TEXAS BUSINESS REVIEW

Bureau of Business Research • The University of Texas at Austin

Semiannual Issue

CONTENTS

ARTICLES

173: The Business Situation in Texas, by Robert H. Ryan
176: Energy Consumption in Texas, by Robert M. Lockwood
182: Texas Construction, by Mildred Anderson and Connie Cooledge

TABLES

174: Business-Activity Indexes for Twenty Selected Texas Cities
175: Selected Barometers of Texas Business
176: Increasing Use of Fuel Oil in Texas Power Plants, July-December 1972
177: Crude Oil Reserves/Production Ratios, Texas, by Railroad Commission District, 1960-1972
179: Estimated Gross Energy Input, Texas, 1970
179: Estimated Proved Reserves of Petroleum Fluids in Texas, by Regions, as of December 31, 1970
180: Estimated Consumption of Energy in Texas, by Region and Sector, 1970
181: Estimated Consumption of Energy by EnergyProcessing Industries in Texas, by Region and Subsector, 1970
182: Estimated Values of Building Authorized in Texas
183: Building Authorized in Texas
183: Number and Value of New Housing Units Authorized, January-June 1963-1973
184: Local Business Conditions
Barometers of Texas Business (inside back cover)

CHARTS

173: Texas Business Activity
174: Prices Received by Farmers, All Farm Products, Texas
174: Comparison of Consumer Prices and Wholesale Prices, United States
175: Index of Income Adequacy
175: Estimated Personal Income, Texas

MAP

179: Energy in Texas

PHOTOGRAPHS

177: A diesel-electric unit serves as standby capacity in a small steam-electric plant.
180: This multistory office building is an example of the many modern structures dependent on the fuel base of the artificial environment.
181: These fuel-oil storage tanks will contain $\mathbf{1 0 , 0 0 0}$ barrels of fuel oil.

Published monthly by the Bureau of Business Research, Graduate School of Business, The University of Texas at Austin, Austin, Texas 78712. Second-class postage paid at Austin, Texas. Content of this publication is not copyrighted and may be reproduced freely, but acknowledgment of source will be appreciated. The views expressed by authors are not necessarily those of the Bureau of Business Research. Subscription, $\$ 4.00$ a year; individual copies 35 cents.

BUREAU OF BUSINESS RESEARCH

Business Research Council: Vernon M. Briggs, James R. Bright, Robert T. Green, Darwin D. Klingman, George Kozmetsky, George M. Scott, Lee A. Tavis
Director: Stanley A. Arbingast
Assistant Directors: Florence Escott, David L. Karney
Statistician: John R. Stockton
Consulting Statistician: Francis B. May
Cooperating Faculty: C. P. Blair, Charles T. Clark, Lawrence L. Crum, Clark C. Gill, Robert K. Holz, David L. Huff, Lorrin G. Kennamer, Charles H. Smith, H. K. Snell, Jerry Todd, Ernest W. Walker, Robert B. Williamson
Administrative Assistant: Margaret Robb
Energy Specialist and Coordinator of Radio Programs: Robert M. Lockwood

Transportation Specialist: Charles P. Zlatkovich
Coordinator of Special Projects and of Television Programs: Robert H. Ryan
Research Associates: J. Bryan Adair, Connie Cone, Gary Cunningham, Robert Easterwood, Christine Fox, Ida M. Lambeth, Mary Leonard, Kathleen Luft, Carlos Marin, Maureen Meehan, Eugene Robinson, Barbara Terrell, James S. Wilson
Computer Programmer: Marilyn Turnbull
Statistical Associate: Mildred Anderson
Statistical Assistant: Constance Cooledge
Statistical Technician: Kay Davis
Cartographers: James Buchanan, Alice Lo
Librarian: Merle Danz
Administrative Clerk: Karin Meyer
Senior Secretaries: Jennifer Brewster, Clintsy Sturgill
Senior Clerk Typists: Susan Cox, Geraldine Edwards, Agnes Marie Sullivan
Senior Clerks: Robert Jenkins, Salvador B. Macias
Printing Coordinator: Daniel P. Rosas
Print Shop Foreman: Robert L. Dorsett

COVER DESIGN BY MARY LANGRIDGE

[^0]
THE BUSINESS SITUATION IN TEXAS

Robert H. Ryan

Texas business activity declined by 3 percent in June, perhaps partly in response to a sharp cutback in plans for new construction. Most economic indicators except those in the building industry maintained their high levels of earlier months, though there were no important advances.

The record for the first half of 1973 indicates 7-percent increases in both business activity and personal income from the first half of 1972. The January-June comparisons show favorable movement of all major Texas business barometers other than residential construction authorizations and the manufacturing workweek. (Average weekly earnings in manufacturing, however, were up by 5 percent.)

Among the twenty cities for which business-activity indexes are prepared by the Bureau of Business Research, only three failed to register gains from January-June 1972 to January-June 1973. The largest increases were in Lubbock (+18 percent), Amarillo (+14 percent), Corsicana (+13 percent), and Laredo (+11 percent). The only declines occurred in Fort Worth (-2 percent) and Austin (-1 percent); Texarkana showed no significant change.

Texas industrial production inched upward from May to June, and employment remained steady; unemployment did advance substantially but remained well below the general levels of 1971 and 1972.

Residential construction permits statewide dropped 19 percent from May to June, enough to bring the total for the first six months of this year to a point 5 percent below the January-June 1972 total. Among the major nonresidential construction categories, plans for new industrial and office buildings and hospitals have continued at a higher rate than last year; other types of building have generally weakened.

Among all economic indicators nationwide, the focus of sharpest and most apprehensive attention has been the consumer price index, the best overall measure of inflation. Even though Texans' total personal income is estimated to have advanced by 7 percent from January-June 1972 to the
same months this year, the number of nonfarm workers has increased by 5 percent, which suggests that the average worker's income has increased by about 2 percent. That increase is by no means enough to offset the 4.8 -percent rise in consumer prices. In other words, there exists convincing evidence that the average Texas family is not as well off in 1973, in terms of buying power, as in 1972. Ominously the U.S. wholesale price index has been rising even faster than consumer prices, which indicates a potential for acceleration of inflation in the second half of 1973. As August progresses, some of the price increases in the wholesale market are being translated into dramatically higher retail foods costs, and the effects of the serious dislocations in the meat industry have yet to be fully realized.

Public concern with living costs is calling attention to statistical measures of personal income and its adequacy to meet the needs of the typical family. Family needs and budgets vary in so many details that it is impossible to say with any assurance what constitutes an "adequate income." For some time, though, the U.S. Bureau of Labor Statistics has been publishing estimates of the cost of living for an urban four-person family in selected standard metropolitan statistical areas. Three family budget levels are offered: the lowest at which decent living conditions can be maintained; an intermediate level, modest but distinctly removed from poverty; and a higher level that allows for more discretionary spending.

For the national average, the low-budget family was given $\$ 7,386$ to spend in 1972; the intermediate family, $\$ 11,446$; and the more affluent family, $\$ 16,558$. Estimates are also made for consumption expenditures for other family types. At the intermediate level a single person younger than 35 is expected to make do with 65 percent less money than the four-person family. A husband and wife, both under 35 , with no children are permitted about

BUSINESS-ACTIVITY INDEXES
FOR TWENTY SELECTED TEXAS CITIES (Adjusted for seasonat variation-1967=100)

City	$\begin{gathered} \text { Jun } \\ 1973 \end{gathered}$	$\begin{gathered} \text { May } \\ 1973 \end{gathered}$	$\begin{gathered} \text { Year-to- } \\ \text { date } \\ \text { average } \\ 1973 \end{gathered}$	Percent change	
				$\begin{gathered} \text { Jun } \\ 1973 \\ \text { from } \\ \text { May } \\ 1973 \end{gathered}$	Year-todate average 1973 from 1972
Abilene	131.5	135.2	131.0	-3	8
Amarillo	177.0	162.5	162.7	9	14
Austin	217.2	210.9	217.1	3	- 1
Beaumont	101.6	102.4	103.6	- 1	5
Corpus Christi	151.9	159.3	158.0	- 5	2
Corsicana	129.5	139.9	138.1	- 7	13
Dallas	201.6	198.6	185.9	2	9
El Paso	161.1	150.5	158.6	7	5
Fort Worth	135.5	152.4	154.3	-11	- 2
Galveston	107.6	105.3	120.7	2	5
Houston	168.5	187.1	179.0	-10	8
Laredo	172.8	172.8	167.8	**	11
Lubbock	158.0	159.1	157.6	-1	18
Port Arthur	99.6	102.9	103.8	- 3	2
San Angelo	188.8	166.9	167.9	13	10
San Antonio	160.7	167.6	161.5	- 4	7
Texarkana	110.8	114.6	115.1	- 3	**
Tyler	129.1	131.3	140.3	- 2	5
Waco	150.8	152.3	157.6	-1	5
Wichita Falls	128.7	128.1	125.1	**	2

half the four-person-family income to maintain the same standard of living. A single person 65 or older is expected to get by with only 28 percent as much for consumption expenditures, or $\$ 2,520$.

Of course living costs vary significantly from place to place, and so do incomes. Per capita personal income levels, as estimated by the U.S. Commerce Department's Bureau of Economic Analysis, range from a 1971 high of $\$ 5,900$ in the New York SMSA and $\$ 5,633$ in the San Francisco SMSA to low extremes where per capita incomes are less than half as much as in the richest cities. The nation's three lowest-income SMSA's are all in Texas: Brownsville-Harlingen-San Benito, McAllen-Pharr-Edinburg, and Laredo. In these three, incomes range between $\$ 2,136$ and $\$ 2,651$. On the other hand, some Texas metropolitan areas, most importantly the Dallas and Houston SMSA's, top the national average in per capita income. Nevertheless, Texas per capita income statewide remains about 10 percent below the national average.

The argument is familiar that Texans do not really need as much money as persons living elsewhere because of low living costs in this region. To a degree the argument has some truth. BLS family budget estimates are available for three Texas metropolitan areas, Austin, Dallas, and Houston. In all three, living costs are shown to be significantly lower than the average of the thirty-nine U.S. metropolitan areas sampled. In Austin, however, per capita personal income is even farther below the national average than are living costs.* An accompanying chart shows synthetic

[^1]
indexes of income adequacy for selected SMSA's, based on 1971 data. With 100 established as the national average, each index value shows how well per capita personal income in the city serves to meet family needs, as indicated by the intermediate-level four-person-family budget for the city, published by the Bureau of Labor Statistics.

For example, the figures suggest that personal income in San Francisco is high enough that residents are relatively very well off, even in their admittedly expensive city. On the other hand, Boston has the highest living costs, at the intermediate budget level, of any city studied in the "Lower 48" states, and incomes there are somewhat above the national average but not by enough to offset high family expenses. (Personal income taxes in the Boston SMSA are 41 percent above the urban U.S. average.)

Residents of Atlanta, Dallas, and Houston are clearly among the fortunate of the nation. Their cities are less expensive than most in living costs, yet the average incomes in those cities are well above the national average. City dwellers in the South generally benefit from relatively low housing costs and distinctly lower income tax burdens than are faced by most Americans.

The lower-cost cities are not necessarily lower in every category of family expenditure. Clothing, for example, is evidently more expensive in Austin than in Philadelphia, Washington, Dallas, Houston, and some other cities. Because of differences in family living patterns, as determined by BLS statisticians, restaurant meals take more of the family budget in Austin than in most cities. Members of the typical Austin family are found to eat away from home a

INDEX OF INCOME ADEQUACY

(Selected Standard Metropolitan Statistical Areas)

Source: Derived from 1971 data from U.S. Bureau of Labor Statistics and Bureau of Economic Analysis, U.S. Department of Commerce.
little more often than do most urban dwellers. Not surprisingly, Hawaii and Alaska appear to have higher living costs than any of the "Lower 48 " states, which is a particularly appropriate term in this regard.

In the rapidly changing American economy, shifts in income and living costs can be expected to erase some local advantages and perhaps generate others. Inflation is anything but equitable, and price increases do not develop at the same rate for all goods or in all places. The growth and rapid urbanization of Texas tend to raise living costs more rapidly here than in states already heavily urbanized. In 1974 Texas may likely become the third-largest state in population, passing slower-growing Pennsylvania and also passing the 12 -million mark. Most of this population increase in Texas is taking place in cities, which tend to become more expensive as they grow. Living costs in nonmetropolitan areas are generally close to 20 percent lower than costs in SMSA's.

Inflation is also shifting cost-of-living patterns. The consumer price index for gasoline and motor oil was up 11.5 percent from June 1972 to June 1973, and families that must depend heavily upon automobile transportation are especially hard hit. This factor is certainly relevant in

Texas, where public transportation is underdeveloped and underused. By contrast the price index for public transportation rose only 1.3 percent over the same period.

In all, Texans are still fortunate in the stability of their economy and in many of the geographic advantages that favor this region.

				Percent change	
Index	$\begin{gathered} \text { Jun } \\ 1973 \end{gathered}$	$\begin{gathered} \text { May } \\ 1973 \end{gathered}$	```Year-to- date average 1973```	$\begin{gathered} \text { Jun } \\ 1973 \\ \text { from } \\ \text { May } \\ 1973 \end{gathered}$	$\begin{gathered} \text { Year-to- } \\ \text { date } \\ \text { average } \\ 1973 \\ \text { from } \\ 1972 \end{gathered}$
Estimated personal income	$170.1{ }^{\text {p }}$	$169.8{ }^{\text {p }}$	165.7	**	7
Business activity	174.5	179.5	173.4	- 3	7
Crude-petroleum production	$118.2{ }^{\text {p }}$	$115.3{ }^{p}$	116.0	3	3
Crude-oil runs to stills	123.4	121.8	121.5	1	5
Total electric-power use	$156.8{ }^{\text {p }}$	151.9^{p}	154.5	3	5
Industrial electricpower use	$143.3{ }^{\text {p }}$	141.3^{p}	139.7	1	5
Bank debits	238.6	239.6	226.1	**	19
Urban building permits issued	166.9	191.2	188.0	-13	**
New residential	147.8	182.0	196.2	-19	- 5
New nonresidential (unadjusted)	181.0	202.9	183.9	- 11	4
Total industrial production	$140.0{ }^{\text {p }}$	$138.0{ }^{\text {p }}$	136.2	1	6
Total nonfarm employment	$123.9{ }^{\text {p }}$	$123.9{ }^{p}$	123.4	**	5
Manufacturing employment	$115.4{ }^{\text {p }}$	$115.3{ }^{\text {p }}$	115.3	**	5
Total unemployment	132.6	126.0	129.9	5	- 14
Insured unemployment	156.1	143.4	141.1	9	- 18
Average weekly earn-ings-manufacturing	137.8^{p}	$135.7{ }^{\text {p }}$	134.5	2	5
Average weekly hoursmanufacturing	$99.1{ }^{\text {p }}$	$98.6{ }^{\text {p }}$	98.2	1	-1

[^2]
ENERGY CONSUMPTION IN TEXAS

Robert M. Lockwood

An analysis of energy consumption in Texas refutes two widely held misconceptions. First, the energy industries, not transportation, account for the largest single bloc of energy demand. Second, no arithmetic shortage of energy materials exists in Texas. The large surplus of primary energy goods in the state-roughly five eighths of the total production in 1970-is effectively wiped out by longstanding contractual arrangements and by geographic imbalances.

