55.6(7)$
C1-C7-C8-C9	$177.2(6)$
N9-C8-C9-C10	$-123.2(8)$
C7-C8-C9-C10	$114.3(8)$
O2-C11-N9-C8	$-8.9(11)$
O3-C11-N9-C8	$170.6(6)$
C9-C8-N9-C11	$132.9(7)$
C7-C8-N9-C11	$-104.0(7)$
O2-C11-O3-C12	$-2.8(11)$
N9-C11-O3-C12	$177.7(6)$
C15-C12-O3-C11	$59.1(8)$
C13-C12-O3-C11	$-66.9(8)$
C14-C12-O3-C11	$176.5(6)$

Table 5.8. Hydrogen bonds for $\mathbf{5 . 4 b}\left[\AA\right.$ and $\left.{ }^{\circ}\right]$.

D-H...A	d(D-H)	d(H...A)	$d(D . . . \mathrm{A})$	$<$ (DHA)
C13-H13C...O2	0.98	2.55	$3.094(9)$	115.1
O1-H1O...O1\#1	0.84	2.01	$2.832(4)$	164.8
N9-H9N...O2\#2	$0.83(7)$	$2.06(7)$	$2.872(7)$	$167(6)$

Symmetry transformations used to generate equivalent atoms:
\#1 x-1/2,-y+1/2,-z+1 \#2 x+1,y,z

Figure 5.2. View of $\mathbf{5 . 4 b}$ showing the atom labeling scheme. Displacement ellipsoids are scaled to the 50% probability level.

Competition Experiment Establishing Rapid Redox Equilibrium

Reaction between Alcohol 5.2a and Aldehyde dehydro-5.2d

To a resealable pressure tube $(13 \mathrm{x} 100)$ were added $\mathrm{HClRu}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}(9.5 \mathrm{mg}, 0.010$ $\mathrm{mmol}, 5 \mathrm{~mol} \%$), dippf ($4.2 \mathrm{mg}, 0.010 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and alcohol 5.2a(37.4 mg, 0.2 $\mathrm{mmol}, 100 \mathrm{~mol} \%$). The tube was sealed with a rubber septum and purged with argon for 20 minutes. Dioxane ($0.40 \mathrm{~mL}, 0.5 \mathrm{M}$) was added to the reaction vessel. Aldehyde dehydro5.2d ($24.3 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and acetylenic pyrrole 5.1 ($0.60 \mathrm{mmol}, 300 \mathrm{~mol} \%$) were subsequently added to the reaction vessel and the rubber septum was quickly replaced with a screw cap. The mixture was allowed to stir at $125^{\circ} \mathrm{C}$ for 24 hours. The mixture was then allowed to cool to room temperature and the solvent was removed in vacuo. The residue was subjected to column chromatography $\left(\mathrm{SiO}_{2} ; 7.5 \%-10 \% \mathrm{EtOAc} / \mathrm{Hexanes}\right)$ and a 3.3:1 mixture of $\mathbf{5 . 3 a}$ ($35.9 \mathrm{mg}, 56 \%$ yield) and $\mathbf{5 . 3 d}(9.3 \mathrm{mg}, 17 \%$ yield).

Reaction between Alcohol 5.2d and Aldehyde dehydro-5.2a

dehydro-2a

2d
 $125^{\circ} \mathrm{C}, 24 \mathrm{~h}$

3a

3d
3a: 3d = 2.9 : 1
73% yield
(combined yield based on $100 \mathrm{~mol} \%$ of alcohol as the limiting reagent)

To a resealable pressure tube $(13 \mathrm{x} 100)$ were added $\mathrm{HClRu}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}(9.5 \mathrm{mg}, 0.010$ $\mathrm{mmol}, 5 \mathrm{~mol} \%$), dippf ($4.2 \mathrm{mg}, 0.010 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and aldehyde dehydro-5.2a (37.0 $\mathrm{mg}, 0.2 \mathrm{mmol}, 100 \mathrm{~mol} \%)$. The tube was sealed with a rubber septum and purged with argon for 20 minutes. Dioxane ($0.40 \mathrm{~mL}, 0.5 \mathrm{M}$) was added to the reaction vessel. Alcohol 5.2d ($24.8 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and acetylenic pyrrole $1(0.60 \mathrm{mmol}, 300 \mathrm{~mol} \%)$ were subsequently added to the reaction vessel and the rubber septum was quickly replaced with a screw cap. The mixture was allowed to stir at $125^{\circ} \mathrm{C}$ for 24 hours. The mixture was then allowed to cool to room temperature and the solvent was removed in vacuo. The residue was subjected to column chromatography $\left(\mathrm{SiO}_{2} ; 7.5 \%-10 \% \mathrm{EtOAc} / \mathrm{Hexanes}\right)$ and a 2.9:1 mixture of 5.3a ($34.5 \mathrm{mg}, 54 \%$ yield) and $\mathbf{5 . 3 d}$ ($10.2 \mathrm{mg}, 19 \%$ yield).

Chapter 6: Enantioselective Iridium Catalyzed anti-(α-Aryl)allylation of Fluoral Hydrate and Difluoroacetaldehyde Ethyl Hemiacetal*

6.1 InTRODUCTION

Alcohol mediated carbonyl reductive couplings has been developed broadly by Krische group, by which catalytic enantioselective carbonyl allylations and propargylations. ${ }^{1}$ Branched aryl-substituted allylic acetates were explored in the coupling with paraformaldehyde mediated by 2-propanol to form primary homoallylic alcohols and high enantioselectivity was observed. ${ }^{2}$ While when higher aldehyde was used in the reductive coupling with branched aryl-substituted allylic acetate, a correlation between enantioselectivity and aldehyde electrophilicity was found, which is with the increasing of carbonyl electrophilicity enantioselectivity increases.

There is no systematic study on catalytic enantioselective carbonyl (α aryl)allylation in the literatures, and in many of the examples chiral auxiliaries were involved, ${ }^{3}$ modest enantioselectivity were observed. ${ }^{4}$ Enantioselective (α-aryl)allylation of fluoral and difluoroacetaldehyde, which are readily commercial available resources of fluorinated moieties, were not reported before.

In this chapter, iridium catalyzed 2-propanol mediated enantioselective reductive coupling of branched aryl-substituted allylic acetates with fluoral and difluoroacetaldehyde was reported. The correlation between enantioselectivity and carbonyl electrophilicity was explained by different carbonyl binding modes: diastereomeric kinetic and thermodynamic coordination.

[^4]
6.2 Reaction Development and Scope

Initially, different p-substituted benzaldehydes 6.1a-6.1f were exposed to 1-(4bromophenyl)allyl acetate 6.2b under 2-propanol mediated reductive coupling conditions, whereas iridium complex modified by (S)-Cl, MeO-BIPHEP was used (Table 6.1, entries 1-6). From the results of these experiments, a clear correlation between enantioselectivity and carbonyl electrophilicity σ was observed. For the electron-rich carbonyl, such as p (dimethylamino)benzaldehyde 6.1a, and p-methoxybenzaldehyde 6.1b, carbonyl addition

Table 6.1 Correlation between Enantioselectivity with Carbonyl Electrophilicity in Carbonyl reductive (α-Aryl)allylation.

			THF (0.2 M), $100^{\circ} \mathrm{C}, 24 \mathrm{~h}$				
Entry	R		6.1a-6.1i	6.3a-6.3h	Yield\%	\% dr	ee\%
1	$4-\mathrm{Me} \mathrm{e}^{2} \mathrm{~N}-\mathrm{Ph}$	-0.83	6.1a	6.3a	16	4:1	1
2	4-MeO-Ph	-0.27	6.1 b	6.3 b	54	9:1	5
3	4-Me-Ph	-0.17	6.1 c	6.3 c	69	4:1	12
4	Ph	0.00	6.1 d	6.3d	74	4:1	15
5	4-F-Ph	0.06	6.1 e	6.3 e	88	3:1	16
6	4-Br-Ph	0.23	6.1 f	6.3 f	88	4:1	23
7	3-(6-Br-Pyr)		6.1 g	6.3 g	82	5:1	37
8	2-(6-Br-Pyr)		6.1 h	6.3h	75	4:1	65
$9^{\text {b }}$	CF_{3}	-	6.1i	6.4b	88	>20:1	94

${ }^{a}$ Yields are material isolated by silica gel chromatography. See supporting Information for further experimental details. ${ }^{\mathrm{b}} 4 \AA \mathrm{MS}(300 \mathrm{wt} \%)$, and fluoral hydate in water ($75 \mathrm{wt} \%$)
products were obtained in nearly racemic form. When fluoral hydrate 6.1 i was used with addition of $4 \AA$ molecular sieves, carbonyl (α-aryl)allylation product was isolated in 88% yield with complete anti-diastereoselecitivity and excellent enantioselectivity (Table 6.1, entry 9). Molecular sieves was crucial for this reaction, which is due to it helped with dehydration of fluoral hydrate.

The above conditions were applied to different branched aryl-substituted allylic acetates 6.2a-6.21, and the corresponding coupling adducts 6.4a-6.41 were obtained in uniformly high enantioselectivity and complete diastereoselectivity and good to excellent yileds (Table 6.2). Not only mono-substituted aryl moieties on the allylic acetates could promote the C-C coupling, di-substituted aryl moieties could also engage in the coupling with fluoral hydrate under iridium catalysis. Notably, herteroarometic ring bearing allylic acetates 6.2i-6.2I also gave the corresponding adducts 6.4i-6.4I. The absolute stereochemical structure of $\mathbf{6 . 4 1}$ was determined by single crystal X-ray diffraction analysis, and the absolute structure of other adducts were made in analogy to compound

6.41.

With the optimal conditions, difluoroacetaldehyde ethyl hemiacetal in ethanol (90 wt \%), which is the only available source for difluoroacetaldehyde, was tested as an electrophile in the carbonyl (α-aryl)allylation. Ultilizing the same set of branched arylsubstituted allylic acetates, CHF_{2}-bearing β-aryl alcohols 6.5a-6.51 were formed in good yields with complete anti-diastereoselectivity and high enantioselectivity as well. As we know that ethanol itself could engage in the reodx-triggered carbonyl addition reaction, small amount of (3-14\% yield) ethanol coupling products were observed as side products. The absolute stereochemical structure of $\mathbf{6 . 5 1}$ was determined by single crystal X-ray

Table 6.2 Iridium Catalyzed Enantioselective Reductive Coupling of Fluoral Hydrate 6.1i to Form CF_{3}-Bearing Adducts 6.4a-6.41.
(

Table 6.3 Iridium Catalyzed Enantioselective Reductive Coupling of Difluoroacetaldehyde Ethyl Hemiacetal 6.1j to Form CHF_{2}-Bearing Adducts 6.5a-6.51.
(
diffraction analysis, and the absolute structure of other adducts were made in analogy to compound 6.51.

To demonstrate the utility of this transformation, it was successfuly applied to synthese of CF_{3}-bearing and CHF_{2}-bearing derivatives of d-hyoscyamine, which is a FDA approved alkaloid (Scheme 6.1). The TBS-protection of the free alcohol in the coupling adduct 6.4a followed by alkene oxidative cleavage under Johnson-Lemieux conditions ${ }^{5}$ delivered α, β-stereogenic carboxylic acid 6.6a, which was treated with tropine under Shiina's esterification conditions ${ }^{6}$ to form TBS-protected ester 6.7 a in good yield with some epimerization. Finally cleavage of silyl group with HF-pyridine provided $\mathrm{CF}_{3}{ }^{-}$

Scheme 6.1 Synthesis of d-Hyoscyamine Derivatives 6.8a, and 6.8b.

hyoscyamine 6.8a. The CHF_{2}-bearing derivative $\mathbf{6 . 8} \mathbf{b}$ was synthesized in an analogous manner.

6.3 Mechanism and Discussion

The correlation between enantioselectivity with carbonyl electrophilicity was quite special (Figure 6.1). ${ }^{7}$ In the earlier studies on enantioselective carbonyl allylation reactions, when the same chiral ligand was used, an inversion in the enantioselectivity was observed due to steric difference of the allyl donors. To be more specific, carbonyl allylation ${ }^{8 a, b}$ and crotylation ${ }^{8 c, \mathrm{~d}}$ have same enantiofacial preferences, while carbonyl tert-prenylation ${ }^{9}$ has an inversion in the enantiofacial selectivity when the same chiral iridium catalyst in use. These observations suggested that when the allyl donors were small, the carbonyl additions

Kinetic Coordination Mode
Binding Triggers Addition for
More Electrophillic Aldehydes

Asymmetric Allylations and Crotylations Matching Enantiofacial Selectivity

Diastereomeric Coordination Mode Becomes Competitive for Less Electrophillic Aldehydes

Asymmetric tert-Prenylations Inverted Enantiofacial Selectivity

Figure 6.1 Proposed Stereochemical Model for Iridium Catalyzed Enantioselective Carbonyl anti-(α-aryl)allylation.
occurred via the transition structure where aldehyde approached from more open side (Figure 6.1, left), and when the allyl donor was big, the allyl group would reside on the more open side instead during the carbonyl addition (Figure 6.1, right). For the (aryl)allyl donor, which is between these two extreme coordination modes, kinetic coordination was preferred for sufficiently electrophilic aldehydes and as soon as the carbonyl coordinate to the iridium carbonyl addition would happen. However, for the less reactive aldehydes, carbonyl addition could proceed through either coordination mode, which caused the erosion in the enantioselectivity.

6.4 CONCLUSION

In summary, iridium catalyzed 2-propanol mediated enantioselective anti-(α aryl)allylation of fluoral hydrate and difluoroacetaldehyde ethyl hemiacetal by coupling with various branched aryl-substituted allylic acetates. Two different coordination modes were proposed and rationalized the correlation between enantioselectivity with carbonyl electrophilicity in carbonyl allylation reactions. Also, two derivatives of d-hyoscyamine with CF_{3} and CHF_{2} group were synthesized from the coupling adducts $\mathbf{6 . 4 a}$ and $\mathbf{6 . 5 a}$, respectively, to demonstrate the utility of this method.

6.5 EXPERIMENTAL DETAILS

General Information

All reactions were run under an atmosphere of argon, unless otherwise indicated. Resealable pressure tubes ($13 \times 100 \mathrm{~mm}$) were purchased from Fischer Scientific (catalog number 14-959-35C) and were flame dried followed by cooling in a desiccator or under a stream of argon prior to use. Tetrahydrofuran (THF) was dried over sodium metal, benzophenone, and distilled immediately prior to use. $\mathrm{RuH}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ were prepared according to literature procedure. 1 All ligands were used as received from Strem Chemicals Inc. Alcohols were purified by distillation or recrystallization immediately prior to use. Preparative column chromatography employing Silicycle silica gel ($40-63 \mu \mathrm{~m}$) was performed according to the method of Still. 2 Analytical thin-layer chromatography (TLC) was carried out using 0.25 mm commercial silica gel plates (Dynamic Absorbents F254). Visualization was accomplished with UV light followed by dipping in Seebach's stain solution then heating. Purification of reactions was carried out by flash chromatography using Silicycle silica gel ($40-63 \mu \mathrm{~m}$). Fluoral hydrate (75% in water) was purchased through Oakwood Chemical, difluoroacetaldehyde ethyl hemiacetal (90% in ethanol) through AstaTech, and potassium carbonate through Fisher Chemicals and used without further purification. Allylic acetates $2 a^{1} 2 b-2 c,{ }^{2} 2 d,{ }^{3} 2 e,{ }^{4} 2 f-2 l^{2}$ were prepared according to previous literature.

Spectroscopy, Spectrometry, and Data Collection

Infrared spectra were recorded on a Perkin-Elmer 1600 spectrometer. Low-resolution mass spectra (LRMS) were obtained on a Karatos MS9 and are reported as m / z (relative intensity). Accurate masses are reported for the molecular ion ($\mathrm{M}+\mathrm{H}, \mathrm{M}+\mathrm{Na}$), or a suitable fragment ion. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra were recorded with a Varian Gemini (400 MHz) spectrometer. Chemical shifts are reported in delta (δ) units, parts per million (ppm) downfield from tetramethylsilane or ppm relative to the center of the singlet at 7.26 ppm for deuteriochloroform. Data reported as multiplicity ($\mathrm{s}=$ singlet, d $=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet). Integration and coupling constants were reported in Hertz (Hz). Carbon-13 nuclear magnetic resonance $\left({ }^{13} \mathrm{C}\right.$ NMR) spectra were recorded with a Varian Gemini (100 MHz) spectrometer and were routinely run with broadband decoupling. Chemical shifts are reported in delta (δ) units, ppm relative to the center of the triplet at 77.16 ppm for deuteriochloroform.

Detailed Procedure for Preparation of Preformed Iridium Catalyst

To a sealed tube equipped with a magnetic stir bar was added $\mathrm{Cs}_{2} \mathrm{CO}_{3}(501.8 \mathrm{mg}, 1.54$ $\mathrm{mmol}, 200 \mathrm{~mol} \%$), 4-cyano-3-nitrobenzoic acid ($296.8 \mathrm{mg}, 1.54 \mathrm{mmol}, 200 \mathrm{~mol} \%$), (S)$\mathrm{Cl}, \mathrm{MeO}-\mathrm{BIPHEP}(503.0 \mathrm{mg}, 0.772 \mathrm{mmol}, 100 \mathrm{~mol} \%)$ and $[\operatorname{Ir}(\mathrm{cod}) \mathrm{Cl}]_{2}(259.3 \mathrm{mg}, 0.386$ $\mathrm{mmol}, 50 \mathrm{~mol} \%$). The reaction vessel was purged with argon and THF ($7.7 \mathrm{~mL}, 0.1 \mathrm{M}$) was added followed by allyl acetate ($0.208 \mathrm{~mL}, 1.93 \mathrm{mmol}, 250 \mathrm{~mol} \%$). The resulting mixture was stirred at room temperature for 30 min , and for another 90 min at $80^{\circ} \mathrm{C}$. After cooling to ambient temperature, the mixture was filtered through a celite plug with the aid of DCM (45 mL). The combined filtrate was concentrated in vacuo and subjected to flash column chromatography ($\mathrm{DCM}: \mathrm{THF}=10: 1$). The resulting gum-like residue was dissolved in THF (2.0 mL). Addition of HPLC grade hexanes (20 mL) led to formation of a precipitate. The product was filtered and washed with HPLC grade hexanes, followed by removal of trace amount of solvent in vacuo, to provide a light yellow powder (620.0 mg , 0.577 mmol) in 75% yield as a mixture of stereoisomers.

Spectral data is reported for the major isomer.
${ }^{31} \mathbf{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-5.12(\mathrm{~d}, J=21.3 \mathrm{~Hz}),-15.70(\mathrm{~d}, J=21.4 \mathrm{~Hz})$.
HRMS (ESI) Calculated for $\mathrm{C}_{49} \mathrm{H}_{37} \mathrm{Cl}_{2} \mathrm{IrN}_{2} \mathrm{O}_{6} \mathrm{P}_{2}[\mathrm{M}+\mathrm{H}]^{+}=1075.1195$, Found 1075.1197.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 8}}:-4.0\left(c=1.0, \mathrm{CHCl}_{3}\right)$
MP: 231-236 ${ }^{\circ} \mathrm{C}$ (decomposition)

General Procedure for Iridium Catalyzed Aryl Allylation of Aromatic Aldehydes
A pressure tube was equipped with a magnetic stir bar and charged with preformed iridium catalyst ($10.7 \mathrm{mg}, 10 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$), aldehyde ($0.20 \mathrm{mmol}, 100 \mathrm{~mol} \%$), $\mathrm{K}_{2} \mathrm{CO}_{3}(27.6 \mathrm{mg}$, $0.20 \mathrm{mmol}, 100 \mathrm{~mol} \%$), 1-(4-bromophenyl)allyl acetate ($0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%$). The pressure tube was purged with argon. Anhydrous THF (1.0 mL, 0.2 M) and 2-propanol (31 $\mu \mathrm{L}, 0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%)$ were added via syringe. The sealed reaction vessel was stirred at $100^{\circ} \mathrm{C}$. After 24 h the solvent was removed in vacuo and the residue was subjected to flash column chromatography on silica.
(1S,2R)-2-(4-bromophenyl)-1-(4-methoxyphenyl)but-3-en-1-ol (6.3b)

The title compound was prepared according to the general procedure using 4methoxybenzaldehyde ($27.2 \mathrm{mg}, 200 \mu \mathrm{~mol}$) and 1-(4-bromophenyl)allyl acetate (102 mg , $0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%$). Flash chromatography on silica (Hex/EtOAc 6:1 $\rightarrow 3: 1$) provided the title compound ($35.6 \mathrm{mg}, 107 \mu \mathrm{~mol}$, anti:syn $=9: 1$) in 54% yield as a yellow oil.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.37$ (hexanes/ethyl acetate $=3: 1$).
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.88$
$(\mathrm{m}, 2 \mathrm{H}), 6.78-6.72(\mathrm{~m}, 2 \mathrm{H}), 6.19(\mathrm{ddd}, J=17.0,10.2,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=10.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.22(\mathrm{dt}, J=17.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{dd}, J=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{t}, J$ $=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=159.1,139.9,137.8,133.8,131.5,130.2,128.0,120.5$, 118.7, 113.6, 76.8, 58.7, 55.3.

HRMS (ESI) Calculated for $\mathrm{C}_{17} \mathrm{H}_{17}{ }^{79} \mathrm{BrO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}=355.0304$, Found 355.0299.
FTIR (neat) $3430,2999,2907,2836,1612,1513,1248,1175,1034,1010,921,830 \mathrm{~cm}^{-1}$.
$[\alpha]_{\mathbf{D}}^{\mathbf{3 4}}:-9.0\left(c=1.0, \mathrm{CHCl}_{3}\right)$
HPLC: (Chiralcel AD-H column, hexanes: $i-\operatorname{PrOH}=95: 5,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), $e e=5 \%$.

409

The title compound was prepared according to the general procedure using 4methylbenzaldehyde $(24.1 \mathrm{mg}, 201 \mu \mathrm{~mol})$ and 1-(4-bromophenyl)allyl acetate (102 mg , $0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%$). Flash chromatography on silica (Hex/EtOAc 10:1 $\rightarrow 5: 1$) provided the title compound ($43.7 \mathrm{mg}, 138 \mu \mathrm{~mol}$, anti:syn $=4: 1$) in 69% yield as a yellow oil.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.43$ (hexanes/ethyl acetate $=3: 1$).
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.36-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{~s}, 4 \mathrm{H}), 6.97-6.90(\mathrm{~m}, 2 \mathrm{H})$, 6.19 (ddd, $J=17.1,10.3,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=10.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{dt}, J=17.1$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=140.0,138.7,137.7,137.4,131.5,130.2,128.9,126.7$, 120.5, 118.7, 77.0, 58.4, 21.2.

HRMS (CI) Calculated for $\mathrm{C}_{17} \mathrm{H}_{17}{ }^{79} \mathrm{BrO}[\mathrm{M}-\mathrm{H}]^{+}=315.0385$, Found 315.0373 .
FTIR (neat) 3439, 2918, 2861, 1487, 1402, 1179, 1073, 1010, 919, 816, $743 \mathrm{~cm}^{-1}$.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{32}:-6.3\left(c=1.0, \mathrm{CHCl}_{3}\right)$
HPLC: (Chiralcel AD-H column, hexanes: $i-\mathrm{PrOH}=95: 5,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), $e e=12 \%$.

(1S,2R)-2-(4-Bromophenyl)-1-phenylbut-3-en-1-ol (6.3d)

The title compound was prepared according to the general procedure using benzaldehyde ($22.1 \mathrm{mg}, 208 \mu \mathrm{~mol}$) and 1-(4-bromophenyl)allyl acetate ($102 \mathrm{mg}, 0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%$). Flash chromatography on silica (Hex/EtOAc 6:1) provided the title compound (46.6 mg , $154 \mu \mathrm{~mol}$, anti:syn $=4: 1$) in 74% yield as a yellow oil.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.36$ (hexanes/ethyl acetate $=4: 1$).
${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.12(\mathrm{~m}$, 2H), 6.95-6.90 (m, 2H), 6.20 (ddd, $J=17.1,10.3,8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.28 (dd, $J=10.3,1.5$
$\mathrm{Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.29$ (s, 1H).
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=141.7,139.8,137.5,131.5,130.2,128.2,127.8,126.8$, 120.6, 118.9, 77.2, 58.6.

HRMS (CI) Calculated for $\mathrm{C}_{16} \mathrm{H}_{14}{ }^{79} \mathrm{BrO}[\mathrm{M}-\mathrm{H}]^{+}=301.0228$, Found 301.0222.
FTIR (neat) $3434,3062,3029,2920,1487,1074,1010,920,814,762,726,700 \mathrm{~cm}^{-1}$.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{3 4}}:-3.8\left(c=1.0, \mathrm{CHCl}_{3}\right)$
HPLC: (Chiralcel AD-H column, hexanes: $i-\mathrm{PrOH}=95: 5,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), $e e=15 \%$.

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mA}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area 8
1	11.791	MM	0.3025	9794.96973	539.63959	48.3815
2	15.430	MM	0.4034	9781.14648	404.14508	48.3132
3	25.172	MM	0.6432	335.50162	8. 69356	1. 6572
4	30.214	MM	0.7663	333.65698	7.25710	1. 6481

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime Type } \\ & \text { [min] } \end{aligned}$	width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	11.299 MM	0.279	97187	76.70	57.5

1	11.299	MM	0.2793	1.97187 e 4	1176.70996	57.5931
2	14.461	MM	0.3619	1.45193 e 4	668.66504	42.4069

The title compound was prepared according to the general procedure using 4fluorobenzaldehyde ($24.8 \mathrm{mg}, 200 \mu \mathrm{~mol}$) and 1-(4-bromophenyl)allyl acetate (102 mg , $0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%$). Flash chromatography on silica (Hex/EtOAc 8:1 $\rightarrow 5: 1$) provided the title compound ($56.5 \mathrm{mg}, 176 \mu \mathrm{~mol}$, anti:syn $=3: 1$) in 88% yield as a yellow oil.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.37$ (hexanes/ethyl acetate $=3: 1$).
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.37-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.87$ (m, 4H), 6.18 (ddd, $J=17.0,10.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{dt}, J=$ $17.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=162.2(\mathrm{~d}, J=245.7 \mathrm{~Hz}), 139.5,137.4(\mathrm{~d}, J=3.1 \mathrm{~Hz})$, $137.3,131.6,130.1,128.4(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 120.7,119.1,115.0(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 76.6$, 58.9.
$\underline{{ }^{19} \text { F NMR }\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-114.61--114.69(\mathrm{~m}) .}$
HRMS (CI) Calculated for $\mathrm{C}_{16} \mathrm{H}_{14}{ }^{79} \mathrm{BrFO}[\mathrm{M}-\mathrm{H}]^{+}=319.0134$, Found 319.0133.
FTIR (neat) $3433,3072,2915,1604,1509,1488,1402,1223,1157,1011,924,834 \mathrm{~cm}^{-1}$.
$[\alpha]_{\mathbf{D}}^{\mathbf{3 3}}:-6.5\left(c=1.0, \mathrm{CHCl}_{3}\right)$
HPLC: (Chiralcel AD-H column, hexanes: $i-\mathrm{PrOH}=95: 5,1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$), $e e=16 \%$.

(1S,2R)-1,2-Bis(4-bromophenyl)but-3-en-1-ol (6.3f)

The title compound was prepared according to the general procedure using 4bromobenzaldehyde ($37.1 \mathrm{mg}, 201 \mu \mathrm{~mol}$) and 1-(4-bromophenyl)allyl acetate (102 mg , $0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%$). Flash chromatography on silica (Hex/EtOAc 6:1) provided the title compound ($67.5 \mathrm{mg}, 177 \mu \mathrm{~mol}$, anti:syn $=4: 1$) in 88% yield as a yellow oil.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.28+0.22$ (hexanes/ethyl acetate $=4: 1$).
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.37-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.02-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.88(\mathrm{~m}$, $2 \mathrm{H}), 6.16(\mathrm{dt}, J=17.1,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=140.6,139.3,137.1,131.7,131.3,130.1,128.5,121.6$, 120.8, 119.3, 76.6, 58.6.

HRMS (CI) Calculated for $\mathrm{C}_{16} \mathrm{H}_{16}{ }^{79} \mathrm{Br}_{2} \mathrm{O}[\mathrm{M}-\mathrm{H}]^{+}=378.9333$, Found 378.9330.
FTIR (neat) 3434, 3078, 2919, 1487, 1403, 1072, 1010, 925, 819, $745 \mathrm{~cm}^{-1}$.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{3 4}}:+6.0\left(c=1.0, \mathrm{CHCl}_{3}\right)$
HPLC: (Chiralcel OJ-H column, hexanes: $i-\mathrm{PrOH}=92: 8,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), $e e=23 \%$.

