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Abstract 

 

An Integrated Approach to Model Cancer Cell Growth and Treatment 

Response with Multimodal Data Sources 

 

Kaitlyn Elizabeth Johnson, PhD 

The University of Texas at Austin, 2020 

 

Supervisor:  Amy Brock 

 
Mathematical modeling and computational biology have been used to understand, 

describe, and predict critical behaviors of cancer progression. Recent technological 

advancements in the acquisition of single cell resolution data by high-throughput 

micrographic imaging and by single cell genomics now enable new analyses of cancer cells 

at the individual cell and cell population levels. This dissertation focuses on the 

development of math modeling frameworks capable of integrating and improving our 

utilization of these novel data types. 

First, we investigate the relevance of deviations from the conventional exponential 

growth model via an ecological principle known as the Allee effect, in which cancer cells 

exhibit cooperative growth dynamics at low population densities relevant in tumor 

initiation and metastases. Using a large number of single cell resolution growth trajectories 

acquired at low cell densities, we apply a stochastic parameter estimation framework to 



 ix 

systematically evaluate the relevance of an Allee effect in a controlled experimental setting. 

Our findings reveal evidence for cooperative growth even in the presence of optimal space 

and nutrients, giving us motivation to consider Allee effects in making predictions 

regarding treatment response and tumor initiation. 

The remainder of our work focuses on utilizing multimodal data sources to better 

understand the dynamics of resistance to chemotherapy.  We utilize a mathematical model 

describing the effects of a treatment-induced resistance on a population of cancer cells and 

seek to utilize available snapshot and longitudinal data to identify the model parameters. 

Using lineage tracing technologies developed in the Brock lab, the transcriptomic data set 

is made actionable by developing a classifier capable of predicting whether a cell in a 

sample is sensitive or resistant to chemotherapy. We apply this to estimate the composition 

of the population at a few snapshots in time during treatment response and combine this 

with longitudinal data directly into our model calibration. The explicit incorporation of 

molecular level data with population-size dynamics data improves the identifiability and 

predictive power of the mathematical model. We intend this work to be exemplary of ways 

in which novel methods can improve the use of data to describe, evaluate, predict, and 

optimize cancer treatments.  
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1Chapter 1: Introduction 

PREFACE 

This dissertation work is focused in two broad areas; intratumoral heterogeneity 

and mathematical oncology. It has recently been recognized that improving our 

understanding of the heterogeneity within a cancer population is critical to understanding 

disease progression and treatment response. Critically, mathematical modeling tools can 

be used to improve our understanding of the dynamics of heterogeneity, allowing us to 

uncover how distinct subpopulations of cancer cells might interact and/or transition 

between states, leading to broader changers in the observed behavior of the entire cancer 

cell population. In this research, we focus on utilizing experimental data at the population 

and cellular level into mathematical oncology frameowrks to improve our understanding 

of the underlying systems.   

This introduction chapter is divided into three main parts. We begin by giving an 

overview of the biological questions driving the investigations to follow; specifically, the 

 
1 Note: Portions of this chapter are based on a book chapter in press to be published as: 
Johnson, K.E., Brenner, E. & Brock, A. (2019). Implications of non-genetic heterogeneity in cancer drug 
resistance and malignant progression. “Phenotypic switching in biology and medicine”. Elsevier 
Publishing. Book Chapter. In press. 
Author contributions: 
All authors contributed to conceptualization, writing and reviewing. 
As well as based on a commentary originally published as: 
Pan, J.* & Johnson, K.E.* (2019). “Hacking” our way across interdisciplinary boundaries. (2019). Cell 
Systems. 8(5):361-362. https://doi.org/10.1016/j.cels.2019.04.006  
*= equal contribution 
Author contributions: 
Conceptualization: Josh Pan Writing- original draft, review, and editing: Josh Pan, Kaitlyn E. Johnson, 
Funding: National Science Foundation’s Quantitative Cell Biology Network (NSF MCB-1411898)	 
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role of non-genetic heterogeneity in cancer growth and progression. We then focus on a 

brief overview of relevant topics in computational oncology. This is by no means 

exhaustive, but instead focuses only on a brief background of the methods used in this 

dissertation: bioinformatics in oncology, stochastic models to describe individual cancer 

cell behavior, and finally, ordinary differential equations for describing interactions and 

dynamics of cancer populations. Lastly, we close the introduction by describing the 

challenges, but also the power, of bringing together distinct fields of science to identify 

and tackle major scientific problems, and how the lessons learned from this experience 

shaped the future of the work in the remainder of this dissertation.  