Rapid changes in the structure of the energy economy in the state have been underway since 1970 . For example, the use of lignite in Texas in 1970 was limited to two locations, in one of which lignite was used as a raw material. Statistically, the contribution of lignite to the energy supply of Texas was inconsequential, amounting to less than 1 percent. Lignite production in 1973 amounts to the energy equivalent of at least 25,000 barrels per day of crude oil, perhaps three times the 1970 level. The lignite input will probably double again by 1974 or 1975.

As a further example of the changes which have occurred since 1970, only about 150,000 barrels of fuel oil were used in power plants in Texas in 1970, the equivalent of some $330 \mathrm{~b} / \mathrm{d}$ COE (barrels per day of crude-oil equivalent). An accompanying table demonstrates the extent to which natural-gas curtailments in the last half of 1972 forced the use of fuel oil in utility plants. In equivalent b / d COE, fuel-oil use increased from 64 in July to 18,269 in December 1972. On an annual basis, the December figure represents a level of use more than fifty times that of 1970.

July 1973 is the sixteenth consecutive month in which the Texas Railroad Commission has maintained the market demand factor at 100 percent. It is generally acknowledged, in fact, that prorationing to market demand is a dead issue. With Oklahoma and Louisiana, Texas has reached the point at which only a few larger oil fields are not producing at maximum capacity.

During the last couple of years, Texas has entered a period of rapid and sometimes violent change, a transition from the traditional, petroleum-based economy to a new energy economy which cannot yet be confidently described. Some of the strains of this transition are common to the nation as a whole, and even to the world, but some of them are peculiar to Texas.

One of the accompanying tables illustrates the extent to which the crude-oil-reserves position of Texas has deteriorated during the last dozen years. The crude-oil reserves/ production ratio (year-end estimated proved reserves

[^3]divided by annual production) fell from 16.6 at the end of 1961 to 9.7 at the end of last year. The ratios for individual Railroad Commission districts necessarily ignore the absolute levels of reserves, although these levels are significant. Districts 6, 8, and 8A, for example (see map), include two thirds of the reserves of crude oil as of the end of 1972. The reserves/production (R / P) ratio in District 6 fell from 34.4 in 1960 to 13.3. The ratio in District 8 has remained roughly constant, but the R / P ratio in District 8 A plunged from 21.8 in 1960 to 9.1 at the end of last year.

District 3 is significant not only because it accounted for more than one eighth of Texas crude-oil reserves as late as the end of 1972, but also for its location. District 3, the most populous of the twelve districts, has the largest energy demand and the largest energy-materials-processing capacity. From its end-1960 R/P of 20.4 , District 3 has fallen off rapidly to a low last year of 8.9.

In 1972 the American Oil Company began importing Libyan crude oil for processing in its Texas City (District 3) plant. Further demolishing the pattern of the past, American Petrofina, Inc. in April 1973 reversed the flow in its pipeline between Corpus Christi and the Petrofina refinery at Big Spring (District 8), in order to ship imported Iraqi crude to the Permian Basin, long one of the world's leading net exporting regions of crude oil.

These and other developments since 1970 have lent that year a significance as a benchmark which goes beyond its choice as a base year for an analysis of energy consumption in Texas. Certain patterns characteristic of the Texas energy economy began disappearing in 1970, and some of these will not appear again.

INCREASING USE OF FUEL OIL IN TEXAS POWER PLANTS, ${ }^{1}$ JULY-DECEMBER 1972				
Month	Distillate oil no. 2 (bbls.)	Distillate oil no. 6 (bbls.)	Total barrels	Total barrels per day of crude-oil equivalent ${ }^{2}$
July	1,920		1,920	64
August	2,300	20,830	23,130	828
September	920	22,310	23,230	864
October	80,290	23,930	104,220	3,547
November	193,460	31,740	225,200	7,866
December	501,430	41,750	543,180	18,269
Steam-electric plants of 25 megawatts or larger. For definitions and conversion factors, see note accompanying this article.				
Sources: Bureau of Power, Federal Power Commission, Monthly				
Report of Cost and Quality of Fuels for Steam-Electric Plant				
(FPC Form No. 423 data for 3rd quarter of 1972) (Washing-				
ton, D.C.: Federal Power Commission, 1973), p. 15; Monthly				
Report of Cost and Quality of Fuels for Steam-Electric Plant				
ton,	.: Federal	wer Comm	ion, 1973)	(Washi

The gross input to the energy system of Texas in 1970 probably amounted to some 8.3 million b/d COE. Almost all of these energy materials comprised the various forms of petroleum: crude oil, natural gas, and natural-gas liquids. Lignite and hydroelectricity, then as now, were of little consequence in Texas. Uranium, wood and wood waste, and other peripheral energy substances were not considered in this analysis, partly on account of conceptual difficulties and partly because their role cannot be estimated with any degree of accuracy.

For example, the theoretical maximum heat content of uranium depends in part on the technology of its utilization. In the case of natural-gas liquids, at least three problems arise. First, no general agreement exists as to whether natural-gas liquids ought to be considered primary or secondary forms of energy. Second, the difference between the theoretical heat content of processed gas and that of unprocessed gas is not equal to the heat value of the liquids recovered by the processing. Further, some naturalgas liquids are collected without processing natural gas. Third, estimated proved reserves of natural-gas liquids are reported as a single figure. This total quantity can be converted to thermal units only by the use of a weighted average, based, for example, on the production pattern of individual products.

Crude oil contributed 41 percent of the primary energy-materials production in 1970. Natural gas, in this analysis, accounted for 51 percent of the total. Despite problems surrounding the statistical handling of various substances, the basic structure of the 1970 primary energy supply is immune to eccentricities of measurement. The supply consisted about half and half of liquid and gaseous petroleum.

Net exchanges of primary and secondary energy materials with other states and Mexico effectively amounted to about five eighths of indigenous production of primary

Energy-processing is the largest single energy-using sector. One fifth of Texas energy production is consumed in processing the other four fifths for market. The diesel-electric unit pictured here serves as standby capacity in a small steam-electric plant.
energy commodities in 1970. The actual figure must have been about 5 million b/d COE.

Because the structure of these net exports is undergoing considerable pressure for alteration, 1970 may mark the end of the rather traditional movements of energy materials into and out of the state. Net exports of crude oil amounted to 500-600 thousand b/d COE. Because of the way stocks are reported, crude movements between states cannot be estimated more closely. Net exports of naturalgas liquids, which are even more difficult to determine, may have amounted to $400-500$ thousand b / d COE. Thus perhaps one fifth of the 5 million b/d COE net exports consisted of crude oil and natural-gas liquids.

Natural-gas movements can be estimated with fair accuracy. Net exports from Texas in 1970 probably approached 1.9 million b / d COE. The remainder of the roughly 5 million b / d COE-about 2 million $\mathrm{b} / \mathrm{d} \mathrm{COE}-$

CRUDE OIL RESERVES/PRODUCTION RATIOS, 1
TEXAS, BY RAILROAD COMMISSION DISTRICT, 1960-1972

Year	Railroad Commission district												Total
	1	2	3	4	5	6	7B	7 C	8	8A	9	10	
1960	8.1	18.1	20.4	18.0	18.2	34.4	6.4	9.9	12.7	21.8	7.3	7.9	16.5
1961	7.8	26.1	20.4	17.0	19.4	33.5	6.3	10.1	12.3	21.1	7.2	7.5	16.6
1962	8.2	24.7	19.8	15.7	18.9	33.4	6.1	9.7	12.5	21.1	6.9	7.2	16.4
1963	8.5	22.8	18.2	13.5	17.6	34.2	5.9	9.7	13.0	20.3	6.6	6.7	15.9
1964	8.1	21.8	17.8	12.2	16.9	34.0	5.9	9.3	12.3	20.1	6.5	6.3	15.4
1965	8.5	21.6	18.1	10.8	15.9	34.1	6.0	9.0	11.9	20.5	6.3	8.9	15.3
1966	7.9	18.9	16.6	8.2	15.1	30.0	7.0	8.1	11.0	18.2	6.1	8.6	14.1
1967	8.7	16.4	14.6	7.8	13.1	25.7	6.8	7.3	12.7	15.7	6.5	8.4	13.5
1968	8.4	14.0	13.5	7.4	11.9	24.4	6.4	7.4	12.0	14.4	5.9	8.2	12.7
1969	9.2	12.4	12.8	7.0	9.9	21.7	6.4	7.9	11.2	12.4	5.9	8.2	11.8
1970	9.0	10.8	10.4	6.8	7.8	16.4	6.3	7.4	10.8	12.3	6.7	8.1	
1971	7.3	10.7	10.6	6.2	7.1	15.9	5.7	7.0	12.4	11.3	6.9	8.1	11.0
1972	6.2	8.0	8.9	5.9	4.9	13.3	6.4	6.9	11.8	9.1	6.6	7.8	9.7

[^4]represented net exports of refined products. About half of this total apparently was attributable to gasoline. Perhaps three fourths of the remainder consists of distillate and residual fuel oil. Some of this fuel oil is used for bunkering foreign-trade vessels at various ports and is not, properly speaking, either an "export" or an element of "domestic demand." Published data suggest that this market may have amounted, in 1970, to some 10-15 thousand b/d COE.

Sectoral Analysis of Consumption

One of the most striking demonstrations of the expense of a fluid-fuel economy is contained in the fact that, in Texas in 1970, the energy industries themselves consumed about 20 percent of their gross production to make the remaining 80 percent available for consumption by other sectors. Of the estimated consumption of energy materials within Texas, the energy-processing industries accounted for 55 percent. In general, the energy cost of transporting and distributing finished energy commodities is not included in the energy-processing industries share of consumption. Of the roughly 1.7 million b / d COE consumed by the energy industries in 1970, almost all was attributable to production and processing functions. Some of the energy expended in pipeline transportation is included in this total, and some production costs are not included.

A significant share of this cost occurs in the form of thermal and mechanical losses in conversion systems,
notably steam-electric power generation. The theoretical energy input of steam-electric generating capacity in Texas during 1970 amounted to some 530 thousand b/d COE. The theoretical energy-equivalent of the output amounted to about 40 percent of the input: 210 thousand b/d COE. This output figure represents net generation and makes no allowance for further line and other losses which intervene between power plant and consumer. The difference of some 320 thousand b/d COE-the "cost" of thermal-electric power in Texas-includes thermal and mechanical losses and plant use of power.

For perhaps the last time, steam-electric power plants in Texas in 1970 relied almost exclusively on natural gas. That the delivered electricity equivalent of a cubic foot of natural gas should require the consumption of perhaps three cubic feet of natural gas is a striking and sobering fact of present resource utilization.

The largest share of the energy cost of energy is borne by the natural gas industry, which accounted for some 52 percent of the energy-industry consumption of energy potential in 1970 . Of the 870 thousand b/d COE attributable to energy consumption in the natural gas industry, 45 percent comprised fuel use at producing leases and gasprocessing plants. The extraction loss accompanying nat-ural-gas processing-the shrinkage in volume attributable to the removal of liquids-is a statistically thorny issue. The quantity is significant: some 230 thousand b/d COE, or about 27 percent of the energy-cost expenditure of the natural gas industry. Statistically, however, this quantity is

CONVERSION FACTORS EMPLOYED IN THIS STUDY

[^5]crude oil (1970) refined products, average (1970) natural gas, unprocessed (1970)
natural gas, pro-
cessed (1970)
natural gasoline liquefied gases gasoline (including aviation)
special naphtha jet fuel, naphtha jet fuel, kerosine kerosine distillate fuel oil residual fuel oil still gas
lubricants
waxes
petroleum coke
asphalt and road oil purchased steam (refineries) lignite coke

5,620,900 Btu/barrel
5,520,400 Btu/barrel
$1,102 \mathrm{Btu} / \mathrm{cu} . \mathrm{ft}$.
$1,031 \mathrm{Btu} / \mathrm{cu} . \mathrm{ft}$. 4,620,000 Btu/barrel 4,011,000 Btu/barrel

5,248,000 Btu/barrel 5,248,000 Btu/barrel 5,355,000 Btu/barrel 5,670,000 Btu/barrel 5,670,000 Btu/barrel 5,825,000 Btu/barrel 6,287,000 Btu/barrel 6,000,000 Btu/barrel $990 \mathrm{Btu} / \mathrm{cu} . \mathrm{ft}$. 6,065,000 Btu/cu. ft. 5,537,000 Btu/barrel 6,024,000 Btu/barrel $30,120,000 \mathrm{Btu} /$ short ton 6,636,000 Btu/barrel

1,200 Btu/lb.
15,000,000 Btu/short ton
24,800,000 Btu/short ton

more than offset-volumetrically and thermally-by the natural-gas liquids recovered from the processed gas. The recovered liquids, in this analysis, are considered to be part of the primary-energy production.

Refining crude oil also presents certain anomalous features which make statistical analysis difficult and subjective. In the aggregate, refining in the United States and in Texas, which generally seeks maximum gasoline output, has yielded for many years a larger volume of liquids than the total input. This circumstance arises through the various cracking processes, which alter the molecular structure and increase the volume of certain fluids. Thus individual

ESTIMATED GROSS ENERGY INPUT, TEXAS, 1970 (Thousand $\mathrm{b} / \mathrm{d} \mathrm{COE}^{1}$)

Energy material	Production	Net interstate movements ${ }^{2}$	Net available supply
Primary			
Crude oil 3	3,424	-	579
Natural-gas liquids 3	602	-477	2,845
Subtotal, liquids	4,026	$-1,056$	2,970
Natural gas	4,250	$-1,881$	2,369
Subtotal, petroleum	8,276	$-2,937$	5,339
Lignite	27		27
Hydroelectricity	2		2
Total	8,305	$-2,937$	5,368
Secondary	3,140	$-2,000$	1,140
Refined products	(4)	12	12
Coke	209	(4)	209
Electricity	3,349	$-1,988$	1,361
Total			

[^6]plants, or regional totals including significant cracking capacity, almost always yield a net volumetric gain. Nonetheless, losses occur, as in any thermal process, and refineries also have to satisfy their fuel needs, partly from their own production. Crude-oil refining accounted in 1970 for about 450 thousand b/d COE, or some 27 percent of the total energy consumed by the energy-processing industries. This quantity represented perhaps one seventh of the total refinery input. About 290 thousand b / d of this total, or almost two thirds, was consumed in the form of natural gas. The remainder was consumed largely as refinery gas, petroleum coke, and purchased electricity and steam.

Of the 1.7 million b / d COE used in the energy industries in Texas in 1970, at least 90 percent was consumed in the form of natural gas, and half of that was attributable to the gas industry itself.

To the extent that specific sectors can be identified, transportation uses of energy appear roughly equal to those attributable to industrial (excluding energy) and miscellaneous uses. Together these sectors used about 84 percent of the 1.3 million b / d COE attributable to nonenergy sectors in Texas in 1970.

