
Copyright

by

Daniel Ivan Goldman

2002





Pattern formation and fluidization in vibrated granular

layers, and grain dynamics and jamming in a water

fluidized bed

by

Daniel Ivan Goldman, B.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2002



Dedicated to my parents, who made all of this possible.



Acknowledgments

Outside of the laboratory, my family has been a source of inspiration

and support over these many years. I thank them for allowing and encouraging

me to pursue my dream, with only a minimum of nagging. I also thank my

friends who have allowed for the slightly odd behavior induced by scientific

inquiry.

In the world on physics, I would like to thank Prof. John King at MIT

for introducing me to the intoxicating world of experimental physics. Special

thanks to Gene DiSalvatore, without whom I would never have found Texas.

I would like to thank the many people in the physics department and

Center for Nonlinear Dynamics I’ve collaborated with and pestered during

these years. Norma Kotz, Dorothy Featherling, Rosie Tovar, Olga Vera have

solved many administrative and logistical problems which would have certainly

forced me out on the street. Ed McKnight, Jack Clifford, Billy Kilgore all

provided excellent advice and training in the machine shop. Thanks to Robert

Hasdorff and John England for electronics help. Thanks to John DeBruyn,

Brendan Plapp, and Anna Lin who all helped me so much during my qualifying

exam. Special thanks to Mark Shattuck for helping to guide me in the early

days in the CNLD. Without his patience for my questions and constant interest

in my research, my experience would have been much less enjoyable. I owe a

great debt to Paul Umbanhowar, without whom I would not be in the CNLD.

v



His interest, support and friendship over the years has been invaluable. I would

also like to thank Prof. Jack Swift for his interest and many discussions over

the years. Finally, I must thank Prof. Harry Swinney, from whom I’ve learned

the correct way to do physics, on a scientific as well as personal level. I cannot

thank him enough for his kindness and support over the years.

vi



Pattern formation and fluidization in vibrated granular

layers, and grain dynamics and jamming in a water

fluidized bed

Publication No.

Daniel Ivan Goldman, Ph.D.

The University of Texas at Austin, 2002

Supervisor: Harry L. Swinney

This work examines the behavior of granular materials forced away from equi-

librium in two different experimental systems. We study pattern formation in

vibrated granular layers, and fluidization of grains near the onset of fluidization

in a water fluidized bed.

When a thin layer of grains is subject to sufficiently strong vertical vi-

bration of frequency fd, standing wave patterns are excited and oscillate sub-

harmonically at fd/2. The patterns form when Γ, the peak plate acceleration

normalized by gravity, exceeds a critical value, Γ ≈ 2.5. To gain understand-

ing of this transition, we studied the behavior of the layer near the onset of

patterns. Below onset, for Γ < 2.5, we found that although no visible patterns

were excited, the noisy state contained spatial structure. In addition, we stud-

ied the formation and the evolution of order in square patterns after a rapid
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change in Γ from below to above onset. We found that the pattern formed in

two distinct stages: a rapid ordering with universal properties, followed by a

slower non-universal ordering. We also examined the behavior of the average

wavelength of the patterns during the first stage ordering, and found that the

evolution of the wavelength was accompanied by a change in the effective fluid

depth of the layer. The condition for a rapid layer fluidization was shown to

be governed by a previously studied grain mobility transition. In the asymp-

totically formed square patterns, we found that the dynamics of the nodes

of the patterns displayed normal modes and dispersion relations analogous

to those of a two-dimensional crystal lattice. In addition, the normal modes

could be resonantly excited; if the amplitude of a mode became large enough,

the crystal melted, in accord with the Lindemann criterion for 2D melting.

At higher values of Γ, we performed experiments on patterns that displayed

phase discontinuities, called kinks. We observed that localized transient kinks

called phase bubbles prevented the formation of stable patterns that would

oscillate at fd/6. By preparing the system with a uniform initial condition,

we were able to observe transient fd/6 patterns. In addition, we found that

a convective motion associated with kinks led to segregation of different-sized

particles: large particles were pulled into the kink and remained trapped.

Fluidization in a water fluidized bed occurs when the pressure drop ∆P

developed by the flow Q through packed grains balances the buoyant weight of

the grains, (ρp −ρf )gh, where ρp and ρf are the solid and fluid densities and h

is the height of the grains. For increasing Q, fluidization is characterized by an
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increase in void fraction, 1 − Φ, where Φ is the solid particle fraction. Using

a light scattering technique called Diffusing Wave Spectroscopy, we studied

the dynamics of grains for smooth increases and decreases of Q near the onset

of fluidization. We found that the behavior was strongly influenced by the

initial packing fraction of the grains. Loosely packed grains near Random

Loose Packed (RLP), with 1 − Φ ≈ 0.45, moved immediately at the onset

of fluidization and remained in motion. In contrast, tightly packed grains

displayed a range in Q above onset during which voidage changes were followed

by a rapid settling into a motionless state. We found that this was a result of

yield stresses developed in the packed material due to the creation of a stress-

bearing network; the network resulted from jamming of the grains due to

frictional contacts between the grains and the walls of the cell. We also found

that behavior of the bed upon defluidization was analogous to the behavior

of a supercooled liquid near the glass transition: for 1 − Φ > 0.45, the bed

resembled a liquid. For 1 − Φ < 0.45, motion in the bed was hindered due to

local regions of largely immobile particles. These regions grew in size as Q was

decreased until ∆P < (ρp − ρf )gh, at which point all translational dynamics

of the grains ceased.
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4.2 Snapshots showing the emergence of a square spatial pattern in
a granular layer at fd = 27 Hz and Γ = 3.3; the times given
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5.1 A square pattern formed in a square container with four layers
of 165 µm bronze for Γ = 3.0 and fd = 27 Hz. The pattern
is oriented at π/4 to the container walls. The region shown is
16x16 cm2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2 A time sequence of images taken at an oblique angle to the
container: during one plate oscillation, peaks containing several
hundred grains become valleys which contain very few grains. 113

5.3 A schematic showing the flow of grains from peaks and lines
into valleys after a plate oscillation cycle. The black and white
indicate the positions of the peaks and the lines after one plate
oscillation. The gray arrows indicate the direction of the flow
of the grains. In the schematic diagram, the grains return to
the original peaks after another oscillation cycle. . . . . . . . . 114

5.4 Square patterns form in a vibrated layer for a range of Γ and
fd and resemble two dimensional crystal lattices. (i) A lattice
pattern at Γ = 2.90 and fd = 30 Hz averaged over 10 plate
oscillations. (ii) Relative motion of two peaks of the lattice
(with lattice constant a) for Γ = 2.90, and fd = 30 Hz. The
lattice is oscillating in a fixed mode such that peaks separated
by

√
2a oscillate exactly out of phase at roughly 1 Hz. . . . . . 117

5.5 Comparison of the measured dispersion relation (◦) for the (1, 1)T

normal modes of the lattice with a one dimensional lattice model
(solid line) with harmonic coupling between (1, 1) rows. The
wavevector, n is in units of 2π√

2aN
where a is the lattice constant

and N is the number of rows in the (1, 1) direction. The dashed
line denotes the edge of the first Brillouin zone. The power in
each mode (•) is evenly distributed among all modes. The im-
ages in i and ii show spatial Fourier transforms, Ĩ(kx, ky, fL)
at two temporal lattice oscillation frequencies, fL = 1.2 Hz
and fL = 2.3 Hz, the mode at the edge of the Brillouin zone.
For clarity, the location of the four peaks which form the basic
square lattice (found at fL = 0 Hz) are shown by • symbols in
the Fourier transform images. The grayscale is proportional to
|Ĩ|. Here fd = 25 Hz and Γ = 2.75. . . . . . . . . . . . . . . . 121
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5.6 Excitation of different normal modes of oscillation for differ-
ent values of Γ and fd occurs in two resonance peaks, I and
II. Top panel: Lines of constant power show the relative ex-
citation of the lattice in the range of square pattern stability;
the grayscale represents the power in the most dominant mode.
Bottom panel: The wavevector normalized by the wavevector
of the Brillouin zone traced by a path through both resonance
peaks. When Γ and fd are tuned to resonance I, modes at the
edge of the Brillouin zone are excited; tuning to resonance II
excites lower wavevector modes. . . . . . . . . . . . . . . . . . 123

5.7 Defect creation and melting after a sudden change in system
parameters at t = 0 for a weakly oscillating pattern at Γ = 2.9,
fd = 32 Hz. (a) At t = 0, frequency modulation with fmr = 2
Hz and fms = 5 Hz is applied. (b) At t = 0 the same frequency
modulation is applied for particles which have been cleaned and
graphite has been added. (c) Molecular dynamics simulation by
Sung Joon Moon: At t = 0, the friction coefficient µ between the
grains and the plate is set to 0. The intensity is the local density
of the grains. The insets in each panel shows the structure factor
at the corresponding time. . . . . . . . . . . . . . . . . . . . . 125

5.8 Melting occurs when the Lindemann ratio, γM = 〈|um−un|2〉/a2,
reaches approximately 0.1. Main figure: γM plotted versus time
for different values of µ, the friction between the grains and the
plate. Inset: The correlation length of the pattern ξ, (◦) (nor-
malized to 1 at t = 0) for µ = 0 reaches the minimum value
when γM ≈ 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.9 The temporal frequencies of the resonantly excited modes. In
the top panel, the grayscale represents the frequency of the ex-
cited mode, fL. The bottom panel plots the frequency of the
resonantly excited mode along a cut through both resonance
peaks, ◦. The frequency at the edge of the the Brillouin zone,
fBZ is also plotted, � for a range of the data to show the de-
pendence of fBZ on system parameters. . . . . . . . . . . . . . 131

5.10 The temporal response of the lattice under frequency modula-
tion at fd = 32 Hz and Γ = 2.90. The imposed rate frequency is
fmr = 3.70. The strongest response occurs at one half of the im-
posed rate frequency. The other peaks shown are the harmonics
of the fmr/2 response. . . . . . . . . . . . . . . . . . . . . . . 134

5.11 (a) The resonance tongue for fd=32 Hz, Γ = 2.90. Subharmonic
response is found inside the tongue and the width of the tongue
increases with increasing fms. For fmr ≈ 3.0 above fms ≈ 4.0
the crystal order is destroyed. (b) Detail of the lower section
of the tongue. The grayscale intensity for each pixel represents
the integrated power in the response at a given fmr and fms
after background subtraction. . . . . . . . . . . . . . . . . . . 135
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5.12 (a) and (b) are images taken at fd=32 Hz and Γ = 2.9 under
frequency modulation for constant fms = 4.0 Hz and increasing
fmr, where (a) fmr = 1 Hz, (b) fmr = 2.25 Hz. The wavenumber
of the mode increases with increasing fmr. To the right of each
picture, a schematic shows the relative motion of the rows of
the crystal in the given mode. The mode shown in (c) is never
excited over the range of fms and is an image of the lattice in
resonance peak I, with Γ = 2.65 and fd = 21 Hz. . . . . . . . . 136

5.13 Dispersion relations produced by excitation at (a) fms = 1.0 Hz
and (b) fms = 4.0 Hz for fd = 32 Hz and Γ = 2.90. The range
of modes excited is a function of fms and is seen to increase
with increasing fms. The insets show a snapshot of the lattice.
Note that the largest deviation from the harmonic fit occurs at
the point of large distortions of the lattice. . . . . . . . . . . . 137

5.14 A zoom showing that the peaks bend quite dramatically at the
maximum lattice oscillation amplitude. Γ = 3.0, fd =??, N=15. 140

5.15 A time sequence of images spanning one normal mode lattice
oscillation, showing the motion of the top of the peak tied to
the pattern oscillation, Γ = 3.0, fd =??, layer depth=15. The
large dashed arrow indicates the motion of the (1, 1) row while
the smaller arrows indicate the motion of the tips of the peaks. 141

5.16 The tops of the peaks do not oscillate coherently when the sys-
tem is detuned from a resonance. (a) The system is detuned
from a normal mode resonance, Γ =??, fd =??. (b) Tuning to
the resonance excites the motion of the tips of the peaks. Γ =??,
fd =??, layer depth 15. . . . . . . . . . . . . . . . . . . . . . . 142

5.17 Top panel: Stripe patterns taken two plate oscillations apart.
Bottom panel: A time sequence of stripe patterns in 25 layers,
Γ = 3.65, fd=27 Hz. The entire length of the stripes vibrates
in an optical mode. The space-time diagram is calculated by
plotting a row of pixels (in the middle of the box, perpendicular
to the roll) as a function of time and shows the fd/4 optical
mode oscillation. The time series was taken at fd/2. . . . . . . 143

5.18 Top panel: Same as the previous Figure, but Γ is slightly higher.
The amplitude of oscillation is larger and the mode develops a
transverse structure: Different points on the roll expand and
contract out of phase and this repeats every four oscillation
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perpendicular to the roll . . . . . . . . . . . . . . . . . . . . . 144

5.19 Images of capillary wave patterns in n-butyl alcohol for four
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cm2. From [178]. . . . . . . . . . . . . . . . . . . . . . . . . . 146
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5.20 Array of liquid columns observed below a horizontal cylinder
along which a liquid is flowing from top to bottom at a constant
rate. Inset: space-time diagram of the array of liquid columns
for fixed boundary conditions (optical mode). From [66]. . . . 148
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ers, fd = 49 Hz, Γ = 2.2 → Γ = 3.0, q0 increases with time.
The dashed vertical lines are to guide the eye and represent the
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6.2 The time evolution of q0 after a rapid jump from initial Γ = 2.2
to final Γ for constant fd. In each panel the fd, N , and ini-
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6.8 Time sequences of the perturbation signal. Top panels: Space-
time diagram for 30 oscillations after the change in Γ. The
amplitude of the acceleration is represented by the grayscale,
black to white. Bottom panels: Time traces of the first 15
oscillations after the jump. The parameters of the jumps are
the same as those in Figure 6.6. . . . . . . . . . . . . . . . . . 162
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ṽ = 3.5, ◦, and to ṽ = 2.4 •. The parameters of the jumps are
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6.11 A schematic of the process of a jump with ṽ > 3, showing how
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Chapter 1

Introduction

1.1 Motivation and problems to be studied

Granular materials are typically defined as a collection of macroscopic

particles which interact dissipatively upon collision and for which the thermal

energy kBT is small compared to any energy scale in the problem. Concealed in

this rather mundane description are systems that mimic the behavior of matter

in many different regimes, see Figure 1.1. These regimes can be high Knudsen

number collisionless flow, shock waves propagating with Mach number much

greater than one, or solids which can support a yield stress. Importantly,

all regimes can be seen and studied in detail in a single-person laboratory

experiment.

As an example, imagine pouring sand, a common granular material, out

of a jar over a pencil and onto the ground. As the grains leave the jar, their

flow resembles a fluid. In fact, due to the large mean-flow velocity relative to

the fluctuating component of flow velocity (a factor of 10), the grains strike the

pencil at high Mach number. Consequently, an oblique shock forms. When the

flow hits the ground it solidifies due to dissipative collisions, coming to rest in

the form of a pile. Unlike the fluid-like flow above it, the pile can support stress.
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Thus, this simple experiment exhibits physical phenomena and properties of

matter that are typically studied only at great cost and almost never in the

same experiment. In this spirit, we explore the behavior of granular materials

in different regimes in this dissertation.

The problems that will be described cover a fairly wide range of behav-

ior of a collection of grains. In a single thesis I am able to describe systems

which display peculiar clustering effects in gas-like behavior, time dependence

of wave patterns which form in a granular fluid, the effects of fluctuations in

the granular temperature on this fluid, fluid-like behavior in a collection of

grains forced by water, and solid, glassy behavior of a packed set of grains

where inter-particle forces and stress chains dominate the behavior

1.1.1 Overview of the Dissertation

The work in this dissertation deals with transitions between different

regimes of granular behavior as control parameters are changed. Two main

systems will be studied, and both are effectively designed to maintain a set of

grains out of the motionless equilibrium state. Wave phenomena in thin vi-

brated layers will be discussed in Chapters 4-6. Chapter 7 discusses a problem

in granular gases called inelastic collapse. Chapters 8-9 will deal with fluidiza-

tion phenomena in a water fluidized bed, including behavior of grains at onset

of fluidization and analogies to glasses. Chapter 2 will review the behavior of

granular materials in regimes which are relevant to the problems discussed in

the dissertation, and Chapter 10 will conclude.
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Figure 1.1: Different behavior displayed by granular materials, left to right and
down the page: surface waves in a vibrated layer, Cerenkov wave radiation of a
rod moving in a thin layer, localized structures (oscillons) in a vibrated layer,
sand piles on the Petrie Islands, Ottawa (from website of The Friends of Petrie
Island), stress chain backbone in a solid granular pile of disks (from website
of B. Behringer), the wake of a 1 mm sphere falling in water (from E. Ramos)
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The remainder of Chapter 1 introduces the two main systems that will

be studied.

1.1.2 Wave patterns in vibrated layers

We study a system in which thin granular layers (up to about 15 particle

diameters deep) are vibrated vertically sinusoidally such that the position of

the plate obeys,

y = A sin(2πfdt) (1.1)

where fd is the drive frequency of the plate, typically between 10 −

200 Hz, and A is the amplitude of the plate. The state of the system is char-

acterized by the peak plate acceleration relative to gravity, Γ = A(2πfd)
2/g.

Since chapters 4-6 review the literature of vibrated granular layers relevant

to the specific problems studied, in this section we will only briefly intro-

duce the basic features of the system which have already been well described

in [129, 179, 180, 182].

Behavior of the layer for increasing Γ

As an example of the basic phenomena encountered in vibrated granular

layers, we summarize transitions displayed in a thin layer of 100 µm bronze, 15

particle diameters deep [137]. For Γ < 1.0, the plate never accelerates greater

than −g and the layer rests on the plate as a solid clump. For 1.0 < Γ <≈ 2.0,

the layer leaves and strikes the plate every oscillation but the energy input by
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the shaking plate is completely dissipated and the grains remain in a compact

solid state. The regime from 2.0 < Γ < 2.5 has been studied in depth in [137].

In this regime for fd smaller than fd ≈ 70 Hz, the layer is in a dilated state

during some fraction of the cycle and this dilation is large enough for grains

to slip past each other–the layer becomes fluidized. For fd > 70, the layer

is dilated but there is not enough room for grains to move past each other;

however the top of the layer remains fluidized. For fd > 200, the dilation

becomes so small that the layer remains in a compact solid state.

Time
t = 0

T/2

T

3T/2

2T

Figure 1.2: Patterns that form in a vibrated granular layer oscillate subhar-
monically to the plate oscillation. Under low angle illumination, peaks are
visible and valleys are in shadow.

Above Γ = 2.5 for fd < 200 hydrodynamic wave patterns oscillating at

fd/2 form (see Figure 1.2), and a phase diagram of the types of patterns is

shown in Figure 1.3. Here fd is normalized f ∗
d = fd/

√

(g/H), where H is the

5



layer depth. In the presentation of experimental results, we give layer depth in

dimensionless form, N = H/d, where d is the particle diameter. The system

forms stripes for high frequency (f ∗
d > 0.33) [180] and squares for f ∗

d < 0.33.

Hexagon patterns oscillating at fd/2 form above Γ ≈ 4.0 due to a temporal

symmetry breaking in the collision with the plate.

The patterns that oscillate at fd/2 exist for Γ < 4.5. Above 4.5, the flat

state returns and now strikes the plate every other plate oscillation, allowing

phase discontinuities in the layer to form (for discussion, see Chapter 6). Above

Γ ≈ 5, the flat state bifurcates into patterns that oscillate at fd/4 again forming

squares and stripes and hexagons. Above Γ > 7.5, a qualitative change in the

layer dynamics occurs; a spatiotemporally chaotic state called a phase bubble

state forms and prevents the fd/6 patterns which would be in the series of

bifurcations fd/2 → fd/4 → fd/6 from forming. Details are discussed in

Chapter 6.

In this dissertation, we will explore the behavior of the vibrated layers

in different regions of the Γ − fd parameter space. In Chapter 4 we study the

time evolution of order in square patterns following a rapid change in Γ from a

flat featureless state. We find that the patterns form in two distinct stages: in

the first stage, which lasts on the order of 10 plate oscillations, the amplitude

of the pattern rapidly grows and the pattern displays ordering dynamics that

are universal. In the second stage, which can last 104 plate oscillations, the

pattern evolves through growth of large domains which eventually coarsen to a

perfectly ordered square pattern; the ordering dynamics in this stage are not-
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Figure 1.3: Phase diagram for a layer 11 particle diameters deep. Samples of
the patterns seen in the phase diagram are shown for points a-d. f ∗

d is the
normalized drive frequency, with f ∗

d = fd/
√

(g/H) where H is the layer depth
and g is the gravitational acceleration.

universal. In chapter 5, we study the dynamics of the square patterns and find

that the elements of the patterns act as if they are coupled by Hookian springs.

The dynamics of the square patterns thus resemble a two-dimensional crystal
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lattice and we find that the normal modes of this crystal can be resonantly

excited. The amplitude of excitation can be made large enough to melt the

lattice, and the melting transition is in agreement with a criterion used to

predict melting in real crystals. Thus, we have developed a new description of

nonequilibrium patterns.

In Chapter 6, we discuss further the dynamics of patterns following a

change in Γ. We study the evolution of the average wavelength of the pattern

and find that the evolution of the pattern wavelength is related to a fluidization

transition in the layer. We also study the properties of the vibrating layer

below the onset of patterns and find that there is a characteristic length scale in

the seemingly randomly excited “flat” state. Finally, we examine the dynamics

of phase discontinuities called kinks and phase bubbles. We find that these

discontinuities mask patterns which are predicted to oscillate at fd/6 and we

have observed transient fd/6 patterns. In addition, we present results in which

convection roll structures associated with the kinks are able to transport and

segregate grains of different size added to the vibrating layer.
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1.1.3 Dynamics of grains at the onset of fluidization

We study a water fluidized bed near the onset of fluidization. In a

fluidized bed, grains are subject to a flow of fluid against the direction of

gravity. At a critical volume flow rate Qf , the grains make a transition from

solid to liquid like behavior. The fluidized bed system differs from the vibrated

layer due the presence of the water. Interaction between the grains is no longer

due solely to inelastic contact collisions; grains now interact by hydrodynamic

effects which can operate at a distance greater than a grain diameter. The

grains that will be used in the experiments in this dissertation are glass spheres

and an image of the side of a fluidized bed is shown in Figure 1.4.

Figure 1.4: 335 µm glass spheres in water

Schematics of the fluidization transition are shown in Figure 1.5 and
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a b c

Q < Qf Q = Qf Q > Qf

Q 

Figure 1.5: A schematic illustrating the behavior of grains at three points a-c
as the volume flow rate, Q is increased through fluidization.

Figure 1.6. We now describe the basic process of fluidization. Fluid is forced

through a collection of grains occupying a solid volume fraction Φ at a con-

stant volume flow rate Q. In fluidized bed research it is customary to instead

use 1−Φ, the voidage of the bed1. At low flow rates (small Reynolds number

for the pore), flow through porous media of voidage 1−Φ follows an empirical

relation called Darcy’s law; for higher flow rates Darcy’s law must be corrected

and these corrections are called Ergun’s relation [160]. Darcy’s law says that

the pressure drop developed by the fluid, ∆P is proportional to Q and in-

1Note that for identical spheres, the voidage cannot be smaller than the value for FCC
crystal packing, 1 − Φ ≥ 1 − π/(3

√
2) ≈ 0.26. This was conjectured by Kepler in 1609 and

proved by Hales in 1998 [84]. However, practically, the voidage never reaches a value lower
than Random Close Packed (RCP), 1 − Φ ≈ 0.37. The maximum possible voidage occurs
when the solid volume fraction goes to zero, or 1 − Φ = 1.
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∆P

1-Φ

Q

1 b

a

c

Qf

0

0.26

1

0.4

Figure 1.6: Schematic plots of the basic measurements and phenomena in
fluidization for slow increases of Q. Top panel: ∆P , the pressure drop of fluid
through the grains normalized by the buoyant weight of the grains. Bottom
panel: the average void fraction (voidage) of the particles, 1−Φ. Voidages at
fluidization are typically between 0.37 < 1 − Φ < 0.45. Points a-c refer to the
diagrams in Figure 1.5.

versely proportional to a monotonically increasing function of 1−Φ called the
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permeability2. To make an analogy to electrical current flow, the permeability

can be thought of as the inverse of the resistivity of the medium. Thus, for

fixed 1 − Φ, ∆P increases with increasing Q. When Q is increased so that

that ∆P equals the buoyant weight of the bed normalized by cross sectional

container area A, a force balance occurs. The system can respond by allowing

all grains to be translated up the container at once. However, the fluidization

velocity, Q/A, is roughly a factor of 50-100 times smaller than the sedimenta-

tion velocity of a single particle (see below). Thus when the bottom becomes

exposed, particles fall, filling in the space that was free of particles. This has

the effect of increasing the voidage of the sample as illustrated in Figure 1.5.

By Darcy’s law, this restores the force balance. Thus the net effect is that the

system responds to fluidization by increasing its voidage, and this is plotted

in Figure 1.6.

Above fluidization, the relationship between the voidage of the bed and

the flow velocity of fluid vf = Q/A has been extensively studied, and different

empirical rules have been proposed [32, 109]. The formula of Richardson and

Zaki [152] is perhaps the best known of these fits, and proposes a power law

scaling,

vf

vs

= (1 − Φ)n (1.2)

where vs is the terminal sedimentation velocity of a single sphere falling in

2In the Kozeny theory of porous media, the permeability is proportional to (1−Φ)3 [160]
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the tube of diameter D =
√

A. This rule applies to non-bubbling fluidized

particles of diameter d with 0.1 < d < 6 mm and particle density ρp between

approximately 1 < ρp < 11 g/cm3 for fluids with densities between approxi-

mately 0.8 < ρf < 3 g/cm3. The Richardson-Zaki power law is actually quite

complicated: the exponent n depends on D, the particle diameter d, and the

Reynolds number at the terminal velocity of the sedimenting sphere in an

infinite fluid, Ret = dvtρf/µ, where ρf is the fluid density and µ the fluid

viscosity. Due to wall effects, vs is slightly smaller than vt and is related to vt

as log vs = log vt − d/D. The expression given for n is shown in the table,

Exponent Range

n = 4.65 + 20 d
D

Ret < 0.2

n =
(

4.4 + 18 d
D

)

Re−0.03
t 0.2 < Ret < 1

n =
(

4.4 + 18 d
D

)

Re−0.01
t 1 < Ret < 200

n = 4.4Re−0.1
t 200 < Ret < 500

n = 2.4 Ret > 500

Table 1.1: The expression for n in Equation 1.2 for different parameters

For particles used in the experiments that will be described in Chapter

9, typical Ret ≈ 10 giving a value of n ≈ 4.5. We find good agreement with

Equation 1.2 below the onset of bubbling. Thus, for our experiments near
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onset at 1−Φ ≈ 0.42, fluidization velocities are typically a factor of 50 smaller

than single particle sedimentation velocities.

Despite the complicated dependence of n, Equation 1.2 is a useful pre-

dictor of bed height as a function of flow rate for non-bubbling beds (See

Figure 8.28 in Chapter 8). However, there is no theoretical derivation of this

power law behavior.

Figure 1.7: The Geldart classification scheme for air fluidized particle.

Fluidized bed dynamics at onset

While the bulk behavior of fluidized beds is well characterized, the

dynamical behavior at the onset of fluidization is not as well understood. The

first systematic study of gas fluidized bed behavior was due to Geldart [63].
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Existing data were used to create a classification scheme of four types of onset

behavior. This scheme relates onset behavior to particle diameter and particle-

fluid density difference. The so-called Geldart diagram is shown in Figure 1.7.

We note that there is no similar diagram for water fluidized beds.

There are four regions of behavior on the diagram, A-D. Behavior of

Geldart A “aeratable” particles is defined by a smooth expansion of the bed

at the onset of fluidization. Geldart A particles are typically small in size and

have densities less than roughly 1.4 g/cm3. The smooth expansion of the bed

exists for a range in flow rate, above which the system becomes unstable to

traveling structures of low particle density [156]. This is called bubbling and is

ubiquitous in gas fluidized beds. Examples of bubbles are shown in Figure 1.8.

Geldart B particles differ from those in A, in that bubbling begins immediately

at the onset of fluidization.

We note that in liquid fluidized beds, the bubbling takes the form of

regular traveling waves of low particle density which span the entire cross

sectional area, Figure 1.9. This is one of the main differences between the

behaviors of gas and liquid fluidized beds. Many studies of bubbling and

stability of the fluidized state to density waves have been made [57, 97]. Much

work has gone into stability analysis of the two-fluid models with some success

in the prediction of onset [4, 93] of bubbling. Two-fluid models predict that

the bubble is a secondary instability on the wave structure, but experimental

studies are lacking.

Very small particles for which interparticle interaction is important are
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a b

Figure 1.8: (a) A streak photograph showing a side view of a bubble in a
two dimensional gas fluidized bed, from [97] (b) A top view of a bubbling gas
fluidized bed. The surface of the bed resembles a boiling liquid, from [41].

grouped in Geldart C. These beds display cohesive behavior at onset without

a transition to a uniformly fluidized state. D refers to spouting beds and will

not be discussed here.

As noted, the Geldart diagram was compiled for gas fluidization and no

similar classification has been made for water fluidized beds. However, water

fluidized beds are a convenient experimental tool; unlike in gas fluidization,

it is straightforward to vary working fluid parameters like fluid density and

viscosity. With that in mind, in Chapter 8, we study a water fluidized bed

in what we might think to be the simplest situation, water fluidized glass
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Figure 1.9: Liquid fluidized beds are unstable to low density waves of frequency
roughly 1 Hz. Shown are upward traveling waves in 2 mm glass beads in a
tube 3 cm in diameter. From [97].

spheres which display uniform fluidization at onset. Our results demonstrate

that the dynamics of grains between 0.1 and 1 mm at the onset of fluidization

are strongly dominated by friction contact forces. We will describe the motion

of the grains at onset using a variety of techniques that will be described in

Chapter 3. We will also compare our results to previous onset studies of gas

fluidization of Geldart A particles.
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Chapter 2

Review of phenomena in granular materials

The problems that will be discussed in Chapters 4-9 deal with granu-

lar materials in the fluid and solid regimes. We will study such phenomena

as collisional dynamics of a dense inelastic gas, waves in a granular liquid,

fluidization transitions from solid to liquid behavior in a vibrating layer, and

sub-micron motions of a granular solid forced by water. Therefore, in this

chapter I give a review of basic phenomena in granular materials, dry and wet.

I save more specific introductions to different experiments for their respective

chapters. I begin with the gas and fluid-like aspects of strongly forced grains,

often called rapid granular flow.

2.1 Rapid granular flow–granular gases and liquids

A collection of grains must be continuously forced to be maintained

away from the equilibrium pile on the table. This is due to the dissipative

nature of the collisions. This inelasticity is typically included in the descrip-

tion of granular materials by a coefficient of restitution, r, which models the

dissipation of energy at each collision, such that,

18



Figure 2.1: The coefficient of restitution for normal impact between two
spheres as a function of velocity for different materials. Plot taken from com-
piled data in [75].

∆v
′

n = −r∆vn (2.1)

where ∆v
′

n and and ∆vn denote the relative collision velocities of the spheres

before and after the collision. The value of r is usually taken to be a constant.

However, event-driven molecular dynamics simulations of granular materials

which use a constant r suffer from a severe problem. For sufficiently high

particle densities and low enough r, the gas can suffer inelastic collapse: certain

particles experience an infinite number of collisions in a finite time and this

overwhelms any computation as all of the time is spent computing trajectories
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in these highly clustered regions. The collapse phenomenon was thought to

provide a mechanism for the formation of clusters of high density regions in

a freely cooling granular gas. However, we have shown (see Chapter 7) that

inelastic collapse is an artifact of the constant r model. In reality, r is velocity

dependent, as seen in Figure 2.1. When a velocity dependent r is used, this

collapse phenomenon disappears. Thus inelastic collapse creates a pathological

form of clustering. However, the absence of inelastic collapse does not imply

the absence of clustering. Using a collision model in which r was held constant

but collapse was prevented by a cutoff in collision time, Luding and Hermann

found that a freely cooling granular still demonstrated clustering, forming a

growing set of filamentous structures, see Figure 2.2 [122]. Although it has

been shown that a velocity dependent r modifies the cooling rate [162] of the

gas, to date, no studies have been done to carefully examine clustering with a

physical form of r.

The idea of rapid granular flow says that a collection of grains that is

forced away from its equilibrium state by suitable agitation can be thought

of as a fluid and described by hydrodynamic equations. The equations which

govern this fluid-like behavior can be derived from a kinetic theory of hard-

sphere inelastic gases [51]. This theory starts from the Boltzmann-Enskog

equation whose collision operator is modified to include inelastic collisions.

A snapshot of a granular gas is shown in Figure 2.3. When the collection

of grains is continuously agitated so that the cooling state is not reached [15,

133], the system reaches a steady state. Using the kinetic theory, distribution
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Figure 2.2: The clustering seen in a three dimensional molecular dynamics
simulation of a freely cooling granular gas with a constant r model modified
to prevent inelastic collapse. As time increases the clusters grow in size and the
average number of collisions per particle C/N increases. Figure reproduced
from [122]

functions for particle velocities at small inelasticity have been calculated for

these steady states. Due to inelasticity, these deviate from Maxwellian and

compare well with molecular dynamics simulations [133, 187]. In addition to
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Figure 2.3: A collection of vibrated 1.65 mm steel spheres is an inelastic gas.
The spheres are confined between two plates and the container is subject to
vertical vibration. Courtesy D. Miracle

changing the local velocity distribution function by over-populating the tails,

the inelasticity of the grains produces non-trivial effects such as long range

correlations in particle velocities. In the uniformly heated case, these corre-

lations are not so severe as to produce the strong clustering as in the freely

cooling case but instead produce system wide circulation [15].

2.1.1 Hydrodynamics and continuum equations

For small inelasticity and density, the velocity particle distribution func-

tion given by the Enskog-Boltzmann single particle distribution function is

nearly Maxwellian. Expansion of the equation around this solution yields

a set of Navier-Stokes like equations, the Jenkins-Richman equations. For
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completeness, these are given in Appendix B. These equations and the ex-

pressions for the transport coefficients are computed from the kinetic theory

of inelastic hard spheres and they differ from a ideal compressible gas only

by the addition of an energy loss term due to the inelasticity of the colli-

sions. The Jenkins-Richman equations compare well to hard sphere molecular

dynamics simulations [150], and also have produced wave patterns such as

those that will be discussed in the next section. In fact, while there has been

much debate on the ability of hydrodynamic-like equations to describe granu-

lar flows [49, 51, 69, 100, 165, 175], it now seems clear that the Jenkins-Richman

equations can capture much of the behavior of simple vibrating flows and the

behavior of rapid granular flows [19, 150]1.

It should be noted that typical granular flows are supersonic as the

speed of the flow is usually much greater than the speed of the fluctuations

around that flow. This causes shocks to form when a flow impinges on an

object. The hydrodynamic equations agree well with molecular dynamics sim-

ulations in this regime [19, 150]. However, there can be other effects such as

size segregation and heaping which would seem to defy hydrodynamic descrip-

tion. I will not in this thesis comment on the applicability of hydrodynamics

to granular flows.

Fluid-like phenomena in granular materials occur when the collision

1The wave phenomena I will describe have not been quantitatively compared to the
Jenkins-Richman equations, although there is evidence that the equations can reproduce
fd/2 patterns. Private communication from J. Bougie.
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frequency is much larger than any frequency in the problem and the time of

contact of the grains is very small. In this thesis, we will also explore problems

in the opposite regime, when the time of contact is very large and collision

rates are low. This is a situation when the static aspects of granular materials

come into play and will now be discussed.

2.2 Solid-like behavior

When the density of a granular material becomes so large that the

grains do not have enough room to slip past each other and the input energy

becomes small enough so that they don’t have enough energy to create the

space to slip by each other, the granular material displays the characteristics of

a solid. In this regime, contact forces between the grains dominate the behav-

ior and collisional momentum transfer is unimportant. Under shear, a dense

packing will develop a yield stress and only flow by plastic deformation—local

grain rearrangement. This plastic behavior depends on the volume fraction of

the grains, applied shear and normal stresses and the shear stress rate. This

behavior has direct relevance to our studies of fluidized beds in the tightly

packed states near onset where the grains are in contact and slowly sheared.

Different theories have been developed to account for the behavior of

these solids under shear. A theory of solid-fluid transitions in granular materi-

als called dilatancy was proposed by Reynolds in 1885 [151]. Reynolds argued

that for a shear stress to induce flow, a collection of grains must dilate suffi-

ciently to allow grains to slip by each other. If the grains are confined, this
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creates stresses at the boundaries and thus the material will develop a yield

stress.

Since Reynolds, much work has been done in the field of soil mechanics

with the goal to find constitutive relations between stresses and strains on a

granular sample [97]. We will give a qualitative picture of the surprisingly

complicated behavior of different grain packings under shear. Such a picture

will be useful in interpreting results in Chapters 8 and 9

2.2.1 Shear and stress-strain relations for granular packings

T
N

T
N

s

Figure 2.4: A schematic of an experiment to shear a quasi-infinite packed
collection of grains. The plates are free to move in all dimensions.

The basic processes for very slowly deforming granular piles is shown in

Figure 2.4 and the description we give here has been adapted from Jackson [97].

A collection of grains packed with solid volume fraction Φ0 is enclosed by two
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infinite plates that are free to move in the plane of shear and also normal to

this (an idealized Couette shear apparatus). A shear stress T is slowly applied

tangential to the upper plate and at the same time a normal stress N is applied

normal to this plate. Upon shear the plates displace an amount s, and the

relationship between T and s is shown in Figure 2.5 for two cases, a loose

packing with a large normal force (small Φ0, large N) and a tight packing

with a small normal force (large Φ0, small N)

Tc(ρ0,N)

TF(ρ0,N) T   (N)T   (N)

Under shear:

ss

T T

Failure Consolidation

Loosely PackedTightly Packed

T   (N)    N 

Material strengthensMaterial weakens

Figure 2.5: The stress-strain relations for shear of two different packings.

For both cases, for small enough displacements, the stress is propor-

tional to the strain and the system can be reversibly deformed–this is due to

the elastic behavior of the grains. However, there exists a yield stress above

which the material no longer behaves elastically and plastic deformation oc-
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curs. The qualitative behavior of the grains depends on Φ0 and N and we

discuss what happens when the shear stress goes beyond the yield stress in

both cases.

For the tightly packed state under a small normal force, the yield stress

is denoted by TF (Φ0, N), and is called the failure stress–the behavior of the

material when it reaches this value is called failure. This is apparent from

Figure 2.5. When the stress reaches TF , it suddenly decreases and the stress

needed to increase s continues to decrease as s increases reaching an asymptotic

value Tinf(N) for large displacement. The material has failed and has become

weaker.

Contrast this to the loosely packed case with a large normal force,

whose stress-strain relationship shown in Figure 2.5 right panel. Here, the yield

stress is denoted TC(Φ0, N) and the behavior of the material when it reaches

this stress is called consolidation. Beyond TC , the stress needed to maintain

a separation s increases with increasing s and reaches the same asymptotic

value Tinf(N) for large displacement. The material has become stronger under

shear.

Dilation and consolidation (compaction)

The consequences of shear on the volume fraction of the grains are

shown in Figure 2.6. As argued, in the tightly packed case the material weakens

at failure. Suppose it weakens locally in a thin layer. This thin layer is now

weaker than the rest of the material, so any further shearing will occur there.
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Compaction accompanies 
shear

Dilation accompanies 
shear

ss

Shear spreads throughoutShear confined to thin region

Tightly Packed Loosely Packed

Figure 2.6: The relative change in volume fraction for granular packings un-
der shear. Tightly packed grains dilate while loosely packed grains undergo
compaction

Thus the shear layer remains localized. As the material has weakened, in the

shear layer the density is lower and the grains are further apart. Thus the

material has expanded and the plate separation has increased in the direction

parallel to N . This is the phenomenon of dilation discussed by Reynolds.

As the name implies, the opposite occurs for the loosely packed case.

Here when the yield stress is reached, the material begins to strengthen. In this

case, yield will occur throughout the material. We can see this with the fol-

lowing argument: suppose the material strengthens in a thin local layer. This

material in this layer is now stronger, so any continued strain will now deform

the rest of the material which is weaker. Thus, the material will continue

to deform outside the layer until the strength catches up to the strength of
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the initially deformed layer. In this way the entire material deforms in unison.

The source of the increased strength of the material is due to its consolidation:

the density is now higher and thus the plates are closer together2.

Yield stress as a function of Φ0 and N

TF Tc

N N

a

b

c



Φa > Φb > Φc Φa > Φb > Φc

a

b

c

Normal stress 
capable of 
inducing 
consolidation 
w/o shear stress

Nothing to 
oppose dilation

Tightly Packed Loosely Packed

Figure 2.7: Yield stress in a granular packing as a function of normal stress.
The curves in the tightly packed case are called yield loci, while those in the
loosely packed state are called consolidation loci.