NON-GENETIC HETEROGENEITY IN CANCER 

 Non-genetic heterogeneity in cancer plays a critical role in disease progression and 

response to therapy. While variability in cellular phenotypes results from both gene 

expression noise and different stable phenotypic states, in this section we will focus on the 

latter, specifically the theory and evidence for non-genetic heterogeneity in stable 

phenotypic states in cancer. To elucidate the theory that allows for heterogeneous 

populations of cells that are independent of their genomic state, we incorporate the concept 

of the phenotypic landscape—in which cells reside in stable “attractor” states.  In this 

framework, cells have the ability to transition to different states, and the probability of 

these transitions may be in part dependent on environmental conditions. Mathematical 

models allow us to build a simplified understanding of the heterogeneous states and the 

transition rates between states within a cancer cell population. Math models will be used 
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extensively in this dissertation as mathematical representations of hypotheses of the 

underlying heterogeneity of cell states in cancer.  

After describing the theoretical basis for cell states as “attractors” in a phenotypic 

landscape, we will discuss ways that cell states are identified and measured experimentally 

to investigate non-genetic heterogeneity in various empirical settings in cancer. We will 

describe instances of non-genetic heterogeneity and phenotypic state switching defined by 

drug naïve cell states with functional relevance to cancer progression and drug response. 

To make progress in preventing the onset of chemoresistance, it is necessary to elucidate 

how drug exposure may directly induce cell state transitions between sensitive and resistant 

cell states.  We discuss here the evidence that exposure to cytotoxic or targeted therapeutic 

treatments may cause cells to activate transcriptional or cell signaling programs that render 

them insensitive to treatment via a variety of different resistance mechanisms.  

We highlight the diversity of operational “cell state” definitions that characterize 

non-genetic heterogeneity in cancer- from simple functional characterizations of 

phenotypes defined by growth rates, to high dimensional definitions defined by single cell 

RNA sequencing of the transcriptome. Both characterizations will be used in research 

works in this dissertation. Here we argue that no all-encompassing state-space of cancer 

cells needs to be defined, but rather that cell-states may be defined by the properties that 

are most relevant to the biological question of interest. We discuss the advantages and 

shortcomings of single cell RNA sequencing (scRNA-seq), as well as the contexts in which 

scRNA-seq may be most useful.  Lastly, we propose using principles previously applied in 

the field of differentiation and development to integrate high dimensional scRNA-seq data 
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with functionally relevant cell states to better understand the role of non-genetic 

heterogeneity and phenotypic state switching in cancer. This work in differentiation 

provided the motivation for the project described in Chapter 4 of this dissertation. 

Theory of cell states in a phenotypic landscape 

Intratumoral heterogeneity is widely recognized as a critical factor in tumor 

progression, adaptation, and treatment response. Broadly speaking, intratumoral 

heterogeneity can be defined as the presence of distinct cellular phenotypes within a tumor 

cell population. The diversity of a cancer cell population can be examined at multiple 

spatial scales ranging from single nucleotide mutations in the genome to broad functional 

cellular behaviors such as growth rate or drug sensitivity. Numerous studies have 

demonstrated that increased heterogeneity is correlated with increased resistance to 

treatment and poorer patient prognosis (Fillmore and Kuperwasser, 2008b; Brock, Chang 

and Huang, 2009a; Pisco and Huang, 2015; Maley et al., 2017). While the importance of 

understanding heterogeneity in cancer is well acknowledged by the field, the adoption of 

multiple different definitions of heterogeneity can cause complications, potentially 

preventing a common language between basic discovery and clinical measures (Maley et 

al., 2017). Heterogeneity may manifest as clonal, or genetic, heterogeneity, in which 

distinct subclones of cells harbor genetic mutations that can confer phenotypic diversity to 

daughter cells; or non-genetic heterogeneity, which describes multistability in gene 

expression dynamics whereby one genome produces multiple stable or metastable 

phenotypic states.  Observations of individual cells able to reversibly transition into 

different phenotypic states either spontaneously (Piyush B Gupta et al., 2011; Thanos et 
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al., 2018) or due to an environmental stimulus (Pisco and Huang, 2015; Keisha N 

Hardeman et al., 2017; S. Chen et al., 2018) imply that a cell does not need to harbor a 

permanent genetic mutation to exhibit multiple cellular phenotypes.  