About 375 thousand $b / d \operatorname{COE}$, or two thirds of the transport category consumption, was identified with motorfuel consumption in 1970. Refined products and naturalgas liquids, largely liquefied petroleum gases, consumed in the transport sector in addition to gasoline and closely related fuels include kerosine and jet fuel, distillate and residual fuel oil, and liquefied petroleum gases. The share of the Texas transport market held by these products in 1970 ranged between 6 and 10 percent. The 550 thousand b / d COE identified as transportation might legitimately be increased by about one tenth to include some 50 thousand

ESTIMATED PROVED RESERVES OF PETROLEUM FLUIDS

 IN TEXAS, BY REGIONS, AS OF DECEMBER 31, 1970| Railroad Commission district | Crude oil (million bbls.) | Naturalgas liquids (million bbls.) | $\begin{gathered} \text { Total } \\ \text { liquids } \\ \text { (million } \\ \text { bbls.) } \end{gathered}$ | Natural gas (billion cu. ft.) | Total energy equivalent (million bbls. COE^{1}) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 153 | 29 | 182 | 1,955 | 533 |
| 2 | 845 | 133 | 978 | 10,060 | 2,787 |
| 3 | 1,687 | 686 | 2,373 | 22,814 | 6,373 |
| 4 | 528 | 598 | 1,126 | 29,287 | 6,336 |
| 5 | 128 | 84 | 212 | 1,393 | 445 |
| 6 | 2,498 | 424 | 2,922 | 5,831 | 3,877 |
| 7B | 239 | 59 | 398 | 752 | 420 |
| 7 C | 299 | 173 | 473 | 3,603 | 1,086 |
| 8 | 3,107 | 500 | 3,607 | 16,104 | 6,426 |
| 8A | 3,130 | 272 | 3,402 | 2,597 | 3,805 |
| 9 | 363 | 68 | 431 | 1,864 | 755 |
| 10 | 218 | 304 | 522 | 10,093 | 2,291 |
| | 13,195 | 3,330 | 16,525 | 106,353 | 35,134 |

1 Crude-oil equivalent. See note.
Source: American Gas Association, American Petroleum Institute, Canadian Petroleum Association, Reserves of Crude Oil, Natural Gas Liquids, and Natural Gas in the United States and Canada and United States Productive Capacity as of December 31,1972 (American Gas Association, et al., 1973), pp. 54-66, 150-162.

		Other sectors				
Railroad Commission district	Energyprocessing industries	Household and commercial	Transportation	Industrial and miscellaneous	Total	Total
1	24	24	83	89	196	220
2	67	4	10	9	23	90
3	678	43	138	161	342	1,020
4	273	13	39	45	97	370
5	83	42	137	138	317	400
6	85	10	32	43	85	170
7B	24	6	19	21	46	70
7 C	37	2	7	4	13	50
8	178	10	31	36	77	255
8A	34	5	19	22	46	80
9	25	5	20	25	50	75
10	155	5	15	25	45	200
Total	1,663	169	550	618	1,337	3,000

1 Barrels per day of crude-oil equivalent.
Sources: See note and References.

Commercial energy use in Texas rested traditionally on natural gas, although most of this energy has been consumed in the form of electricity. The multistory office building shown here is a good example of the many modern structures erected in Texas and elsewhere on the implicit assumption that the fuel base of the artificial environment would always be available.
b/d COE consumed as natural-gas pipeline fuel. This element of demand was tabulated, however, with the energy industries, of which it represents less than 3 percent.

Geographic Analysis of Consumption

The Texas Railroad Commission districts were used as the basis for a preliminary regional analysis of Texas energy consumption merely because certain production and reserves data are available below the state level only for these districts. The final data in the study on which this article is based will include regional information on energy consumption in Texas down to the county level.

The map accompanying this article conveys information which, though simple, can be misleading. According to this map, only Railroad Commission Districts 1 and 5 experienced a deficit of energy materials in 1970. All other regions-even District 3-enjoyed a surplus. The theoretical sum of the primary energy materials produced in District 8 , for example, is greater than the sum of those energy materials-in whatever form-which are consumed in District 8.

This notion of surplus and deficit in terms of indigenous supplies is misleading because it fails to consider energy movements between one region and another and between one region and another state. District 8 , for example, which represents Trans-Pecos Texas, probably enjoys a larger "surplus" of energy materials than any other region in the state. The production of primary energy in 1970 in District 8 probably amounted to about seven times the consumption. Because District 8 is traditionally a net-exporting region, however, the surplus has made possible long-term supply commitments for oil and gas. These are "exported" to other regions and other states. A "domestic" supply

TEXAS BUSINESS REVIEW

ESTIMATED CONSUMPTION OF ENERGY
BY ENERGY-PROCESSING INDUSTRIES IN TEXAS, BY REGION AND SUBSECTOR, 1970
(Thousand $\mathrm{b} / \mathrm{d} \mathrm{COE}^{1}$)

Railroad Commission district	Petroleum refining	Natural-gas processing	Electric- power generation	Carbon- black manufacture	Total
1	1	14	9		24
2	(2)	53	14	5	67
3	352	181	140	678	
4	45	213	13	2	273
5	2	24	57		83
6			54	24	
7B	1	17	6		85
7C		35	2		24
8	20	119	34	5	178
8 A		25	6	3	34
9	18	117	9		25
10			10	10	155
Total	446	868	324	25	1,663

1 Barrels per day of crude-oil equivalent. See note.
2 Less than 500.
Sources: See accompanying note and References.
originally adequate for District 8 may no longer satisfy needs within the region. In this respect, the position of District 8 , or any other "surplus" region, is similar to that of Texas and Louisiana and other traditional net exporters of energy materials. As the "surplus"-the difference between "domestic" needs and "export" requirementsdries up, more and more pressure is brought on contract and marketing arrangements whereby energy materials continue to be exported in the face of a growing domestic deficit.

Considering net movements between regions of the state, to which precise numbers cannot yet be assigned, District 3, the upper Gulf coast, is almost certainly a region with a growing deficit. In fact, the probable level of consumption is approaching the quantity of production. Even with the clumsy analysis necessarily employed in this preliminary study, District 3 obviously is rapidly approaching the time when its own production will fall below its consumption.

In Texas as elsewhere, energy-materials shortages have dramatized a fundamental ambiguity and conflict associated with the economic system of the United States. Respect for the sanctity of contracts and other agreements is basic to this system. Many existing contract and marketing arrangements, however, involve "exports" of energy materials from regions beginning to suffer shortages of these very commodities. In such circumstances, pressure inevitably begins to build against the traditional exporting arrangements.

These and other conflicts and ambiguities will increasingly characterize the months and years immediately ahead, as Texas works its way through the transition to a new energy economy.

Fuel-oil storage is under construction at many locations throughout the state in 1973. These projects are characteristic of the energy crisis of 1972-1973 and symptomatic of the transition to a new energy economy. Increased fuel-oil storage is a requisite of natural-gas curtailments. Most of this energy is used for production of electric power and process and utility steam. The tanks shown here will store 10,000 barrels of fuel oil.

REFERENCES

The most frequently used statistical references for the preliminary data published in this study are those of the Texas Railroad Commission and the U.S. Bureau of Mines. A few other materials of particular interest are included, though some of them were employed only for a single bit of data or a conversion factor.

American Gas Association, American Petroleum Institute, Canadian Petroleum Association. Reserves of Crude Oil, Natural Gas Liquids, and Natural Gas in the United States and Canada and United States Productive Capacity as of December 31, 1972. American Gas Association, et al., 1973.

Railroad Commission of Texas. Annual Report of the Oil and Gas Division: 1970. Austin: Railroad Commission of Texas.
U.S. Department of Commerce, Bureau of the Census. Statistical Abstract of the United States: 1972. 93rd ed. Washington, D.C.: Government Printing Office, 1972.
U.S. Department of the Interior, Bureau of Mines. Minerals Yearbook 1970. Vol. 1. Metals, Minerals, and Fuels. Washington, D.C.: Government Printing Office, 1973. . Minerals Yearbook 1971. Vol. 1. Metals, Minerals, and Fuels Washington, D.C.: Government Printing Office 1972.
_. Monthly Petroleum Statements, various issues.
U.S. Department of Transportation, Federal Highwav Administration. Highway Statistics 1970 . Washington, D.C.: Government Printing Office.
U.S. Federal Power Commission. Statistics of Privately Owned Electric Utilities in the United States, 1970. Classes A and B Companies. Washington, D.C.: Govern ment Printing Office, 1971.

Statistics of Publicly Owned Electric Utilities in the United States in 1970. Washington, D.C.: Government Printing Office, 1972.

TEXAS CONSTRUCTION*

Mildred Anderson and Connie Cooledge

The seasonally adjusted index of total construction authorized for reporting urban places in Texas dropped to 166.9 in June, the lowest level for that month since 1970 and 24 points below the May index of 191.2. For the January through June period the index averaged 188.0, less than .5 percent below the average of 187.8 for the same period of 1972.

Total construction authorized for the first six months of 1973 in the state's twenty-five standard metropolitan statistical areas declined in eight SMSA's, in comparison with the same period last year: Texarkana (-48), Odessa (-47), Galveston-Texas City (-36), Dallas (-18), Corpus Christi (-15), Sherman-Denison (-9), Midland (-7), Austin (-6), and El Paso (-3). Total building-permit issues, in terms of estimated value, declined 14 percent from the May index level, a net loss of $\$ 43.5$ million. The estimated value for January through June was down by $\$ 5.8$ million from the same period last year.

The seasonally adjusted index of residential construction authorized during June declined 19 percent from May 1973 and 29 percent from June 1972. At 147.8 percent of its 1967 base value, the June index was the lowest since January 1971.

Residential building activity for the first six months of 1973 declined 5 percent from its level during the first six months of 1972. Total value of permits for single-family dwellings authorized in the first half of 1973 was $\$ 553.9$ million, down 8 percent from the value authorized in the same period of 1972. Authorizations for multiple-family dwellings- $\$ 334.4$ million-in the first six months of 1973 were relatively unchanged from the first six months of 1972. Value of authorizations in the apartment-complex category- $\$ 309.8$ million-sustained the multifamilydwelling sector with an increase of 3 percent for JanuaryJune 1973.

According to permits for construction of new dwellings units in the Texas SMSA's, ten areas registered declines in total value during the first six months and fifteen experienced increases. Percentage decreases in the January-June total value of permits authorized ranged from 51 percent for Laredo to 2 percent for Houston. Percent increases in the January-June value ranged from 178 percent for Abilene to 5 percent for Beaumont-Port Arthur-Orange.

In Texas, as in the nation, potential homeowners are discouraged from building or buying new homes by scarce money, high interest rates, and rising costs of labor, materials, land, and taxes. The consumer price index places home-ownership in May 1973 at 144.2 percent of the 1967 base period. The costs that go into calculating the home-

[^7]ownership index-reported by the Bureau of Labor Statis-tics-include purchase prices, mortgage interest, taxes, insurance, and upkeep. Homeowners may respond to the rise in costs and short supply of money by shifting further toward apartments, prefabricated houses, and mobile homes.

The unadjusted index of nonresidential construction authorized in Texas fell to 181.0, the lowest June level since 1970 and almost 22 points below the May index of 202.9. The January through June average of the index stands at 183.9 , slightly above the average of 176.2 for the same period of 1972.

During the first six months of 1973, in comparison with that period last year, substantial decreases occurred in five major categories of nonresidential construction in the state: commercial garages (-79), public works and utility buildings (-46), eaucational buildings (-34), service stations and repair garages (-28), and private garages (-17).