The values of the yield stresses are functions of Φ0 and N , and these

are plotted in Figure 2.7. They are called the failure and consolidation loci,

and the goal of any theory of soil mechanics is to predict these curves for a

given packing and set of stresses [97]. In the tightly packed case, for a fixed

Φ, the yield stress, TF increases as N increases. This is reasonable, as the

material must be dilated in order to fail and any normal force will resist this

dilation. For a given N , TF increases as Φ increases: the system must dilate

2Under gravity, piles of grains naturally consolidate, and the process of consolidation is
difficult to observe [97]. However, poor flow distribution in our fluidized bed experiments
(see Chapter 8) produces local stresses that lead to (often unwanted) consolidation effects.
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a sufficient amount to move past the elastic limit and this requires more force

to move the grains for a tighter packing (larger Φ, stronger material).

Again, we contrast this with the loosely packed case. The values of

yield stress display a different behavior. For fixed Φ, the value of the yield

stress is 0 for finite N . This is reasonable, as at TC , the material will compact,

and the normal stress is already supplying a force which would seek to increase

Φ. The value of N needed to begin consolidation in the absence of shearing

force decreases as Φ decreases because the looser packing is weaker and needs

less force to begin the consolidation. For a given Φ, as N decreases, it takes

a corresponding a greater amount of shear force to begin the consolidation.

This is also reasonable, as the normal force seeking to consolidate is less and

therefore must now be supplemented with another shear force.

Discussion

As mentioned, theories in soil mechanics are developed to calculate the

yield and consolidation loci, seeking to find constitutive relations for the stress

tensor [68]. The theories are based on theories of plasticity of materials. A

discussion of these theories is well beyond the scope of this dissertation. It is

unclear whether hydrodynamic theories like those of Jenkins and Richman can

be applied to slowly deforming solid-like granular piles. Much of the behavior

of granular materials in this regime is dominated by interparticle contact forces

and will play a significant role in the behavior of the grains in the fluidized

bed. However, there have been efforts to describe [89] the slowly shearing
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solid state with hydrodynamic equations with suitably modified constitutive

relations [16, 89, 117, 118]

We also point out that no values of Φ have been mentioned in this sec-

tion. What defines a tightly packed versus a loosely packed state? One answer

to this question, using the concept of the “dilatancy onset”, was provided in

a study by Onoda and Liniger [139]. They showed that the dilatancy onset,

the packing density at which a shear does not promote dilation, occurred at

a state called random loose packing (RLP), Φ ≈ 0.55. RLP is loosely defined

as the lowest Φ that can support an external load. Thus, a “tight” packing

with Φ > 0.55 will dilate and weaken in response to a shear, whereas a “loose”

packing with Φ < 0.55 will consolidate and strengthen. We will return to this

important concept in Chapter 8, when we examine the fluidization behavior

of different packings.

The theory described in the previous sections is a continuum theory.

However, careful examination of static and slowly deforming piles of grains

reveals that stress is distributed inhomogeneously throughout the material

along preferred network of chains (see the image in Figure 1.1) and these have

been shown to play a role in the stress-strain relations. Thus, the discrete

nature of the grains becomes important and we now discuss some of these

results.
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2.2.2 Force chains and contact forces

Careful examination of the stress-strain of a granular layer in a Couette

shear apparatus shows that there are large fluctuations in the stress as strain

is increased [132]. These fluctuations have been shown to be associated with

the stress chains [95], see Figure 2.8. The stress chains were directly observed

in two dimensions by measuring the change in polarization of photoelastic

disks placed between cross-polarizers. This technique reveals that the stress is

concentrated along a network of paths. Below a critical value of the packing,

the stress fluctuations are small and above this critical value they can become

very large. Thus the system organizes the stress into a backbone of chains

which have a strong influence on the dynamics.

This backbone can be amazingly dynamic and experiments have been

done to probe its properties in response to small perturbations. As the stress

is distributed inhomogeneously, a large response in the material properties can

occur for a local perturbation. Inserting a sound transmitter and detector in a

granular pile of 5 mm glass grains and locally heating a grain so that it changed

linear dimension by 300 nm resulted in a drop in sound received by 20%, see

Figure 2.9 [113, 115, 116]. At other positions, the heat pulse did not produce

any effect. The interpretation is that the heat pulse deforms the grains and

if the deformed grains are members of a chain, significant re-organization can

occur. Since sound is traveling on stress paths, this re-organization can have a

huge effect. Such effects have also been seen in thermally heated beads using

conductivity measurements and the fluctuation properties of the medium were
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Figure 2.8: Upper panel: A sheared collection of photoelastic disks between
cross polarizers reveals the existence of stress chains. Under shear, the stress
on the disks, G2 displays large fluctuations for tight packings (upper curve)
and small fluctuations for loosely packed state (lower curve). From [95]

characterized in response to perturbation [18]. We will see a similar effect in

Chapter 8 and characterize the response of the material using a less invasive

light scattering techniques.

The presence of a stress chain backbone has a strong influence on the
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Figure 2.9: The response of a small detector (D) to sound emitted from a
speaker (S) after heat pulses are locally applied to grains in the box. Two
successive pulses from a heater (H) are applied at t = 0 and t = 88 sec.
Each creates a thermal expansion ∆l ∼ 300 which dramatically changes the
amplitude of the detected sound. From [113]

static properties of granular packings. For example, unlike a true liquid, the

pressure in a column of grains is independent of depth below a certain depth.

This is due to the stress chains which support the weight of the column. [188].

One way to approach the influence of chains is to study the the distri-

bution of force at contact between grains, P (F ). The presence of particles that

are more significantly stressed than others should play a role in this distribu-

tion. Groups have [114, 136] measured the force distribution between grains

in a packed container and found it decayed exponentially for forces above the

mean force and was almost constant for forces below the mean–a small plateau
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Figure 2.10: The appearance of a plateau in the grain contact force distri-
bution has been observed in glass simulations and may occur in a jamming
system or in a system undergoing a glass transition. The ◦ points are from an
experiment on granular materials [136], while the other curves are for molecu-
lar dynamics simulations of particles interacting with Lennard-Jones potential.
Taken from [138]

appears at low forces, see Figure 2.10. The plateau is thought to be a con-

sequence of the inhomogeneous distribution of stress due to the force chains.

In fact, it was proposed that the plateau indicates a more general jamming

transition, when a system develops a yield stress as a parameter is changed.

We now discuss the basic principles of jammed systems.
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2.2.3 Jamming and Fragile Matter

A unifying picture has been proposed for systems that display a dra-

matic change in material properties as a parameter is varied. It is called the

jamming picture and notes that very different systems often display similar

behavior upon change of parameters. For example, colloids and foams change

viscosity by many orders of magnitude upon a small increase in volume frac-

tion or applied shear. Systems like supercooled liquids display similar slow-

down behavior upon decrease of system temperature to become a glass. It

has been proposed that these common behaviors can be unified in a jamming

diagram [112], see Figure 2.11.

Different definitions of jamming have been proposed, for example “A

system jams when it develops a yield stress or extremely long stress relax-

ation time in a disordered state” [138]. This is a very broad definition; we

would like to understand the common features that systems which are jam-

ming display. Molecular dynamics studies of glass-forming molecules showed

that the appearance of a plateau in P (F ) coincided with the temperature of

the glass transition in this system [138], see Figure 2.10. In addition, models of

foams known to produce jamming were studied, and also displayed a plateau

at the jamming transition. Thus, it was speculated that the jamming tran-

sition could be a more general form of a glass transition (we will discuss the

glass transition in Chapter 9). Features of a jamming transition would include

the development of a plateau in P (F ) and the development of a yield stress.

It was speculated that the appearance of a plateau in the interparticle force
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Figure 2.11: The proposed jamming diagram. Jammed states can be reached
by cooling, change in volume fraction, or application of a shear. Taken from
[112]

curve could be related to the appearance of the stress chains. In such a pic-

ture, the system jams when the force chain network has enough participants.

Formation of such a state has been called fragile matter, and is schematically

illustrated in Figure 2.12.

Fragile matter is defined as a system that is strong in the direction

of applied shear, but weak when the shear is reversed [27]. Such behavior is
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Figure 2.12: A schematic of a jammed system. The system is strong in the
direction of the applied shear, but will reorganize when the shear is applied in
the opposite direction. Adapted from [27].

thought to be due to the network of force chains that is set up in response to

the applied shear. This is illustrated in Figure 2.12. For applied stresses that

aren’t strong enough to fluidize, the grains may lock into place by development

of a force network. This network now has a yield stress and is jammed. The

system responds elastically to further small stress in this direction without

the need for plastic deformation. However, this jammed state is fragile in the

sense that it is strong only in the direction of the previously applied shear. If

the shear is reversed, given what is called an incompatible load, the network

will break and the system will deform plastically to create a new network,

unlike a regular solid. There are chain particles and spectator particles in this

description and the spectator particles don’t participate in the main jamming
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chains. We will interpret our fluidized bed results in terms of the jamming

picture in Chapter 8.

It has also been proposed that dense packings of granular materials that

can jam share properties in common with glasses below the glass transition

temperature [38, 39, 56]. In Chapter 9 we discuss these results in relation to

the slow dynamics of the fluidized bed.
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2.3 Multiphase flow

Describing the many different behaviors of dry granular materials is

extremely challenging. When fluid is added to the grains the properties of

the system can change radically. The problem are more difficult than in dry

granular materials due to the extended interaction range. Dry grains only

interact at collision but grains in water interact at a distance. Furthermore,

the form of the interaction is governed by the Navier-Stokes equation and

changes for different particle Reynolds numbers, Re = vdρ/µ, where v is a

typical velocity, d is a typical particle size, µ is the viscosity and ρ is the

density of the fluid. The boundary conditions also play a role. As an example,

we present the work of Ramos3 who has shown that even the motion a single

particle in a fluid can be complicated, as shown in Figure 2.13. Here a ball

is dropped at Re ≈ 230 between two plates filled with water and the wake

is visualized by Kaliroscope. For narrow gap, vortices are shed similar to

flow past a infinite cylinder. As the gap size is increased, the wake changes

character, becoming more like the wake behind a moving sphere.

2.3.1 Few particle dynamics

At low Reynolds numbers, where inertial terms are unimportant, parti-

cles interact by Stokes forces [86]. At moderate Reynolds numbers, dynamics

becomes more complicated. The two-body sedimentation problem has been

studied in [60] and displays interesting dynamics, seen in Figure 2.14. If two

3Private communication, unpublished work.
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Figure 2.13: The wake behind a 3 mm acrylic sphere falling in water between
two plates is a function of the ratio of gap thickness to the ball diameter. In
all cases, Re ≈ 230.

particles are dropped near each other, the particle which is behind (the sec-

ond particle) is pulled into the wake of the particle which is ahead (the first

particle). The second particle is then accelerated along the line joining the

centers of the particles. They briefly come into contact and the first particle

is sent tumbling off to the side. This process has been called drafting, kissing

and tumbling [60], and is a mechanism by which vertical particle momentum

is transfered into horizontal momentum. However, most of the studies to date
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have been qualitative and careful experiments should be done to describe the

two-body problem as a function of particle Reynolds number and to also clarify

the roles of the boundaries.

00 00 00 11 11 11

Figure 2.14: Two particles falling in water draft, kiss, and tumble as they fall.
Images courtesy of Eduardo Ramos.

2.3.2 Multi-particle dynamics

While dynamics in systems composed of only a few particle are very

complicated, systems of many particles have received much more attention.

The first treatment of the effects of many particles on the properties of a fluid

was the calculation of the viscosity as a function of particle concentration by

Einstein in 1905. Since then, the most carefully studied and characterized

multi-particle system has been that of sedimentation of spheres with very

small particle Reynolds number (Rep ≈ 10−4 in typical experiments). These
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systems have the advantage that due to the slow sedimentation rate, they can

be observed for long times in a steady state.

Even at these Reynolds number, sedimentation of tiny spheres is still

not understood theoretically: prediction of the sedimentation velocity for a

collection of spheres as a function of particle concentration is still an unsolved

problem [22, 148]. There has been considerable effort to calculate this sedi-

mentation velocity beginning with Smoluchowski in 1912 [168]. Thirty years

ago, Batchelor gave a formula which works well at low particle Reynolds num-

ber [11]. He proposed that the sedimentation velocity, vs for a collection of

spheres with volume fraction Φ should be related to the terminal velocity of a

single sphere slowly falling in an infinite medium, vt by

vs

vt

= 1 − 6.55Φ + O(Φ2) (2.2)

Experiments have confirmed the linear correction to the sedimentation

velocity, but find a prefactor smaller than 6.55 [22]. For larger velocities and

higher volume fractions, the Richardson-Zaki equations (Equation 1.2) give

good predictions for sedimentation rates, but in this regime there is no theo-

retical derivation of the power scaling of vs with Φ.

Recently, experiments have been done to monitor the actual particle

trajectories during sedimentation. The dynamics of the flows even at these

low Reynolds numbers is surprisingly complicated, see Figure 2.15, and in-

cludes fluctuations of correlated regions of motions which resemble turbulence
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even though particle Re is so small [176]. Correlations of the velocity fluctu-

ations have been extensively studied using PIV and light spectroscopy tech-

niques [111, 163, 164] and found to obey scaling laws.
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Figure 2.15: The local velocity field showing fluctuating regions in a sediment-
ing suspension of 50µm particles particle at Re ≈ 10−4, from [164].

At yet larger particle Reynolds number, Re ≈ 1 with bigger particles,

the work is much more sparse although new techniques are being developed to

study these cases [34, 140, 141]. At these larger Reynolds numbers, the sedi-

mentation steady state isn’t reached as in lab size apparatus the sedimentation

only lasts for a short time. Also, with larger particle size, container size be-

comes important. It has been shown that fluidized beds are useful to study

a system with larger Re [34]. The fluidized bed allows the system to reach a

steady state, effectively sedimenting forever4. Fluidized beds also allow con-

4However, there should be differences due to imposed flow profile; the sedimenting sus-
pension is allowed its own “imposed” flow
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trol of the average volume fraction by changes in flow rate. Using a form of

spectroscopy based on the detection of multiply scattering sound, Cowan et

al. studied the correlations present in fluidization of 0.438 mm spheres in a

container 120x200x12 mm3, and found that there were correlations of the type

found in smaller Re [34].

Figure 2.16: (a) A snapshot of particle velocities in a quasi-2D fluidized bed.
(b) Time-traces of the motion of two different particles. The leftmost trace
shows that particles can make rapid vertical excursions. From [155]

Work has been done in quasi-two dimensional fluidized beds at these

Reynolds number [154, 155]. In these experiments, particle tracking was used

to account for all particle positions at all times to study spatial correlations

and obtain the velocity PDFs. A crossover in the shape of PDF was found as

particle concentration was changed. Particles were found to behave superdif-

fusively in the vertical direction but obeyed normal diffusion in the horizontal

direction, indicating that the particles undergo rapid vertical motions within
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the the fluidized state.

Work at higher Re and larger aspect ratio systems (3D beds) has been

studied for over 50 years [43, 83, 93, 97, 109], but without the precision exper-

iments which are currently being applied to sedimenting suspensions. Our

experiments will help to fill that void. We will discuss 3D beds in more detail

in the chapters on fluidized beds, and we postpone further discussion here.

2.3.3 Theories of multiphase flows

At low Reynolds numbers, Re � 1, theories have been developed to

describe the interaction of few and many particles. Details are discussed in [86].

Interpenetrating fluids

There have been different attempts to create a hydrodynamic descrip-

tion of many-particle multiphase flow using interpenetrating fluids [92, 97], but

none are tested with the rigor of continuum theories of dry grains. As none of

the results from two-fluid models will be discussed in this dissertation, we will

not discuss these theories.

Direct Numerical Simulation

Given the complication of the two-fluid models and lack of contact of

with experiments, perhaps the best hope lies in direct numerical simulation.

However, this is an extremely challenging problem due to the need to solve

Navier Stokes with many moving boundaries. Techniques for calculation have

been developed at low Reynolds numbers Stokes flows where computation
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called Stokesian Dynamics and have been shown very useful for simulation of

colloidal particles [20, 61].

Figure 2.17: Direct numerical simulation of water fluidization of 1204 spheres
confined to a narrow gap. Simulation by T.-W. Pan.
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In a more sophisticated approach, a recent Grand Challenge project has

developed techniques to solve Navier-Stokes equations in three dimensions in

the presence of multiple moving boundaries. The goal was to develop general

parallel code called particle movers. Using a numerical scheme called fictitious

domain method [67], Pan et al have shown that a multiparticle-fluid (1000

particles) system at finite Re can be modeled [143] including fluidization and

sedimentation. These results are impressive, see Figure 2.17, although quanti-

tative comparison is in the early stages. Single particle results are promising,

as seen in Figure 2.18, and should improve as computers get faster.

2.3.4 Industrial applications for multiphase flows

Finally, we should mention that fluidized beds have been studied indus-

trially for over 50 years due to their importance in oil refining. For example,

the Chevron refinery in Pascagoula, MS uses a fluidized bed catalytic cracker

to process almost 200, 000 barrels/day. At 14 dollars a barrel, that is almost

109 dollars per year5.

5Source: Chevron web site, http://www.chevron.com/about/pascagoula/

48



DNS Experiment

Figure 2.18: Comparison of experiment and DNS results for the sedimentation
of a single sphere within a fluid filled gap of 1.1 particle diameters. The
agreement is quite good. Courtesy E. Ramos and T.-W. Pan
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Chapter 3

Experimental apparatus and techniques

3.1 Introduction

This section describes the experimental equipment used to study two

different problems in granular flow: the dynamics of wave patterns formed in

a vibrated granular layer and the motion of grains at the onset of fluidization

in a water fluidized bed. The experimental apparatus share little in com-

mon, other than that they are devices which fluidize granular materials in a

controlled way. The bulk of the effort in both experiments has gone into mini-

mizing inhomogeneity in forcing: in the vibrated layer experiment this consists

of creating a system which shakes sinusoidally in only the vertical direction

with minimal vibration in lateral direction while maintaining a controlled vi-

bration acceleration. In the fluidized bed, the effort was put into ensuring

a uniform flow velocity across the diameter of the column which houses the

grains, without local inhomogeneities in the flow.

3.2 Vibrated granular layer experiment

In this section, I describe the system used to vibrate thin layers of

granular material.
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3.2.1 Mechanical details

A schematic of the shaker is shown in Figure 3.1. The system is de-

signed to minimize lateral vibrations while ensuring precisely controlled ver-

tical sinusoidal acceleration. I now describe the different components of the

shaker.

Bronze spheres typically 165 µm are shaken in containers evacuated to

20 mTorr to avoid effects due to hydrodynamic interaction [142]. The vacuum

is produced by a roughing pump and its level is monitored by a Granville-

Phillips 275 Convectron convection gauge. The containers have bases made

from Aluminum plates with Acrylic side-walls. As small grains can be strongly

influenced by static charge effects due to the repeated rubbing against the

side-walls, the walls are coated with an anti-static coating called Mar-Con

developed by SciCron Technologies of Amarillo, TX. This coating consists of

a thin film deposited on the acrylic which contains tiny (< 1 µm) conducting

spheres. For small particles, the application of the conducting film can alter

the value Γ for the onset of waves. In addition, without the coating, a cloud

of fluidized particles, presumably due to extra repulsion due to static effects,

can appear above the surface of the waves.

The heart of the system is a electromagnetic shaker (Vibration Test

System 100) whose armature oscillates in a field produced by two permanent

magnets and is critically damped with beryllium copper flexures: this produces

undistorted sinusoidal vertical acceleration over a wide range of frequencies

and accelerations. However, the small linear bearing in the VTS shaker is not
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20 mTorr 




PCB 
accelerometer

1/4-20 
leveling 
screws

Air table with pneumatic 
supports

100 lbs VTS 
electromagnetic 
shaker

Teflon pads

Granite stone

Dalsa 256x256 at 
227 fps camera

S.S. 
Flexible 
coupler

140 LED ring

air bearing

Figure 3.1: A schematic of the vertically vibrating granular layer apparatus.
The diagram is not to scale. Each component is described in the text.

sufficient to control lateral motions to the degree necessary in the experiment

and thus a more sophisticated stabilization arrangement was developed.

A square-shaft low-friction square shaft air bearing (New Way Air Bear-

ings) increases lateral stability of the shaking cell, see Figure 3.2. The cells are

mounted to the bearing ram, a 10 cm long shaft with square cross section 2.54
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x 2.54 cm. The ram slides in the square-bore shaft created by four precision

aligned porous plates 8 cm in length. The porous plates are connected to a

supply of gas (compressed dry N2) through filters and the gas pressure is regu-

lated to 50 Psi, although the exact pressure is not critical. The gas allows the

ram to move almost frictionlessly without mechanical contact in the vertical

direction while being extremely rigid in the lateral direction (70 N/µm, 0.1 µm

of lateral travel per 1 cm of vertical travel).

square shaft air bearing 
0.25 µm/2.54 cm 
horizontal/vertical travel

2.54 cm

Dry air in

Porous Al 
plate

Figure 3.2: A detailed view of the air bearing assembly.

The stiffness of the shaker (flexures/linear bearing) is much lower (by

a factor of approximately 103) than that of the air bearing. To avoid undue

mechanical stress on the shaker and any lateral support of the air bearing

housing, we use a flexible coupler to couple the ram to the shaker. This consists

of a steel rod, 1 cm in length and 0.16 cm in diameter. The rod has a stiffness
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intermediate between the shaker and the ram and has a resonant frequency

(104 Hz) which is much larger than any shaking frequency. The flexible coupler

is connected from the shaker to the bearing ram and the housing of the air

bearing is mounted to leveling plate which can be leveled by three screws. The

screws are attached to a table which is floated on isolating pneumatic supports

(Newport Corporation) to further reduce lateral coupling between the shaker

and the container.

All of this aids in two problems. Without the square shaft bearing,

due to lateral components of acceleration, the patterns can rotate in solid

body rotation with periods which can be less than a minute. Such rapid

rotation produces boundary forcing on the pattern which can introduce defects.

The addition of the air bearing increases the period of rotation to several

hours, a time scale unimportant in the study of the phenomena described

in Chapters 4- 6. We have also measured the lateral accelerations using a

triaxial accelerometer (PCB 356A08) and the magnitudes are typically at the

resolution of the device, 10 mg.

The second problem caused by lateral vibration is more severe: this is

a resonance effect which causes the grains to heap in one direction toward the

sidewall of the container (effectively changing their level) at higher frequencies.

The current shaker design has reduced the severity of this effective de-levelling:

below approximately 40 Hz, the level doesn’t need to be changed once set.

However above 40 Hz, the level must be adjusted as the frequency is changed.

Since most of the work which will be described is below this frequency, this

54



effect is unimportant. However, for controlled studies of patterns at higher

frequencies, this problem needs to be addressed.

3.2.2 Control Electronics

A Stanford Research SRS 345 function generator drives a Techron

power amplifier bridged to supply 500 Watts of power to the VTS shaker.

The SRS generator generates a voltage from a lookup table and produces

extremely pure sinusoidal functions. However, there can be significant drift

in the output of the power amplifier and to account for this, we implement

Proportional-Integral-Derivative (PID) Control on the acceleration of the con-

tainer. The signal from the PCB accelerometer is input into a Metrabyte

DAS-HRES A/D board digitizing with a resolution of 16 bit at 40 kHz. The

computer computes the correction signal and applies a 0-5 VDC signal to a

modulation input on the SRS of the form required for PID. PID control is a

standard control technique and I will not describe the details of the imple-

mentation [125]. The control scheme maintains a stability of 0.1% in Γ over a

period of hours.

As a side note, we control the modulation input of the SRS instead of

communicating with the SRS through its serial interface. This is because the

SRS uses relays to switch output ranges. When a relay switches, it creates

a momentary 0 VDC. This is undesirable as it creates a short spike in the

control signal. The spike disrupts the pattern and also causes the control to

deviate from the set-point for a short time.
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3.2.3 Frequency Modulation

In Chapter 5 we will describe experiments which study the response of

square pattern to frequency modulation of the container drive frequency, fd.

We modulate the forcing of the shaker using the frequency modulation (FM)

feature of the SRS shaker in which the voltage has a form

y = A sin(2πfdt +
fms

fmr

sin 2πfmrt) (3.1)

which produces a frequency modulation of the drive signal fd with modulation

frequency (rate) fmr and depth of modulation (span) fms.

As the SRS can only generate fms and fmr in steps of 0.1 Hz, to con-

duct modulation sweeps with higher frequency resolution, we use a Intersil

8038 precision wave-generator. We drive the FM input of the 8038 with the

unmodulated output of the SRS (which has resolution to 1 mv) ensuring sta-

ble frequency modulation. We do not perform PID control when the system

operates in this mode, and the 8038 has a large enough thermal drift for this to

be problem. However, since data are typically taken for only several hundred

cycles, the acceleration can be monitored and corrected if necessary. This chip

allowed us to perform high resolution “spectroscopy” of patterns, in steps of

10−3 Hz.
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3.2.4 Illumination and imaging

The lighting in the system is controlled by a phase-locked loop circuit

designed by Paul Umbanhowar, and the details of the circuit are discussed in

his thesis [181]. The circuit produces output pulses of 1/100 duty cycle phase

locked to the signal from the SRS generator. The phase in the oscillation cycle

can be adjusted and the strobing frequency can be a multiple 2n of the drive

frequency, useful for study of patterns which respond at different multiples

of the drive frequency. The phase locked loop drives a power transistor, op-

erational amplifier feedback circuit (see Figure 3.3) which produces constant

current pulses to a circular ring of 120 red LEDs wired in parallel with opening

angle of 45 degrees. This ring is placed so that the grains are illuminated at

low angles and causes high regions to be brightly lit and low regions to be

dark.

+40 VDC

140 LEDS 2 AMP 
@ 1.6 

+
Vin

-

Iout =

Vin

R

Figure 3.3: A constant current LED driver circuit. The feedback loop main-
tains a constant current set by the voltage of the incoming pulse, Vin and the
load resistor, R.
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We image the layer using a DALSA-CAD256 8 bit digital camera,

256x256 pixels at 227 frames/sec with an Imaging Technology frame-grabber.

The camera has no trigger input, so it is synced to the strobe light in software

by acquiring frames when a light threshold is reached in each frame. As the

strobe frequency and camera pixel clock frequency are incommensurate, this

can lead to frames in which there is very little light (frame straddling) and we

must correct for such frames by discarding them in post-processing. All image

processing is done in the Matlab development environment.

3.2.5 Rapid Γ change experiments

In chapters 4- 6, we study pattern formation after a sudden change

in the acceleration of the container. The experiment must jump at precise

and repeatable accelerations during the cycle. Because the inductive shaker

oscillates with a frequency dependent phase lag (LEAD) relative to the drive

signal, we monitor the phase of the acceleration using a Schmidt trigger set

to output a positive-going pulse when the acceleration signal crosses a certain

threshold. These pulses are monitored by an input line on the parallel port

of the PC, allowing for msec resolution of phase detection. The accelerometer

signal is recorded by the A/D board, and written to disk at 40 kHz for the

duration of the experiment.
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3.3 Fluidized bed apparatus

In this section, I describe the experimental details of the fluidized bed

experiment. The experiment requires that a collection of grains, packed into a

tube of square cross section, receive a flow of water that is precisely controlled

in time and spatially homogeneous. As equilibration times in the system can

be long, the experiment must maintain the desired flow characteristics over a

period of days. We have designed a system that satisfies these conditions and

I will describe the system below. A block schematic diagram illustrating all of

the elements of the experiment is shown in Figure 3.4.

PMT Laser


∆P




Water

Reservoir

∆P Flow meter

Bypass

Valve




Correlator

640x480

30 fps

1024x1024	

1 fps


2.54 cm

Pentium 
Computer



Flow Rate:

  10-400 mL/min






Flow distributor

Pump

Figure 3.4: A block diagram of the fluidized bed flow apparatus. The different
elements of the experiment are described in the text.
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3.3.1 Flow distribution

The most important element of a fluidized bed is the flow distribution

element, the distributor. The purpose of the distributor is to create a uniform

flow profile at the entry to the bed. Distributors in laboratory experiments

are often constructed from multiple layers of uniform mesh or single pieces

of porous plate. However, the design of distributors is still more an art than

a science, with different groups using different designs and materials. This

artistry is unsatisfactory, as there is evidence that the distributor design can

strongly influence fluidization phenomena. For example, it has been shown

that bubbling (and the size of bubbles) depends strongly on the distributor

pore size [42]. In the most complete study to date, analysis and preliminary

experiments were conducted to study the stability of fluidization to large scale

circulation as a function of the pressure drop through a distributor [97]. How-

ever, comparison to experiment was hampered by the lack of flow distributors

with sufficiently uniform flow profiles. Furthermore, these studies do not ad-

dress the question of the specific designs; in recent years, very few systematic

studies have been done to test different designs [42, 109]. We hope that the

designs discussed below will be useful contribution. Our experiments are very

sensitive to slight flow inhomogeneity and our distributor design reflects this

constraint. Two designs have been used and tested, and schematics of the dif-

ferent fluidized bed designs are shown in Figure 3.5 and Figure 3.7. The beds

and control apparatus discussed here are designed for fluidization of 0.1−1 mm

glass spheres with density of roughly 2.5 g/cm3.
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S.S. mesh 

20 µm 
weave, 
26% open 
area


Nylon 
mesh 5 µm 
weave, 
0.75% 
open area

O-ring tightens 
mesh

Water retaining 
o-ring

Square bore 
glass tubing

Figure 3.5: The schematic of the fluidized bed which using different meshes as
flow distribution elements.

The design shown in Figure 3.5 uses several layers of precision mesh

screening to achieve uniform flow distribution. A double layer of mesh is
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pulled tight by o-rings across a square opening. The o-rings are pressed on by

a block which holds the square bore glass tube. The bottom mesh is nylon

screen (Nitex precision mesh, Sefar America, Kansas City, MO) with 5 µm

holes and 0.75% open area, (see Figure 3.6) and the top layer is 635 stainless

steel mesh (TWP Inc, Berkeley, CA) with 20 µm holes and 26% open area. The

nylon mesh creates the bulk of the pressure drop (up to 70 kPa) through the

distributor while the stainless steel mesh supplies the rigidity. Both meshes

have excellent uniformity and the only difficulty is creating a reliable joint

between the mesh and the walls. We have found that the flow characteristics

of the device using the mesh technique depends sensitively on the sealing

between the edge of the tube and the mesh. Because of the flexibility of

the mesh, a nonuniform clamping pressure around the perimeter of the tube

produces fast-moving jets of water at fluidization which persist far above onset

creating streaming jets in the fluidized bed.

These jets are undesirable and influence studies of the fluidization of

different packings of grains near the onset of fluidization. For loose pack-

ings, the jets locally fluidized regions and allow the system to re-pack at a

higher volume fraction. This produces a measurable drop in bed height be-

fore fluidization. For tight packings, the jets tend to expand the bed prior to

fluidization and this produces a rounding of the fluidization transition. The lo-

cation and strength of the jets are sensitive to the clamping and construction

procedure and while with enough repetition a bed can be assembled which

does not suffer from the above problems, we have surged ahead looking for
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150 µm 200 SS

635 SS

Nylon

Figure 3.6: Different meshes used as flow distribution elements. A combina-
tion of stainless steel and nylon mesh produces a uniform flow distributor. A
100 µm glass sphere is shown for scale reference.

a more robust design. We note that work on the stability of fluidized beds

has shown that beds become unstable to large scale circulation if the ratio of
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pressure drop through the distributor to the pressure drop through the bed

is less than about 10 [97]. In our fluidized beds with mesh distributors, the

pressure drop across the distributor is typically 30-50 kPa, a factor of 20-40

times greater than the pressure drop across the bed.

A more robust design uses a distributor made from a 2 mm thick porous

glass plate manufactured by Collimated Holes, Inc. of Campbell, CA. The

plate is made from an array of optical fibers which are bundled and fused

together. The fibers have cores and cladding which are made of different types

of glass and after bundling, the core glass is etched away leaving a hexagonal

array of 10 µm holes arranged on approximately 15 µm centers. As the plate

is 2 mm thick, it is very rigid. See Figure 3.8 for magnified image of the plate.

From our studies with the mesh distributors, we have found that the

design of the mounting of the plate is as important as the design of the plate

itself. Therefore the plate is bonded between two exactly matched glass tubes,

the downstream side long enough to ensure a uniform profile of fluid impinging

on the distributor plate. The bonding was done using UV curing epoxy which

wicked into the joint and was hardened before reaching the inner edge of the

walls. All construction was done by Collimated Holes, Inc.

The entire apparatus is bonded to an acrylic flange using waterproof

Devcon 2-ton epoxy. The flange mounts to another homogenizing section which

is mounted to a kinematically mounted leveling plate. The flow accumulates

in an overflow bucket ensuring a constant height upper boundary condition.
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epoxy in joint 
25 µm wide

glass capillary 
plate: 10 µm holes 
on 20 µm centers

40 µm thru hole, 20 µm 
above plate

flat to 25 µm

Figure 3.7: Schematic of a fluidized bed using a porous glass plate as a dis-
tributor manufactured by Collimated Holes, Inc. The plate is bonded between
two matched square-bore glass tubes.
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10 µm

Figure 3.8: Clockwise: An exploded view of the bed with capillary plate
distributor. A top view of the 2 mm thick capillary plate. A view with less
resolution. A section of the plate with a defect boundary.

Possible improvements in distributor design

The pressure drop across the porous plate distributor is about a factor

of two greater than the pressure needed to support the bed. As there is some

debate on the effect of the pressure drop in the distributor on the stability of

the fluidized state, it would be useful to be able to vary this pressure drop. A

possible improvement of the design is shown in figure 3.9. This design would

allow different pressure drops to be created while maintaining the rigidity
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and wall-plate precision of the porous plate. It would consist of two matched

sections of square bore tubing sandwiching a piece of mesh and different weaves

of meshes would control the pressure drop.

epoxy in joint 
25 µm wide

50 µm thru hole, 20 µm 
above plate

flat to 25 µm

Woven 
mesh

Pressure port

Acrylic

Glass

2.54 cm

Figure 3.9: Schematic of a proposed fluidized bed using a porous glass plate to
sandwich mesh. Different meshes would be used to vary pressure drop across
the distributor.
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3.3.2 Pressure measurements

In both designs, (Figures 3.7 and Figure 3.5), the pressure drop due to

fluid passing through the bed is measured by differential pressure transducers

(details of the transducers are discussed below). In fluidization, the pressure

drop is always less than or equal to the buoyant weight of the bed. In our

experiments, this is typically 0 to 1500 Pa. In the mesh design, the pressure is

measured through a 75 µm slot directly above the distributor. In the capillary

plate design, the pressure directly above the distributor is measured through

a 50 µm hole 20 µm above the base of the distributor.

3.3.3 Flow system

Steady stable flow in time is crucial for controlled studies near the onset

of fluidization. We have developed a fluid flow control system to maintain pre-

cisely and accurately controlled steady flow rates from 0 to 200 mL/min over

periods of hours. An example of the controlled flow over typical measurement

times (30 seconds) is shown in Figure 3.10. Measurements over much longer

times look similar. The flow is controlled by a Micropump pump which is mag-

netically coupled to a DC motor. To sense the flow, we use a Validyne DP-15

differential pressure transducer which measures the pressure drop across a sec-

tion of pipe. The high sensitivity, stability and time response make this an

ideal flow sensing element. The transducer forms one arm of an AC bridge and

measures deflection of a stainless steel diaphragm by changes in inductance in

a pickup coil. The range of the transducer can be set by changing diaphragm
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thicknesses, but we find it more convenient to measure in different flow rate

ranges by changing the length of the pipe across which the flow is measured.

These elements are incorporated into a PID loop using a Pentium computer

and a Metrabyte DAS-HRES A/D board. The accuracy of the pressure gauge

is 0.25% and has a sensitivity of 0.6 Pa for the diaphragm used in our experi-

ments. The length of the pipe and the sensitivity of the device determine the

overall sensitivity of the flow measurement, and for a pipe of length 30 cm,

we can detect flow rate changes as small as 0.05 mL/min. To convert to flow

rate in mL/min, we calibrate the transducer arrangement against a McMil-

lan 101-4TP paddle wheel-type flow meter (McMillan Company, Georgetown,

TX), accurate to 1%. With the arrangement described, we can maintain high

flow stability for the typical ranges in the experiments, 0 − 100 mL/min over

periods of hours and days.
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Figure 3.10: The flow measured under control at Q = 35.61 mL/min for 30
seconds. The RMS deviation around the mean is 0.2%.
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An ASCO three way valve is used to pulse flow to the bed and create

different bed packings (see Chapter 8).

3.4 Measurements and characterizations of grain be-
havior

We use a variety of techniques to characterize the behavior of the bed,

including high resolution imaging to measure the average volume fraction,

differential pressure measurements to measure the pressure drop across the

bed and light scattering techniques to measure small length scale motions of

the grains. In this section I describe each.

3.4.1 Pressure measurements

We measure the pressure drop developed across the bed using another

Validyne pressure sensor between a port slightly above the bottom of the

bed and a point above the bed. The position of the second pressure port is

not critical as the effect of pressure head is canceled since the ports of the

transducer at the same level. The only effect of the position of the second

port is due to drag force along the square tube. We neglect this contribution

as for the large bore tubing used in the bed, the drop is not a measurable

within the sensitivity of our transducers.

70



Figure 3.11: The voidage, 1 − Φ is computed from high resolution images of
the bed. A top section of a bed of 335 µm glass spheres, 2x2 cm2 is shown

3.4.2 Volume fraction

The average voidage of the particles 1 − Φ is determined from high

resolution images of a face of the bed using a 1024x1024 10 bit Xilix camera.

Since the interface in the bed in our experiments is always flat (see Figure 3.11),

we average horizontally. Using this technique, we can achieve resolution of

5 µm, a factor of 20 to 200 smaller than a particle diameter. For a bed of

cross-sectional area A, the height of the bed h is converted to volume fraction
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by a measurement of the total mass mp of the particles and their density ρp

by,

1 − Φ = 1 − mp

ρpAh
(3.2)

The average densities of the glass spheres are accurately measured by immers-

ing particles of known mass in a tube filled with water and measuring the

increase in height of the water with the high resolution camera. The density

for 300µm glass spheres is 2.56 g/cm3

3.4.3 Light scattering techniques

To study the motion of the grains in the fluidized bed, we study the

intensity fluctuations of laser light transmitted through the transparent parti-

cles. A schematic of the light scattering is shown in Figure 3.12. Coherent light

from a laser is incident normal to one face of the glass fluidized bed chamber.

The light beam is expanded by a lens to avoid local heating effects. The light

enters the sample, undergoes multiple scattering events from the glass spheres,

and emerges from the opposite face where it is collected by a photomultiplier

or a CCD camera.

The light accumulates phase proportional to the length of the path it

travels through the scattering medium. The intensity at a point in space is

the square of the sum of the fields from all paths which reach that point. For a

collection of random scatterers, the interference results in a spatially random

pattern with regions of bright and dark. These bright and dark regions are
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Figure 3.12: The scattered light in the experiment is detected by either a PMT
or a CCD camera. The pinhole in front of the PMT images one coherence
area, whereas each element of the CCD, 10x10 µm, images slightly less than
one coherence area. A side-view of the CCD is shown.

called speckles and are analogous to the fringes in an interference pattern from

regularly spaced array of scatterers. An image of a speckle pattern is shown

in Figure 3.13. In the scattering experiments, the optical setups are such that

a detector images a single speckle, called a coherence area.

Motion of the scatterers changes path lengths, and the interference from

these changing paths creates a fluctuating speckle pattern. Thus, measurement

of the the intensity fluctuations in a coherence area gives information about
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1 mm

Figure 3.13: The speckle pattern created by random scattering of coherent
laser light from collection of 335µ glass spheres.

the motion of the scatterers. The great advantage of the multiple scattering

techniques is that they are extremely sensitive to small particle motions. Since

there are typically several hundred particles involved in the scattering of the

light, each must only displace a small amount for the total phase of the light

to change by π (the path lengths by λ). Thus, the time evolution of the

speckle fluctuations gives a high resolution measurement of particle motion.

For example, we can detect motions as small as 1 nm for a tube with cross

section 2.54 x 2.54 cm containing 300 µm particles.

As Figure 3.12 illustrates, we study the time evolution of the speckle

pattern in two ways. The first is a light scattering technique called Diffusing

Wave Spectroscopy (DWS) [144]. In DWS, the scattered light in a single co-
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herence area is collected by a photomultiplier tube, shaped by a combination

amplifier/discriminator and fed into a autocorrelation computer card, Flexible

Instruments Flex 30. The autocorrelator calculates the intensity autocorre-

lation function g(2)(τ) using the multiple tau method [159], filling channels

spaced logarithmically in time. The correlator has time resolution (minimum

bin size) of 0.1 µsecond.

The theory of DWS is used to calculate the ensemble averaged mean

square displacement of the particles, MSD = 〈∆R(τ)2〉, from the measured

temporal correlation function g(2)(τ). We will discuss the theory of DWS in

more detail in section 3.5.