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mA} U^{*} s\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	29.071	MF	1.0923	5.96636 e 4	910.36182	61.5445
2	37.511	FM	1.5622	3.72802e4	397.73111	38.4555

The title compound was prepared according to the general procedure using 6-bromopyridine-3-carbaldehyde ($37.1 \mathrm{mg}, 199 \mu \mathrm{~mol}$) and 1-(4-bromophenyl)allyl acetate ($102 \mathrm{mg}, 0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%$). Flash chromatography on silica (Hex/EtOAc $4: 1$) provided the title compound ($62.5 \mathrm{mg}, 163 \mu \mathrm{~mol}$, anti:syn $5: 1$) in 82% yield as a yellow oil.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.21$ (hexanes/ethyl acetate $=3: 1$).
${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.05(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 4 \mathrm{H}), 6.95-6.90(\mathrm{~m}, 2 \mathrm{H})$, $6.14(\mathrm{ddd}, J=17.0,10.3,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dd}, J=10.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dt}, J=17.0$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.81$ (dd, $J=7.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.43$ (t, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=148.8,141.3,138.6,137.0,136.5,136.4,132.0,130.0$, 127.6, 121.3, 120.0, 74.3, 58.7.

HRMS (ESI) Calculated for $\mathrm{C}_{15} \mathrm{H}_{13}{ }^{79} \mathrm{Br}_{2} \mathrm{NO}[\mathrm{M}+\mathrm{Na}]^{+}=403.9256$, Found 403.9260.
FTIR (neat) 3315, 3082, 2909, 1581, 1564, 1488, 1455, 1402, 1087, 1074, 101, 924, 831, $750 \mathrm{~cm}^{-1}$.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{3 0}}:+8.3\left(c=1.0, \mathrm{CHCl}_{3}\right)$
HPLC: (Chiralcel AD-H column, hexanes: $i-\mathrm{PrOH}=95: 5,1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$), $e e=37 \%$.

The title compound was prepared according to the general procedure using 6-bromopyridine-2-carbaldehyde ($37.2 \mathrm{mg}, 200 \mu \mathrm{~mol}$) and 1-(4-bromophenyl)allyl acetate ($102 \mathrm{mg}, 0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%$). Flash chromatography on silica (Hex/EtOAc 6:1) provided the title compound ($57.8 \mathrm{mg}, 151 \mu \mathrm{~mol}$, anti:syn $4: 1$) in 75% yield as a yellow oil.
$\underline{\operatorname{TLC}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.25$ (hexanes/ethyl acetate $=4: 1$).
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.41-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{ddd}, J=17.2,10.5,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J$ $=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.45(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=161.9,141.2,139.9,138.7,136.2,131.7,130.3,127.0$, 120.8, 120.5, 118.6, 76.2, 56.6.

HRMS (APPI) Calculated for $\mathrm{C}_{15} \mathrm{H}_{14}{ }^{79} \mathrm{Br}_{2} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}=381.9437$, Found 381.9447.
FTIR (neat) $3411,2923,1582,1556,1488,1437,1406,1125,1072,1011 \mathrm{~cm}^{-1}$.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{3 3}}:-71.5\left(c=1.0, \mathrm{CHCl}_{3}\right)$
HPLC: (Chiralcel AD-H column, hexanes: $i-\mathrm{PrOH}=95: 5,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$), $e e=$ 65\%.

General Procedure and Spectral Data for Iridium Catalyzed anti-(α-Aryl)Allylation

 of Fluoral Hydrate 1i to form Products 6.4a-6.41A pressure tube was equipped with a magnetic stir bar and charged with preformed iridium catalyst ($10.7 \mathrm{mg}, 10 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$), $\mathrm{K}_{2} \mathrm{CO}_{3}(27.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 100 \mathrm{~mol} \%$), allyl donor ($0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%$) and 4A molecular sieves ($90 \mathrm{mg}, 300 \mathrm{wt} \%$). The pressure tube was purged with argon. Anhydrous THF ($1.0 \mathrm{~mL}, 0.2 \mathrm{~m}$), 2-propanol ($31 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 200$ $\mathrm{mol} \%$), and fluoral hydrate (75% in $\mathrm{H}_{2} \mathrm{O}, 22 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 100 \mathrm{~mol} \%$) were added via syringe. The sealed reaction vessel was stirred at $100{ }^{\circ} \mathrm{C}$. After 24 h the solvent was removed in vacuo and the residue was subjected to flash column chromatography on silica.

The title compound was prepared according to the general procedure using fluoral hydrate (75% in $\mathrm{H}_{2} \mathrm{O}, 22 \mu \mathrm{~L}, 200 \mu \mathrm{~mol}$) and 1-phenylallyl acetate ($71 \mathrm{mg}, 0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%$). Flash chromatography on silica (Hex/EtOAc 20:1 $\rightarrow 8: 1$) provided the title compound $(36.7 \mathrm{mg}, 170 \mu \mathrm{~mol}$, anti:syn $=>20: 1)$ in 85% yield as a yellow oil.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.60$ (hexanes/ethyl acetate $=3: 1$).
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.35-7.17(\mathrm{~m}, 5 \mathrm{H}), 6.15(\mathrm{ddd}, J=17.0,10.1,8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.27(\mathrm{dt}, J=10.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{dt}, J=17.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~h}, J=6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.69(\mathrm{dd}, J=8.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=139.8,135.0,128.9,128.2,127.4,124.8(\mathrm{~d}, J=283.2$ $\mathrm{Hz}), 119.9,73.1(\mathrm{q}, J=29.5 \mathrm{~Hz}), 50.2$.
$\underline{{ }^{19} \text { F NMR }}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-76.0(\mathrm{~d}, J=6.9 \mathrm{~Hz})$.
HRMS (CI) Calculated for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}[\mathrm{M}]^{+}=216.0762$, Found 216.0766.
FTIR (neat) $3443,2927,1266,1165,1109,925,852,761,735,701 \mathrm{~cm}^{-1}$.
$[\alpha]_{\mathbf{D}}^{\mathbf{3 4}}:-65.0\left(c=0.5, \mathrm{CHCl}_{3}\right)$
HPLC: (Chiralcel AS-H column, hexanes: $i-\mathrm{PrOH}=99: 1,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), $e e=93 \%$.

The title compound was prepared according to the general procedure using fluoral hydrate (75% in $\mathrm{H}_{2} \mathrm{O}, 22 \mu \mathrm{~L}, 200 \mu \mathrm{~mol}$) and 1-(4-bromophenyl)allyl acetate ($102 \mathrm{mg}, 0.40 \mathrm{mmol}$, $200 \mathrm{~mol} \%$). Flash chromatography on silica (Hex/EtOAc 20:1 $\rightarrow 8: 1$) provided the title compound ($51.8 \mathrm{mg}, 176 \mu \mathrm{~mol}$, anti:syn $=>20: 1$) in 88% yield as a yellow oil.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.60$ (hexanes/ethyl acetate $=3: 1$).
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.51-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.22-6.08$ (m, 1H), $5.32(\mathrm{dt}, J=10.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dt}, J=17.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~h}, J=6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=8.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=138.9,134.5,132.0,129.9,124.7(\mathrm{~d}, J=283.3 \mathrm{~Hz})$, 121.4, 120.3, 72.9 (q, $J=29.6 \mathrm{~Hz}$), 49.5.
$\underline{{ }^{19} \text { F NMR }}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-76.0(\mathrm{~d}, J=6.8 \mathrm{~Hz})$
HRMS (CI) Calculated for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{BrF}_{3} \mathrm{O}[\mathrm{M}]^{+}=293.9867$, Found 293.9868.
FTIR (neat) $3460,2923,1489,1405,1270,1168,1108,1075,1011,928,817,720 \mathrm{~cm}^{-1}$.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 7}}:-87.3\left(c=1.0, \mathrm{CHCl}_{3}\right)$
HPLC: (Chiralcel AS-H column, hexanes: $i-\operatorname{PrOH}=99: 1,1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$), $e e=94 \%$.

The title compound was prepared according to the general procedure using fluoral hydrate (75% in $\mathrm{H}_{2} \mathrm{O}, 22 \mu \mathrm{~L}, 200 \mu \mathrm{~mol}$) and 1-(4-(trifluoromethyl)phenyl)allyl acetate (98 mg , $0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%$). Flash chromatography on silica (Hex/EtOAc 20:1 $\rightarrow 8: 1$) provided the title compound ($36.3 \mathrm{mg}, 128 \mu \mathrm{~mol}$, anti:syn $=>20: 1$) in 64% yield as a yellow oil.
$\left.\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right.}\right)_{\mathrm{f}} \mathrm{R}_{\mathrm{f}}=0.18$ (hexanes/ethyl acetate $=10: 1$).
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.63-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 2 \mathrm{H}), 6.19(\mathrm{ddd}, J=$ $17.6,10.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{dt}, J=17.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25$ (pd, $J=6.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=8.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=143.9,134.2,129.8(\mathrm{q}, J=32.6 \mathrm{~Hz}), 128.6,125.9(\mathrm{q}, J$ $=3.8 \mathrm{~Hz}), 124.6(\mathrm{q}, J=284.0 \mathrm{~Hz}), 124.2(\mathrm{q}, J=272.0 \mathrm{~Hz}), 120.6,72.9(\mathrm{q}, J=29.8 \mathrm{~Hz})$, 49.9 .
${ }^{19}$ F NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-62.6,-76.1(\mathrm{~d}, J=6.5 \mathrm{~Hz})$
HRMS (CI) Calculated for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~F}_{6} \mathrm{O}[\mathrm{M}]^{+}=284.0636$, Found 284.0636.
FTIR (neat) $3434,2923,1325,1266,1164,1110,1067,1019,832,700 \mathrm{~cm}^{-1}$.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{3 3}}:--59.3\left(c=1.0, \mathrm{CHCl}_{3}\right)$
HPLC: (Chiralcel AS-H column, hexanes: $i-\mathrm{PrOH}=99: 1,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), $e e=93 \%$.

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mA} \mathrm{U}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	13.837	MM	0.4389	909.05029	34.52143	3.3974
2	15.739	MM	0.5114	2.58484 e 4	842.32935	96.6026

The title compound was prepared according to the general procedure using fluoral hydrate (75% in $\mathrm{H}_{2} \mathrm{O}, 22 \mu \mathrm{~L}, 200 \mu \mathrm{~mol}$) and 1-(p-tolyl)allyl acetate ($76 \mathrm{mg}, 0.40 \mathrm{mmol}, 200$ mol\%). Flash chromatography on silica (Hex/EtOAc 20:1 $\rightarrow 8: 1$) provided the title compound ($35.5 \mathrm{mg}, 154 \mu \mathrm{~mol}$, anti:syn $=>20: 1$) in 77% yield as a yellow oil.
$\left.\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right.}\right)_{\mathrm{f}}=0.18$ (hexanes/ethyl acetate $=10: 1$).
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.23-7.12(\mathrm{~m}, 4 \mathrm{H}), 6.18(\mathrm{ddd}, J=17.6,10.2,8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.30(\mathrm{dd}, J=10.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{dt}, J=17.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.17(\mathrm{~m}, 1 \mathrm{H})$, $3.70(\mathrm{dd}, J=8.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=137.1,136.8,135.2,129.6,128.0,123.7(\mathrm{~d}, J=283.5$ Hz), 119.7, $73.2(\mathrm{q}, J=29.3 \mathrm{~Hz}), 49.9,21.2$.
$\underline{{ }^{19} \text { F NMR }\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~} \delta=-75.9(\mathrm{~d}, J=6.9 \mathrm{~Hz})$
HRMS (CI) Calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}=231.0997$, Found 231.0999.
FTIR (neat) $3459,2924,1267,1166,1115,924,811,783,685,669 \mathrm{~cm}^{-1}$.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{3 3}}:-77.8\left(c=1.0, \mathrm{CHCl}_{3}\right)$
HPLC: (Chiralcel AS-H column, hexanes: $i-\operatorname{PrOH}=99: 1,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), $e e=92 \%$.

The title compound was prepared according to the general procedure using fluoral hydrate (75% in $\mathrm{H}_{2} \mathrm{O}, 22 \mu \mathrm{~L}, 200 \mu \mathrm{~mol}$) and 1-(4-methoxyphenyl)allyl acetate ($82 \mathrm{mg}, 0.40 \mathrm{mmol}$, $200 \mathrm{~mol} \%$). Flash chromatography on silica (Hex/EtOAc 20:1 $\rightarrow 8: 1$) provided the title compound ($34.9 \mathrm{mg}, 142 \mu \mathrm{~mol}$, anti:syn $=>20: 1$) in 71% yield as a yellow oil.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.36$ (hexanes/ethyl acetate $=4: 1$).
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.21(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.22$ $-6.11(\mathrm{~m}, 1 \mathrm{H}), 5.29(\mathrm{dt}, J=10.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dt}, J=17.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-$ $4.15(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{dd}, J=8.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=158.8,135.3,131.8,129.2,124.8(\mathrm{q}, J=283.3 \mathrm{~Hz})$, 119.5, 114.3, 73.2 (q, $J=29.2 \mathrm{~Hz}$), 55.4, 49.4.
${ }^{19}$ F NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-75.89(\mathrm{~d}, J=6.9 \mathrm{~Hz})$.
HRMS (CI) Calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{2}[\mathrm{M}]^{+}=246.0868$, Found 246.0866.
FTIR (neat) 3458, 3007, 2360, 1738, 1512, 1366, 1232, 1111, 1032, $826 \mathrm{~cm}^{-1}$.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{3 3}}:-73.5\left(c=1.0, \mathrm{CHCl}_{3}\right)$
HPLC: (Chiralcel OD-H column, hexanes: $i-\mathrm{PrOH}=99: 1,1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$), $e e=92 \%$.

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{mAU}]} \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	29.565	MM	1.1884	225.07312	3.15641	3.8790
2	40.373	MM	1.5699	5577.34863	59.21095	96.1210

The title compound was prepared according to the general procedure using fluoral hydrate (75% in $\mathrm{H}_{2} \mathrm{O}, 22 \mu \mathrm{~L}, 200 \mu \mathrm{~mol}$) and 1-(2-chlorophenyl)allyl acetate ($84 \mathrm{mg}, 0.40 \mathrm{mmol}$, $200 \mathrm{~mol} \%$). Flash chromatography on silica (Hex/EtOAc 20:1 $\rightarrow 8: 1$) provided the title compound ($30.1 \mathrm{mg}, 120 \mu \mathrm{~mol}$, anti:syn $=>20: 1$) in 60% yield as a yellow oil.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.57$ (hexanes/ethyl acetate $=3: 1$).
${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.46(\mathrm{dd}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=7.9,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.27(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{td}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.24$ (dddt, $J=$ $17.2,10.1,8.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.36-5.33(\mathrm{~m}, 1 \mathrm{H}), 5.18$ (dt, $J=17.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-$ 4.22 (m, 2H), 2.40 (d, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=137.7,133.4,133.3,130.1,129.8,128.6,127.2,124.7$ $(\mathrm{d}, J=283.3 \mathrm{~Hz}), 120.7,71.9(\mathrm{q}, J=30.0 \mathrm{~Hz}), 45.6$.
$\underline{{ }^{19} \text { F NMR }}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-76.5(\mathrm{~d}, J=6.9 \mathrm{~Hz})$.
HRMS (CI) Calculated for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{ClF}_{3} \mathrm{O}[\mathrm{M}]^{+}=250.0372$, Found 250.0367.
FTIR (neat) 3466, 2926, 1474, 1271, 1170, 1128, 1101, 928, 751, $680 \mathrm{~cm}^{-1}$.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{3 0}}:-38.8\left(c=1.0, \mathrm{CHCl}_{3}\right)$
HPLC: (Chiralcel AS-H column, hexanes: $i-\operatorname{PrOH}=99: 1,1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$), $e e=89 \%$.

The title compound was prepared according to the general procedure using fluoral hydrate (75% in $\mathrm{H}_{2} \mathrm{O}, 22 \mu \mathrm{~L}, 200 \mu \mathrm{~mol}$) and 1-(3,5-dichlorophenyl)allyl acetate ($98 \mathrm{mg}, 0.40$ $\mathrm{mmol}, 200 \mathrm{~mol} \%$). Flash chromatography on silica (Hex/EtOAc 20:1) provided the title compound ($52 \mathrm{mg}, 182 \mu \mathrm{~mol}$, anti:syn $=>20: 1$) in 91% yield as a yellow oil.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.34$ (hexanes/ethyl acetate $=9: 1$).
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.13(\mathrm{dt}, J=$ $17.8,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~h}, J=6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=8.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=143.30,135.34,133.52,127.70,126.83,125.65$, $123.39,120.84,72.76(\mathrm{q}, J=30.0 \mathrm{~Hz}), 49.32$.
$\xrightarrow{{ }^{19} \text { F NMR }}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-76.15(\mathrm{~d}, J=6.8 \mathrm{~Hz})$.
HRMS (CI) Calculated for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{O}[\mathrm{M}]^{+}=283.9983$, Found 283.9978.
FTIR (neat) $3548,2360,1588,1568,1169,1146,738,698 \mathrm{~cm}^{-1}$.
$[\alpha]_{\mathbf{D}}^{33}:-140.9\left(c=1.1, \mathrm{CHCl}_{3}\right)$
HPLC: (Chiralcel AS-H column, hexanes: $i-\mathrm{PrOH}=99: 1,1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$), $e e=94 \%$.

Peak \dagger	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \text {] }} \end{gathered}$	Height [mAU]	Area \%
1	12.974	BB	0.3107	1694.64917	83.54061	50.4033
2	17.017	BB	0.4671	1667.53186	55.40837	49.5967

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{~S}^{*}\right]} \end{gathered}$	Height [mAU]	Area \%
1	12.947	FM	0.3225	47.10421	2.43405	2.7522
2	16.788	MM	0.4797	1664.39624	57.82679	97.2478

The title compound was prepared according to the general procedure using fluoral hydrate (75% in $\mathrm{H}_{2} \mathrm{O}, 22 \mu \mathrm{~L}, 200 \mu \mathrm{~mol}$) and 1-(benzo[d][1,3]dioxol-5-yl)allyl acetate ($88 \mathrm{mg}, 0.40$ $\mathrm{mmol}, 200 \mathrm{~mol} \%$). Flash chromatography on silica (Hex/EtOAc 20:1 $\rightarrow 8: 1$) provided the title compound ($43.7 \mathrm{mg}, 168 \mu \mathrm{~mol}$, anti:syn $=>20: 1$) in 84% yield as a yellow oil.
$\left.\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right.}\right)_{\mathrm{f}} \mathrm{R}_{\mathrm{f}}=0.09$ (hexanes/ethyl acetate $=10: 1$).
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.82-6.76(\mathrm{~m}, 2 \mathrm{H}), 6.74(\mathrm{dd}, J=8.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.14$ (ddd, $J=17.5,10.3,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~s}, 2 \mathrm{H}), 5.29(\mathrm{dt}, J=10.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.18$ (dt, J $=17.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=8.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~d}, J=6.1$ $\mathrm{Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=148.0,146.8,135.1,133.6,124.8(\mathrm{~d}, J=283.6 \mathrm{~Hz})$, $121.3,119.7,108.6,108.5,101.2,73.2(\mathrm{q}, J=29.4 \mathrm{~Hz}), 49.8$.
$\underline{{ }^{19} \text { F NMR }\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-76.0(\mathrm{~d}, J=7.0 \mathrm{~Hz})}$
HRMS (CI) Calculated for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{3}[\mathrm{M}]^{+}=260.0660$, Found 260.0658.
FTIR (neat) $3472,2903,1490,1249,1169,1102,1039,931 \mathrm{~cm}^{-1}$.
$[\alpha]_{\mathbf{D}}^{\mathbf{3 2}}:-177.8\left(c=1.0, \mathrm{CHCl}_{3}\right)$
HPLC: (Chiralcel AS-H column, hexanes: $i-\operatorname{PrOH}=95: 5,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), $e e=92 \%$.

(2S,3S)-1,1,1-trifluoro-3-(furan-2-yl)pent-4-en-2-ol (6.4i)

The title compound was prepared according to the general procedure using fluoral hydrate (75% in $\mathrm{H}_{2} \mathrm{O}, 22 \mu \mathrm{~L}, 200 \mu \mathrm{~mol}$) and 1-(furan-2-yl)allyl acetate ($66.5 \mathrm{mg}, 0.40 \mathrm{mmol}, 200$ $\mathrm{mol} \%$). Flash chromatography on silica (Hex/EtOAc 20:1) provided the title compound ($25 \mathrm{mg}, 120 \mu \mathrm{~mol}$, anti:syn $=>20: 1$) in 61% yield as a yellow oil.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.22$ (hexanes/ethyl acetate $=9: 1$).
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.38(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.36-6.32(\mathrm{~m}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J$ $=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.14-6.04(\mathrm{~m}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.40(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=8.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=143.30,135.34,133.52,127.70,126.83,125.65$, $123.39,120.84,71.43(\mathrm{q}, J=30.0 \mathrm{~Hz}), 49.32$.
${ }^{19}$ F NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-76.26(\mathrm{~d}, J=6.9 \mathrm{~Hz})$.
HRMS (CI) Calculated for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~F}_{5} \mathrm{O}_{2}[\mathrm{M}]^{+}=206.0555$, Found 206.0554.
FTIR (neat) $3432,2925,1264,1130,895,734,703 \mathrm{~cm}^{-1}$.
$[\alpha]_{\mathbf{D}}^{33}:-103\left(c=0.1, \mathrm{CHCl}_{3}\right)$
HPLC: (Chiralcel AD-H column, hexanes: $i-\mathrm{PrOH}=99: 1,1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$), $e e=94 \%$.

(2S,3S)-1,1,1-trifluoro-3-(thiophen-2-yl)pent-4-en-2-ol (6.4j)

The title compound was prepared according to the general procedure using fluoral hydrate (75% in $\mathrm{H}_{2} \mathrm{O}, 22 \mu \mathrm{~L}, 200 \mu \mathrm{~mol}$) and 1-(thiophn-2-yl)allyl acetate ($72.8 \mathrm{mg}, 0.40 \mathrm{mmol}$, $200 \mathrm{~mol} \%$). Flash chromatography on silica (Hex/EtOAc 20:1) provided the title compound ($36.2 \mathrm{mg}, 164 \mu \mathrm{~mol}$, anti:syn $=>20: 1$) in 82% yield as a yellow oil.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.53$ (hexanes/ethyl acetate $=4: 1$).
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.24(\mathrm{dd}, J=4.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.21-6.09(\mathrm{~m}, 1 \mathrm{H}), 5.34(\mathrm{dt}, J=10.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{dt}, J=17.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.29$ (td, $J=6.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=8.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=142.1,133.9,127.0,125.5,124.8,124.5(\mathrm{q}, J=283.3$ $\mathrm{Hz}), 120.1,73.5(\mathrm{q}, J=29.9 \mathrm{~Hz}), 45.4$.
${ }^{{ }^{19} \text { F NMR }}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-75.8(\mathrm{~d}, J=6.9 \mathrm{~Hz})$.
HRMS (CI) Calculated for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{OS}[\mathrm{M}]^{+}=222.0326$, Found 222.0329.
FTIR (neat) $3456,2970,2361,1738,1366,1270,1106,927,852,695 \mathrm{~cm}^{-1}$.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{3 3}}:-74.5\left(c=1.0, \mathrm{CHCl}_{3}\right)$
HPLC: (Chiralcel OJ-H column, hexanes: $i-\mathrm{PrOH}=99: 1,1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$), $e e=94 \%$.

The title compound was prepared according to the general procedure using fluoral hydrate (75% in $\mathrm{H}_{2} \mathrm{O}, 22 \mu \mathrm{~L}, 200 \mu \mathrm{~mol}$) and 1-(6-methoxypyridin-3-yl)allyl acetate ($83 \mathrm{mg}, 0.40$ $\mathrm{mmol}, 200 \mathrm{~mol} \%$). Flash chromatography on silica (Hex/EtOAc 6:1) provided the title compound ($42.8 \mathrm{mg}, 173 \mu \mathrm{~mol}$, anti:syn $=>20: 1$) in 87% yield as a yellow oil.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.37$ (hexanes/ethyl acetate $=3: 1$).
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.04(\mathrm{dt}, J=2.6,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=8.6,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.72$ (dd, $J=8.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.18$ (dddd, $J=17.2,10.2,8.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.29$ (dt, $J=10.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{dt}, J=17.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~h}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}$, $3 \mathrm{H}), 3.68(\mathrm{dd}, J=8.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=163.5,146.2,138.8,134.6,128.5,124.8(\mathrm{~d}, J=283.5$ $\mathrm{Hz}), 119.8,111.0,73.0(\mathrm{q}, J=29.4 \mathrm{~Hz}), 53.7$, 46.8.
$\underline{{ }^{19} \text { F NMR }}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-75.8(\mathrm{~d}, J=6.9 \mathrm{~Hz})$
HRMS (CI) Calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}=248.0898$, Found 248.0897.
FTIR (neat) $3450,2951,1608,1495,1395,1271,1163,1128,1029,927,831,693 \mathrm{~cm}^{-1}$.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{33}:-67.3\left(c=1.0, \mathrm{CHCl}_{3}\right)$
HPLC: (Chiralcel AS-H column, hexanes: $i-\mathrm{PrOH}=99: 1,1.0 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}$), $e e=91 \%$.

The title compound was prepared according to the general procedure using fluoral hydrate (75% in $\mathrm{H}_{2} \mathrm{O}, 22 \mu \mathrm{~L}, 200 \mu \mathrm{~mol}$) and 1-(quinolin-4-yl)allyl acetate ($91 \mathrm{mg}, 0.40 \mathrm{mmol}, 200$ mol\%). Flash chromatography on silica (Hex/EtOAc 3:1 \rightarrow 1:1) provided the title compound ($44.7 \mathrm{mg}, 168 \mu \mathrm{~mol}$, anti:syn $=>20: 1$) in 84% yield as a light yellow solid.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.21$ (hexanes/ethyl acetate $=1: 1$).
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.4(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.9-7.9(\mathrm{~m}, 1 \mathrm{H}), 7.6-7.5(\mathrm{~m}$, $1 \mathrm{H}), 7.5-7.4(\mathrm{~m}, 2 \mathrm{H}), 7.4(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.8(\mathrm{~s}, 1 \mathrm{H}), 6.6(\mathrm{dd}, J=17.7,9.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.4(\mathrm{dd}, J=10.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.2(\mathrm{dt}, J=17.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.6(\mathrm{dd}, J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.4 (dd, $J=7.1,2.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=149.4,147.9,147.2,132.8,129.7,129.1,127.3,125.8$, $125.1(\mathrm{q}, J=283.4 \mathrm{~Hz}), 122.4,121.1,120.3,71.8(\mathrm{q}, J=29.9 \mathrm{~Hz}), 44.3$.
${ }^{19} \mathbf{F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-75.7(\mathrm{~d}, J=7.0 \mathrm{~Hz})$.

FTIR (neat) $3083,2920,2761,1592,1282,1145,1108,980,773 \mathrm{~cm}^{-1}$.
$[\alpha]_{\mathbf{D}}^{33}:-14.5\left(c=1.0, \mathrm{CHCl}_{3}\right)$
MP: $146^{\circ} \mathrm{C}$.
HPLC: (Chiralcel OD-H column, hexanes: $i-\mathrm{PrOH}=95: 5,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), $e e=93 \%$.

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	15.398		0.6387	8661.92383	226.02888	50.0604
2	27.564	MM	0.9531	8641.00684	151.09846	49.93

General Procedure and Spectral Data for Iridium Catalyzed anti-(α-Aryl)Allylation

 of Difluoroacetaldehyde Ethyl Hemiacetal 1j to form Products 6.5a-6.5IA pressure tube was equipped with a magnetic stir bar and charged with preformed iridium catalyst ($10.7 \mathrm{mg}, 10 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$), $\mathrm{K}_{2} \mathrm{CO}_{3}(27.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 100 \mathrm{~mol} \%$), allyl donor ($0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%$) and 5A molecular sieves ($28 \mathrm{mg}, 100 \mathrm{wt} \%$). The pressure tube was purged with argon. Anhydrous THF ($1.0 \mathrm{~mL}, 0.2 \mathrm{~m}$), 2-propanol ($31 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 200$ $\mathrm{mol} \%$), and difluoroacetaldehyde ethyl hemiacetal (90% in EtOH, $28 \mathrm{mg}, 200 \mu \mathrm{~mol}, 100$ $\mathrm{mol} \%$) were added via syringe. The sealed reaction vessel was stirred at $100^{\circ} \mathrm{C}$. After 24 h the solvent was removed in vacuo and the residue was subjected to flash column chromatography on silica.