The presence of distinct subpopulations of cells able to transition between cell 

states to form a heterogeneous cell population is commonly described using the analogy of 

a phenotypic landscape. The concept was first introduced by Waddington to model 

differentiation and development (Waddington, 1940). Stem cells occupy the top level of 

the landscape and as cells differentiate, they descend into valleys and assume stable 

discrete phenotypes represented by “basins”; these are defined by their characteristic gene 

expression profiles and the resulting phenotype (Fig 1.1).  
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Figure 1.1: Waddington landscape concept of stem cell differentiation 
Waddington first posited that stem cells traverse down buffered pathways.  Up to a 
certain threshold neither external or internal perturbation affects the pathway, and 
transitions into an adjacent developmental pathway are rare. 

 

In this framework, cells are more likely to equilibrate into stable states represented 

by a ‘potential well’ in the landscape, but reverse transitions back towards stemness are 

theoretically possible. The probability of transitioning between states is directly 

proportional to the energy barrier between states, i.e. the height of the basins.  This 

framework has recently been extended to understanding cancer cell fates (Brock, Chang 

and Huang, 2009a; Huang, 2013; Paudel et al., 2018). In cancer, a clear hierarchy of cell 

types is not generally believed to exist, but instead multiple metastable phenotypic states 

can coexist. This is consistent with the observations of non-genetic heterogeneity in cancer, 

in which the landscape represents all theoretically possible physiological cell states. A 
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population of cancer cells may spread out across these available phenotypes, and 

subpopulation compositions of cancer cell types represent a quasi-equilibrium of the 

landscape.  The effect of a perturbation on this landscape can come in the form of a drug 

treatment, where in theory a treatment can have the effect of temporarily altering the 

topography of the landscape, resulting in temporary changes in phenotypic composition 

followed by a return to initial proportions. Alternatively, a perturbation can act to 

permanently alter the landscape by changing the relative depth of the wells that represent 

cell states, resulting in re-equilibration followed by stable changes in phenotypic 

composition of a cell population (Brock, Chang and Huang, 2009a; Zhou et al., 2014; Li, 

Wennborg, Aurell, Dekel, J.-Z. Zou, et al., 2016).  These stable changes could be achieved 

through either permanent environmental stimuli, or mutations and epigenetic alterations in 

the cancer cells themselves that may make available cell states that were previously 

inaccessible or change the stability of existing states relative to one another.   

 While the phenotypic landscape concept may serve as an analogy rather than a true 

biological phenomenon to be exploited and tested, its utility lies in the framework it 

provides for understanding complex subpopulation dynamics.  Heterogeneity in cancer 

cells not only encompasses the presence of distinct subpopulations in different frequencies 

within one tumor, but also that these subpopulations exhibit temporal variation. Under the 

landscape framework, one can model changing subpopulation compositions in cancer cell 

populations by defining cells with distinct cell states and tracking those cells as they grow, 

are killed by treatment, or transition into other states either stochastically or induced by a 

stimulus.  Simple mathematical models can be developed under the guiding principle of 
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cell states as attractor states, and can be used to describe and predict how subpopulations 

of cancer cells change over time based on the topography of the landscape (Pisco and 

Huang, 2015). Studying the effect of perturbation through these modeling methods can 

provide evidence for the critical role of cell state transitions, rather than differential growth 

rates, as the driver of observed subpopulation levels in time (Piyush B. Gupta et al., 2011; 

Pisco and Huang, 2015). These models can help predict the implications of different 

environmental stimuli and treatment strategies on the population composition over time. 

Models of phenotypic state switching can be employed to help us understand the dynamic 

processes related to cancer progression and treatment response by integrating theoretical 

models with experimental quantification of levels of relevant subpopulations over time.  