Another technique, essentially an extension of DWS, involves imaging

multiple speckles onto a 8 bit 640x480 CCD [190]. In the multispeckle tech-

nique, the optics are arranged such that each CCD element (pixel) records a

single speckle coherence area1. Each pixel records the intensity fluctuations

from statistically independent scattering events, and thus by proper averag-

ing, we are able to boost signal to noise at long delay times. However, due to

the relatively slow speed of the CCD camera used, (30 Hz, with shutter time

roughly 30 msec), we are not able to resolve the short time dynamics. How-

ever, by recording the CCD images to disk for long times (up to two hours), we

can use this technique to study transient grain rearrangements and motions.

1For the inspiration behind this technique, see experiments on multispeckle DLS, see [101,
195]
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Collection optics

The mean size of the bright and dark spots is called a coherence area

and can be thought of as the average size over which a region of light will be

coherent. As seen in Figure 3.12, it is calculated from,

d = zλ/R (3.3)

where z is the distance from the scattering volume, λ is the wavelength of

light and R is the characteristic dimension of the aperture. Equation 3.3 sets

the geometry of the collection optics, insuring that the detector images only

a single coherence area. In fact, the DWS measurements provide a measure

of coherence area by the value of the correlation curve at τ = 0. This will

be discussed when experimental results are presented, in section 3.5.3 and

Chapter 8. In our setup, the collection optics consist of a 1 cm aperture, a 30

cm long tube with a blackened interior, and a 50 µm pinhole placed in front

of the PMT. The inside of the tube is blackened to prevent the absorption of

stray reflected light. The length of the tube chosen such that the speckle is the

size of the pinhole. In the multispeckle technique each CCD element measures

10x10 µm, imaging slightly less then one coherence area; we simply use the

aperture and the tube length to set the speckle size to be the size of the CCD

element.
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Practical considerations

The multiple scattering scatters light into all solid angles. Thus, to

ensure good statistics, the laser source must have high enough power so that

enough photons are collected in the small detector angle. We find that for

DWS of colloidal particles, sampling times of 30 seconds require laser power of

roughly 100mW to ensure smooth correlation functions. For 300 µm spheres in

water, the power must be increased to 1 Watt. The high power concentrated in

the 2 mm beam diameter can cause significant heating of the medium; we often

expand the beam with lens to reduce this effect. The laser must also have a

coherence length which is longer than any scattering path length. This ensures

that the de-phasing of the light, the source of the fluctuating intensity, is only

due to fluctuations in the positions of the scatterers. We use a Coherent Verdi

532 nm laser with a linewidth of less than 5 MHz. This creates a coherence

length of 60 m, much greater than any path length in the sample. The power

output of the laser is controlled to 1% over hours.

These multiple scattering spectrospcopy techniques are sensitive to mo-

tions as small as 1 nm. Thus, to eliminate external perturbation and vibration,

the system is placed on a Newport Optical table.
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3.5 Diffusing Wave Spectroscopy (DWS)–theory and mea-
surements

As described above, DWS probes small length-scale motions over short

time-scales by measurements of the autocorrelation of intensity fluctuations of

transmitted photons. We now describe the theory of DWS. To test the theory

and our apparatus we also present measurements of diffusive behavior of small

0.596µm colloidal particles. We will present data for application to the larger

glass spheres of the fluidized bed in a Chapter 8.

3.5.1 Multiple scattering theory-essential physics

The goal of the measurement of scattered light is to relate the motion

of the scatterers to the measured decay of correlation of intensity fluctuations,

g(2)(τ). At a given instant in time at the detector, the field is the sum of the

electric fields of all light paths. This field will change (and thus the intensity

fluctuate) due to changes in scattering paths by the motion of the particles. To

calculate the detected field, we need to do a double sum. First, we must find

an expression for the phase φ(t) accumulated by a photon traversing a path p

of length s(t) as it scatters N times through the medium. This requires a sum

over the positions of the scatterers in the path. The second sum requires that

we sum over all possible paths from source to detector. Now, the motion of the

particles creates a time-dependence in the length of the path, s(t), and thus

the phase accumulated in the path acquires a time-dependence. Thus, we will

calculate how the total phase for that path changes as the scatters move. The

78



final sum can be thought of as the sum over the change in phase weighted by

the probability that a path of length s suffers that change in phase. Therefore,

we need an expression for the probability of light to travel through the medium

along a path of length s. This will be denoted P (s).

Each path of length s will contribute a decay to g(2)(τ) which can be

thought of as the characteristic time it takes for the phase of that path to

change by π. If there were only one path through the medium, this would

yield the decay of the correlation function immediately. However, there are

many paths and each contributes a different decay rate to the electric field

intensity. Thus the final decay function will account for these contributions.

They will contribute in proportion to the relative probability for light to travel

that path, P (s). Paths which are more probable more strongly influence the

time-scale of the decay.

The contribution to the decay of g(2) for a single path will be calculated

in the next section. For diffusively moving scatterers, with trajectories which

are random walks over long times, it decays almost exponentially in time. To

calculate the path length probability function, DWS relies on the assumption

that in a sufficiently scattering medium, the intensity of light follows a diffusion

equation. To make this connection we use the fact that the light moves much

faster than any of the scatterers; the diffusion coefficient of diffusing light

is written Dl = vl∗/3, where v is the average velocity of light (transport

velocity) in the medium [183]. For example, in a dense colloidal suspension,

Dl is typically 1016 larger than the diffusion coefficient of a typical colloidal
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particle. Thus, on a sufficiently short time-scale, we can view the problem as

transmission through a collection of static scatterers. The light scatters with

a mean distance between scattering events of l. After the light has undergone

enough scattering events, characterized by a total path length l∗, the direction

of the light is uncorrelated with its original direction. Averaged over this scale,

the photons look as if they are diffusing, and the diffusion equation can be used

to calculate the intensity profile of the light in the medium. Since the number

of photons emerging from a point is related to the length of the path that it

took for those photons to diffuse to the point, this relates P (s) to the intensity

calculated from the diffusion equation.

In our experiment, l∗ > l and L � l∗. Typically L ∼ 2.54 cm, l ∼

100 µm, and L/l∗ ∼ 20. On average, light undergoes ≈ (L/l∗)2 scattering steps

with l∗/l scattering events per step, so the light is scattered ≈ (L/l∗)2l∗/l times

by the time it emerges. This multiple scattering ensures that the propagation

of the light will be diffusive and this approximation is crucial for the validity

of DWS.

There is an interesting difference between media which multiply scatter

and those that do not. Consider the transmission coefficient, T , of a plane

wave incident on scattering medium of length L. If L < l, most of the light is

unscattered, and T ≈ exp (−L/l). If L � l∗, none of the light is unscattered.

It is transmitted diffusively and T ≈ l∗/L. The transmission measurement is a

useful check to determine whether we can use DWS. We will use this formula

later to compute the value of l∗.
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3.5.2 Multiple scattering-calculations

In this section, I outline the basic theory for calculation of the ensemble

averaged MSD from temporal correlation of scattered light. The calculations

in this section follow Weitz [192].

Correlation functions and changes in field

Since we seek to calculate an expression for the electric field at the

detector due to scattering, it would be convenient to measure the electric field

at a point and perform the correlation of the electric field, g(1)(τ),

g(1)(τ) =
〈E∗(t)E(t + τ)〉
〈E∗(t)E(t)〉 (3.4)

However, this is difficult due to the high frequency of visible light. In-

stead, we detect the intensity of the scattered field, Ī = 〈E∗(t)E(t)〉, where the

average is taken over many cycles of the field oscillation. From this intensity

signal, the intensity autocorrelation function g(2), called the degree of second

order coherence, is calculated from

g(2)(τ) =
〈Ī(t)Ī(t + τ)〉

Ī2
(3.5)

For intensity fluctuations which are rapid compared to the time scale

of measurement, g(2) and g(1) are related by the Siegert relation,

g(2) = 1 + β|g(1)(τ)|2 (3.6)
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where β is a number related to the optical arrangement of the system: detec-

tion of one coherence area or less yields β = 1 and g(2)(0) = 2 for polarized

light, while for unpolarized light, β = 0.5 and g(2)(0) = 1.5. We now outline

the calculation E(t) for light transmitted through many scatterers.

A calculation of E(t) relates to the experimentally obtained g(2) to the

mean square displacement of the particles. As described physically above, the

calculated field will be a sum over the paths p which have accumulated a phase

Φ(t) = k0s during the transit time t on a path of total length s(t) through

the sample. Here k0 is the wavevector of the light, with k0 = 2π/λ. At time

t, the electric field at the detector E(t) is the sum over all paths which reach

the detector and can be written,

E(t) =
∑

p

Epe
ıΦp(t) (3.7)

where Ep is the amplitude of the field from path p and
∑

p represents the

sum over all paths. To connect with experiment, E(t) is inserted into Eq. 3.4.

Assuming that photon paths are uncorrelated, it can be shown that,

g(1)(t) =
∑

p

〈Ip〉
〈I〉 〈e

∆Φp(t)〉 (3.8)

where 〈Ip〉 ≡ 〈|Ep|2〉 is the average intensity of the path p. Thus, two quantities

must be calculated to turn this into a useful method. 〈Ip〉 will be calculated

later using the diffusion of light approximation. ∆Φp(t) = Φp(t)−Φp(0) is the

phase shift in time due motion of the scatters and we calculate it now.
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Phase change in a path
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Figure 3.14: A typical scattering path used to calculate the change in phase
of the light.

We must first calculate the change in phase of scattered light as a result

of particle motion. Figure 3.14 shows the basic physics of the scattering. The

total path length, s, of light which scatters elastically (|kn| = k0 = constant)

N times on a trip through the medium can be written,

s =
N
∑

i=0

|ri+1 − ri| =
N
∑

i=0

(
ki

|ki|
) · (ri+1 − ri) (3.9)

and from this equation, we calculate the total phase change for a given path,

Φ(t) =
N
∑

i=0

ki · [ri+1 − ri] (3.10)

The main result of this calculation, obtained after averaging over many

particles, is that for a path through the sample of total length s = Nl with

N � 1, the mean squared change in phase for the path can be written,
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〈∆Φ2
p(t)〉 =

2

3
k2

0〈∆r2(t)〉 s

l∗
(3.11)

This equation relates the mean squared phase change of the light to the mean

square displacement of the particle motion. Physically, it says that for large

path lengths, the phase undergoes a large change, as many moving scatterers

contribute. As an example which will be discussed later, the motion of diffusing

colloidal particles follow ∆r2(t) = 6Dt, where D is the self diffusion coefficient.

In this case the change in phase would be written as,

〈∆Φ2
p(t)〉 = 4k2

0Dt
s

l∗
(3.12)

We will verify this later for colloidal particles, using the formula as a

test of the experimental technique.

Sum over all paths and calculation of P (s)

We now insert our expression for 〈∆Φ2
p(t)〉 into Equation 3.4, and sum

over path lengths. Rewriting Equation 3.4 in terms of P (s), the fraction of

scattered intensity in a path of length s, instead of 〈Ip〉/〈I〉, we obtain,

g(1)(t) =
∑

s

P (s) exp(−1

3
k2

0〈∆r(t)2〉 s

l∗
) (3.13)

This is the main result of our calculation, and it relates the decay of

g(1) to the motion of the scatterers. Thus, if this equation can be inverted,

the mean square displacement of the particles as a function of time can be
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directly obtained. For experimental data, g(1) can be obtained from g(2) us-

ing Equation 3.6; numerical inversion of Equation 3.13 will give the desired

〈∆r(t)2〉. To proceed, however, we must have an expression for P (s). The cal-

culation of P (s) is where the diffusion approximation is used. We assume that

the light undergoes a large number of scattering events, and on length scales

much larger than l∗, we write the diffusion equation for the energy density of

light, U (number of photons per unit volume):

∂U

∂t
= Dl∇2U, (3.14)

where Dl is the diffusion coefficient for the photons. To obtain P (s) from

U , consider the following argument. If photons are sent into the sample at

time t = 0, they will undergo random walks with step size l∗, scatter many

times, and emerge from the sample sometime later. Those photons emerging

at time t will have traveled a distance s = vt where v is the average speed

of light in the medium [183]. Therefore, the emerging flux of photons, J , will

be proportional to the number of photons which traveled the path of length

s. But this is equivalent to the probability for a photon to travel a path of

length s, P (s). Thus, to find P (s), we must compute J , and this is done using

Fick’s law, J = Dl∇U . U is obtained by a solution of Equation 3.14 with the

appropriate boundary conditions.

It is clear that a solution to Equation 3.14, and thus P (s), will depend

on the geometry of the scattering situation. In this way, the geometry of the
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sample affects the qualitative behavior of the autocorrelation function. For

example, consider transmission through a very thick sample with L � l∗. If the

sample is thick enough, all of the detected photons will have scattered roughly

the same number of times2, and P (s) can be approximated by a delta function.

In this case, assuming diffusive particle motion, the autocorrelation function

would decay exponentially. If scattered light is collected in the backscattering

geometry [192], some paths can be short and others long and the decay function

would be complicated mixture of the multiple path lengths. As we will only

consider the transmission case through relatively thick samples, our correlation

functions will be almost exponential. We now calculate the exact form to get

the corrections.

The solution to Equation 3.14, is obtained by assuming as an initial

condition that at t = 0 a pulse of light spread over a region of size d begins

diffusing at distance zp inside the cell. Here, zp ≈ l∗. Another boundary

condition must be imposed, and this is often taken to be that U = 0 at a

distance ze outside the boundary; we will comment on this in a later section.

For a schematic of the different length scales involved, see Figure 3.15. For

simplicity, for now, we use the standard approximation that ze = 2l∗/2 [192].

For solutions to Equation 3.14, we refer the reader to [192] where the diffusion

equation is solved for a variety of incident light configurations. For the case in

which the illumination is taken to be constant over the incident face (a plane

2More precisely, the spread around the mean path length will be small relative to the
length of that path
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Figure 3.15: The different length scales involved in the boundary conditions
for DWS.

wave, d → ∞), the autocorrelation function takes the following form,

g(1)(t) =

L/l∗+4/3
zp/l∗+2/3

{sinh [ zp

l∗

√

6t
τ
] + 2

3

√

6t
τ

cosh [ zp

l∗

√

6t
τ
]}

(1 + 8t
3τ

) sinh [ L
l∗

√

6t
τ
] + 4

3

√

6t
τ

cosh [ L
l∗

]
, (3.15)
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In this equation and the following expressions, t
τ

= k0
2〈∆r(t)2〉/6. For a point

source (d → 0), it can be shown that,

g(1)(t) = C

∫ ∞

Q

J0(
R

L

√

ξ2 − Q2)D(ξ, ε, ζ)ξe−(1−ζ)ξdξ, (3.16)

where Q ≡ (L/l∗)
√

6t/τ , ε ≡ 2l∗/(3L), ζ ≡ zp/L, and C is a normalization

constant such that g(1)(t = 0) = 1. The function D(ξ, ε, ζ) is given by,

D(ξ, ε, ζ) =
2ε[(1 + εξ) − (1 − εξ)e−2ζ xi]

(1 + εξ)2 − (1 − εξ)2e−2ξ
. (3.17)

For the realistic case of an incident Gaussian beam of beam diameter d, a

different form is obtained,

g(1)(t) = C

∫ ∞

Q

e−(ξ2−Q2)(d/4L)2D(ξ, ε, ζ)ξe−(1−ζ)ξdξ. (3.18)

This formula reduces to the forms of Equations 3.15 and 3.16 in the ap-

propriate limits. In the experiment, the point source distributes more photons

into the bed than an expanded source, and thus produces smoother correlation

curves. However, the narrow beam can cause local heating effects. Thus, we

find it useful to vary the beam size with a lens to optimize between heating

effects and signal-to-noise considerations. We use Equation 3.18 to calculate

〈∆r(t)2〉 for this case.
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3.5.3 DWS on colloidal suspensions

To gain proficiency with the many complicated expressions in DWS,

we have repeated the results of [192] using colloidal suspensions. This allows

us to study DWS in a well understood situation.

Measurement of parameters

In practice, extraction of meaningful quantities using DWS can be

tricky. Once g(2)(τ) is obtained, Equation 3.15 must be inverted to find

〈∆r(τ)2〉. The inversion is accomplished using a root finding technique us-

ing Matlab.

There are several fitting parameters which cannot be calculated from

first principles and must be measured. Theses are the scattering length l∗

and ze, the extrapolation length3. Durian [52] has proposed techniques to

measure l∗ based on a formula which says that for multiply scattering media,

the transmission coefficient T is inversely proportional to the sample thickness,

T =
1 + ze

(L/l∗) + 2ze

, (3.19)

It can be shown that ze can be found from the angular distribution of

light emitted from the sample,

3The penetration length is to a good approximation always taken to be zp ≈ l∗. I will
assume this in the measurements on the colloids.
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P (µ) =
zeµ + µ2

ze/2 + 1/3
, (3.20)

where µ = cos θ.

To compare with experiments, the intensity must be calculated and it

can be shown that the detected intensity as a function of θ goes like,

I = [
ItD

2

2πR2
D

]P (µ) (3.21)

where IT is the total transmitted intensity. Thus by angular detection of the

light we can fit ze, and from a measurement of the transmission coefficient, we

can calculate l∗.

We measure the transmitted intensity through a 1% by mass colloidal

suspension using a Coherent Fieldmaster head which has a 10 degree open-

ing angle and we also measure the intensity with 10 degree integration using

this head. Figure 3.16 shows the angular distribution and the fit to Equa-

tion 3.21. From this fit we find that ze ≈ 0.89, in reasonable accord with other

measurements and the theoretical prediction of 2/3 [192].

Colloid diffusion

We present data in which we measure the motion of 0.596µm polystyrene

spheres suspended in water. Since the colloidal suspensions have been well

studied using the DWS [192], they provide a useful test of our setup. We use

two different geometries: a “slab” in which the cell is much larger than it’s
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Figure 3.16: The intensity of light scattered from a colloidal suspension as a
function of angle. The fit to Equation 3.21 gives the value of ze ≈ 0.89.

thickness (10x8x0.5 cm2, aspect ratio 20) and a square tube with dimensions

like those of the bed (2.54 x 2.54 x 15 cm3, aspect ratio 1). The slab geometry

is used to test DWS in the limit where Equations 3.16- 3.15 are valid. The

tube geometry is used to confirm that for large enough L/l∗, the small aspect

ratio does not lead to significant corrections. In fact, we find no significant

difference between measurements in the two geometries, indicating that we are

in the multiple scattering limit for the colloids.

In Figure 3.17, we present g(2)(τ) for 0.596 µm polystyrene spheres

(Duke Scientific, 5060A) with volume fraction 0.01 at room temperature. The
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Figure 3.17: The autocorrelation function for the colloidal suspension de-
scribed in the text, slab geometry

laser was expanded to a beam 1 cm in diameter onto the incident face of the

slab. Since we want to maximize counts, we do not use a polarizer between

the sample and the detector. Thus, the intercept g(2)(0) is approximately 1.5,

in accord with theory [119]. The value of 1.45 indicates that we have detected

only about one coherence area and that we have sampled a sufficient number

of decorrelation times4.

Using Equations 3.19- 3.21 and the measured angular intensity data, we

4For the colloids, the decorrelation occurs within roughly 100 µ seconds, much shorter
than the sampling times. For slowly moving granular materials, the decorrelation times can
approach the sampling times. In this limit, the intercept deviates from the ideal value [186].
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Figure 3.18: The MSD for colloids, showing diffusive behavior, slab geometry.

find ze = 0.89. Taking reflections into account from all surfaces, we measure

T = 0.1 over the integrated area of the power meter head (1 cm in diameter).

This yields a value of L/l∗ ≈ 20, indicating that we are in the limit in which

DWS will apply. Inverting g(2) using Equation 3.15, we find that 〈∆r(t)2〉 =

Dtα, and this is plotted on log-log axes in Figure 3.18. α is very close to

1, indicating diffusive motion. Our best fit measures 1.05 and we believe

that the deviation is due to flow induced by thermal heating from the laser;

measurements at lower laser power have exponents closer to 1. Measurements

in which the fluid was agitated using a magnetic stir bar show exponents

that deviate further from 1 as the stir rate increased. The intercept gives the
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value for D, and we find that it is 0.7 µ m2/sec. This is in good agreement

with D = 0.73 µ m2/sec calculated from the Stokes-Einstein relation, D =

kT/6πaµ, where a is the particle radius. However, for our purposes, the value

of the intercept is unimportant: inaccuracy in a measurement of the value l∗

scales all MSD curves (changes the intercept, the value of D), but does not

significantly effect the scaling exponents (the values of α). We will examine

the behavior of α during fluidization in Chapter 8.

Practical considerations and limitations

As shown, DWS allows measurement of diffusion coefficients of colloidal

particles. These particle are typically sub-micron, with sizes comparable to

2π/k0. However, we would also like to use DWS to measure properties of

large particles which may not move diffusively. Note that the curves g(2)

bend over after some time–this is the time it takes for light paths to change

by a wavelength λ due to particle motion. This time sets the limitation on

maximum particle displacements that can be resolved. We can estimate the

time and distance for which measurement of particles in the following way: For

thick samples in which every photon path undergoes many scattering events,

the average photon will undergo ≈ (L/l∗)2 scattering steps of length l∗ so

the light is scattered many times on average 〈s〉 ≈ (L/l∗)2l∗ by the time it

emerges. Thus as a sample becomes very thick, the spread of path lengths

relative to the longest path length goes to zero and P (s) can be approximated

by a delta function, P (s) ≈ δ(〈s〉). Substituting into Equation 3.13 the integral
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disappears and the correlation takes takes a purely exponential form,

g(1) = exp(−1

3
k2

0〈∆r(t)2〉L
l∗

) (3.22)

For diffusing colloidal particles, 〈∆r(t)2〉/ = 6Dt where D is the diffu-

sion coefficient. Thus, g(1) will be approximately exponential and decay in a

time tdec = 1/k2
0D(l∗/L)2. For the diffusing particles measured in our experi-

ment, this works out to be 70µsec, in agreement with our data. The particles

will have moved
√

6Dtdec ≈ (l∗/L)2λ, roughly the wavelength of light. This

makes sense, as the correlation functions decay over the time it takes for a

path to change length by λ or equivalently, the time the phase changes by π.

For our 0.596 µm colloidal particles, the distance traveled in a decay time is

0.013 µm, much less than a particle diameter. Thus we are visualizing short

time and length scale diffusion.

Now we would like to make a similar estimate for glass spheres which

are moving (as will be shown in Chapter 8) ballistically, such that 〈∆r(t)2〉/ =

v2t2, where v is a typical particle velocity. Inserting this into Equation 3.13, we

find that g(1) will decay like exp− 1
3
k2

0v
2t2; we determine that a characteristic

decay time (e-folding time) goes like tdec =
√

3/v2k2
0(l

∗/L)2. For particles

moving ballistically at 1 mm/sec, this is roughly 10 µsec in accord with our

measurements in Chapter 8. In this time, a 335 µm particle will move vtdec ≈

13 nm, a factor of 20000 of its diameter5. Thus, we will only resolve the

5We have used a Vision Research Phantom 4 camera with a 5 kHz frame rate to confirm
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short time and length scale motion, even with several decay times because

of experimental limitations of noise. This is obviously a huge limitation for

examining long time dynamics. This timescale can be increased by increasing

l∗ but there is a fundamental limitation on the size of l∗ before the diffusion

approximation becomes invalid. However, the technique becomes very useful

if short time behavior is desired. The technique is extremely sensitive to small

scale motion–since we would like to understand the motion of grains which

are trapped at long times but can rattle in local cages, DWS is ideal. In fact,

as will be seen in Chapter 8 we are able to resolve the short time ballistic

motion associated with fluidization. The multispeckle DWS is sensitive to

similar length scales, but increases the timescale over which decorrelation can

be accurately measured. In addition, the measurement of transient events due

to minute grain rearrangements is possible using the multispeckle technique.

Data will be presented in Chapter 8.

To resolve larger scale motion, the wavelength of the scattering field

must be increased and techniques involving ultrasound have been used to do

this, for example the tools of Diffusing Acoustic Wave spectroscopy [34].

the collisional velocity measurement.
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Chapter 4

Emergence of order in an oscillated granular

layer

The contents of this chapter have been published in [73]

4.1 Introduction

Our experiments on a vertically oscillated granular layer reveal that

spatial patterns emerge in two stages following a change of parameter into the

pattern-forming regime: an initial, domain-forming stage and a later stage in

which domains coarsen to form ultimately an extended regular pattern. We

characterize the evolution of the pattern using a “disorder function” δ̄(β),

where β is a moment of the disorder operator [Gunaratne et al., Phys. Rev.

E 57, 5146 (1998)]. The disorder in the initial stage is found to be consistent

with a decay given by δ̄(β) ∼ t−β/2, in accord with theory that predicts that

behavior in this stage should be universal for pattern forming systems. The

final stage is non-universal.

Nonequilibrium spatial patterns have been extensively studied in labo-

ratory experiments and model systems, but most studies have focused on the

dynamics of small deviations from asymptotic well-ordered states described
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by amplitude equations [35]. The dynamics of such perturbations exhibit uni-

versal (system-independent) properties. Much less is understood about the

development of a pattern from an arbitrary initial condition and the extent

to which this dynamics is universal. We present experimental measurements

of the time evolution (ordering) of a pattern from an initial noisy, featureless

state and compare our observations to theory [37, 58, 82, 94, 161].

We characterize the development and ordering of a pattern using a

recently introduced measure, the disorder function, δ̄(β), which vanishes for

any completely ordered pattern, and has a nonzero positive value that increases

as the amount of disorder in the pattern increases. A further description

of δ̄(β) will be given in Section 4.4 Before presenting our main results, we

describe our experimental apparatus in Section 4.2, present results for a typical

experimental realization in Section 4.3, and review previous theoretical work

on the development of nonequilibrium patterns in Section 4.4.

4.2 The Experiment

Our experiments generate patterns in a layer of 0.165 mm bronze

spheres contained in a vertically oscillated circular container with a diame-

ter of 140 mm [129]. The layer is four particle diameters deep, and the cell is

evacuated to 4 Pa so that hydrodynamic interaction between the grains and

surrounding gas is negligible. The control parameters are the frequency f of

the sinusoidal oscillations and the peak acceleration of the container relative

to gravity, Γ = (2πf)2A2/g, where A is the amplitude of the oscillation and
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g is the gravitational acceleration. As f and Γ are changed, a variety of tem-

porally subharmonic patterns including locally square, striped, or hexagonal

patterns are observed [129]. In this paper we consider the development of the

square patterns.

To visualize patterns, the granular surface is illuminated with a ring

of LEDs surrounding the cell and is strobed at the drive frequency of the

container. The light is incident at low angles and the scattering intensity is a

nonlinear function of the height of the layer; scattering from peaks (valleys)

creates bright (dark) regions. The circular container allows relaxation to an

almost perfect square array through wavelength adjustment of the pattern at

the container wall over a distance of less than one wavelength 1. In the region of

the Γ−fd phase diagram studied, square patterns appear for increasing control

parameter at Γ ≈ 2.75; the bifurcation is subcritical. In our experiments, Γ

is suddenly increased at a specific phase in the vibration cycle from an initial

value of 2.2, where no discernible structure is observed. The grains are not in

contact with the plate when the acceleration is changed, and we assume that

the initiation of the quench (the time origin for our experiments) occurs at the

last layer takeoff time before Γ is changed (the point where the acceleration of

the plate is equal to −g); this is the lower bound of possible quench initiation

times, and is physically reasonable, as it is the last time that the layer “knows”

about the initial Γ = 2.2. The uncertainty in the time origin is the dominant

1Experiments done in square containers also exhibit our main results. However, the
formation of a single domain takes a much longer time, as the final pattern orientation is
strongly influenced by the boundaries.
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source of systematic error in the interpretation of our observations. This is

illustrated in Figure 4.1.
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Figure 4.1: The trajectory of a single inelastic ball during a jump from Γ = 2.2
to Γ = 3.0. The single inelastic ball described the motion of the center of mass
of the layer. Γ changes while the layer is in the air, resulting in uncertainty
in the initial quench time. We take t = 0 to be the last time the layer was
on the plate before the change in Γ. Trajectory calculated with the code in
Appendix D.

For a typical quench experiment, we take 10 sets of data at the same
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Γ and f , and record images of the pattern at a fixed phase in the oscillation

cycle. Since the images’ absolute phase in the oscillation cycle relative to the

last layer takeoff time is arbitrary (chosen for highest contrast in the images),

the time between the last layer takeoff time and the first image will not in

general be an integer period of oscillation and may be different for different

sets of runs, although this time is fixed within a set of 10 runs. Thus in our

analysis of the image data, the values for the number of container oscillations

may be fractional, but in each case there is one container oscillation between

successive images (see the abscissas of Figure 4.3 and Figure 4.5; the number

of periods has been rounded in Figure 4.2).

0 4 6 18 96 15337

Figure 4.2: Snapshots showing the emergence of a square spatial pattern in a
granular layer at fd = 27 Hz and Γ = 3.3; the times given in the upper left
corner of each image are in units of container oscillation periods. Each image
in the top row is of the central 8 cm of the 14 cm diameter circular container.
Each image in the bottom row is the Fourier transform of the image above
it. The first three frames of the top row show the emergence of local domains
from a uniform background, and the last three show the slower coarsening of
these domains to an almost perfect square array.
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4.3 Observations of the development of order

The emergence of local square domains and their coarsening to a final,

almost perfect square array is shown in Figure 4.2 The first three frames of

the top row show that the system quickly (within six oscillations) creates a

pattern with a range of orientational order the size of a wavelength. The last

three frames show slow growth of domains of pattern with different orienta-

tions. These domains grow and compete, and the final state of the system

is a single domain of pattern. This process can be viewed in Fourier space

as well, as shown in the bottom row of Figure 4.2. The early stage narrows

the range of wavevectors in k-space, while the later stage selects a discrete set

of wavevectors. We study aspects of this relaxation that are invariant under

repetition of the experiment and analyze the dependence on the control pa-

rameters fd and Γ. Our goal is to gain a quantitative understanding of the

process of pattern evolution. Before we present our analysis of the observa-

tions, we review theoretical work on the evolution of patterns after a quench

from an initial noisy and spatially featureless state and the methods that have

been used to characterize this evolution.

4.4 Theory

Most analyses of the development of patterns have focused on solutions

u(x, t) to the Swift-Hohenberg equation [35],

∂u

∂t
=
(

ε − (4 + q2
0)

2
)

u − u3 − ν(∇u)2 + η(x, at), (4.1)

102



where u(x, t) is a two-dimensional scalar field, ε is the distance from pattern

onset, ν is the strength of a non-variational term [82], and η a random forcing

term such that 〈η(x, t)η(x′, t′)〉 = 2Fδ(x − x′)δ(t − t′), where F denotes the

strength of the noise. For suitable control parameters, random initial states

evolve to patterns under spatiotemporal dynamics given by (4.1).

The most common measure used to characterize patterns generated by

(4.1) is the width of the structure factor S(t) [28, 37, 58, 161] (i.e., the width

of the peak in the azimuthal average of 〈ũ(k, t)ũ(−k, t)〉), which decays in

two distinct stages [161]: S(t) ∼ t−
1

2 is obeyed until the peak amplitude of

the field u(x, t) saturates, beyond which time the pattern coarsens and the

decay becomes slower. For ε = 0.25 and ν = 0, Elder et al. [58], Cross and

Meiron [37], and Hou et al. [94] found that in this second region S(t) decreased

as t−
1

5 when F = 0, and as t−
1

4 when F 6= 0. Schober et al. [161] found that

for F = 0 and ν = 0, S(t) ∼ t−
1

4 ; the discrepancy with earlier results could be

due to the one-dimensionality of their model 2.

The structure factor provides a single characterization of a pattern

while the disorder function δ̄(β) provides families of characterizations of a

pattern, just as the generalized dimensions dq [87] and singularity spectra

f(α) [174] provide a family of characterizations of strange attractors. The

2Additional quantities have been measured in the second relaxation region. Hou et al.
measured total domain wall length as a function of time. For F = 0, it was shown to decay
as t−

1

4 , while for F 6= 0 the decay was proportional to t−0.3. Cross et al. showed that a
stripe orientation correlation field decayed as t−0.24. The interpretation of these results is
that different measures probe different features of the pattern, and these features relax at
different rates.
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details of a pattern depend on the initial state, but different patterns generated

under fixed control parameters have the same δ̄(β) [80]. For a pattern at fixed

time represented by a scalar field v(x) (e.g., v(x) = u(x, t0) at time t0) the

disorder function is defined as

δ̄(β) =
(2 − β)

(
∫

d2x)

∫

d2x|(4 + q2
0)v(x)|β

q2β
0 〈|v(x)|〉β

, (4.2)

where q0 is the typical wavevector associated with the pattern, 〈|v(x)|〉 denotes

the mean of |v(x)|, δ̄(β) (0 ≤ β < 2) has been normalized to be scale invariant,

and
∫

d2x is the area of the system. The ingredients used to deduce the form

of the disorder function are its invariance under arbitrary rigid motions of the

pattern and the fact that the pattern locally consists of a small number of plane

waves. Modulation of squares due to curvature of the contour lines contributes

to δ̄(β) through the Laplacian, while variations of the size of squares contribute

via the choice of a “global” q0 [82]. Unlike the information contained in the

structure factor, |(4+q2
0)v(x)| is a measure of local irregularity in the pattern,

and hence distinct “moments” β can be used to quantify multiple aspects of the

disorder in patterns. For example, limβ→2 δ̄(β) is proportional to the density

of defects [81].

Calculating δ̄(β) for experimental data requires some care. Images

shown in Fig 4.2 have sharp changes at the edges which lead to high frequency

contributions in their Fourier spectra. Consequently, their removal through

simple filtering causes contamination of the pattern near the edges and leads

to error in calculating the disorder function. We use a method of noise filtering
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that involves extending the image to a periodic one [90] using “Distributed

Approximating Functionals” (DAFs) [91]. A method for calculating δ̄(β) from

filtered data has been presented in Ref. [80].

The disorder function analysis of the evolution of patterns generated

by (4.1) from an initial noisy state reveals two stages: the emergence of do-

mains characterized by δ̄(β) ∼ t−σE(β), where σE = 1
2
β is an exponent that

characterizes this early stage, and a later slower domain-coarsening behavior

characterized by δ̄(β) ∼ t−σL(β) [82]. Unlike σE(β), σL(β) depends on the

value of ν in (4.1), and is thus expected to be system and model dependent.

Since (4.1) contains the general features of a nonequilibrium pattern-forming

system, we will compare the results obtained for δ̄(β) from our experiments

with the results from numerical simulations of (4.1) [82].

4.5 Analysis of the observations

4.5.1 Evolution of the disorder function for fixed Γ

The behavior of δ̄(1) for the relaxation of Figure 4.2 is shown in Fig-

ure 4.3. In repetitions of the experiment for identical control parameters, the

details of the patterns differ for each run, but δ̄(1) behaves the same. The

initial formation of domains and the final coarsening exhibit different decay

rates. The transition in behavior coincides with the saturation of the peak

amplitude (cf. Figure 4.3). This transition is consistent with that exhibited

by the structure factor for the spatio-temporal dynamics of (4.1) [161].

During the initial stage of pattern formation the data are described by
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Figure 4.3: The time evolution of the disorder function δ̄(1) for square patterns
at Γ = 3.3 (◦), showing the domain forming stage with slope of −0.5 and the
coarsening stage with slope of −0.13. Also shown is growth of the pattern
amplitude (•), which grows rapidly in the domain-forming phase and saturates
in the later coarsening phase. Each curve is an average of 10 runs at the same
control parameters. The error bars at late times show typical variation between
runs. The error bars at early times are the size of the symbols. The abscissa
is in units of number of container oscillations from the last layer takeoff time
before the container acceleration was changed.

δ̄(1) ∼ t−0.5±0.1. The domain formation stage is short, lasting only through

the first six periods of oscillation of the container; hence the observation of

power law behavior in the initial stage is suggestive rather than conclusive.

The uncertainty in the exponent is a result of two main sources of error. First,

the short time range of the data makes the contribution of the beginning and
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end points of the initial region very important. The uncertainty in the time of

the initiation of the quench contributes to a systematic shift in the value of the

exponent; the value of −0.5 is found if we assume that the quench begins at

the time of the last layer takeoff before Γ is changed (see discussion in Section

2). In addition, the end point of the initial region is known only to within one

period of oscillation. Variation between runs also contributes to uncertainty

in the exponent, but the error bars in Figure 4.3 show that it is small relative

to the above uncertainties.

Since nonlinear effects are negligible during the initial stage, the evolu-

tion can be modeled by (4.1) without nonlinear and stochastic terms. Numer-

ical integration of noisy initial states shows that
∫

d2x|u(x, t)| ∼ eεtt−
1

4 and
∫

d2x|(4+q2
0)u(x, t)| ∼ eεtt−

3

4
3; consequently δ̄(1) ∼ t−

1

2 . The same behavior

has been found in the initial decay of the structure factor [161] and in the rate

of domain growth. More generally, for 0 < β < 2, we find that in our data the

moments of the disorder function decay as δ̄(β) ∼ t−σE(β), where σE(β) ≈ 1
2
β;

see Figure 4.4. This is also seen in numerical integration of the linearization

of (4.1).

The latter stages of pattern formation correspond to nonlinear spa-

tiotemporal dynamics of the field [161]. For the evolution shown in Figure 4.3

at Γ = 3.3, the decay of disorder at long times is described by δ̄(1) ∼ t−0.13.

3In the absence of diffusion, u(x, t) ∼ eεt. The effects of the diffusive terms are thus
studied through the behavior of e−εt

∫

d2x|u(x, t)|, which is numerically observed to decay

as t−
1

4 .
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Figure 4.4: The slopes of log-log plots of δ̄(β) vs. β during domain formation
(•) and domain coarsening (�). The results are for a single run at f = 27 Hz
and Γ = 3.3. There is no scatter in the curves because the calculation for δ̄(β)
is done for multiple values of β on the same data set. Since we assume that the
quench initiation time is the time of last layer takeoff before the acceleration is
changed, the uncertainty in the initial time does not enter the error calculation
and the error estimates on the slopes of the lines, 0.47± 0.05 and 0.13± 0.02,
are obtained by comparing different data sets within a 10 set run and different
choices for the region over which a power law is fit. While statistical variation
between runs is a source of error for both σE and σL, the narrow range of time
in the first region is the dominant source of error for σE.

This decay exponent is not expected to be universal [82]. The magnitude

of the exponent is smaller than that for the relaxation rate of the structure

factor upon integration of (4.1) with F 6= 0, −0.25 [58, 94], and also with

F = 0, −0.20 [37, 58, 94]. We find that σL(β) is linear with σL(β) ≈ 0.13β

(Figure 4.4). In contrast, (4.1) yields [82] a nonlinear concave-down function

108



for σL(β). We speculate that the linearity found in our study implies that

the spatiotemporal dynamics is governed by relaxation with a single length

scale, and is thus a consequence of finite cell size. If we calculate σL(β) for

intermediate times (10-1000 oscillation periods), where domain sizes are small

compared to the system size and boundary effects should be negligible, a non-

linear concave-down relationship is obtained. This nonlinearity implies that

during intermediate times relaxation of the pattern occurs over multiple length

scales, and work is in progress to test this hypothesis using (4.1).

4.5.2 Evolution of the disorder function for increasing Γ

Next, we consider changes in the behavior of the disorder function as

Γ is increased from 2.8, driving the system further away from the onset of

patterns (Figure 4.5). We find that in the domain formation stage the exponent

σE(β) is independent of Γ; identical behavior is observed on integration of

(4.1) [82]. Although the form of the curves in the second region deviates

from power law decay, the mean decay rate (measured by σL(1) for a given Γ)

decreases from 0.18 to 0.12 as Γ increases from 2.8 to 3.2; similar behavior is

seen with decreasing ν in (4.1) [82]. The long time behavior of the curves is

not shown because for Γ < 3.3 a secondary oscillatory motion dominates the

dynamics of the pattern after about 100 oscillations; work is in progress to

understand these oscillatory dynamics.
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Figure 4.5: The time evolution of δ̄(1) for square patterns at three different
final container accelerations, Γ = 2.8 (◦), Γ = 3.0 (�), and Γ = 3.2 (+). The
decay during the initial domain forming stage is independent of Γ while the
magnitude of the slope in the later stage decreases as Γ increases. The abscissa
is in units of number of container oscillations from the last layer takeoff time
before the container acceleration was changed.

4.6 Conclusions

We have shown that the formation of a pattern in a vertically oscil-

lated granular layer occurs in two distinct stages. During the early stage the

spatiotemporal dynamics is essentially linear and the decay of the disorder

function determined in our experiment is consistent with the power law found
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in pattern formation for the Swift-Hohenberg equation: δ̄(β) ∼ t−σE(β), with

σE(β) ' 1
2
β. During the later domain coarsening stage the emergence of order

is described by δ̄(β) ∼ t−σL(β), where σL(β) is a nonlinear function at inter-

mediate times and becomes linear at long times, when the finite system size

dominates the decay. This relaxation is not universal, since the decay rate

(and thus σL(1)) decreases with increasing Γ. Such behavior is also seen in

model systems, in which σL(β) is a model and parameter dependent nonlinear

function of β [82]. Such characterizations of pattern formation can be used

to determine the validity and limitations of model systems [189], and can be

used to study patterns and their evolution in other laboratory experiments.
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Chapter 5

Lattice vibrations and melting of square

patterns

5.1 Introduction

Previous studies of the square patterns in shallow vibrated granular

layers studied average properties of the pattern like wavelength and angular

correlation [180]. In this chapter, we present studies of the dynamical be-

havior of the square patterns. For certain control parameters Γ and fd, the

patterns can have time independent long-range order the size of the system,

as seen in Fig 5.1. In this chapter, we will discuss dynamics of the patterns

which disrupt the perfect long-range order. To summarize our main find-

ings, we have observed that the square patterns exhibit dynamics like those of

a two-dimensional crystal lattice with elements coupled by Hookian springs.