The title compound was prepared according to the general procedure using difluoroacetaldehyde ethyl hemiacetal $(90 \%, 28 \mathrm{mg}, 200 \mu \mathrm{~mol})$ and 1-phenylallyl acetate ($71 \mathrm{mg}, 0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%$). Flash chromatography on silica (Hex/EtOAc 20:1 \rightarrow 10:1) provided the title compound $(31.5 \mathrm{mg}, 159 \mu \mathrm{~mol}$, anti:syn $=>20: 1)$ in 80% yield as a yellow oil.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.53$ (hexanes/ethyl acetate $=3: 1$).
${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.37-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.28(\mathrm{~m}, 3 \mathrm{H}), 6.20(\mathrm{dt}, J=$ $17.8,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{td}, J=55.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=$ $17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.55(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=139.6,136.0,129.1,128.2,127.5,118.9,115.2(\mathrm{t}, J=$ 243.2 Hz), $73.8(\mathrm{dd}, J=23.1,20.9 \mathrm{~Hz}), 51.0(\mathrm{t}, J=3.6 \mathrm{~Hz})$.
${ }^{19}$ F NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-129.2(\mathrm{ddd}, J=286.4,54.9,6.0 \mathrm{~Hz}),-134.4(\mathrm{ddd}, J=$ $286.4,56.0,15.7 \mathrm{~Hz})$.

HRMS (CI) Calculated for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{O}[\mathrm{M}]^{+}=198.0856$, Found 198.0852.
FTIR (neat) $3442,3030,2984,2926,1493,1455,1150,1057,926,758,701 \mathrm{~cm}^{-1}$.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{3 3}}:-78.3\left(c=1.0, \mathrm{CHCl}_{3}\right)$
HPLC: (Chiralcel AS-H column, hexanes: $i-\mathrm{PrOH}=99: 1,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), $e e=94 \%$.

The title compound was prepared according to the general procedure using difluoroacetaldehyde ethyl hemiacetal $(90 \%, 28 \mathrm{mg}, 200 \mu \mathrm{~mol})$ and 1-(4bromophenyl)allyl acetate ($102 \mathrm{mg}, 0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%$). Flash chromatography on silica (Hex/EtOAc 20:1) provided the title compound ($46.6 \mathrm{mg}, 168 \mu \mathrm{~mol}$, anti $:$ syn $=$ $>20: 1$) in 84% yield as a yellow oil.
$\left.\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right.}\right)_{\mathrm{f}} \mathrm{R}_{\mathrm{f}}=0.17$ (hexanes/ethyl acetate $=10: 1$).
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.16(\mathrm{ddd}, J=$ $17.1,10.2,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.56$ (ddd, $J=56.2,54.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.29$ (dd, $J=10.2,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.22(\mathrm{dt}, J=17.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=8.7,5.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.20(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=138.8,135.2,132.1,130.0,121.3,119.4,115.2(\mathrm{t}, J=$ 243.6 Hz), 73.5 (dd, $J=23.7,21.3 \mathrm{~Hz}$), 50.1 (dd, $J=4.0,3.1 \mathrm{~Hz}$).
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-129.1$ (ddd, $\left.J=286.5,55.0,6.2 \mathrm{~Hz}\right),-133.5(\mathrm{ddd}, J=$ 287.6, 56.1, 14.7 Hz).

HRMS (CI) Calculated for $\mathrm{C}_{11} \mathrm{H}_{11}{ }^{79} \mathrm{BrF}_{2} \mathrm{O}[\mathrm{M}]^{+}=275.9961$, Found 275.9954.
FTIR (neat) $3411,2982,2924,1489,1150,1129,1070,1011,929,821,760 \mathrm{~cm}^{-1}$.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{3 3}}:-72.0\left(c=1.0, \mathrm{CHCl}_{3}\right)$
HPLC: (Chiralcel AD-H column, hexanes: $i-\operatorname{PrOH}=99: 1,0.5 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), $e e=94 \%$.

The title compound was prepared according to the general procedure using difluoroacetaldehyde ethyl hemiacetal $(90 \%, 28 \mathrm{mg}, 200 \mu \mathrm{~mol})$ and 1-(4(trifluoromethyl)phenyl)allyl acetate ($98 \mathrm{mg}, 0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%$). Flash chromatography on silica (Hex/EtOAc 10:1) provided the title compound ($43.7 \mathrm{mg}, 164$ $\mu \mathrm{mol}$, anti:syn $=>20: 1$) in 82% yield as a yellow oil.
$\left.\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right.}\right)_{2} \mathrm{R}_{\mathrm{f}}=0.09$ (hexanes/ethyl acetate $=10: 1$).
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.63-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 2 \mathrm{H}), 6.20(\mathrm{ddd}, J=$ $17.1,10.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.59 (ddd, $J=56.3,55.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.33 (dd, $J=10.2,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.24(\mathrm{dt}, J=17.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{ddq}, J=14.1,6.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=$ $8.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=144.0,134.8,129.7(\mathrm{q}, J=32.5 \mathrm{~Hz}), 128.7,125.9(\mathrm{q}, J$ $=3.7 \mathrm{~Hz}), 124.2(\mathrm{q}, J=272.1 \mathrm{~Hz}), 119.8,115.2(\mathrm{t}, J=243.7 \mathrm{~Hz}), 73.5(\mathrm{dd}, J=24.3,21.6$ Hz), 50.4 (dd, $J=4.6,2.6 \mathrm{~Hz}$).
${ }^{19}$ F NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-62.6,-129.0(\mathrm{ddd}, J=288.7,55.1,6.4 \mathrm{~Hz}),-133.0$ (ddd, $J=288.7,56.3,13.9 \mathrm{~Hz}$).

HRMS (CI) Calculated for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~F}_{5} \mathrm{O}[\mathrm{M}]^{+}=$266.0730, Found 266.0726.
FTIR (neat) $3446,2924,1327,1166,1125,1068,1019,931,837,771 \mathrm{~cm}^{-1}$.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{3 3}}:-54.0\left(c=1.0, \mathrm{CHCl}_{3}\right)$
HPLC: $(2 \times$ Chiralcel AD-H column, hexanes: $i-\mathrm{PrOH}=99: 1,0.5 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}), e e=$ 94\%.

The title compound was prepared according to the general procedure using difluoroacetaldehyde ethyl hemiacetal ($90 \%, 28 \mathrm{mg}, 200 \mu \mathrm{~mol}$) and 1-(p-tolyl)allyl acetate ($76 \mathrm{mg}, 0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%$). Flash chromatography on silica (Hex/EtOAc 15:1) provided the title compound ($31.7 \mathrm{mg}, 149 \mu \mathrm{~mol}$, anti:syn $=>20: 1$) in 75% yield as a yellow oil.
$\left.\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right.}\right)_{\mathrm{f}} \mathrm{R}_{\mathrm{f}}=0.21$ (hexanes/ethyl acetate $=10: 1$).
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.17(\mathrm{~s}, 4 \mathrm{H}), 6.18(\mathrm{ddd}, J=17.2,10.3,8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.54(\mathrm{ddd}, J=56.0,54.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=10.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{dt}, J=17.2$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.57-3.51(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~d}, J=4.6 \mathrm{~Hz}$, $1 \mathrm{H})$.
${ }^{13}$ C NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=137.2,136.5,136.2,129.8,128.0,118.7,115.2(\mathrm{t}, J=$ $243.1 \mathrm{~Hz}), 73.7$ (dd, $J=22.9,20.7 \mathrm{~Hz}$), $50.7,21.2$.
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-129.2$ (ddd, $\left.J=285.9,54.9,5.9 \mathrm{~Hz}\right),-134.7(\mathrm{ddd}, J=$ $286.0,56.0,16.1 \mathrm{~Hz}$).

HRMS (CI) Calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~F}_{2} \mathrm{O}[\mathrm{M}]^{+}=212.1013$, Found 212.1010.
FTIR (neat) $3411,2981,2924,1514,1150,1127,1057,1001,925,816,760 \mathrm{~cm}^{-1}$.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{3 3}}:-68.3\left(c=1.0, \mathrm{CHCl}_{3}\right)$
HPLC: (Chiralcel AD-H column, hexanes: $i-\mathrm{PrOH}=99: 1,1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$), $e e=95 \%$.

(2S,3R)-1,1-difluoro-3-(4-methoxyphenyl)pent-4-en-2-ol (6.5e)

The title compound was prepared according to the general procedure using difluoroacetaldehyde ethyl hemiacetal $(90 \%, 28 \mathrm{mg}, 200 \mu \mathrm{~mol})$ and 1-(4methoxyphenyl)allyl acetate ($82.4 \mathrm{mg}, 0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%$). Flash chromatography on silica (Hex/EtOAc 20:1-10:1) provided the title compound ($37.2 \mathrm{mg}, 164 \mu \mathrm{~mol}$, anti:syn $=$ $>20: 1$) in 82% yield as a white solid.
$\underline{\operatorname{TLC}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.26$ (hexanes/ethyl acetate $=4: 1$).
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.20(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.17$ (ddd, $J=17.1,10.2,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.53$ (ddd, $J=55.9,54.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.29-5.16$ (m, 2 H), 3.97 (dddt, $J=16.2,8.3,6.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.56-3.49(\mathrm{~m}, 1 \mathrm{H}), 2.23$ (d, $J=4.6 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=158.8,136.3,131.5,129.2,118.5(\mathrm{dd}, J=243.5,25.1$ $\mathrm{Hz}), 115.2(\mathrm{t}, J=243.3 \mathrm{~Hz}), 114.4,73.8(\mathrm{dd}, J=22.9,20.7 \mathrm{~Hz}), 55.4,50.2(\mathrm{t}, J=3.7$ Hz).
${ }^{19}$ F NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-129.19(\mathrm{ddd}, J=285.6,55.0,5.8 \mathrm{~Hz}),-134.65(\mathrm{ddd}, J$ $=286.0,56.0,16.3 \mathrm{~Hz}$).

HRMS (CI) Calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~F}_{2} \mathrm{O}_{2}[\mathrm{M}]^{+}=228.0962$, Found 228.0960.
FTIR (neat) $3440,2925,2363,1737,1250,1155,1038,1023,817,772 \mathrm{~cm}^{-1}$.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{3 3}}:-70.5\left(c=1.0, \mathrm{CHCl}_{3}\right)$
MP: $83-84^{\circ} \mathrm{C}$.
HPLC: (Chiralcel AD-H column, hexanes: $i-\mathrm{PrOH}=99: 1,1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$), $e e=93 \%$.

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{~A}^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{mAU}]} \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	35.888	MM	1.1427	1265.43823	18.45711	50.1160
2	40.919	MM	1.2569	1259.57983	16.70190	49.8840

The title compound was prepared according to the general procedure using difluoroacetaldehyde ethyl hemiacetal ($90 \%, 27.9 \mathrm{mg}, 199 \mu \mathrm{~mol}$) and 1-(2chlorophenyl)allyl acetate ($84 \mathrm{mg}, 0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%$). Flash chromatography on silica $(\mathrm{Hex} / \mathrm{EtOAc} 20: 1 \rightarrow 10: 1)$ provided the title compound $(35.1 \mathrm{mg}, 151 \mu \mathrm{~mol}$, anti:syn $=$ $>20: 1$) in 76% yield as a yellow oil.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.57$ (hexanes/ethyl acetate $=3: 1$).
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.43(\mathrm{dd}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=7.9,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{td}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.23$ (ddd, $J=17.1,10.2,8.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.64$ (ddd, $J=56.4,55.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.32$ (dd, $J=10.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.25$ (dt, $J=17.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=8.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{ddq}, J=14.0,6.6,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.16(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=137.6,134.1,133.5,130.1,129.9,128.5,127.2,120.0$, $115.4(\mathrm{t}, J=243.8 \mathrm{~Hz}), 72.6(\mathrm{dd}, J=24.7,21.5 \mathrm{~Hz}), 46.3(\mathrm{dd}, J=4.7,2.7 \mathrm{~Hz})$.
${ }^{19}$ F NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-128.6(\mathrm{ddd}, J=288.0,55.0,6.6 \mathrm{~Hz}),-132.0(\mathrm{ddd}, J=$ $288.0,56.5,13.5 \mathrm{~Hz}$).

HRMS (CI) Calculated for $\mathrm{C}_{11} \mathrm{H}_{11}{ }^{35} \mathrm{ClF}_{2} \mathrm{O}[\mathrm{M}]^{+}=232.0466$, Found 232.0465.
FTIR (neat) $3443,3074,2985,2920,1474,1442,1150,1066,1001,930,751 \mathrm{~cm}^{-1}$.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 7}}:-44.3\left(c=1.0, \mathrm{CHCl}_{3}\right)$
HPLC: (Chiralcel AS-H column, hexanes: $i-\operatorname{PrOH}=97: 3,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), $e e=92 \%$.

The title compound was prepared according to the general procedure using difluoroacetaldehyde ethyl hemiacetal $(90 \%, 28 \mathrm{mg}, 200 \mu \mathrm{~mol})$ and 1-(3,5dichlorophenyl)allyl acetate ($98 \mathrm{mg}, 0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%$). Flash chromatography on silica (Hex/EtOAc 20:1) provided the title compound ($43 \mathrm{mg}, 160 \mu \mathrm{~mol}$, anti:syn $=>20: 1$) in 77% yield as a yellow oil.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.38$ (hexanes/ethyl acetate $=9: 1$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.28(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.13$ (dt, $J=17.3,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.61$ (ddd, $J=56.3,55.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.29$ (dd, $J=43.7,13.7$ $\mathrm{Hz}, 2 \mathrm{H}), 4.03-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=8.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=143.30,135.34,133.52,127.70,126.83,125.65$, $123.39,120.84,73.41$ (dd, $J=24.8,22.0 \mathrm{~Hz}), 49.90(\mathrm{dd}, J=4.9,2.3 \mathrm{~Hz})$.
${ }^{19}$ F NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-128.92(\mathrm{ddd}, J=289.4,55.1,6.0 \mathrm{~Hz}),-132.45(\mathrm{ddd}, J$ $=289.4,56.5,13.4 \mathrm{~Hz})$.

HRMS (CI) Calculated for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~F}_{2} \mathrm{O}[\mathrm{M}]^{+}=266.0077$, Found 266.0080.
FTIR (neat) $3432,3083,2984,1567,1433,1059,858,759,681 \mathrm{~cm}^{-1}$.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{3 3}}:-83.3\left(c=1.2, \mathrm{CHCl}_{3}\right)$
HPLC: (Chiralcel AS-H column, hexanes: $i-\operatorname{PrOH}=99: 1,1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$), $e e=95 \%$.

[^5]

The title compound was prepared according to the general procedure using difluoroacetaldehyde ethyl hemiacetal $(90 \%, 28 \mathrm{mg}, 200 \mu \mathrm{~mol})$ and 1-(benzo[d][1,3]dioxol-5-yl)allyl acetate ($88 \mathrm{mg}, 0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%$). Flash chromatography on silica (Hex/EtOAc 10:1) provided the title compound ($43.0 \mathrm{mg}, 178$ $\mu \mathrm{mol}$, anti:syn $=>20: 1$) in 89% yield as a yellow oil.
$\left.\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right.}\right)_{\mathrm{f}} \mathrm{R}_{\mathrm{f}}=0.13$ (hexanes/ethyl acetate $=10: 1$).
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.80-6.77(\mathrm{~m}, 2 \mathrm{H}), 6.73(\mathrm{dd}, J=8.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.13$ (ddd, $J=17.1,10.2,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~s}, 2 \mathrm{H}), 5.55(\mathrm{ddd}, J=56.0,54.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.28-$ $5.25(\mathrm{~m}, 1 \mathrm{H}), 5.22(\mathrm{dt}, J=17.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.46(\mathrm{~m}, 1 \mathrm{H}), 2.14$ (d, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=148.1,146.8,136.0,133.3,121.3,118.7,115.2(\mathrm{t}, \mathrm{J}=$ $243.2 \mathrm{~Hz}), 108.8,108.5,101.3,73.8(\mathrm{dd}, J=23.1,20.8 \mathrm{~Hz}), 50.6(\mathrm{t}, J=3.7 \mathrm{~Hz})$.
${ }^{19} \mathbf{F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-129.2(\mathrm{ddd}, J=286.1,54.7,5.9 \mathrm{~Hz}),-134.6(\mathrm{ddd}, J=$ $286.2,56.0,15.8 \mathrm{~Hz}$).

HRMS (CI) Calculated for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{O}_{3}[\mathrm{M}]^{+}=242.0755$, Found 242.0758.
FTIR (neat) $3453,2982,2897,1504,1488,1443,1244,1134,1098,1037,929 \mathrm{~cm}^{-1}$.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{3 2}}:-53.0\left(c=1.0, \mathrm{CHCl}_{3}\right)$
HPLC: (Chiralcel OJ-H column, hexanes: $i-\mathrm{PrOH}=97: 3,0.5 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), $e e=93 \%$.

The title compound was prepared according to the general procedure using using difluoroacetaldehyde ethyl hemiacetal ($90 \%, 28 \mathrm{mg}, 200 \mu \mathrm{~mol}$) and 1-(furan-2-yl)allyl acetate ($66.5 \mathrm{mg}, 0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%$). Flash chromatography on silica (Hex/EtOAc $20: 1$) provided the title compound ($25 \mathrm{mg}, 120 \mu \mathrm{~mol}$, anti:syn $=>20: 1$) in 65% yield as a yellow oil.
$\left.\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right.}\right)_{\mathrm{f}}=0.2$ (hexanes/ethyl acetate $=9: 1$).
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.39-7.37(\mathrm{~m}, 1 \mathrm{H}), 6.35(\mathrm{dd}, J=3.2,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.19(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.12-6.03(\mathrm{~m}, 1 \mathrm{H}), 5.63(\mathrm{ddd}, J=56.3,54.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.33$ (dd, $J=10.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.10(\mathrm{~m}, 1 \mathrm{H}), 3.74$ (dd, $J=$ $8.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{dd}, J=8.9,3.7 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=152.69,142.15,132.73,119.98,117.23,115.29$, $113.36,110.61,107.44,72.05(\mathrm{dd}, J=24.6,21.6 \mathrm{~Hz}), 44.86(\mathrm{dd}, J=5.1,2.9 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-128.92(\mathrm{ddd}, J=288.8,54.8,6.0 \mathrm{~Hz}),-132.79(\mathrm{ddd}, J$ $=288.8,56.3,14.2 \mathrm{~Hz}$).

HRMS (CI) Calculated for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~F}_{2} \mathrm{O}_{2}[\mathrm{M}]^{+}=188.0649$, Found 188.0644.
FTIR (neat) $3435,2926,1717,1265,1062,935,734,703 \mathrm{~cm}^{-1}$.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{33}:-43.3\left(c=0.3, \mathrm{CHCl}_{3}\right)$
HPLC: (Chiralcel AD-H column, hexanes: $i-\mathrm{PrOH}=99: 1,1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$), $e e=91 \%$.

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \frac{\%}{6} \end{gathered}$
1	18.540	MM	0.8269	56.51017	1.13897	4.2975
2	22.173	MM	0.9590	1258.43079	21.87011	95.7025

The title compound was prepared according to the general procedure using difluoroacetaldehyde ethyl hemiacetal ($90 \%, 28 \mathrm{mg}, 200 \mu \mathrm{~mol}$) and 1-(thiophen-2-yl)allyl acetate ($73 \mathrm{mg}, 0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%$). Flash chromatography on silica (Hex/EtOAc 20:1) provided the title compound ($28.7 \mathrm{mg}, 140 \mu \mathrm{~mol}$, anti:syn $=>20: 1$) in 70% yield as a yellow oil.
$\underline{\operatorname{TLC}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.54$ (hexanes/ethyl acetate $=4: 1$).
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.24(\mathrm{dd}, J=5.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=5.1,3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.20-6.06(\mathrm{~m}, 1 \mathrm{H}), 5.64(\mathrm{ddd}, J=56.3,54.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.34-$ $5.24(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{dt}, J=14.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{dd}, J=8.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~d}, J=$ $4.3 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=142.3,135.1,127.2,125.3,124.8,119.2,115.3(\mathrm{t}, J=$ $243.3 \mathrm{~Hz}), 74.0(\mathrm{dd}, J=24.6,21.4 \mathrm{~Hz}), 46.3(\mathrm{dd}, J=5.1,2.7 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-129.12(\mathrm{ddd}, J=288.7,54.9,5.5 \mathrm{~Hz}),-133.10(\mathrm{ddd}, J$ $=288.6,56.3,14.3 \mathrm{~Hz}$).

HRMS (CI) Calculated for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{OF}_{2} \mathrm{~S}[\mathrm{M}]^{+}=$204.0420, Found 204.0218.
FTIR (neat) $3444,1420,1126,1051,928,756,697 \mathrm{~cm}^{-1}$.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{3 3}}:-73.3\left(c=1.0, \mathrm{CHCl}_{3}\right)$
HPLC: (Chiralcel AD-H column, hexanes: $i-\mathrm{PrOH}=99: 1,1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$), $e e=88 \%$.

The title compound was prepared according to the general procedure using difluoroacetaldehyde ethyl hemiacetal $(90 \%, 27.3 \mathrm{mg}, 195 \mu \mathrm{~mol})$ and 1-(6-methoxypyridin-3-yl)allyl acetate ($83 \mathrm{mg}, 0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%$). Flash chromatography on silica (Hex/EtOAc 6:1) provided the title compound ($33.5 \mathrm{mg}, 146 \mu \mathrm{~mol}$, anti:syn $=$ $>20: 1$) in 75% yield as a yellow oil.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.37$ (hexanes/ethyl acetate $=3: 1$).
${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.07(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.72(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.21-6.11(\mathrm{~m}, 1 \mathrm{H}), 5.60(\mathrm{td}, J=55.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=$ $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{dd}, J=$ 8.6, 5.4 Hz, 1H), 2.53 (s, 1H).
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=163.5,146.3,138.7,135.2,128.3,119.2,115.4(\mathrm{t}, J=$ 243.6 Hz), 111.1, $73.7(\mathrm{dd}, J=24.2,21.4 \mathrm{~Hz}), 53.6,47.4(\mathrm{dd}, J=4.6,2.5 \mathrm{~Hz})$.
${ }^{19}$ F NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-128.9(\mathrm{ddd}, J=288.4,55.1,6.1 \mathrm{~Hz}),-132.8(\mathrm{ddd}, J=$ $288.5,56.4,14.0 \mathrm{~Hz}$).

HRMS (ESI) Calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~F}_{2} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}=230.0987$, Found 230.0994.
FTIR (neat) 3235, 2982, 2922, 1607, 1494, 1393, 1291, 1126, 1059, 1029, 928, 833, 774 cm^{-1}.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 9}}:-79.5\left(c=1.0, \mathrm{CHCl}_{3}\right)$
HPLC: (Chiralcel AS-H column, hexanes: $i-\mathrm{PrOH}=97: 3,1.0 \mathrm{~mL} / \mathrm{min}, 230 \mathrm{~nm}$), $e e=93 \%$.

The title compound was prepared according to the general procedure using difluoroacetaldehyde ethyl hemiacetal ($90 \%, 28 \mathrm{mg}, 200 \mu \mathrm{~mol}$) and 1-(quinolin-4-yl)allyl acetate $(91 \mathrm{mg}, 0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%$). Flash chromatography on silica (Hex/EtOAc 3:1 \rightarrow 1:1) provided the title compound ($42.6 \mathrm{mg}, 172 \mu \mathrm{~mol}$, anti:syn $=>20: 1$) in 86% yield as a white solid.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.26$ (hexanes/ethyl acetate $=1: 1$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}\right.$, Acetone- $\left.d_{6}\right): \delta=8.81(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{ddt}, J=8.5,1.3,0.6$ Hz, 1H), 8.04 (ddd, $J=8.4,1.4,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{ddd}, J=8.4,6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.66$ (dd, $J=8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.60(\mathrm{~m}, 1 \mathrm{H}), 6.51$ (ddd, $J=17.2,10.3,8.8 \mathrm{~Hz}, 1 \mathrm{H})$, 5.82 (ddd, $J=56.5,55.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.35-5.27$ (m, 2H), 4.56 (dd, $J=9.0,4.0 \mathrm{~Hz}$, 1H), $4.23-4.13$ (m, 1H), 2.99 (s, 1H).
${ }^{13} \mathbf{C}$ NMR (125 MHz , Acetone- d_{6}): $\delta=150.7,149.3,147.4,135.8,131.0,129.7,127.5$, $127.0,123.7,121.7,119.2,117.1(\mathrm{t}, J=243.6 \mathrm{~Hz}), 73.1$ (dd, $J=24.9,21.4 \mathrm{~Hz}), 45.3$ (dd, $J=5.7,2.5 \mathrm{~Hz}$).
${ }^{19}$ F NMR (471 MHz , Acetone- d_{6}): $\delta=-128.48$ (ddd, $J=285.2,55.3,6.4 \mathrm{~Hz}$), -131.12 (ddd, $J=285.0,56.7,14.0 \mathrm{~Hz}$).

HRMS (ESI) Calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~F}_{2} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}=250.1038$, Found 250.1036.
FTIR (neat) $3086,2361,1737,1589,1280,1054,927,768,660 \mathrm{~cm}^{-1}$.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{3 3}}:-33.5(c=1.0$, Acetone $)$
MP: $153-157^{\circ} \mathrm{C}$
HPLC: (Chiralcel AD-H column, hexanes: $i-\mathrm{PrOH}=95: 5,1.0 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$), $e e=97 \%$.