Experimental evidence for non-genetic heterogeneity 

What experimental findings support the functional importance of non-genetic 

heterogeneous cell states in cancer? To begin, in order to measure heterogeneity, one must 

first define the unit that is being measured. It turns out this is not quite so simple. While 

the field has sought to develop a universal definition of diversity, cell states, and 

heterogeneity (Maley et al., 2017), we argue here that cell states should be defined not 

universally, but in the context of the relevant biological question. For example, this means 

if we are interested in examining heterogeneity in response to treatment, then heterogeneity 

in cell cycle phase may be less relevant, and may not need to be incorporated into the model 

of heterogeneity. In this overview we discuss heterogeneity defined at a breadth of levels—

from molecular quantification of gene expression levels in a single cell to observations of 

diversity in cell morphology, functional behavior, and behavior related to proliferation 
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rates, metastatic potential, and responsiveness to therapies. A few key cell state definitions 

used as critical evidence for non-genetic heterogeneity in cancer are described in Table 1.1. 

Here, we only consider observations of stable changes in cellular phenotypes as cell states, 

as opposed to the quantification of cell states defined by rapid stochastic fluctuations in 

gene expression levels. In an analogy to thermodynamics, we are interested in the ability 

of cells to transition from one macrostate to another, rather than focusing on transitions at 

the level of microstates. Even at this higher level, the definition of a state can vary widely 

based on context. For example, cell states can be classified by their molecular 

characterizations (Piyush B. Gupta et al., 2011), where cells are categorized as basal-like, 

luminal-like, and stem-like based on their surface markers that are commonly used to 

characterize these distinct cell types. Other times, cell states may be classified by their 

proliferative capacity (Paudel et al., 2018), in which cells are assigned states based on 

doubling time, or based on sensitivity to drug (Howard et al., 2018).  In some studies, cell 

states may be more completely characterized by the entire gene expression state using 

single cell RNA sequencing and dimensionality reduction (Patel, 2014; Mojtahedi et al., 

2016; Stumpf et al., 2017). While none of these methods of categorizing cell states can 

perfectly capture the most parsimonious definition and binning of cell states, a diverse set 

of experimental measures may further our understanding of the dynamic composition of 

cancer cell populations. 
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Cell State 
Definition 

Functional 
Characterization 

Molecular 
Characterization 

Source 

Epithelial/ 
Mesenchymal 

Epithelial: cell-to-cell adhesion, less 
mobile, polygonal and cobble stone-
like, apical-basal polarity 
Mesenchymal: lack of cell-to-cell 
adhesions, elongated and spindle-like 
invasive, mobile, front-back polarity, 
elevated resistance to apoptosis 

Epithelial: high E-cadherin, 
low vimentin, cytokeratins 
Mesenchymal: high N-
cadherin, high vimentin, 
production of ECM degrading 
enzymes, FSP1, desmin 
Transcription factors associated 
with transition to 
mesenchymal: Snail. Twist, 
Zeb, FOXC2, and Yap families 

(Elosegui-artola et 
al., 2017), (Wei et 
al., 2015), (Yu et 
al., 2015),  (Ren et 
al., 2016), (Ai et 
al., 2014), (Chaffer 
et al., 2016), (Ye 
and Weinberg, 
2015), (Kalluri et 
al., 2010), (Mani et 
al., 2008), (Brabletz 
et al., 2018) 

Drug Sensitive/ 
Resistant 

Sensitive: higher growth rate, quicker 
death in response to drug,  
Resistant: slower growth rate, 
slower/less death in presence and after 
drug exposure, mechanisms include: 
evading targeted treatment, multi-drug 
resistance pump, persistence, changes 
in morphology 

Sensitive: high Ki67 
(proliferation marker), 
mutations dependent (i.e. high 
expression of BRAF 
/Kras/GPX4 others 
Resistant: MDR1 expression 
high, low expression of Kras, 
BRAF, upregulated DNA 
repair 

(Pisco and Huang, 
2015) (P. Chen et 
al., 2018), (Howard 
et al., 2018), 
(Hangauer et al., 
2017) 

OxPhos/ 
Glycolysis 
Metabolism 

Ox Phos: oxidative phosphorylation as 
primary mechanism of ATP 
production, use oxygen, sensitive to Ox 
Phos inhibition 
Glycolysis: glucose used to produce 
ATP 

OxPhos: up regulation of 
PCG1 and transcription factor 
MITF 
Glycolysis: up regulation of 
RAS-RAF-MEK-ERK 
signaling axis, glutamine 
transporter ASCT2 