ESTIMATED VALUES OF BUILDING AUTHORIZED IN TEXAS*

Classification	$\begin{gathered} \text { Jun } \\ 1973 \\ \text { (thousand } \end{gathered}$	$\begin{aligned} & \text { Jan-Jun } \\ & 1973 \\ & \text { of dollars) } \end{aligned}$	Percent change	
			$\begin{gathered} \hline \text { Jun } \\ 1973 \\ \text { from } \\ \text { May } \\ 1973 \end{gathered}$	$\begin{gathered} \text { Jan-Jun } \\ 1973 \\ \text { from } \\ \text { Jan-Jun } \\ 1972 \end{gathered}$
All permits	278,151	1,869,944	- 14	**
New construction	246,358	1,692,168	- 15	-
```Residential (housekeeping)```	114,520	888,303	- 20	$-5$
One-family dwellings	78,297	553,912	- 17	-
Multiple-family dwellings	36,223	334,391	-25	**
Nonresidential buildings	131,838	803,865	- 11	4
Hotels, motels, and tourist courts	4,881	46,196	- 15	49
A musement buildings	3,196	17,194	35	28
Churches	4,564	26,058	-26	43
Industrial buildings	13,715	66,115	13	23
Garages (commercial and private)	2,018	9,063	50 -58	-71 -28
Service stations   Hospitals and institutions	314 16,687	5,340 96,636	-58 238	-28 125
Office-bank buildings	32,993	168,132	3	**
Works and utilities	3,155	30,103	$-13$	-46
Educational buildings	10,784	83,203	-55	-34
Stores and mercantile buildings	35,444	218,326	-25	10
Other buildings and structures	4,087	37,499	-42	59
Additions, alterations, and repairs	31,793	177,776	3	5
SMSA vs. non-SMSA				
Total SMSA $\dagger$	257,912	1,712,054	- 11	**
Central cities	198,070	1,280,316	- 4	6
Outside central cities	59,842	431,738	-28	-15
Total non-SMSA	20,239	157,889	-37	**
$\begin{aligned} & 10,000 \text { to } 50,000 \\ & \text { population } \end{aligned}$	10,250	85,489	-32	6
Less than 10,000 population	9,989	72,400	-42	8

* Only building for which permits were issued within the incorporated area of a city is included. Federal contracts and public housing are not included.
** Change is less than one half of one percent.
$\dagger$ As defined in 1970 Census.
Source: Bureau of Business Research in cooperation with the Bureau of the Census, U.S. Department of Commerce.
(Top thirty cities ranked in descending order of total value)

City	Total construction*			New dwelling units						New nonresidential		
	Value(thousands of dollars)Jan-J un		Percent chng	Value(thousands of dollars)Jan-J un		Percent chng	Number Jan-Jun		Percent chng	Value(thousands of dollars)Jan-Jun		Percent chng
	1973	1972		1973	1972		1973	1972		1973	1972	
Houston	387,017	328,894	18	127,851	117,585	9	9,434	12,998	$-27$	196,860	151,891	30
Dallas	157,557	238,384	$-34$	52,135	66,833	-22	4,380	5,147	-15	86,777	155,757	-44
Austin	124,138	130,942	$-5$	73,859	83,460	- 12	5,404	6,070	-11	45,907	41,230	11
San Antonio	121,785	122,358	**	67,918	36,012	89	6,671	3,413	95	44,799	72,427	$-38$
El Paso	91,907	94,275	$-3$	53,363	58,017	- 8	3,774	4,353	$-13$	32,659	30,726	6
Fort Worth	64,998	38,580	68	20,004	18,701	7	867	1,078	$-20$	36,297	14,800	145
Arlington	55,306	57,471	$-4$	36,219	36,913	- 2	1,538	1,698	- $-\quad 9$	18,033	19,643	- 8
Lubbock	44,328	28,804	54	24,512	18,016	36	1,474	985	50	18,248	8,944	104
Amarillo	31,777	13,268	140	16,123	8,492	90	833	339	146	13,741	3,233	325
Corpus Christi	30,068	34,777	$-14$	16,148	21,615	-25	1,087	1,494	$-27$	9,894	8,462	17
Irving	28,562	17,128	67	10,937	12,857	-15	846	1,175	$-28$	16,679	3,155	429
Carrollton	25,251	24,598	3	19,269	22,057	$-13$	857	1,182	-27	5,681	2,220	156
Richardson	20,344	n.a.	. .	8,786	n.a.	-	470	n.a.	. .	10,435	n.a.	
Waco	20,257	17,528	16	5,648	7,278	-22	375	574	-35	12,606	8,283	52
Beaumont	19,754	16,275	21	10,764	8,971	20	783	715	10	7,412	5,805	28
Grand Prairie	18,481	22,887	$-19$	8,802	17,359	-49	384	798	$-52$	7,544	4,644	62
Brownsville	18,473	6,972	165	9,745	2,992	226	1,094	313	250	6,993	3,395	106
Abilene	17,159	8,933	92	10,780	3,868	179	625	199	214	5,705	4,607	24
Pasadena	17,096	25,916	-34	6,006	19,789	-70	552	1,811	-70	10,461	5,553	88
Denton	14,373	12,715	13	5,165	9,373	-45	301	590	-49	8,753	3,205	173
Temple	14,299	6,737	112	6,543	4,523	45	455	164	177	7,415	2,030	265
Tyler	13,912	6,817	104	5,791	4,024	44	356	218	63	7,268	1,950	273
Longview	13,366	9,649	39	8,671	6,331	37	444	258	72	3,854	2,428	59
McAllen	11,671	10,349	13	6,643	5,559	20	439	378	16	4,376	3,524	24
Wichita Falls	11,325	7,600	49	5,119	4,512	13	226	365	-38	4,504	2,359	91
Laredo	10,918	10,493	4	2,966	5,992	- 51	286	474	-40	7,556	4,403	72
Midland	10,104	10,862	$-7$	4,181	3,633	15	215	119	81	3,726	5,889	$-37$
College Station	9,847	5,532	78	5,092	4,110	24	633	580	9	4,673	1,339	249
Odessa	9,045	16,953	-47	3,723	3,410	9	289	240	20	4,440	12,384	-64
Killeen	8,849	7,585	17	5,523	4,181	32	473	348	36	2,615	2,320	13

* Includes additions, alterations, and repairs.
** Change is less than one half of 1 percent.
n.a. Not available.
... No data, or inadequate basis for reporting.

One category in the nonresidential sector-hospitals and other institutional buildings-recorded a large increase of 125 percent for the first six months of 1973 in comparison with the same period last year. Some of the larger permits issued in June for hospitals and related buildings were recorded in El Paso ( $\$ 4.5$ million), Temple ( $\$ 3.5$ million), and Deer Park ( $\$ 1.7$ million). These large contracts, along with numerous smaller permits, helped to bolster nonresidential building in the state by $\$ 53.7$ million in comparison with the first six months of 1972.

Of the state's twenty-five SMSA's, seven showed declines in the nonresidential sector: Odessa (-64), Texarkana ( -59 ), Galveston-Texas City ( -48 ), Midland ( -37 ), San Antonio (-37), Sherman-Denison ( -33 ), and Dallas ( -18 ). Nonresidential building-permit issues, in terms of estimated value, declined 11 percent from May, a net decrease of $\$ 16.0$ million.

Additions, alterations, and repairs registered gains in both the month-to-month and year-to-year comparisons+3 and +5 , respectively. These gains were due largely to increases in the category of additions, alterations, and repairs on nonresidential buildings. The June index level increased 12 percent from May and the 1973/1972 sixmonths comparison showed a gain of 6 percent.

With the exception of additions, alterations, and repairs, the declines in the construction sector of the economy can be attributed in part to a shortage of inventories of steel, mainly reinforcing bars. With little likelihood of foreign supplies, steel price boosts in the United States could increase sharply this summer. The possibility of fuel shortages this summer also poses a serious threat to the construction industry nationwide.

## NUMBER AND VALUE OF NEW HOUSING UNITS AUTHORIZED, JANUARY-JUNE 1963-1973 <br> (Value in thousands of dollars)

Year	One-family		Multi-family		Total	
	Value	Number	Value	Number	Value	Number
1963	297,186	22,732	129,647	21,877	426,833	44,609
1964	306,518	22,336	123,264	19,227	429,782	41,563
1965	298,187	20,772	78,173	11,921	376,360	32,693
1966	301,499	19,290	91,380	14,046	392,879	33,336
1967	294,393	18,594	104,724	15,717	399,117	34,311
1968	300,075	18,654	209,043	30,436	509,118	49,090
1969	294,548	16,928	242,976	33,233	537,524	50,161
1970	261,287	16,883	220,601	26,652	481,888	43,535
1971	426,337	25,125	284,649	35,478	710,986	60,603
1972	550,394	27,945	314,858	36,808	865,252	64,753
1973	525,812	22,571	326,258	35,501	852,070	58,072

## LOCAL BUSINESS CONDITIONS

Statistical data compiled by Mildred Anderson, statistical associate, Constance Cooledge, statistical assistant, and Kay Davis, statistical technician.

Business conditions are reported in the following tables first by metropolitan areas, second by counties and cities. Standard metropolitan statistical areas (SMSA's) are defined by county lines and include the counties listed. All SMSA's are designated as such by the U.S. Bureau of the Census except one, the LongviewMarshall area, which is now a significant metropolitan node.

Population figures represent the 1970 Census counts except where otherwise noted. The population estimates not taken from the Census are generally based on utility connections and are subject to substantial error.

Building-permit values are collected from municipalities by the Bureau of Business Research in cooperation with the Bureau of the

Census. They represent only building intentions within city limits, since construction permits are not issued except by incorporated cities in Texas. The building data also exclude federal contracts and public works projects, such as highways, waterways, and reservoirs.

The bank debit statistics for SMSA's and most central metropolitan cities are collected by the Federal Reserve Bank of Dallas. Most other bank debits figures shown are collected from cooperating banks by the Bureau of Business Research.

Employment estimates are compiled by the Texas Employment Commission in cooperation with the U.S. Bureau of Labor Statistics.

Footnote symbols are explained on pages 187 and 197.

## INDICATORS OF LOCAL BUSINESS CONDITIONS FOR STANDARD METROPOLITAN STATISTICAL AREAS



## ABILENE SMSA

Jones and Taylor Counties; population 113,959

## Urban building permits (dollars) <br> Bank debits, seas. adj. $(\$ 1,000)$ <br> Manufacturing employment <br> Unemployed (percent)

$2,582,507$	-35	167
267,892	3	22
40,800	$* *$	2
5,990	2	7

$17,558,649$
$1,503,412$
$40,392 \dagger$
$5,851 \dagger$
$2{ }^{\dagger} \dagger$
$9,262,073$
$1,267,091$
39,667
$5,466{ }^{\dagger} \dagger$ 40,800
$3.2-10-20$

$9,120,140$	106	30
921,124	17	32
60,600	$* *$	1
8,340	1	3
3.5	17	-31

$32,904,419$
$4,637,419$
$59,967 \dagger$
$8,230 \dagger$
3.1

18,629,897
77
Potter and Randall Counties; population 144,396
Urban building permits (dollars)
$\begin{array}{rrr}, 120,140 & 106 & 30 \\ 921,124 & 17 & 32 \\ 60,600 & * * & 1 \\ 8,340 & 1 & 3 \\ 3.5 & 17 & -31\end{array}$
$3,658,604$
60,523

Bank debits, seas. adj. $(\$ 1,000)$


$15,490,608$	-14	-51
$1,181,909$	8	16
156,300	-	1
13,960	3	
3.1	48	-

$124,565,141$
$6,887,787$
$155,733^{\dagger}$
$13,533^{\dagger}$
$2.2^{\dagger}$

$131,773,622$	-5
$6,199,486 \dagger$	11
$147,367 \dagger$	6
$12,893 \dagger$	5
$2.3^{\dagger}$	$-\quad 4$

Manufacturing employment
Unemployed (percent)

## BEAUMONT-PORT ARTHUR-ORANGE SMSA

Jefferson and Orange Counties; population 315,943

## Urban building permits

6,445,453 673,511
Bank debits, seas. adj. $(\$ 1,000)$
Nonfarm employment 123,400
Manufacturing employment 38,600
Unemployed (percent)
5.5

BROWNSVILLE-HARLINGEN-SAN BENITO SMSA
Cameron County; population 140,368
Urban building permits (dollars)
3,507,669 —
Bank debits, seas. adj. $(\$ 1,000)$ 284,683
Nonfarm employ ment 46,050
Manufacturing employment 8,160
Unemployed (percent)

## BRYAN-COLLEGE STATION SMSA

Brazos County; population 57,978
Urban building permits (dollars)
Bank debits, seas. adj. $(\$ 1,000)$
,354,830
(Monthly employment reports are not available for College Station SMSA).


-						
	Percent change from				Jan-Jun	Percent change
						1973
	Jun	May	Jun	Jan-Jun		from
Reported area and indicator	1973	1973	1972	1973	1972	1972

LONGVIEW-MARSHALL METROPOLITAN AREA
Gregg and Harrison Counties; population 120,770
Urban building permits (dollars)

821,259	-81	-44
196,776	-	13
51,000	-	1
15,640	$* *$	1
4.6	24	-16

Nonfarm employment

$17,555,401$	$13,846,542$	27
$1,188,8155^{\dagger}$	$1,026,9155^{\dagger}$	16
$51,000^{\dagger}$	$49,7955^{\dagger}$	2
$15,508_{\dagger}^{\dagger}$	$14,455{ }^{\dagger} \dagger$	7
$3.8^{\dagger}$	$5.0^{\dagger}$	-24

18

Unemployed (percent)

## LUBBOCK SMSA

Lubbock County; population 179,295
Urban building permits (dollars)

$5,329,455$	-19
673,514	5
74,600	$-\quad 2$
8,810	2
3.1	48

$-1$
Bank debits, seas. adj. ( $\$ 1,000$ )
Nonfarm employment
Manufacturing employment
8,810
Unemployed (percent)
McALLEN-PHARR-EDINBURG SMSA
Hidalgo County; population 181,535
Urban building permits (dollars)

$5,720,698$	62
285,315	1
45,800	$-\quad 2$
5,040	$-\quad 1$
8.2	28

47
43
8
10
-11
$28,865,096$
$1,590,353$
$46,542 \dagger$
$4,982^{\dagger} \dagger$
$7.6^{\dagger}$

$17,001,450$	70
$1,225,813$	30
$43,788{ }^{\dagger}$	6
4,228	18
8.1	

Manufacturing employment
Unemployed (percent)


## MIDLAND SMSA

Midland County; population 65,433
Urban building permits (dollars)
Bank debits, seas. adj. $(\$ 1,000)$
1,685,661

Nonfarm employment
Manufacturing employment
5,830

## Unemployed (percent)

4.2
(Employment data are reported for the combined Midland and
Odessa SMSA's since employment figures for Midland and Ector Counties, composing one labor-market area, are recorded in combined form by the Texas Employment Commission.)

## ODESSA SMSA

## Ector County; population 91,805

Urban building permits (dollars)
Bank debits, seas. adj. ( $\$ 1,000$ )
2,603,076

Nonfarm employ ment 213,389

Manufacturing employment
60,600
Unemployed (percent)
830
(Employment data are reported for the combined Midland and
Odessa SMSA's since employment figures for Midland and Ector Counties, composing one labor-market area, are recorded in combined form by the Texas Employment Commission.)