Enantioselective Synthesis of Di- and Trifluoro-methylated Derivatives of d -

 Hyoscyamine 6.8a and 6.8btert-butyldimethyl(((2S,3R)-1,1,1-trifluoro-3-phenylpent-4-en-2-yl)oxy)silane (6.6a')

To a solution of alcohol $\mathbf{6 . 4 a}(216.2 \mathrm{mg}, 1.000 \mathrm{mmol}, 100 \mathrm{~mol} \%)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added imidazole ($204.2 \mathrm{mg}, 3.000 \mathrm{mmol}, 300 \mathrm{~mol} \%$), TBSCl ($301.5 \mathrm{mg}, 2.000 \mathrm{mmol}, 200$ $\mathrm{mol} \%$) and 4-(dimethylamino)pyridine ($12.2 \mathrm{mg}, 0.100 \mathrm{mmol}, 10 \mathrm{~mol} \%$). The reaction was heated to $40^{\circ} \mathrm{C}$ for 24 h . The contents were diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 2 \mathrm{~mL})$, and the combined organic phases were washed with brine $(2 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed in vacuo. The residue was subjected to flash chromatography on silica (Hexanes) to furnish the title compound $\mathbf{6 . 6 a}{ }^{\prime}(239.8 \mathrm{mg}, 0.726 \mathrm{mmol})$ in 73% yield as a clear oil.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.43$ (hexanes).
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 3 \mathrm{H}), 6.41-6.24$ $(\mathrm{m}, 1 \mathrm{H}), 5.25(\mathrm{dd}, J=10.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{qd}, J=6.7,3.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=9.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}),-0.02(\mathrm{~s}, 3 \mathrm{H}),-0.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=141.2,134.9,128.6,128.5,127.0,124.8(\mathrm{q}, J=284.9$ $\mathrm{Hz}), 118.2,75.7(\mathrm{q}, J=29.0 \mathrm{~Hz}), 50.6,25.8,18.3,-5.0(\mathrm{q}, J=1.9 \mathrm{~Hz}),-5.2$.
$\underline{{ }^{19} \text { F NMR }\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-74.43(\mathrm{~d}, J=6.6 \mathrm{~Hz}) .}$
HRMS (CI) Calculated for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}=331.1705$, Found 331.1706.
FTIR (neat) 2931, 2860, 1473, 1382, 1260, 1145, 1115, 1002, 927, 876, 829, 779, $700 \mathrm{~cm}^{-}$ 1.
$[\alpha]_{\mathbf{D}}^{\mathbf{2 6}}:-140.5\left(c=1.0, \mathrm{CHCl}_{3}\right)$

(2R,3S)-3-((tert-butyldimethylsilyl)oxy)-4,4,4-trifluoro-2-phenylbutanoic acid (6.6a)

To a stirred solution of $\mathbf{6 . 6 \mathbf { a } ^ { \prime }}(195.0 \mathrm{mg}, 0.590 \mathrm{mmol}, 100 \mathrm{~mol} \%)$, in $1.7 \mathrm{mLCCl}{ }_{4}, 1.7 \mathrm{~mL}$ $\mathrm{CH}_{3} \mathrm{CN}$, and $2.5 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ was added $\mathrm{NaIO}_{4}(504.8 \mathrm{mg}, 2.360 \mathrm{mmol}, 400 \mathrm{~mol} \%$). After all the NaIO_{4} had dissolved, $\mathrm{RuCl}_{3} .2 \mathrm{H}_{2} \mathrm{O}(14.4 \mathrm{mg}, 0.059 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ was added, and the reaction mixture was stirred vigorously for 24 h at $25^{\circ} \mathrm{C}$. The contents were diluted with $\operatorname{EtOAc}(5 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The aqueous layer was extracted with $\operatorname{EtOAc}(2 \times 5 \mathrm{~mL})$, and the combined organic phases were washed with brine (5 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed in vacuo. The residue was subjected to flash chromatography on silica (Hex/EtOAc 5:1) to furnish the title compound 6.6a (145.2 $\mathrm{mg}, 0.417 \mathrm{mmol}$) in 71% yield as a white solid.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.43$ (hexanes/ethyl acetate $=3: 1$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.40-7.29(\mathrm{~m}, 5 \mathrm{H}), 4.60(\mathrm{dq}, J=9.4,6.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.97(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=176.7,132.7,128.9,128.6,124.3(\mathrm{q}, J=284.1 \mathrm{~Hz})$, $73.1(\mathrm{q}, J=29.7 \mathrm{~Hz}), 55.1,25.7,18.3,-4.8-4.9(\mathrm{~m}),-5.0$.
${ }^{19}$ F NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-73.71(\mathrm{~d}, J=5.9 \mathrm{~Hz})$.
HRMS (CI) Calculated for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}=349.1447$, Found 349.1449.
FTIR (neat) 2932, 2861, 1709, 1363, 1265, 1174, 1131, 892, 834, $784 \mathrm{~cm}^{-1}$.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 8}}:-88.0\left(c=1.0, \mathrm{CHCl}_{3}\right)$
MP: $100-105^{\circ} \mathrm{C}$

(1R,3r,5S)-8-methyl-8-azabicyclo[3.2.1]octan-3-yl (2R,3S)-3-((tert-butyldimethylsilyl)oxy)-4,4,4-trifluoro-2-phenylbutanoate (6.7a)

A vial equipped with a magnetic stir bar was charged with $\mathbf{6 . 6 a}(19.9 \mathrm{mg}, 0.0571 \mathrm{mmol}$, $100 \mathrm{~mol} \%$), 2-methyl-6-nitrobenzoic anhydride ($29.5 \mathrm{mg}, 0.0857 \mathrm{mmol}, 150 \mathrm{~mol} \%$), 4(dimethylamino)pyridine ($0.7 \mathrm{mg}, 0.0057 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and purged with argon. Freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}(570 \mu \mathrm{~L})$ and N, N-diisopropylethylamine ($29.3 \mu \mathrm{~L}, 0.1713 \mathrm{mmol}, 300$ $\mathrm{mol} \%$), were added sequentially via syringe. The resulting mixture was stirred at $25^{\circ} \mathrm{C}$ for 10 minutes. Tropine ($12.1 \mathrm{mg}, 0.0857 \mathrm{mmol}, 150 \mathrm{~mol} \%$) was added in a single portion at $25^{\circ} \mathrm{C}$. The reaction was stirred at $40^{\circ} \mathrm{C}$ for 20 h . The reaction mixture was concentrated, and the residue was subjected to flash chromatography on basic alumina ($\mathrm{DCM} / \mathrm{MeOH}$ 98:2) to furnish the title compound $\mathbf{6 . 7 a}(23.7 \mathrm{mg}, 0.0503 \mathrm{mmol}, 7: 1 \mathrm{dr})$ in 88% yield as a clear oil.

TLC (Basic Alumina) $\mathrm{R}_{\mathrm{f}}=0.50(\mathrm{DCM} / \mathrm{MeOH}=95: 5)$.
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.37-7.27(\mathrm{~m}, 5 \mathrm{H}), 4.98(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{dq}$, $J=8.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.81(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dt}, J=6.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.94$ (dt, $J=$ $6.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{dt}, J=14.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{dt}, J=15.1,4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.91$ (qdd, $J=10.6,9.0,7.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.65(\mathrm{~m}, 1 \mathrm{H})$, $1.50-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.33(\mathrm{~m}, 1 \mathrm{H}), 0.68(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}),-0.41(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.1,134.1,129.8,128.7,128.2,124.9(\mathrm{q}, J=284.3$ $\mathrm{Hz}), 72.3(\mathrm{q}, J=30.3 \mathrm{~Hz}), 68.7,59.8,59.7,53.4,40.5,36.4,36.3,25.5,25.4,25.2,18.1$, -5.2--5.4 (m), -5.5.
${ }^{19}$ F NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-76.08(\mathrm{~d}, J=5.8 \mathrm{~Hz})$.
HRMS (APPI) Calculated for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}=472.2489$, Found 472.2498.
FTIR (neat) 2931, 2859, 1731, 1473, 1269, 1168, 1128, 1034, 840, 782, $700 \mathrm{~cm}^{-1}$.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 6}}:-31.5\left(c=1.0, \mathrm{CHCl}_{3}\right)$

$$
\begin{array}{lll}
\hline 0 & 10 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & -100 & -110 & -120 & -130 & -140 & -150 & -160 & -170 & -180 & -190 & -21
\end{array}
$$

(1R,3r,5S)-8-methyl-8-azabicyclo[3.2.1]octan-3-yl (2R,3S)-4,4,4-trifluoro-3-hydroxy-2-phenylbutanoate (6.8a)

To a polyethylene tube charged with $7 \mathbf{a}(10.0 \mathrm{mg}, 0.0212 \mathrm{mmol}, 100 \mathrm{~mol} \%)$ in THF (420 $\mu \mathrm{L})$ was added HF-pyridine $(100 \mu \mathrm{~L})$ dropwise at $25^{\circ} \mathrm{C}$. The resulting mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 24 h . The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and quenched by careful addition of saturated $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 x 2 mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was subjected to flash chromatography on basic alumina (DCM/MeOH 95:5) to furnish the title compound $\mathbf{8 a}(6.7 \mathrm{mg}, 0.0188 \mathrm{mmol})$ in 89% yield as a clear oil.

TLC (Basic Alumina) $\mathrm{R}_{\mathrm{f}}=0.30(\mathrm{DCM} / \mathrm{MeOH}=95: 5)$.
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.40-7.32(\mathrm{~m}, 5 \mathrm{H}), 4.99(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{p}, J$ $=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.05(\mathrm{~m}, 1 \mathrm{H}), 3.01-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~s}$, $3 \mathrm{H}), 2.20-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{dq}, J=10.4,6.8$, $5.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.68(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{ddd}, J=13.3,9.3$, $4.6 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.4,133.0,129.4,129.1,128.5,124.7(\mathrm{q}, J=282.3$ $\mathrm{Hz}), 70.4(\mathrm{q}, J=30.7 \mathrm{~Hz}), 68.9,59.8,59.7,52.2,40.3,36.2,36.0,25.4,25.0$.
$\xrightarrow{{ }^{19} \text { F NMR }}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-76.92(\mathrm{~d}, J=6.4 \mathrm{~Hz})$.
HRMS (ESI) Calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}=358.1625$, Found 358.1628.
FTIR (neat) 2926, 2853, 1732, 1456, 1269, 1163, 1130, 1032, $700 \mathrm{~cm}^{-1}$.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{3 5}}:-20.0\left(c=0.5, \mathrm{CHCl}_{3}\right)$

tert-butyldimethyl(((2S,3R)-1,1,1-trifluoro-3-phenylpent-4-en-2-yl)oxy)silane (6.6b')

To a solution of alcohol $\mathbf{6 . 5 a}\left(99.1 \mathrm{mg}, 0.500 \mathrm{mmol}, 100 \mathrm{~mol} \%\right.$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added imidazole ($102.1 \mathrm{mg}, 1.500 \mathrm{mmol}, 300 \mathrm{~mol} \%$), $\mathrm{TBSCl}(150.7 \mathrm{mg}, 1.000 \mathrm{mmol}, 200$ $\mathrm{mol} \%$) and 4 -(dimethylamino)pyridine ($6.1 \mathrm{mg}, 0.050 \mathrm{mmol}, 10 \mathrm{~mol} \%$). The reaction was allowed to stir at $25^{\circ} \mathrm{C}$ for 24 h . The contents were diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 1 \mathrm{~mL})$, and the combined organic phases were washed with brine $(1 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed in vacuo. The residue was subjected to flash chromatography on silica (Hexanes) to furnish the title compound $\mathbf{6 . 6 b}{ }^{\mathbf{\prime}}(137.0 \mathrm{mg}, 0.438 \mathrm{mmol})$ in 88% yield as a clear oil.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.43$ (hexanes).
${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.35-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 3 \mathrm{H}), 6.29(\mathrm{dt}, J=$ $17.2,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.49$ (ddd, $J=56.7,55.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=10.3,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 5.20 (ddd, $J=17.2,1.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dq}, J=13.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dt}, J=9.0,3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}),-0.03(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 3 \mathrm{H}),-0.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=140.8,135.4,128.7,128.5,127.0,118.7,116.0(\mathrm{dd}, J$ $=245.7,243.8 \mathrm{~Hz}), 76.0(\mathrm{dd}, J=25.3,20.3 \mathrm{~Hz}), 51.2(\mathrm{dd}, J=5.6,2.2 \mathrm{~Hz}), 25.9,18.3$, 4.7 (d, $J=3.6 \mathrm{~Hz}$), -5.2 .
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-127.12(\mathrm{ddd}, J=284.9,55.5,5.1 \mathrm{~Hz}),-129.83(\mathrm{ddd}, J$ $=283.5,56.7,13.5 \mathrm{~Hz}$).

HRMS (ESI) Calculated for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}=313.1799$, Found 313.1806.
FTIR (neat) 2955, 2930, 2858, 1473, 1256, 1138, 1117, 1069, 1005, 927, 838, 779, 701 cm^{-1}.
$[\alpha]_{\mathbf{D}}^{\mathbf{2 8}}:-133.3\left(c=1.0, \mathrm{CHCl}_{3}\right)$

(2R,3S)-3-((tert-butyldimethylsilyl)oxy)-4,4-difluoro-2-phenylbutanoic acid (6.6b)

6.6b'

(2:2:3, 0.1 M$)$
$25{ }^{\circ} \mathrm{C}$

6.6b

To a stirred solution of $\mathbf{6 . 6 b}{ }^{\mathbf{\prime}}(109.4 \mathrm{mg}, 0.350 \mathrm{mmol}, 100 \mathrm{~mol} \%)$, in $1.0 \mathrm{~mL} \mathrm{CCl}_{4}, 1.0 \mathrm{~mL}$ $\mathrm{CH}_{3} \mathrm{CN}$, and $1.5 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ was added $\mathrm{NaIO}_{4}(299.5 \mathrm{mg}, 1.400 \mathrm{mmol}, 400 \mathrm{~mol} \%)$. After all the NaIO_{4} had dissolved, $\mathrm{RuCl}_{3} .2 \mathrm{H}_{2} \mathrm{O}(8.5 \mathrm{mg}, 0.035 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ was added, and the reaction mixture was stirred vigorously for 24 h at $25^{\circ} \mathrm{C}$. The contents were diluted with EtOAc (3 mL) and washed with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc ($2 \times 3 \mathrm{~mL}$), and the combined organic phases were washed with brine (3 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed in vacuo. The residue was subjected to flash chromatography on silica (Hex/EtOAc 5:1) to furnish the title compound 6.6b (85.4 $\mathrm{mg}, 0.258 \mathrm{mmol}$) in 74% yield as a white solid.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.43$ (hexanes/ethyl acetate $=3: 1$).
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.40-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.30(\mathrm{td}, J=54.4,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.43 (dddd, $J=19.1,9.7,6.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.13$ (s, 3 H), 0.07 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=176.6,133.1,129.3,128.8,128.7,114.2(\mathrm{dd}, J=$ $246.0,242.6 \mathrm{~Hz}$), 73.7 - 73.3 (m), 54.7, 25.9, 18.4, -4.5 (d, $J=3.7 \mathrm{~Hz}$), -5.2 .
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-127.22(\mathrm{ddd}, J=284.4,54.5,4.6 \mathrm{~Hz}),-135.17$ (ddd, J $=284.2,54.4,19.1 \mathrm{~Hz}$).

HRMS (ESI) Calculated for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}=353.1355$, Found 353.1361.
FTIR (neat) 2955, 2930, 2859, 1714, 1254, 1167,1115, 1065, 935, 837, 780, $699 \mathrm{~cm}^{-1}$.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 9}}:-95.5\left(c=1.0, \mathrm{CHCl}_{3}\right)$
MP: $98-103^{\circ} \mathrm{C}$

(1R,3r,5S)-8-methyl-8-azabicyclo[3.2.1]octan-3-yl (2R,3S)-3-((tert-
butyldimethylsilyl)oxy)-4,4-difluoro-2-phenylbutanoate (6.7b)

A vial equipped with a magnetic stir bar was charged with 6.6b $(10.0 \mathrm{mg}, 0.0303 \mathrm{mmol}$, $100 \mathrm{~mol} \%$), 2-methyl-6-nitrobenzoic anhydride ($15.7 \mathrm{mg}, 0.0455 \mathrm{mmol}, 150 \mathrm{~mol} \%$), 4(dimethylamino)pyridine ($0.4 \mathrm{mg}, 0.0030 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and purged with argon. Freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mu \mathrm{~L})$ and N, N-diisopropylethylamine ($5.2 \mu \mathrm{~L}, 0.0303 \mathrm{mmol}, 100$ $\mathrm{mol} \%$), were added sequentially via syringe. The resulting mixture was stirred at $25^{\circ} \mathrm{C}$ for 10 minutes. Tropine ($6.4 \mathrm{mg}, 0.0455 \mathrm{mmol}, 150 \mathrm{~mol} \%$) was added in a single portion at $25^{\circ} \mathrm{C}$. The reaction was stirred at $25^{\circ} \mathrm{C}$ for 20 h . The reaction mixture was concentrated, and the residue was subjected to flash chromatography on basic alumina ($\mathrm{DCM} / \mathrm{MeOH}$ 98:2) to furnish the title compound $\mathbf{6 . 7 b}(12.1 \mathrm{mg}, 0.0267 \mathrm{mmol}, 4: 1 \mathrm{dr})$ in 88% yield as a clear oil.
$\underline{\text { TLC (Basic Alumina) }} \mathrm{R}_{\mathrm{f}}=0.50(\mathrm{DCM} / \mathrm{MeOH}=95: 5)$.
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.36-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.59(\mathrm{td}, J=55.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.99$ $(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.53-4.43(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.08-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.98$ $-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-$ $1.80(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.47(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.23-1.17(\mathrm{~m}, 1 \mathrm{H}), 0.73(\mathrm{~s}$, $9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}),-0.29(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.6,134.7,129.9,128.6,128.0,115.7(\mathrm{t}, J=245.4$ Hz), 73.1 (t, $J=22.9 \mathrm{~Hz}$), 68.4, 59.9, 59.8, 53.7 - 53.5 (m), 40.4, 36.4, 36.1, 25.7, 25.4, 25.0, 18.2, -4.9, -5.4.
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-126.38(\mathrm{ddd}, J=285.8,55.2,4.6 \mathrm{~Hz}),-130.11$ (ddd, J $=285.7,56.3,14.4 \mathrm{~Hz})$.

HRMS (APPI) Calculated for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{~F}_{2} \mathrm{NO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}=454.2584$, Found 454.2588.
$\underline{\text { FTIR (neat) } 2929,2856,1725,1472,1254,1150,1119,1064,1034,934, ~ 838, ~ 780, ~} 700$ cm^{-1}.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 9}}:-20.5\left(c=1.0, \mathrm{CHCl}_{3}\right)$

(1R,3r,5S)-8-methyl-8-azabicyclo[3.2.1]octan-3-yl (2R,3S)-4,4-difluoro-3-hydroxy-2phenylbutanoate (6.8b)

6.7b

6.8b

To a polyethylene tube charged with $\mathbf{6 . 7 b}(10.0 \mathrm{mg}, 0.0220 \mathrm{mmol}, 100 \mathrm{~mol} \%)$ in THF (440 $\mu \mathrm{L}$) was added HF-pyridine ($100 \mu \mathrm{~L}$) dropwise at $25^{\circ} \mathrm{C}$. The resulting mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 24 h . The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and quenched by careful addition of saturated $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 x 2 mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was subjected to flash chromatography on basic alumina ($\mathrm{DCM} / \mathrm{MeOH} 95: 5$) to furnish the title compound $\mathbf{6 . 8 b}(6.0 \mathrm{mg}, 0.0177 \mathrm{mmol})$ in 80% yield as a clear oil.

TLC (Basic Alumina) $\mathrm{R}_{\mathrm{f}}=0.40(\mathrm{DCM} / \mathrm{MeOH}=95: 5)$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.42-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.57(\mathrm{td}, J=55.7,4.9 \mathrm{~Hz}, 1 \mathrm{H})$, $5.04(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.53-4.45(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-3.09(\mathrm{~m}$, $1 \mathrm{H}), 3.05-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.23(\mathrm{~m}, 1 \mathrm{H}), 1.93-$ $1.84(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.63(\mathrm{~m}, 3 \mathrm{H}), 1.49(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.15-1.04(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.2,133.4,129.5,129.1,128.4,115.2(\mathrm{dd}, J=244.8$, $241.8 \mathrm{~Hz}), 71.2(\mathrm{dd}, J=25.0,23.3 \mathrm{~Hz}), 68.5,60.0,59.9,51.9(\mathrm{dd}, J=5.2,1.9 \mathrm{~Hz}), 40.2$, 36.1, 35.9, 25.3, 24.8.
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-129.35(\mathrm{ddd}, J=290.7,54.9,6.1 \mathrm{~Hz}),-131.39(\mathrm{ddd}, J$ $=290.6,56.4,13.1 \mathrm{~Hz}$).

HRMS (ESI) Calculated for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}=340.1719$, Found 340.1722.

FTIR (neat) 2933, 2856, 1727, 1455, 1276, 1222, 1140, 1065, 1032, 705, $667 \mathrm{~cm}^{-1}$.
$[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{3 5}}:-18.5\left(c=0.5, \mathrm{CHCl}_{3}\right)$

Single Crystal Diffraction Data for 6.41

Empirical formula	$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NO}$
Formula weight	267.25
Temperature	100(2) K
Wavelength	$1.54184 \AA$
Crystal system	orthorhombic
Space group	P 2122_{1}
Unit cell dimensions	$\mathrm{a}=7.0471(10) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=9.5750(14) \AA \quad \beta=90^{\circ}$.
	$\mathrm{c}=18.299(3) \AA \quad \gamma=90^{\circ}$.
Volume	1234.8(3) \AA^{3}
Z	4
Density (calculated)	$1.438 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.049 \mathrm{~mm}^{-1}$
F(000)	552
Crystal size	$0.260 \times 0.150 \times 0.060 \mathrm{~mm}^{3}$
Theta range for data collection	4.833 to 75.048°.
Index ranges	$-8<=\mathrm{h}<=8,-11<=\mathrm{k}<=11,-22<=\mathrm{l}<=22$
Reflections collected	9466
Independent reflections	$2495[\mathrm{R}(\mathrm{int})=0.0467]$
Completeness to theta $=67.684^{\circ}$	99.9 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00 and 0.651
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2495 / 0/176
Goodness-of-fit on F2	1.133
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$R_{1}=0.0404, w R_{2}=0.1146$
R indices (all data)	$R_{l}=0.0422, w R_{2}=0.1176$
Absolute structure parameter	-0.02(13)
Extinction coefficient	n / a
Largest diff. peak and hole	0.195 and -0.260 e. \AA^{-3}

View of 6.41 showing the atom labeling scheme. Displacement ellipsoids are scaled to the 50% probability level.

Chapter 7: Rhodium Catalyzed Formate Mediated Reductive Coupling of Aldehydes and Aryl Iodides*

7.1 Introduction

Since the discovery of pre-formed organometallic reagents ${ }^{1}$, the addition of organometallic reagents to carbonyl compounds and imines ${ }^{2}$ to form new C-C bond has been a milestone in chemical synthesis. ${ }^{3}$ While the requirement of cryogenic conditions and generation of stoichiometric metal byproducts complicate the applications of using organometallic reagents on practical scale. In most cases, the organometallic reagents were prepared from the corresponding organohalides, so metal catalyzed reductive coupling of organohalides with carbonyl compounds has become an alternative protocol to avoid organometallic reagents in carbonyl addition. The common reductants used in these reactions are metal reductants $(\mathrm{Zn}, \mathrm{Mn})$, toxic chromium(II) salts, pyrophoric organometallic reductants $\left(\mathrm{BEt}_{3}, \mathrm{ZnEt}_{2}, \mathrm{AlMe}_{3}\right)$, and expensive silane reductant. ${ }^{4}$ Using relatively cheap, environment benign reductants, like hydrogen gas, 2-propanol and formic acid, which were used in the carbonyl and imine reductive coupling ${ }^{5}$ by our group, are more desirable (Figure 7.1).

Except from Nozaki-Hiyama-Kishi reaction ${ }^{6,7}$, there are very few intermolecular reductive couplings of aryl halide with aldehydes and all of those were utilizing zinc metal or $\mathrm{Mn}-\mathrm{Cr}$ alloy ${ }^{8}$ as terminal reductants or electrochemical reduction. ${ }^{9}$ Recently in our lab, a hydrogen mediated intramolecular Grignard-type cyclization was reported, ${ }^{10}$ while these conditions could not promote the intermolecular coupling reaction. Even though the related redox-neutral coupling of aryl halides with aldehydes to form ketone products have been

[^6]reported. ${ }^{11}$ In this chapter, the first intermolecular metal catalyzed reductive coupling of aryl halide and aldehydes mediated by formate was discribed.

Classical C=O Arylation via Arylmetal Reagents

C=O Arylation via Metal Catalyzed Reductive Coupling

This Work: C=O Arylation via Transfer Hydrogenation

Figure 7.1 Carbonyl Arylation Strategies Comparison.

7.2 Reaction Development and Scope

Initial experiments started with exposing piperonal 7.1a and iodotoluene 7.2a to 2propanol or sodium formate together with diverse rhodium and palladium complexes.

Table 7.1 Selected Optimization Experiments for Carbonyl Arylation to Form Adduct 7.3a.

${ }^{\mathrm{a}}$ Yields are material isolated by silica gel chromatography. ${ }^{t} \mathrm{Bu}_{2} \mathrm{PMe} \cdot \mathrm{HBF}_{4}$ was emplyed as ligand precursor. $\mathrm{P}^{t} \mathrm{Bu}_{3}$ was used as a 1.0 M solution in toluene. Lithium formate was used as the monohydrate. The loading of bidentate ligands was $5.5 \mathrm{~mol} \%$. The loading of dimeric rhodium pre-catalyst was $2.5 \mathrm{~mol} \%$. See supporting Information for further experimental details. ${ }^{\mathrm{b}} \mathrm{No} \mathrm{Cs}_{2} \mathrm{CO}_{3} .{ }^{\mathrm{c}} 75{ }^{\circ} \mathrm{C}$ in DME or $130{ }^{\circ} \mathrm{C}$ in diglyme. ${ }^{\mathrm{d}} \mathbf{7 . 2 a}(150 \mathrm{~mol} \%)$.

In the conditions when $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}(5 \mathrm{~mol} \%), \mathrm{PCy}_{3}(11 \mathrm{~mol} \%)$, sodium formate (300 $\mathrm{mol} \%$), and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(100 \mathrm{~mol} \%)$ were used in dioxane under $130{ }^{\circ} \mathrm{C}$, the desired coupling product 7.3a was obtained with 12% yield (Table 7.1, entry 1). Diverse ligands were tested under these conditions (Table 7.1, entries 2-8), and it was found that ${ }^{l} \mathrm{Bu}_{2} \mathrm{PMe}$ modified rhodium complex was relatively efficient in promoting the reductive coupling and provided adduct 7.3a in 40% isolated yield (Table 7.1, entry 8). Different solvents were evaluated, and yields were improved to 64% and 72% by using tert-amyl alcohol (Table 7.1, entry 9) and dimethoxyethane (Table 7.1, entry 10), respectively. Later on, more formate salts, 2propanol and hydrogen gas were also evaluated as terminal reductants, no improvement on the yield was observed. Other rhodium pre-catalysts could not provide the similar efficiency in the reaction. Lower loading of both aryl halide 7.2a and sodium formate led to the decrease of isolation yield of adduct 7.3a.

With the optimal conditions in hand, a wide range of substrates were applied to the reductive coupling to form secondary alcohols 7.3a-7.3u (Table 7.2). Both aromatic 7.1a7.1p and aliphatic aldehydes $7.1 \mathbf{q - 7 . 1 u}$ were engaged in the reductive coupling with aryl halides efficiently and diverse functional groups were tolerated. In the formation of 7.3b, 7.3f, 7.3j, 7.3o, and 7.3p, lower halides (aryl chloride and aryl bromide) didn't disturb the activation of aryl halides to form the desired coupling adducts. Also, fluorine-containing functional groups were tolerated. Notably, 2-fluoroiodobenzene 7.21 and 2chloroiodobenzene $\mathbf{7 . 2 0}$ were converted to adducts $\mathbf{7 . 3 1}$ and $\mathbf{7 . 3 0}$ without potential aryne formation. ${ }^{12}$ Acidic hydrogens, like $\mathrm{OH}-$ and NH -groups, were also tolerated under our conditions, which was demonstrated by formation of $\mathbf{7 . 3 g}, 7.3 \mathrm{i}$, and 7.3s. Heterocyclic moiety containing secondary alcohols $\mathbf{7 . 3}$ e, $\mathbf{7 . 3 h}$, and 7.3 o were successfully obtained under reductive coupling. Steric hindered aryl iodide 7.2c could engage in the coupling

Table 7.2 Formate Mediated Reductive Coupling of Aldehydes 7.1a-7.1u to Aryl Iodides 7.2a-7.2u to Form Adducts 7.3a-7.3u.

7.3a, 72\% Yield

7.3b, 80\% Yield

7.3c, 62\% Yield ${ }^{\text {b }}$

7.3d, 76\% Yield ${ }^{\text {b }}$

7.3e, 78\% Yield ${ }^{\text {b }}$

7.3f, 73\% Yield

7.3g, 66\% Yield

MeO
7.3j, 69\% Yield

7.3m, 62\% Yield

7.3h, 55\% Yield

7.3i, 58\% Yield

7.3k, 75\% Yield

7.3n, 83\% Yield

7.30, 60\% Yield

7.3p, 83\% Yield

7.3s, 57\% Yield

7.3q, 64\% Yield ${ }^{b}$

7.3t, 65\% Yield

7.3r, 62\% Yield

7.3u, 85\% Yield
${ }^{a}$ Yields are material isolated by silica gel chromatography. See supporting Information for further experimental details. ${ }^{\mathrm{b}}\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}(2.5 \mathrm{~mol} \%)$ was used.
was very impressive. Finally, both linear and branched aliphatic aldehydes 7.1q-7.1u were converted to the corresponding adducts $\mathbf{7 . 3 q - 7 . 3 u}$ with good yields.

7.3 Mechanism and Discussion

Deuterium labelling experiments were conducted to help us to understand how the reaction proceeded (Scheme 7.1). When deuterio-7.1a and 7.2a were used under the standard conditions, dueterio-7.3a was isolated with 77% yield and the carbinol position was fully deuterium incorporated. When $\mathrm{NaO}_{2} \mathrm{CD}$ ($300 \mathrm{~mol} \%$) was used instead under standard conditions, the isolated product did not have deuterium incorporated. These data suggested that the coupling adduct did not form via formate mediated reduction of ketones, which could derive from rhodium alkoxide via β-elimination. To further prove this, aryl ketones were subjected to the standard conditions and only trace carbonyl reduction

Scheme 7.1 Deuterium Labelling Experiments and Proposed Catalytic Mechanism for Formate Mediated Arylation.

product was observed.

Based on the deuterium study results, the catalytic mechanism for this rhodium catalyzed formate mediated reductive coupling of aryl halides and aldehydes was proposed (Scheme 7.1). Oxidative addition of aryl halide delivered rhodium(III) complex I. Coordination of aldehyde followed by carbonyl insertion into the rhodium-aryl bond to for the rhodium alkoxide II. Rhodium formate complex III was formed via ligand exchange with the sodium formate. Release of carbon dioxide gas via β-hydride elimination formed the rhodium hydride species IV. Final reductive elimination regenerated rhodium(I) and closed the catalytic cycle.

7.4 Conclusion

In summary, the first example of reductive carbonyl arylation using non-metallic reductant was reported here. This method was applied to a broad range of substrates with functional groups, for example, lower halides and protic functional groups, which were not compatible with traditional organometallic reagents. This work also expanded the scope of hydrogen transfer mediated $\mathrm{C}-\mathrm{C}$ bond forming reactions.