(Keisha N. 
Hardeman et al., 
2017). 
(Deberardinis et al., 
2008; Deberardinis 
and Chandel, 2016), 
(Heiden et al., 
2009), (Davies et 
al., 2015), 
(Vazquez et al., 
2013) 

Hypoxic/ 
Vascular 

Hypoxic: de-oxygenated cell state 
Vascular: well-oxygenated and nutrient 
rich environment, characterized by 
presence of blood vessels in 3D tumor 
environment 

Hypoxia: H& E high 
Vascular: CD31 high 

(Syed et al., 2019), 
(Sorace et al., 
2017), (Junttila and 
Sauvage, 2013), 
(Goel et al., 2011) 

Carcinomatous/ 
Sarcomatoid 

Carcinomatous: round, less invasive, 
better cell-cell junctions 
Sarcomatoid: spindle-like, more 
aggressive, invasive/migration,  

Carcinomatous: k7 positive, 
upregulated in cell-cell 
junction genes and epithelial 
related genes 
Sarcomatoid: k7 negative, 
upregulated EMT related genes 
(TWIST1, TGFB, ZEB1), 
upregulated stem cell genes, 

(Thanos et al., 
2018), (Wang, Cui 
and Weng, 2012), 
(Miettinen et al., 
1999) 

Basal/ luminal/  
stem 

Basal: 
Luminal: 
Stem: ability to generate other 
phenotypes, self-renewal 

Basal: CD44 high, CD24 neg, 
EpCam neg 
Luminal: CD44 low, CD24 
high, EpCam high 
Stem: CD44 high, CD24 neg, 
EpCam Lo  

(Piyush B. Gupta et 
al., 2011), 
(Fillmore and 
Kuperwasser, 
2008b), (Shipitsin 
et al., 2007) 

Table 1.1: Examples of different categories of cancer cell state definitions used in the 
context of heterogeneous cancer cell populations in the literature, identified by 
function and molecular characterization.  
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Observations of drug-naïve cell states 
There exists an abundance of evidence for the presence of distinct subpopulations 

of cells within a population, even in the absence of environmental stimuli that might drive 

phenotypic adaptation.  The existence of phenotypic diversity does not necessitate the 

presence of non-genetic heterogeneity, as observed phenotypic composition could be 

obtained through differential growth rate of distinct subclones with different genomes that 

give rise to different phenotypes. Thus, this often leads to the question, are the observed 

proportions of subpopulations of cells maintained through differential proliferation rates of 

distinct subtypes or the interconversion between different cell states to maintain 

equilibrium proportions? While it is likely true that in cancer, both differential growth rates 

of distinct subclones and phenotypic plasticity both contribute to subpopulation 

composition, there exists an abundance of evidence for the idea that subpopulation 

proportions are maintained through phenotypic transitions between distinct cell states. 

Recent studies have demonstrated that phenotypic transitions are the most likely 

mechanism for maintaining equilibrium proportions of cell states within a cancer cell line 

that might otherwise be considered homogenous (Piyush B. Gupta et al., 2011). 

Researchers quantified the baseline proportions of distinct cell-states in SUM159 and 

SUM149 breast cancer cell lines using previously defined and characterized cell-surface 

markers corresponding to phenotypes of: stem-like (CD44 high, CD24 negative, EpCam 

low), basal (CD44 high, CD24 negative, EpCam neg) and luminal (CD44 low, CD24 high 

EpCam high) (Shipitsin et al., 2007; Fillmore and Kuperwasser, 2008a).  Using 

fluorescence activated cell sorting (FACS), the baseline proportions of cell phenotypes, 
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defined by the cell surface marker levels states above, were measured in each cell line 

(Piyush B. Gupta et al., 2011). The cell-surface markers and FACS were used to isolate 

pure subpopulations, and the resulting proportions of cells in each cell state were sampled 

over time following isolation (Piyush B. Gupta et al., 2011). The results revealed a rapid 

progression back toward the equilibrium proportions of the original cell line, and based on 

the short time it took to recapitulate initial proportions, cell-state transitions were more 

likely to achieve the observed proportions than differential proliferation rates, 

demonstrating the role of phenotypic state switching in maintaining the observed non-

genetic heterogeneity in cancer cell lines (Piyush B. Gupta et al., 2011).   