## SAN ANGELO SMSA

Tom Green County; population 71,047
Urban building permits (dollars)
Bank debits, seas. adj. ( $\$ 1,000$ )
Nonfarm employment
Manufacturing employment

504,390	-49	-17
202,947	19	40
24,750	-1	3
4,610	2	6
4.5	29	-10


$5,420,495$	$3,777,704$
$1,008,1488_{\dagger}$	818,569
$24,750_{\dagger}^{\dagger}$	$24,020_{\dagger}^{\dagger}$
4,454	4,231



$10,861,706$	-
$1,102,236$	13
$61,915 \dagger \dagger$	$-\quad 3$
$5,331 \dagger$	6
4.1	-27

$44,743,533$
$3,729,325 \dagger$
$75,467 \dagger$
$8,487^{\dagger} \dagger$
$2.2^{\dagger}$

$29,032,215$	54
$2,778,795 \dagger$	34
$70,477 \dagger$	7
$7,923 \dagger$	7
$2.8^{\dagger}$	-21

Bank debits, seas. adj. $(\$ 1,000)$
3

$$
1
$$

Manufacturing employment
Unemployed (percent)

$$
4.5
$$

Bexar and Guadalupe Counties; population 864,014Urban building permits (dollars)
Bank debits, seas. adj. ( $\$ 1,000$ )
Nonfarm employmentManufacturing employmentUnemployed (percent)


$20,875,008$	-	7
$2,296,514$	2	26
320,800	$* *$	2
35,975	$* *$	2
5.6	65	$-\quad 5$


$128,630,317$	$126,587,189$
$13,003,459$	$10,986,541$
$317,350^{\dagger} \dagger$	$304,317 \dagger$
35,767	
$3.5^{\dagger}$	$35,267^{\dagger} \dagger$
	$4.2^{\dagger}$

4
1
$-\quad 17$$\begin{array}{rr}5,267 \\ 4.2 & 4 \\ & -17\end{array}$

## SHERMAN-DENISON SMSA

## Grayson County; population 83,225

Urban building permits (dollars)	524,939
Bank debits, seas. adj. (\$1,000)	123,783
Nonfarm employment	33,150
Manufacturing employment	10,570
Unemployed (percent)	4.3

Unemployed (percent)

524,939	-51	-30
123,783	4	15
33,150	1	1
10,570	1	$-\quad 1$
4.3	30	-12

$5,785,507$
717,983
$32,908^{\dagger}$
$10,633^{\dagger} \dagger$
$3.6^{\dagger}$

$$
\begin{array}{r}
6,282,663 \\
640,069 \\
32,192 \dagger \\
10,442 \dagger \\
4.0^{\dagger}
\end{array}
$$

Urban building permits (dollars)

$$
\begin{array}{r}
8 \\
-\quad 12
\end{array}
$$

Reported area and indicator	Jun	Percent change from		Jan-Jun	Jan-Jun	Percent change	
				1973			
		May	Jun			from	
	1973	1973	1972		1973	1972	1972

TEXARKANA SMSA
Bowie County, Texas, and Miller County, Arkansas; population 101,198

Bank debits, seas. adj. $(\$ 1,000)$

518,931	52	-
174,504	8	7
40,400	$* *$	1
9,070	1	2
6,4	28	-10

$2,625,859$
987,859
40,675
9,247
5.4
$4,954,818$
884,139
39,832
8,867
6.1

Nonfarm employment
Manufacturing employment
6.4
(Since the Texarkana SMSA includes Bowie County in Texas and
Miller County in Arkansas, all data, including population, refer to
the two-county region.)

## TYLER SMSA

Smith County; population 97,096
Urban building permits (dollars)
Bank debits, seas. adj. $(\$ 1,000)$
$1,567,147$
252,840
42,100
13,890
5.0

39	85
3	10
$* *$	
1	
25	

$14,884,666$
$1,525,994$
41,767
13,568
4.0

$7,052,876$	111
$1,308,089$	17
$40,240^{\dagger}$	4
$12,730 \dagger$	7
3.7	8

Manufacturing employment
Unemployed (percent)
5.0

WACO SMSA
McLennan County; population 147,553
Urban building permits (dollars)
Bank debits, seas. adj. $(\$ 1,000)$
Nonfarm employment

$2,778,407$	47	-38	$22,541,917$	$18,158,461$	24
370,462	-1	6	$2,237,682 \dagger$	$1,820,269$	23
63,000	$* *$	3	$62,850 \dagger$	$60,575^{\dagger}$	4
13,600	1	1	$13,840 \dagger$	$12,805 \dagger$	8
4.2	31	-11	3.1	$3.9^{\dagger}$	-21

Unemployed (percent)
31

$1,078,367$	-71	-35
298,783	8	20
45,350	$* *$	2
5,800	3	11
3.0	20	-29

$12,548,631$
$1,640,096$
$45,258{ }^{\dagger} \dagger$
$5,736{ }_{\dagger}^{\dagger}$

$8,201,540$	53
$1,439,515 \dagger$	14
$44,145 \dagger$	3
5,139	$\dagger$

Archer and Wichita Counties; population 127,621
Urban building permits (dollars)
Bank debits, seas. adj. ( $\$ 1,000$ )
Nonfarm employ ment
Manufacturing employment
3.0
** Absolute change is less than one half of 1 percent.
$\dagger$ Monthly average.
Urban-building permit data are preliminary and subject to revision.
Indicators of local business conditions for individual municipalities

$\begin{gathered} \text { COUNTY } \\ \text { City } \\ \hline \end{gathered}$	Population	Urban building permits						Bank debits						
		Percent change			Jan-Jun Jan-Jun   1973 1972		Percent   change   Jan-Jun   1973   from   Jan-Jun   1972	Percent change			Jan-Jun Jan-Jun   1973 1972		Percent change	
		Jun 1973	$\begin{aligned} & \text { Jun } \\ & 1973 \\ & \text { from } \\ & \text { May } \end{aligned}$	$\begin{gathered} \text { Jun } \\ 1973 \\ \text { from } \\ \text { Jun } \end{gathered}$			Jun 1973 (thousands of dollars)	$\begin{gathered} \hline \text { Jun } \\ 1973 \\ \text { from } \\ \text { May } \\ 1973 \end{gathered}$	$\begin{gathered} \text { Jun } \\ 1973 \\ \text { from } \\ \text { Jun } \\ 1972 \end{gathered}$	$\begin{gathered} \text { Jan-Jun } \\ 1973 \\ \text { from } \\ \text { Jan-Jun } \\ 1972 \end{gathered}$				
		(dollars)	1973	1972			(thousands of dollars)							
ANDERSON	27,789													
Palestine	14,525	155,550	$-17$	$-29$	966,425	1,163,350	- 17	27,116	1	6	161,049	143,747	12	
ANDREWS	10,372													
Andrews	8,625	1,579,500			1,605,091	177,478	804	10,339	- 6	15	67,700	55,710	22	
ANGELINA	49,349													
Lufkin	23,049	245,300	$-76$	$-53$	4,047,920	4,963,486	$-18$						. . .	
ARANSAS   Aransas Pass (see San Patricio)	8,902													
ATASCOSA	18,696													
Pleasanton	5,407	...	. .	. .			...	6,944	$-8$	$-8$	40,870	42,551	- 4	
AUSTIN														
Bellville	2,371	31,500	14	$-61$	801,601	525,000	53	9,754	- 4	13	59,198	52,905	12	
BAILEY	8,487													
Muleshoe	4,525	. $\cdot$	. .	. .	. .	. .	. .	20,673	**	49	126,535	98,751	28	
BASTROP	17,297													
Smithville	2,959	11,500	$-74$	-87	149,446	201,149	-26	3,766	5	21	21,717	17,328	25	
BEE	22,737													
Beeville	13,506	108,842	-25	37	1,320,378	636,001	108	27,313	-15	21	166,337	133,474	25	
BELL   (In Killeen-Temple SMSA)	124,483													
Bartlett (see Williamson)														
Belton	8,696	240,000	114	118	1,355,620	1,846,840	-27		. .				...	
Harker Heights	4,216	117,618	-41	157										
Killeen	35,507	824,528	-62	$-12$	8,848,859	7,584,751	17	52,861	- 6	51	297,446	225,888	32	
Temple	33,431	5,829,680	431	218	14,298,820	6,737,012	112	106,844	10	33	576,880	455,317	27	
BEXAR   (In San Antonio SMSA)	830,460													
San Antonio	654,153	20,045,401	5	- 6	121,784,696	122,358,143	**	2,195,842	$-3$	21	12,708,535	10,752,858	18	
BOWIE   (In Texarkana SMSA)	67,813													
Texarkana	52,179	449,085	44	$-5$	2,365,813	4,664,226	-49	150,180	1	5	862,646	775,533	11	
BRAZORIA   (In Houston SMSA)	108,312													
Angleton	9,770	$65,800$	-69		714,350			23,813	4	21	147,094	$117,759$		
Clute	6,023 11,997	160,000 132,500	- -5	269 -34	1,009,305	176,450 889,605	472 $* *$	7,022	3	8	39,832	$36,714$	8	
Freeport Pearland	11,997 6,444	132,500 $\mathbf{7 1 0 , 1 1 0}$	-51 -21	-34 30	887,450 $4,641,823$	889,605 $4,369,810$	** 6	42,314 9,874	1 $-\quad 2$	**	242,846	192,130	26	
Pearland	6,444	710,110	-21	30	4,641,823	4,369,810	6	9,874		**	60,009	58,236	3	
BRAZOS (Constitutes BryanCollege Station SMSA)	57,978													
Bryan College Station	33,719 17,676	937,196 417,634	-36 -86	177 -64	5,716,206 $9,847,463$	$4,243,796$ $5,532,370$	35 78	107,822 17,646	10 -13	13 24	619,179 93,123	540,681	15	






	9


Jan－Jun	Jan－Jun
1973	1972
（thousands of	

カLL＇ESI ZS06SI
nomo
$\infty_{0}^{\infty}$
$\infty \quad \infty$ $\stackrel{\infty}{-}$ N लの I N － $\qquad$
Bank debits

	Percent change	
	$\begin{gathered} \text { Jun } \\ 1973 \end{gathered}$	$\begin{gathered} \text { Jun } \\ 1973 \end{gathered}$
Jun 1973	from	from
（thousands	May	Jun
of dollars）	1973	1972



51,071
$1,096,248$
24,417
167,941
$5,410,159$
119,411

$\qquad$
N
N
N
N

N m n
os
Nう
ing
in
ジ
 $\begin{array}{cc}\vdots & \vdots \\ & \overrightarrow{0} \\ & \text { N．} \\ & \infty\end{array}$

$\forall=0$
No
in
in
in
in
in
in
0 id
id

197，876
268 625

...








 Population 27,492
81,437
50,904
97,260
10,522
55,131
48,582
4,390
16,604
11,559
18,999
13,414
75,633
39,874
741
9,264
1,663
18,660 91，805 78,380 46，638 2，322 359，291 322，261 an
$=-$
$\infty$
-1 22，705 17,650 2,294
52,314
 COUNTY
City DALLAS（continued）
Farmers Branch Farmers Branch
Garland Garland
Grand Prairie
Irving
Lancaster Mesquite
Richardson Seagoville DAWSON DEAF SMITH Hereford DENTON （In Dall
Denton Justin
Lewisville Pilot Point DE WITT EASTLAND
ECTOR （Constitutes Odessa SMSA）
Odessa

[^8] Midlothian
Waxahachie
EL PASO
（Constitutes El Paso SMSA）
El Paso
ERATH Stephenville
FANNIN
FANNIN
Bonham
FAYETTE
Schulenburg
FORT BEND


$\stackrel{\infty}{\sim}$	$\bigcirc \times \sim \sim$	$\stackrel{\infty}{\sim}$	．	$\stackrel{\square}{\sim}$	$\bigcirc$	$\cdots 8$	¢－	：${ }^{\text {a }}$	：	$\Xi$	－roeñona	$こ ゙$
$\begin{aligned} & \text { Fす } \\ & \text { on } \\ & \text { तi } \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{m} \\ & \underset{0}{2} \end{aligned}$	$\vdots$	$\begin{aligned} & \vec{G} \\ & \underset{\sim}{6} \\ & \underset{\sim}{n} \end{aligned}$				$\begin{gathered} \text { :ỡ } \\ \text { む̃ } \\ \text { on } \end{gathered}$	：	$\frac{\approx}{2}$		
		$\begin{aligned} & 8 \\ & \text { in } \\ & \stackrel{y}{3} \end{aligned}$	：				$\begin{aligned} & \text { in } \\ & \text { no } \\ & \text { no } \\ & \rightarrow 0 \end{aligned}$	$\begin{aligned} & \stackrel{i}{m} \\ & \underset{i}{n} \end{aligned}$		$\begin{aligned} & \tilde{3} \\ & \hat{0} \\ & \text { a } \end{aligned}$		
m		－	：	$\sigma$	＊～	$m \underline{\sim}$	Э「	：${ }_{m}^{\infty}$	in	$\infty$		용
$\begin{gathered} 0-1 \\ 11 \end{gathered}$	1   $-0+0$   1	－	：	$\begin{aligned} & \bullet \\ & 1 \end{aligned}$	Nin $1$	$m \mathrm{mr}$ $111$	$\exists{ }^{\circ}$		$\vdots$	$\stackrel{r}{1}$		ind $\sim$ $i$
$\begin{aligned} & \infty 0 \text { og } \\ & \text { on } \\ & \text { non } \end{aligned}$		$\begin{aligned} & \bar{\Sigma} \\ & \underset{\sim}{c} \end{aligned}$	：	$\begin{aligned} & \stackrel{0}{2} \\ & \stackrel{y}{\infty} \\ & \stackrel{y}{2} \end{aligned}$	$\begin{aligned} & \dot{0}+\infty \\ & 0 \infty \\ & \dot{m} \stackrel{0}{n} \end{aligned}$			$\frac{\vdots}{\sqrt{\circ}}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\circ} \\ & \stackrel{-}{0} \end{aligned}$	$\begin{aligned} & \text { J } \\ & \underset{0}{0} \end{aligned}$		
in ici	： $\begin{gathered}\infty \\ 1 \\ 1\end{gathered}$	$\%$	$\bigcirc$	：	$\begin{gathered} n \\ 1 \\ 1 \end{gathered}$	${\underset{1}{\mathrm{~N}}}_{\substack{\mathrm{n}}}^{\mathrm{o}}$	in	$\begin{gathered} \text { No } \\ i । \end{gathered}$	：	：		$: \cong$
		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & i n \end{aligned}$	$\begin{gathered} \infty \\ \substack{\infty \\ \infty \\ \infty \\ \hline} \end{gathered}$	$\vdots$			： 号 n $=$ $=$	$\begin{aligned} & -0_{0}^{\circ} \\ & \infty \\ & \text { in } \\ & \text { in } \\ & n_{0} \end{aligned}$	$\vdots$	：		
		$\begin{aligned} & \text { No } \\ & \text { N్ } \\ & \text { O} \\ & \infty \end{aligned}$	$\underset{\sim}{\underset{\sim}{n}}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{7} \\ & \stackrel{\sigma}{\sigma} \end{aligned}$					：	：		
${ }_{1}^{\infty}$		E	m	ì	$\stackrel{m}{i}$		：$\overbrace{\sim}^{\infty}$	Nof	＊	$\vdots$		m
：	$\vdots \stackrel{n}{1}$	$\cdots$	$\stackrel{1}{2}$	$\stackrel{1}{2}$	$\begin{gathered} m 0 \\ 1 \end{gathered}$		$\stackrel{\infty}{\infty} \stackrel{0}{1}$	$\begin{array}{ll} 0 & 0 \\ \infty & 0 \\ 1 & 1 \end{array}$	＊	$\vdots$	（1）	： $\begin{gathered}0 \\ 1 \\ 1\end{gathered}$
$\begin{array}{r} \circ \circ \\ \hline 8.8 \\ \hline \end{array}$		$\stackrel{\sim}{i}$	\％	$\begin{aligned} & \text { O} \\ & \text { N } \\ & \text { © } \end{aligned}$			$\begin{aligned} & \infty \sim \\ & i n \\ & i n \\ & \infty \\ & \infty=1 \\ & \infty \end{aligned}$		－	：		
$\begin{aligned} & \text { Mo } \\ & \text { ig } \\ & =10 \end{aligned}$				$\begin{aligned} & \text { बूँ } \\ & \text { जे } \\ & \text { © } \end{aligned}$					$\begin{aligned} & \text { no } \\ & \hat{c}^{\circ}{ }_{2}^{2} \end{aligned}$	$\begin{aligned} & \text { Qू } \\ & \text { Q } \\ & \text { in } \end{aligned}$		$\begin{array}{lll} \vec{F} & \infty & \hat{\alpha} \\ \infty & 0 \\ \sigma \\ \dot{f} & -\hat{N} \end{array}$
			$\begin{aligned} & \text { n } \\ & \text { Hy } \\ & \text { N } \\ & \text { No } \\ & \text { z. } \\ & \text { onz } \end{aligned}$									
AUGUS	ST 1973											191


$\begin{aligned} & \text { COUNTY } \\ & \text { City } \end{aligned}$	Population	Urban building permits						Bank debits					
		Percent change			$\begin{gathered} \text { Jan-Jun } \\ 1973 \end{gathered}$	$\begin{gathered} \text { Jan-Jun } \\ 1972 \end{gathered}$	Percent   change   Jan-Jun   1973   from   Jan-Jun   1972	Percent change			Jan-Jun   1973 Jan-Jun   1972		Percent change
		Jun 1973	$\begin{aligned} & \text { Jun } \\ & 1973 \\ & \text { from } \\ & \text { May } \end{aligned}$	$\begin{aligned} & \text { Jun } \\ & \text { 1973 } \\ & \text { from } \\ & \text { Jun } \end{aligned}$				Jun 1973   (thousands of dollars)	Jun1973fromMay1973	$\begin{aligned} & \text { Jun } \\ & \text { 1973 } \\ & \text { from } \\ & \text { Jun } \\ & 1972 \\ & \hline \end{aligned}$			Jan-Jun1973fromJan-Jun1972