7.5 EXPERIMENTAL DETAILS

General Information

Unless otherwise noted, all reactions were performed using oven-dried glassware under an atmosphere of dry Ar. Rh-catalyzed cycloaddition reactions were conducted in pressure tubes (13 x 100 mm) sealed with PTFE-lined caps. Analytical thin-layer chromatography (TLC) was carried out using 0.25 mm commercial silica gel plates. Visualization was accomplished with UV light followed by dipping in a cerium ammonium molybdate, p-anisaldehyde, or potassium permanganate solution and heating. Purification of reaction products was carried out by flash column chromatography using $40-63 \mu \mathrm{~m}$ silica gel. Unless otherwise noted, reagents were purchased from commercial sources, and used as received. Deuterated substrate was prepared according to a previously reported protocol. 1,2 dimethoxyethane was obtained from Sigma-Aldrich in a septum sealed bottle. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra were recorded on VARIAN INOVA, DirectDrive, or MR spectrometers (400 or 500 MHz) or on a Bruker AVANCE III 500 equipped with a BBFO Prodigy liquid nitrogen CryoProbe. Carbon nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectra were recorded on a Bruker AVANCE III 500. Chemical shifts (δ) for protons are reported in parts per million (ppm) downfield from tetramethylsilane, and are referenced to the proton resonance of residual CHCl_{3} in the NMR solvent $(\delta=7.26 \mathrm{ppm})$. Chemical shifts (δ) for carbon are reported in ppm downfield from tetramethylsilane, and are referenced to the carbon resonances of the solvent peak (δ $=77.16 \mathrm{ppm})$. NMR data are represented as follows: chemical shift (ppm), multiplicity (s $=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet $)$, coupling constant in Hertz (Hz), and integration. Exact mass determinations were obtained by electrospray ionization (ESI) on an Agilent Technologies 6530 Accurate-Mass Q-TOF spectrometer or chemical
ionization (CI) on a Waters Micromass AutoSpec Ultima spectrometer. Infrared spectra were recorded on a Thermo Nicolet 380 spectrometer. Uncorrected melting points were measured on a Thomas Hoover Capillary Melting Point Apparatus.

General Procedure and Spectral Data for Arylation Reactions

General procedure A: A resalable pressure tube ($13 \times 100 \mathrm{~mm}$) was charged with $\operatorname{Rh}(\mathrm{acac})(\mathrm{CO})_{2}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, Di-tert-butyl(methyl)phosphonium tetrafluoroborate $(5.5 \mathrm{mg}, 0.022 \mathrm{mmol}, 11 \mathrm{~mol} \%)$, reactant aldehyde $(0.20 \mathrm{mmol}, 100$ $\mathrm{mol} \%$), and reactant aryl iodide ($0.4 \mathrm{mmol}, 200 \mathrm{~mol} \%$). The tube was sealed with a rubber septum and purged with Ar for 10 min . DME ($1 \mathrm{~mL}, 0.2 \mathrm{M}$ with respect to the aldehyde reactant) was injected, and the rubber septum was quickly replaced with a PTFE-lined screw cap. The tube was placed in a $130^{\circ} \mathrm{C}$ oil bath for 16 h . After cooling to room temperature, to the crude mixture was added a minimal amount of silica and concentrated in vacuo, the resultant powder was subjected to flash column chromatography $\left(\mathrm{SiO}_{2}\right)$ to afford the desired product.

General procedure B: A resalable pressure tube ($13 \times 100 \mathrm{~mm}$) was charged with $\left[\mathrm{Rh}(\mathrm{Cl})(\mathrm{CO})_{2}\right]_{2}(1.9 \mathrm{mg}, 0.01 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, Di-tert-butyl(methyl)phosphonium tetrafluoroborate ($5.5 \mathrm{mg}, 0.022 \mathrm{mmol}, 11 \mathrm{~mol} \%$), reactant aldehyde ($0.20 \mathrm{mmol}, 100$ $\mathrm{mol} \%$), and reactant aryl iodide ($0.4 \mathrm{mmol}, 200 \mathrm{~mol} \%$). The tube was sealed with a rubber septum and purged with Ar for 10 min . $\mathrm{DME}(1 \mathrm{~mL}, 0.2 \mathrm{M}$ with respect to the aldehyde reactant) was injected, and the rubber septum was quickly replaced with a PTFE-lined screw cap. The tube was placed in a $130{ }^{\circ} \mathrm{C}$ oil bath for 16 h . After cooling to room
temperature, to the crude mixture was added a minimal amount of silica and concentrated in vacuo, the resultant powder was subjected to flash column chromatography $\left(\mathrm{SiO}_{2}\right)$ to afford the desired product.

benzo[d][1,3]dioxol-5-yl(p-tolyl)methanol (7.3a)

The title compound was prepared according to the general procedure A using piperonal ($30.0 \mathrm{mg}, 0.2 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and 4-iodotoluene ($87.2 \mathrm{mg}, 0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%$). Flash chromatography on silica (Hex/EtOAc 10:1) provided the title compound ($34.8 \mathrm{mg}, 144$ $\mu \mathrm{mol}$) in 72% yield as a white solid.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.33$ (hexanes/ethyl acetate $=4: 1$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.25(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.86$ - $6.81(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{q}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 2.34(\mathrm{~s}$, $3 \mathrm{H}), 2.23(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=147.9,147.0,141.1,138.3,137.4,129.3,126.4,120.0$, 108.2, 107.3, 101.1, 76.0, 21.2.
 242.0943

FTIR (neat) $3310,2887,2359,1739,1124,1442,1371,1240,1031,928,760 \mathrm{~cm}^{-1}$.

MP $62-63^{\circ} \mathrm{C}$

(4-chlorophenyl)(3-methoxyphenyl)methanol (7.3b)

The reaction was conducted in accordance with general procedure A using m-anisaldehyde $(24 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 100 \mathrm{~mol} \%)$ and 4 -chloroiodobenzene ($95.2 \mathrm{mg}, 0.4 \mathrm{mmol}, 200 \mathrm{~mol} \%$). Flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes $\left./ \mathrm{EtOAc}=10: 1\right)$ provided $40 \mathrm{mg}(80 \%, 0.161$ mmol) of the title compound as a colorless oil.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right.} 2 \mathrm{R}_{\mathrm{f}}=0.43$ (hexanes: $\mathrm{EtOAc}=4: 1$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.26(\mathrm{~s}, 3 \mathrm{H}), 7.22(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=4.4,2.1$ $\mathrm{Hz}, 2 \mathrm{H}), 6.81-6.70(\mathrm{~m}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.8,145.1,142.1,133.3,129.7,128.6,127.9,118.9$, 113.2, 112.2, 75.5, 55.3.
 248.0602 .

FTIR (neat): 3386, 2939, 2835, 1738, 1488, 1454, 1256, 1035, 1013, 836, 783, 751, 699 cm^{-1}.

mesityl(4-(trifluoromethyl)phenyl)methanol (7.3c)

The reaction was conducted in accordance with general procedure B with 4trifluoromethylbenzaldehyde ($27 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and mesityl iodide (98.4 mg , $0.4 \mathrm{mmol}, 200 \mathrm{~mol} \%)$. Flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes : $\left.\mathrm{EtOAc}=10: 1\right)$ provided $36 \mathrm{mg}(62 \%, 0.122 \mathrm{mmol})$ of the title compound as a white solid.
$\underline{\mathbf{T L C}}\left(\mathrm{SiO}_{2}\right): \mathrm{R}_{\mathrm{f}}=0.6$ (hexanes : $\mathrm{EtOAc}=4: 1$).
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.56(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~s}$, $1 \mathrm{H}), 6.33(\mathrm{~s}, 0 \mathrm{H}), 2.29(\mathrm{~s}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.23-2.14(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta 147.5,138.0,137.2,136.0,130.4,128.9(\mathrm{q}, J=32.3 \mathrm{~Hz})$, $125.9,125.2(\mathrm{q}, J=3.8 \mathrm{~Hz}), 124.4(\mathrm{q}, ~ J=271.8 \mathrm{~Hz}), 70.8,21.0$, 20.6.
${ }^{19} \mathbf{F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-62.31$.

HRMS $\left(\mathrm{CI}^{+}\right)$: mass calculated for $[\mathrm{M}]^{+}\left(\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{OF}_{3}\right)$ requires m / z 294.1232, found m / z 294.1235.

FTIR (neat): 3332, 2922, 1737, 1616, 1454, 1319, 1109, 1066, 1034, 859, $714 \mathrm{~cm}^{-1}$.

MP $68^{\circ} \mathrm{C}$.

(2-fluorophenyl)(3-fluorophenyl)methanol (7.3d)

The title compound was prepared according to the general procedure B using 2fluorobenzaldehyde ($24.8 \mathrm{mg}, 0.2 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and 3-fluoroiodobenzene (88.8 mg , $0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%$). Flash chromatography on silica (Hex/EtOAc $15: 1$ to $12: 1$) provided the title compound ($33.5 \mathrm{mg}, 152 \mu \mathrm{~mol}$) in 76% yield as a light-yellow oil.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.38$ (hexanes/ethyl acetate $=4: 1$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.54(\mathrm{td}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.23$ (ddd, $J=15.9,8.0,2.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{td}, J=8.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.21$ ($\mathrm{s}, 1 \mathrm{H}$), $2.50(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=163.1(\mathrm{~d}, J=246.1 \mathrm{~Hz}), 160.0(\mathrm{~d}, J=246.5 \mathrm{~Hz}), 145.4$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}), 130.6(\mathrm{~d}, J=13.1 \mathrm{~Hz}), 130.1(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 129.6(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 127.8$ $(\mathrm{d}, J=4.0 \mathrm{~Hz}), 124.6(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 122.0(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 115.6(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 114.7$ (d, $J=21.1 \mathrm{~Hz}), 113.4(\mathrm{~d}, J=22.3 \mathrm{~Hz}), 69.5(\mathrm{dd}, J=3.5,1.9 \mathrm{~Hz})$.
$\underline{{ }^{19} \mathbf{F} \text { NMR }\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-112.69(\mathrm{td}, J=9.4,5.6 \mathrm{~Hz}),-118.58(\mathrm{~m}) .}$
 220.0700

FTIR (neat) $3332,2359,1739,1590,1485,1221,1027,839,782,752,688 \mathrm{~cm}^{-1}$.

(3-fluoro-2-methylphenyl)(6-methoxypyridin-2-yl)methanol (7.3e)

The title compound was prepared according to the general procedure B using 6methoxypicolinaldehyde ($27.4 \mathrm{mg}, \quad 0.2 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and 2-methyl-3fluoroiodobenzene ($94.4 \mathrm{mg}, 0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%$). Flash chromatography on silica (Hex/EtOAc 12:1 to 10:1) provided the title compound ($35.5 \mathrm{mg}, 143 \mu \mathrm{~mol}$) in 72% yield as a yellow oil.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.39$ (hexanes/ethyl acetate $=4: 1$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.51(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{t}, J$ $=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 1 \mathrm{H})$, 4.00 (s, 3H), 2.26 (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=163.3,162.5,160.6,158.4,143.2(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 139.7$, $126.9(\mathrm{~d}, J=8.9 \mathrm{~Hz}), 123.7(\mathrm{~d}, J=16.6 \mathrm{~Hz}), 123.6(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 114.5(\mathrm{~d}, J=23.5 \mathrm{~Hz})$, $113.5,109.5,72.4(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 53.6,10.6(\mathrm{~d}, J=6.2 \mathrm{~Hz})$.
$\underline{{ }^{19} \text { F NMR }}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-116.53(\mathrm{t}, J=7.7 \mathrm{~Hz})$.

HRMS (ESI+) Calculated for $\left(\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{2}\right)[\mathrm{M}+\mathrm{Na}]^{+}$requires 270.0901, found 270.0906.

FTIR (neat) $3398,2949,2359,2342,1739,1577,1465,1313,1240,1025,769 \mathrm{~cm}^{-1}$.

benzo[d][1,3]dioxol-5-yl(4-bromophenyl)methanol (7.3f)

The reaction was conducted in accordance with general procedure A with 4bromobenzaldehyde ($37 \mathrm{mg}, 0.2 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and 5-Iodo-1,3-benzodioxole (99 mg , $0.4 \mathrm{mmol}, 200 \mathrm{~mol} \%)$. Flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes : $\left.\mathrm{EtOAc}=10: 1\right)$ provided $45 \mathrm{mg}(74 \%, 0.147 \mathrm{mmol})$ of the title compound as a colorless oil.
$\left.\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right.} 2\right) \mathrm{R}_{\mathrm{f}}=0.33$ (hexanes : $\mathrm{EtOAc}=4: 1$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.45(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.85-$ $6.78(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 148.1,147.4,142.9,137.7,131.7,128.2,121.5,120.2$, 108.3, 107.2, 101.3, 75.5 .

HRMS $\left(\mathrm{CI}^{+}\right)$: mass calculated $\left(\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{O}_{3}{ }^{79} \mathrm{Br}\right)$ requires $m / z 305.9892$, found $m / z 305.9895$. mass calculated $\left(\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{O}_{3}{ }^{81} \mathrm{Br}\right)$ requires $m / z 307.9871$, found $m / z 307.9893$

FTIR (neat): $3344,2893,1738,1500,1484,1092,1036,1008,927,802,775,670 \mathrm{~cm}^{-1}$.

(3,4-dimethoxyphenyl)(4-(hydroxymethyl)phenyl)methanol (7.3g)

The title compound was prepared following general procedure A using 3,4dimethylbenzaldehyde ($33.2 \mathrm{mg}, 0.2 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and (4-iodophenyl)methanol (93.6 $\mathrm{mg}, 0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%$). Flash chromatography on silica (Hex/EtOAc 1:1) provided the title compound ($36.4 \mathrm{mg}, 133 \mu \mathrm{~mol}$) in 66% yield as a white solid.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.24$ (hexanes/ethyl acetate $=1: 3$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.91$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H})$, $4.66(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=149.2,148.6,143.5,140.2,136.6,127.3,126.8,119.0$, 111.1, 109.8, 75.9, 65.2, 56.0, 56.0.

HRMS (ESI $\left.{ }^{+}\right)$: mass calculated $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}\right)$ requires m / z 297.1097, found m / z 297.1099

MP $131-133^{\circ} \mathrm{C}$

FTIR (neat) 3332, 3219, 2919, 2839, 2360, 1739, 1595, 1558, 1419, 1360, 1258, 1231, 1137, 1012, $749 \mathrm{~cm}^{-1}$.

(2-phenylpyrimidin-5-yl)(4-(trifluoromethoxy)phenyl)methanol (7.3h)

The title compound was prepared according to the general procedure A using 2-phenylpyrimidine-5-carbaldehyde ($36.8 \mathrm{mg}, 0.2 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and 1-iodo-4(trifluoromethoxy)benzene ($115.2 \mathrm{mg}, 0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%$). Flash chromatography on silica (Hex/EtOAc 5:1) provided the title compound ($38.2 \mathrm{mg}, 111 \mu \mathrm{~mol}$) in 55% yield as a yellow solid.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.19$ (hexanes/ethyl acetate $=4: 1$).
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.71(\mathrm{~s}, 2 \mathrm{H}), 8.46-8.26(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{dd}, J=5.2,2.0$ $\mathrm{Hz}, 3 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=164.2,155.8,149.2(\mathrm{q}, \mathrm{J}=2.0 \mathrm{~Hz}), 140.9,137.1,133.9$, $131.1,128.8,128.3,128.1,121.5,120.5$ ($\mathrm{q}, \mathrm{J}=258.2 \mathrm{~Hz}$), 71.8.
$\underline{{ }^{19} \text { F NMR }\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-57.87}$

HRMS (ESI^{+}): mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$ requires $m / z 347.1002$, found $m / z 347.1011$.

MP $110-112^{\circ} \mathrm{C}$

FTIR (neat) $3165,2921,2358,1592,1547,1433,1260,1207,1154,863,743,688 \mathrm{~cm}^{-1}$.

$\begin{array}{llllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -1 \\ f 1(\mathrm{ppm})\end{array}$

tert-butyl (4-(hydroxy(4-(methylthio)phenyl)methyl)phenyl)carbamate (7.3i)

The title compound was prepared according to the general procedure A using 4(methylthio)benzaldehyde ($30.4 \mathrm{mg}, 0.2 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and tert-butyl (4iodophenyl)carbamate ${ }^{1}$ ($127.6 \mathrm{mg}, 0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%$). Flash chromatography on silica (Hex/EtOAc 4:1) provided the title compound ($39.3 \mathrm{mg}, 114 \mu \mathrm{~mol}$) in 57% yield as a yellow solid.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.59$ (hexanes/ethyl acetate $=1: 1$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.24$ (d, $J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.34$ (s, 1H), 1.50 (s, 9H).
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=152.9,140.9,138.5,137.9,137.7,127.4,127.2,126.8$, 118.7, 80.7, 75.5, 28.4, 16.0.
 $m / z 368.1294$.

MP $121-123^{\circ} \mathrm{C}$

FTIR (neat) 3368, 3250, 2972, 2914, 2359, 2342, 1699, 1522, 1412, 1309,1233, 1157, 1012, $858 \mathrm{~cm}^{-1}$.

$\begin{array}{lllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -:\end{array}$
(3-chloro-4,5-dimethoxyphenyl)(5-fluoro-2-methylphenyl)methanol (7.3j)

The reaction was conducted in accordance with general procedure A using 3-chloro-4,5dimethoxybenzaldehyde ($40 \mathrm{mg}, 0.2 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and 5-fluoro-2-methyliodobenzene $(62 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 200 \mathrm{~mol} \%)$. Flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes : EtOAc $=$ $5: 1)$ provided $43 \mathrm{mg}(75 \%, 0.138 \mathrm{mmol})$ of the title compound as a colorless oil.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2} 2\right)} \mathrm{R}_{\mathrm{f}}=0.22$ (hexanes : $\mathrm{EtOAc}=4: 1$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.24(\mathrm{dd}, J=10.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=8.3,5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.90(\mathrm{td}, J=8.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.83$ (s, 1H), $3.84(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 162.6,160.6,153.9,142.8(\mathrm{~d}, J=6.4 \mathrm{~Hz}), 131.9(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}), 130.7(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 128.2,120.6,114.4(\mathrm{~d}, J=20.9 \mathrm{~Hz}), 113.1(\mathrm{~d}, J=22.7 \mathrm{~Hz})$, $109.8,72.4(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 60.7,56.1,18.7$.
${ }^{19}$ F NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-116.37(\mathrm{q}, J=8.3 \mathrm{~Hz})$.

HRMS $\left(\mathrm{CI}^{+}\right)$: mass calculated for $[\mathrm{M}]^{+}\left(\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{FCl}\right)$ requires $\mathrm{m} / \mathrm{z} 310.0772$, found m / z 310.0766.

FTIR (neat): 3387, 2939, 2360, 1738, 1489, 1413, 1269, 1237, 1133, 1051, 999, 850, 687 cm^{-1}.

(2,4-dimethoxyphenyl)(2-methyl-4-(trifluoromethoxy)phenyl)methanol (7.3k)

The reaction was conducted in accordance with general procedure A using 2,4dimethoxybenzaldehyde ($33 \mathrm{mg}, \quad 0.2 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and 2-methyl-4(trifluoromethoxy)iodobenzene $(68 \mu \mathrm{~L}, ~ 0.4 \mathrm{mmol}, 200 \mathrm{~mol} \%)$. Flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes : $\left.\mathrm{EtOAc}=5: 1\right)$ provided $51 \mathrm{mg}(75 \%, 0.149 \mathrm{mmol})$ of the title compound as a yellow oil.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.25$ (hexanes : $\mathrm{EtOAc}=4: 1$).
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.58(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.00$ (s, 1H), 6.75 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{dd}, J=8.5,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.19(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 160.75,158.28,148.23,139.44,137.64,128.59,127.99$, $123.38,122.50,120.65(\mathrm{q}, J=256.6 \mathrm{~Hz}), 118.24,104.19,98.75,67.66,55.61,55.51,19.31$.
$\underline{{ }^{19} \text { F NMR }\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta-57.67 .}$
$\underline{\text { HRMS }\left(\mathrm{ESI}^{+}\right): \text {mass calculated for }[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{4}\right) \text { requires } \mathrm{m} / \mathrm{z} 365.0971 \text {, found }}$ $m / z ~ 365.0969$.

FTIR (neat): $3377,2945,1738,1611,1503,1251,1206,1151,1033,869,683 \mathrm{~cm}^{-1}$.

(3-fluoro-4-methylphenyl)(2-fluorophenyl)methanol (7.31)

The reaction was conducted in accordance with general procedure A using 3-fluoro-4methylbenzaldehyde ($25 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and 2-fluoroiodobenzene ($47 \mu \mathrm{~L}, 0.4$ $\mathrm{mmol}, 200 \mathrm{~mol} \%)$. Flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes : $\left.\mathrm{EtOAc}=9: 1\right)$ provided $35.1 \mathrm{mg}(75 \%, 0.149 \mathrm{mmol})$ of the title compound as a colorless oil.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.5$ (hexanes: $\mathrm{EtOAc}=4: 1$).
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.48(\mathrm{td}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.15$ $(\mathrm{q}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.04-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.43(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 161.6(\mathrm{~d}, J=183.9 \mathrm{~Hz}), 159.6(\mathrm{~d}, J=185.2 \mathrm{~Hz}), 142.6(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}), 131.5(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 130.7(\mathrm{~d}, J=13.0 \mathrm{~Hz}), 129.3(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 127.6(\mathrm{~d}$, $J=4.0 \mathrm{~Hz}), 124.4(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 124.2(\mathrm{~d}, J=17.3 \mathrm{~Hz}), 121.7(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 115.5(\mathrm{~d}$, $J=21.4 \mathrm{~Hz}), 113.0(\mathrm{~d}, J=23.3 \mathrm{~Hz}), 69.4(\mathrm{dd}, J=3.5,1.8 \mathrm{~Hz}), 14.3(\mathrm{~d}, J=3.6 \mathrm{~Hz})$.
${ }^{19}$ F NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-116.97(\mathrm{t}, J=9.3 \mathrm{~Hz}),-118.57(\mathrm{dt}, J=12.2,6.4 \mathrm{~Hz})$.
 234.0858.

FTIR (neat): $3344,2928,1738,1585,1508,1455,1418,1252,1030,824,753 \mathrm{~cm}^{-1}$.

methyl 4-(hydroxy(4-methoxyphenyl)methyl)benzoate (7.3m)

The title compound was prepared according to the general procedure A using methyl 4formylbenzoate ($32.8 \mathrm{mg}, 0.2 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and 4-iodoanisole ($93.6 \mathrm{mg}, 0.40 \mathrm{mmol}$, $200 \mathrm{~mol} \%$). Flash chromatography on silica (Hex/EtOAc 4:1) provided the title compound ($33.9 \mathrm{mg}, 125 \mu \mathrm{~mol}$) in 62% yield as a colorless oil.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.18$ (hexanes/ethyl acetate $=4: 1$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.98(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.24$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.47$ ($\mathrm{s}, 1 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=167.1,159.4,149.1,135.7,129.9,129.2,128.2,126.3$, 114.2, 75.6, 55.4, 52.2.
 m/z 295.0942.

FTIR (neat) $3512,3354,2954,2359,1718,1610,1512,1435,1275,1250,1032,835,751$ cm^{-1}.

(4-fluoro-3-methoxyphenyl)(2-methoxyphenyl)methanol (7.3n)

The title compound was prepared according to the general procedure A using 4-fluoro-3methoxybenzaldehyde ($30.8 \mathrm{mg}, 0.2 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and 2-iodoanisole ($107.4 \mathrm{mg}, 0.40$ $\mathrm{mmol}, 200 \mathrm{~mol} \%)$. Flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes/EtOAc 6:1) provided the title compound ($43.4 \mathrm{mg}, 166 \mu \mathrm{~mol}$) in 83% yield as a colorless oil.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.22$ (hexanes/ethyl acetate $=4: 1$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.30-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08$ (dd, $J=8.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{dd}, J=8.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.82$ (dddd, $J=8.4,4.4,2.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{~d}$, $J=4.9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=156.8,151.6(\mathrm{~d}, J=244.7 \mathrm{~Hz}), 147.4(\mathrm{~d}, J=10.9 \mathrm{~Hz})$, $139.7(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 131.8,129.0,127.8,121.0,119.0(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 115.6(\mathrm{~d}, J=18.5$ $\mathrm{Hz}), 112.0(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 110.9,71.8,56.3,55.5$.
${ }^{19}$ F NMR (471 MHz, CDCl3): $\delta=-137.67$.

HRMS $\left(\mathrm{CI}^{+}\right)$: mass calculated for $[\mathrm{M}]^{+}\left(\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{FO}_{3}\right)$ requires m / z 262.1005, found m / z 262.1010.

FTIR (neat) 3414, 2941, 2838, 1601, 1513, 1463, 1417, 1271, 1241, 1118, 1028, 909, 815, $755,730 \mathrm{~cm}^{-1}$.

$\begin{array}{lllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 \\ f 1 & (\mathrm{ppm})\end{array}$

(2-chloro-4-(trifluoromethoxy)phenyl)(quinolin-4-yl)methanol (7.3o)

The title compound was prepared according to the general procedure A using 4formylquinoline $(31.0 \mathrm{mg}, \quad 0.2 \mathrm{mmol}, \quad 100 \mathrm{~mol} \%)$ and 2-chloro-1-iodo-4(trifluoromethoxy)benzene ($129 \mathrm{mg}, \quad 0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%$). Flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes $/ E t O A c 4: 1$) provided the title compound $(42 \mathrm{mg}, 119$ $\mu \mathrm{mol}$) in 60% yield as a white solid.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.27$ (hexanes/ethyl acetate $=1: 1$).
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.90(\mathrm{dd}, J=7.3,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.83 (dd, $J=8.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{ddd}, J=9.6,6.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.51 (ddd, $J=8.4,6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.06$ (dd, $J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~d}, J=49.9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=150.3,149.1(\mathrm{q}, J=2.1 \mathrm{~Hz}), 148.5,146.7,138.0,134.0$, $130.2,130.1,129.3,127.1,125.5,123.3,122.2,120.3(\mathrm{q}, J=258.7 \mathrm{~Hz}), 119.8,118.6,68.2$.
$\underline{{ }^{19} \text { F NMR }\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-57.92 .}$
$\underline{\text { HRMS }(E S I '): ~ m a s s ~ c a l c u l a t e d ~ f o r ~}[\mathrm{M}+\mathrm{H}]^{+}$(for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{ClF}_{3} \mathrm{NO}_{2}$) requires m / z 354.0503, found $m / z 354.0508$

FTIR (neat) 3080, 2832, 2363,2341, 1736, 1509, 1392, 1313, 1256, 1214, 1143, $855 \mathrm{~cm}^{-}$ 1

MP $187-188^{\circ} \mathrm{C}$ \qquad

(5-chloro-2-methoxyphenyl)(2,5-dimethoxyphenyl)methanol (7.3p)

The title compound was prepared according to the general procedure A using 2,5 dimethoxybenzaldehyde ($33.2 \mathrm{mg}, 0.2 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and 4-chloro-2-iodoanisole ($107.4 \mathrm{mg}, 0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%$). Flash column chromatography (SiO_{2}, hexanes/EtOAc $9: 1$) provided the title compound ($51 \mathrm{mg}, 166 \mu \mathrm{~mol}$) in 83% yield as a colorless oil.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.17$ (hexanes/ethyl acetate $=4: 1$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.25(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{dd}, J=8.7,2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.85-6.76(\mathrm{~m}, 4 \mathrm{H}), 6.25(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.54$ $(\mathrm{d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=155.4,153.7,151.1,132.7,131.5,128.1,127.8,125.7$, $114.3,112.8,111.7,111.7,67.0,56.0,55.8,55.7$.

HRMS $\left(\mathrm{CI}^{+}\right)$: mass calculated for $[\mathrm{M}]^{+}$(for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{Cl}$) requires m / z 308.0815, found m/z 308.0813

FTIR (neat) $3401,2939,2835,1594,1487,1463,1215,1178,1026,908,810,731 \mathrm{~cm}^{-1}$.

609

1-(3-methoxyphenyl)heptan-1-ol (7.3q)

The reaction was conducted in accordance with general procedure B using heptaldehyde ($28 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and 3-methoxyiodobenzene ($47 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 200 \mathrm{~mol} \%$). Flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes : $\left.\mathrm{EtOAc}=10: 1\right)$ provided $29 \mathrm{mg}(64 \%, 0.13$ mmol) of the title compound as a colorless oil.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.48$ (hexanes : $\mathrm{EtOAc}=4: 1$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.31-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.95-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{ddd}, J=$ $8.3,2.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.70-4.57(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 1 \mathrm{H}), 1.84-1.74(\mathrm{~m}, 1 \mathrm{H})$, 1.69 (ddt, $J=18.0,9.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{ddd}, J=13.0,7.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.36-1.23(\mathrm{~m}$, $8 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 159.9,146.9,129.6,118.4,113.0,111.5,74.8,55.4,39.2$, 31.9, 29.3, 25.9, 22.7, 14.2.