Different transverse normal modes of the granular lattice are resonantly ex-

cited for different container frequencies and accelerations. If the container

frequency is modulated at a particular normal mode frequency, that normal

mode amplitude increases until the lattice melts (becomes disordered). Molec-

ular dynamics simulations conducted for decreasing friction between the par-

ticle and vibrating plate also show melting, and this occurs in accord with the

Lindemann criterion for 2D melting.
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Figure 5.1: A square pattern formed in a square container with four layers of
165 µm bronze for Γ = 3.0 and fd = 27 Hz. The pattern is oriented at π/4 to
the container walls. The region shown is 16x16 cm2.

Although the dynamics that will be described will be in the fd/2 strobed

reference frame, for completeness, we briefly discuss the sloshing motion of the

grains that forms the peaks and valleys of standing wave square pattern. A

three dimensional view in Fig 5.2 reveals that the peaks in shallow layers are

formed of several hundred particles connected by thin lines containing many

fewer grains. The four peaks surround a valley in which there are almost no

particles. After a single plate oscillation, the peaks become valleys and the
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valleys become peaks. A schematic of this process is shown in Figure 5.3.

Every plate oscillation, the peaks collide with the plate and spread radially. A

cycle later, a new peak is created in the intersection of the collision of grains

from neighboring peaks, forming in the place where there was a valley. The

lines are formed by the intersection of flows along the lattice directions and

also contribute to the formation of peaks–upon plate collision, grains spread

perpendicular to the lines and contribute to the formation of the peak.

Figure 5.2: A time sequence of images taken at an oblique angle to the con-
tainer: during one plate oscillation, peaks containing several hundred grains
become valleys which contain very few grains.

There is some indication that the dynamics of the peak to valley motion

is necessary to develop the theory of the lattice dynamics that will be presented

in this chapter1. However, for simplicity, we will only consider motions of the

pattern in the strobed fd/2 frame.

Section 5.2 of this chapter is a preprint of a paper describing the dy-

namics of square patterns [72]. Following this section is a discussion of the

1Private communication from Chris Bizon
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Figure 5.3: A schematic showing the flow of grains from peaks and lines into
valleys after a plate oscillation cycle. The black and white indicate the posi-
tions of the peaks and the lines after one plate oscillation. The gray arrows
indicate the direction of the flow of the grains. In the schematic diagram, the
grains return to the original peaks after another oscillation cycle.

frequency modulation technique that were briefly described in the paper. We

present details of the dispersion relation calculation in Appendix C.

As the dynamics of the patterns are characterized by many different

spatial and temporal frequencies, Table 5.1 presents the symbols used in this

section.
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Symbol Description Range

Γ Peak plate acceleration 0 − 4g
fd Container drive frequency 17 − 34 Hz
fL Pattern normal mode frequency 0 − 2.5 Hz
fmr FM rate frequency 0 − 5 Hz
fms FM span frequency 0 − 5 Hz
fBZ First Brillouin zone edge frequency 1.5 − 2.5 Hz

Table 5.1: The symbols used in this section
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5.2 Resonantly Excited Normal Modes and Shear Melt-
ing

5.2.1 Introduction

Systems driven away from thermodynamic equilibrium often form pat-

terns when forced beyond a critical threshold. Close to the bifurcation, the

dynamics of large length scale perturbations to the local wavelength of the

pattern are well described by partial differential equations (PDE) called am-

plitude equations, whose form is universal [35]. Our study of square lattice-like

patterns formed in a vertically vibrated granular layer finds that instead of dif-

fusive relaxation of perturbations, which are often described by the amplitude

equations, perturbations to these patterns relax in an oscillatory manner, and

the individual peaks of the pattern behave as if they are interacting elements

in a lattice. We propose that the behavior of this nonequilibrium pattern

is governed by the coupled set of ordinary differential equations (ODE) that

models the dynamics of the interacting lattice elements.

This ODE approach differs from the traditional description of patterns

by the PDE amplitude equations. The inspiration for such an approach comes

from the work of Umbanhowar et al. who postulated that nonequilibrium

pattern dynamics could be described using a collection of interacting localized

excitations called oscillons as the basic pattern elements [182]. Although the

lattice elements in the square patterns are not oscillons, we will give evidence

to show that the general approach of localized interacting elements is useful

as a description of patterns found in a laboratory experiment.
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Figure 5.4: Square patterns form in a vibrated layer for a range of Γ and fd

and resemble two dimensional crystal lattices. (i) A lattice pattern at Γ = 2.90
and fd = 30 Hz averaged over 10 plate oscillations. (ii) Relative motion of two
peaks of the lattice (with lattice constant a) for Γ = 2.90, and fd = 30 Hz.
The lattice is oscillating in a fixed mode such that peaks separated by

√
2a

oscillate exactly out of phase at roughly 1 Hz.

5.2.2 Experimental details

As in [129], we oscillate a thin layer of bronze spheres2 at a drive fre-

quency of vibration, fd, ranging from 17 to 34 Hz and the non-dimensional peak

plate acceleration Γ ranges from 2.35 to 4.0. For these parameters, square pat-

terns develop as shown in Fig 5.4. The granular surface is imaged by a 256x256

CCD camera using low angle illumination which creates bright regions at the

peaks [14].

For the layer depth studied, square patterns exist in a region of pa-

rameter space for 2.5 < Γ < 4.0, and fd < 34 Hz. To verify that boundary

2The phenomena was also observed in 165 µm diameter lead particles.
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conditions did not influence our main results, the experiments were checked in

two different containers, a circular cell with diameter 7 cm and a square cell

18 cm on a side. The container shape only selects the direction of the pat-

tern: a circular cell allows the pattern to form with any orientation, whereas

in a square container, patterns form preferentially at π/4 to the direction of

the container. None of the results reported depended upon the shape of the

boundaries of the container3, indicating that the lateral boundary conditions

are unimportant for the phenomena described.

5.2.3 Oscillating peaks

An overhead snapshot of a typical square pattern seen in the experiment

is shown in Figure 5.4i. At the phase in the plate oscillation cycle where the

pattern amplitude is maximum, the pattern is composed of an array of peaks

of grains arranged in a square lattice connected by a network of thin lines

of sand4. The plate oscillates with a frequency fd and the pattern oscillates

subharmonically at fd/2; after each plate oscillation, a peak becomes a valley.

At maximum height, each peak typically contains on the order of 100 particles,

and we collect images at this phase in the cycle. Between the peaks, in the

dark regions, there is almost no sand. Thus, when strobed at fd/2, the pattern

resembles a two dimensional crystal lattice made of discrete elements separated

by lattice constant a. In this paper, we will only consider the strobed motion

3Square boxes and circular cells of different sizes produced the same results.
4Connecting the peaks are thin lines of sand which could play an important role in the

mechanism responsible for the dynamics of the patterns.
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of the pattern.

Even in the strobed frame, this pattern is not stationary — the center

of mass of each peak of the pattern oscillates around its time averaged position

(averaged over several hundred plate oscillations) which defines its lattice site.

This motion occurs in the plane of the pattern, and may either appear as

random, aperiodic oscillation (as would be seen in a lattice in contact with

a thermal bath) or take the form of a collection of peaks oscillating around

their respective lattice positions with fixed relative phases (coherent motion,

the details of which will be discussed below). As an example of a type of

motion that is seen, in Figure 5.4ii, a time series of snapshots of two peaks

(in boxes A and B) is shown. In this case, the peaks oscillate exactly out of

phase with each other, and the peaks within a particular row (shown in the

box at π/4 to the natural lattice direction) maintain a constant separation

of
√

2a as they move; this is an example of a transverse mode in the (1, 1)

lattice direction. In general, a series of frames will not always show such

perfectly coordinated behavior, but will exhibit complicated motion around

the mean lattice positions. We analyze this motion by decomposing it into

Fourier modes.

5.2.4 Dispersion relation

To enumerate these modes we take a time series of 256x256 pixels im-

ages strobed at fd/2 and perform the three dimensional discrete Fourier trans-

form on this series, giving Ĩ(kx, ky, fL), and for each fL, we determine the
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(kx, ky) at which the most power is present. To avoid confusion, we denote

frequencies of motion of the peaks by fL. Spatial modes, phase modulations

of the square lattice, are represented as sidebands (at fL 6= 0) of the the re-

ciprocal lattice wavevectors (at fL = 0). Although sidebands can in principle

be found in any direction, we find them only in a direction π/4 (or the degen-

erate 3π/4) relative to the lattice basis extending to distances of 1/(
√

2a), the

maximum wavenumber modulation on the lattice. Examples of sidebands are

shown by the dotted lines in Figure 5.5.

In the language of lattice dynamics, these are the (1, 1) modes of the

lattice and we find that only the transverse (1, 1) modes are excited. Examples

of modes in Fourier space are shown in Figure 5.5 in panels i and ii. The

relationship between temporal and (1, 1)T spatial modulations of the lattice is

shown in Figure 5.5, plotted by finding the wavevector with maximum power

for each fL. This dispersion relation is fit well by the dispersion relation for

modes produced by N harmonically coupled (1, 1) rows of peaks with free

endpoint boundary conditions5, fL = fBZ | sin(ka/(2
√

2)|, where fBZ is the

frequency at the edge of the Brillouin zone, a the lattice spacing and k = nπ
√

2
aN

is a wavevector in the (1, 1) direction [102]. Here N represents the number of

(1, 1) rows of peaks in the lattice and (0 ≤ n ≤ N) is the mode number. We

emphasize that there are no fit parameters. N is determined by the number of

5We assume free boundary condition as the row of peaks near the wall is able to translate
against the wall in a square cell. In addition, since in the square containers the patterns
always form at π/4 relative to the container, there are always an integer number of (1, 1)
rows in the container.
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Figure 5.5: Comparison of the measured dispersion relation (◦) for the (1, 1)T

normal modes of the lattice with a one dimensional lattice model (solid line)
with harmonic coupling between (1, 1) rows. The wavevector, n is in units of

2π√
2aN

where a is the lattice constant and N is the number of rows in the (1, 1)
direction. The dashed line denotes the edge of the first Brillouin zone. The
power in each mode (•) is evenly distributed among all modes. The images in
i and ii show spatial Fourier transforms, Ĩ(kx, ky, fL) at two temporal lattice
oscillation frequencies, fL = 1.2 Hz and fL = 2.3 Hz, the mode at the edge
of the Brillouin zone. For clarity, the location of the four peaks which form
the basic square lattice (found at fL = 0 Hz) are shown by • symbols in the
Fourier transform images. The grayscale is proportional to |Ĩ|. Here fd = 25
Hz and Γ = 2.75.
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(1, 1) rows and fBZ is the frequency measured at the edge of the Brillouin zone.

For the parameters in Fig. 5.5, fBZ ≈ 2.5 Hz. While fBZ shows systematic

variation with Γ and fd, it is always approximately a factor of ten lower than

fd.

The power in each mode is also plotted in Fig 5.5. It is roughly inde-

pendent of the mode, indicating that the system is in contact with an effective

constant temperature thermal bath. Note that we cannot observe modes n = 1

and n = 2. This is due to large scale lighting variation present in the images

of the patterns.

5.2.5 Resonant modes

We find that different lattice normal modes are excited with different

amplitudes as the basic system parameters, Γ and fd, are varied. The response

of the pattern is found by the same Fourier transform procedure described

above. We integrate the power in the dominant sideband after subtracting off

a background, which can be present from disorder in the pattern which changes

on a time scale longer than the measurement time. The integrated area gives

a measure of the total amount of power present in the lattice modes, and this

power is plotted as a contour map of lines of constant power absorption in

Figure 5.6(a). Two regions of dominant response are seen, and will be referred

to as resonance peaks I and II. Sufficiently far from the resonance peaks, the

lattice is nearly stationary, with small amplitude, incoherent oscillation of the

lattice elements around the mean sites.
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Figure 5.6: Excitation of different normal modes of oscillation for different
values of Γ and fd occurs in two resonance peaks, I and II. Top panel: Lines of
constant power show the relative excitation of the lattice in the range of square
pattern stability; the grayscale represents the power in the most dominant
mode. Bottom panel: The wavevector normalized by the wavevector of the
Brillouin zone traced by a path through both resonance peaks. When Γ and fd

are tuned to resonance I, modes at the edge of the Brillouin zone are excited;
tuning to resonance II excites lower wavevector modes.
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The lattice oscillates in different normal modes in the resonance peaks:

in the bottom panel of Figure 5.6 we plot the (1, 1)T dispersion relations mea-

sured at four different points in the resonance diagram and the corresponding

power in each mode. For points near resonance I, the power is dominant in

the Brillouin zone mode (k = kBZ = 2π/(a/
√

2)) while near resonance II, the

power is dominant in a mode near the middle of the Brillouin zone. The even

distribution of power found in Fig 5.5 is because this point lies between the

tongues, away from the resonances.

Dispersion relations which agree with the harmonically coupled lattice

model exist throughout the parameter range of square stability, and the fre-

quency of the edge of the Brillouin zone (the effective spring constant) changes

systematically as Γ and fd are changed. We presently have no explanation for

the timescales of the modes, or the resonances which excite these modes.

5.2.6 Disorder and Melting

For Γ and fd near the peak of resonance II, the amplitude of oscillation

of the modes can be large and the patterns often contain dislocation defects.

These defects are created by a process in which the amplitude of a mode

becomes large enough to locally “break” the lattice. The lattice then re-heals,

although imperfectly, leaving a defect which contributes to the disorder of the

lattice. This competition between disordering and ordering depends on the

amplitude of oscillation of the mode. The disordering can be further enhanced

by resonantly exciting modes using a modulation of fd; the signal applied to
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Figure 5.7: Defect creation and melting after a sudden change in system pa-
rameters at t = 0 for a weakly oscillating pattern at Γ = 2.9, fd = 32 Hz. (a)
At t = 0, frequency modulation with fmr = 2 Hz and fms = 5 Hz is applied.
(b) At t = 0 the same frequency modulation is applied for particles which have
been cleaned and graphite has been added. (c) Molecular dynamics simulation
by Sung Joon Moon: At t = 0, the friction coefficient µ between the grains
and the plate is set to 0. The intensity is the local density of the grains. The
insets in each panel shows the structure factor at the corresponding time.
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the shaker has the form,

y = A sin(2πfdt +
fms

fmr

sin 2πfmrt), (5.1)

where 0 < fmr < 5 denotes the rate of modulation and 0 < fms < 5 denotes

the depth of modulation (the span). The lattice responds to the frequency

modulation (FM) at exactly fmr/2. Details of the lattice response to FM are

discussed in Section 5.4.

The top row of Figure 5.7 shows the use of FM to further excite the

mode present near the peak of resonance II. Several hundred oscillations after

the modulation is turned on, the amplitude of the excited mode is quite large

and a few defects have been created.

We have found that the process of disordering can be enhanced by clean-

ing the bronze particles with acetone and methanol in an ultrasonic cleaner

and adding of a small amount of fine graphite powder to the grains 6. This

creates much stronger resonances (the amplitude of oscillation at resonance

peaks is much larger), and within several hundred oscillations after modula-

tion is applied, the amplitude of the modes become large enough to completely

disorder the lattice, creating a liquid-like time dependent pattern as shown in

the middle row of Figure 5.7. We hypothesize that the addition of graphite

changes the collisional friction properties between the grains (or between the

6Extra Fine Graphite powder manufactured by AGS Co, Muskegon, MI
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container and the grains) and we now describe our study of the lattice reso-

nances as a function of friction 7. We point out that the implementation of

friction in the kinetic and hydrodynamic description of granular materials is

far from understood and an effect like we have described here can be useful in

testing proposed theories. [98]

5.2.7 Friction and lattice melting

Since friction is difficult to change in a controlled way in the experiment,

we used an inelastic hard sphere molecular dynamics (MD) code to study the

effect of surface friction on the dynamics of the lattices. The simulations were

performed by Sung Joon Moon. This code generates patterns which match

patterns seen in the experiments for a wide range of Γ and fd and the details

have been reported elsewhere [14].

The effect of suddenly reducing the value of the sliding coefficient of

friction µ between the grains and the vibrating plate in shown in Figure 5.7c

at fixed Γ = 3.0 and fd = 32 Hz. The value of µ is a fitting parameter in

the collision model and does not relate to physical values of the coefficient

of friction. The time series is created by initially generating a prefect square

pattern at µ = 0.5 (the value chosen to match stable patterns between the

MD simulation and the experiment) and suddenly changing the value of µ.

7We note that the amplitude of the modes also depend on the bottom plate bound-
ary condition; patterns created in containers with roughened bottoms (sandpaper grit 400
epoxied to the container bottom) show only weak modes and thus almost perfect defect free
patterns, even at the peaks of the resonances.

128



0
 20
 40
 60
 80
 100

0


0.1


0.2


0.3


γ

M


Oscillations


µ
=0


µ
=0.1


µ
=0.5


0
 20
 40
 60


1


3


5

ξ


Oscillations


µ
=0


Figure 5.8: Melting occurs when the Lindemann ratio, γM = 〈|um − un|2〉/a2,
reaches approximately 0.1. Main figure: γM plotted versus time for different
values of µ, the friction between the grains and the plate. Inset: The correla-
tion length of the pattern ξ, (◦) (normalized to 1 at t = 0) for µ = 0 reaches
the minimum value when γM ≈ 0.1.

At µ = 0.5, the pattern weakly oscillates in a mode of roughly kBZ/2 since Γ

and fd are close to resonance II. When µ is suddenly changed to µ = 0.0, the

amplitude of this mode begins to grow while the wavevector of the growing

mode remains unchanged. As in the experiment, when the amplitude of this

mode becomes large enough, the pattern ruptures. The motion is so vigorous

that the lattice no longer is able to locally re-crystallize and instead forms a
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liquid-like state: individual lattice elements no longer maintain a fixed position

in the lattice, but undergo large displacements away from their equilibrium

sites and may even annihilate or spontaneously create new peaks. This leads

to a small fluctuation in the number of lattice elements in the pattern, but we

expect the fluctuations to become negligible as the system size increases.

To measure the spatial disorder expected in a transition from an ordered

lattice to a disordered fluid, in Figure 5.8 we plot the correlation length of the

pattern, ξ versus time (see inset). ξ is calculated by fitting an exponential to

the envelope of the azimuthal average of the two-dimensional autocorrelation

function and is written in units of a. For µ = 0, ξ decreases monotonically in

time from about 5a until the lattice disrupts after about 30 plate oscillations,

after which it oscillates around 1.5a as the lattice continues to locally disrupt

and re-heal. As shown in the main section of Figure 5.8, the loss of long range

order coincides with the Lindemann ratio γM = 〈|um − un|2〉/a2 ≈ 0.1, where

um and un are displacements from lattice positions of nearest neighbor pairs.

γM is a commonly used criterion for predicting the melting temperatures of

solids [172]. We compute γM by tracking the motion of peaks of the lattice

using an algorithm which works well until the lattice becomes disordered. The

value of γ is in agreement with literature values for two-dimensional melt-

ing [12] even though melting of the pattern in our experiments occurs in a

non-thermal way, driven by a resonantly excited mode of the lattice.

The main figure indicates that a melted state is reached for µ = 0.0

and not at all for µ = 0.5 as γ < 0.1. For µ = 0.1, the pattern oscillates
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with increasing amplitude until local melting events disrupt the perfect long-

range order. However, this µ does not produce fully melted patterns; after

a defect is created, the mode amplitude becomes small and the lattice can

locally re-crystallize, as seen in the re-crossing of the γM ≈ 0.1 line. This

prevents a transition to a fully liquid state. We emphasize that the value of

γM is somewhat arbitrary and further work is necessary to determine if there

is an actual transition that occur at this value. However it does provide a

condition for onset of defect creation or loss of long range order away from the

primary bifurcation in a nonequilibrium pattern.

5.2.8 Conclusions

We have demonstrated that the square patterns in a vibrated layer

behave like a two dimensional lattice and that conditions which govern the

dynamics and steady states of real equilibrium lattices apply in this analogous

nonequilibrium system. We have also shown a nontrivial effect of friction

on the properties of patterns, and such an effect could be useful in judging

friction collision models in granular kinetic theories. Whether such concepts

and predictive criteria can be applied to other nonequilibrium systems is an

interesting and open question.

We note that a study of melting in the lattice should include develop-

ment of the FM techniques to create a more thermal type of heating of the

lattice, such that power is distributed equally in every mode. It would be inter-

esting to study the defect creation under such forcing, looking for 2D melting
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transitions such as those predicted by the theory of Halperin and Nelson [85].

5.3 Temporal frequencies of the modes
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Figure 5.9: The temporal frequencies of the resonantly excited modes. In
the top panel, the grayscale represents the frequency of the excited mode, fL.
The bottom panel plots the frequency of the resonantly excited mode along
a cut through both resonance peaks, ◦. The frequency at the edge of the
the Brillouin zone, fBZ is also plotted, � for a range of the data to show the
dependence of fBZ on system parameters.

The resonance diagram of Fig 5.6 shows that the lattice is excited in

two main resonance peaks. In peak I, the short wavelength Brillouin zone
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mode is excited and in peak II, a longer wavelength mode is dominant. In

Figure 5.9 we plot the corresponding temporal frequencies of the modes excited

throughout the parameter space. The grayscale indicates the frequency of the

most dominantly excited mode and shows that the Brillouin zone modes of

peak I have frequencies of about 2.5 Hz, while the longer wavelength modes in

peak II have frequencies of about 1.5 Hz. The white line is a cut which passes

through resonance peaks I and II and the values of the frequency along the

cut are plotted in the lower panel, shown by the ◦ symbol.

For data in the middle range of the cut, we were able to find the fre-

quency at the edge of the Brillouin zone, fBZ , and this is also plotted in the

lower panel (�). As expected, in peak I, the most dominant excited mode has

the frequency of the Brillouin zone mode. However, as in the wavevector plot

in Fig 5.6, near 26 Hz the dominant mode is no longer at the edge of the Bril-

louin zone and as shown in Fig 5.9 begins to deviate from fBZ . We emphasize

that the important feature of the curve is the maximum value of fBZ at around

26 Hz. This indicates that the spring constant of the lattice elements reaches

a maximum, and a theory of the normal modes should predict the shape of

this curve.

5.4 Frequency modulation and parametric resonance

In this section we present more results from the frequency modulation

experiments.

We frequency modulate the container drive frequency by applying a
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signal to our shaker of the form in Eq 5.1. Shaking at a particular fd and

Γ, we apply the modulation at a specific rate frequency, fmr (rate) and span

frequency, fms (span) and wait a number of cycles (≈ 1000) for transients to

decay away. We then take a time series of images and apply the techniques

described in the previous section to extract the dominant spatial and temporal

modes of the pattern. To summarize our results, we find that a signal with a

fixed fmr excites a normal mode with temporal frequency of fmr/2 indepen-

dent of fms. The normal mode excited has a wavevector determined from the

dispersion relation of the crystal at the particular fd and Γ. We find the the

response occurs in a tongue centered on approximately fBZ/2 whose width

increases as fmr increases.

5.4.1 Temporal response

Figure 5.10 shows the temporal response of the lattice for a fixed fmr,

found by Fourier transforming in both space and time and integrating over

(kx, ky). A forcing frequency of fmr excites oscillation with dominant response

at exactly fmr/2.

Subharmonic response is found in a a tongue centered approximately

around fBZ/2 shown in Figure 5.11(a). Figure 5.11(b) shows the measured

response near the bottom the tongue, with the integrated power in the fmr/2

peak after background subtraction plotted as grayscale pixel for a given fmr

and fms. For fms < 0.1 Hz, there is no subharmonic lattice response; as fms

is increased, a threshold is crossed, and the lattice oscillates in a mode with
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Figure 5.10: The temporal response of the lattice under frequency modulation
at fd = 32 Hz and Γ = 2.90. The imposed rate frequency is fmr = 3.70. The
strongest response occurs at one half of the imposed rate frequency. The other
peaks shown are the harmonics of the fmr/2 response.

temporal frequency fmr/2, independent of fms. This threshold is a function

of fmr, and the width of the tongue in fmr is an increasing function of fms.

When fms is large enough, the amplitude of oscillation of the mode becomes

large and the underlying lattice may be destroyed. As shown in the grayscale

of the figure, within the tongue, the power absorbed by the lattice decreases

with increasing fmr for a fixed fms, and is an increasing function of fms for

fixed fmr.

5.4.2 Spatial response

We now examine the spatial response to the imposed modulation–the

real space representation of the modes found in Section 2. A few modes are
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Figure 5.11: (a) The resonance tongue for fd=32 Hz, Γ = 2.90. Subharmonic
response is found inside the tongue and the width of the tongue increases with
increasing fms. For fmr ≈ 3.0 above fms ≈ 4.0 the crystal order is destroyed.
(b) Detail of the lower section of the tongue. The grayscale intensity for each
pixel represents the integrated power in the response at a given fmr and fms

after background subtraction.

shown in Figure 5.12. As expected, for a fixed fms, as fmr is increased, the

wavenumber of the excited mode increases. Also shown is a schematic which

demonstrates the relative motion found in different modes. As before, the

modes are excited at wavevectors at π/4 to the lattice direction, the [11]T

modes.

In Figure 5.13, we plot the measured wavevectors vs. fmr/2 to compare

to the form of the dispersion relation found in Figure 5.13. However, from

Figure 5.11, we see that the number of modes capable of being excited is a

function of fms. Thus, the range in wavevectors which can be probed (the

extent of the dispersion curve) is a function of fms. This is a limitation of
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Figure 5.12: (a) and (b) are images taken at fd=32 Hz and Γ = 2.9 under
frequency modulation for constant fms = 4.0 Hz and increasing fmr, where (a)
fmr = 1 Hz, (b) fmr = 2.25 Hz. The wavenumber of the mode increases with
increasing fmr. To the right of each picture, a schematic shows the relative
motion of the rows of the crystal in the given mode. The mode shown in (c) is
never excited over the range of fms and is an image of the lattice in resonance
peak I, with Γ = 2.65 and fd = 21 Hz.

the excitation technique as we discuss below. The dispersion curves found for

two different fms are shown in Figure 5.13. For low fms, all of the points fit

a dispersion relation which is in good agreement with that by natural forcing
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(see Section 5), but that at larger fms there is significant deviation for fms near

the center of the resonance band for a fit to the same dispersion relation. We

propose that this is because at these fmr, (inset in Figure 5.13), the amplitude

of the amplitude of oscillation is large compared to the lattice spacing and

may distort the perfect crystal lattice; at such large amplitudes, it is unclear

whether the response of the lattice is linear.
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Figure 5.13: Dispersion relations produced by excitation at (a) fms = 1.0 Hz
and (b) fms = 4.0 Hz for fd = 32 Hz and Γ = 2.90. The range of modes
excited is a function of fms and is seen to increase with increasing fms. The
insets show a snapshot of the lattice. Note that the largest deviation from the
harmonic fit occurs at the point of large distortions of the lattice.

5.4.3 Discussion of parametric resonance

The presence of a resonant tongue and subharmonic response is typical

of systems that are parametrically forced, and the excitation of the lattice by

frequency modulation may have features in common with a Mathieu equation

modified to include spatial dynamics that has been studied by Rand [149].
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We propose that the parametric forcing results from changes in the effective

spring constant (fBZ) due to changes in fd.

Using the frequency modulation technique, we have been unable to

excite the highest mode of the lattice. We believe that this is a combination

of two factors: Since the sides of the resonance tongue are very steep, we must

apply large fms in order to excite the modes near the edge of the Brillouin zone.

However, if fms is large enough, the exciting waveform becomes significantly

different from sinusoidal and can no longer produce the underlying square

pattern.

For a given fmr, the lattice always oscillates at exactly fmr/2; this

locking is responsible for the spread in the points in Figure 5.13–the same

spatial mode can be excited in a range of temporal frequencies. We hypothesize

that dissipation is large for each mode: if dissipation were low, at low forcing

amplitude (where nonlinear detuning effects are small) each mode would have a

sharply defined resonant frequency. Dissipation tends to broaden such response

and thus allow locking at exactly fmr/2 for any fmr.
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5.5 Oscillatory behavior in deep layers

5.5.1 Lattice oscillation in deep layers

The oscillations of the lattice are not specific to shallow layers, but

manifest in deeper layers as well. We have observed that for square patterns,

at a given Γ and fd, the Brillouin zone frequencies, fBZ decrease as layer depth

increases although no systematic study has been undertaken.

As the depth increases, the number of grains that form each peak in-

creases, and effects of the height of the peak can become important. For thin

layers, the peaks move as a single unit and the lattice element approximation

is quite good. However, for deep layers, the peaks can become so large that

the tips execute significant motion. A snapshot of a peak in a deep layer with

a moving tip is shown in Figure 5.14.

We observe that the lateral motions of the tips of the peaks are in-

duced by the lateral normal mode motion of the base of the peak. Shown in

Figure 5.15 are two images taken in 15 layer bronze particles, taken one lat-

tice mode oscillation apart. The dashed arrow indicates the transverse lattice

motion of a particular (1, 1) row. Clearly visible are the tips of the peaks–

when the lattice mode is at a maximum in amplitude, the tips point in the

opposite direction. Thus the tips execute a flopping motion that is exactly out

of phase with the normal mode oscillation of the base of the peak. We note

that the elements near the boundary are pinned and do not execute transverse

oscillation.
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Figure 5.14: A zoom showing that the peaks bend quite dramatically at the
maximum lattice oscillation amplitude. Γ = 3.0, fd =??, N=15.

Figure 5.16 further demonstrates that the tip flapping is slaved to the

normal mode oscillations of the square patterns. In (a), the system is detuned

from the resonance and the positions of the tips of the peaks do not deviate

significantly from the position of the base. However, when the system is tuned

to a normal mode resonance, the peaks of the peaks execute a strong flapping

motion.

5.5.2 Oscillation of 1-d stripe patterns in deep layers

Briefly, I describe a rather surprising pattern which seems to act like a

one-dimensional lattice. This was observed in 25 layer 165 µm bronze spheres.

As shown in Figure 5.17, the stripe pattern oscillates in an optical mode
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Figure 5.15: A time sequence of images spanning one normal mode lattice
oscillation, showing the motion of the top of the peak tied to the pattern
oscillation, Γ = 3.0, fd =??, layer depth=15. The large dashed arrow indicates
the motion of the (1, 1) row while the smaller arrows indicate the motion of
the tips of the peaks.

like that seen in the experiment on falling liquid columns. This oscillation

occurs at fd/4. This is an example of a (1, 0) mode and is surprising, as this

compressional mode is never seen in the two-dimensional lattice patterns. It

may be due to the softening of the effective compressional springs between row

elements. When Γ is increased slightly, the roll acts like a set of coupled strings.

The observation of the optical mode indicates that a Coullet type argument

might be useful in describing the dynamics of these stripe patterns [33]8

8Oscillatory behavior of the string-type has been observed in roll patterns in Rayleigh-
Bénard convection in CO2 by Karen Daniels – private communication.
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a) b)

Figure 5.16: The tops of the peaks do not oscillate coherently when the system
is detuned from a resonance. (a) The system is detuned from a normal mode
resonance, Γ =??, fd =??. (b) Tuning to the resonance excites the motion of
the tips of the peaks. Γ =??, fd =??, layer depth 15.
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Figure 5.17: Top panel: Stripe patterns taken two plate oscillations apart.
Bottom panel: A time sequence of stripe patterns in 25 layers, Γ = 3.65,
fd=27 Hz. The entire length of the stripes vibrates in an optical mode. The
space-time diagram is calculated by plotting a row of pixels (in the middle of
the box, perpendicular to the roll) as a function of time and shows the fd/4
optical mode oscillation. The time series was taken at fd/2.

144



Oscillation 
periods

0

20

30

40

0 T

Figure 5.18: Top panel: Same as the previous Figure, but Γ is slightly higher.
The amplitude of oscillation is larger and the mode develops a transverse
structure: Different points on the roll expand and contract out of phase and
this repeats every four oscillation periods. Bottom panel: Space-time diagram
for a row of pixels perpendicular to the roll
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5.6 Comparison with previous Work

5.6.1 Square patterns

The most detailed work on nonequilibrium square patterns has been

done in a vertically oscillated container of liquid — the Faraday instability.

Lattice dynamics of the type described above is not seen in this system. As the

container acceleration is increased, the square patterns become time depen-

dent due to defect creation; for large enough forcing amplitude, a large amount

of defects are created and the pattern becomes spatio-temporally chaotic as

shown in Figure 5.19. Several groups have studied these transitions and found

that the defects are created due to a transverse amplitude modulation instabil-

ity [29, 40, 59, 178, 199]. It was found that the disordering of the pattern does

not occur through a two-dimensional melting scenario like that described by

Halperin and Nelson [85]. Could the Lindemann criterion describe this melt-

ing? Although the “peaks” in the Faraday pattern are not as localized as the

peaks in the granular square pattern, it would be an interesting to determine if

the elements of the Faraday pattern interact similarly to the waves described

in this chapter.

5.6.2 Secondary instabilities of one-dimensional patterns

We have shown that phase disturbances of square patterns in a shaken

granular layer propagate in an oscillatory fashion. However, most patterns

studied in nonequilibrium systems show diffusive behavior [35]–perturbations

to the local phase of the pattern relax according to phase diffusion equations.
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Figure 5.19: Images of capillary wave patterns in n-butyl alcohol for four
driving amplitudes ε = (A−Ac)/Ac, where Ac is the threshold for waves. The
region shown, about 20% of the cell is 3.5x3.5 cm2. From [178].

We now discuss other systems in which propagating phase dynamics have been

seen. We emphasize that the dynamics seen in our square patterns are unique:

while other groups have reported bifurcations to secondary oscillatory insta-
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bilities with a specific wavevector modulation of a one-dimensional pattern,

the lattice patterns act like a coupled array whose dynamics is governed by a

dispersion relation that contains all possible lattice modulations.

Most of the systems for which oscillatory behavior has been observed

are one-dimensional: these systems form patterns in which the “elements”

collectively oscillate in a mode or many modes. A good example of a nonequi-

librium system that displays oscillatory dynamics is the Taylor-Couette system

studied by Wu et al. When a sudden perturbation was applied to one end of the

container, propagating phase perturbations to the Taylor rolls were seen [197].

Analysis revealed a coupled set of phase equations which had damped oscilla-

tory solutions [21].

In an experiment on falling liquid columns, Wesfried [64–66] found that

the columns would spontaneously begin to oscillate in a particular mode (the

so-called optical mode) as the distance between the columns was changed

beyond a critical value, as shown in Figure 5.20

Such spontaneous oscillation in a particular mode has also been seen

in an annular Faraday system [48], in a narrow Rayleigh-Benard system [50],

and in viscous fingering experiments [131].

A theory which classifies the types of secondary instabilities of one-

dimensional patterns has been advanced by Coullet and Iooss. It is based on

symmetry arguments and predicts ten possible types of secondary instabili-

ties [33]. They find that the oscillatory modes can either have a wavelength
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Figure 5.20: Array of liquid columns observed below a horizontal cylinder
along which a liquid is flowing from top to bottom at a constant rate. Inset:
space-time diagram of the array of liquid columns for fixed boundary conditions
(optical mode). From [66].

twice the roll space, or a period irrationally related to the base wavelength. It

would be interesting to determine whether this theory can be extended to two-

dimensional patterns as work has been done to classify the possible secondary

bifurcations of square patterns [96].

However, we find that our experiment does not fall into this classifica-

tion scheme, as we can excite all modes of the square lattice. Furthermore, the

modes of the lattice are excited resonantly, thus a theory of bifurcation is prob-

ably irrelevant. However, the “optic mode” oscillations of the stripe pattern
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are effectively one dimensional and may fall into the classification scheme.

5.7 Open questions

We have shown that a pattern generated in a layer of vibrated granular

material displays behavior associated with a collection of localized interacting

elements (lattice elements). There are many open questions in this study, and

here we address some of them.

1. What mechanism is responsible for an effective potential between

the lattice elements? Any proposed mechanism should address these two other

questions: Why are the modes seen only in the π/4 direction? What sets the

frequency at the edge of the Brillouin zone, and why is it so much smaller

than the natural drive frequency of the container? The dependence of mode

frequencies on layer depth should also be addressed.

2. Where do the resonances in the natural response come from and by

what resonance mechanism can a system which is vibrating at fd excite a mode

which oscillates with a frequency which is an order of magnitude smaller? A

satisfactory explanation of the resonance should explain the excitation of the

kBZ mode in resonance one, and the sudden jump to a mode of roughly twice

the wavelength.

We note that the mode seen in resonance I is very difficult to excite

using the FM due to the steepness of the tongue as a function of fms, but

is easily excited when Γ and fd are tuned to the parameters near resonance
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I. This implies that the mechanism of excitation in the resonance is different

than a frequency modulation.

3. Is an approach which treats a pattern as a collection of elements

(lattice elements) useful, and can it address questions which an amplitude

equation formalism cannot? Can it be treated in an amplitude equation for-

malism? There is a general theory of secondary instability on cellular patterns

due to Iooss and Coullet [33] which uses symmetry arguments to predict bi-

furcations to instabilities at twice the wavelength of the underlying pattern.

The fact that we see such a mode may be coincidence, and this mechanism

seems unlikely, as it predicts a bifurcation, and we see a resonance. Is there

a feature of the pattern we can explain with a lattice dynamics model which

could not have been explained using amplitude equations? The fact that we

can make a prediction about the stability of a nonequilibrium pattern using a

melting criterion from lattice dynamics is a sign that this approach could have

merit.

4. Effectively, the lattice patterns produce a reduction of the partial

differential equation describing a hydrodynamic field (the waves) to a coupled

set of ordinary differential equations describing concentrated regions of the field

(the lattice elements). Can such a property be derived for wave phenomena in

general, or does it rely on the fact that the density field of the square pattern

has steep gradients?
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Chapter 6

Wavelength evolution, noise induced patterns,

phase discontinuities, and segregation in

vibrated granular layers

The chapter deals with several different phenomena in vibrated granular

layers. The first section studies the evolution of the wavelength of a pattern

following a sudden change in Γ from below to above onset. The second section

examines fluctuations in the layer below the onset of patterns. The third

section describes phenomena associated with phase discontinuities present at

higher Γ.

6.1 Wavevector selection and evolution after a quench

6.1.1 Introduction

Building on our studies of the time evolution of disorder in patterns in

Chapter 4, in this section we investigate the behavior of the average wavelength

of the pattern after a sudden change in Γ. Γ is changed from below a flat state

below the onset of patterns to above onset at constant fd. Examples of the

type of sequences we will analyze are shown in Figure 6.1. We will show that

evolution of the wavevector following a quench in Γ is a consequence of a

fluidization of the layer.
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The question of asymptotic wavevector selection is an important one in

pattern formation in nonequilibrium systems and no clear cut criterion works

for all cases. The most linearly unstable mode controls the wavevector very

close to onset, but further from the bifurcation, no theory has been devel-

oped [35].

6.1.2 Evolution of the wavevector–observations

All of the experiments we will present monitor the average wavevector

q0 as a function of time following a jump from Γ = 2.2 to a final value of

Γ. The jumps are done at constant fd and images are recorded at either fd

or fd/2. We also verified that the phenomena described did not depend on

the initial state. The acceleration of the plate is also monitored during the

experiment and this allows precise determination of the initial quench time.

Also, perturbations of the acceleration due to the impact of the layer with the

plate are used to characterize the average dilation of the layer as function of

time. We will discuss acceleration data later in this section.

To determine q0 of the pattern, each image is Fourier transformed and

the azimuthal average is computed. The region above the half maximum of

intensity in the main peak in the azimuthal average is fit to a Gaussian and

we define q0 as the mean of the Gaussian. Fourier transforms and azimuthal

averages for two time sequences are shown in Figure 6.1 1.

1We note that a broad peak in the power spectrum is visible even below onset and we
will discuss the significance of the peak in Section 6.3
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Figure 6.1: The time evolution of pattern after sudden change in control pa-
rameters for two different frequencies. For a given frequency, the columns
correspond to an image of the granular layer, the modulus of the Fourier
transform of the image, and the azimuthal average of the Fourier transform.
For (a) 4 layer, fd = 33 Hz, Γ = 2.2 → Γ = 3.0, q0 decreases with time, while
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dashed vertical lines are to guide the eye and represent the asymptotic value
of q0. The time units are in plate oscillations.
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to final Γ for constant fd. In each panel the fd, N , and initial ṽ of the
jumps are (a) 27 Hz, N=4, ṽ = 3.16 (b) 33 Hz, N=4, ṽ = 2.59 (c) 40 Hz,
N=7, ṽ = 2.13 (d) 49 Hz, N=7, ṽ = 1.74. Each panel shows jumps to in-
creasing final Γ and final ṽ denoted by symbols ◦, �, �, ∗, with the final Γ:
(a) (2.65, 2.70, 2.95, 3.18), (b) (2.55, 2.58, 3.10, 3.40), (c) (2.75, 3.20, 3.35, 3.8),
(d) (2.48, 2.60, 2.85, 2.98) and the final ṽ: (a) (3.81, 3.88, 4.24, 4.56), (b)
(3.0, 3.03, 3.64, 3.99), (c) (2.67, 2.68, 3.10, 3.24), (d) (1.96, 2.06, 2.26, 2.36).