		(dollars)	1973	1972		(dollars)					(thousands of dollars)		
HASKELL	8,512												
Haskell	3,655	22,000	175	-48	96,901	206,853	- 53	9,024	31	58	44,236	36,675	21
HAYS	27,642												
San Marcos	18,860	$\ldots$	$\ldots$	$\ldots$			$\ldots$	16,597	-12	1	109,434	101,102	8
HENDERSON	26,466												
Athens	9,582	15,380	-88	-88	1,167,505	1,634,600	-29	26,946	3	20	149,165	118,304	26
(Constitutes McAllen-Pharr-   Edinburg SMSA)													
	4,291							6,220	- 8	47	38,667	28,412	36
Donna	7,365	49,025	59	78	644,753	450,766	43	5,610	- 7	5	36,429	35,990	1
Edinburg	17,163	359,406	-62	79	6,488,522	2,606,688	149	32,796	-19	- 1	215,778	192,406	12
Elsa	4,400	14,184	9	-76	226,408			11,814	9	163	63,300	31,094	104
McAllen	37,636	3,171,820	172	- 3	11,670,908	10,349,134	13	101,980	- 6	57	613,335	445,022	38
Mercedes	9,355	36,100	-59	47	399,978	727,250	-45	12,744	4	46			
Mission	13,043	131,065	-49	5	2,603,366	810,705	221	31,362	- 5	40	197,088	149,517	32
Pharr	15,829	954,107	984	574	3,023,694	745,222	306	10,444	-19	44	61,907	49,024	26
San Juan	5,070			...				6,209	-7	13	38,304	28,098	36
Weslaco	15,313	1,004,991	12	...	3,661,962	1,122,461	226	21,884	- 7	9	138,975	133,878	4
HOCKLEY	20,396												
Levelland	11,445	112,850	-58	99	782,307	948,426	- 18	28,127	- 9	14	208,534	177,540	17
HOOD	6,368												
Granbury	2,473	$\ldots$	$\ldots$	$\ldots$			$\ldots$	4,936	- 3	17	27,991	22,278	26
HOPKINS	20,710												
Sulphur Springs	10,642	251,364	52	260	$\ldots$	$\ldots$	$\ldots$	43,369	6	30	236,004	198,735	19
HOWARD	37,796												
Big Spring	28,735	107,607	52	22	2,566,091	581,483	341	70,616	**	12	436,852	403,209	8
HUNT	47,948												
Greenville	22,043	$\ldots$	$\ldots$	$\ldots$	$\ldots$	$\ldots$	$\ldots$	52,177	15	61	245,467	186,105	32
HUTCHINSON	24,443												
Borger	14,195	4,250	-97	-90	507,239	1,577,275	-68	$\ldots$	$\ldots$	$\ldots$			
JACKSON	12,975												
Edna	5,332	28,479	-61	- 57	429,639	$\ldots$	$\ldots$	9,043	- 15	3	60,836	57,874	5
JASPER	24,692												
J asper	6,251	60,850	-32	363	244,450	562,000	- 57	22,354	- 2	1	136,265	113,559	20
Kirby ville	1,869		...				. .	4,569	$-2$	42	25,487	19,306	32
(In Beaumont-Port ArthurOrange SMSA)	244,773												
Beaumont	115,919	5,136,105			19,754,358	$16,274,669$	${ }_{*}^{21}$	$426,629$	3		2,496,093	2,152,087	16
Groves ${ }^{\text {Nederland }}$	18,067 16,810	298,788 54,476	27 -86	134 -56	1,150,550	$1,147,251$	**	22,190 16,801	- 7	5 15	133,965 99,975	$\begin{array}{r}135,049 \\ 80,785 \\ \hline 18\end{array}$	
Noderland Port Arthur Port Neches	167,371 $\mathbf{1 0 , 8 9 4}$	240,635 288,471	-87 -15	134 -44 $-\quad 21$	3,987,757	3,205,019	24		断 ${ }^{2}$	13	630,427	$\begin{array}{r}180,785 \\ 550,650 \\ \hline 17.208\end{array}$	$\begin{array}{r}24 \\ 14 \\ \hline\end{array}$
Port Neches	10,894	288,471	-15	- 21				20,789	- 14		127.190	117,208	9


	ลั่	$\stackrel{\square}{\sim}$	．	－	$a$		$a$	$\cdots$	－J	ה	$\underset{\text { NJ }}{ }$	の	$\infty \text { \& }$ $1$	m＝	$\pm$	ล	$\cdots$
$\vdots$	$\begin{aligned} & \text { Nis } \\ & \text { No } \\ & \text { nion } \\ & \text { nin } \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	：	$\begin{aligned} & \mathscr{\circ} \\ & \dot{\sigma} \\ & \dot{\sigma} \end{aligned}$	$\begin{aligned} & \vec{n} \\ & \text { n } \end{aligned}$	！	$\begin{aligned} & \vec{n} \\ & \underset{n}{n} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { 今, } \end{aligned}$			$\begin{aligned} & \pm \infty \\ & =i^{\infty} \\ & \text { ing } \end{aligned}$	$\begin{aligned} & \text { n } \\ & 0 \\ & \text { di } \end{aligned}$	$\begin{aligned} & 0 . \\ & i 0_{0} \\ & \dot{f} \dot{y} \end{aligned}$	$\begin{aligned} & \text { M } \\ & \infty \\ & \infty \\ & \infty \\ & 0 \\ & 0 \\ & 0 \\ & i \\ & i \end{aligned}$	$\begin{aligned} & \text { in } \\ & \text { N } \end{aligned}$	$\begin{aligned} & i \\ & i n \\ & i n \end{aligned}$	$\begin{array}{ll}\infty & 0 \\ \infty & 0 \\ \infty \\ \infty \\ \infty & 0 \\ 0 & 0 \\ \infty \\ \infty \\ \sim\end{array}$
：		$\begin{aligned} & \text { O } \\ & \infty \\ & \text { - } \\ & \hline \end{aligned}$	：	$\frac{\infty}{\infty}$	$\begin{aligned} & \circ \\ & \underset{\sim}{\infty} \\ & \infty \end{aligned}$	$\vdots$	$\begin{aligned} & \text { oे } \\ & \infty \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \stackrel{0}{\circ} \\ & \text { مa } \end{aligned}$		$\begin{aligned} & \overleftarrow{~} \\ & \frac{0}{6} \end{aligned}$		$\begin{aligned} & \text { J } \\ & \infty \\ & \stackrel{0}{n} \end{aligned}$	$\begin{aligned} & \text { in } \\ & m \\ & \text { in } \end{aligned}$		$\begin{aligned} & \circ \\ & \stackrel{0}{0} \\ & \text { in } \end{aligned}$	$\overline{0}$ $\stackrel{0}{\infty}$ $\infty$	
$\ddagger$	ล2	－		＊	＊	：	$=$	$\stackrel{\infty}{\sim}$	$\sim$	m	$\stackrel{ \pm}{\sim}$	$\stackrel{\infty}{\sim}$		$\stackrel{\sim}{*}$	－	2	n
$\begin{gathered} \bar{m} \\ 1 \end{gathered}$	$\mathrm{rm}_{1}$	$\stackrel{\sim}{\sim}$		$\cdots$	$n$	．		$m$	$m \backsim$	$\cdots$	$\begin{aligned} & a m \\ & 11 \end{aligned}$	$\cdots$	ar	$\begin{gathered} -\infty \\ 1 \end{gathered}$	$\pm$	＋	0 in
$\begin{aligned} & \text { in } \\ & \text { in } \\ & i \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{20} \\ & \text { h́ } \end{aligned}$		$\stackrel{m}{\underset{\sim}{n}}$	$\begin{aligned} & \hat{n} \\ & \underset{m}{n} \end{aligned}$	：	$\begin{aligned} & \text { J } \\ & \text { n } \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & -0 \\ & \mathbf{N}_{0}^{\infty} \\ & 0 \end{aligned}$	$\begin{aligned} & \tilde{\infty} \\ & = \\ & = \end{aligned}$		$\underset{\sim}{m}$	$\begin{aligned} & \text { min } \\ & \text { ŠN } \\ & \infty= \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { Un } \\ & \text { an } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\infty}{\circ} \end{aligned}$	$\begin{gathered} \underset{\sim}{\underset{\sim}{*}} \end{gathered}$	$\begin{array}{cc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ ~ & 0 \end{array}$
の	!	:	ก	：	$\begin{gathered} n \\ i \end{gathered}$	$\underset{i}{F}$	；	＊	$\pm \underset{i}{i}$	～n	こ	－	：$=$	－	$\stackrel{\infty}{\circ}$	ה	：
			m   0   0   0	：	$\begin{aligned} & \text { oे } \\ & \text { on } \\ & \dot{\sigma} \end{aligned}$		$\vdots$	$\begin{aligned} & 0 \\ & \stackrel{0}{\infty} \\ & \frac{N}{\infty} \end{aligned}$		$\begin{aligned} & \text { 토 } \\ & \text { N } \\ & \text { N } \end{aligned}$		$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \stackrel{\infty}{n} \end{aligned}$			$\begin{aligned} & \text { d } \\ & \stackrel{y}{*} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { in } \\ & \text { m } \\ & \dot{8} \end{aligned}$	－
$\vec{\infty}$ $\stackrel{\sim}{n}$ $\stackrel{n}{n}$ $\underset{\sim}{n}$		$\begin{aligned} & \vec{\circ} \\ & 0_{0} \\ & \overrightarrow{0} \end{aligned}$	$\begin{aligned} & \text { à } \\ & \text { on } \\ & \underset{=}{2} \end{aligned}$	：	J む ה		$\vdots$	$\begin{aligned} & 0 \\ & \infty \\ & \infty \\ & 0 \\ & 0 \\ & \infty \end{aligned}$	$\begin{aligned} & \text { MJ J } \\ & \text { č } \\ & \text { os } \\ & \text { in m } \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \stackrel{\sim}{\sigma} \end{aligned}$		$\begin{aligned} & \stackrel{0}{\mathrm{E}} \\ & \underset{\sim}{\mathrm{~s}} \end{aligned}$	$\begin{aligned} & \text { :i } \\ & \underset{\text { du}}{-1} \end{aligned}$	$\begin{aligned} & \text { om } \\ & \text { nn } \\ & \text { Non } \\ & \text { Non } \\ & \text { jon } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { w } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \stackrel{\infty}{\infty} \\ & \text { in } \end{aligned}$	
$\stackrel{\sim}{n}$	mo $i 0$ 10	$\begin{gathered} m \\ 1 \end{gathered}$	\％	：	$\stackrel{m}{*}$	$\begin{gathered} \infty \\ \text { i } \\ 1 \end{gathered}$	：	$\underset{i}{\text { in }}$	$: i_{i}^{m}$	$\vdots$	の日	กั	：	$$	：	$\cdots$	$\vdots$$\infty$
$\pm$		：	－	：	$\infty$	$\stackrel{\infty}{\infty}$	：	$\stackrel{\sim}{\sim}$	$\begin{gathered} \text { in } \\ 11 \end{gathered}$	$\underset{1}{\infty}$	$\begin{gathered} \text { er } \\ 1 \\ 1 \end{gathered}$	$\bigcirc$	$\vdots^{-}$	$\underset{11}{00}$	：	$=$	즤
$\begin{gathered} \Delta \\ \underset{\sim}{\infty} \\ \stackrel{\infty}{\delta} \end{gathered}$		$\begin{aligned} & 8 \\ & 0 \\ & \dot{f} \end{aligned}$		：	$\stackrel{\infty}{\stackrel{\infty}{\infty}} \underset{\substack{2 \\ \underset{\sim}{2}}}{-}$	$\begin{aligned} & \underset{0}{0} \\ & \stackrel{n}{n} \end{aligned}$	：	$\begin{aligned} & 8 \\ & 0 \\ & - \\ & = \end{aligned}$	nj	$\begin{aligned} & \dot{n} \\ & \hat{m} \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{0} \\ & \dot{+} \end{aligned}$	:ơ	$\begin{aligned} & \text { in oे } \\ & \text { no } \\ & \text { cin } \\ & \text { ch } \\ & \text { in } \end{aligned}$	－	$\begin{aligned} & 0 \\ & \text { on } \\ & 0 \\ & 0 \end{aligned}$	－
N̄ন					$\begin{aligned} & \bullet= \\ & = \\ & \underset{\sim}{\infty} \underset{\sim}{\infty} \end{aligned}$			$\begin{aligned} & \text { m్N } \\ & \text { Nू内人 } \end{aligned}$	$\begin{aligned} & \text { min } \\ & \text { है } \\ & \text { Eiv } \end{aligned}$	$\begin{aligned} & \infty \\ & \mathbf{S}^{\infty} \\ & \infty \\ & \infty \end{aligned}$	$\begin{array}{ll}  \pm & S_{0} \\ 0 & 0 \\ \infty \\ \infty & \text { n } \end{array}$	$\begin{aligned} & \circ \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & \text { E. } \\ & \text { = } \\ & \text { and } \end{aligned}$	$\begin{aligned} & \text { in } \\ & i n \\ & \infty \\ & \infty \end{aligned}$	
					$\begin{aligned} & \text { yo } \\ & \text { y } \\ & \text { an } \\ & \text { m } \\ & \text { my } \end{aligned}$	$\sum_{i}^{x}$	$\sum_{i}^{m}$										


COUNTYCity	Population	Urban building permits						Bank debits					
		Percent change			$\begin{aligned} & \begin{array}{l} \text { Jan-Jun } \\ 1973 \end{array} \\ & \hline \text { (dol } \end{aligned}$	$\begin{gathered} \text { Jan-Jun } \\ 1972 \\ \hline \end{gathered}$	Percent   change   Jan-Jun   1973   from   Jan-Jun   1972	Percent change			Jan-Jun1973	$\begin{gathered} \text { Jan-Jun } \\ 1972 \\ \hline \end{gathered}$	Percentchange
		Jun 1973	$\begin{aligned} & \text { Jun } \\ & 1973 \\ & \text { from } \\ & \text { May } \end{aligned}$	Jun 1973 from Jun				Jun 1973   (thousands of dollars)	$\begin{gathered} \hline \text { Jun } \\ 1973 \\ \text { from } \\ \text { May } \\ 1973 \end{gathered}$	$\begin{gathered} \text { Jun } \\ \text { 1973 } \\ \text { from } \\ \text { Jun } \\ 1972 \\ \hline \end{gathered}$			
		(dollars)	1973	1972		(dollars)						f dollars)	
MATAGORDA	27,913												
Bay City	11,733	10,158	-89	$-80$	884,742	376,536	135	30,365	5	17	176,791	157,545	12
MAVERICK	18,093												
Eagle Pass	15,364	149,565	- 17	40	1,342,183	1,280,201	5	18,402	3	28	109,008	103,974	5
MEDINA	20,249												
Castroville	1,893							1,984	**	10	12,782	10,102	27
Hondo	5,487	122,800	26	-26	460,804	546,132	- 16			$\ldots$	.		$\ldots$
MIDLAND   (Constitutes Midland SMSA)	65,433												
Midland	59,463	1,685,661	-36	139	10,104,358	10,861,706	- 7	209,001	1	8	1,245,149	1,099,305	13
MILAM	20,028												
Cameron	5,546		$\ldots$					10,098		6	62,385	54,829	14
Rockdale	4,655	64,027	...	250	150,601	173,323	- 13	10,353	3	20	58,528	51,822	13
MILLS	4,212												
Goldthwaite	1,693	$\ldots$	$\ldots$	$\ldots$	$\ldots$	$\ldots$	$\ldots$	10,500	- 3	7	55,271	45,643	21
MITCHELL	9,073												
Colorado City	5,227	$\ldots$	$\ldots$	...	$\ldots$	$\ldots$	$\ldots$	7,506	- 12	1	50,200	44,783	12
MONTGOMERY   (In Houston SMSA)	49,479												
Conroe	11,969	603,702	-46	- 50	$\ldots$		...	63,424	$-20$	11	428,458	394,514	9
MOORE	14,060												
Dumas	9,771	675,020	126	374	2,057,348	808,968	154	$\ldots$	$\ldots$	$\ldots$	$\ldots$		...
NACOGDOCHES	36,362												
Nacogdoches	22,544	608,950	35	37	$\ldots$		$\ldots$	$\ldots$	$\ldots$	-	...	...	...
NAVARRO	31,150												
Corsicana	19,972	321,310	22	85	2,530,758	1,356,176	87	43,861	$-5$	5	277,713	218,828	27
NOLAN	16,220												
Sweetwater	12,020	298,995	302	521	1,538,347	245,002	528	29,194	9	20	174,709	154,325	13
NUECES   (In Corpus Christi SMSA)	237,544												
Bishop	3,466							3,175	-32	20			
Corpus Christi	204,525	2,195,974	- 58	-33	30,067,905	34,776,504	-14	586,821	$-2$	11	3,539,995	3,125,116	13
Port Aransas Robstown	1,218 11,217	43,010	-79	-94	586,556	1,398,224	- -58	$\begin{array}{r} 1,450 \\ 19,118 \end{array}$	13 -11	12 7	$\begin{array}{r} 6,849 \\ 121,056 \end{array}$		6 6
ORANGE   (In Beaumont-Port ArthurOrange SMSA)	71,170												
Orange	24,457	461,774	397	146	1,727,934	1,290,287	34	60,878	2	1	381,756	353,362	8