HRMS $\left(\mathrm{CI}^{+}\right)$: mass calculated for $[\mathrm{M}]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 222.1620$, found m / z 222.1616.

FTIR (neat): $3344,2928,2856,1739,1600,1257,1043,874,781,699 \mathrm{~cm}^{-1}$.

1-(2-isopropylphenyl)-3-phenylpropan-1-ol (7.3r)

The title compound was prepared according to the general procedure A using 3phenylpropionaldehyde ($27 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and 2-iodocumene ($64 \mu \mathrm{~L}, 0.40$ $\mathrm{mmol}, 200 \mathrm{~mol} \%)$. Flash column chromatography (SiO_{2}, hexanes/EtOAc 9:1) provided the title compound ($31.4 \mathrm{mg}, 123 \mu \mathrm{~mol}$) in 62% yield as a colorless oil.
$\underline{\mathbf{T L C}}\left(\mathbf{S i O}_{2}\right) \mathrm{R}_{\mathrm{f}}=0.49$ (hexanes/ethyl acetate $=4: 1$).
$\underline{{ }^{1} \mathbf{H} \text { NMR }}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.48(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.15(\mathrm{~m}, 8 \mathrm{H}), 5.03$ $(\mathrm{dd}, J=8.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{p}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{ddd}, J=14.5,9.6,5.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.72 (ddd, $J=13.8,9.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{ddt}, J=14.1,9.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{tdd}, J=$ $13.9,7.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 1 \mathrm{H}), 1.17(\mathrm{dd}, J=6.9,2.2 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=145.5,141.9,141.3,128.5,128.4,127.7,126.1$ 125.9, $125.4,125.4,69.4,40.5,32.5,28.0,24.5,23.8$.
$\underline{\text { HRMS }\left(\mathrm{CI}^{+}\right) \text {: mass calculated for }[\mathrm{M}]^{+} \text {(for } \mathrm{xx} \text {) requires } m / z \mathrm{xx} \text {, found } m / z \mathrm{xx}}$

FTIR (neat) $3416,3027,2961,1451,1032,907,759.698 \mathrm{~cm}^{-1}$.

613

N-(2-(4-(1-hydroxy-3-methylbutyl)phenyl)propyl)propane-2-sulfonamide (7.3s)

The reaction was conducted in accordance with general procedure A using isovaleraldehyde ($22 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and N -(2-(4-iodophenyl)propyl)propane-2-sulfonamide ($100.8 \mathrm{mg}, 0.4 \mathrm{mmol}, 200 \mathrm{~mol} \%$) . Flash column chromatography (SiO_{2}, hexanes : $\mathrm{EtOAc}=7: 3)$ provided $37.4 \mathrm{mg}(57 \%, 0.114 \mathrm{mmol})$ of the title compound as a white solid.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right.} \mathbf{2}_{2} \mathrm{R}_{\mathrm{f}}=0.54$ (hexanes: $\mathrm{EtOAc}=1: 1$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta 7.33(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.73(\mathrm{dd}$, $J=8.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=8.1,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{ddd}, J=13.3,7.9,5.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.21 (ddd, $J=13.1,8.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{p}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{p}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.77(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{td}, J=13.2,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.54-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{dd}, J=$ $6.9,2.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.26(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.97$ (d, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 144.1,142.2,127.4,126.5,72.5,53.4,50.3,48.4,48.4$, $40.5,40.5,24.82,23.1,22.2,19.1,16.6,16.5$.
$\underline{\text { HRMS }}\left(\mathrm{ESI}^{+}\right)$: mass calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}\right)$ requires $\mathrm{m} / \mathrm{z} 350.1760$, found $m / z 350.1761$.

FTIR (neat): $3246,2956,2867,1738,1385,1311,1132,1061,979,691 \mathrm{~cm}^{-1}$

MP $97-98^{\circ} \mathrm{C}$

cyclohexyl(naphthalen-1-yl)methanol (7.3t)

The reaction was conducted in accordance with general procedure A using cyclohexyl carboxaldehyde ($22.4 \mathrm{mg}, 0.2 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and 1-Iodonaphthalene ($60 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$, $200 \mathrm{~mol} \%)$ Flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes : $\left.\mathrm{EtOAc}=10: 1\right)$ provided 31 mg $(65 \%, 0.13 \mathrm{mmol})$ of the title compound as a pale yellow oil.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.63$ (hexanes : $\mathrm{EtOAc}=4: 1$).
$\underline{{ }^{1} \text { H NMR }}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.15(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.44(\mathrm{~m}, 3 \mathrm{H}), 5.20(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.00$ - $1.92(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 1 \mathrm{H}), 1.68-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.25$ - $1.08(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 139.6,134.0,131.0,129.0,128.0,125.9,125.6,125.4$, $124.3,123.8,76.2,44.5,30.4,28.4,26.6,26.5,26.2$.
$\underline{\text { HRMS }\left(\mathrm{CI}^{+}\right) \text {: mass calculated for }[\mathrm{M}]^{+}\left(\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}\right) \text { requires } \mathrm{m} / \mathrm{z} 240.1514 \text {, found } \mathrm{m} / \mathrm{z}, ~(2)}$ 240.1521 .

FTIR (neat): 3404, 3046, 2921, 2849, 1738, 1449, $776 \mathrm{~cm}^{-1}$.

tert-butyl 4-((3,5-dimethylphenyl)(hydroxy)methyl)piperidine-1-carboxylate (7.3u)

The title compound was prepared according to the general procedure A using tert-butyl 4-formylpiperidine-1-carboxylate ($42.6 \mathrm{mg}, ~ 0.2 \mathrm{mmol}, 100 \mathrm{~mol} \%$) and 1-iodo-3,5dimethylbenzene ($92.8 \mathrm{mg}, 0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%$). Flash chromatography on silica (Hex/EtOAc 5:1) provided the title compound ($54.1 \mathrm{mg}, 170 \mu \mathrm{~mol}$) in 85% yield as a lightyellow oil.
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2}\right)} \mathrm{R}_{\mathrm{f}}=0.50$ (hexanes/ethyl acetate $=2: 1$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.90(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.27(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.19$ $-3.89(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{~d}, J=39.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 6 \mathrm{H}), 1.96(\mathrm{dt}, J=13.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.72$ $(\mathrm{dt}, J=7.7,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 10 \mathrm{H}), 1.25(\mathrm{td}, J=12.2,3.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{dd}, J=12.7$, $4.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=154.9,143.1,138.0,129.5,124.4,79.4,78.8,43.4,28.6$, 21.5 .
 m/z 342.2045.

FTIR (neat) 2970, 2917, 2859, 2359, 1739, 1668, 1424, 1365, 1162, 1126, 847, $753 \mathrm{~cm}^{-1}$.

Preparation and Spectral Data for Deuterated Substrates:

benzo[d][1,3]dioxole-5-carbaldehyde-d (deutero-7.1a)

The title compound was synthesized over two steps from piperonal following literature procedures. ${ }^{2}$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.46-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 6.07 (s, 2H).

benzo[d][1,3]dioxol-5-yl(p-tolyl)methan-d-ol (deutero- 7.3a)

The reaction was conducted in accordance with general procedure A. Flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes : $\left.\mathrm{EtOAc}=4: 1\right)$ provided $32 \mathrm{mg}(66 \%, 0.132 \mathrm{mmol})$ of the title compound as a white solid
$\underline{\mathbf{T L C}\left(\mathbf{S i O}_{2} 2\right)} \mathrm{R}_{\mathrm{f}}=0.33$ (hexanes : $\mathrm{EtOAc}=4: 1$).
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.23(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{dd}$, $J=6.1,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.77-6.68(\mathrm{~m}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{2} \mathbf{H}$ NMR $\left(92 \mathrm{MHz}, \mathrm{CHCl}_{3}\right): \delta 5.73(\mathrm{~s}, 1 \mathrm{H})$.

HRMS $\left(\mathrm{CI}^{+}\right)$: mass calculated for $[\mathrm{M}]^{+}\left(\mathrm{C}_{15} \mathrm{O}_{3}{ }^{1} \mathrm{H}_{12}{ }^{2} \mathrm{H}\right)$ requires m / z 243.1006, found m / z 243.1005.

References

Chapter 1

(1) Ramachandran, P. V. Pinane-Based Versatile "Allyl"boranes. Aldrichimica Acta 2002, 35, 23-35.
(2) Denmark, S. E.; Fu, J. Catalytic Enantioselective Addition of Allylic Organometallic Reagents to Aldehydes and Ketones. Chem. Rev. 2003, 103, 2763-2794.
(3) Kennedy, J. W. J.; Hall, D. G. Recent Advances in the Activation and Stereochemistry of Boron and Silicon Allylation Reagents. Angew. Chem. Int. Ed. 2003, 42, 47324739.
(4) Yu, C.-M.; Youn, J.; Jung, H.-K. Regulation of Stereoselectivity and Reactivity in the Inter- and Intramolecular Allylic Transfer Reactions. Bull. Korean Chem. Soc. 2006, 27, 463-472.
(5) Marek, I.; Sklute, G. Creation of quaternary stereocenters in carbonyl allylation reactions. Chem. Commun. 2007, 0, 1683-1691.
(6) Hall, D. G. Lewis and Brønsted Acid Catalyzed Allylboration of Carbonyl Compounds: From Discovery to Mechanism and Applications. Synlett 2007, 16441655.
(7) Lachance, H.; Hall, D. G. Allylboration of Carbonyl Compounds. Org. React. 2008, 73, 1-555.
(8) Yus, M.; González-Gómez, J. C.; Foubelo, F. Catalytic Enantioselective Allylation of Carbonyl Compounds and Imines. Chem. Rev. 2011, 111, 7774-7854.
(9) Butlerov, A. Studien über die Einfachsten Verbindungen der Organischen Chemie. Z. Chem. Pharm. 1863, 6, 484-497.
(10) Butlerov, A. Z. Sur l'Alcool Pseudobuylique Tertiare ou Alcool Méthylique triméthylé. Bull. Soc. Chim. Fr. 1864, 2, 106-116.
(11) Reformatsky, S. Neue Synthese Zweiatomiger Einbasischer Säuren aus den Ketonen. Ber. Dtsch. Chem. Ges. 1887, 20, 1210-1211.
(12) Grignard, V. Sur Quelques Nouvelles Combinaisons Organométalliques du Magnèsium et Leur Application àdes Synthèses d'alcools et d'hydrocarbures. $C R$ Hebd Seá nces Acad Sci, Ser C 1900, 130, 1322-1324.
(13) Bew, S. P. Comprehensive Organic Functional Group Transformations II, 2nd ed.; Katritzky, A. R.; Taylor, R. J. K., Eds.; Elsevier: Oxford, 2005; 19-125.
(14) Weix, D. J. Methods and Mechanisms for Cross-Electrophile Coupling of Csp2 Halides with Alkyl Electrophiles. Acc. Chem. Rev. 2015, 48, 1767-1775.
(15) Okude, Y.; Hirano, S.; Hiyama, T.; Nozaki, H. Grignard-type Carbonyl Addition of Allyl Halides by Means of Chromous salt. A Chemospecific Synthesis of Homoallyl Alcohols. J. Am. Chem. Soc. 1977, 99, 3179-3181.
(16) Takai, K.; Tagashira, M.; Kuroda, T.; Oshima, K.; Utimoto, K.; Nozaki, H. Reactions of Alkenylchromium Reagents Prepared from Chloride under Nickel Catalysis. J. Am. Chem. Soc. 1986, 108, 6048-6050.
(17) Jin, H.; Uenishi, J.; Christ, W. J.; Kishi, Y. Catalytic Effect of Nickel(II) Chloride and Palladium(II) Acetate on Chlromium(II)-Mediated Coupling Reaction of Iodo Olefins with Aldehydes. J. Am. Chem. Soc. 1986, 108, 5644-5646.
(18) Fürstner, A. Carbon-Carbon Bond Formations Involving Organochromium(III) Reagents. Chem. Rev. 1999, 99, 991-1046.
(19) Gil, A.; Albericio, F.; Álvarez, M. Role of the Nozaki-Hiyama-Takai-Kishi Reaction in the Synthesis of Natural Products. Chem. Rev. 2017, 117, 8420-8446.
(20) Satoh, T.; Itaya, T.; Miura, M.; Nomura, M. Palladium-Catalyzed Coupling Reaction of Salicylaldehydes with Aryl Iodides via Cleavage of the Aldehyde C-H Bond. Chem. Lett. 1996, 25, 823-824.
(21) Ko, S.; Kang, B.; Chang, S. Cooperative Catalysis by Ru and Pd for the Direct Coupling of a Chelating Aldehyde with Iodoarenes or Organostannanes. Angew. Chem. Int. Ed. 2005, 44, 455-457.
(22) Takemiya, A.; Hartwig, J. F. Palladium-Catalyzed Synthesis of Aryl Ketones by Coupling of Aryl Bromides with an Acyl Anion Equivalent. J. Am. Chem. Soc. 2006, 128, 14800-14801.
(23) Ruan, J.; Saidi, O.; Iggo, J. A.; Xiao, J. Direct Acylation of Aryl Bromides with Aldehydes by Palladium Catalysis. J. Am. Chem. Soc. 2008, 130, 10510-10511.
(24) Zanardi, A.; Mata, J. A.; Peris, E. Palladium Complexes with Triazolyldiylidene. Structural Features and Catalytic Applications. Organometallics 2009, 28, 14801483.
(25) Adak, L.; Bhadra, S.; Ranu, B. C. Palladium(0) Nanoparticle-catalyzed $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$ Activation: A Convenient Route to alkyl-aryl Ketones by Direct Acylation of Aryl Bromides and Iodides with Aldehydes. Tet. Lett. 2010, 51, 3811-3814.
(26) Nowrouzi, N.; Motevalli, S.; Tarokh, D. Palladium-Catalyzed Direct C-H Arylation of 2-hydroxybenzaldehydes With Organic Halides in Neat Water. J. Mol. Cat. A: Chem. 2015, 396, 224-230.
 hydroxybenzaldehydes in $\mathrm{H}_{2} \mathrm{O}$. J. Iran Chem. Soc. 2016, 13, 1493-1497.
(28) Suchand, B.; Satyanarayana, G. Palladium-Catalyzed Environmentally Benign Acylation. J. Org. Chem. 2016, 81, 6409-6423.
(29) Wakaki, T.; Togo, T.; Yoshidome, D.; Kuninobu, Y.; Kanai, M. Palladium-Catalyzed Synthesis of Diaryl Ketones from Aldehydes and (Hetero)Aryl Halides via C-H Bond Activation. ACS Catal. 2018, 8, 3123-3128.
(30) Ishiyama, T.; Hartwig, J. F. A Heck-Type Reaction Involving Carbon-Heteroatom Double Bonds. Rhodium(I)-Catalyzed Coupling of Aryl Halides with N-Pyrazyl Aldimines. J. Am. Chem. Soc. 2000, 122, 12043-12044.
(31) Rao, M. L.; Ramakrishna, B. S. Rhodium- Catalyzed Directing- Group- Assisted Aldehydic C-H Arylations with Aryl Halides. Eur. J. Org. Chem. 2017, 2017, 50805093.
(32) Huang, Y.-C.; Majumdar, K. K.; Cheng, C.-H. Nickel-Catalyzed Coupling of Aryl Iodides with Aromatic Aldehydes: Chemoselective Synthesis of Ketones. J. Org. Chem. 2002, 67, 1682-1684.
(33) Nowrouzi, N.; Zarei, M.; Roozbin, F. First Direct Access to 2-hydroxybenzophenones via Nickel-Catalyzed Cross-Coupling of 2-Hydroxybenzaldehydes with Aryl Iodides. RSC Adv. 2015, 5, 102448-102453.
(34) Zhang, X.; MacMillan, D. W. C. Direct Aldehyde C-H Arylation and Alkylation via the Combination of Nickel, Hydrogen Atom Transfer, and Photoredox Catalysis. J. Am. Chem. Soc. 2017, 139, 11353-11356.
(35) Hu, Y. L.; Wu, Y. P.; Lu, M. Co (II)-C12 Alkyl Carbon Chain Multi- Functional Ionic Liquid Immobilized on Nano- SiO_{2} Nano- $\mathrm{SiO}_{2} @ \mathrm{CoCl}_{3}-\mathrm{C} 12 \mathrm{IL}$ as an Efficient Cooperative Catalyst for $\mathrm{C}-\mathrm{H}$ Activation by Direct Acylation of Aryl Halides with Aldehydes Appl. Organomet. Chem. 2018, 32, e4096.
(36) Schoenberg, A.; Heck, R. F. Palladium-Catalyzed Formylation of Aryl, Heterocyclic, and Vinylic Halides. J. Am. Chem. Soc. 1974, 96, 7761-7764.
(37) Pri-Bar, I.; Buchman, O. Reductive Formylation of Aromatic Halides under Low Carbon Monoxide Pressure Catalyzed by Transition-Metal Compounds. J. Org. Chem. 1984, 49, 4009-4011.
(38) Baillargeon, V. P.; Stille, J. K. Palladium-Catalyzed Formylation of Organic Halides with Carbon Monoxide and Tin Hydride. J. Am. Chem. Soc. 1986, 108, 452-461.
(39) Ben-David, Y.; Portnoy, M.; Milstein, D. Formylation of Aryl Chloride Catalysed by a Palladium Complex. J. Chem. Soc. Chem. Commun. 1989, 1816-1817.
(40) Cai, M.-Z.; Zhao, H.; Zhou, J.; Song, C.-S. Formylation of Aryl Halides Catalyzed by a Silica-Supported Phosphine Palladium Complex. Synth. Commun. 2002, 32, 923926.
(41) Klaus, S.; Neumann, H.; Zapf, A.; Strübing, D.; Hübner, S.; Almena, J.; Riemeier, T.; Groß, P.; Sarich, M.; Krahnert, W.-R.; Rossen, K.; Beller, M. A General and Efficient

Method for the Formylation of Aryl and Heteroaryl Bromides. Angew. Chem. Int. Ed. 2006, 45, 154-158.
(42) Ashfield, L.; Barnard, C. F. J. Reductive Carbonylation - an Efficient and Practical Catalytic Route for the Conversion of Aryl Halides to Aldehydes. Org. Process Res. Dev. 2007, 11, 39-43.
(43) Brennführer, A.; Neumann, H.; Klaus, S.; Riermeier, T.; Almena, J.; Beller, M. Palladium/di-1-Adamantyl-n-Butylphosphine-Catalyzed Reductive Carbonylation of Aryl and Vinyl Halides. Tetrahedron 2007, 63, 6252-6258.
(44) Singh, A. S.; Bhanage, B. M.; Nagarkar, J. M. Reductive Carbonylation of Aryl and Heteroaryl Iodides Using $\operatorname{Pd}(\mathrm{acac}) 2 / \mathrm{dppm}$ as an Efficient Catalyst. Tetrahedron Lett. 2011, 52, 2383-2386.
(45) Neumann, H.; Kadyrov, R.; Wu, X.-F.; Beller, M. Palladium-Catalyzed Reductive Carbonylation of Aryl Bromides with Phosphinite Ligands. Chem. Asian J. 2012, 7, 2213-2216.
(46) Hamasakk, A.; Yasutake, Y.; Norio, T.; Ishida, T.; Akita, T.; Ohashi, H.; Yokoyama, T.; Honma, T.; Tokunaga, M. Cooperative Catalysis of Palladium Nanoparticles and Cobalt Oxide Support for Formylation of Aryl Iodides under Syngas Atmosphere. Appl. Catal. A 2014, 469, 146-152.
(47) Ibrahim, M. Y. S.; Denmark, S. E. Palladium/Rhodium Cooperative Catalysis for the Production of Aryl Aldehydes and Their Deuterated Analogues Using the Water-Gas Shift Reaction. Angew. Chem. Int. Ed. 2018, 57, 10362-10367.
(48) Fürstner, A.; Shi, N. A Multicomponent Redox System Accounts for the First Nozaki-HiyamaKishi Reactions Catalytic in Chromium. J. Am. Chem. Soc. 1996, 118, 2533-2534.
(49) Fürstner, A.; Shi, N. Nozaki-Hiyama-Kishi Reactions Catalytic in Chromium. J. Am. Chem. Soc. 1996, 118, 12349-12357.
(50) Durandetti, M; Périchon, J.; Nédélec, J,-Y. Nickel- and Chromium-Catalysed Electrochemical Coupling of Aryl Halides with Arenecarboxaldehydes. Tetrahedron Lett. 1999, 40, 9009-9013.
(51) Durandetti, M.; Nédélec, J,-Y.; Périchon, J. An Electrochemical Coupling of Organic Halide with Aldehydes, Catalytic in Chromium and Nickel Salts. The Nozaki-Hiyama-Kishi Reaction. Org. Lett. 2001, 3, 2073-2076.
(52) Namba, K.; Wang, J.; Cui, S.; Kishi, Y. Surprisingly Efficient Catalytic Cr-Mediated Coupling Reactions. Org. Lett. 2005, 7, 5421-5424.
(53) Harnying, W.; Berkessel, A. Vinylation of Aldehydes Using Mn/Cr Alloy and a $\mathrm{N}_{4}-$ Ligand/ $\mathrm{Ni}^{\mathrm{II}}$-Catalyst. Chem. Eur. J. 2015, 21, 6057-6061.
(54) Majumdar, K. K.; Cheng, C.-H. Ni(II)/Zn-Mediated Chemoselective Arylation of Aromatic Aldehydes: Facile Synthesis of Diaryl Carbinols. Org. Lett. 2000, 2, 22952298.
(55) Asachenko, A. F.; Valaeva, V. N.; Kudakina, V. A.; Uborsky, D. V.; Izmer, V. V.; Kononovich, D. S.; Voskoboynikov, A. Z. Coupling of Aromatic Aldehydes with Aryl Halides in the Presence of Nickel Catalysts with Diazabutadiene Ligands. Russ. Chem. Bull. Int. Ed. 2016, 65, 456-463.
(56) Garcia, K. J.; Gilbert, M. M.; Weix, D. J. Nickel-Catalyzed Addition of Aryl Bromides to Aldehydes to Form Hindered Secondary Alcohols. J. Am. Chem. Soc. 2019, 141, 1823-1827.
(57) Rayabarapu, D. K.; Chang, H,-T.; Cheng, C.-H. Synthesis of Phthalide Derivatives Using Nickel-Catalyzed Cyclization of o-Haloesters with Aldehydes. Chem. Eur. J. 2004, 10, 2991-2996.
(58) Grigg, R.; Putnikovic, B.; Urch, C. J. Electrochemically Driven Catalytic $\operatorname{Pd}(0) / \operatorname{Cr}(\mathrm{II})$ Mediated Coupling of Organic Halides with Aldehydes. The Nozaki-Hiyama-Kishi Reaction. Tetrahedron Lett. 1997, 38, 6307-6308.
(59) Solé, D.; Mariani, F.; Fernández, I. Synthesis of Isoquinolin-4-ols by PalladiumCatalysed Intramolecular Nucleophilic Addition of Aryl Iodides to Aldehydes. $A d v$. Synth. Catal. 2014, 356, 3237-3243.
(60) Natte, K.; Dumrath, A.; Neumann, H.; Beller, M. Palladium-Catalyzed Carbonylations of Aryl Bromides Using Paraformaldehyde: Synthesis of Aldehydes and Esters. Angew. Chem. Int. Ed. 2014, 53, 10090-10094.
(61) Krug, C.; Hartwig, J. F. Direct Observation of Aldehyde Insertion into Rhodium-Aryl and -Alkoxide Complexes. J. Am. Chem. Soc. 2002, 124, 1674-1679.
(62) Zhou, F.; Li, C.-J. The Barbier-Grignard-Type Arylation of Aldehydes Using Unactivated Aryl Iodides in Water. Nature Comm. 2014, 5, 4254.
(63) Swyka, R. A.; Zhang, W.; Richardson, J.; Ruble, J. C.; Krische, M. J. J. Am. Chem. Soc. 2019, 141, 1828-1832.
(64) Chang, H,-T.; Jeganmohan, M.; Cheng, C.-H. Highly Efficient Cyclization of oIodobenzoates with Aldehydes Catalyzed by Cobalt Bidentate Phosphine Complexes: A Novel Entry to Chiral Phthalides. Chem. Eur. J. 2007, 13, 4356-4363.
(65) Quan, L. G.; Lamrani, M.; Yamamoto, Y. Intramolecular Nucleophilic Addition of Aryl Bromides to Ketones Catalyzed by Palladium. J. Am. Chem. Soc. 2000, 122, 4827-4828.
(66) Solé, D.; Vallverdú, L.; Peidró, E.; Bonjoch, J. Palladium-Catalysed Intramolecular Annulation of 2-Haloanilines and Ketones: Enolate Arylation vs. Nucleophilic Addition to the Carbonyl Group. Chem. Commun. 2001, 37, 1888-1889.
(67) Solé, D.; Vallverdú, L.; Solans, X.; Font-Bardía, M.; Bonjoch, J. Intramolecular PdMediated Processes of Amino-Tethered Aryl Halides and Ketones: Insight into the Ketone r-Arylation and Carbonyl-Addition Dichotomy. A New Class of FourMembered Azapalladacycles. J. Am. Chem. Soc. 2003, 125, 1587-1594.
(68) Jia, Y.-X.; Katayev, D.; Kündig, E. P. Synthesis of 3-Hydroxyoxindoles by PdCatalysed Intramolecular Nucleophilic Addition of Aryl Halides to α-Ketoamides. Chem. Commun. 2010, 46, 130-132.
(69) Shin, I.; Ramgren, S. D.; Krische, M. J. Reductive Cyclization of Halo-Ketones to Form 3-Hydroxy-2-Oxindoles via Palladium Catalyzed Hydrogenation: a HydrogenMediated Grignard Addition Tetrahedron 2015, 71, 5776-5780.
(70) Yin, L.; Kanai, M.; Shibasaki, M. A Facile Pathway to Enantiomerically Enriched 3-Hydroxy-2-Oxindoles: Asymmetric Intramolecular Arylation of α-Keto Amides Catalyzed by a Palladium-DifluorPhos Coomplex. Angew. Chem. Int. Ed. 2011, 50, 7620-7623.
(71) Hu, J.-X.; Wu, H.; Li, C.-Y.; Sheng, W.-J.; Jia, Y.-X.; Gao, J.-R. Nickel-Catalyzed Intramolecular Nucleophilic Addition of Aryl or Vinyl Chlorides to a-Ketoamides Through C-Cl Bond Activation. Chem. Eur. J. 2011, 17, 5234-5237.
(72) He, J.-Q.; Chen, C.; Yu, W.-B.; Liu, R.-R.; Xu, M.; Li, Y.-J.; Gao, J.-R.; Jia, Y.-X. Nickel-Catalyzed Intramolecular Addition of Vinyl or Aryl Bromides to Ketoamides. Tetrahedron Lett. 2014, 55, 2805-2808.
(73) Fillon, H.; Gosmini, C.; Périchon, J. A Convenient Method for the Preparation of Aromatic Ketones form Acyl Chlorides and Arylzinc bromides Using a Cobalt Catalysis. Tetrahedron 2003, 59, 8199-9202.
(74) Kazmierski, I.; Bastienne, M.; Gosmini, C.; Paris, J.-M.; Périchon, J. Convenient Processes for the Synthesis of Aromatic Ketones from Aryl Bromides and Carboxylic Anhydrides Using a Cobalt Catalysis. J. Org. Chem. 2004, 69, 936-942.
(75) Cacchi, S.; Fabrizi, G.; Gavazza, F.; Goggiamani, A. Palladium-Catalyzed Reaction of Aryl Iodides with Acetic Anhydride. A Carbon Monoxide-Free Synthesis of Acetophenones. Org. Lett. 2003, 5, 289-291.
(76) Cacchi, S.; Fabrizi, G.; Goggiamani, A. Palladium-Catalyzed Synthesis of Aldehydes from Aryl Iodides and Acetic Formic Anhydride. J. Comb. Chem. 2004, 6, 692-694.
(77) Correa, A.; Martin, R. Palladium-Catalyzed Direct Carboxylation of Aryl Bromides with Carbon Dioxide. J. Am. Chem. Soc. 2009, 131, 15974-15975.
(78) Yu, B.; Zhao, Y.; Zhang, H.; Xu, J.; Hao, L.; Gao, X.; Liu, Z. Pd/C-Catalyzed Direct Formylation of Aromatic Iodides to Aryl Aldehydes Using Carbon Dioxide as a C1 Resource. Chem. Commun. 2014, 50, 2330-2333.
(79) Yu, B.; Yang, Z.; Zhao, Y.; Hao, L.; Zhang, H.; Gao, X.; Han, B.; Liu, Z. An Efficient and General Method for Formylation of Aryl Bromides with CO2 and Poly(methylhydrosiloxane). Chem. Eur. J. 2016, 22, 1097-1102.
(80) Shimomaki, K.; Murata, K.; Martin, R.; Iwasawa, N. Visible-Light-Driven Carboxylation of Aryl Halides by the Combined Use of Palladium and Photoredox Catalysts. J. Am. Chem. Soc. 2017, 139, 9467-9470.
(81) Fujihara, T.; Nogi, K.; Xu, T.; Terao, J.; Tsuji, Y. Nickel-Catalyzed Carboxylation of Aryl and Vinyl Chlorides Employing Carbon Dioxide. J. Am. Chem. Soc. 2012, 134, 9106-9109.
(82) Sayyed, F. B.; Tsuji, Y.; Sakaki, S. The Crucial Role of a Ni(I) Intermediate in NiCatalyzed Carboxylation of Aryl Chloride with CO2: a Theoretical Study. Chem. Соттип. 2013, 49, 10715-10717.
(83) Rebih, F.; Andreini, M.; Moncomble, A.; Harrison-Marchand, A.; Maddaluno, J.; Durandetti, M. Direct Carboxylation of Aryl Tosylates by CO_{2} Catalyzed by in situGenerated Ni^{0}. Chem. Eur. J. 2016, 22, 3758-3763.
(84) Meng, Q.-Y.; Wang, S.; König, B. Carboxylation of Aromatic and Aliphatic Bromides and Triflates with CO2 by Dual Visible-Light-Nickel Catalysis. Angew. Chem. Int. Ed. 2017, 56, 13426-13430.
(85) Tran-Vu, H.; Daugulis, O. Copper-Catalyzed Carboxylation of Aryl Iodides with Carbon Dioxide. ACS Catal. 2013, 3, 2417-2420.
(86) Ozaki, S. Recent Advances in Isocyanate Chemistry. Chem. Rev. 1972, 72, 458-496.
(87) Hsieh, J.-C.; Cheng, C.-H. Nickel-Catalyzed Coupling of Isocyanates with 1,3Iodoesters and Halobenzenes: A Novel Method for the Synthesis of Imide and Amide Derivatives. Chem. Commun. 2005, 4554-4556.
(88) Correa, A.; Martin, R. Ni-Catalyzed Direct Reductive Amidation via C-O Bond Cleavage. J. Am. Chem. Soc. 2014, 136, 7253-7256.
(89) Arendt, K. M.; Doyle, A. G. Dialkyl Ether Formation by Nickel-Catalyzed CrossCoupling of Acetals and Aryl Iodides. Angew. Chem. Int. Ed. 2015, 54, 9876-9880.
(90) Twilton, J.; Christensen, M.; DiRocco, D. A.; Ruck, R. T.; Davies, I. W.; MacMillan, D. W. C. Selective Hydrogen Atom Abstraction through Induced Bond Polarization: Direct α-Arylation of Alcohols through Photoredox, HAT, and Nickel Catalysis. Angew. Chem. Int. Ed. 2018, 57, 5369-5373.
(91) Ueda, T.; Konishi, H.; Manabe, K. Palladium-Catalyzed Reductive Carbonylation of Aryl Halides with N-Formylsaccharin as a CO Source. Angew. Chem. Int. Ed. 2013, 52, 8611-8615.
(92) Cocheta, T.; Bellostaa, V.; Greinerb, A.; Rocheb, D.; Cossy, J. N-Formylsaccharin: A New Formylation Agent. Synlett 2011, 1920-1922.
(93) Korsager, S.; Taaning, R. H.; Lindhardt, A. T.; Skrydstrup, T. Reductive Carbonylation of Aryl Halides Employing a Two-Chamber Reactor: A Protocol for the Synthesis of Aryl Aldehydes Including 13C- and D-Isotope Labeling. J. Org. Chem. 2013, 78, 6112-6120.