Figure 6.2 shows the time evolution of q0 for different values of fd

and Γ plotted on log-log scales. We observe that for low fd (Figure 6.2a),

q0 is monotonically decreasing during the first 10-20 oscillations. For large

fd (Figure 6.2d), q0 typically increases. We will argue that this difference in
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behavior is due to the fluidization of the initially flat layer.

For intermediate values of fd, we find that for low Γ, q0 increases with

time. As Γ is increased, q0 begins to decrease as a function of time, and the

rate of decrease of q0 with time increases for increasing Γ. However, the Γ at

which this crossover occurs is a function of fd. For example, at fd = 33 Hz

(Figure 6.2b), we find that q0 increases for Γ < 3.0 and decreases for Γ > 3.0.

A similar behavior is seen Figure 6.2c for fd = 40 Hz, but there the crossover

occurs at Γ ≈ 3.3.

We have observed that both crossover points occur when the nor-

malized collision velocity between the plate and the grains at the final Γ,

ṽ = (2πAfd)/
√

Dg reaches a value of ṽ ≈ 3.0. Here A is the amplitude of

oscillation of the plate, D is the grain diameter and g the acceleration of grav-

ity. The values of ṽ for a given jump are given in the caption of Figure 6.2.

ṽ is a parameter which has been shown to correspond to a transition in grain

mobility within the layer [180]. For ṽ > 3.0, the collision velocity between the

layer and the plate is large enough to dilate the layer enough to allow grains

to slip past each other in the horizontal direction during some portion the

oscillation cycle. Thus the layer is fluidized for some fraction of the cycle and

the waves are hydrodynamic-like. These are typically low frequency waves and

follow the dispersion relation shown in Figure 6.3, with q0 ∼ f
4/3
d .

For ṽ < 3, plate does not impact the layer with a large enough collision

velocity to dilate the layer significantly and the grains are unable to move

past each other in the horizontal direction. The layer does not fluidize and
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Figure 6.3: Dispersion relation taken for fixed Γ at constant particle size and
varying particle depth obtained in [180]. The different symbols represent dif-
ferent dimensionless layer depths, N = h/D, where h is the layer depth and
D is the grain diameter. The fit is to λ∗ ≡ λ/h = 1.0 + 1.1(fd/

√

h/g)−1.32.

Thus, q0 = 2π/λ ∼ f
4/3
d . The inset show the deviation of the data from the

fit.

157



instead acts like a weak solid—the excited waves are bending motions of the

solid. These are non-hydrodynamic excitations of the layer and the dispersion

relation for q0 deviates from the f
4/3
d scaling. This is seen in the residual plot

in the inset. As the frequency is increased, ṽ decreases and the fit no longer

represents the data.

To investigate the role of ṽ after the jump on the evolution of the

wavevector, in Figure 6.4 we plot the average slope in the initial scaling region

as a function of ṽ for all data sets . As ṽ increases, the value of the average

slope decreases until it reaches 0 at approximately ṽ = 3. For large ṽ, the

average slope has a value of roughly −0.3. We hypothesize that the crossover

in the slope of the evolution of q0 shown in Figure 6.4 occurs at ṽ = 3.0 due

to changes in nature of the supported waves: for jumps such that the final

ṽ > 3.0, the layer undergoes a fluidization process, becoming dilated enough

to support sloshing hydrodynamic waves. For a final value of ṽ < 3.0, the layer

does not dilate enough to fluidize. Therefore, we propose that the evolution of

q0 should be strongly influenced by the time-fluidization of the layer and we

now use the accelerometer data to study the transient fluidization.

6.1.3 Fast fluidization of the layer after a jump

In figure 6.5, we present the accelerometer signal of an accelerometer

attached to the plate recording during the jump for fd = 33Hz for a jump

from ṽ = 2.6 to ṽ = 3.5. The accelerometer signal is almost sinusoidal but

because of the finite mass of plate, perturbations are present. When the layer
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N = 4, 27 Hz, (•) N = 4, 33 Hz, (�) N = 7, 40 Hz, (+), N = 7, 49 Hz

impacts the plate, the collision creates a spike in acceleration. We find that

the spike can excite the high frequency modes oscillatory ”ringing” modes of

the container. We discuss our interpretation of the ringing below.

In Figure 6.6, we plot the accelerometer signal for single cycles 100

cycles before and 500 cycles after the jump in acceleration. The left column

shows a jump from below ṽ = 3.0 to above ṽ = 3.0, while the right column

shows a jump from below ṽ = 3.0 to below ṽ = 3.0. The patterns that form
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Figure 6.5: The acceleration of the container during a jump in acceleration.
fd = 33 Hz, Initial Γ = 2.2, final Γ = 3.0

from the jumps are shown in Figure 6.1.

We examine the structure of the perturbation: For both cases, below

the onset of waves the perturbation signal consists of a large spike followed by

a high frequency ringing of the plate. Above onset, there is a difference. For

the case where the final ṽ > 3, the ringing is not present. When the jump

is made so that the final ṽ < 3, the ringing persists asymptotically. This is

revealed in the Fourier spectra of the subtracted signal shown in Figure 6.7.

The ringing mode of the plate has frequency of roughly 1 kHz.

We propose that the compact unfluidized layer below ṽ < 3 hits in a

sudden impact, with a short collision duration. The impact is sharp enough

to cause the plate to ring at its natural frequency. The impact of the more

dilated fluidized layer for ṽ > 3 occurs over a longer time and may also damp

the oscillations of the plate. The result is that the fluidized layer impact does
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column:fd = 33 Hz, Γ = 2.2 → Γ = 3.0, ṽ = 2.6 → ṽ = 3.5 (fluidized layer),
Right column:fd = 49 Hz, Γ = 2.2 → Γ = 3.0, ṽ = 1.74 → ṽ = 2.4 (layer not
fluidized)

not cause the plate to ring.

Since the ringing of the plate characterizes the fluidized state of the

layer, we will use this signal to study the evolution of fluidization of the layer

during the quench.
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Evolution of fluidization

To make correspondence between the evolution of the wavevector and

the rapid fluidization of the layer, we plot a time series of the impact event in

Figure 6.8 for jumps above and below ṽ = 3.0. There is a marked difference

in the evolution of the perturbation. Above ṽ = 3.0, the spike quickly spreads

out, and the ringing stops within a few cycles indicating that it rapidly becomes

fluidized. Below ṽ = 3 the ringing never decays. We emphasize that patterns

like those in Figure 6.1 form in both experiments.
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We propose to characterize the fluidization process by measuring the

integrated area under the 1 kHz peak. The evolution of the fluidization process

is plotted in Figure 6.9. For the jump with ṽ > 3, the power in the 860 Hz
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mode quickly decays away, reaching the noise floor. In the jump with ṽ < 3,

the power decays initially and then remains a constant value.
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Figure 6.9: The integrated power in the 1 kHz ringing mode for a jump to
ṽ = 3.5, ◦, and to ṽ = 2.4 •. The parameters of the jumps are the same as
those in Figure 6.6.

We have demonstrated that the layer fluidizes during the jump and we

use this idea to propose a mechanism for change in q0 as a function of time.
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6.1.4 Proposed mechanisms for wavevector evolution

Here we discuss two possible explanations for the time evolution of q0

and give a possible argument for the scaling of the wavevector as a function

of time for ṽ > 3.

Fluidization changes wavevector

We propose that the evolution of the wavevector is governed by the how

the material properties of the layer change with time. Since the properties are

strongly dependent on the state of fluidization of the layer, there should be

a dramatic difference for the evolution of q0 between jumps to ṽ > 3 and

jumps to ṽ < 3 and this difference is clear from the scaling exponent shown in

Figure 6.4.

Jumps to ṽ > 3

Figure 6.10 shows a jump for ṽ > 3. The wavevector stops decreasing

after the layer is fluidized.

Figure 6.11 shows the picture we get from the previous section. We

propose that the transient fluidization process studied in the previous section

for ṽ > 3 sets the effective hydrodynamic fluid depth as a function of time: as

the amplitude of the pattern increases, it fluidizes the rest of the layer.

Since the wavevector of the pattern is a function of the depth of the

layer, h = ND (Figure 6.3), as the depth changes, so should the wavevector.

Below onset Γ = 2.5, only the surface layer of the grains is fluidized for all ṽ
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ṽ = 3.5 at 33 Hz. q0 (◦) decreases until the layer is fully fluidized as measured
by the integrated power in the 1 kHz ringing mode (�). A measure of the
amplitude (•) of the pattern increases and reaches a peak before the layer is
fully fluidized.

and this should set the highest wavevector in the problem. In fact, we have

determined that there is a length scale for the fluctuations in the surface layer.

We return to this phenomenon when we study noise below onset, section 6.3.

Qualitatively this argument makes sense: from the dispersion relation
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Figure 6.11: A schematic of the process of a jump with ṽ > 3, showing how the
effective fluid depth grows in time as the amplitude of the pattern increases.
The wavevector decreases with increasing fluid depth.

in Figure 6.3, for ṽ > 3, as h increases, the wavevector should decrease, in

accord with data for jumps where ṽ > 3.

A tentative argument for the scaling exponent in the decrease of q0,

q0 ∼ t−.33 for large ṽ (see Figure 6.4) can be made if we assume that the

effective depth scales linearly in time, heff ∝ t. From the dispersion relation

in Figure 6.3, above ṽ > 3, the wavevector of the patterns scale like h1/3, where

h is the depth of the layer. If we assume, h = heff , during the fast growth

stage then q0 ∝ t−1/3. Figures 6.2 and 6.4 show that for large enough ṽ, the

data is consistent with this scaling. In fact, we see from Figure 6.10, that the
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amplitude of the pattern has reached its maximum before the entire layer has

fluidized. Thus, subtle changes must occur in the fluid properties of the layer

in the final few oscillations of wavevector change.

Jumps with ṽ ≈ 3

Jumps close to ṽ = 3, see Figure 6.2b, are more complicated and may

evolve non-monotonically. We do not comment on them here.

Jumps with ṽ < 3

Jumps sufficiently below ṽ = 3, show a monotonic increase in q0, and

we propose the following argument to account for this behavior. When ṽ

is increased to a value below 3, although the entire layer does not fluidize,

there is more free volume per grain and the layer is more compressible. This

change in compressibility happens rapidly during the initial growth stage and

a more compressible layer should be able to bend on a shorter length scale.

Thus the wavevector should increase. This is not an explanation, but we feel

that viewing this phenomenon as a rapid fluidization process could lead to

interesting ideas about the nature of granular flow in the non-hydrodynamic,

but agitated region—frustrated waves.

6.1.5 Comparison with Swift-Hohenberg model

The Swift-Hohenberg model (Chapter 4, Equation 4.1) is often used to

gain understanding of pattern formation. In Chapter 4, it was used to study

the behavior of the evolution of order in a pattern. The scaling observed in the

experiment was in good accord with the scaling predicted by SH equation in
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the linear regime. However, the behavior of the changing wavevector described

in this section is in contrast to the behavior of the SH model. In this model, the

wavevector selected by the pattern remains constant in time and has a value of

the wavevector with maximum growth rate (very close to q0 in Equation 4.1),

see Figure 6.12, as expected for a supercritical bifurcation.

Mean flows in amplitude equations

However Cross and Meiron have shown that the behavior of q0 can be

modified by the addition of coupling between the rolls and a mean flow [37].

A different (not SH equation–for the explicit form see [37]) model of pattern

formation was developed to include this coupling. It was found that for no

coupling, the final wavevector had the same value as wavevector of the most

linearly unstable mode. Coupling produced final wavevectors that deviated

from the most linearly unstable mode; as the coupling increased, the average

wavevector deviated further.

In fact, this model seems to capture well the behavior of the data

presented for ṽ > 3. The bulk of the wavevector change comes after the fast

initial growth of the amplitude of the pattern both in the model and in the

data. It also comes after the rapid fluidization transition (see Figure 6.10).

Perhaps the fluidization transition of the layer creates a mean flow, while a

jump below ṽ = 3 does not fluidize and thus cannot create a mean flow. Since

the molecular dynamics simulation can easily visualize flow in the bulk, it

should be able to determine is such a flow is present.
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Figure 6.12: The behavior of the wavevector for a numerically integrated Swift-
Hohenberg model (4). � and ◦ are for a pattern formation model which cou-
ples the rolls to a mean flow. The evolution changes as the coupling changes.
Taken from [37].

6.2 Nucleation in the subcritical region

Pattern formation is quite different when a jump is made into the hys-

teretic region for square patterns(see the phase diagram, Figure 6.13). Instead

of uniform amplitude growth throughout the entire container, the pattern

forms from the growth of nucleation events: locally, small circular regions

quickly (within 2-4 cycles) nucleate and then propagate, invading the rest of

the flat layer, see Figure 6.14. Asymptotically, the pattern reaches a perfect

array of squares.
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Figure 6.13: Phase diagram for 4 layers showing subcritical behavior at low
frequencies. The bifurcation to hexagons for increasing Γ is drawn for reference

We have observed similar pattern formation by local nucleation in a

Swift-Hohenberg equation modified by the addition of a quintic term,

∂W

∂t
= [ε − (q2

0 + 52)2]W + aW 3 − bW 5 (6.1)

The addition of the term modifies the amplitude diagram, as shown

in Figure 6.15. The bifurcation to the pattern state of rolls is now subcriti-

cal, displaying the hysteresis seen in the shaken layer experiment for square

patterns.

Figure 6.16 shows the integration the modified SH equation (Details of
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Figure 6.14: Nucleation of pattern after a jump into the subcritical region, 27
Hz and Γ from 2.2 to 2.52. The units are in plate oscillations after the jump.
0.165µm bronze particles with N = 4.

the SH simulation are given in Appendix A) with initial condition of spatially

random noise with amplitudes uniformly distributed over a range (−n, n). n

controls the strength of the noise. At t = 0, ε is changed to a value in the

hysteretic region. As in the experiment, the pattern nucleates local circular

regions which spread to fill the entire integration domain. In this case, the

final state is a pattern of rolls.

6.2.1 Discussion

The hysteresis in a subcritical bifurcation can modify pattern formation

in a non-trivial way. Pattern formation in the hysteretic region requires finite
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Figure 6.15: The subcritical bifurcation for Equation 6.1. The solid lines indi-
cate the linearly stable attractors and the dashed line indicates the unstable
state.

amplitude perturbation. Thus, unlike a supercritical bifurcation or a jump

into the non-hysteretic region which proceeds by the growth of the linearly

most-unstable mode, the system must have a noisy initial condition to provide

local regions with amplitude greater than the unstable attractor: these regions

will rapidly amplify and reach the stable pattern branch, while regions of with

amplitude too small do not grow in time. Once the region nucleates, the

pattern grows in a front propagation like that studied in a one-dimensional

Swift-Hohenberg equation. [9]. The rate of nucleation and thus the rate at

which the pattern forms increases as the amplitude of the noise, n is increased.

As seen from these results, in the flat, featureless region of the exper-

iment, we have a noisy initial condition. In the next section we examine this
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Figure 6.16: Nucleation of pattern after a jump into the subcritical region
in a Swift-Hohenberg model. At t = 0, integration is started from a state
with initial noise strength, n = 2.0 (see text for details). Parameters for
Equation 6.1: ε = −.05, b = 3.0, c = 1.0, q0 = 1

noisy state more closely.
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6.3 Noise below onset

6.3.1 Introduction

Patterns form above Γ ≈ 2.5 and for ṽ > 3 some portion of the layer

is fully fluidized throughout the cycle. It has been shown by measuring the

reflectivity of light of the granular surface that in fact the layer undergoes a

fluidization transition at Γ = 2.0. The vibrated layer is in a fluidized state,

but no patterns are visible for 2.0 < Γ < 2.5 [137]. We have explored the

region 2.0 < Γ < 2.5 and find that there are strong spatially inhomogeneous

fluctuations at the surface of the layer. These fluctuations appear random in

individual images, but show a well-defined ring in Fourier space, indicating a

length scale in the noise. We now describe our measurements and comment

on the relevance to hydrodynamic theories of granular materials.

6.3.2 Measurements of noise below onset

The top four panels of Figure 6.17 show images of the granular layer for

increasing values of Γ. Individual grains are clearly visible and fluctuations in

the density are seen which are roughly 10 grain diameters in size. The bottom

four panels of Figure 6.17 show the corresponding structure factors for the

images, computed by time-averaging the Fourier transforms of a sequence of

100 images taken at fd/2. A ring in Fourier space is clearly visible and grows

in intensity as Γ approaches the up-onset value of 2.58.

Figure 6.18 shows the azimuthal average of the structure factors and

in Figure 6.18b we plot the integrated power in the main peak as a function

175



2.2
2.2
 2.5
2.5


2.57
2.57
 2.58
2.58


2.2
2.2
 2.5
2.5


2.57
2.57
 2.58
2.58


Real space

Fourier space

Figure 6.17: (a) Snapshots of the vibrated granular layer below onset of pat-
terns for increasing values of Γ at fd = 29 Hz. Each image is The layer depth
N = 4 of 0.165 mm bronze spheres. (b) The modulus of the Fourier transform
averaged in Fourier space over 100 plate oscillations. Blue to red indicates
increasing intensity. The image at Γ = 2.58 has been scaled in intensity by a
factor of 10. The length scale is the same as that in Figure 6.18.
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of Γ. The intensity of the ring increases as Γ is increased in accord with

the reflectivity measurements measurements of [137] which showed that the

intensity of the fluidized fluctuations increased with Γ.
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Figure 6.18: (a) The azimuthally averaged structure factor for the same values
of Γ in Figure 6.17. For comparison, the curve for Γ = 2.58 has been scaled
by 0.1. (b) The integrated power in the azimuthally averaged structure power
as Γ is increased to the onset value of Γ ≈ 2.58. The value for the power at
Γ = 2.58 is not shown and is 5000.
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Thus, we also find that even below onset of patterns, modes of the top

fluid layer are excited by fluctuations in the local density of the patterns and

we now comment on previous studies in other fluids.

6.3.3 Comparison to convection in CO2

Convection and noise

Our study is analogous to that performed in a Rayleigh-Bénard convec-

tion experiment [196], see Figure 6.19. In Rayleigh-Bénard convection where

non-Boussinesq effects are important, the primary bifurcation is subcritical

and forms hexagonal patterns [17]. Swift and Hohenberg [173] showed that

that the effect of thermal noise could be seen below the bifurcation, essentially

imaging the slowest decaying mode, but the effect was predicted to be unob-

servable due to the small size of kBT relative to the kinetic energy in a roll, a

factor of roughly 10−9.

Noise size and control

The experiments on gaseous convection were a tour-de-force. Since the

noise power was so small compared to the average energy in a roll structure,

to observe the predicted effect of pattern below onset of waves, the control

parameter ε = (Ra − Rac)/Rac had to be controlled to a precision of −10−4

below the bifurcation. In our experiments, the fluctuation induced pattern

can be seen at control parameters (Γ − Γc)/Γc ≈ −10−1 below the onset of

patterns. This indicates that the size of the noise compared to a typical

energy scale in the problem, mgh, is quite large. In fact, it is very clear from
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Figure 6.19: Shadowgraph images of gas convection in CO2. Top 4 panels: (a)
Fluctuating rolls, for ε = −3.0×10−4, (b) Square of the modulus of the Fourier
transform of the image in (a). (c) Shadowgraph image of a hexagonal pattern,
for ε ' 0. (d) Square of the modulus of the Fourier transform of the image in
(c). Bottom 4 panels: Structure factors for increasing −ε (a) ε = −4.2× 10−3,
(b) ε = −1.6 × 10−3, (c) ε = −7.1 × 10−4, (d) ε = −3.0 × 10−4. Images taken
from [196].

the images in Figure 6.17 that individual grains can be seen, and thus can

produce fluctuations in the height of the layer which are comparable to the

depth of the layer.
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Subcritical vs. supercritical

Without non-Boussinesq effects, the bifurcation in Rayleigh-Benard is

supercritical, and the wavelength of the pattern slightly below onset should

be the same as that slightly above onset. In the Ahlers experiments, the pri-

mary bifurcation is subcritical due to unavoidable non-Boussinesq effects which

manifest very close to the bifurcation2. Because the bifurcation is subcritical,

there is no a priori reason that the wavevectors below and above onset should

match. In the granular layer, as seen in Figure 6.20, the wavelength above and

below are quite different. However, this is not unexpected as the bifurcation

is subcritical, see Figure 6.13. A full understanding of the subcritical behav-

ior is not yet known, but should involve fluidization of the entire layer. As

before, below onset, the effective depth is smaller, thus the wavelength should

be smaller. Above onset, the depth is the full depth. As fd increases, the

hysteresis in the bifurcation becomes smaller and the ratio of the wavevector

above onset to that below increases (Figures 6.20 and 6.21). However, there is

the competing non-hydrodynamic effect of the fluidization of the layer above

ṽ. As fd increases at constant Γ, eventually ṽc < ṽ and at this point there

should no relation between the wavelengths above and below onset. Below

would be a small top fluidized layer, outside the ṽ theory while above onset

the wavelength would follow the non-hydrodynamic region of the dispersion

relation. For 0.165 µm particles and assuming onset around Γ ≈ 2.5, this

2Further above the onset where the Boussinesq approximation is valid, the hexagons lose
stability to straight rolls.
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sets the maximum fd for hydrodynamic waves as roughly fd = 32 Hz. From

Figure 6.21, the ratio of the pattern to noise wavevectors is about 0.7, and

from Figure 6.13, we see that the hysteresis is on the order of 1%. These are

much larger than the corresponding quantities in the convection experiment.

Since the hysteresis, and presumably the difference in wavevector, is related

to the effective fluid depth, it would be interesting to study the effect in a

“pre-fluidized” vibrating layer. This could be accomplished by the addition of

a high frequency forcing or by using air to fluidize the layer.

Fluctuations and noise strength–fluctuating hydrodynamics

We speculate that these fluctuations are the analogue of thermal fluc-

tuation present in fluids. These fluctuations occur on timescales comparable

to mean free and length scales comparable to the mean free time, and conse-

quently do not appear in hydrodynamic equations, equations for the evolution

of quantities which change slowly compared to the mean free time and over

length scales much longer than the mean free path. They manifest by creat-

ing spontaneous local stresses and heat gradients in the fluid. To study their

effects, the fluctuations must be re-incorporated into Navier-Stokes equations,

and this is typically accomplished by the addition of a stochastic forcing term

to the Navier-Stokes equations [110]. Using such equations, Rayleigh-Bẽnard

convection can be analyzed around the bifurcation point and analysis shows

that the effect of noise was 10−9 and thus ε should be very small to see the

effect of the noise.
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Figure 6.20: The azimuthally averaged Fourier spectra for images at different
fd, above and below onset of patterns, Γ = 2.40 and Γ = 2.45. q0 of the
noisy state below onset does not vary significantly with fd, while q0 of the
pattern above onset changes by almost a factor of 2. The difference in vertical
scales is a result of the enhanced reflectivity at lower frequencies due to higher
amplitude patterns.

It is a fascinating question how (or whether) such terms should appear

in the Jenkins-Richman equations ( Equations B.2 - B.4 in Appendix B) modi-
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pattern slightly above onset.

fied with stochastic forcing terms like in ??. Since the averaging done to derive

these equations occurs on length scales which are not much larger than the

particle size and/or mean free path, are the fluctuating terms already present?

If not, how should they be put in? The type of experiment described could

provide a resolution to the question of appropriate averaging and separation of

scales which plagues the hydrodynamic theories of granular materials [51, 175].
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6.4 Phase discontinuities and segregation

6.4.1 Introduction

The experiments in this section are mainly experimental verification

and realization of effects predicted in the hard sphere event driven molecular

dynamics (MD) simulations of Sung Joon Moon [135]. In the experiment, we

examine the dynamics of phase discontinuities (regions of the layer which oscil-

late out of phase with each other) in vertically vibrated layers. For Γ < 7.5, the

phase discontinuities are asymptotically stable and form a time-independent

feature of the vibrating layer called a kinks. For Γ > 7.5 localized regions

of the layer can spontaneously change phase. These regions are called phase

bubbles and for sufficiently high Γ they strongly disrupt the layer and create

spatio-temporally chaotic patterns. We will study the stability of patterns

disrupted by the chaotic phase bubble state. In addition, Moon has shown

that a pair of counter-rotating convection rolls exist near the kinks [134]. We

have demonstrated that this convection produces spontaneous segregation of

a vibrating layer composed of different-sized particles.

6.4.2 Kinks

Above Γ ≈ 4.5, the vibrated granular layer develops phase discontinu-

ities in which different portions of the layer oscillate π out of phase. These

portions of the layer are separated by an interface called a kink, examples of

which are shown in Figure 6.22.

The temporal dynamics of the layer can be well described by a single
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Figure 6.22: The degeneracy leads to kinks, Γ = 5.2, fd=40,57 Hz. Layer
depth, N=15

inelastic-ball model [129]. This model predicts that kinks can occur when the

Γ is large enough so that the layer collides with the plate every two oscillations

as shown in Figure 6.23 for Γ = 4.53. This allows some portions of the layer

to collide with the plate while other regions are off the plate. In small enough

container, the entire layer oscillates at f/2, but as soon as there is some

imperfection in the driving, the layer will spontaneously break into two equal

mass portions and this is typically driven by the sidewalls. In fact, the location

of the interface can be controlled by additional subharmonic driving, details

have been studied in [8].

As shown in Figure 6.23, for Γ > 4.5, the layer always skips an oscilla-

3Trajectories calculated from the program that solves the motion of a inelastic particle
falling under gravity and colliding with an infinitely massive oscillating plate. Source code
is given in Appendix D
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Figure 6.23: The calculated trajectories of a single completely inelastic ball for
increasing Γ at fixed fd. Trajectories calculated using the code in Appendix
D.
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tion and thus the degeneracy necessary for kink formation is always present.

In fact, most observed patterns have phase discontinuities present in the form

of stationary kinks, with patterns of different phase occupying the continuous

regions between kinks, see Figure 6.24.

Figure 6.24: The degeneracy leads to patterns with multiple phases, in stripes
with fd = 60 Hz, Γ = 6.2 and hexagons with fd = 67 Hz, Γ = 6.8. N = 15 in
both cases.

Transient kink dynamics

The kinks are asymptotically stable and for a well-balanced experiment

the interface forms a straight line dividing equal mass sections of the layer [8].

This is due to an effective surface tension of the interface and has been shown

to be a consequence of mass flux across the kink [135]. We can see the effects

of surface tension at work in Figure 6.25. Here the system is initially prepared

in a disordered state and rapidly jumped in the kink region. High amplitude
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regions are out of phase with low amplitude regions and become kinks. The

kinks straighten and merge to form a single kink after roughly 103 oscillations.
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Figure 6.25: The kinks straighten and bubbles shrink. A jump from a disor-
dered state at Γ = 9.2 to Γ = 5.2 at fd = 57 Hz, N = 15. The numbers in
each image are in units of plate oscillations.

Generally, small enclosed regions of different phase (phase bubbles)

disappear over several hundred oscillations. However they can merge if they
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are close, forming kinks, and this is shown in Figure 6.26. It is important to

note that these phase bubbles are created by the initial condition. We now

describe bubbles that spontaneously appear and slowly shrink–this process

plays an important role in the order of patterns at higher Γ.
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Figure 6.26: Phase bubbles always shrink, but if they get close enough they
merge. A jump from Γ = 9 to Γ = 4.5 at fd = 118 Hz, N = 15. The numbers
in each image are in units of plate oscillations.
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6.4.3 Phase bubbles

Kinks form due to perturbations of the collision of the layer and the

plate. These perturbations often due to poor leveling of the system and the

kinks usually are initiated at the sidewalls. We have found that kinks can be

suppressed in small containers in which the mass of the layer is much smaller

than the mass of the plate. However, above a critical Γ ≈ 7.5 the layer becomes

unstable to formation of localized phase discontinuities (phase bubbles) in the

bulk of the layer. Phase bubbles differ from normal kinks in that they are

not only created by the boundaries or imperfections in levelling. Moon has

shown that a phase bubble forms because for large enough Γ, the layer bottom

develops large length scale undulations. The amplitude of the undulation can

grow during flight of the layer and when a portion of the layer hits the plate

before another portion, a phase bubble is nucleated. He has shown that phase

bubbles are more numerous as Γ is increased and experiments confirm this as

seen in Figure 6.27. The phase bubbles nucleate with a finite size and as in

the above section, they shrink over several oscillations [135]. However, as Γ is

increased, the rate of nucleation becomes quite large and the phase bubbles

form complicated time dependent labyrinth pattern.

Spontaneous phase changes are seen in the inelastic ball model (IEB),

Figure 6.28, in a narrow region where the temporal dynamics are chaotic.

It may be coincidence that the phase bubbles seen in the experiment begin

at roughly the point where chaos begins, around Γ ≈ 7.5. However, phase

bubbles are seen well above this region, where the model predicts non-chaotic
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Figure 6.27: Phase bubbles destroying f/4 hexagons as Γ is increased. Γ =
6.9, 7.27, 7.29, 7.56, f = 78 Hz, N = 10 layers

dynamics.

In fact, in the experiment, stable patterns are never seen above the

phase bubble onset. Instead, as Γ is increased, the rate of phase bubble nucle-

ation increases. At some point a time-dependent, disordered state of connected

kinks and phase bubbles forms, shown in Figure 6.29. It is not yet known if

there is a bifurcation between the phase bubble states and this strongly dis-

ordered state. Either way, such complicated time-dynamics of the layer is not
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Figure 6.28: Time between collisions for the single inelastic ball model, calcu-
lated using the code in Appendix D.

present in the IEB model. Above Γ ≈ 8.0, the IEB model predicts that the

layer should oscillate at fd/3, see Figure 6.23 and Figure 6.28. If we use lower

Γ behavior as a guide, we would expect to see flat or pattern states oscillating

at fd/3. It has been proposed [135] that the disruptive spontaneous formation

of phase bubbles prevents formation of f/6 patterns Γ > 8.0: the random

appearance of phase bubbles disrupts the coherent oscillation necessary for

formation of the pattern. It was proposed that the inelastic ball model fails

because it does not take into account the dynamics of the layer due to its

thickness. The IEB models the center of mass motion of the layer and cannot
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account for large spatial deviations which are present at the higher Γ [135].

Figure 6.29: A snapshot of a disordered pattern at Γ = 9.2 and fd = 90 Hz,
N = 15.

6.4.4 Transient fd/6 patterns

We emphasize that in the experiment in large aspect ratio containers,

there is no bistability between ordered fd/6 patterns and the chaotic phase

bubble/connected kink state. This is in contrast to the bistability between

the straight roll and spatio-temporally chaotic spiral defect chaos (SDC) states

seen in Rayleigh-Benard [23]. The phase bubbles are always seen in the gran-

ular system at sufficiently high Γ. However, we have found that fd/6 patterns
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can exist as transients, which are soon destroyed by phase bubbles. We now

describe these experiments.

00 2626 3232

4646 5050 7070

8080 105105 159159

Figure 6.30: Transient growth and decay of square patterns oscillating at f/6.
At t = 0, Γ is increased from 2.2 to 9.2 at fd = 83Hz, N = 15.

The following prediction was made and verified in the experiment: The

fd/6 patterns are never seen due to the disruptive phase bubbles. The insta-

bility of the layer which creates phase bubbles is due to the growth of local

194



height inhomogeneities at the bottom of the dilated layer. Thus, if these in-

homogeneities can be suppressed, no spontaneous phase jumps will occur. It

was predicted that an fd/6 pattern could be seen by the following method.

Prepare the layer in a compact initial state with a very flat bottom interface

and then suddenly jump into the region where the layer should oscillate f/6.

The f/6 oscillation will occur until the undulation of the bottom of the layer

has time to grow and create phase bubbles. Thus, fd/3 pattern should persist

until the pattern is overwhelmed by phase bubbles.

This process was observed in the experiment, as seen in Figure 6.30.

The layer was prepared below the onset of patterns at fd = 83Hz and Γ = 2.2

and Γ was suddenly increased to Γ = 9.2 keeping fd constant. An initial

square pattern vibrating at f/6 grows in amplitude from a flat layer vibrating

at f/3. The pattern begins to coarsen to create a more ordered pattern, but

after several hundred oscillations, local phase disturbances have destroyed the

pattern, leaving a state of labyrinthian phase bubbles 4. A close-up of the

decay of the fd/6 pattern is shown in Figure 6.32. We note that for fd = 83,

a transient square pattern is seen. 5 To verify that the oscillation occurs at

fd/3, in Figure 6.31 we plot the variance of the image as a function of time.

The variance is large when a pattern is present and small for a flat layer.

The inset shows the Fourier spectrum of the variance, with a peak at exactly

fd/6. Thus, we conclude that the predictions of the inelastic ball model are

4In addition, a kink from the boundary helps to destroy the pattern
5At higher fd, we have observed the formation of transient stripe patterns analogous to

the behavior of fd/2 and fd/4 patterns.
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Figure 6.31: Main Figure: The variance of each images in the time series in
Figure 6.30 plotted as a function of plate oscillations. Since the images were
collected at fd/2, the variance reaches a local maximum every 4 frames. As
the schematic shows, this indicates that a complete pattern oscillation occurs
every 6 plate oscillations, at fd/6. The inset is the power spectrum of the
variance.

still good, but the model fails to capture the extra dynamics of the layer

associated with dilation and thickness variations. The source of the local long

wavelength inhomogeneity which presumably triggers phase bubble formation

is still unknown [135].

196



0 12

24 36

Figure 6.32: Close-up of the decay of a transient f/3 pattern shown. The
parameter values are the same as those in Figure 6.30. The image area is 2x2
cm2

6.4.5 Segregation in the presence of kinks

A detailed study of the dynamics of grains near an fd/4 kink has been

made. This study found that the kink interface is bounded by a pair of counter-

rotating convection rolls [134], see Figure 6.33. This convection is due to a

combination of shearing of the layer and an avalanching of particles and is

described in [134].

We now demonstrate that if different size particles are added to the os-
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Figure 6.33: A projected side view of a kink created in a molecular dynamics
simulation. A pair of convection rolls is associated with the kink and the small
arrows represent displacement vectors over two plate oscillations. The inset
shows the trajectory of the local center of mass of the layer at points A and
B. Courtesy S. J. Moon.

cillating layer, they are drawn into the kink by the convection roll and remain

trapped along the kink interface. Thus, the kink acts to segregate different

sized particles. Other experiments in granular materials have observed that

convection can lead to segregation of different size particles. However, the

convection in each of these experiments was either driven by frictional con-

tact [30, 103, 105] with a boundary or due to interaction with surrounding

fluid [142] 6. In contrast, the convection in the kinks is due to the intrinsic

dynamics of the layer and can be precisely controlled by changes in Γ and fd.

6We note that segregation phenomena are fairly common in granular flows in excited
granular materials and are not always linked to convection, for example radial and axial
banding in a rotating drum [88] and segregation into bands by pouring two-sized particles
into a narrow cell [106]
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Consequently, the rate of segregation and the number of particles that can

remained trapped can be easily varied. We now describe our experiments.

00 9898 250250

Figure 6.34: Transport and segregation of 650 µm glass spheres into a fd/2
kink formed in 10 layers of 165 µm bronze spheres shaken at fd = 90 Hz and
Γ ≈ 4.5. Both particles have a thin layer of graphite on their surfaces and the
glass spheres appear black under overhead illumination.

The experimental confirmation of this prediction is shown in Figure 6.34.

A container with 10 layers of 165 µm bronze spheres is evacuated to avoid hy-

drodynamic convection effects and shaken vertically with Γ ≈ 4.5, and fd = 90

Hz. We add a small number of larger, 650 µm glass particles which have had

their surfaces blackened with a coating of graphite powder.

Initially, all particles are on one side of the kink. As the kink moves

due to a slight tilt of the cell (because the container is out of level), the large

particles are attracted and stick in the kink–they never cross the kink “barrier”.

For this high frequency the particles remain at the top of the layer in the middle

of the kink. This happens by a similar effect observed in experiments of wall

driven convection [103, 105]. The large particle is convected into the kink but
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is unable to squeeze through the middle due to dense packing of the bronze

spheres at high frequency.

As the frequency is decreased, the density of bronze spheres in the kink

decreases and the large particle can follow the convection roll. At this point

it circulates in the kink, disappearing in the middle and popping up on the

side. Thus, the dynamics of the trapped particles can be very complicated, and

depends strongly upon the mobility of the small particles in the vibrating layer

and the size ratio between the two species; this is schematically illustrated in

Figure 6.35. Once a particle is trapped in the kink, it remains. However, there

is a limit on the number of particles that can be trapped; at some point the

large particles will not all fit in the trapping zone. When this occurs, particles

leak out of the kink region.

When the frequency is decreased below a certain transition at roughly

fd = 45 Hz, the kinks develop a decoration. The trapping also works in the

decorated kink state, but here the dynamics of the large grains is much more

complicated. They seem to circulate between the the stripes in the decoration

occasionally jumping from one roll to another, see the time trace in Figure 6.36.

This motion has the effect to transport the particles along the kink. This is in

contrast to the high frequency kinks in which the particles execute no motion

along the kink. The motion of large particles in the decorated kink occurs

by long excursions and trapping events. It would be interesting to study the

diffusion of the grains in this direction.

200



Particle circulates in 
kink

Particle trapped at 
top of kink

Figure 6.35: A schematic side-view of the behavior of large particles trapped
in a kink formed in an oscillating layer of smaller particles. The top panel
shows a high frequency kink in which the large particle remains trapped at
the surface of the layer. The bottom panel shows a low frequency kink in
which the local solid density of small particles is low, and the large particle
can freely circulate within the convection roll.

201



Figure 6.36: Segregation effects in decorated kinks for 650 µm glass spheres
into a fd/2 kink formed in 10 layers of 165 µm bronze spheres shaken at fd = 40
Hz and Γ ≈ 4.5. The large particle remains trapped in the kink but executes
a complicated motion along the decoration which leads to transport along the
kink.
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6.5 Particle surface contaminants

The role of surface contamination was mentioned in Chapter 5 and will

be briefly discussed here. It has a strong effect on pattern formation and also

plays a role in the strength of the modes discussed in that chapter. In fact,

the effect described could be a useful check on the form of friction proposed

theories of granular materials.

We found that cleaning the particle in an ultrasonic cleaner for several

hours in alternating baths of methanol-water and acetone water modify the

particles so that when shaken, patterns which look like those in Figure 6.37a

are seen. The patterns develop a haze above them. The addition of a small

amount of contaminant (graphite powder, Moly-powder) restores the patterns

as seen in Figure 6.37b. The haze decreases with increasing layer depth.

In fact, the restoration of the patterns also seems to trigger the nor-

mal modes. This is seen dramatically in Figure 6.38. A small amount of

graphite was added to the layer and shaking began. The graphite slowly

diffuses throughout the layer, and where it reaches, after only a few plate os-

cillations, the patterns crispen and modes grown in amplitude. In fact, if FM

is applied, the section with graphite wiggles wildly while the pattern in the

region without graphite do not display any normal mode oscillation.

Also, we find that particles direct from the factory (manufactured by

Acupowder International, Union, NJ) do not display modes and have very hazy

patterns. A magnified image reveals only that the factory particles are shiny
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a) b)

Figure 6.37: The surface properties of the particles influence pattern formation
a) Four layers of 165 µm bronze spheres after after being cleaned in acetone
and methanol. b) The same spheres after the addition of a small amount of
graphite powder and the spheres have been shaken for 105 oscillations. In both
panels, Γ = 3.0 and fd = 30 Hz.

and the graphite particles have a dull surface. We speculate that the addition

of the graphite does two things. It decreases the coefficient of restitution and

decreases the friction by adding a low-friction layer to the particles. It would

be interesting to fully characterize this as it is an experimental way to modify

friction in granular flows. Acupowder makes different types of bronze with

different materials alloyed. Since we have found that lead powder also makes

crisp patterns, it would be interesting to try other alloys.
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Figure 6.38: The addition of graphite reduces the haze around the particles
and modes of the lattice appear. Here, Γ = 3.0, fd = 29 Hz, at the top of
resonance peak II. The clean particles show no modes, but immediately after
addition of graphite, the modes appear.
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165 µm

Figure 6.39: The two shiny particles on the right are fresh from the Acupowder
factory and the two dull particles on the left have been shaking in graphite.
The dull particles form crisp patterns with large amplitude normal modes.
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Chapter 7

Absence of inelastic collapse in a realistic

three-ball model

The contents of this chapter have been published in [71]

In this chapter, inelastic collapse, the process in which a number of

partially inelastic balls dissipate their energy through an infinite number of

collisions in a finite amount of time, is studied for three balls on an infinite

line and on a ring (i.e., a line segment with periodic boundary conditions).

Inelastic collapse has been shown to exist for systems in which collisions occur

with a coefficient of restitution r independent of the relative velocities of the

colliding particles. In the present study, a more realistic model is assumed for

r: r = 1 for relative velocity equal to zero, and r decreases monotonically for

increasing relative velocity. With this model, inelastic collapse does not occur

for three balls on a line or a ring.