palo pinto Mineral Wells	$\begin{aligned} & 28,962 \\ & 18,411 \end{aligned}$	13,550	-13	3	331,131	256,742	29	40,648	3	30	212,423	173,797	22



COUNTYCity		Urban building permits						Bank debits						
		Percent change			$\begin{gathered} \text { Jan-Jun } \\ 1973 \end{gathered}$	$\begin{gathered} \text { Jan-Jun } \\ 1972 \\ \hline \end{gathered}$	Percent change	Percent change			$\begin{aligned} & \text { Jan-Jun } \\ & \frac{1973}{\text { (thousands }} \end{aligned}$	$\begin{gathered} \text { Jan-Jun } \\ 1972 \\ \hline \end{gathered}$		
		$\begin{aligned} & \text { Jun } 1973 \\ & \text { (dollars) } \end{aligned}$	Jun1973fromMay1973	$\begin{aligned} & \text { Jun } \\ & \text { 1973 } \\ & \text { from } \\ & \text { Jun } \\ & 1972 \end{aligned}$			Jan-Jun   1973   from   Jan-Jun   1972	Jun 1973   (thousands of dollars)	$\begin{aligned} & \hline \text { Jun } \\ & \text { 1973 } \\ & \text { from } \\ & \text { May } \\ & 1973 \\ & \hline \end{aligned}$	$\begin{gathered} \text { Jun } \\ \text { 1973 } \\ \text { from } \\ \text { Jun } \\ 1972 \\ \hline \end{gathered}$				
		(dollars)			f dollars)									
TARRANT (continued)														
Grapevine	7,023		929,339	480		3,034,171	1,003,070	202	17,051	2	51	89,965	65,511	37
North Richland Hills	16,514	579,979	- 30	-58	3,887,307	4,178,500	- 7	25,003		5	145,766	132,595	10	
White Settlement	13,449	9,510	-54	-95	977,244	838,613	17	10,690		15	. .		...	
TAYLOR   (In Abilene SMSA)	97,853													
Abilene	89,653	2,466,107	-34	165	17,159,499	8,932,516	92	229,045	- 1	18	1,330,401	1,110,232	20	
$\underset{\text { TERRY }}{\text { Brownfield }}$	14,118													
Brownfield	9,647	75,200	70	-65	409,863	904,365	- 55	30,658	2	17	213,640	187,599	14	
TITUS	16,702													
Mount Pleasant	8,877	138,590	-24	-49	1,090,678	1,326,871	- 18	32,917	- 2	- 9	178,202	172,186	3	
TOM GREEN   (Constitutes San Angelo SM	SA) ${ }^{71,047}$													
San Angelo	63,884	504,390	-49	- 17	5,420,495	3,777,704	43	198,908	15	36	1,013,576	824,799	23	
TRAVIS   (Constitutes Austin SMSA)	295,516													
Austin	251,808	15,490,608	-13	- 51	124,137,641	130,941,622	- 5	1,192,534	- 8	17	7,052,833	6,374,399	11	
UPSHUR   Gladewater (see Gregg)	20,976													
UPTON	4,697													
McCamey	2,647	$\ldots$	$\ldots$	$\ldots$	$\ldots$	$\ldots$	$\ldots$	2,267	5	- 4	13,796	13,933	- 1	
UVALDE	17,348													
Uvalde	10,764	188,925	16	74	1,655,851	1,165,573	42	40,165	19	53	216,361	155,396	39	
VAL VERDE	27,471													
Del Rio	21,330	307,797	83	49			$\ldots$	32,800	2	15	189,524	152,019	25	
VICTORIA	53,766													
Victoria	41,349	303,657	-46	-77	5,084,134	4,565,338	11	$\cdots$	...	$\cdots$	...	$\ldots$	$\ldots$	
WALKER	27,680													
Huntsville	17,610	347,550	$-38$	-31	3,557,703	5,248,982	-32	31,646	-11	7	201,440	174,847	15	
WARD	13,019													
Monahans	8,333	1,400	$-97$	-99	260,047	236,508	10	14,888	3	**	87,565	85,259	3	
WASHINGTON	18,842													
Brenham	8,922	354,039	-85	-20	3,701,573	2,255,978	64	35,094	- 5	20	204,726	173,425	18	
WEBB   (Constitutes Laredo SMSA)	72,859													
Laredo	69,024	689,515	$-70$	-83	10,918,328	10,492,580	4	122,343	1	28	692,835	560,875	24	
WHARTON El Campo	$\begin{array}{r} 36,729 \\ 8,563 \end{array}$	$\ldots$	$\ldots$	$\ldots$	$\ldots$	...	$\ldots$	25,237	10	10	150,418	137,531	9	


wichita   (In Wichita Falls SMSA)	121,862												
Burkburnett	9,230	216,125	491	640	590,206	275,217	114	16,353	44	41	72,497	61,857	17
Iowa Park	5,796	6,475	-64	-75				4,945	6	7	28,905	27,758	4
Wichita Falls	97,564	855,767	-77	-46	11,324,654	7,600,123	49	259,772	1	19	1,499,220	1,315,942	14
WILBARGER	15,355												
Vernon	11,454	72,050		-74	756,230	3,873,523	-80	52,823	15	59	279,744	206,922	35
WILLACY	15,570												
Raymondville	7,987	7,500	-82	-93	396,450	1,185,000	-67	14,248	11	12	81,182	73,030	11
WILLAIMSON	37,305												
Bartlett	1,622							2,133	29	33	10,984	9,626	14
Georgetown	6,395	279,975	42	21	1,611,100	3,119,505	-48	15,984	13	15	86,600	79,135	24
Taylor	9,616	61,312	-16	-82	960,614	1,669,595	-42	17,829	- 3	20	112,051	90,252	24
WINKLER	9,640												
Kermit	7,884	3,000		67	41,701	24,754	68	$\ldots$	$\ldots$	...	$\ldots$	$\ldots$	...
WISE	19,687 3,240	47,100	-68	28	1,879,100	189,601	891	7,453	- 17	2	54,684	40,121	36
YOUNG	15,400												
Graham	7,477	810,300	790		1,808,405								
Olney	3,624	6,600	-41	-65	845,050	178,076	375	11,838	17	41	57,836	45,801	26
ZAVALA	11,370												
Crystal City	8,104	28,000		6			$\ldots$	12,546	13	43	60,350	46,890	29

GROSS RETAIL SALES BY KIND OF BUSINESS
FOR STANDARD METROPOLITAN STATISTICAL AREAS

Reported area and kind of business	Gross sales (\$000)	Percent changes Jan-Mar 1973 from	
		Oct-Dec 1972	Jan-Mar

## ABILENE SMSA

Apparel, accessories	3,311	-32	11
Automotive dealers,    service stations	19,642	-13	14
Building materials,			
$\quad$ farm equipment	5,879	-	-3
Drugstores	1,690	-6	2
Eating and drinking	4,496	1	12
Food	12,412	-12	3
Furniture, home			
$\quad$ furnishings	3,966	-9	-17
General merchandise	9,623	-31	10
Liquor	1,223	2	42
Miscellaneous retail	10,852	-15	10

AMARILLO SMSA

Apparel, accessories	5,646	-27	10
Automotive dealers, service stations	38,446	18	
Building materials, farm equipment	9,509	14	
Drugstores	5,237	- 11	
Eating and drinking	7,926	-	14
Food	17,831	- 2	
Furniture, home furnishing	5,307		
General merchandise	11,850	- 39	
Liquor	2,677	- 18	- 25

AUSTIN SMSA

Apparel, accessories	10,313	- 22	6
Automotive dealers, service stations	50,811	- 5	11
Building materials, farm equipment	20,134	4	12
Drugstores	5,760		20
Eating and drinking	18,777	3	17
Food	45,169	**	10
Furniture, home furnishing	11,582	-	16
General merchandise	31,902	-27	12
Liquor	3,625	- 16	22
Miscellaneous retail	36,425		15


BEAUMONT-PORT ARTHUR-ORANGE SMSA			
Apparel, accessories	5,791	- 31	- 5
Automotive dealers, service stations	48,153	1	12
Building materials, farm equipment	14,515	- 38	
Drugstores	7,840	- 5	24
Eating and drinking	10,317	- 5	9
Food	44,066	**	5
Furniture, home furnishings	7,718	- 16	1
General merchandise	22,213	- 37	
Liquor	2,926	-15	6
Miscellaneous retail	15,612	- 12	- 9


BROWNSVILLE-HARLINGEN-SAN BENITO SMSA			
Apparel, accessories	5,021	-18	**
Automotive dealers, service stations	16,290	1	5
Building materials, farm equipment	8,307		
Drugstores	1,772	- 8	10
Eating and drinking	5,896	29	23
Food	17,861	8	21
Furniture, home furnishings	3,044		1
General merchandise	14,853	-29	3
Liquor	627	- 1	15
Miscellaneous retail	7,974	-22	11


Reported area and kind of business	$\begin{aligned} & \text { Gross } \\ & \text { sales } \\ & (\$ 000) \end{aligned}$	Percent changes Jan-Mar 1973 from		Reported area and kind of business	Grosssales$(\$ 000)$	Percent changes Jan-Mar 1973 from	
		Oct-Dec 1972	Jan-Mar 1972			Oct-Dec 1972	Jan-Mar 1972
GALVESTON-TEXAS CITY SMSA				McALLEN-PHARR-EDIN	NBURG		
Apparel, accessories	3,301	$-18$	17	Apparel, accessories	5,590	$-20$	4
Automotive dealers, service stations	47,650	$-1$	10	Automotive dealers, service stations	24,625	6	21
Building materials, farm equipment	4,709	1	7	Building materials, farm equipment	11,111	$-7$	17
Drugstores	3,294	- 5	11	Drugstores	2,873	2	7
Eating and drinking	7,010	12	6	Eating and drinking	5,632	18	16
Food	21,770	1	4	Food	25,487	9	22
Furniture, home furnishings	3,062	- 11	- 4	Furniture, home furnishings	3,431	$-13$	24
General merchandise	9,559	- 31	7	General merchandise	14,924	- 26	9
Liquor	1,443	- 16	6	Liquor	520	- 2	16
Miscellaneous retail	8,993	$-10$	6	Miscellaneous retail	9,105	$-13$	7
HOUSTON SMSA				MIDLAND SMSA			
Apparel, accessories	52,064	-31	8	Apparel, accessories	1,964	- 23	1
Automotive dealers, service stations	486,903	1	$-38$	Automotive dealers, service stations	11,025	- 26	- 5
Building materials, farm equipment	126,316	- 5	- 3	Building materials, farm equipment	3,508	- 1	4
Drugstores	44,491	- 12	11	Drugstores	2,980	- 19	11
Eating and drinking	100,910	- 11	11	Eating and drinking	2,737	- 1	8
Food	305,687	- 5	7	Food	7,578	2	8
Furniture, home furnishings	66,197	- 12	8	Furniture, home furnishings	2,113	- 9	8
General merchandise	212,101	- 34	9	General merchandise	6,086	- 26	3
Liquor	29,375	-27	$-30$	Liquor	742	-19	2
Miscellaneous retail	215,152	$-17$	8	Miscellaneous retail	7,540	- 11	2
KILLEEN-TEMPLE SMSA				ODESSA SMSA			
Apparel, accessories	2,594			Apparel, accessories	1,809	- 27	5
Automotive dealers, service stations	19,387	. .	. .	Automotive dealers, service stations	23,079	6	14
Building materials, farm equipment	5,371	. .	. .	Building materials, farm equipment	3,508	$-11$	10
Drugstores	1,388			Drugstores	1,359	- 22	1
Eating and drinking	5,421	. .		Eating and drinking	4,208	- 1	8
Food	14,019			Food	11,792	- 2	18
Furniture, home furnishings	2,859	. .	. .	Furniture, home furnishings	2,693	**	13
General merchandise	9,100	..	...	General merchandise	9,847	- 30	- 7
Liquor	619			Liquor	2,842	- 24	- 23
Miscellaneous retail	8,238			Miscellaneous retail	30,597	10	16
LAREDO SMSA				SAN ANGELO SMSA			
Apparel, accessories	7,428	$-23$	7	Apparel, accessories	1,548	- 25	1
Automotive dealers, service stations	7,764	1	2	Automotive dealers, service stations	12,111	- 6	22
Building materials, farm equipment	2,662	- 2	17	Building materials, farm equipment	3,881	- 8	4
Drugstores	1,293	4	12	Drugstores	2,649	- 8	16
Eating and drinking	2,112	8	13	Eating and drinking	2,654	3	12
Food	9,327	1	2	Food	7,749	- 2	9
Furniture, home furnishings	3,372	- 16	19	Furniture, home furnishings	2,311	9	30
General merchandise	11,552	- 29	6	General merchandise	6,185	-31	9
Liquor	112	-30	**	Liquor	504 4,877	-27 -28	- 27
Miscellaneous retail	5,323	$-12$	22	Miscellaneous retail	4,877	- 28	57
LUBBOCK SMSA				SAN ANTONIO SMSA			
Apparel, accessories	6,144	- 19	13	A pparel, accessories	24,266	$-23$	9
Automotive dealers, service stations	27,505	- 26	$-5$	Automotive dealers, service stations	134,767	$-10$	12
Building materials, farm equipment	14,851	9		Building materials, farm equipment	40,940	- 2	10
Drugstores	2,992	**	18	Drugstores	10,112	$-9$	5
Eating and drinking	7,858	9	17	Eating and drinking	39,804	-	9
Food	23,191	- 4	12	Food	105,960	-	11
Furniture, home furnishings	6,823		11	Furniture, home furnishings	23,548	$-12$	8
General merchandise	15,998	- 36	11	General merchandise	69,337	- 32	6
Liquor	3,021	- 12	3	Liquor	5,916	-27	- 24
Miscellaneous retail	24,504	$-11$	8	Miscellaneous retail	58,265	- 2	20


Reported area and kind of business	$\begin{gathered} \text { Gross } \\ \text { sales } \\ (\$ 000) \end{gathered}$	Percent changes Jan-Mar 1973 from		Reported area and kind of business	Gross sales (\$000)	Percent changes Jan-Mar 1973 from	
		Oct-Dec 1972	Jan-Mar 1972			Oct-Dec 1972	Jan-Mar 1972
SHERMAN-DENISON SMSA				WACO SMSA			
Apparel, accessories	2,680	$-25$	- 8	Apparel, accessories	2,637	- 29	15
Automotive dealers, service stations	12,361	3	6	Automotive dealers, service stations	25,470	- 27	31
Building materials, farm equipment	3,975	4	3	Building materials, farm equipment	15,915	14	9
Drugstores	2,038	-13	11	Drugstores	2,817	- 7	6
Eating and drinking	2,943	**	14	Eating and drinking	7,919	15	5
Food	8,812	4	5	Food	20,630	1	- 1
Furniture, home furnishings	1,911	$-12$	14	Furniture, home furnishings	3,583	- 22	11
General merchandise	6,049	- 33	-18	General merchandise	11,747	-41	10
Liquor	624	- 14	6	Liquor	* *	$\cdots$	
Miscellaneous retail	5,203	- 24	- 12	Miscellaneous retail	17,830	11	20
TEXARKANA SMSA (Excludes Miller County, Arkansas)				WICHITA FALLS SMS			
				Apparel, accessories	2,903	- 28	- 2
Apparel, accessories	1,176	- 36	9	Automotive dealers,			
Automotive dealers, service stations	10,179	- 25	7	service stations Building materials,	23,421	1	16
Building materials,				farm equipment	5,509	10	- 16
farm equipment	3,590	9	7	Drugstores	1,793	- 11	-33
Drugstores	991	- 9	4	Eating and drinking	4,956	3	4
Eating and drinking	2,128	5	23	Food	30,778	$\cdots$	. .
Food	9,474	1	- 36	Furniture, home			
Furniture, home				furnishings	3,633	7	15
furnishings	1,768	- 15	7	General merchandise	9,608	- 36	6
General merchandise	7,426	- 35	8	Liquor	1,747	- 11	3
Liquor	*	. .	. .	Miscellaneous retail	8,357	- 14	- 3
Miscellaneous retail	5,541	4	3				
TYLER SMSA				* Omitted to avoid   ** Absolute change is	sclosure.	half of 1 per	
Apparel, accessories	3,215	- 21	3	. . . No data, or inadeq	ate basis	reporting.	
Automotive dealers, service stations	14,074	$-26$	18	Source: Sales Tax Divis	n, State	mptroller of P	ic Accounts.
Building materials, farm equipment	8,744	9	$-23$				
Drugstores	1,958	- 4	18				
Eating and drinking	3,237	1	13				
Food	14,611	3	10				
Furniture, home   furnishings $2,744-19$							
General merchandise	7,690	- 34	6				
Liquor	*						
Miscellaneous retail	8,369	$-5$	12				

## DIRECTORY OF TEXAS MANUFACTURERS, 1973

The 1973 Directory of Texas Manufacturers is the most complete and authoritative source of information on manufacturing plants in Texas. The Directory provides the following information for approximately 12,000 plants: name and complete address of plants, date of establishment, name of executive officer, a description of products manufactured, and the name and main office address of parent company where applicable.