Chapter 2

(1) For selected reviews on enantioselective carbonyl allylation, see: (a) Ramachandran, P. V. Aldrichim. Acta 2002, 35, 23. (b) Denmark, S. E.; Fu, J. Chem. Rev. 2003, 103, 2763. (c) Kennedy, Jason W. J.; Hall, Dennis G. Angew. Chem Int. Ed. 2003, 42, 473. (d) Yu, C.-M.; Youn, J.; Jung, H.-K. Bull. Korean Chem. Soc. 2006, 27, 463. (e) Marek, I.; Sklute, G. Chem. Commun. 2007, 1683. (f) Hall, D. G. Synlett 2007, 1644. (g) Lachance, H.; Hall, D. G. Org. React. 2008, 73, 1. (h) Yus, M.; González-Gómez, J. C.; Foubelo, F. Chem. Rev. 2011, 111, 7774.
(2) For selected examples of enantioselective carbonyl allylation using chirally modified allyl metal reagents, see: (a) Herold, T.; Hoffmann, R. W. Angew. Chem. Int. Ed. 1978, 17, 768. (b) Hoffmann, R. W.; Herold, T. Chem. Ber. 1981, 114, 375. (c) Hayashi, T.; Konishi, M.; Kumada, M. J. Am. Chem. Soc. 1982, 104, 4963. (d) Brown, H. C.; Jadhav, P. K. J. Am. Chem. Soc. 1983, 105, 2092. (e) Roush, W. R.; Walts, A. E.; Hoong, L. K. J. Am. Chem. Soc. 1985, 107, 8186. (f) Reetz, M. Pure Appl. Chem. 1988, 60, 1607. (g) Short, R. P.; Masamune, S. J. Am. Chem. Soc. 1989, 111, 1892. (h) Corey, E. J.; Yu, C.-M.; Kim, S. S. J. Am. Chem. Soc. 1989, 111, 5495. (i) See-bach, D.; Beck, A. K.; Imwinkeiried, R.; Roggo, S.; Wonnacott, A. Helv. Chim. Acta 1987, 70, 954. (j) Riediker, M.; Duthaler, R. O. Angew. Chem. Int. Ed. 1989, 28, 494. (k) Panek, J. S.; Yang, M. J. Am. Chem. Soc. 1991, 113, 6594. (1) Kinnaird, J. W. A.; Ng, P. Y.; Kubota, K.; Wang, X.; Leighton, J. L. J. Am. Chem. Soc. 2002, 124, 7920. (m) Hackman, B. M.; Lombardi, P. J.; Leighton, J. L. Org. Lett. 2004, 6, 4375. (n) Burgos, C. H.; Canales, E.; Matos, K.; Soderquist, J. A. J. Am. Chem. Soc. 2005, 127, 8044.
(3) For selected examples of enantioselective carbonyl allylation using achiral allylmetal reagents in combination with chiral catalysts, see: (a) Furuta, K.; Mouri, M.;

Yamamoto, H. Synlett 1991, 561. (b) Cos-ta, A. L.; Piazza, M. G.; Tagliavini, E.; Trombini, C.; Umani-Ronchi, A. J. Am. Chem Soc. 1993, 115, 7001. (c) Keck, G. E.; Tarbet, K. H.; Geraci, L. S. J. Am. Chem. Soc. 1993, 115, 8467. (d) Denmark, S. E.; Coe, D. M.; Pratt, N. E.; Griedel, B. D. J. Org. Chem. 1994, 59, 6161. (e) Denmark, S. E.; Fu, J. J. Am. Chem. Soc. 2001, 123, 9488. (f) Lachance, H.; Lu, X.; Gravel, M.; Hall, D. G. J. Am. Chem. Soc. 2003, 125, 10160. (g) Wada, R.; Oisaki, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2004, 126, 8910. (h) Rauniyar, V.; Hall, D. G. Angew. Chem. Int. Ed. 2006, 45, 2426. (i) Rauniyar, V.; Zhai, H.; Hall, D. G. J. Am. Chem. Soc. 2006, 130, 8481. (j) Lou, S.; Moquist, P. N.; Schaus, S. E. J. Am. Chem. Soc. 2006, 128, 12660. (k) Bar-nett, D. S.; Moquist, P. N.; Schaus, S. E. Angew. Chem. Int. Ed. 2009, 48, 8679. (1) Jain, P.; Antilla, J. C. J. Am. Chem. Soc. 2010, 132, 11884.
(4) For selected reviews on enantioselective carbonyl allylation via Nozaki-Hiyama-Kishi coupling, see: (a) Avalos, M.; Babiano, R.; Cintas, P.; Jiménez, J. L.; Palacios, J. C. Chem. Soc. Rev. 1999, 28, 169. (b) Bandini, M.; Cozzi, P. G.; Umani-Ronchi, A. Chem. Commun. 2002, 919. (c) Hargaden, G. C.; Guiry, P. J. Adv. Synth. Catal. 2007, 349, 2407.
(5) For selected reviews covering carbonyl allylation via umpolung of π-allyls, see: (a) Y. Masuyama, in Advances in Metal-Organic Chemis-try, ed. L. S. Liebeskind, JAI Press, Greenwich, 1994, vol. 3, p. 255. (b) Y. Tamaru, In Handbook of Organopalladium Chemistry for Organic Synthesis, (Eds. E.-i. Negishi, A. de Meijere), Wiley: New York, 2002, Vol. 2, pp. 1917. (c) Y. Tamaru, In Perspectives in Or-ganopalladium Chemistry for the XXI Century, (Ed. J. Tsuji), Else-vier: Amsterdam, 1999, pp. 215. (d) Kondo, T.; Mitsudo, T.-a. Curr. Org. Chem. 2002, 6, 1163. (e) Tamaru, Y. Eur. J.

Org. Chem. 2005, 13, 2647. (f) Zanoni, G.; Pontiroli, A.; Marchetti, A.; Vidari, G. Eur. J. Org. Chem. 2007, 22, 3599.
(6) For a recent review, see: Ketcham, J. M.; Shin, I.; Montgomery, T. P., Krische, M. J. Angew. Chem. Int. Ed. 2014, 53, 9142.
(7) For catalytic enantioselective redox-triggered carbonyl allylations em-ploying allylic carboxylates as pronucleophiles, see: (a) Kim, I. S.; Ngai, M.-Y.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 6340. (b) Kim, I. S.; Ngai, M.-Y.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 14891. (c) Kim, I. S.; Han, S. B.; Krische, M. J. J. Am. Chem. Soc. 2009, 131, 2514. (d) Lu, Y.; Kim, I. S.; Hassan, A.; Del Valle, D. J.; Krische, M. J. Angew. Chem. Int. Ed. 2009, 48, 5018. (e) Hassan, A.; Lu, Y.; Krische, M. J. Org. Lett. 2009, 11, 3112. (f) Han, S. B.; Han, H.; Krische, M. J. J. Am. Chem. Soc. 2010, 132, 1760. (g) Zhang, Y. J.; Yang, J. H.; Kim, S. H.; Krische, M. J. J. Am. Chem. Soc. 2010, 132, 4562. (h) Han, S. B.; Gao, X.; Krische, M. J. J. Am. Chem. Soc. 2010, 132, 9153. (i) Hassan, A.; Zbieg, J. R.; Krische, M. J. Angew. Chem. Int. Ed. 2011, 50, 3493. (j) Gao, X.; Zhang, Y. J.; Krische, M. J. Angew. Chem. Int. Ed. 2011, 50, 4173. (j) Gao, X.; Han, H.; Krische, M. J. J. Am. Chem. Soc. 2011, 133, 12795. (k) Hassan, A.; Townsend, I. A.; Krische, M. J. Chem. Comm. 2011, 10028. (1) Mo-ran, J.; Smith, A. G.; Carris, R. M.; Johnson, J. S.; Krische, M. J. J. Am. Chem. Soc. 2011, 133, 18618. (m) Hassan, A.; Montgomery, T. P.; Krische, M. J. Chem. Comm. 2012, 4692. (n) Montgomery, T. P.; Hassan, A.; Park, B. Y.; Krische, M. J. J. Am. Chem. Soc. 2012, 134, 11100. (o) Schmitt, D. C.; Dechert-Schmitt, A.-M. R.; Krische, M. J. Org. Lett. 2012, 14, 6302. (p) Dechert-Schmitt, A.-M. R.; Schmitt, D. C.; Krische, M. J. Angew. Chem. Int. Ed. 2013, 52, 3195. (q) Feng, J.; Garza, V. J.; Krische, M. J. J. Am. Chem. Soc. 2014, 136, 8911. (r) Shin, I.; Wang, G.; Krische, M. J. Chem. Eur. J. 2014, 13382. 637
(8) For catalytic enantioselective redox-triggered carbonyl allylations em-ploying dienes as pronucleophiles, see: (a) Zbieg, J. R.; Moran, J.; Krische, M. J. J. Am. Chem. Soc. 2011, 133, 10582. (b) Zbieg, J. R.; Yamaguchi, E.; McInturff, E. L.; Krische, M. J. Science 2012, 336, 324. (c) McInturff, E. L.; Yamaguchi, E.; Krische, M. J. J. Am. Chem. Soc. 2012, 134, 20628.
(9) For catalytic enantioselective redox-triggered carbonyl allylations em-ploying allenes as pronucleophiles, see: (a) Han, S. B.; Kim, I. S.; Han, H.; Krische, M. J. J. Am. Chem. Soc. 2009, 131, 6916. (b) Itoh, J.; Han, S. B.; Krische, M. J. Angew. Chem. Int. Ed. 2009, 48, 6313.
(10) Obora, Y.; Hatanaka, S; Ishii, Y. Org. Lett. 2009, 11, 3510.
(11) Park, B. Y.; Nguyen, K. D.; Chaulagain, M. R.; Komanduri, V.; Krische, M. J. J. Am. Chem. Soc. 2014, 136, 11902.
(12) For alkyne-to-allene isomerization followed by hydrometallation to form electrophilic allylpalladium or allylrhodium intermediates, see: (a) Trost, B. M.; Brieden, Baringhaus, K. H. Angew. Chem. Int. Ed. 1992, 31, 1335. (b) Gellrich, U.; Meißner, A.; Steffani, A.; Kähny, M.; Drexler, H.-J.; Heller, D.; Plattner, D. A.; Breit, B. J. Am. Chem. Soc. 2014, 136, 1097.
(13) SAINT V8.27B Bruker AXS Inc, (2012), Madison, WI.
(14) Palatinus, L.; Chapuis, G. J. Appl. Cryst. 2007, 40, 786.
(15) Sheldrick, G. M. SHELXL-2013. Program for the Refinement of Crystal Structures. Acta Cryst. 2008, 64, 112.
(16) Spek, A. L. (1998). PLATON, A Multipurpose Crystallographic Tool. Utrecht University,The Netherlands.
(17) Farrugia, L. J. WinGX 1.64. An Integrated System of Windows Programs for the Solution, Refinement and Analysis of Single Crystal X-ray Diffraction Data. J. Appl. Cryst.. 1999, 32.837
(18) $\quad \mathrm{R}_{\mathrm{W}}\left(\mathrm{F}^{2}\right)=\left\{\Sigma \mathrm{W}\left(\left|\mathrm{F}_{\mathrm{O}}\right|^{2}-\left|\mathrm{F}_{\mathrm{C}}\right|^{2}\right)^{2} / \Sigma \mathrm{w}\left(\left|\mathrm{F}_{\mathrm{O}}\right|\right)^{4}\right\}^{1 / 2}$ where w is the weight given each reflection. $\left.\mathrm{R}(\mathrm{F})=\Sigma\left(\left|\mathrm{F}_{\mathrm{O}}\right|-\left|\mathrm{F}_{\mathrm{C}}\right|\right) / \Sigma\left|\mathrm{F}_{\mathrm{O}}\right|\right\}$ for reflections with $\mathrm{F}_{\mathrm{O}}>4\left(\sigma\left(\mathrm{~F}_{\mathrm{O}}\right)\right) . \mathrm{S}=\left[\Sigma \mathrm{w}\left(\left|\mathrm{F}_{\mathrm{O}}\right|^{2}\right.\right.$ $\left.\left.-\left|\mathrm{F}_{\mathrm{c}}\right|^{2}\right)^{2} /(\mathrm{n}-\mathrm{p})\right]^{1 / 2}$, where n is the number of reflections and p is the number of refined parameters.
(19) Wilson, A. J. C. International Tables for X-ray Crystallography; Kluwer Academic Press: Boston, 1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4.
(20) Sheldrick, G. M. (1994). SHELXTL/PC (Version 5.03). Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA.

Chapter 3

(1) Selected reviews: (a) D. O'Hagan, The Polyketide Metabolites, Ellis Horwood, Chichester, 1991. (b) Rohr, J. Angew. Chem., Int. Ed. 2000, 39, 2847. (c) Rimando, A. M.; Baerson, S. R. ACS Symp. Ser. 2007, 955, 1. (d) Itoh, T.; Dechert-Schmitt, A.-M. R.; Schmitt, D. C.; Gao, X.; Krische, M. J. Nat. Prod. Rep. 2014, 31, 504.
(2) Eribulin mesylate, a truncated derivative of the marine polyether macrolide halichondrin B , is the only commercial polyketide prepared through de novo chemical synthesis: Yu, M. J.; Zheng, W.; Seletsky, B. M. Nat. Prod. Rep. 2013, 30, 1158.
(3) Sait, M.; Hugenholtz, P.; Janssen, P. H. Environ. Microbiol. 2002, 4, 654 and references cited therein.
(4) For a review on the use of the aldol reaction in polyketide construction, see: Schetter, B.; Mahrwald, R. Angew. Chem., Int. Ed. 2006, 45, 7506.
(5) For selected reviews on enantioselective carbonyl allylation and crotylation, see: (a) Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207. (b) Ramachandran, P. V. Aldrichim. Acta 2002, 35, 23. (c) Kennedy, J. W. J.; Hall, D. G. Angew. Chem., Int. Ed. 2003, 42, 4732. (d) Denmark, S. E.; Fu, J. Chem. Rev. 2003, 103, 2763. (e) Yu, C.-M.; Youn, J.; Jung, H.-K. Bull. Korean Chem. Soc. 2006, 27, 463. (f) Marek, I.; Sklute, G. Chem. Commun. 2007, 1683. (g) Hall, D. G. Synlett 2007, 1644. (h) Li, J.; Menche, D. Synthesis 2009, 2293. (i) Leighton, J. L. Aldrichim. Acta 2010, 43, 3. (j) Yus, M.; González- Gómez, J. C.; Foubelo, F. Chem. Rev. 2011, 111, 7774. (k) Ketcham, J. M.; Shin, I.; Montgomery, T. P.; Krische, M. J. Angew. Chem., Int. Ed. 2014, 53, 9142.
(6) For catalytic diastereo- and enantioselective redox-triggered carbonyl crotylation using α-methyl allyl acetate or butadiene pronucleophiles, see: (a) Kim, I. S.; Han, S. B.;

Krische, M. J. J. Am. Chem. Soc. 2009, 131, 2514. (b) Gao, X.; Townsend, I. A.; Krische, M. J. J. Org. Chem. 2011, 76, 2350. (c) Gao, X.; Han, H.; Krische, M. J. J. Am. Chem. Soc. 2011, 133, 12795. (d) Zbieg, J. R.; Moran, J.; Krische, M. J. J. Am. Chem. Soc. 2011, 133, 10582. (e) Zbieg, J. R.; Yamaguchi, E.; McInturff, E. L.; Krische, M. J. Science 2012, 336, 324. (f) McInturff, E. L.; Yamaguchi, E.; Krische, M. J. J. Am. Chem. Soc. 2012, 134, 20628.
(7) Park, B. Y.; Nguyen, K. D.; Chaulagain, M. R.; Komanduri, V.; Krische, M. J. J. Am. Chem. Soc. 2014, 136, 11902
(8) Liang, T.; Nguyen, K. D.; Zhang, W.; Krische, M. J. J. Am. Chem. Soc. 2015, 137, 3161.
(9) Lorente, A.; Lamariano-Merketegi, J.; Alberico, F.; Álvarez, M. Chem. Rev. 2013, 113, 4567
(10) For reviews on the synthesis of γ-butyrolactones, see: (a) Seitz, M.; Reiser, O. Curr. Opin. Chem. Biol. 2005, 9, 285. (b) Burstein, C.; Tschan, S.; Xie, X.; Glorius, F. Synthesis 2006, 2418. (c) Gil, S.; Parra, M.; Rodriguez, P.; Segura, J. Mini-Rev. Org. Chem. 2009, 6, 345.
(11) A related hydride shift was observed in the ruthenium catalyzed internal redox isomerization of propargyl alcohols to form conjugated enones: Trost, B. M.; Livingston, R. C. J. Am. Chem. Soc. 2008, 130, 11970.
(12) The indicated mechanism involving propargyl C-H oxidative addition followed by internal hydrometallation from the allenylruthenium haptomer was considered and cannot be excluded on the basis of the isotopic labelling studies. However, such internal hydrometallations of allenic species does not appear geometrically feasible.

(13) For rhodium catalyzed isomerization of 1-alkynes to allenes, which are then converted to electrophilic π-allyls, see: (a) Lumbroso, A.; Koschker, P.; Vautravers, N. R.; Breit, B. J. Am. Chem. Soc.2011,133,2386. (b) Xu, K.; Khakyzadeh, V.; Bury, T.; Breit, B. J. Am. Chem. Soc.2014,136,16124. (c) Koschker, P.; Kähny, M.; Breit, B. J. Am. Chem. Soc. 2015, 137, 3131 .
(14)SAINT V8.27B Bruker AXS Inc, (2012), Madison, WI.
(15)Palatinus, L.; Chapuis, G. J. Appl. Cryst. 2007, 40, 786.
(16)Sheldrick, G. M. SHELXL-2013. Program for the Refinement of Crystal Structures. Acta Cryst. 2008, 64, 112.
(17)Spek, A. L. (1998). PLATON, A Multipurpose Crystallographic Tool. Utrecht University,The Netherlands.
(18)Farrugia, L. J. WinGX 1.64. An Integrated System of Windows Programs for the Solution, Refinement and Analysis of Single Crystal X-ray Diffraction Data. J. Appl. Cryst.. 1999, 32. 837
(19)Flack, H. D. Acta Cryst A. 1983, 39, 876.
(20)Hooft, R. W. W.; Straver, L. H.; Spek, A. L. J. Appl. Cryst. 2008, 41, 96.
$(21) \mathrm{R}_{\mathrm{W}}\left(\mathrm{F}^{2}\right)=\left\{\Sigma \mathrm{w}\left(\left|\mathrm{F}_{\mathrm{O}}\right|^{2}-\left|\mathrm{F}_{\mathrm{c}}\right|^{2}\right)^{2} / \Sigma \mathrm{w}\left(\left|\mathrm{F}_{\mathrm{O}}\right|\right)^{4}\right\}^{1 / 2}$ where w is the weight given each reflection. $\left.\mathrm{R}(\mathrm{F})=\Sigma\left(\left|\mathrm{F}_{\mathrm{O}}\right|-\left|\mathrm{F}_{\mathrm{C}}\right|\right) / \Sigma\left|\mathrm{F}_{\mathrm{O}}\right|\right\}$ for reflections with $\mathrm{F}_{\mathrm{O}}>4\left(\sigma\left(\mathrm{~F}_{\mathrm{O}}\right)\right) . \mathrm{S}=\left[\Sigma \mathrm{w}\left(\left|\mathrm{F}_{\mathrm{O}}\right|^{2}-\right.\right.$ $\left.\left.\left|\mathrm{F}_{\mathrm{C}}\right|^{2}\right)^{2} /(\mathrm{n}-\mathrm{p})\right]^{1 / 2}$, where n is the number of reflections and p is the number of refined parameters.
(22)Wilson, A. J. C. International Tables for X-ray Crystallography; Kluwer Academic Press: Boston, 1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4.

Chapter 4

(1) (a) Knochel, P.; Molander, G. A. Comprehensive Organic Synthesis, $2^{\text {nd }}$ ed.; Elsevier, Oxford 2014, Vols. 1 and Vol. 2; (b) Otera J. Modern Carbonyl Chemistry; WileyVCH, Weinheim, Germany, 2000.
(2) Review: Ketcham, J. M.; Shin, I.; Montgomery, T. P.; Krische, M. J. Angew. Chem., Int. Ed. 2014, 53, 9142.
(3) For selected reviews on enantioselective carbonyl allylation and crotylation, see: (a) Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207. (b) Ramachandran, P. V. Aldrichim. Acta 2002, 35, 23. (c) Kennedy, J. W. J.; Hall, D. G. Angew. Chem., Int. Ed. 2003, 42, 4732. (d) Denmark, S. E.; Fu, J. Chem. Rev. 2003, 103, 2763. (e) Yu, C.-M.; Youn, J.; Jung, H.-K. Bull. Korean Chem. Soc. 2006, 27, 463. (f) Marek, I.; Sklute, G. Chem. Commun. 2007, 1683. (g) Hall, D. G. Synlett 2007, 1644. (h) Li, J.; Menche, D. Synthesis 2009, 2293. (i) Leighton, J. L. Aldrichim. Acta 2010, 43, 3. (j) Yus, M.; González- Gómez, J. C.; Foubelo, F. Chem. Rev. 2011, 111, 7774. (k) Pasco, M.; Gilboa, N.; Mejuch, T.; Marek, I. Organometallics 2013, 32, 942.
(4) For catalytic enantioselective carbonyl allylation via redox-triggered couplings of primary alcohols and allyl acetate, see: (a) Kim, I. S.; Ngai, M.-Y.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 6340. (b) Kim, I. S.; Ngai, M.-Y.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 14891. (c) Dechert-Schmitt, A.-M. R.; Schmitt, D. C.; Krische, M. J. Angew. Chem. Int. Ed. 2013, 52, 3195. (d) Shin, I.; Wang, G.; Krische, M. J. Chem. Eur. J. 2014, 20, 13382.
(5) Park, B. Y.; Nguyen, K. D.; Chaulagain, M. R.; Komanduri, V.; Krische, M. J. J. Am. Chem. Soc. 2014, 136, 11902.
(6) Liang, T.; Nguyen, K. D.; Zhang, W.; Krische, M. J. J. Am. Chem. Soc. 2015, 137, 3161.
(7) Liang, T.; Zhang, W.; Chen, T.-Y.; Nguyen, K. D.; Krische, M. J. J. Am. Chem. Soc. 2015, 137, 13066.
(8) Indirect use of 1-alkynes in carbonyl allylation is achieved through their conversion to allylboron reagents via tandem alkyne hydroboration-alkene isomerization, see: (a) Miura, T.; Nishida, Y.;Murakami, M. J. Am. Chem. Soc. 2014, 136, 6223. (b) Miura, T.;Nishida, Y.; Morimoto, M.; Murakami, M. J. Am. Chem. Soc. 2013, 135,11497.
(9) (a) Niwa, S.; Soai, K. J. Chem. Soc., Perkin Trans. 1 1990, 937.(b) Ramos Tombo, G. M.; Didier, E.; Loubinoux, B. Synlett 1990,1990, 547. (c) Li, Z.; Upadhyay, V.; DeCamp, A. E.; DiMichele, L.;Reider, P. J. Synthesis 1999, 1999, 1453. (d) Tan, L.; Chen, C.-y.;Tillyer, R. D.; Grabowski, E. J. J.; Reider, P. J. Angew. Chem., Int. Ed.1999, 38, 711. (e) Frantz, D. E.; Fässler, R.; Carreira, E. M. J. Am.Chem. Soc. 1999, 121, 11245.
(10) Review: Kimura, M. In Comprehensive Organic Synthesis, 2nd ed.;Knochel, P., Molander, G. A., Eds.; Elsevier: Oxford, 2014; pp 606-628.
(11) Kang, J. Y.; Connell, B. T. J. Am. Chem. Soc. 2010, 132, 7826.