7.1 Introduction

Energy loss during collisions of macroscopic particles is often described

by a coefficient of restitution r, the ratio of the relative normal velocity of the

particles after the collision to the relative normal velocity before the collision.
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Figure 7.1: A 2D event driven molecular dynamics simulation of inelastic disks
with a constant coefficient of restitution, r = 0.6. After several hundred colli-
sions, large clusters have formed. The simulation was stopped when inelastic
collapse was detected; C/N is the total number of collisions per particle at
the time collapse occurred. The particles involved in the last 200 collisions are
shaded black; these create the collapse state. Figure reproduced from [128].

Analyses of particle dynamics with constant r have shown that for r below a

critical value rc, many initial particle velocities and configurations lead to an

infinite number of collisions in a finite time [13, 31, 77, 126, 127, 200]; both the

relative spacings and velocities of the balls go to zero. Such a process is called

inelastic collapse. In addition to the collapse analyses, simulations [120, 121,
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123] and hydrodynamic analyses [13, 26, 49, 70, 78, 79, 165, 187, 194] of granular

media have usually assumed r to be constant, independent of the relative

collision velocity u. For real materials, however, r is not constant; rather, it

increases monotonically with decreasing u and approaches unity in the limit

that u → 0 [5, 75, 108, 147].

To illustrate the problem with the usual assumption of constant r, we

examine the two simplest models in which inelastic collapse has been shown

to occur for constant r: three balls confined to an infinite line[31, 126, 200] and

three balls confined to a periodic line segment (ring) [77]. For both of these

models we find that if r is a physically reasonable function of the relative

collision velocity, there is no collapse state. This result builds on a conjecture

of McNamara and Young that collapse is an artifact of the idealized constant

r model, and that a velocity-dependent r might eliminate this artifact [126].

The reason for the absence of inelastic collapse with a physical model

for r is straightforward. If collapse is to occur, the relative velocities of all

particles must go to zero. If r → 1 as the relative velocity u → 0, then for u

small enough, a collision will occur for which r > rc. From the previous work,

this insures that collapse cannot occur. Thus, collapse in the line and ring

geometries happens only for nonphysical coefficients of restitution. Therefore,

the results obtained in recent analyses of inelastic collapse [13, 31, 77, 126, 127,

200], as well as work on the hydrodynamics of granular materials [13, 26, 49, 70,

78, 79, 165, 187, 194], should be re-examined using a more physically accurate

form of r.
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7.2 Three balls on an infinite line

Consider three balls of unit mass and labels L, M, and R (left, middle,

and right). The balls’ velocities are vL, vM , vR, and their relative velocities are

uL = vL − vM , uR = vM − vR. Assume that the balls undergo instantaneous

binary collisions and that the relative velocities of two particles before and after

their ith collision, ui and ui+1, are related by a velocity-dependent coefficient

of restitution, r(ui):

ui+1 = −r(ui)ui. (7.1)

Without loss of generality, we assume that the system is prepared such that

the velocities of the left and right balls are directed in towards the middle

ball, and that the velocities of the balls are such that the left and middle balls

undergo the first collision (i.e., uL
0 > uR

0 > 0). After the collision between

the left and middle ball, the relative velocities are (using the conservation of

momentum and the definition of r):

uL
1 = −r(uL

0 )uL
0 , (7.2)

uR
1 = uR

0 +
1 + r(uL

0 )

2
uL

0 , (7.3)

The middle and right balls collide next. After the collision, the final relative

velocities can be written

uL
2 = uL

1 +
1 + r(uR

1 )

2
uR

1 , (7.4)

uR
2 = −r(uR

1 )uR
1 . (7.5)

210



After this collision, the system will be in a state such that the only possible

collision is between balls L and M. If these collide, then the next possible

collision will be between R and M. Thus, we can generate a map which returns

the system to a potential collision between L and M after every two collisions.

This is done by substituting (7.2) and (7.3) into (7.4) and (7.5) and generalizing

to obtain

uL
n+2 = −r(uL

n)uL
n +

1

2
(1 + r(uR

n +
1 + r(uL

n)

2
uL

n))(uR
n +

1 + r(uL
n)

2
uL

n), (7.6)

uR
n+2 = −r(uR

n +
1 + r(uL

n)

2
uL

n)(uR
n +

1 + r(uL
n)

2
uL

n). (7.7)

The iteration must stop if both uL
n < 0 and uR

n < 0 because then both L and

R are moving away from M, and there can be no more collisions (i.e., the

range of the map contains points that do not lie within its domain). We now

investigate the properties of this map.

The only fixed point of the map is (uL, uR) = (0, 0), for which the

three balls move together with both relative velocities equal to zero. To show

this, set uL
n+2 = uL

n ≡ uL and uR
n+2 = uR

n ≡ uR. Substituting into the above

equations, rearranging (7.6), and denoting b = (1 + r(uL))/2 gives

3buL = uR + r(uR + buL)(uR + buL), (7.8)

uR = −r(uR + buL)(uR + buL). (7.9)

These yield buL = 0, so that either uL = 0 or b = 0. If b = 0, the definition of

b implies that r(uL) = −1, which is unphysical. Substituting uL = 0 into (7.9)
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leads to the condition uR(1 + r(uR)) = 0, giving either uR = 0 or r(uR) = −1.

Again, the only physical result is uR = 0.

To explore the long time behavior of the system, we calculate the sta-

bility of the fixed point. Writing the map in matrix form for small relative

velocities duL and duR near the fixed point (uL, uR) = (0, 0) gives 1:

(

duL

duR

)

n+2

=

(

(1+r(0))2

4
− r(0) 1+r(0)

2

−r(0)1+r(0)
2

−r(0)

)

(

duL

duR

)

n

. (7.10)

The eigenvalues of the matrix are:

λ± =
1 − 6r(0) + r2(0) ±

√

(−1 + 6r(0) − r2(0))2 − 64r2(0)

8
. (7.11)

The linearization of our map recovers the previous result of the existence of

a critical r [31, 126, 200], and shows that for velocity dependent coefficients of

restitution, the only value which determines whether a system will collapse is

r(0), the value of r at the fixed point. Substituting r(0) = 1 into (7.11) gives

the complex eigenvalues λ± = (−1 ± i
√

3)/2. The complex eigenvalues have

magnitude unity, which implies neutral stability; hence we must argue further

to determine the long time behavior of the linearized map around the fixed

point.

Since r(0) = 1, the analysis reduces to that for perfectly elastic colli-

sions. If collisions are elastic, a collision between two identical balls acts as if

1Since r(u) might not be Taylor expandable near the fixed point, we linearize the map by
writing it in terms of the difference duL

n = uL
n − 0 from the fixed point. We then drop terms

of order (r(duL)− r(0))duL. Such a procedure allows r(u) to be any continuous monotonic
decreasing function with finite r(0)
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the balls pass through each other. Therefore, a maximum of three collisions

may occur before the balls move away from the fixed point. As the relative

velocities approach zero, the balls act elastically, and the dynamics must result

in a state where all relative velocities are negative. Since the linearization of

the map is valid for small u, inelastic collapse cannot occur – the balls will

never reach a state where all relative velocities and separations are zero. This

is because the ranges of both the full and linearized maps contain points that

do not lie within their domains.

If r(0) is not unity, but rc ≤ r(0) < 1, where rc ≡ 7 − 4
√

3 ≈ 0.0718,

previous analysis has shown that the fixed point is unstable, and collapse can-

not occur. Collapse can only occur if r(0) ≤ rc[31, 126, 200]. In experiments,

such a situation can never be observed, since for real materials, r(u) → 1 as

u → 0.

7.3 Three balls on a ring

The result for balls on an infinite line says nothing about what might

happen if the balls were not allowed to go to infinity as soon as both relative

velocities were negative. Therefore, we examine a model which allows contin-

ued interaction with neighboring balls, specifically, three balls of equal mass

on a ring, i.e., confined to a line segment of unit length with periodic bound-

ary conditions. This geometry does not allow the balls to escape collisions.

Note that there is no radial acceleration in this model; the ring merely imposes

periodic boundary conditions. Grossman and Mungan [77] have shown that
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collapse occurs in such a configuration for r < rc.

However, if collapse is to occur on a ring, the distances between the

balls and their relative velocities must go to zero, so that one of the particles

collides alternately with the other two particles, which do not collide with one

another. This situation is indistinguishable from three particles collapsing on

an infinite line. Since we have already shown that collapse does not occur on

the line, collapse does not occur on the ring.

7.4 Discussion

We have shown that inelastic collapse, which was found in previous

analyses with a constant restitution coefficient, does not occur with a realistic

model for the restitution coefficient. While we have considered only three

particle systems, we argue that collapse will not occur in a N particle system.

Such systems have been studied [126] for constant coefficient of restitution with

N particles on a line, and it was found that when r is near 1, the minimum

number of particles necessary to create collapse varies as −[log(1− r)]/(1− r).

Thus, as r → 1, N → ∞.

Studies predicting inelastic collapse have assumed instantaneous colli-

sions. More realistic models of binary particle collisions would have to account

for the duration of collisions (particle contact time), which diverges as u−1/5

as u → 0 [75]. Since inelastic collapse requires that the particles undergo

an infinite number of collisions in a finite time, collapse cannot occur if the

collisions are not instantaneous. For small relative velocities, the duration
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of the collision significantly affects the particle dynamics. The incorporation

of the finite contact time into the analysis complicates the problem because

particles are no longer limited to binary collisions. The combined effects of a

velocity dependent coefficient of restitution and finite duration collisions make

inelastic collapse in the laboratory unlikely. We note that simulations with

a velocity dependent r [169] and experiments [107] do not produce collapse,

but show particle clustering, a situation in which variations in particle density

spontaneously occur. It is possible that clustering in granular media pro-

ceeds through frustrated collapses, situations in which the collision frequency

increases rapidly until the relative normal velocities are such that collapse

ceases. However, clustering may also be due to finite duration collisions, or

the inelasticity of particles may cause clustering through a scenario less catas-

trophic than inelastic collapse.
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Chapter 8

Dynamics of particles at the onset of

fluidization

8.1 Introduction

In this chapter we present a detailed study of the dynamics of glass

spheres in a water fluidized bed near the onset of fluidization. As discussed in

Chapter 2, the response of material properties (like strain, strength of mate-

rial, yield vs. consolidation) of a collection of grains to a stress are strongly

dependent on the packing density. We will study the dynamics of grains dur-

ing fluidization, the application of a stress by a fluid flow, for different initial

packings1. We find that corresponding to dramatic differences in material be-

havior for different packings under stress, there are dramatic differences in the

dynamics of the grains under fluidization (stress from the fluid). Therefore,

before we discuss the main results on the fluidization process, we will describe

the procedure by which the volume fraction of the grains can be set to a repeat-

able value. We will then return to the subject of fluidization. Before we begin,

we list the relevant parameters associated with the experiments described in

this chapter.

1The basic process of fluidization was discussed in Chapter 1, and the experimental
apparatus was described in Chapter 3.
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Experimental parameters

We will describe the bed in terms of the voidage 1−Φ, the average fluid

volume fraction measured from the average height of the bed. The voidages

will range 0.39 < 1 − Φ < 0.5. We will study the fluidization of 335 µm glass

spheres, ρp = 2.56 g/cm3 in water. The bed has a cross section 2.54x2.54 cm2,

which for Random Loose Packed (RLP), 1 − Φ ≈ 0.45, gives roughly 80x80

particles across. We typically use 60 g of particles which for RLP pack the bed

approximately 7 cm high. Typical flow rates at the onset of fluidization are

between 30-45 mL/min, depending on the initial packing fraction. This gives

typical fluidization velocities, vf , at onset between 0.08− 0.1 cm/sec. For the

335 µm spheres, the single particle sedimentation velocity, vs was measured as

vs = 4.5 cm/sec. This is in accord with the Richardson-Zaki law which predicts

vf/vs ≈ 0.02 for the RLP state. The Reynolds number for the flow, using the

particle as the length scale and vf as the velocity scale gives Re ≈ 0.3. Re ≈ 15

when the vs is used. We measure the relative collision velocity, vrel using

Diffusing Wave Spectroscopy techniques and confirming the measurement with

a high speed camera. From this, we compute the Stokes number, a measure

of the importance of hydrodynamic effects during collisions, St = ρpavrel/µ ≈

0.6, where ρp is the particle density, a is the particle diameter, and µ is the

fluid viscosity. St ≈ 0.8 when vf is used. The size of the Froude number, Fr =

v2
f/ga has been shown to correspond to bubbling vs. non-bubbling behavior

at the onset of fluidization [193]. Fr � 1 corresponds to a fluidization with

a smooth initial expansion while fluidization in which Fr � 1 demonstrates
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bubbles of fluid rising through the bed. In our experiments, Fr ≈ 3 × 10−4,

well below the bubbling transition. Fr ≈ 0.6 when vs is used.

8.2 Flow pulse experiments

Everyday experience shows that tapping a pile of grains results in a

decreased voidage–shaking the cereal box is a good example. Extensive work

has been done to study the voidage of a container of dry grains as a function

of tapping rate and amplitude [104]. We study the fluid-dynamical analogy to

the tapping experiment, in which short fluid pulses act like taps.

Qmax

τ1 τ2

n=1

n=2 n=N

Qset

Q0
τwait

Time

Fluidization 
cycle begins

Pulse 
packing 
sequence

(above 
fluidzation onset)

(below 
fluidzation 
onset)

Figure 8.1: Flow pulses of amplitude Qmax and duration τ1 can be applied
to the bed after initial fluidization at Qset. N total pulses are applied after
which the flow is set to a value Q0 below the onset of fluidization.

To set 1 − Φ, we apply a series of flow pulses to the grains. This is

218



schematically shown in Figure 8.1. The maximum amplitude of the pulse,

Qmax and duty cycle can be easily controlled by means of a three way valve

(See schematic in Figure 3.4 in Chapter 3). The procedure is as follows: The

flow rate is set to a value Qset (Qset is always greater than Qmax) well

beyond the point of fluidization and controlled at this point until the system

equilibrates, typically 30 seconds, reaching a steady voidage. At this point,

the sequence of flow pulses is applied with maximum pulse amplitude Qmax

and duty cycle defined by τ1/(τ1 + τ2). For increasing total number of pulses,

N , the voidage of the bed decreases—the bed packs as shown in Figure 8.2.

When the target voidage is achieved, the flow is set to Q = 0 for a time τwait

to allow the system to settle. Flow is then slowly increased to value Q0 well

below fluidization. This small flow does not alter the voidage and in fact it

stabilizes the packing by jamming the grains against the sidewalls. We will

discuss this point further in the section on jamming, Section 8.4. A fluidization

cycle begins at the flow rate Q0. We note that the loosest packing is obtained

by stopping the pulse sequence after the N = 1 toggle, allowing the bed to

sediment for τwait with Q = 0 and then slowly increasing the flow to Q0.

There are several points to notice about Figure 8.2. The first is that

the rate of decrease of 1−Φ with N is a function of Qmax for fixed duty cycle.

For a range of Qmax the average rate of decrease in voidage increases as Qmax

increases. We interpret this as stronger rearrangement pulses allow the bed

to explore local crevices more efficiently. However, for large enough Qmax

the voidage behaves non-monotonically for increasing N . We can explain the
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Figure 8.2: The voidage of the bed decreases as the number of tog-
gles increases. Here duty cycle is fixed to 1/3 on 2/3 off and the en-
tire cycle lasts 2 seconds. Qmax has values of (◦, •, �,�, +,×, ∗,5),
(0, 17.3, 27.2, 48.6, 71.3, 94.1, 116.2, 136.5) mL/min.

non-monotonicity by the following argument. In a fluidized bed, the pressure

drop across the bed (which determines the fluidization) increases as voidage

decreases. Since a pulse is essentially a short fluidization event, there exists

a voidage at which Qmax becomes large enough to fully fluidize to a voidage

greater than the voidage before the pulse in the time during which the flow is

on. For a given Qmax, for further N , the voidage increases as a function of

N . The value of N at which the voidage should increase decreases as Qmax

increases. A plot of the voidage of the bed for N = 256 reveals that there is
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an optimal Qmax for the particular duty cycle chosen, see Figure 8.3. The

effects of changing duty cycle have not been investigated but are expected to

play a role as they influence the time during which the system can reach a new

height or relax. The question of packing optimization, by which the voidage

could be decreased to its smallest value in the most efficient way, has not

been addressed. We speculate that some recent models of energy landscapes

of glasses could shed light on the packing problem [45]. In addition, packing

experiments could be useful tests of different landscape theories.
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Figure 8.3: The voidage of the bed for a fixed number of pulses, N = 256 as
a function of Qmax.
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8.2.1 Sedimentation

The maximum voidage state is always obtained by simply allowing the

particles to sediment freely from a very high voidage state. This is achieved by

fluidizing at Qset and stopping the pulse sequence after N = 1. When the flow

is removed, the voidage decreases from (1−Φ)initial and after sedimentation,

reaches a stationary loosely packed state, (1 − Φ)final. This final voidage

depends upon the initial voidage as shown in Figure 8.4. The curve appears to

asymptote to a value of 1 − Φ ≈ 0.445. This value is in good agreement with

the results of Onoda and Liniger [139] who measured the volume fraction of

grains sedimenting in fluids of varying particle-fluid density difference. As the

density difference approached 0, the sedimentation rate approached 0 and they

found that the volume fraction reached the limiting value of 1 − Φ = 0.445

They identify this as the Random Loose Packed (RLP) state and define it as

the highest voidage state which is mechanically stable in the limit that g → 0.

This state will play a very important role in the dynamics of fluidization and

we will refer to it again later. In practice, we find that it is almost impossible

to maintain a bed in the true RLP state, due to its fragile nature.

Our sedimentation experiment differs from that of Onoda and Liniger

as the density difference is kept fixed while the initial packing is varied. Thus,

our experiment is analogous to the sedimentation experiments performed on

much smaller colloidal particles [1]. As the particles sediment, the voidage

decreases. The net result is that the final volume fraction approaches RLP as

the initial voidage increases. We note that the sedimentation behavior in water

222



0.45
 0.5
 0.55


0.435


0.44


0.445


(1-
Φ
)

initial


(1
-
Φ


)
 fin
al




Figure 8.4: The final voidage of the bed after flow is suddenly turned off as
a function of initial voidage of the bed. The initial voidage increases with
increasing Qset

is much different from that of grains sedimenting (falling) in air. We when pour

grains into the system without water present, we observe that grains almost

immediately pack into a state near a voidage of 1 − Φ ≈ 0.37, the Random

Close Packed (RCP) state.

8.3 Fluidization

We now discuss the fluidization process and the dynamics of the grains

at fluidization. We will refer to an experiment in which the flow is increased

and then decreased to the initial point as a fluidization cycle. The goal of
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this section will be to investigate the behavior of a bed during a fluidization

cycle as a function of the initial condition. The initial condition will be set by

the pulsing procedure described above. All experiments used the mesh flow

distributor arrangement shown in Figure 3.5 in Chapter 3.

8.3.1 Fluidization and initial conditions

In this section we describe the dynamics of the glass spheres upon

increase of flow rate from an initial packing of the 335 µm particles. Other

particle sizes showed similar qualitative behavior. The techniques we will

use to characterize the average properties of the bed have been discussed in

Chapter 3. Two complete fluidization cycles for different initial conditions are

shown in Figure 8.5. The plot shows both fluidization and defluidization, but

in this section, we will only discuss the fluidization branch. We postpone the

discussion of the defluidization branch until the next section, subsection 8.3.2.

To take these curves, we use the following protocol: starting from

Q0 = 0 mL/min, we slowly increase the flow for 30 seconds until a particular

Q is reached. At Q, the flow is controlled while the system equilibrates, typi-

cally 30 seconds. After equilibration, various measurements are made. These

include voidage, pressure drop, and light scattering measurements. When the

measurements are complete, we ramp slowly to the next Q and repeat. The

increment in Q between measurement points is fixed during an experiment.

For a given path, as Q is increased, ∆P , the pressure drop across the

bed normalized by the buoyant weight of the grains per unit area increases. ∆P
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Figure 8.5: Fluidization cycles for increasing flow for two different initial
voidages 0.440 (◦), 0.403 (�) (a) Voidage vs. flow rate (b) Pressure drop vs.
flow rate. Particles are 335 µm glass spheres with total mass 60 g. The curve
with • symbol is for defluidization and is independent of the initial voidage.
Protocol: 30 sec ramp between each point with 30 second equilibration time.

increases past the point of force balance for the weight of the grains, ∆P = 1,

until it reaches a maximum value. At this point, it begins to decrease. At the

point where ∆P begins to decrease, the voidage of the bed begins to increase—
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the system becomes fluidized. The tightly packed state displays complicated

paths during which ∆P begins to increase again as Q increases. During this

range of Q, the voidage remains roughly constant. We believe this behavior

is a consequence of poor flow distribution and will be discussed later. The

different packings fluidize at different values of Q. This is a consequence of

Darcy’s law–the tighter packed bed has a lower permeability and thus develops

a larger ∆P for the same Q. The fluidization curves intersect at a certain value

of Q, close to the value of RLP, 1 − Φ ≈ 0.44. From this point, the voidage

continues to increase while ∆P remains at a value of unity.

We now examine the dynamics of the grains during these two fluidiza-

tion cycles by measuring the autocorrelation of multiply scattered light, g(2)(τ)

(see Chapter 3 for details). Examples of g(2)(τ) at different Q along the loosely

packed fluidization branch are shown in Figure 8.6. For each Q, 10 correlation

curves, each sampled for 30 seconds, were taken at 1 second intervals. This is

done so that we can study repeatability of the measurements. In addition, it

allows us to capture changes which might occur on a timescale longer than 30

seconds. To achieve 10% accuracy in the curves, it is necessary to sample on a

timescale roughly 102 longer than any timescale of interest. Thus, we expect

that decays of g(2) as long 0.3 seconds should be measurable with some relia-

bility. Later in the chapter, we will use the multispeckle techniques described

in Chapter 3 to extend the range of accessible timescales by another factor of

10. We note that even for completely motionless particles, measurements of

correlation curves over long times decay with a characteristic time of roughly 3
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seconds. We believe that this is due to either slow movements in the apparatus

or heating from the laser. This sets the fundamental decay time limit for the

correlation measurements.
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Figure 8.6: Correlation curves, g(2)(τ) along the loosely packed fluidization
branch, showing no decay below onset and a rapid decay above onset. Flow
rates A-C, 37 mL/min (�), 45 mL/min (×), 56 mL/min (O)

For the point A below fluidization, g(2)(τ) does not decay significantly.

This indicates that the particles remain motionless below fluidization. Above

fluidization (points B and C), g(2)(τ) decays with a timescale which decreases

as the system becomes more fluidized. We will denote this decay time as τd,

defined as the time at which g(2)(τ)− 1 reaches the 1/e point. The intercepts

of the g(2)(τ) for the fluidized states are close to 1.5, the expected value for
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depolarized light [119]. This value indicates that we are imaging one coherence

area and that enough decorrelation cycles have been taken to ensure good

statistics. The intercept for the motionless particles is close to 1, the value

predicted for a signal of constant intensity [119]. Using the theory of DWS from

Chapter 3, we can extract the ensemble averaged mean square displacement,

〈∆r(τ)2〉, of the particles from these curves. However, to gain understanding,

we first use the inverse time-scale of decay of g(2)(τ), 1/τd, to analyze the

motion of the grains at onset.

Figure 8.7 shows a comparison of the inverse decay time 1/τd as a

function of flow rate for the two fluidization cases discussed. For each curve

in (a), the mean value of 10 correlation curves taken after equilibration is

shown and the error bars indicate the spread in the decay times. For the two

different initial packings, we see a remarkable difference in the dynamics of the

grains at the point at which the voidage of the bed begins to increase. In both

cases, well below fluidization, 1/τd is close to zero, indicating a motionless

state. For the loosely packed state, at the point where the bed height begins

to increase, g(2)(τ) immediately decays with a timescale of about 1 msec.

The transition point is marked by the dashed line. This indicates that the

grains begin to move immediately at the onset of fluidization, as might be

expected. However, the behavior of the grains on the tightly packed state is

quite different. Here the system reaches a point where the voidage begins to

increase, near 30 mL/min but g(2)(τ) does not decay. In fact, no decay of the

correlation occurs until a higher flow rate, around 33 mL/min. At this flow
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Figure 8.7: Top panels: The decay times of the correlation function, 1/τd,
for fluidization from loosely (◦) and tightly (�) packed initial conditions. The
corresponding pressure and voidage curves are included for reference. Loosely
packed: the dashed line denotes where motion begins as indicated by a finite
value of 1/τd. The point where the material yields and the point where motion
begin are separated by a single flow increment in this experiment. Tightly
packed: the leftmost dashed line denotes the value of Q where ∆P reaches a
maximum and 1 − Φ begins to increase. The dashed line to the right denotes
the Q on the tightly packed branch where particle motion begins. Protocol:
30 second ramp with 30 second equilibration time.
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rate, g(2)(τ) decays in a finite time, but there is a large variation in 1/τd for

the different measurements. This indicates that the system is experiencing

transient behavior. As flow is increased, 1/τd continues to increase until the

curves for the loosely and tightly packed states intersect.

It is instructive to examine the pressure drop across the grains during

these changes in grain dynamics. As discussed above, the voidage begins to

increase when ∆P reaches a maximum above 1. For the tightly packed case,

once ∆P reaches the maximum pressure, further increases in Q result in a

decrease of ∆P . When ∆P reaches a value close to 1, the grains begin to

move2. Thus, there exists a range of Q for which the bed temporarily fluidizes

and the voidage increases, but after some time, the bed settles into a motionless

state. Such behavior has also been observed in air-fluidized beds [130]. In the

loosely packed state, the overshoot in ∆P is much smaller. For this case, the

step size in Q is presumably too small to resolve the motionless regime. In

both cases, when Q is large enough all curves intersect, and ∆P = 1. At

high enough Q, the system can be considered truly fluidized. At this point

all grains are continuously in motion and in contact only during very short

collision times3

We interpret these experiments using the results of Onoda and Lin-

2We note that the behavior of ∆P once the grains have begun to move is complicated.
For increasing Q, ∆P increases until it reaches a maximum, after which it begins to decrease.
We will discuss this behavior later in the chapter.

3As will be discussed, for St � 1, lubrication layers may prevent true particle contact
during collisions.
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iger [139] and the theories of Jackson discussed in Chapter 2 as guides. Ac-

cording to the theory of dilation [151], any applied stress (like the pressure

drop due to the flowing fluid) causes a granular material to dilate. If there are

confining sidewalls, the dilation is frustrated, and a pressure against the side-

walls develops. This is the source of the yield stress in tightly packed granular

materials (see Chapter 2 for details). As the shear stress increases, the force

from the boundary will increase until the material yields. We see this behavior

for the tightly packed bed. ∆P increases to a maximum almost 5% past the

force balance necessary to move the grains. Once the material has yielded,

∆P displays non-Darcian behavior, decreasing for increasing Q. In addition,

since ∆P is smaller than the maximum overshoot value, the bed has becomes

weaker and a smaller amount of stress is needed to continue the yield process

and further increase the bed height4. While the material is yielding, the 1/τd

data show that the grains are motionless. Eventually, the system reaches a

state where there is no more extra stress to overcome. Now, the force balance

can now move the grains.

We contrast this to the behavior in the loosely packed state. As shown

by Onoda and Liniger, in the RLP state, 1 − Φ ≈ 0.45, in stress does not

promote dilation. Roughly put, at this voidage, the grains do not need to

expand an extra amount in order to shear, slipping past each other. Thus,

in fluidization of such a state, a shear will not have to overcome any extra

4Equivalently, the material has a lower strength, as predicted in Chapter 2. Thus, further
stress will cause the material to yield more easily.
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contact forces, and the grains will move as soon as there is a force balance.

The loosely packed data is in accord with picture—the overshoot is much less

and the grains begin to move at onset5.

The results described deviate slightly from the schematic of fluidization

sketched in Chapter 1 due to the presence of extra contact forces. In summary,

due to pressure drop developed across the resistive medium, a stress is created

on a collection of grains. This stress seeks to dilate the grains, but the walls and

frictional contacts prevent this dilation. Thus, an extra stress is developed, and

this must be overcome before true fluidization can occur; the stress overshoot

is larger for the tighter packing. In Figure 8.8 we plot the % overshoot of the

pressure for fluidization from different initial packings. In the limit of RLP,

the overshoot approaches zero, indicating that the stress required to yield this

material approaches zero.

Short-time dynamics

We now examine the short-time dynamics of the grains during these

processes. The ensemble mean square displacement, 〈∆r(τ)2〉 of the grains at

short times is measured using the multiple scattering Diffusing Wave Spec-

troscopy described in Chapter 3. Figure 8.9 plots 〈∆r(τ)2〉 for the correlation

curves shown in Figure 8.6. These curves are found by the inversion techniques

described in Chapter 3. Below onset the grains do not move, but far enough

5However, we never fluidize from the RLP state, as it is unstable to infinitesimal pertur-
bation. There would be no overshoot at such a state.

232



0.4
 0.41
 0.42
 0.43
 0.44
 0.45

0


0.5


1


1.5


2


2.5


3


3.5


(1-
Φ
)

initial


%
 o

ve
rs

ho
ot

 in
 
∆


P



Figure 8.8: The % overshoot over ∆P = 1 in the fluidization pressure curves
as a function of initial packing for the fluidization cycle.

above onset, 〈∆r(τ)2〉 ∼ τα, with α ≈ 2.0. This indicates the the motion of

the grains is ballistic at short times. Note, however, the scale over which the

grains execute the ballistic motion. g(2)(τ) decays to close to 1 at roughly 0.1

msec. At this time, the particles have displaced roughly 10−2 µm, a factor of

roughly 30000 times smaller than their diameters. Thus, for short times, the

grains are free to undergo small displacements in the fluid.

Figure 8.10 plots the average exponent, α of the short time behavior

during fluidization for the two packing cases. In both cases, below onset α ≈

0.2. This is a consequence of the slow decay of g(2). At onset in the loosely
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Figure 8.9: 〈∆r(τ)2〉 shows that when the system is fluidized, the particles
move ballistically during short times. These curves correspond to the curves in
Figure 8.6: A-C, 37 mL/min (�), 45 mL/min (×), 56 mL/min (O). The inter-
cepts have been normalized to the minimum detectable displacement, roughly
1 Å.

packed state, as was shown in Figure 8.7, motion is detected immediately.

Figure 8.10 reveals that α quickly rises to α ≈ 2. Thus, in the loosely packed

state, there is enough free volume for all particles to immediately establish

collisional dynamics. The tightly packed case displays complicated dynamics

after the material has initially yielded. In this case, α slowly (compared to the

increase in α for the loosely packed state) increases until sufficiently far above

onset, it reaches a value of 2.

We propose that α < 2 indicates that the behavior of the grains is not

234



0

0.5

1

1.5

2

α

20 30 40 50 60
0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

Q (mL/min)

1-
Φ

0.6

0.7

0.8

0.9

1

1.1

∆ 
P

∆P

1−Φ

Loosely packed

Tightly packed
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baseline value of α ≈ 0.2 below fluidization. This is due to a slow drift in the
system and is discussed in the text. The voidage and pressure data is included
for reference in the bottom panel. The dashed lines indicating transitions in
bed behavior and protocol for fluidization are the same as those in Figure 8.7.

homogeneous throughout the bed. Recall that we are visualizing extremely

small trajectory times and displacements. Since the multiply scattered signal
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Figure 8.11: A schematic of the different regions of particle dynamics. The
multiply scattered light follows paths which sample all regions. Note that this
diagram is not to scale, nor is it intended to represent the actual size or shape
of the regions.

for DWS samples all particles in the bed, 〈∆r(τ)2〉 will contain contributions

from motion averaged over many regions. This is shown schematically in

Figure 8.11. In some regions, the grains are executing ballistic trajectories

between collisions, and α ≈ 2. In other regions of the bed, the particles are

in contact for times long compared to a mean free time between collisions.
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Thus, α ≈ 0 in these regions6. Presumably, these regions are not static, but

change on timescales much shorter than the sampling time (we will further

examine this assumption when we discuss multispeckle techniques). Thus,

we propose that the value of α is directly related to the average fraction of

completely mobile grains. Below onset, all grains are immobile and α stays at

the baseline noise value of α ≈ 0.2. As Q is increased above fluidization, the

fraction of mobile grains increases until all grains are mobile and α ≈ 2.

The results above demonstrate that the contact forces between particles

can play a major role in the motion of particles at onset. We now study a case

in which contact forces do not play a role, defluidization from a fluidized state.

8.3.2 Defluidization

Hindered motion

When the system is in a fluidized state, well above RLP, the contact

network is not established. Consequently, defluidization from such a state will

not be subject to sustained contact forces. We then expect that the behavior

of the bed should be different. This is seen in Figure 8.12. The defluidization

branch follows the fluidization branch until it reaches a point near RLP. From

this point 1 − Φ continues to decrease as Q is decreased. As some point, the

condition for force balance, ∆P = 1 is no longer satisfied. As Q is decreased

from this point, the voidage continues to decreases, but at much slower rate.

6Recall that due to the slow decay of g(2) presumably due to heating effects, α is never
identically zero. We will assume that the baseline of α ≈ 0.2 indicates the lack of motion
at short times.

237



Note that this path is independent of the initial state, provided that the initial

state is sufficiently fluidized. We will return to this point in the section on

jamming.
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Figure 8.12: Top panel: α as a function of Q for defluidization. Bottom panel:
The pressure and voidage are given for reference. The dashed lines indicate
the hindered region in which α 6= 2, but ∆P ≈ 1.

Figure 8.12 shows the behavior of α during defluidization. For Q such
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that 1 − Φ > 0.45, α ≈ 2. Thus, the particles undergo ballistic collisional

dynamics when the voidage is greater than RLP. For values of Q such that

1 − Φ < 0.45, α decreases with decreasing Q. As argued above, this is due

to particle contact. Although the force balance, ∆P = 1 is still maintained,

the system does not have enough free volume to maintain a state in which

all particles undergo ballistic trajectories. As Q decreases, the fraction of

immobile particles increases; motion has become hindered. At some point

lower than RLP, both α and τd begin to change rapidly. We believe that

the bed is now approaching a glass transition, and this will be discussed in

Chapter 9.

Volcanos in the hindered region

At flow rates in the hindered region, the side of the bed reveals small

transient worm-like jets; they occur for increasing and decreasing Q. These

reach the surface and break through, forming spouting volcanos. Locally,

a volcano will spout for some time, then subside. This process repeats at

different points over the surface. As Q is increased, they appear over larger

areas until the entire surface is boiling. Images of the top of the bed showing

the volcanos are shown in Figure 8.13. Such volcanos and worms have been

observed slightly above onset, but not studied carefully. The observation of

volcanos were reported in [177] and the existence of a worming region has been

observed in [53] and [124]. In [124], they were called channels and described as

“Channelling spots flitted from one point to another on the bed surface and at
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the lateral surface.” We believe that these localized worms and volcanos are

a consequence of the local mobile and immobile regions, and will be further

discussed in Chapter 9. The local worm regions might be analogous to the

“weak spots” discussed in molecular dynamics simulations of Lennard-Jones

fluids [157]. These weak spots were proposed to play a role in bubbling or

nucleation in true liquids.

∆P < 1: wiggling motions

For low enough Q, ∆P decreases sufficiently below 1 and the pressure

can no longer drive bulk fluidized dynamics. However, we observe that the

voidage continues to decrease, although much slower than in the ∆P = 1

state. In this regime, due to the loss of the force balance, the system has

lost the ability to translate the grains. However, locally, the particles are still

acted on by a drag force. From the Richardson-Zaki relation, Equation 8.28,

the drag force on a given particle near onset due to fluidization flow veloci-

ties is about 50-100 times smaller than the drag force due to sedimentation.

We propose that if the grains are not locked into place by frictional contacts

(jammed), these small forces can promote local re-organizations. If Q is de-

creased sufficiently slowly, these small changes in flow will cause a continued

decrease in voidage.

In this region, rearrangements can occur on timescales which are on

the order of or greater than to the DWS sampling time (30 seconds for the

data discussed). This is shown in Figure 8.14. The top panel shows τd for
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Figure 8.13: Top panel: Time sequences of the top of the bed for different
flow rates in the hindered region. Each image is computed as the difference
between two frames taken 200 msec apart. The surface of the bed shows small
spouting events (volcanos) which increase in frequency and intensity as the
flow rate increases. The images represent the central 1/4 × 1/4 of the bed
surface.

decreasing Q. As the motion of the system becomes increasingly frustrated

(see the plot of α in the bottom panel), the dynamics slow considerably. At
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the ergodicity of the sample. It rapidly drops when the decay time becomes
comparable to the sampling time; this is indicated by the leftmost dashed line.
The dashed line to the right indicates the point at which α begins to deviate
from α ≈ 2. Bottom panel: ∆P (•), α (–)for defluidization are shown for
reference.

some point they reach the limit of the time-resolution of the measurement that,

roughly 0.3 seconds. Also plotted in the top panel is the intercept value of
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g(2) for the corresponding correlation measurements. When ∆P first decreases

from ∆P = 1 (denoted by the dashed line), g(2)(0) suddenly drops from the

value of 1.5 to a value slightly greater than 1. As Q continues to decrease,

g(2)(0) remain near 1. Recall that g(2)(0) = 1.5 is obtained for a system which

undergoes a sufficient number decay periods during the sampling time. Also

recall that if the scattering signal is constant, g(2)(0) = 1. Intermediate cases

will have 1 < g(2)(0) < 1.5. Thus, the sharp drop corresponds to the point at

which the pressure driving has disappeared. In this regime, the dynamics of

the grains drastically changes character. At this point, the baseline value of α

(bottom panel of Figure 8.14) indicates that all particles are in contact. For

decreasing flow rate, any further dynamics can only come from local rotational

“wiggling” of the grains following the decrease in stress. A schematic of a

possible packing by small constrained motion is shown in Figure 8.15. When

the stress is reduced, there is less force on the particles, and they seek to move

to the lower energy state in the gravitational field. Contrast this to the efficient

packing by fluid pulses, discussed in Section 8.2. Flow pulses locally increase

the free volume by quick fluidization events; the grains can then sediment to

find a tighter packing.

Multispeckle correlation measurements

We have used multispeckle techniques to extend the time range of τd

measurements by a factor of 10, see Figure 8.16. The multispeckle measure-

ment of τd matches the τd in the timescales over which they overlap. This gives
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decreasing flow

Figure 8.15: A schematic of the packing produced by local constrained mo-
tions. The grains are always in contact, but the system is not jammed. Thus,
slight perturbations will induce small local rearrangements.

us confidence that the technique is working. We find that τd actually reaches

the 3 second limiting time-scale—thus the grains become almost completely

motionless as Q → 0.

8.4 Interpretation of results as jamming

We now use the concept of jamming to describe the dynamics of the

bed below onset. Recall from Chapter 2, that a definition of a jammed state is

a state that has developed a yield stress and in which all particle motion has

stopped. As will we study slow transient processes, we will use the multispeckle

techniques to image the motions of the bed. These spectroscopy techniques

were described in Chapter 3. Recall that scattered laser light is imaged onto a

CCD such that each CCD element (pixel) images a single coherence area. If the

intensity in a pixel changes, this means that some motion occurred in the bed.

Since each coherence area is statistically independent, this allows averaging
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Figure 8.16: Top panel: The characteristic decay time of g(2)(τ). • is for
2 second DWS measurements and ◦ is for 30 second 128 pixel multispeckle
measurements. Bottom panel: The intercept g(2)(0) gives a measure of the
ergodicity of the sample. It rapidly drops when the decay time becomes com-
parable to the sampling time. This is where the multispeckle is useful.

over the image and the statistics improve. This technique allows detection

of motions as small as 1 nm. Thus we have a very sensitive technique to

determine if a state is motionless. We note that observing a motionless state
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doesn’t necessarily mean that the state has developed a yield stress, and we

will comment on this.

Above RLP, the system is un-jammable. This means that any applied

stress can be accommodated by a dilation. For voidages greater than RLP,

there is free volume enough for the dilation to occur. Below, RLP there is

not enough free volume, and increased stress will cause an attempted dilation.

This dilation will cause particles to push into each other and into the walls

and can effectively jam the grains. This will occur as long as ∆P remains less

than 1.

8.4.1 Jamming as a function of the sign of dQ
dt

We now present the fundamental observation of jamming in our system—

the wiggling motion of the grains depends strongly on the sign of dQ
dt

. We have

observed that after a decrease in Q to below onset, the speckle in the images

takes a long time to become motionless. However, a small increase in flow

will quickly cause the motion of the speckle to arrest. This is illustrated in

Figure 8.17. The top panels in Figure 8.17 show a time trace of a row of pixels

in the CCD for two different flow protocols. The bottom panels show a mea-

sure of decoherence of speckles. This measure allows us to study the transient

speckle motion: after normalization and subtraction of a background due to

camera noise, each time-trace of a pixel is differentiated with respect to time,

and the absolute value of this quantity is averaged over all pixels. This is

denoted 〈dI
dt
〉, where I is the intensity of a single pixel. If there is no intensity
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change in a coherence area, this quantity would be zero for all time. Recall

that any motion of the grains changes path lengths and this contributes to a

change in phase of the scattered light and thus a change in intensity of photons

at each pixel.