The Directory consists of five helpful sections: a convenient alphabetical listing of all plants by firm name with city location and home office; a geographical listing of plants according to city of location, with both cities and plants in alphabetical order, and with the detailed information for each plant; an organizational reference section giving the main office address of each parent company and the addresses of regional and subsidiary offices; a product section in which all products manufactured in Texas are listed under at least the first four digits of their Standard Industrial Classification number, in arithmetical order and geographical suborder for each number; an excellent product index, on the basis of alphabetical name order.

## Bureau of Business Research <br> The University of Texas at Austin

## BAROMETERS OF TEXAS BUSINESS

## (All figures are for Texas unless otherwise indicated.)

All indexes are based on the average months for $1967=100$ except where other specification is made; all except annual indexes are adjusted for seasonal variation unless otherwise noted. Employment estimates are compiled by the Texas Employment Commission in cooperation with the Bureau of Labor Statistics of the U.S. Department of Labor. The symbols used below impose qualifications as indicated here: p-preliminary data subject to revision; r-revised data; *-dollar totals for the fiscal year to date; $\dagger$-employment data for wage and salary workers only.

	$\begin{gathered} \text { Jun } \\ 1973 \end{gathered}$	$\begin{gathered} \text { May } \\ 1973 \end{gathered}$		$\begin{gathered} \text { Jun } \\ 1972 \end{gathered}$			Year-to-date average							
					1973		1972							
GENERAL BUSINESS ACTIVITY														
Texas business activity (index)	174.5		179.5				172.9		173.4		162.3			
Estimates of personal income   (millions of dollars, seasonally adjusted)	4,256 ${ }^{\mathrm{p}}$	\$	$4,247^{p}$	\$	$3,988{ }^{\text {r }}$	\$	4,145	\$	3,866					
Income payments to individuals in U.S. (billions, at seasonally adjusted annual rate)	1,027.1 ${ }^{\mathrm{p}}$	\$	$1,018.7^{\text {p }}$	\$	$927.0^{\text {r }}$	\$	1,007.9	\$	915.9					
Wholesale prices in U.S. (unadjusted index)	136.7		133.5		118.8		130.3		117.6					
Consumer prices in Dallas (unadjusted index)			130.6											
Consumer prices in U.S. (unadjusted index) . .	132.4		131.5		125.0		130.1		124.2					
Business failures (number) . . . . . . . . . .			48		81				75					
Business failures (liabilities, thousands)		\$	4,067	\$	6,025	\$		\$	15,283					
Sales of ordinary life insurance (index)			193.1		164.8				162.8					
PRODUCTION														
Total electric-power use (index) .	$156.8{ }^{\text {p }}$		$151.9{ }^{\text {p }}$		$147.6{ }_{\text {r }}^{\text {r }}$		154.5		147.7					
Industrial electric-power use (index)	$143.3{ }^{\text {p }}$		$141.3{ }^{\text {p }}$		$132.7{ }^{\text {r }}$		139.7		133.0					
Crude-oil production (index) . . . .	$118.2^{\text {p }}$		$1: 5.3{ }^{p}$		$116.0{ }^{\text {r }}$		116.0		112.6					
Average daily production per oil well (bbl.)	20.0		19.8		19.9		19.4		18.9					
Crude-oil runs to stills (index) . . . . . . . .	123.4 p		$121.8{ }^{\text {p }}$		117.1 r		121.5		115.3					
Industrial production in U.S. (index)	123.9 p		$123.5{ }^{\text {p }}$		$113.4{ }^{\text {r }}$		122.2		111.6					
Texas industrial production-total (index)	$140.0{ }^{\text {p }}$		138.0 p		$131.6{ }^{\text {r }}$		136.2		128.4					
Texas industrial production-total manufactures (index)	144.2 p		$142.3{ }^{\text {p }}$		$133.1{ }^{\text {r }}$		140.3		130.1					
Texas industrial production-durable manufactures (index)	157.1 p		$156.1{ }^{\text {p }}$		$144.7{ }^{\text {r }}$		154.6		140.2					
Texas industrial production-nondurable manufactures (index)	134.9 p		$132.4{ }^{\text {p }}$		$124.7{ }^{\text {r }}$		130.0		122.8					
Texas industrial production-mining (index) . . . . . . . . . . . . .	123.5 p		$121.1{ }^{\text {p }}$		$121.7{ }^{\text {r }}$		118.9		117.3					
Texas industrial production-utilities (index)	$162.1{ }^{\text {p }}$		$162.2{ }^{\text {p }}$		$156.1{ }^{\text {r }}$		163.3		155.7					
Urban building permits issued (index)	166.9		191.2		192.7		188.0		187.8					
New residential building authorized (index)	147.8		182.0		$206.9{ }^{\text {r }}$		196.2		205.6					
New residential units authorized (index)	94.8		128.5		163.0		148.5		167.3					
New nonresidential building authorized (unadjusted index)	181.0		202.9		222.9		183.9		176.2					
AGRICULTURE														
Prices received by farmers (unadjusted index, 1910-14=100)	458		446		341		430		334					
Prices paid by farmers in U.S. (unadjusted index, $1910-14=100$ ) .....Ratio of Texas farm prices received to U.S. prices paid														
FINANCE														
Bank debits (index)	238.6		239.6		$202.2{ }^{\text {r }}$		226.1		190.4					
Bank debits, U.S. (index)			222.0		195.7		...		192.1					
Bank commercial loans outstanding (index)	161.6		159.9		130.4		155.0		128.7					
Reporting member banks, Dallas Federal Reserve District														
Loans (millions)	9,760	\$	9,698	\$	8,052	\$	9,368	\$	$7,681$					
Loans and investments (millions)	13,655	\$	13,732	\$	$11,659$	\$	$13,391$	\$	$11,218$					
Adjusted demand deposits (millions)	4,193	\$	4,166	S	3,850	\$	4,187	\$	$3,750$					
Revenue receipts of the state comptroller (thousands)	383,013		524,798	\$	420,418	\$	391,815	\$	366,043					
Federal Internal Revenue collections (thousands) .	178,663		,072,219		403,320	\$	10,593.2*	\$	9,812.0*					
Securities registrations-original applications														
Mutual investment companies (thousands)	32,688	\$	42,451	\$	41,843	\$	378,293*	\$	265,444*					
All other corporate securities														
Texas companies (thousands)	13,917	\$	14,415 8,379	\$	26,726 37,364	\$	215,787*	\$	240,035*					
Other companies (thousands)	1,731	\$	8,379	\$	37,364	\$	158,491*	\$	395,620*					
Securities registration-renewals .														
Mutual investment companies (thousands)	36,684	\$	36,765	\$	59,948	\$	361,574*	\$	371,973*					
Other corporate securities (thousands)	3,131	\$	6,461	\$	10,516	\$	10,999*	\$	23,781*					
LABOR														
Total nonagricultural employment in Texas (index) $\dagger$.	$123.9{ }^{\text {p }}$		123.9 p		$119.2{ }^{\text {r }}$		123.4		118.1					
Manufacturing employment in Texas (index) $\dagger$. . .	115.4 p		115.3 p		111.5 r		115.3		110.3					
Average weekly hours-manufacturing (index) $\dagger$.	99.1 p		${ }^{98.6} \mathrm{p}$		99.1 r		98.2		98.7					
Average weekly earnings-manufacturing (index) $\dagger$	${ }_{137.8}{ }^{\text {p }}$		135.7 ${ }^{\text {p }}$ p		${ }^{130.9}{ }^{\text {r }}$		134.5 3.998 .8		128.1 3.822 .4					
Total nonagricultural employment (thousands) $\dagger$.	4,054.3 ${ }^{\text {p }}$		4,036.9 ${ }^{\text {p }}$		$3,901.5^{\text {r }}$		3,998.8		3,822.4					
Total manufacturing employ ment (thousands) $\dagger$	$777.4{ }^{\text {p }}$		766.1 ${ }^{\text {420. }}$ p		$751.5^{\text {r }}$		763.6		731.1 391.5					
Durable-goods employment (thousands) $\dagger$ ¢ ${ }^{\text {a }}$ (	427.3 ${ }^{\text {p }}$ p		$420.9{ }^{\text {P }}$ p		404.7 346.8		417.2 346.5		391.5 339.7					
Nondurable-goods employment (thousands) $\dagger$	$350.1{ }^{\text {p }}$		$345.2{ }^{\text {p }}$		346.8 4.5		346.5 3.1		339.7 3.8					
Percent of total labor force unemployed . . . . . . . . .	4.1		3.0		4.5		3.1		3.8					
Total civilian labor force in selected labor-market areas (thousands)	3,846.5		3,786.1		3,668.7		3,743.0		3,594.4					
Nonagricultural employment in selected labor-market areas (thousands)	3,589.0		3,575.4		3,399.7		3,540.3		3,370.6					
Manufacturing employment in selected labor-market areas (thousands)	655.1		645.6		607.8		639.7		598.0					
Total unemployment in selected labor-market areas (thousands)	166.2		119.6		183.2		128.3		143.0					
Percent of labor force unemployed in selected labor-market areas	4.3		3.2		5.0		3.3		4.0					

DUTIES AND LIABILITIES OF THE CPA<br>by<br>Denzil Y. Causey, Jr.

One of the most striking developments in the public accounting profession in recent years has been the enormous increase in the legal liability of the auditor. The wave of litigation has affected the largest CPA firms as well as the smallest. Criminal charges against individuals and civil actions against CPA firms have created an awareness of this trend, even among new staff members and among college students looking toward public accounting as a career.

The auditor can no longer achieve a comfortable sense of security by proclaiming that an annual audit is not designed or intended to detect fraud. Even the classical defense that the auditor performed his work in full compliance with generally accepted accounting principles may no longer afford protection. Perhaps most significant of all these developments is the implicit challenge to the assumption that widespread collusion which makes a mockery of internal control systems is an unlikely phenomenon.

In the face of these startling changes in the environment of auditing, no clear answers are as yet apparent. As a first step, however, the independent public accountant must look long and hard at the specific cases that illuminate the path along which the accounting profession is traveling. In this book Denzil Y. Causey, Jr., associate professor of accounting at Florida State Technological University in Orlando, Florida, affords the practitioner and the student of accounting an opportunity to assess some of the significant events that have ushered in a new era in public accounting.

$$
\$ 4.00
$$

(Texas residents add $\$ .20$ sales tax.)

Bureau of Business Research<br>The University of Texas at Austin


[^0]:    Reprints of feature articles are available from the Bureau at ten cents each.

    The Bureau of Business Research is a member of the Association for University Business and Economic Research.

[^1]:    *Austin may well be a special case, for its large population of students and institutional inmates, with low earnings or none, tends to depress its per capita income level.

[^2]:    P Preliminary.
    ** Change is less than one half of 1 percent.

[^3]:    Based on preliminary data from studies in progress for a forthcoming publication of the Bureau of Business Research: Francis B. May and Robert M. Lockwood, Energy Resources in Texas.

[^4]:    ${ }^{1}$ Year-end estimated proved reserves divided by calendar-year production.
    Source: American Gas Association, American Petroleum Institute, and Canadian Petroleum Association, Reserves of Crude Oil, Natural Gas Liquids, and Natural Gas in the United States and Canada and United States Productive Capacity as of December 31, 1972 (American G as Association, et al., 1973), pp. 54-66.

[^5]:    The equivalent barrel of crude oil is used in this study in those instances in which it is necessary to convert quantities of different energy materials to the same basis. The British Thermal Unit (Btu) is far too small for convenience and is essentially meaningless to most readers. As the principal and traditional basis of the Texas energy economy, crude oil has a legitimate claim to be employed as a common unit of measure. The equivalent barrel of crude oil, in this study, refers to the energy potential, the theoretical heat content, of the material in question. A barrel of crude oil was set at the value established by the U.S. Bureau of Mines in its 1970 energy-balance calculations: 5,620,900 Btu. The barrel is the 42-gallon barrel, the unit of measurement traditionally employed in the oil industry.

    Both thermal and hydroelectricity were converted on the basis of their theoretical energy equivalent $(3,412.76 \mathrm{Btu} /$ kilowatt-hour) and not according to the quantity of fuel required to generate that same amount of electricity. The latter method, widely used by the U.S. Bureau of Mines and others, badly understates the hydroelectric component of electric-power production and is conceptually inconsistent with the use of theoretical heat contents for other energy commodities.

    Following are the conversion factors employed in this study, most of them published by the U.S. Bureau of Mines in the Monthly Petroleum Statement and elsewhere:

[^6]:    ${ }^{1}$ Barrels per day of crude-oil equivalent. See note accompanying this article.
    ${ }_{3}^{2}$ Including stock changes, when known.
    3 Discrepancies in these totals and those in regional tables are explained in the note accompanying this article.
    4 Negligible or unknown.
    Sources: See note and References.

[^7]:    *)ata used in this article come only from building-permitissuing urban places.

[^8]:    ELLIS
    （In Dallas SMSA）