Chapter 5

(1) Dictionary of Antibiotics and Related Substances, Bycroft, B. W., Ed.; Chapman and Hall: London, 1988.
(2) a) Barrett, A. G. M.; Seefeld, M. A. J. Chem. Soc., Chem. Commun. 1993, 339; b) Barrett, A. G. M.; Seefeld, M. A. Tetrahedron 1993, 49, 7857; c) Barrett, A. G. M.; Seefeld, M. A.; Williams, D. J. J. Chem. Soc., Chem. Commun. 1994, 1053; d) Barrett, A. G. M.; Seefeld, M. A.; White, A. J. P.; Williams, D. J. J. Org. Chem. 1996, 61, 2677.
(3) For recent reviews, see: a) Ketcham, J. M.; Shin, I.; Montgomery, T. P.; Krische, M. J. Angew. Chem. 2014, 126, 9294; Angew. Chem., Int. Ed. 2014, 53, 9142; b) Dechert-Schmitt, A.-M. R.; Schmitt, D. C.; Gao, X.; Itoh, T.; Krische, M. J. Nat. Prod. Rep. 2014, 31, 504; c) Perez, F.; Oda, S.; Geary, L. M.; Krische, M. J. Top. Curr. Chem. 2016, 374, 365; d) Nguyen, K. D.; Park, B. Y.; Luong, T.; Sato, H.; Garza, V. J.; Krische, M. J. Science 2016, 354, aah5133.
(4) Skucas, E.; Zbieg, J. R.; Krische, M. J. J. Am. Chem. Soc. 2009, 131, 5054
(5) Zbieg, J. R.; McInturff, E. L.; Krische, M. J. Org. Lett. 2010, 12, 2514.
(6) Walia, A.; Kang, S.; Silverman, R. B. J. Org. Chem. 2013, 78, 10931.
(7) Park, B. Y.; Nguyen, K. D.; Chaulagain, M. R.; Komanduri, V.; Krische, M. J. J. Am. Chem. Soc. 2014, 136, 11902.
(8) Liang, T.; Zhang, W.; Chen, T.-Y.; Nguyen, K. D.; Krische, M. J. J. Am. Chem. Soc. 2015, 137, 13066.
(9) Carlsen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. J. Org. Chem. 1981, 46, 3936.
(10) Joseph, T.; Deshpande, S. S.; Halligudi, S. B.; Vinu, A.; Ernst, S.; Hartmann, M. J. Mol. Catal. A: Chem. 2003, 206, 13.
(11) Blickenstaff, R. T.; Forster, E.; Gerzon, K.; Young, P. Steroids, 1986, 48, 223.
(12) CrysAlisPro. Agilent Technologies (2013). Agilent Technologies UK Ltd., Oxford, UK, SuperNova CCD System, CrysAlicPro Software System, 1.171.38.43f.
(13) SHELXT. Sheldrick, G. M. (2015) Acta. Cryst. A71, 3-8.
(14) Sheldrick, G. M. (2015). SHELXL-2016/6. Program for the Refinement of Crystal Structures. Acta Cryst., C71, 9-18.
(15) Spek, A. L. (2009). PLATON, A Multipurpose Crystallographic Tool. Utrecht University, The Netherlands. Acta Cryst. D65, 148-155.
(16) WinGX 1.64. (1999). An Integrated System of Windows Programs for the Solution, Refinement and Analysis of Single Crystal X-ray Diffraction Data. Farrugia, L. J. J. Appl. Cryst. 32. 837-838.
(17) $\operatorname{Rw}(\mathrm{F} 2)=\{\Sigma \mathrm{w}(|\mathrm{Fo}| 2-|\mathrm{Fc}| 2) 2 / \Sigma \mathrm{w}(|\mathrm{Fo}|) 4\} 1 / 2$ where w is the weight given each reflection.
(18) $\mathrm{R}(\mathrm{F})=\Sigma|\mathrm{Fo}|-|\mathrm{Fc}|) / \Sigma|\mathrm{Fo}|\}$ for reflections with $\mathrm{Fo}>4(\sigma(\mathrm{Fo}))$.
(19) $\mathrm{S}=[\mathrm{\Sigma w}(|\mathrm{Fo}| 2-|\mathrm{Fc}| 2) 2 /(\mathrm{n}-\mathrm{p})] 1 / 2$, where n is the number of reflections and p is the number of refined parameters..
(20) International Tables for X-ray Crystallography (1992). Vol. C, Tables 4.2.6.8 and 6.1.1.4, A. J. C. Wilson, editor, Boston: Kluwer Academic Press.
(21) Sheldrick, G. M. (1994). SHELXTL/PC (Version 5.03). Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA.

Chapter 6

(1) For a recent review, see: Kim, S. W.; Zhang, W.; Krische, M. Acc. Chem. Res. 2017, 50, 2371.
(2) Garza, V. J.; Krische, M. J. J. Am. Chem. Soc. 2016, 138, 3655.
(3) (a) Riediker, M.; Duthaler, R. O. Angew. Chem., Int. Ed. Engl. 1989, 28, 494. (b) Hafner, A.; Duthaler, R. O.; Marti, R.; Rihs, G.;Rothe-Streit, P.; Schwarzenbach, F. J. Am. Chem. Soc. 1992, 114, 2321. (c) Sebelius, S.; Szabó, K. J. Eur. J. Org. Chem. 2005, 2005, 2539.(d) Vogt, M.; Ceylan, S.; Kirschning, A. Tetrahedron 2010, 66, 6450.(e) Haddad, T. D.; Hirayama, L. C.; Singaram, B. J. Org. Chem. 2010,75, 642. (f) De Sio, V.; Massa, A.; Scettri, A. Org. Biomol. Chem. 2010,8, 3055. (g) Li, L.-L.; Tao, Z.-L.; Han, Z.-Y.; Gong, L.-Z. Org. Lett.2017, 19, 102. (h) Tekle-Smith, M. A.; Williamson, K. S.; Hughes, I. F.; Leighton, J. L. Org. Lett. 2017, 19, 6024.
(4) (a) Kanajima, M.; Saito, M.; Hashimoto, S. Chem. Pharm. Bull.2000, 48, 306. (b) Zanoni, G.; Gladiali, S.; Marchetti, A.; Piccinini, P.;Tredici, I.; Vidari, G. Angew. Chem., Int. Ed. 2004, 43, 846. (c) Zhu,S.-F.; Yang, Y.; Wang, L.-X.; Liu, B.; Zhou, Q.-L. Org. Lett. 2005, 7,2333. (d) Hemelaere, R.; Carreaux, F.; Carboni, B. Chem. - Eur. J.2014, 20, 14518. (e) Evans, D. A.; Aye, Y.; Wu, J. Org. Lett. 2006, 8, 2071. (f) Bai, B.; Zhu, H.-J.; Pan, W. Tetrahedron 2012, 68, 6829.(g) Miura, T.; Nishida, Y.; Morimoto, M.; Murakami, M. J. Am. Chem.Soc. 2013, 135, 11497. (h) Tan, Z.; Wan, X.; Zang, Z.; Qian, Q.;Deng, W.; Gong, H. Chem. Commun. 2014, 50, 3827. (5) Chen, Y. K.; Lurain, A. E.; Walsh, P. J. J. Am. Chem. Soc. 2002,124, 12225.
(6) Shiina, I.; Ibuka, R.; Kubota, M. Chem. Lett. 2002, 31, 286.
(7) Unlike the present transformations, in chiral phosphoramidecatalyzedcross-aldol reactions, enantioselectivity increases as aldehydes become either more electron rich or more electron poor, indicative of a change in the stereodetermining event: Denmark, S. E.;Bui, T. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5439.
(8) (a) Kim, I. S.; Ngai, M.-Y.; Krische, M. J. J. Am. Chem. Soc.2008, 130, 6340. (b) Kim, I. S.; Ngai, M.-Y.; Krische, M. J. J. Am.Chem. Soc. 2008, 130, 14891. (c) Kim, I. S.; Han, S. B.; Krische, M. J.J. Am. Chem. Soc. 2009, 131, 2514. (d) Gao, X.; Townsend, I. A.;Krische, M. J. J. Org. Chem. 2011, 76, 2350.
(9) (a) Han, S. B.; Kim, I. S.; Han, H.; Krische, M. J. J. Am. Chem.Soc. 2009, 131, 6916. (b) Han, S. B.; Kim, I. S.; Han, H.; Krische, M.J. J. Am. Chem. Soc. 2010, 132, 12517.

Chapter 7

(1) Butlerov, A. Studien über die Einfachsten Verbindungen der Organischen Chemie,. Z. Chem. Pharm. 1863, 6, 484-497. (b) Butlerov, A. Z. Sur l'Alcool Pseudobuylique Tertiare ou Alcool Méthylique triméthylé. Bull. Soc. Chim. Fr. 1864, 2, 106-116. (c) Reformatsky, S. Neue Synthese Zweiatomiger Einbasischer Säuren aus den Ketonen. Ber. Dtsch. Chem. Ges. 1887, 20, 1210-1211. (d) Grignard, V. Sur Quelques Nouvelles Combinaisons Organométalliques du Magnèsium et Leur Application àdes Synthèses d'alcools et d'hydrocarbures. C R Hebd Seá nces Acad Sci, Ser C 1900, 130, 1322-1324.
(2) Comprehensive Organic Synthesis, 2nd ed.; Knochel, P.; Molander, G. A., Eds.; Elsevier: Oxford, 2014; Vols. 1 and 2.
(3) For selected reviews on catalytic enantioselective carbonyl addition, see: (a) Soai, K.; Shibata, T. Alkylation of Carbonyl Groups. In Comprehensive Asymmetric Catalysis I-III; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer-Verlag Berlin Heidelberg: Germany, 1999; Vol. 2, pp 911-922. (b) Kobayashi, S.; Ishitani, H. Catalytic Enantioselective Addition to Imines Chem. Rev. 1999, 99, 1069-1094. (c) Pu, L.; Yu, H.-B. Catalytic Asymmetric Organozinc Additions to Carbonyl Compounds. Chem. Rev. 2001, 101, 757-824. (d) Trost, B. M.; Weiss, A. H. The Enantioselective Addition of Alkyne Nucleophiles to Carbonyl Groups. Adv. Synth. Catal. 2009, 351, 963-983. (e) Garcia, C.; Martin, V. S. Asymmetric addition to ketones: enantioselective formation of tertiary alcohols. Curr. Org. Chem. 2006, 10, 1849-1889. (f) Miyaura, N. Celebrating 20 Years of SYNLETT-Special Account On Palladium (II)-Catalyzed Additions of Arylboronic Acids to ElectronDeficient Alkenes, Aldehydes, Imines, and Nitriles. Synlett 2009, 2039-2050. (g)

Tian, P.; Dong, H.-Q.; Lin, G.-Q. Rhodium-Catalyzed Asymmetric Arylation. ACS Catalysis 2012, 2, 95-119.
(4) For selected reviews on metal-catalyzed reductive coupling, see: (a) Montgomery, J. Nickel- Catalyzed Reductive Cyclizations and Couplings. Angew. Chem. Int. Ed. 2004, 43, 3890-3908. (b) Iida, H.; Krische, M. J. Catalytic Reductive Coupling of Alkenes and Alkynes to Carbonyl Compounds and Imines Mediated by Hydrogen. Top. Curr. Chem. 2007, 279, 77-104. (c) Jeganmohan, M.; Cheng, C.-H. Cobaltand Nickel- Catalyzed Regio- and Stereoselective Reductive Coupling of Alkynes, Allenes, and Alkenes with Alkenes. Chem. Eur. J. 2008, 14, 1087610886. (d) Hassan, A.; Krische, M. J. Unlocking Hydrogenation for C-C Bond Formation: A Brief Overview of Enantioselective Methods. Org. Process Res. Devel. 2011, 15, 1236-1242. (e) Moran, J.; Krische, M. J. Formation of C-C Bonds via Ruthenium Catalyzed Transfer Hydrogenation. Pure Appl. Chem. 2012, 84, 1729-1739. (f) Moragas, T.; Correa, A.; Martin. R. Metal-Catalyzed Reductive Coupling Reactions of Organic Halides with Carbonyl-Type Compounds. Chem. Eur. J. 2014, 20, 8242-8258. (g) Ketcham, J. M.; Shin, I.; Montgomery, T. P.; Krische, M. J. Catalytic Enantioselective C-H Functionalization of Alcohols by Redox-Triggered Carbonyl Addition: Borrowing Hydrogen, Returning Carbon. Angew. Chem. Int. Ed. 2014, 53, 9142-9150. (h) Everson, D. A.; Weix, D. J. CrossElectrophile Coupling: Principles of Reactivity and Selectivity. J. Org. Chem. 2014, 79, 4793-4798. (i) Nguyen, K. D.; Park, B. Y.; Luong, T.; Sato, H.; Garza, V. J.; Krische, M. J. Metal-catalyzed reductive coupling of olefin-derived nucleophiles: Reinventing carbonyl addition. Science 2016, 354, No. aah5133. (j) Wang, X.; Dai, Y.; Gong, H. Nickel-Catalyzed Reductive Couplings. Top. Curr.

Chem. 2016, 374, 1. (k) Kim, S. W.; Zhang, W.; Krische, M. J. Catalytic Enantioselective Carbonyl Allylation and Propargylation via Alcohol-Mediated Hydrogen Transfer: Merging the Chemistry of Grignard and Sabatier Acc. Chem. Res. 2017, 50, 2371-2380. (1) Holmes, M.; Schwartz, L. A.; Krische, M. J. Intermolecular Metal-Catalyzed Reductive Coupling of Dienes, Allenes, and Enynes with Carbonyl Compounds and Imines. Chem. Rev. 2018, 118, 6026-6052.
(5) For seminal examples of enantioselective hydrogenative and transfer hydrogenative aldol additions, vinylations, allylations and propargylations, see: (a) Bee, C.; Han, S. B.; Hassan, A.; Iida, H.; Krische, M. J. Diastereo- and Enantioselective Hydrogenative Aldol Coupling of Vinyl Ketones: Design of Effective Monodentate TADDOL-Like Phosphonite Ligands. J. Am. Chem. Soc. 2008, 130, 2746-2747. (b) Ngai, M.-Y.; Barchuk, A.; Krische, M. J. Enantioselective IridiumCatalyzed Imine Vinylation: Optically Enriched Allylic Amines via Alkyne-Imine Reductive Coupling Mediated by Hydrogen. J. Am. Chem. Soc. 2007, 129, $12644-$ 12645. (c) Kim, I. S.; Ngai, M.-Y.; Krische, M. J. Enantioselective IridiumCatalyzed Carbonyl Allylation from the Alcohol or Aldehyde Oxidation Level Using Allyl Acetate as an Allyl Metal Surrogate. J. Am. Chem. Soc. 2008, 130, 6340-6341. (d) Kim, I. S.; Ngai, M.-Y.; Krische, M. J. Enantioselective IridiumCatalyzed Carbonyl Allylation from the Alcohol or Aldehyde Oxidation Level via Transfer Hydrogenative Coupling of Allyl Acetate: Departure from Chirally Modified Allyl Metal Reagents in Carbonyl Addition. J. Am. Chem. Soc. 2008, 130, 14891-14899. (e) Kim, I. S.; Han, S. B.; Krische, M. J. anti-Diastereo- and Enantioselective Carbonyl Crotylation from the Alcohol or Aldehyde Oxidation Level Employing a Cyclometallated Iridium Catalyst: α-Methyl Allyl Acetate as a

Surrogate to Preformed Crotylmetal Reagents. J. Am. Chem. Soc. 2009, 131, $2514-$ 2520. (f) Geary, L. M.; Woo, S. K.; Leung, J. C.; Krische, M. J. Diastereo- and Enantioselective Iridium- Catalyzed Carbonyl Propargylation from the Alcohol or Aldehyde Oxidation Level: 1,3- Enynes as Allenylmetal Equivalents. Angew. Chem. Int. Ed. 2012, 51, 2972-2976. (g) Woo, S. K.; Geary, L. M.; Krische, M. J. Enantioselective Carbonyl Propargylation by Iridium- Catalyzed Transfer Hydrogenative Coupling of Alcohols and Propargyl Chlorides. Angew. Chem. Int. Ed. 2012, 51, 7830-7834.
(6) For selected examples of intermolecular Nozaki-Hiyama-Kishi arylation, see: (a) Takai, K.; Kimura, K.; Kuroda, T.; Hiyama, T.; Nozaki, H. Selective GrignardType Carbonyl Addition of Alkenyl Halides Mediated by Chromium(II) Chloride. Tet. Lett. 1983, 24, 5281-5284. (b) Fürstner, A.; Shi, N. A Multicomponent Redox System Accounts for the First Nozaki-Hiyama-Kishi Reactions Catalytic in Chromium. J. Am. Chem. Soc. 1996, 118, 2533-2534. (c) Fürstner, A.; Shi, N. Nozaki-Hiyama-Kishi Reactions Catalytic in Chromium. J. Am. Chem. Soc. 1996, 118, 12349-12357. (d) Namba, K.; Wang, J.; Cui, S.; Kishi, Y. Surprisingly Efficient Catalytic Cr-Mediated Coupling Reactions. Org. Lett. 2005, 7, 54215424.
(7) For selected reviews on the Nozaki-Hiyama-Kishi reaction, see: (a) Fürstner, A. Carbon-Carbon Bond Formations Involving Organochromium(III) Reagents. Chem. Rev. 1999, 99, 991-1046. (b) Tian, Q.; Zhang, G. Recent Advances in the Asymmetric Nozaki-Hiyama-Kishi Reaction. Synthesis 2016, 48, 4038-4049.
(8) For intermolecular metal-catalyzed aryl halide-aldehyde reductive coupling employing metallic reductants, see: (a) Nickel: Majumdar, K. K.; Cheng, C.-H.
$\mathrm{Ni}(\mathrm{II}) /$ Zn-Mediated Chemoselective Arylation of Aromatic Aldehydes: Facile Synthesis of Diaryl Carbinols. Org. Lett. 2000, 2, 2295-2298. (b) Rayabarapu, D. K.; Chang, H. T.; Cheng, C.-H. Synthesis of Phthalide Derivatives Using NickelCatalyzed Cyclization of o - Haloesters with Aldehydes Chem. Eur. J. 2004, 10, 2991-2996. (c) Harnying, W.; Berkessel, A. Vinylation of Aldehydes Using Mn/Cr Alloy and a $\mathrm{N}_{4}-$ Ligand $/ \mathrm{Ni}^{\text {II }}$ - Catalyst Chem. Eur. J. 2015, 21, 6057-6061. (d) Arendt, K. M.; Doyle, A. G. Dialkyl Ether Formation by Nickel-Catalyzed CrossCoupling of Acetals and Aryl Iodides. Angew. Chem. Int. Ed. 2015, 54, 9876-9880. (e) Asachenko, A. F.; Valaeva, V. N.; Kudakina, V. A.; Uborsky, D. V.; Izmer, V. V.; Kononovich, D. S.; Voskoboynikov, A. Z. Coupling of Aromatic Aldehydes with Aryl Halides in the Presence of Nickel Catalysts with Diazabutadiene Ligands. Russ. Chem. Bull., Int. Ed. 2016, 65, 456-463. (f) Garcia, K. J.; Gilbert, M. M.; Weix, D. J. Nickel Catalyzed Addition of Aryl Bromides to Aldehydes to Form Hindered 2° Alcohols. J. Am. Chem. Soc. 2019, 141, In Press - ja-2018-13709j. (g) Rhodium: Zhou, F.; Li, C.-J. The Barbier-Grignard-Type Arylation of Aldehydes Using Unactivated Aryl Iodides in Water. Nature Comm. 2014, 5, 4254.
(9) For electrochemical intermolecular aryl halide-aldehyde reductive couplings, see: (a) Durandetti, M.; Périchon, J.; Nédélec, J.-Y. Nickel- and Chromium-Catalyzed Electrochemical Coupling of Aryl Halides with Arenecarboxaldehydes. Tet. Lett. 1999, 40, 9009-9013. (b) Durandetti, M.; Nédélec, J.-Y.; Perichon, J. An Electrochemical Coupling of Organic Halide with Aldehydes, Catalytic in Chromium and Nickel Salts. The Nozaki-Hiyama-Kishi Reaction. Org. Lett. 2001, 3, 2073-2076.

Shin, I.; Ramgren, S. D.; Krische, M. J. Reductive Cyclization of HaloKetones to form 3-hydroxy-2-oxindoles via Palladium Catalyzed Hydrogenation: a Hydrogen-mediated Grignard addition. Tetrahedron 2015, 71, 5776-5780.
(11) For redox-neutral catalytic aryl halide-aldehyde couplings to form ketone products, see: (a) Palladium: Satoh, T.; Itaya, T.; Miura, M.; Nomura, M. Palladium-Catalyzed Coupling Reaction of Salicylaldehydes with Aryl Iodides via Cleavage of the Aldehyde C-H Bond. Chem. Lett. 1996, 25, 823-824. (b) Ko, S.; Kang, B.; Chang, S. Cooperative Catalysis by Ru and Pd for the Direct Coupling of a Chelating Aldehyde with Iodoarenes or Organostannanes. Angew. Chem. Int. Ed. 2005, 44, 455-457. (c) Takemiya, A.; Hartwig, J. F. Palladium-Catalyzed Synthesis of Aryl Ketones by Coupling of Aryl Bromides with an Acyl Anion Equivalent. J. Am. Chem. Soc. 2006, 128, 14800-14801. (d) Ruan, J.; Saidi, O.; Iggo, J. A.; Xiao, J. Direct Acylation of Aryl Bromides with Aldehydes by Palladium Catalysis. J. Am. Chem. Soc. 2008, 130, 10510-10511. (e) Zanardi, A.; Mata, J. A.; Peris, E. Palladium Complexes with Triazolyldiylidene. Structural Features and Catalytic Applications. Organometallics 2009, 28, 1480-1483. (f) Adak, L.; Bhadra, S.; Ranu, B. C. Palladium(0) Nanoparticle-catalyzed $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$ Activation: A Convenient Route to alkyl-aryl Ketones by Direct Acylation of Aryl Bromides and Iodides with Aldehydes. Tet. Lett. 2010, 51, 3811-3814. (g) Nowrouzi, N.; Motevalli, S.; Tarokh, D. Palladium-Catalyzed Direct C-H Arylation of 2-hydroxybenzaldehydes With Organic Halides in Neat Water. J. Mol. Cat. A: Chem. 2015, 396, 224-230. (h) Nowrouzi, N.; Tarokh, D. $\mathrm{PdCl}_{2} / \mathrm{DABCO}-$ Catalyzed Direct Arylation of 2-hydroxybenzaldehydes in $\mathrm{H}_{2} \mathrm{O}$. J. Iran Chem. Soc. 2016, 13, 1493-1497. (i) Suchand, B.; Satyanarayana, G. Palladium-Catalyzed

Environmentally Benign Acylation. J. Org. Chem. 2016, 81, 6409-6423. (j) Wakaki, T.; Togo, T.; Yoshidome, D.; Kuninobu, Y.; Kanai, M. PalladiumCatalyzed Synthesis of Diaryl Ketones from Aldehydes and (Hetero)Aryl Halides via C-H Bond Activation. ACS Catal. 2018, 8, 3123-3128. (k) Rhodium: Ishiyama, T.; Hartwig, J. F. A Heck-Type Reaction Involving Carbon-Heteroatom Double Bonds. Rhodium(I)-Catalyzed Coupling of Aryl Halides with N-Pyrazyl Aldimines. J. Am. Chem. Soc. 2000, 122, 12043-12044. (l) Rao, M. L.; Ramakrishna, B. S. Rhodium- Catalyzed Directing- Group- Assisted Aldehydic C-H Arylations with Aryl Halides. Eur. J. Org. Chem. 2017, 2017, 5080-5093. (m) Nickel: Huang, Y.-C.; Majumdar, K. K.; Cheng, C.-H. Nickel-Catalyzed Coupling of Aryl Iodides with Aromatic Aldehydes: Chemoselective Synthesis of Ketones. J. Org. Chem. 2002, 67, 1682-1684. (n) Nowrouzi, N.; Zarei, M.; Roozbin, F. First Direct Access to 2-hydroxybenzophenones via Nickel-Catalyzed Cross-Coupling of 2-Hydroxybenzaldehydes with Aryl Iodides. RSC Adv. 2015, 5, 102448-102453. (о) Photoredox: Zhang, X.; MacMillan, D. W. C. Direct Aldehyde C-H Arylation and Alkylation via the Combination of Nickel, Hydrogen Atom Transfer, and Photoredox Catalysis. J. Am. Chem. Soc. 2017, 139, 1135311356. (p) Cobalt: Hu, Y. L.; Wu, Y. P.; Lu, M. Co (II)-C12 Alkyl Carbon Chain Multi- Functional Ionic Liquid Immobilized on Nano- SiO_{2} Nano- $\mathrm{SiO}_{2} @ \mathrm{CoCl}_{3}$ C12IL as an Efficient Cooperative Catalyst for C-H Activation by Direct Acylation of Aryl Halides with Aldehydes Appl. Organomet. Chem. 2018, 32, e4096. For the magnesium-mediated generation of benzyne from 1-bromo-2fluorobenzene, see: Wittig G. Triptycene. Org. Synth. 1959, 39, 75. For studies on the oxidative addition of aryl halides to rhodium(I) complexes, see: (a) Monophosphine Complexes: Jiao, Y.; Brennessel, W. W.; Jones, W. D. Oxidative Addition of Chlorohydrocarbons to a Rhodium Tris(pyrazolyl)borate Complex. Organometallics 2015, 34, 1552-1566. (b) Townsend, N. S.; Chaplin, A. B.; Abu Naser, M.; Thompson, A. L.; Rees, N. H.; Macgregor, S. A.; Weller, A. S. Reactivity of the Latent 12- Electron Fragment $\left[\mathrm{Rh}\left(\mathrm{PiBu}_{3}\right)_{2}\right]^{+}$with Aryl Bromides: Aryl- Br and Phosphine Ligand $\mathrm{C}-\mathrm{H}$ Activation. Chem. Eur. J. 2010, 16, 8376-8389. (c) Chen, S.; Li, Y.; Zhao, J.; Li, X. Chelation-Assisted Carbon-Halogen Bond Activation by a Rhodium(I) Complex. Inorg. Chem. 2009, 48, 1198-1206. (d) Douglas, T. M.; Chaplin, A. B.; Weller, A. S. Dihydrogen Loss from a 14-Electron Rhodium(III) Bis-Phosphine Dihydride To Give a Rhodium(I) Complex That Undergoes Oxidative Addition with Aryl Chlorides. Organometallics 2008, 27, 2918-2921. (e) Bisphosphine Complexes: Pike, S. D.; Weller, A. S. C-Cl Activation of the Weakly Coordinating Anion $\left[\mathrm{B}\left(3,5-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)_{4}\right]$ - at a $\mathrm{Rh}(\mathrm{I})$ Centre in Solution and the Solid-State Dalton Trans. 2013, 42, 12832-12835. (f) Koenig, A.; Fischer, C.; Alberico, E.; Selle, C.; Drexler, H.-J.; Baumann, W.; Heller, D. Oxidative Addition of Aryl Halides to Cationic Bis(phosphane)rhodium Complexes: Application in $\mathrm{C}-\mathrm{C}$ Bond Formation. Eur. J. Inorg. Chem. 2017, 2040-2047. For O-H reductive elimination of metal-bound alkoxides, see: (a) Rhodium: Milstein, D. Carbon-hydrogen vs. oxygen-hydrogen reductive elimination of methanol from a metal complex. Which is a more likely process? J . Am. Chem. Soc. 1986, 108, 3525-3526. (b) Iridium: Glueck, D. S.; Winslow, L. J. N.; Bergman, R. G. Iridium Alkoxide and Amide Hydride Complexes. Synthesis,

Reactivity, and the Mechanism of Oxygen-Hydrogen and Nitrogen-Hydrogen Reductive Elimination Organometallics 1991, 10, 1462-1479. (c) Blum, O.; Milstein, D. Direct Observation of $\mathrm{O}-\mathrm{H}$ Reductive Elimination from $\mathrm{Ir}^{\text {III }}$ Complexes Angew. Chem. Int Ed. 1995, 34, 229-231.

[^0]: *This chapter is based on the published work:
 Liang, T.; Nguyen, K. D.; Zhang, W.; Krische, M. J. J. Am. Chem. Soc. 2015, 137, 3161.

[^1]: *This chapter is based on the published work:
 Liang, T.; Zhang, W.; Chen, T,-Y.; Nguyen, K. D.; Krische, M. J. J. Am. Chem. Soc. 2015, 137, 13066.

[^2]: *This chapter is based on the published work:
 Liang, T.; Zhang, W.; Krische, M. J. J. Am. Chem. Soc. 2015, 137, 16024.

[^3]: *This chapter is based on the published work:
 Zhang, W.' \dagger Chen, W. ${ }^{\dagger}$; Xiao, H.; Krische, M. J. Org. Lett. 2017, 19, 4876.

[^4]: *This chapter is based on the published work:
 Cabrera, J. M. ${ }^{\dagger}$; Tauber, J. ${ }^{\dagger}$; Zhang, W.; Xiang, M.; Krische, M. J. J. Am. Chem. Soc. 2018, 140, 9392.

[^5]:

[^6]: *This chapter is based on the published work:
 Swyka, R. A. ${ }^{\dagger}$; Zhang, W. ${ }^{\dagger}$; Krische, M. J. J. Am. Chem. Soc. 2019, 141, 1828.