In the first column, the flow is slowly increased from below onset, 6

mL/min, to a larger flow rate still below onset, 17 mL/min. t = 0 is when the

flow has reached the target flow rate. The speckle rearranges during a short

(30-60 seconds) transient period and then becomes motionless. This indicates

that the system is locked into place. This is in accord with our observation

that below onset, motionless speckle can be created by slight increases in flow

rate. Contrast this to the second column. Here we show a sequence in which

the flow is slowly decreased from above fluidization to below onset, 17 mL/min.

In this case, the speckle continues to move for several hundred seconds after

the target flow rate has been reached, despite no obvious change in bed height

after the initial defluidization. This asymmetry is remarkable, and we propose

that it is due to jamming of the system.

We propose that the increasing flow jams the system, creating a yield

stress which then must be overcome to change the voidage. The decreasing flow

does not jam the system, and since the material started with no yield stress,

none is created. This explains how the voidage can decrease for decreasing Q

during defluidization: when Q is increased during fluidization, the increased

stress dilates the grains. Thus, they are forced against each other and the

walls. In this case, the stress network is immediately created, locking the
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Figure 8.17: Speckle pattern movement for two different approaches to Q =
17 mL/min, which is below the onset of fluidization. The top panels show a row
of pixels in the CCD as a function of time. The colormap is low intensity (blue)
to high intensity (red). The bottom panels measure 〈 dI

dt
〉 of the corresponding

image. The protocols are given above the images. t = 0 refers to the time at
which the target flow is achieved.

grains into place. In the case for slowly decreasing flow, no stress network was

present in the initial fluidized state. Upon defluidization, the stress on each

grain becomes smaller and the effective weight of the grain becomes larger.

At some point, the grains press against each other under the force of gravity.
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To jam, the weight will have to balance the force due to hydrodynamic drag

on each particle. It is not clear whether just the weight can develop a yield

stress. This reorganization can only take place by the minute wiggling motions

that can be excited by the small flows. Our data shows that this can take a

long time; we have observed speckle motion in a defluidized state after one

hour. It is an interesting question whether after the speckle has completely

stopped, the system has jammed. We observe that when the flow is slowly

ramped down to Q = 0, speckle motion persists for even longer times. This

effect is greater for smaller sized particles. In fact, 100µm sphere always show

residual motion, even after many hours. This indicates that the absence of a

counterflow, the minute wiggling persists due to local, thermally induced flow

fluctuations. Since the system is not jammed, these can induce small wiggling

motions. Presumably the lubrication layer surrounding each particle plays a

role in this process [24]. It would be an interesting experiment to measure the

typical decay time of 〈dI
dt
〉 after defluidization for different final Q.

8.4.2 Jamming and fluidization cycles

The behavior of 1 − Φ and ∆P during fluidization cycles can be un-

derstood from the jamming picture. Figure 8.18 studies the effect on 1 − Φ

and ∆P of varying the point at which the flow reaches a maximum and be-

gins to decrease, the turnaround point. Two cases are shown: the top two

rows show 1−Φ and ∆P for fluidization cycles starting from a loosely packed

state. The bottom two rows show the corresponding plots for a tightly packed
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Figure 8.18: Top two rows: voidage and pressure data for fluidization cycles
with the same loosely packed initial condition. The panels from left to right
show fluidization cycles for increasing turnaround points. Loosely packed ini-
tial condition. Bottom two rows: same as the top two rows, but for a tightly
packed initial condition. Increasing flow denoted as ◦, while decreasing flow
as .. If the yield stress is not broken, the paths are reversible for slow changes
in Q. Once the material has yielded, defluidization follows a different path.
The solid black lines in the voidage plots indicate the voidage obtained for
slow defluidization from above RLP. The solid black line in the pressure plot
denotes ∆P = 1.

initial condition. In fluidization cycles that do not pass the yield point of the

material, the voidage for the defluidization branch re-traces the fluidization
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branch. This indicates that we have not un-jammed the system, and the force

chains can accommodate the small changes in stress. On the branches where

the voidage remains the same, the changes in the speckle look like Figure 8.19.

These measurements are taken immediately after the ramps. However, even

during the ramps, no motion occurs, indicating that once jammed, the system

can accommodate small slow changes, independent of the sign of dQ
dt

. This is

because the yield stress is stronger than any counter stress induced by a small

change in flow.

Contrast this to the case when the yield stress is broken. If the turnaround

point reaches the value of Q where the material yields, 1−Φ decreases with de-

creasing Q during defluidization. This indicates that the system has become

un-jammed, and lost the stress chain backbone (a yield stress). Decreases

in flow remove stresses from the particles, allowing them to wiggle into new

more dense packings. Once the yield stress is relieved, the system is no longer

jammed, and will wiggle to a new state for decreasing Q. It is important to

note that the final defluidization state is not unique. The initial rapid decay

of 1 − Φ occurs in the regime of growing regions of motionless particles. This

decay must depend on the average volume fraction at that flow. Like in Sec-

tion 8.3.2, the very slow decrease in 1−Φ begins when ∆P is sufficiently below

1. Here only the local wiggling motions of the particles can cause rearrange-

ment. However, as long as the system is not jammed, the wiggling motions

will have the ability to pack the system.

Many factors influence the timescale of the rearrangement of the speckle
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Figure 8.19: For small enough changes in Q below onset, regardless of the sign
of dQ

dt
the speckle does not change when stress chains are not broken.

during defluidization. For example, we find that that initial fluidized state

(in a full cycle, the turnaround point) for the defluidization branch affects the

duration of persistent speckle fluctuation. Figure 8.20 shows two defluidization

events, each starting from a different initial condition. The ramp rate is kept

constant for both experiments. The final voidage for both cases is the same,

but for the ramp from the more fluidized state, the speckle fluctuates for a

longer time. At a given time after the target flow is achieved, the speckle
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fluctuation is smaller in the ramp from the less fluidized, more dense state.
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Figure 8.20: The speckle dynamics following defluidization sequences from
different initial flow rates above fluidization. t = 0 indicates the time at which
the target flow is achieved. The ramp rate is the same for the two runs.

As discussed in Chapter 2, it has been speculated that force chains play

a large role in jammed systems [138]. In fact, Onoda and Liniger proposed

that for packings with 1 − Φ < .45, the stress should be carried by a “rigid,

continuous network” [139]. Thus, the chains should appear when a yield stress

is developed. We briefly present evidence for the existence of force chains in
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the fluidized bed.

8.4.3 Probing force chains by local heat pulses
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Figure 8.21: A heat pulse is applied at t = 12 seconds by applying current in
a small (1 mm diameter x 2 mm length) 1/8 Watt, 16 Ohm resistor buried
in the bed for 1 second with a 12 V pulse. Q is maintained constant at 17
mL/min for the duration of the experiment.
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We have indirect evidence that force chains exist in the system. We

perform experiments similar to those described in Chapter 2, in which a local-

ized pulse of heat is applied to the grains. However, instead of monitoring the

transmission of sound through the medium, we study the time evolution of the

speckle pattern. This process is shown in Figure 8.21 and should be compared

to Figure 2.9 in Chapter 2. The heat pulse from a 12 V pulse to 1/8 Watt 16

Ohm resistor buried in th bed is applied for 1 second, and the effects are seen

for over 30 seconds. Upon application of the pulse, the resistor expands and

also locally heats the fluid and grains. The initial expansion of the resistor and

the subsequent expansion of the grains due to thermal expansion (estimated

for radial expansion as roughly 3 nm per degree C–easily detectable in speckle)

disrupts the local force chains. The heat propagates throughout the network

rearranging particles. We have verified that convection of the water through

heating is not important by performing the experiments without water.

In fact, if the current to the resistor is maintained, the speckle fluctuates

initially but after roughly 100 seconds, it becomes stationary. The same effect

is seen when the current is shut off. This indicates that the during the time

it takes for the heater to establish a steady temperature profile, the changing

temperature causes expansion of the beads. During this time, we see the effects

of the heat modifying the force network by rearranging, wiggling and deforming

beads. Once the temperature profile is established, the system is free establish

a new stable network. Thus, it jams, and speckle fluctuation ceases. We have

found that a similar effect can be induced by suddenly applying the 2 mm
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diameter laser beam to a face of the bed. After the beam is applied, the

speckle fluctuates for roughly 30 seconds. If the power is reduced to less than

30 mWatt , no speckle motion occurs. Also, if we decrease the power density

by expanding the beam spot to the size of the cell at constant power, a sudden

application of the beam causes no speckle motion. We interpret this in the

following way: As the power density is increased, the local heating becomes

large enough to disrupt the chains. We believe that further experiments of

local heating, combined with speckle imaging, should produce insights on the

dynamics of force chains, and their sensitivity to perturbation.

8.4.4 Ramp rate effects

We now discuss the role of rate effects on the fluidization cycles. We

will be interested in how the magnitude of dQ
dt

effects the fluidization process

for increasing or decreasing Q. We first examine behavior for dQ
dt

> 0.

Increasing flow rate

We have proposed a picture of a jammed system in which force chains

dominate the static behavior of the grains. Presumably, there is a time-scale

for the chains to set. Thus, fluidization at different rates should behave dif-

ferently. In Figure 8.22, we present fluidization for tightly packed case taken

with a much finer step size than the fluidization measurements taken in pre-

vious sections. Here, the ramptime is 30 seconds and the equilibration time

is 30 seconds while the step size is almost a factor of 10 smaller than that
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Figure 8.22: Fluidization of the bed at a different rate leads to different re-
packing events. A slow enough rate allows for the system to re-pack at different
points along the branch. Once re-packing occurs, the system must unlock, and
thus the pressure will rise. The ramptime between measurements is 30 seconds
and equilibration time is 30 seconds. The step size in flow rate is a factor of
10 smaller than in Figure 8.5

in Figure 8.5. We see that under such slow fluidization, the behavior is very

complicated. In the yield region, ∆P is no longer always decreasing, but oc-
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casionally increases. This is accompanied by no change in the voidage. Thus

the system has re-jammed at a lower volume fraction and consequently must

yield again. However, since it is at a lower voidage, it will yield at a lower

stress. Eventually we reach RLP and no jamming can occur.

For increasing flow, below RLP, the system can always jam, as the

increases in flow produce increases in stress which seek to dilate the system.

The ramp rate should affect the fluidization, as it allows the chains to set,

giving the material sufficient time to develop of a yield stress. As discussed,

for a tightly packed state, once the material initially yields some particles are

free to move and others are hindered. Since the voidage is lower than RLP,

the system has the ability to jam if given sufficient time. All of this occurs

when ∆P ≥ 1 where there is sufficient energy to translate grains. Thus, we

can study jamming at an effective finite temperature. In fact, we speculate

the the void cracks seen in Figure 8.13 are responsible for the jamming when

the system is close to ∆P = 1, at the edge of fluidization. We have observed

that in this region, the system can jam given sufficient time due to a dynamic

process of spouts popping up and re-healing, with motion stopping in the

healed region. At some point, the entire system may abruptly lock into place

and all speckle motion can stop. At this point, the spouts have created a yield

stress.
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Defluidization

We now discuss the effect of decreasing the magnitude of dQ
dt

to deflu-

idize a fully fluidized state. We find that the fully fluidized system responds

differently as the magnitude of dQ
dt

is changed.

The history of the bed for different flow rate decrease rates dQ
dt

is shown

in Figure 8.23. For a rapid shut off in the flow rate, the system gently sediments

to a state close to RLP (the solid black line in Figure 8.23) as described in

Section 8.2.1. We see that as the ramp time increases, the bed reaches a lower

voidage state. We interpret this as the system is given more time to explore

all configurations and does not get stuck in a high voidage state when ∆P

becomes less than 1. Once ∆P < 1, the voidage can only decrease through

the wiggle packing described earlier.

In fact, this has consequences in the dynamics of the grains. In Fig-

ure 8.24, we show two CCD speckle traces for defluidization from Q = 48

mL/min to Q = 17 mL/min for different ramp rates, 30 seconds and 300 sec-

onds. The speckle moves much more in the slow ramp indicating that the

system is dynamically finding the optimal locking, while the fast ramp has

had time to find its place. We propose that the fast decrease in flow rate

could even jam the system by the fast shock-like impulse. We note that the

speckle can truly be locked by a slight increase in flow rate as this dilates the

sample, jamming it, as seen from Figure 8.17. It is an interesting and unan-

swered question whether a system that has been very slowly defluidized will

spontaneously develop a yield stress.
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Figure 8.23: 1 − Φ as a function of Q for different ramptimes, (◦, •, �,�),
(11, 23, 35, 63) seconds. This gives the ramprate − dQ

dt
as (0.12, 0.06, 0.04, 0.02)

mL/sec/sec. The black line denotes the state reached when the flow is rapidly
shut-off.

In Figure 8.25, we plot the final voidage when Q reaches zero as a

function of the inverse ramp rate. We see that it reaches a limiting value of

roughly 0.42. Values close to this have been observed for different particle

sizes and fluidization in air and the value may have something to do with the

glass transition in hard spheres [145, 146], 1 − Φ ≈ 0.42. However, since we

have shown in Figure 8.18 that the defluidization branch is not unique, and

locks up when ∆P < 1, this could be only coincidence. We will discuss this

further in Chapter 9.
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Figure 8.24: The speckle fluctuates for a longer time for the slower ramp time.
30 second ramp and 300 second ramp. t = 0 indicates the time at which the
target flow rate is achieved.

Now we begin to see supercooled liquid-like behavior, (eg dramatic

change in timescale, rate dependent effects, jamming), and we postulate that

this system can be used to study glasses. We will discuss this in the next

chapter.
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8.5 Conclusion and summary of results

In this section I summarize our proposed picture to account for the

phenomena observed in fluidization cycles near onset. Consider a defluidiza-

tion cycle. Above RLP, the system is fully fluidized and grains move for short

times with ballistic trajectories. This is the freely colliding regime. When

Q decreases such that the system becomes more packed than RLP, and the

short time dynamics aren’t ballistic. Our interpretation is that in this frus-

trated state, the bed has as a mixture of freely moving grains, while other

regions contain grains which are packed together. This state can be jammed

(CAN IT?) whereas states above RLP cannot. As Q decreases, eventually
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Figure 8.26: Schematics of the ideas discussed in this chapter.

∆P decreases enough and cannot translate grains through fluidization. When

∆P < 1, only slight rotational modes (wiggling) are excited. Any forces due

to flow can only effect the small rotations of grains (wiggling). If the flow

is decreased slowly into this regime, the system is maintained away from a

jammed state and small rotations still persist. These rotations can manage
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to wiggle the system into a new volume fraction–thus the voidage continues

to decrease as the flow is decreased by the slight in-contact adjustments of

the grains. We claim that unless the flow is increased slightly, the system will

never jam in the wiggling region–no force chains will be established. Thus the

system is fragile.

Contrast this to the case for increasing flow. Increasing flow jams the

system, creating a yield stress. For particle motion, to occur, this yield stress

must be broken. However, the material does not yield all at once. As Q

is increased beyond the maximum yield stress, the voidage decreases and the

yield stress decreases. However, since ∆P is still greater than unity, the system

is still jammed, and no sustained grain motion occurs. Thus there will exist a

range in Q where fluidization is not accompanied by grain motion. Only when

the material has fully yielded and ∆P = 1, will sustained particle motion

begin. At this point the system cannot be fully jammed. The size of the range

of jammed fluidization will depend on the yield stress in the initial jammed

state. For a loosely packed state, the yield stress is very small, and grains

begin motion immediately at onset.

We also give some insight into the flow pulse experiments. This is a

different way to pack the bed. Instead of in-contact wiggling adjustments

which squeeze out free volume during defluidization, the pulses actually push

the grains apart. This provides them with paths to squeeze out free volume.

This is a much more efficient process, as the grains are not required to remain

in contact. Thus we have pulse packing vs. wiggle packing.
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In a sense, the continued decrease of the grains well below onset is

the answer to how the grains can remain in contact and continue to decrease

voidage–they wiggle into it. If the system is jammed, only the spectator par-

ticles will wiggle and these don’t control the voidage–the stress chains do.

8.6 Comparison to previous work

Several studies have been made of Geldart A air fluidized beds which

expand uniformly near onset (see [97] and references therein) These studies

have revealed the existence of an apparently motionless state immediately after

fluidization. Menon and Durian [130] used DWS techniques who found that the

particles remained motionless until the onset of bubbling. Their work was done

in air and for very tight packings and we show the comparison between our

studies in water and their air fluidization studies in Figure 8.27. The results

are in agreement in that we both see regions of increasing voidage without

particle motion. However, they can observe a much longer transient regime,

as their initial packing is close to RCP (1 − Φ ≈ 0.37), obtained by pouring

grains into the container and lightly tapping). We are usually working at

higher voidage where transient effects can dominate the path. Better tapping

schemes should allow us to reach the voidage range in the air fluidized case.

However, there is a fundamental difference between the two experi-

ments. This is the role of hydrodynamic interaction between the grains when

they are close to contact. This effect is characterized by the size of the Stokes

number, St = ρpavrel/µ, where ρp is the particle density, vrel is the relative
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Figure 8.27: Comparison of our results with those in [130]. The two left panels
are the results for air fluidization of spheres of different sizes at the same initial
packing. The small arrows indicate where motion of the grains begins. The
two right panels are our measurements in a water fluidized bed for different
packings of 335 µm spheres. The arrows indicate where grain motions begin.

collision velocity, a is the particle diameter, and µ is the fluid viscosity [97, 99].

St measures the relative importance of particle inertia to viscous fluid forces.

St can be thought of as roughly a measure of the distance in particle diameters

it takes a particle moving with a velocity v to stop when an applied force is

removed. For large collisions at St, St � 1, the lubrication layers near the

particle break down, and the surfaces of the approaching grains contact dur-

ing collision [97]. In the small St limit, St � 1, the lubrication layer prevents
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surface contact7. For typical collisional velocities of 0.1 cm/sec found in both

experiments, this yields St ≈ 0.6 in water and St ≈ 50 in air. Thus, the

behavior of the contact network of the grains in water should be significantly

different. In air fluidization the pressure overshoot almost immediately reaches

the value of ∆P = 1 once the material has yielded [177]. This is in contrast

for the gradual decrease in pressure that we observe in water. Perhaps this is

an effect of the extra lubrication for grains in water. This could be tested by

varying particle density. We also observe that images of speckle always show

fluctuation for the smallest particles (100µm), even after a jamming procedure.

This is in accord with the idea of a permanent lubrication layer surrounding

the particles and preventing the full frictional jamming forces. Further studies

are necessary to distinguish all of these cases.

8.7 Higher flow rates

We have briefly examined the behavior of the bed well above the flu-

idization onset. We attempt to fit to the Richardson-Zaki relation, Equa-

tion 8.28 for data at higher flow rates, see Figure 8.28. To measure the expo-

nent n in the equation, we measured the single spheres sedimentation velocity,

vt = 4.46 cm/sec (Re = 16), giving n = 4.5. The fit works well in the hindered

region and slightly above onset. However, far enough above onset, significant

deviation is observed. We observe that the deviation from the fit occurs close

7For measurements of coefficient of restitution of particle-wall collisions and the role of
St, see [76, 99]. For discussion of elastohydrodynamics of collisions of particles in fluids
see [10, 167].
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Figure 8.28: The fit to the Richardson-Zaki relation for 335 µm spheres for
increasing flow rate. The data was taken for a tight initial packing and only
the fluidization branch is shown.

to a point where the bed height has a small dip. A magnified view of the dip

region for a different fluidization cycle from a loose initial packing is shown

in Figure 8.29. The dip displays a complicated hysteresis for increasing and

decreasing Q. A dip in the voidage-flow rate curve has been observed in gas

fluidized beds, and has been shown to coincide with the onset of bubbling [156].

As Eq 8.28 only applies to non-bubbling beds, we expect deviation here [41].

Interestingly, above the dip in Figure 8.28, the data seems to have the same

scaling exponent, but is slightly offset.

268



20
 40
 60
 80
 100


0.4


0.42


0.44


0.46


0.48


0.5


0.52


Q (mL/min)


1-

Φ




Onset of 
bubbling
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Chapter 9

Fluidized bed dynamics and supercooled

liquids

Note to reader: This chapter deals with possible analogies between our experi-

ments on fluidized beds and supercooled liquids and glasses. This is preliminary

work, and the bulk of the chapter reviews the basic phenomena in this very

complicated subject. Although the analogy between the systems is still quite

tentative, we feel that the questions it raises can lead to fruitful directions in

the study of fluidized beds. Therefore, we will try to point out possible common

points between the systems and lay the groundwork for future studies.

9.1 Introduction

In Chapter 8, we studied fluidization cycles. In this chapter, we con-

centrate on the defluidization of the bed and the relation of this process to

the supercooling of a liquid. In our studies of defluidization, we have found

that when ∆P < 1, the bed is defluidized. For further decreases in Q, mo-

tion proceeds through small wiggling rearrangements; however, if the system

is jammed, it will be stable to small flow changes. When ∆P = 1, and
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1 − Φ > 0.45 (RLP), the bed is fully fluidized and all particles undergo bal-

listic trajectories between collisions. When ∆P = 1 and 1 − Φ < 0.45, the

bed is still fluidized but timescales for the decay of intensity correlation in

the scattering experiments become very long. From light scattering data, we

were able to measure the short-time exponent, α for the MSD of the parti-

cles. In this region we found α < 2. Our interpretation was that the motion

of the particles was becoming increasingly hindered in regions which grew in

size Q decreased. We now discuss analogies between these observations and

the canonical system which slows dramatically as a parameter is changed: a

supercooled liquid cooled near its glass temperature. An analogy between a

fluidized bed and a glass could result in increased understanding of a fluidized

bed. In addition, we believe that since the fluidized bed can be well controlled

and studied, the analogy could help to further understanding of glasses.

In this chapter, we begin with a short review of the salient features of

a fluidized bed upon defluidization that have analogies to the characteristic

behavior of supercooled liquids. We will then discuss the physics of supercooled

liquids and glasses. Finally, we will provide a re-interpretation of the features

of the bed in the supercooled liquid/glass picture. The main sources for the

review are [6, 7, 44, 45, 54, 55, 158, 170, 171, 191, 198]. I will reference specific

results when appropriate.
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9.2 Main features of defluidization

Listed below are the main features on which we will build the analogy

to supercooled liquids. The reference plots are found in Chapter 8.

• Defluidization rate effects

Figure 8.23-Figure 8.25

For defluidization, the final 1−Φ depends on the cooling rate, dQ/dt. A

rapidly defluidized bed settles into a higher voidage state than that reached by

a slowly defluidized bed. Furthermore, structural motion (wiggling) continues

for a longer time in the slowly defluidized state.

• Slow dynamics and hindered motion

Figure 8.14, top panel, Figure 8.12

As measured by τd, the timescale of the decay of g(2)(τ), when 1 −

Φ < 0.45 (below RLP) and while ∆P = 1, the dynamics of the bed slow

dramatically. For example, τd changes by almost 104 for a 10% change in Q.

Associated with the increase in τd is a corresponding rapid decrease in the

exponent for the short time MSD, α. α decreases from α ≈ 2 as the bed

goes below RLP. As argued in Chapter 8, our interpretation of α < 2 is that

system has become too crowded and the bed contains regions that execute

free ballistic trajectories and regions in which the particles are in contact. We

call this the hindered region of defluidization. Here we propose that the bed is

spatially heterogeneous; different regions having different dynamics. We argue

that these regions are not static, but the average fraction of mobile particles
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remains constant for a fixed Q. Note that α begins to deviate from the value

of α = 2 when the RLP voidage is crossed. Interestingly, the slope of τd vs. Q

does not change at this point. As α decreases, the slope of τd remains constant

until at a lower Q, α begins to drop rapidly; at this point τd changes by three

orders of magnitude. At this point, ∆P displays a small glitch, but is still

very close to ∆P = 1. We currently have no explanation for this behavior.

For slow defluidization, after ∆P < 1, the dynamics essentially stop except

for small wiggling motions of particles induced by further decreases in Q.

• Worms and volcanos

Figure 8.13

Visually, in the hindered region, the side of the bed is seen to contain

worm-like structures. These are fast moving regions of flow which locally

appear in the bed (we see them at the side and the top, but presumably

they exist in the interior), exist for some time, then disappear. The spouts

then appear in another region. When the spouts reach the top, they eject

particles and resemble small volcanos. Above RLP, all particles are moving

and individual volcanos cannot be distinguished. As Q is decreased below RLP,

they decrease in frequency and intensity until they disappear when ∆P < 1.

Thus, the spatiotemporal dynamics of the bed on longer timescales than those

probed by DWS are visually seen to be heterogeneous in the hindered region.

These are the main features that characterize the bed upon defluidiza-

tion. As will be seen, they are analogous to features of supercooled liquids.
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We now review the basic phenomena of supercooled liquids and glasses. We

will return to the the fluidized bed after the review.

9.3 Glass basics

9.3.1 Metastable states and the glass temperature

Upon cooling, the molecular motion in a liquid slows down. If the liq-

uid is cooled below its crystallization transition (freezing) at a rate which is

faster than the crystal nucleation rate, it is called a supercooled liquid. As

the temperature continues to cool, the timescale for molecular rearrangements

will become longer than the timescale set by the cooling rate. At this temper-

ature, Tg, the liquid appears frozen on laboratory timescales and is called a

glass. The most striking feature associated with this change to a glass state is

that near Tg, the tremendous slowdown occurs over a very small temperature

change. Associated with the slowdown in molecular motion, is a corresponding

dramatic increase in viscosity. In fact, Tg is often defined as the temperature

at which the viscosity reaches 1013 poise. This change typically occurs as T

changes by a few degrees C. However, Tg is not the temperature of a phase

transition. Its value (and thus the temperature at which the viscosity reaches

1013 poise) depends weakly on the rate at which the liquid is cooled.

This behavior is illustrated in Figure 9.1. Typically, the volume of a

liquid decreases as the temperature decreases. If the liquid is cooled sufficiently

slowly in contact with a heat bath, the system will crystallize, condensing to

its thermodynamically stable equilibrium state of lowest volume and minimum
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Figure 9.1: The specific volume (cm3/g) of a liquid as a function of temperature
for different cooling rates. The fast and slow cooling rates for the glasses are
separated by a factor of 5000 (0.02 hours and 100 hours) and the Tg differ by
about 8 degrees K. The values of Tg are obtained by the intersection of the
extrapolation of the V vs. T branches above and below the transition. The
supercooled regime extends from T < Tm < Tg. Crystallization is obtained for
a very slow cooling rate. Adapted from [55, 198].

disorder. Further cooling will result in a continued change in volume with a

much lower rate of change of volume with temperature, denoted − dV
dT

. In the

supercooled regime above Tg, −dV
dT

has the same value of the liquid state and

the liquid has a greater volume than the crystalline state. At Tg, the dynamics

become so slow that the system does not have time to rearrange to find its

supercooled equilibrium volume for that temperature. At this point the system
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becomes a glass and −dV
dT

takes on a value close to the value in the crystal state.

Note that we speak of supercooled equilibrium. Actually, the supercooled

state is metastable and must eventually relax to the lowest thermodynamically

stable state, that of the lowest free energy. The supercooled liquid or glass

may be mechanically stable on a long enough time so that the thermodynamic

transition is not seen. This is what we mean by supercooled equilibrium.

Thus Tg can also be defined by the point at which − dV
dT

decreases sud-

denly (but continuously). From Figure 9.1, we see that Tg is dependent on

the cooling rate. For a fast cooling rate, the system falls out of supercooled

equilibrium at a higher volume than a system which is slowly cooled and given

more time to find its lower volume, more “stable”, supercooled equilibrium

state. Note that a change in the cooling rate by a factor of 104 changes Tg by

only a few percent. A very interesting point about glasses is that unlike crys-

tallization, the slowdown is not accompanied by any obvious structural change

above and below the glass transition: the molecular structure of a glass cannot

be distinguished from that of its liquid above Tg.

9.3.2 Thermodynamics of the glass transition

Although not directly relevant to the experiments discussed below, the

thermodynamics of this transition are very intriguing. We will discuss this sub-

ject briefly. Thermodynamics would argue that if the system is cooled infinitely

slowly, the liquid must always freeze, forming the most stable-crystalline state.

If crystallization is avoided, the liquid reaches a metastable state. At a given
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temperature and given enough time, the metastable state will eventually relax

to the thermodynamically stable crystalline state. For a glass, since molecular

motion is so slow, this may take the age of the universe. Suppose, however,

that crystallization could be prevented for any T . Could a non-crystalline state

remain at T = 0? This proposed state has been called the ideal glass state.

The evidence for an ideal glass state is given by the entropy considerations

from specific heat data, and was first discussed by Kauzmann.

supercooled

liquid

glass 1

glass 2

crystal

S

TTg1
Tg2

Tm

liquid

from latent heat

TK

Figure 9.2: Entropy of a liquid as a function of temperature. Note that the
entropy curves do not break sharply, but display a continuous change as T
decreases. This is not shown on the schematic.

The behavior of the entropy is schematically represented in Figure 9.2.

As T decreases, so does the entropy. If the system is cooled slowly enough,

at the melting (freezing) point, Tm, the liquid undergoes a first order phase
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transition. Here, the volume of the crystal (see Figure 9.1) rapidly decreases,

and the entropy will drop discontinuously to a lower value, with the size of

the drop specified by the latent heat released. The entropy then continues to

decrease as T is decreased until, by the third law of thermodynamics, S = 0

at T = 0. Now, suppose that the system does not crystallize at Tm because

the system is cooled too rapidly. Then, a glass transition will occur at a

temperature Tg. Here, due to a change in the specific heat, the entropy begins

to decrease more slowly, remaining above the value of S for the crystal. Since

this is a metastable disordered state in contact with a heat bath, it will seek

to find a lower entropy state. However the crystal is a lower entropy state

with a lower free energy. Thermodynamics says system will eventually find

the crystal, but it may take the age of the universe.

For a slower cooling rate, Tg is smaller and the entropy begins its slow

change at a lower value of the entropy. Suppose that the liquid is cooled so

slowly that the entropy of the amorphous liquid does not deviate from its

curve. Eventually, it will intersect the crystal entropy branch. At this point,

the amorphous liquid has the same entropy as the crystal. This temperature

is called the Kauzmann temperature and it sets the lower bound on Tg. For

a slightly lower temperature, the disordered state would have a lower entropy

than the crystal state. This seems odd, but since the process is occurring

at fixed T and pressure, it is the Helmholtz free energy for the liquid or solid

phases that must be minimized; the entropy difference between the phases may

be positive or negative. The main problem would occur if the slope of the liquid
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entropy curve did not deviate at the Kauzmann temperature. Eventually, S

would reach zero at a finite temperature, in contradiction to the third law of

thermodynamics. Thus, one argument that says the slope of the entropy vs

temperature must deviate at Tk and this is called the ideal glass transition.

The ideal glass state would have the same entropy as the crystalline state and

the glass transition at this point would be a thermodynamic transition at a

well defined temperature.

Another viewpoint says that given enough time at a fixed temperature

below Tg, local nucleation of crystal will occur and system will crystallize.

This would prevent the negative entropy state, as for a given temperature,

the metastable state would always relax to the entropically favored crystalline

state. However, estimates of nucleation rates vs. molecular motion timescales

are not in favor of such a process [44]. Thus the fascinating thermodynamic

issues of the glass transition raised by the Kauzmann argument are still not

resolved.

9.3.3 Viscosity and time-scales of dynamics

The most noticeable effect that occurs for a glass is the tremendous

change viscosity as Tg is approached. Angell has proposed a classification

scheme based on the form of the viscosity vs T, and this is shown in Figure 9.3.

Here Tg is defined as the point where the viscosity reaches 1013 poise. Liquids

that show an almost linear dependence of the log of the viscosity on 1/T are

called strong liquids, while fragile liquids show quite nonlinear dependence.
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Figure 9.3: Left ordinate: Viscosity vs. temperature for different glass-forming
materials. Right ordinate: corresponding molecular relaxation timescales for
OTP.

Fragile liquids have large thermal expansion coefficients at Tg. The viscosity

of these liquids is extremely sensitive to T , as seen. As mentioned above, the

viscosity increase is accompanied by a corresponding increase in characteris-

tic relaxation times1. The right-side axis in Figure 9.3 shows the time-scale

for molecular rotation of the o-terphenyl molecules (OTP). These display a

tremendous change from the typical nanosecond relaxation timescales above

Tm. The dependence of the relaxation time-scales (or equivalently viscosity)

on the temperature can be fit to the Vogel-Fulcher-Tammann equation,

1Viscosity is the response of a liquid to shear and is related to the relaxation time the
system needs to respond to the shear stress by the Maxwell equation, η = Gτ , where G is
the high frequency shear modulus.
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τ = τ0 exp (
B

T − T0

) (9.1)

When T0 = 0, and B = Eact/kB, the equation takes the Arrhenius form

for kinetics determined by constant activation energy barriers of energy Eact.

For T0 > 0, the temperature dependence is non-Arrenhius, and the relaxation

time becomes infinite at a finite T . The value of this equation is that changing

B creates viscosity temperature curves that mimic the strong-fragile plot in

Figure 9.3. Thus fragile liquids have small B values and strong liquids have

large B values. The value of B is proportional to the ratio Tg/TK , where

TK is the extrapolated Kauzmann temperature discussed in the section on

thermodynamics of the glass transition2

In fact, supercooled liquids usually display two typical time scales as

Tg is approached. These are denoted the α and the β processes. In OTP,

it is thought that α corresponds to full rotations of the polymer molecules

and is the timescale which is seen in the response of the liquid to shear. β is

related to the timescale for a sidegroup to rotate. Therefore, α can be thought

of as a structural relaxation time and is thus related to the viscosity; this

is plotted in Figure 9.3. β corresponds to small re-orientations. Above Tg,

these timescales are the same, but below Tg in fragile liquids, the α timescale

displays non-Arrenhius behavior while the β timescale continues to display

Arrenhius behavior.

2In some liquids, the VFT fits are usually very good below Tg but can show deviation
close to Tg. In other liquids, VFT works well for the entire range up to Tg [44].
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9.3.4 Nonexponential relaxation

A characteristic feature of supercooled liquids is that they generally do

not relax exponentially is response to a perturbation. For example, if the tem-

perature of a fragile supercooled liquid is dropped by a small amount, the vol-

ume will not approach the new equilibrium volume exponentially. Relaxation

functions of a quantity C(t) are often fit to the Kohlrausch-Williams-Watts

(KWW), stretched exponential forms,

C(t) = exp ((− t

τ
)β) (9.2)

There are two different explanations for how the dynamics could relax

non-exponentially. The first is attributed to what is known as heterogeneous

dynamics: different regions of the liquid can have dynamics with timescales

that are orders of magnitude faster than other regions. Molecules in each

region relax exponentially to a perturbation, but the regions have different

relaxation timescales. Measurements of the dynamics of the entire sample in

response to a perturbation would effectively average over the vastly different

response timescales from different regions; this leads to a β 6= 1. The second

explanation postulates that supercooled liquids are homogeneous and that each

molecule relaxes in a nonexponential manner due to interaction effects with

its neighbors. Here β would measure the degree of interaction. Much effort

has been put into determining the correct mechanisms, and it now appears

that the heterogeneous picture is the correct one [54]. Thus the picture that
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emerges is one that was postulated by Adam and Gibbs [2]. They postulated

that the flow of the supercooled liquid proceeds though large regions moving

cooperatively. As Tg is approached, the size of the regions diverges, and the

dynamics must arrest, as it is increasingly difficult to move all of the particles

in the regions as opposed to movement of single molecules.

Relaxation in the glass state is even more complicated. Here the system

can display aging: relaxation to a different state after reaching the glass, by

slow changes of material properties. We will not discuss this point here.

9.4 Hard spheres, colloidal glasses and MD simulations

Hard sphere models, with particles that only interact repulsively at

contact, have been used extensively to study the statistical mechanics and

thermodynamics of simple liquids. Since there is no energy scale, temperature

sets the timescale. The volume fraction Φ becomes the thermodynamic vari-

able which is controlled. Hard sphere models were first studied by Alder and

Wainwright [3], and there has been much simulation work to understand the

phase diagram, equation of state and motion of particles. The phase diagram

in Figure 9.4 shows a phase transition as volume fraction is changed and has

been used as a model to understand phase transitions in more complex flu-

ids [3]. If Φ in a hard sphere system is increased sufficiently slowly, the system

will crystallize and proceed along the FCC branch. If the volume is changed

too rapidly, the system will fall along the amorphous branch. There is much

debate whether a glass transition occurs in this system. Some results have
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Figure 9.4: The hard sphere phase diagram in the pressure-volume fraction
plane. Adapted from [153]

shown that compression of the hard sphere fluid always yields an amorphous

glass state with Φg ≈ 0.64[170]. Other results [153] have shown that if one

waits long enough, crystallization always occurs.

Colloids at high densities have been shown to display the features of the

hard sphere phase diagram [145]. Furthermore a glass transition at Φ ≈ 0.58

was observed by Pusey and van Megan [146]. This was observed by light

scattering measurements which revealed a loss of ergodicity and decay of the
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correlation functions at the glass volume fraction. Since then, a large number

of experiments have been done to characterize this transition and compare

to Mode Coupling Theories [184, 185]. Specifically, the light scattering exper-

iments have studied the relaxation of colloids near the glass transition and

found that near Φg, the relaxation proceeds under two timescales, and these

correspond to the α and β relaxation discussed earlier.

Recently confocal microscopy has been used to directly image glass

forming colloids [62, 191]. This has shown the existence of growing cooperative

regions [191] near Φ ≈ 0.58. These growing cooperative regions allow a nice

interpretation of the α process in the hard sphere and colloidal system. The

spheres are trapped in transient cages of their neighbors. βF processes refer

to motions of a sphere inside a cage and differ from the β processes described

above. This is the fast process as it is just rattling around. The α process

refers to structural rearrangements when the spheres break out of the cages.

As things get more crowded, the size of the cooperatively rearranging region

becomes larger, and it takes longer for a sphere to escape from a cage. As Φg

is approached, this process requires the participation of more particles. It thus

becomes slower and may eventually arrest at the glass volume fraction. The

confocal experiments showed that the supercooled liquid was characterized by

large regions of correlated fast moving particles surrounded by regions of slower

particles, demonstrating the spatial heterogeneity discussed above. Thus, α

relaxation occurs through cooperative particle motion; movement of a particle

in a cluster results in movement of another particle in the cluster. Since all

285



particles must move together in the cluster, relaxations require rearrangement

of progressively larger groups of particles3.

However, due to space shuttle experiments showing an eventual nucle-

ation [201], the debate on the glass transition continues. However, colloids

still are a nice way to study possible glass transitions in a simple controllable

system.

In addition, recent studies of molecular dynamics of soft spheres, with

Lennard-Jones potential have proven useful in visualizing some of the processes

discussed above [46]. The simulations observe a similar slowdown and also

reveal that the cooperative regions of fast-moving particles are linear string-

like structures [46]. The particles in these string-like clusters are more mobile

and are able to break out of their cages earlier. However, these studies are

limited in the range of temperatures by the prohibitively long computation

times required to observe effects near glass transitions.

9.5 Theories of glass transitions

9.5.1 Mode Coupling Theory

This theory has been successfully applied to colloidal glasses and could

prove useful for granular matter. It has had some success explaining the two

3The cooperatively arranging region is thought of as a subsystem of the sample that can
rearrange into another configuration independently of its surrounding environment. In [2],
the cooperatively rearranging region is defined as ”the smallest region that can undergo a
transition to a new configuration without a requisite simultaneous configurational change
on or outside the boundary.”
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stage relaxation that occurs in glasses. However, as it deals the coupling

of slow Fourier modes, it is very difficult to understand in a physical way.

However, it does predict a power-law variation of the timescale for relaxation

time (or viscosity) as a temperature Tc is approached, with Tg < Tc < Tm.

Power law behavior for the viscosity of supercooled liquids has been observed

in a wide variety of liquids. While mode coupling may be a good theory in

the supercooled regime T > Tc, it does not do a good job at predicting the

exponents of the power laws. Mode coupling also makes the prediction that

the relaxation of perturbations should occur in a two step process close to

Tc. These different time-scales for decay seem to correspond to the βF and

α processes. Extensive comparison between MCT and colloid light scattering

experiments has been made [185].

9.5.2 Free volume theory

The free volume picture of supercooled liquids4 postulates that the glass

transition in a system will occur when “free volume is sufficiently squeezed out

of the system” [198]. At this point, particles are confined to local cages; thus

diffusion over length scales larger than a particle diameter becomes impossi-

ble. The theory proposes that clusters of particles in the fluid have different

amounts of free volume. Clusters with sufficient free volume are termed liquid-

like while clusters in which the free volume is below a critical value are called

solid-like. As the system is supercooled, the solid-like clusters grow in size until

4For a non-mathematical discussion of this theory, see [198]
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a percolation threshold is reached and the system becomes a glass. The notion

of liquid-like and solid-like regions is appealing in light of our observation of

ballistic and hindered regions in the fluidized bed.

