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6. RESULTS

Subregions of GBM: 
Non-Enhancing Region (NER)- the center 
of the tumor and contains the dead cells. 
Enhancing Region (ER)- contains a rim of 
growing tumor cells.
FLAIR Hyperintense Region (FHR)- the 
outer most part which contains the swelling 
or inflammation of tumor.

• Glioblastoma (GBM) is the most common and aggressive 
grade IV glioma tumor1. 

• The median survival rate is up to 20.9 months for 
patients enrolled in clinical trial2.

• MRI is the most used imaging modality to identify the 
tumor’s location, extent and aid in surgical planning.

• During surgery complete tumor removal is impossible due 
to tumor’s irregular shape and could be infiltrate into 
adjacent brain tissue. 

• Follow-up MRIs can measure residual tumor volume, 
detect tumor recurrence, and assess treatment effects.

7. CONCLUSION

2. MOTIVATION

5. METHODS

• 419 pre-surgical and 310 follow-up segmented MRIs
• Four MRI modalities- T1, T1+Gd, T2, T2-FLAIR
• T1 and T1+Gd are necessary for enhancement and non-

enhancement region prediction
• T2 and T2-FLAIR are important to predict flair hyperintense 

region
• The segmentation labels encompass FLAIR hyperintense 

region, contrast-enhancing tumor, and non-enhancing core.

Challenges for accurate measurement of residual tumor 
volume in follow-up MRIs

• Tumors' irregularity and the presence of necrosis
• Presence of acute blood product within surgical bed
• Tumor recurrence can present as tiny lesions
• Correct diagnosis depends on individual experience and 

knowledge.
• Error-prone and time-consuming.

3. Aim
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Utilize deep learning-based framework to
• Estimate the residual tumor volume considering the 

brain structural variations 
• Assess the efficacy of the therapy utilizing imaging 

and clinical features
• Decrease variation and harmonize image 

interpretation
• Quantify the uncertainty in model’s prediction. 
• Provide a consistent and interpretable solution.

• The first fully interpretable model for segmenting tumor 
sub-regions using follow-up MRIs.

• The proposed model demonstrated high accuracy and 
reliability.

• Identified a significant generalization gap between deep 
learning models in tumor segmentation for preoperative 
and follow-up images.

• The proposed framework has a significant applicability in 
clinical assessment for GBM patients.
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4. Dataset
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Image Preprocessing
• Skull-stripping
• Registration
• Bias Correction
Encoder-Decoder based Model Development using 
Follow-up MRIs
• Encoder utilizes contrastive learning schemes to identify 

tumor location and shape
• Decoder’s Bayesian layer quantifies the uncertainty in 

model’s prediction
Post Processing
• Several image analysis method utilized to improve the 

prediction considering the model’s uncertainty
• The volume of residual tumor sub-regions was calculated  
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4. The similarity between the preoperative and 
follow-up MRIs drop by 20% due to morphological 
differences of brain and tumor.

3. A significant drop in generalizability and 
consistency on independent MRIs (p-value<0.05)
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State-of-the-art Model Performance on Follow-up MRIs

2. The state-of-the-art AI segmentation models trained on pre-surgery MRIs suffer from a 3-20% 
performance drop on follow-up MRIs for segmenting tumor subregions.

1. Segmentation Model Performance: The average dice 
similarity coefficient for FHR is 0.85 and ER is 0.88.
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