9.5.3 Energy landscape picture

Ideal glass

Crystal
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l e
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y

Coordinates

Liquid -- free diffusion

Glass 1
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Figure 9.5: The energy landscape picture may be useful, adapted from [45]

A much more physical picture of glass formation is provided by the

energy landscape picture. The energy landscape picture of glass transition
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was developed by Stillinger [171] and the essential diagram is illustrated in

Figure 9.5. This is potential energy for every configuration of particles and

only depends on the density of the molecules. At a given temperature, the

system explores the local minima of the landscape for that temperature. The

dynamics are governed by the number of minima of a given depth at the given

temperature and the ability of the system to jump over landscape (or tunnel

around, as this is many-dimensional). The dynamics of supercooled liquids can

be interpreted in this picture. For high temperature, the most of the minima

are very shallow and the energy from the temperature is sufficient to allow the

system to explore the minima and not get trapped. Here the system displays

Arrenhius behavior. However, as the temperature is decreased, the system

cannot surmount the larger barriers and has the ability to get trapped in

local minima. These correspond to the non-thermodynamically stable states

which may have long lifetimes. The system will thus show behavior that

deviates from Arrenhius. There is one global minimum corresponding to the

crystalline state. The lowest non-crystalline state is the ideal glass. In the

energy landscape picture, the alpha process is associated with the exploration

between different deep minima and the fast beta process is associated with the

exploration of a single alpha minimum.

The landscape picture also helps to interpret the behavior of super-

cooled liquids as a function of cooling rates. If the system is cooled too

rapidly, it may be stuck in a higher minimum. The faster it is cooled, the

higher the volume. This is because if it starts from a high volume state, it
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will spend most time near high volume basins. If the temperature is quickly

removed, it becomes stuck in these basins. Cooling slowly enough allows the

system to always find the lowest minimum. The ideal glass state is the lowest

non-crystalline minimum.

Workers have studied models of MD systems to determine whether this

is a useful picture and we reproduce one particular plot in Figure 9.6. This is

a MD Lennard-Jones simulation which was quenched at different rates and at

each time step, the average potential energy of the atoms was measured. The

free diffusion corresponds to a temperature high enough so that the system

sees no energy barriers. This resembles the defluidization plot in Figure 8.23.

The interpretation given is that the slower cooling rates allow the system

to more efficiently explore the local minima, finding the correct set for each

temperature. If the system is cooled too quickly, it becomes trapped in the

minima is was exploring when the temperature was suddenly decreased. It is

a glass at these low temperatures. In the intermediate region, below T = 1

and above Tg ≈ 0.45, the time scale for relaxation no longer follows an extrap-

olated Arrenhius law and the relaxation functions describing the response to

a perturbation become stretched exponentials. The authors in [158] call this

the landscape influenced or dominated region.

9.6 Supercooled liquids, glasses, and fluidized beds

Below RLP, the defluidized state displays behavior and particle dy-

namics that are remarkably similar to those found in supercooled liquids and
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Figure 9.6: An MD simulation of Lennard-Jones molecules shows the explo-
ration of lower parts of the energy landscape as a function of cooling rate as
measured by the potential energy per atom after a quench. From [158].

glasses. Here we discuss the main points in common. To make the analogy

as suggestive as possible, we will refer to defluidization as cooling. We now

provide a point-by-point comparison and then make some concluding remarks.

The bed has dynamics driven by effective temperature and volume frac-

tion frustration dynamics. A liquid changes into a glass when the temperature

decreases by a little bit. A fluidized bed effectively loses temperature when

∆P = 1. Thus, a fluidized bed is like a supercooled liquid that reaches a tem-
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perature (or volume fraction) near but above Tg (or Φg) at which point the

temperature is suddenly quenched near T = 0. At this point temperature can

no longer drive the dynamics and any motion is due to the lack of jamming–

the bed is still not at the lowest possible energy and will try to get there, but

only through local wiggling motions. This is the deceptive glass analogy, as a

glass below Tg is also frozen, but still has a finite temperature.

This said, there is still a regime in the bed where the dynamics rapidly

slow, α < 2, but ∆P = 1. This is in the hindered regime, below RLP and here

is where we believe the analogy to supercooled can be exploited. Here, it is our

contention that the dynamics slow due to frustration effects–the system has run

out of free volume and some particles are constrained to touch. This creates

regions of immobile particles which grow in size as the flow is decreased. We

should point out that this range of hindered motion can be seen even below the

volume fraction reached upon very slow defluidization, as seen in Figure 8.18.

This indicates that the wiggle packing is effective until RCP.

This concludes our review on the basics of supercooled liquids and

glasses. We now discuss the analogies from Section 9.2 with the previous ideas

in mind.

9.6.1 List of analogies

• Dependence of state on cooling rate

We have shown that the rate at which a bed is cooled determines the

final volume fraction and the dynamics of the wiggling motions. For example,
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Figure 8.23 resembles Figure 9.1 and Figure 9.6. The value for slow fluidization

is 1 − Φ ≈ 0.425, very close to Φg ≈ 0.58. However, this could be coincidence

as we have argued that any true glass transition will be pre-empted by the loss

of fluidization.

• Slow dynamics upon supercooling
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Figure 9.7: The fit for relaxation times from DWS to VFT form. We obtain
τ0 = 10 µsec, B = 26, and T0 = 32 ml/min. This plot resembles the fragile
glass-former in Figure 9.3.

All timescales in the bed slow dramatically as a point in the the frus-

trated region is approached. Using Q for T , we have fit the τd data for which

∆P = 1 and this is presented in Figure 9.7 and should be compared to Fig-
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ure 9.3. We note that the fit does not do well in the high Q regime; in fact

we have found that it can be better approximated with a power law fit in this

region with an exponent around 2.5, close to MCT prediction.

Thus, before the fluidization is lost, the bed resembles a very fragile

glass. We note that the point at which the dramatic slowdown begins is at

a lower Q than the point at which α begins to slowly decrease from 2. It

corresponds to the point at which α begins to decrease rapidly from 2. We

currently have no explanation for this.

• Cooperatively growing regions and spatial heterogeneity

Our evidence for hindered dynamics is seen with α < 2. We inter-

pret this as immobile regions and the connection to cooperative heterogeneous

regions could be very strong. As the system becomes more frustrated, the

immobile regions grow in size. We must be seeing the short time picture of a

cooperative region. In the supercooled state, some regions are moving rapidly

while others are immobile. Thus we see the average. It would be useful to try

to relate the stretching factor in Equation 9.2 to the value of α. We argued

that α 6= 2 results from the DWS sampling many regions of different dynamics.

This is the same argument that accounts for the stretched exponential. Can

they be related?

In addition, there is an intriguing correspondence between α < 2 and

the disappearance of the spouting volcanos, see Figure 8.13. Above RLP, the

system is completely fluidized and the surface of the bed is quite agitated.
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Below RLP, in the hindered region, the surface of the bed is often broken by a

local spout. Viewed from the side, these appear as small worm-like structure

that are longer than they are wide. The frequency and spatial density of these

spouts decreases as α decreases. Are these the manifestation of the string-like

cooperative regions seen in [46, 47]? In this region, they appear and disappear

all over the bed, locally spouting and then stopping. This needs to be studied

carefully as it would provide an explanation of a fluidized bed using a feature

of a supercooled liquid.

• Nonexponential relaxation

If the spatial heterogeneity in the bed corresponds to spatial hetero-

geneity in supercooled liquids, we should see nonexponential relaxation. This

is something to study. For example, make a small change in Q and watch how

various properties relax: volume, dynamics as measured by a series of short 1

second DWS measurements. There should be a difference in response for the

fluidized and the hindered regions. We predict that the fluidized region should

relax exponentially, while the hindered region should show nonexponential

relaxation.

• Aging

In the wiggling regime, corresponding to a glass near T = 0, the non-

jammed bed can display very slow changes in speckle motion for long times

after a decrease in Q (see Figure 8.17). Is this an example of aging in the

system?
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• Nonergodicity in light scattering measurements

Our light scattering curves (see Figure 8.14, top panel) show a change

in the intercept of g(2) just as seen in DLS measurements near glass transition.

• Force chains

Are force chains set up at glass transition upon defluidization, or is an

extra jamming necessary? The existence of force chains also points favorably

to the glass analogy. It has been proposed in the jamming picture that force

chains form at a jamming transition [138]. If a glass can be thought of as a

jammed state, this would be a useful concept.

9.7 Interpretation in energy landscape picture

We propose that the energy landscape picture is a useful way to inter-

pret our results and a schematics are shown in Figure 9.8-9.10. The fundamen-

tal difference is that we postulate that the energy landscape is a function of Q.

This is reasonable as the potential energy of the system must account for the

presence of all forces, and Q creates a force through drag. We now separate the

pressure in the bed into a pressure due to fluid flow ∆Pf and a pressure due

to frictional contact forces ∆Pc. We also postulate the the temperature in the

system is proportional to Q when ∆Pf = 1 and effectively 0, when ∆P < 1.

The landscape must change as the voidage changes and should be taken into
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account. However, we will not speculate on its shape and distribution of local

minima as a function of density here [45].

Hindered state, 1-Φ<0.45
∆Pf=1 ∆Pc=0

Fluidized state, 1-Φ>0.45




Figure 9.8: A proposed landscape picture for fluidized beds above onset in the
completely fluidized and hindered regimes. ∆Pf is the pressure drop due to
the fluid and ∆Pc is the pressure drop due to contact forces.

In the fluidized region, the system moves freely over low barriers, and

the lowest point explored in the landscape is set by the balance of the fluid pres-

sure (temperature). The landscape is not changed with Q because ∆Pf = 1

and there is no static component of ∆P . When Q is decreased, but still flu-

idized, the temperature decreases. However, there is still enough temperature

to rearrange. When the system enters the frustrated regime, the landscape

remains fixed, but the system is stuck in local barriers. The most probable

state is always a balance between temperature and weight, but now there is

considerable activation to overcome barriers.

As Q is decreased, the system becomes localized in a local minimum

which is lower as the ramp rate is made slower due to exploration of the

landscape. When ∆Pf < 1, whichever minimum the system is it stays and the
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Figure 9.9: In the wiggling regime, each local minimum must have a collection
metastable states.

system will now begin slow annealing. The local wiggle motions then pack it

further by annealing. We present an energy-landscape pictures which could

account for this. In this case the relaxation would be due to local metastable

inflection points on which the system can remain until perturbed by a decrease

in flow, or a slight tap. These are illustrated in Figure 9.9. 5

We propose that jamming changes the landscape by creating sudden

activation barriers. Jamming creates a ∆Pc > 1 with only a small change in Q

(∆Pf ). Thus, when jamming occurs, the walls of the potential well suddenly

become very steep and the system is well-localized to the minimum. Before,

the system could wiggle around in the bottom of the relatively wide well,

moving between. Now, to move at all, the system must move over the high

5This is one explanation, but perhaps the landscape actually changes with changing flow
rate for ∆P < 1. A decrease in flow would make local minima deeper and the system would
evolve by always staying at the changing minimum.
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Figure 9.10: Jamming modifies the landscape by suddenly changing barrier
heights, effectively locking the system into a narrow local minimum.

barriers, breaking the yield stress. These barriers are the force chains in the

system. Thus, jamming freezes in the system–no longer can the fluid produce

wiggle packing. Any decrease in flow in the jammed state must provide enough

of a perturbation to unlock the system. This should be tested by examining

the stability of jammed states to different size flow decreases. As the system

is more jammed, the barriers are higher. When the grains yield, we have seen

that the bed height increases to accommodate, but then the particles jam.

This must occur in the following way. At yield, the high barriers are suddenly

removed and the system can reach a higher local minimum. However, if the

stress is applied slowly, the system will jam again, and the barriers will go

back up. Presumably they won’t be as high, as the system is now in a higher

voidage. We have observed that if the stress is quickly applied by rapid increase
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in Q, the system will not have time to set up barriers (force chains), and the

overshoot will be lower.

9.8 Conclusions

The fluidized bed displays many of the features associated with a su-

percooled liquid. The hydrodynamics drives the system as does loss of free

volume. We believe that the bed is a supercooled liquid in the hindered regime

and exhibits the familiar heterogeneous dynamics associated with such a liq-

uid. However, this state becomes nearly frozen due to lack of driving when

∆P < 1. At this point, it is stuck in whichever minimum it was in and the

only dynamics are wiggling motions moving between inflection points. Thus,

the true glass state is pre-empted by the rapid freeze due to loss of “thermal”

driving. It is important to study things like relaxation in the frustrated region

to understand supercooled fluidization and it is important to study wiggling

in ∆P < 1 to understand static jamming. Furthermore, can the worms and

volcanos be explained by the same mechanism of heterogeneity in supercooled

liquids?
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Chapter 10

Conclusions and future work

In this dissertation, we have described experiments on several different

problems in granular materials. To gain understanding, we have used concepts

from many branches of physics, including lattice dynamics and melting crite-

ria, glasses and solid mechanics, fluctuating hydrodynamics, and local stress

chains. This is the beauty of studying granular materials. In a small work area,

and for little money, many different behaviors of matter can be interrogated

in a precise way. Central to the work described, is the concept of fluidization

in granular materials. As seen, fluidization, in both the fluidized bed and in

the vibrated layer, strongly influences the grain dynamics. However, despite

the fundamental role that fluidization transitions play in the flow of granular

materials, there have been very few detailed experimental studies. Our initial

detailed studies of fluidization transitions have raised as many questions as

they have answered. We now discuss questions which are natural extensions

to the work described in Chapters 1-9.
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10.1 Vibrated layer

Due to its simplicity, the vertically vibrated system remains a very

useful geometry to study granular flows. However, improvements can still be

made to decrease lateral acceleration. Improved stability should prove useful

for study of patterns at higher frequencies, or near the onset of waves. Using

air-bearings with larger cross section, systems can be designed to significantly

reduce the effects of lateral vibration1. In addition, with a more powerful

shaker, the container mass could be increased, decreasing the effect of the

layer collision. With sufficient improvements, it might be possible to study

the vibrated layer with the same precision that has been developed for gas

convection [196]. Even without this stability, there are many questions that

can be addressed:

•Fluidization transition in a vibrated layer

The basic fluidization process in the vibrated layer is not fully understood.

As we have shown, fluidization has consequences on the evolution of pattern,

and determines the types of waves that are seen. Studying the grain dynamics

near Γ = 2 with techniques like Diffusing Acoustic Wave Spectroscopy or

Diffusing Wave Spectroscopy would yield important information about the

grain dynamics.

Fluidization in dry grains raises important questions about the role

1Such a system has been designed and built by P. Umbanhowar, and suffers from no
frequency dependent leveling effects.
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of continuum modeling of granular materials. Hydrodynamic equations have

been shown to well describe the flow of very fluidized grains [19, 150]. Can

such equations equations capture the transition from solid to liquid behavior

around the fluidization transition? Although hydrodynamic theory has been

used to describe slowly deforming solids [89], this approach is in its infancy.

In fact, there is no consensus on the correct equation of state to use at high

volume fractions (see Appendix 2). Careful experiments in 3D would provide

tests of such theories.

• Noise below onset and hydrodynamic theory

Our measurements on the noise induced patterns below the onset of patterns

suggest the need for modification of the Jenkins-Richman equations. The noise

induced patterns are produced by fluctuations which are of the order of energy

scales in the pattern, but have been averaged over in the continuum limit. In

thermal convection experiments, the effect has been studied for supercritical

(or very slightly subcritical bifurcations). Thus, to make contact with theory,

it would be interesting to study the noise below onset when the bifurcation in

the vibrated layer is only slightly supercritical. This requires going to higher

frequencies. However, ṽ decreases for increasing frequency. Thus, care must

be taken, as the best place to study this effect should be in the fluidized case,

ṽ > 3. Perhaps it would be useful to pre-fluidize the grains, using a flow of

gas or an additive high frequency excitation.
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• 2D melting transitions

Melting in the square lattice should be studied in a more controlled way. We

have reported on a type of shear melting, in which the lattice is heated by a

single growing mode. To make contact with theories of 2D melting, it is nec-

essary to create a more uniform type of heating. Preliminary attempts using a

random frequency modulation have proven unsuccessful. Once developed, this

technique would allow control of the temperature of the lattice. Perhaps the

well-known Kosterlitz-Thouless-Halperin-Nelson-Young melting scenario [85]

would be observed.

Additional work could be done to understand the motion of defects and

grains boundaries in the lattice patterns. Can theories of defect dynamics [166]

in equilibrium crystal lattices be used to predict the speed of propagation of

point defects in a nonequilibrium pattern? Do line defects act like a collection

of point defects? What types of dynamics do they display? Results from

such a study would be very useful for understanding ordering of patterns like

those discussed in Chapter 4. Theories for ordering are based on amplitude

equations, and do not yet predict the correct time dependence of the structure

factor (the ordering of the pattern). Could a lattice dynamics approach predict

the rate of ordering or ”crystallization”?

It would be interesting to see if other patterns display coupled lattice

type dynamics and thus be described by a set of ODEs. We have some in-

dication that spring constants decrease with increasing layer depth. Thus, in

sufficiently deep layers the presumably higher frequency compressional modes
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could become excited. We have indication that stripe patterns can display one

dimensional dynamics. It would be interesting to study the behavior of more

rigidly bound hexagonal patterns for which there is no “weak” direction.

•Segregation near phase discontinuities

Studies of segregation in vibrated layers due to effects other than boundaries or

interstitial gas are just beginning. We have shown that segregation of different

sized particles occurs near naturally occurring phase discontinuities. However,

no systematic study of the dependence of the segregation rate and size of re-

gion of segregation on control parameters has been made. Perhaps a regime

could be found in which the segregation process becomes useful in an industrial

process? We envision a large scale sorting process in which grains of different

size are placed in container vibrating in the kink regime. A kink would be

then moved across the container by adding a slight subharmonic to the drive.

The kink would act like a windshield wiper, removing large particles from the

bulk as it swept through. The large particles could then be picked off the top,

or the system could be slightly inclined to let them move along the kink into

a reservoir.

10.2 Fluidized bed

The studies presented in Chapters 8 and 9 are a first step toward pre-

cision fluidized bed experiments. The fluidized bed geometry is an ideal way
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to study the dynamics of multiphase flows. However, precision experiments

are hampered by lack of precision flow distribution elements for grains be-

tween 0.1 − 5 mm. We believe that the design described in Chapter 3 should

produce a distributor free from the extra channeling that complicates study of

steady states. The proposed design in Figure 3.9 would maintain a stiff surface

while allowing for different pressure drops through the distributor. The role

of pressure drop has been studied theoretically, but quantitative experiments

are lacking [97].

Once a good flow distributor is created, many interesting questions

can be addressed. For example, how does the Geldart diagram change with

changes in fluid parameters? It is not clear what appropriate nondimensional

parameters characterize the transitions between stable and unstable fluidiza-

tion, Geldart A and B. For that matter, it is not clear that there are clear

transitions. The fluidized state is rarely dull–particles don’t just bang around

randomly. For example, as briefly discussed, in the frustrated regions, the side

of the bed reveals small transient worm-like jets. If flow is increased enough,

we observe a rapid drop in the bed height. This indicates that the system has

begun to bubble as shown in Figure 8.29 in Chapter ??. Is there a bifurcation

to these states? transition between these states should be studied. What kind

of bubbling is it? Qualitatively it looks like ill-defined voidage waves near 1Hz.

Techniques like Diffusing Acoustic Wave Spectroscopy should prove useful in

understanding the long time and long length scale behavior.

In addition, the analogy to supercooled liquids should be pursued. The
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many similarities between the two systems could yield insights into the behav-

ior of both. For example, the role of spatial heterogeneity has only recently

been studied in colloids and MD simulations. It is clear that the bed is spa-

tially heterogeneous in the supercooled regime. Can the different systems be

understood in the same way?

10.3 Conclusion

These projects have been fascinating and enjoyable to work on. The

range in phenomena has kept it interesting and I look forward to hearing about

(and possibly completing) some of the projects outlined above.
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Appendix A

Swift-Hohenberg equation solver

The code listing for the 2-d Swift-Hohenberg equation solver, written
in Matlab, based on pseduo-spectral integration scheme taken from [36].

figure(1);clf;figure(3);clf;figure(2);clf;figure(4);clf

clear rato;

clear M;

clear raw;

clear stmat;

clear width;

clear max_k;

clear mm;

flag=1;

PLOTTIMES=1;

% Solves the 2-D Swift-Hohenberg equation %

N=128; %% number of NxN grid points

n=8;

xmax=N/2;

wind=15; %% fitting window for Gaussians

%a=-1.505;b=3.0;c=1.0;d=16;q0=.5; % oscillons

%a=.1;b=-1.0;c=0.0;d=1;q0=1;

a=-.05;b=3;c=1;d=1;q0=1; % Subcritical

dx=2*xmax/N;

dq=2*pi/(2*xmax);

DT=.1
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timesolve=0;

%setup grid in xy and q spaces

[x,y]=meshgrid(-xmax+dx:dx:xmax);

[qx qy]=meshgrid(-dq*N/2:dq:dq*N/2-dq);

% Initial condition stuff

%% fil matrix is initial condition

[th,r]=cart2pol(x,y);

%ffil=.05*randn(N,N).*(exp(-((r-20)/5).^2));

%ffil=ffil-mean(mean(ffil));

%fil=abs(ifftshift(fft2(ifftshift(ffil))))/N^2;

%fil=2*real(exp(i*th*n)).*(abs(r-20)<3); % central ring

%% This sets random noise with mean 0

fil= 2*rand(N,N);

fil=fil-mean(mean(fil));

W=fil;

W=W-mean(mean(W));

ffil=fft2(fil);

r=xy2rt(abs(fftshift(ffil)),N/2+1,N/2+1,0:N,2*pi*(0:255)/256);

st=sum(r’)/100000;

stmat(1,:)=st/max(st);

figure(1)

colormap gray

simage(W);

% Set up linear stuff

lins=a-d*(q0^2-(qx.^2+qy.^2)).^2;

lins=fftshift(lins);
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F=exp(DT*lins);

G=(F-1)./lins;

H=(F-(1+DT*lins))./(lins.^2);

k=0

ll=0;

Wf=fft2(W);

t0=clock;

while timesolve<20

W3=W.^3;

N0f=fft2(W3.*(b-c*W.^2));

N1f=0;

Wtmpf=F.*Wf+N0f.*G; % first guess

Wtmp=real(ifft2(Wtmpf));

Wtmp3=Wtmp.^3;

Wtmp35f=fft2(Wtmp3.*(b-c*Wtmp.^2));

N1f=(Wtmp35f-N0f)/DT;

Wnf=Wtmpf+N1f.*H;

% back to real space

W=real(ifft2(Wnf));

WLin=real(ifft2(F.*Wf));

WNon=b*W.^3-c*W.^5;

dif=max(max(W-(WLin+WNon)))

Wf=Wnf;

timesolve=timesolve+DT

k=k+1;

if rem(k,PLOTTIMES)==0

disp(etime(clock,t0))

ll=ll+1;

figure(1)

simage(W);
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colormap gray

%% Can store images here %%%

%raw(:,:,ll)=W;

%M(:,ll)=getframe;

mm(ll)=max(max(W));

%fwork=(abs(fftshift(Wnf))).^2;

rato(ll)=max(max(WLin))./max(max(WNon));

% Divide by initital pattern for good

% linear stage fitting %

if rato(ll)>100 & flag==1

fwork=(abs(fftshift(Wnf./ffil)));

%fwork=(abs(fftshift(Wnf)));

else

fwork=(abs(fftshift(Wnf)));

flag=0;

end

figure(4)

simage(fwork);drawnow;

colormap jet

%% Take azimuthal average and do fitting %%%

r=xy2rt(fwork.^2,N/2+1,N/2+1,0:N,2*pi*(0:255)/256);

st=sum(r’)/100000;

% stmat(ll+1,:)=st;

stmat(ll+1,:)=st/max(st);

[gg hh]=max(st)

hhmin=hh-wind;

if hhmin<=0

hhmin=10;

end

hhmax=hh+wind;

if hhmax>=max(size(st))
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hhmax=max(size(st));

end

hhmin=1;

hhmax=N/2;

ttt=max(size(hhmin:hhmax));

stsm=st(hhmin:hhmax);

%p=[20 16 1 0]; lorentz fit

%p=[100/timesolve^.25 hh-hhmin gg 0]; %gauss

p=[100/timesolve^.25 hh-hhmin gg]; %gauss2

hold off;

q=1:ttt;

pout=fmins(’fiterr’,p,[],[],’gauss2’,q,stsm);

width(ll)=4*pout(1); %gauss

%width(ll)=.3*pout(3)/sqrt(pout(2)); lorentz

max_k(ll)=pout(2)+hhmin-1;

pp=polyfit(log10(PLOTTIMES*DT*(7:ll)),

log10(width(7:ll)),1);

%%% Various useful quantities plotted here %%%

figure(2)

subplot(4,1,1);

plot(log10(PLOTTIMES*DT*(1:ll)),log10(width));

hold on;

plot(log10(PLOTTIMES*DT*(1:ll)),

polyval(pp,log10(PLOTTIMES*DT*(1:ll))),’r’);drawnow

hold off

title(’width’);

subplot(4,1,2);

plot(log10(PLOTTIMES*DT*(1:ll)),mm);drawnow

title(’max’);

subplot(4,1,3);
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plot(log10(PLOTTIMES*DT*(1:ll)),log10(rato));drawnow;

rato(ll)

title(’ratio’);

subplot(4,1,4);

plot(log10(PLOTTIMES*DT*(1:ll)),max_k);drawnow;

title(’max k’);

figure(3)

subplot(2,1,1);

plot(q,stsm,’go’);

hold on

plot([1:.1:ttt],gauss2(pout,[1:.1:ttt]));

hold off;

subplot(2,1,2);

imagesc(stmat(:,1:end));drawnow

end

end
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Appendix B

Hydrodynamic equations of granular materials

For reference, with permission from the authors, we have reproduced

the Jenkins-Richman equations used in [19]. The granular temperature is

written,

T (r, t) =
1

3
〈|u − 〈u〉|2〉 (B.1)

From this definitions, plugging into a Boltzman equation and expanding

to lowest order yields hydrodynamic equations for number density (or equiv-

alently, volume fraction ν = π
6
nσ3), momentum, and granular temperature.

∂n

∂t
+ ∇ · (nu) = 0, (B.2)

n

(

∂u

∂t
+ u · ∇u

)

= ∇ · P − ngẑ, (B.3)

3

2
n

(

∂T

∂t
+ u · ∇T

)

= −∇ · q + P : E − γ, (B.4)
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where the components of the symmetrized velocity gradient tensor E

are given by: Eij = 1
2
(∂jui + ∂iuj) . The components of the stress tensor P

are given by the constitutive relation:

Pij =

[

−p + (λ − 2

3
µ)Ekk

]

δij + 2µEkk, (B.5)

and the heat flux is calculated from Fourier’s law:

q = −κ∇T. (B.6)

To calculate the pressure, the equation of state and radial distribution

function at contact proposed by Goldshtein et al. [74] to include both dense

gas and inelastic effects:

p = nT [1 + 2(1 + e)G(ν)] , (B.7)

G(ν) = νg0(ν), (B.8)

and the radial distribution function at contact, g0, is:

g0(ν) =

[

1 −
(

ν

νmax

)
4

3
νmax

]−1

, (B.9)

where νmax = 0.65 is the 3D random close-packed volume fraction.

We note that g0(ν) is essentially a fit to reproduce a branch on the

phase diagram for hard-spheres (Figure 9.4). As such, many different forms
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have been proposed. The standard Carnahan and Starling form [25] for well

below onset is,

g0(ν) =
2 − ν

2(1 − ν)3
(B.10)

while recent authors [16] have used a form from Speedy [170] which works well

near RCP,

g0(ν) =
1

1 − ν
νRCP

(B.11)

Equations B.2–B.4 differ from those for a compressible, dense gas of

elastic particles by the energy loss term,

γ =
12√
π

(1 − e2)
nT 3/2

σ
G(ν), (B.12)

which arises from the inelasticity of collisions between particles. The bulk

viscosity is given by

λ =
8

3
√

π
nσT 1/2G(ν), (B.13)

the shear viscosity by

µ =

√
π

6
nσT 1/2

[

5

16

1

G(ν)
+ 1 +

4

5

(

1 +
12

π

)

G(ν)

]

, (B.14)

and the thermal conductivity by

κ =
15
√

π

16
nσT 1/2

[

5

24

1

G(ν)
+ 1 +

6

5

(

1 +
32

9π

)

G(ν)

]

. (B.15)
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Appendix C

Dispersion relation calculation

In this appendix we give details on the calculation of the dispersion

relation for the normal modes found in Chapter 5.

un

un+1

un-1

[10][01]

[11]

C

a
u0

uN

Figure C.1: The diagram showing the spring model used to calculate the (1, 1)T

normal modes.

We begin with a model for coupling of (1, 1) rows of the lattice in the

same spirit of coupling planes in a crystal [102]. We will assume harmonic

potential for coupling between the rows. The equation of motion describing
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the transverse motion of the displacement of a (1, 1) row from its equilibrium

position can be written,

m
dun

dt
= CT (un+1 + un−1 − 2un) (C.1)

Plugging in a trial wave solution,

un = e
−ı(kan√

2
+ 2πfLt)

(C.2)

with wavevector k in the (1, 1) direction, and fL the frequency of the wave,

yields the dispersion relation,

fL =
1

2π

√

4CT

m
sin(

ka

2
√

2
) (C.3)

where k = π
√

2/a is the maximum wavevector on the lattice in the

(1, 1) direction, the wavevector at the edge of the Brillouin zone.

Assuming free boundary conditions gives the condition k = nπ
√

2
aN

with

0 ≤ n ≤ N . This sets the number of allowed modes.
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Appendix D

Single inelastic ball model solver

The code listing for the single inelastic ball model solver. This code
calculates the trajectory of a single completely inelastic ball boucing on an
oscillating plate. This method was inspired by a similar code in [181].

#include <stdio.h>

#include <math.h>

#define PI 3.1415926

#define G 981.0

#define GAMMIN ((float)6.9)

#define GAMSTEP ((float).1)

#define GAMMAX ((float)6.9)

//#define F ((float)30)

#define BOUNCES 200

#define CUTOFF .01

#define PL .25

#define YACC .00000001

#define REST 0.0

#define YINIT ((float)1)

#define IMAX 10

#define PRINTBOUNCE 20

/* 0 printing to disk off. 1 printing on */

#define POSPRINT ((int)1)

#define TIMEPRINT ((int)1)

#define VELPRINT ((int)0)
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main()

{

int i,j,k,bounce;

double e(double,double);

double yplate(double,double,double);

double vplate(double,double,double);

double aplate(double,double,double);

double yball(double,double,double);

double vball(double,double);

double sign(double);

double temp;

double sg,sl,sr;

int pflag;

int rtflag;

int aflag;

int changeflag; // wont change when =1

FILE *out_dat1;

FILE *out_dat2;

FILE *out_dat3;

double F;

double gam,w,yio,yin,y,yp,yl,ypl,yr,ypr,ap;

double vio,vin,v,vb,vp,t,tglobal;

double tl,tr,tm;

double vrel;

double rl,rr,rm;

double DT;

out_dat1=fopen("positout.dat","wb");

out_dat2=fopen("timesout.dat","wb");

out_dat3=fopen("velsout.dat","wb");

//for (F=20.0; F <= 34.0+.01 ;F+=1)
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for (F=30.0;F<=30;F++)

{

fprintf(stderr,"freq=%f\n",F);

for (gam=GAMMIN;gam<=GAMMAX;gam+=GAMSTEP)

{

/* Initial conditions */

DT=1/(50*F);

yio=YINIT;

vio=0;

t=0;

tglobal=0;

w=2*PI*F;

pflag=0;

rtflag=0;

aflag=0;

changeflag=1;

fprintf(stderr,"gamma=%f\n",gam);

for (bounce=0;bounce<=BOUNCES && aflag==0;bounce++)

{

/*printf("bounce=%d\n",bounce);*/

/* Calculate time to next hit */

/* Bound root*/

t=DT;

rtflag=0;

pflag=0;

/* Now we see where to see initial increment from t=0 */

for (i=0;i<IMAX && rtflag==0;i++)

{

/*

printf("tstart=%-.16f\n",t);

printf("i=%d\n",i);
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*/

yl=yball(t,vio,yio);

ypl=yplate(gam,w,t+tglobal);

rl=yl-ypl;

if (rl<0.0) /* Still no bound, decrease initial step */

{

/*

printf("rl=%-.16f\n",rl);

*/

t=t/2;

}

else /* we have found a good initial step,

break out of loop */

{

/*

printf("rl=%-.16f\n",rl);

*/

rtflag=1;

}

}

if (i==IMAX) /* Ball is stuck on plate for all

intents and purposes */

{

pflag=1;

/*

printf("Ball is resting comfortably on plate\n");

*/

/* Check to see if ball will ever leave the plate again */

if (gam<=1.0)

{

printf("Ball is stuck on plate forever at this gamma\n");

aflag=1;

}
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else

{

/* Track ball on plate until it is ready to leave */

tglobal=tglobal+t;

while (aplate(gam,w,tglobal)>-G)

{

yp=yplate(gam,w,tglobal);

if ((BOUNCES-bounce)<PRINTBOUNCE && POSPRINT==1)

{

fprintf(out_dat1,"%f %f %f\n",tglobal,yp,yp);

/*printf("printing to disk\n");*/

}

tglobal=tglobal+DT/10;

}

yio=yplate(gam,w,tglobal);

vio=vplate(gam,w,tglobal);

}

}

/* Ball isn’t stuck on plate, so let’s

find the next hit position */

if (pflag==0)

{

/*

printf("Ball will undergo another collision\n");

*/

rtflag=0;

while (rtflag==0)

{

yl=yball(t,vio,yio);

ypl=yplate(gam,w,t+tglobal);

rl=yl-ypl;
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yr=yball(t+DT,vio,yio);

ypr=yplate(gam,w,t+tglobal+DT);

rr=yr-ypr;

sl=sign(rl);

sr=sign(rr);

if (yl>ypl && yr<ypr) { rtflag=1;}

else

{

/*

printf("%f %f %f %f\n",yl,ypl,rl,rr);

*/

/* Can change plate accelertion suddenly here */

if (changeflag==0 && bounce>=5 && fabs(ypl)<.01)

{printf("Changed accel\n");

gam=3.3; changeflag=1;}

if ((BOUNCES-bounce)<PRINTBOUNCE && POSPRINT==1)

{

fprintf(out_dat1,"%f %f %f\n",t+tglobal,yl,ypl);

}

t=t+DT;

}

}

/*

printf("Bounded root lies between t=%f and t=%f\n",t,t+DT);

printf("With root values of %f and %f\n",rl,rr);

*/

/* Now that we have a bound, narrow it down */

/* Initialize */

tl=t;
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tr=t+DT;

tm=.5*(tl+tr);

rl=yball(tl,vio,yio)-yplate(gam,w,tl+tglobal);

rr=yball(tr,vio,yio)-yplate(gam,w,tr+tglobal);

rm=yball(tm,vio,yio)-yplate(gam,w,tm+tglobal);

/* Start testing */

while (fabs(rm)>YACC)

{

if (rl*rm>0)

{

tl=tm;

}

else

{

tr=tm;

}

tm=.5*(tl+tr);

rl=yball(tl,vio,yio)-yplate(gam,w,tl+tglobal);

rr=yball(tr,vio,yio)-yplate(gam,w,tr+tglobal);

rm=yball(tm,vio,yio)-yplate(gam,w,tm+tglobal);

/*

printf("tm=%f rm=%f\n",tm,rm);

*/

}

/* Update final values */

t=tm;

y=yball(t,vio,yio);

yp=yplate(gam,w,t+tglobal);

/*

printf("%f %f %f\n",t,y,yp);

*/

326



if ((BOUNCES-bounce)<PRINTBOUNCE && POSPRINT==1)

{

fprintf(out_dat1,"%f %f %f\n",t+tglobal,y,yp);

/*printf("printing to disk\n");*/

}

/* Printing for collision time */

if ((BOUNCES-bounce)<PRINTBOUNCE && TIMEPRINT==1)

{

fprintf(out_dat2,"%f %f\n",gam,t);

}

/* Found intersection time and point, or takeoff point */

/* Make a rebound */

yio=y;

vb=vball(t,vio);

ap=aplate(gam,w,t+tglobal);

/*

printf("t+tglobal=%f\n",t+tglobal);

*/

vp=vplate(gam,w,t+tglobal);

/*

printf("vb=%f vp=%f\n",vb,vp);

*/

vrel=vb-vp;

if ((BOUNCES-bounce)<PRINTBOUNCE && VELPRINT==1){

fprintf(out_dat3,"%f %f %f %f\n",gam,vb,vp,vrel);

}

vio=vp-e(vrel,REST)*vrel;

327



/*

printf("vrel=%f\n",vrel);

printf("New vb=%f\n",vio);

printf("takeoff y=%f\n",yio);

getchar();

*/

tglobal=tglobal+t;

}

pflag=0;

}

/* Prints final velocities */

vrel=vb-vp;

fprintf(out_dat3,"%f %f %f %f\n",gam,vb,vp,vrel);

fprintf(stderr,"%f %f %f %f\n",gam,vb,vp,vrel);

} /* End Gamma loop */

} /* End Freq loop */

fclose(out_dat1);

fclose(out_dat2);

fclose(out_dat3);

}

/* functions*/

/* coefficient of restitution, flag=-1 for variable */

double yplate(double gam,double w,double t)

{

return ((gam*G)/(w*w)*sin(w*t));

}

double vplate(double gam,double w,double t)

{
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return ((gam*G)/w*cos(w*t));

}

double aplate(double gam,double w,double t)

{

return (-gam*G*sin(w*t));

}

double yball(double t,double vi,double yi)

{

return (-.5*G*t*t+vi*t+yi);

}

double vball(double t,double vi)

{

return (-G*t+vi);

}

double e(double vrel, double corflag)

{

double er;

if (corflag==-1.0)

{

if (fabs(vrel) < CUTOFF)

{

er=1.0;

/*

printf("e=%-.16f",er);

*/

return er;

}

else

{

er=pow(CUTOFF,PL)*pow(fabs(vrel),-PL);

/*

printf("e=%-.16f\n",er);

*/

return er;

}
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}

else

{

er=corflag;

/*

printf("e=%-.16f\n",er);

*/

return er;

}

}

double sign(double num)

{

if (num>=0.0){ return 1.0;}

else {return -1.0;}

}
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[101] S. Kirsch, V. Frenz, W. Schärtl, E. Bartsch, and H. Sillescu. Multi-

speckle autocorrelation spectroscopy and its application to the investi-

gation of ultraslow dynamical processes. J. Chem. Phys., 104:1758,

1996.

[102] Charles Kittel. Introduction to Solid State Physics. Freeman, 1986??

[103] James B. Knight, E. E. Ehrichs, Vadim Yu. Kuperman, Janna K. Flint,

Heinrich M. Jaeger, and Sidney R. Nagel. An experimental study of

granular convection. Phys. Rev. E., 54:5726, 1996.

[104] James B. Knight, Christopher G. Fandrich, Chun N. Lau, Heinrich M.

Jaeger, and Sidney R. Nagel. Density relaxation in a vibrated granular

material. Phys. Rev. E, 51:3957, 1995.

343



[105] James B. Knight, H. M. Jaeger, and Sidney R. Nagel. Vibration-induced

size separation in granular media: The convection connection. Phys.

Rev. Lett., 70(24):3728–3731, 1993.

[106] J. P. Koeppe, M. Enz, and J. Kakalios. Phase diagram for avalanche

stratification of granular media. Phys. Rev. E, 58:R4104, 1998.

[107] A. Kudrolli, M. Wolpert, and J. P. Gollub. Cluster formation due to

collisions in granular material. Phys. Rev. Lett., 78(7):1383–1386, 1997.

[108] G. Kuwabara and K. Kono. Restitution coefficient in a collision between

two spheres. Jap. Jour. App. Phys., 26(8):1230–1233, 1987.

[109] Mooson Kwauk. Fluidization: idealized and bubbleless, with applica-

tions. Ellis Horwood, 1992.

[110] L.D. Landau and E.M. Lifshitz. Fluid Mechanics. Pergamon Press,

Oxford, England, 1959.

[111] X. Lei, B. J. Ackerson, and P. Tong. Settling statistics of hard sphere

particles. Phys. Rev. Lett, 86:3300, 2001.

[112] Andrea J. Liu and Sidney R. Nagel. Jamming is not just cool anymore.

Nature, 396:21, 1998.

[113] C. H. Liu. Spatial patterns of sound propagation in sand. Phys. Rev.

B, 50:782, 1994.

344



[114] C. H. Liu, S. R. Nagel, D. A. Schecter, S. N. Coppersmith, S. Majum-

dar, O. Narayan, and T. A. Witten. Force fluctuations in bead packs.

Science, 269:513, 1996.

[115] C. H. Liu and Sidney R. Nagel. Sound in sand. Phys. Rev. Lett.,

68:2301, 1992.

[116] C. H. Liu and Sidney R. Nagel. Sound in a granular material: Disorder

and nonlinearity. Phys. Rev. B, 48:15646, 1993.

[117] W. Losert, L. Bocquet, T. C. Lubensky, and J. P. Gollub. Particle

dynamics in sheared granular matter. Phys. Rev. Lett, 85:1428, 2000.
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