In the phenotypic landscape model (Huang, 2011), cells may overcome the stability 

of their gene expression configuration to exit an attractor state in one direction, but the 

mechanisms by which this occurs are not well characterized.  The question of mechanism 

of “escape” is addressed in blood cells by perturbing differentiated erythroid (red) and 

myeloid (white) blood cell lineages and observing the dynamic response to perturbation by 

quantifying cell state composition over time (Mojtahedi et al., 2016).  Stimulation with 

cytokines of erythroprotein and/or IL-3/GM-CSF trigger this transition. The resulting 

changes in subpopulation composition over time were measured at the single cell resolution 

using both FACS sorting on surface protein expression markers and single cell qPCR 

analysis of 19 genes.  Transition was characterized by a transition period at day 3 in which 

cells exhibited a higher diversity in cell state space, consistent with the analogy of the 

landscape temporarily flattening. This was followed by coalescence into two distinct cell 

clusters, corresponding to committed erythroid (red) and myeloid (white) cell states.  These 
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empirical data relating changes in phenotypic compositions over time provide the basis for 

a mathematical modeling framework to describe the probability of transitioning from one 

attractor state to another as functions of the relative depth of the well (Mojtahedi et al., 

2016). These modeling frameworks allow us to better understand how subpopulation 

dynamics are maintained through phenotypic plasticity (Piyush B. Gupta et al., 2011; 

Mojtahedi et al., 2016).  

Since these landmark studies describing the dynamics of cell state transitions, 

additional work has demonstrated the important role of drug-naïve phenotypic state 

switching for different definitions of cell state.  For example, in human liver cancer, 

heterogeneity in histopathology has demonstrated that sarcomatoid cholangiocarcinoma is 

characterized by distinct stable phenotypes classified as “sarcomatoid” and 

“carcinomatous” cells (Miettinen et al., 1999; Wang et al., 2016; Thanos et al., 2018). The 

sarcomatoid cell type is characterized morphologically as spindle-shaped and functionally 

are known to be more invasive and motile, similar to mesenchymal cells.  Transcriptional 

profiles of the two cell types indicates that sarcomatoid cells are down regulated in cell-to-

cell junction related genes and are upregulated in invasion/migration related genes, 

epithelial-to-mesenchymal(EMT) related genes such as TWIST1, TGFB, and ZEB1, and 

stem cell genes, compared to the carcinomatous cells. While morphology, invasivity, 

motility, and molecular characterizations were used to “define” distinct subtypes of cells 

in this context, a single marker, keratin-7 expression, was used to isolate cell phenotypes 

via antibody staining (Thanos et al., 2018), and revealed the presence of a single “mixed” 

cell type able to transition into either the k7 high or k7 low cell type. This work 



 14 

demonstrated that phenotypic plasticity plays a significant role in maintaining 

heterogeneous subpopulations of cancer cells even in the absence of any environmental 

stimulus. 

Additional instances of drug-naive phenotypic state switching have been described 

and characterized in cancer in a number of ways. For example, in the field of EMT, 

stochastic cell state transitions between epithelial and mesenchymal cells have been 

observed in the absence of any transition driving perturbation (Tian, Zhang and Xing, 

2013). Additionally, cell states have been characterized functionally by the observed 

growth rate, with changes in the observed population growth rate over time and passage 

number explained due to changing subpopulations of cells in different phenotypic states 

(Paudel et al., 2018). Thus, even in the absence of treatment or severe environmental 

pressures, cancer cells exhibit the capacity to overcome energy barriers between “basins” 

in the landscape to convert with some non-zero probability into alternative cell states and 

explore state-space. Although normal healthy cells likely exhibit these capabilities as well, 

for example in induced pluripotency, it is possible that cancer cells exist in a “flatter” 

landscape (Li, Wennborg, Aurell, Dekel, J. Zou, et al., 2016; Mojtahedi et al., 2016), 

resulting in non-genetic heterogeneity and the ability to evade environmental pressures.  

Adaptive cell states that are induced in response to cancer treatment 

The development of drug resistance in cancer is often explained by the presence of 

rare genetic mutations in the tumor population that allow for resistant subclones to expand 

in the presence of the selective pressure of treatment via Darwinian selection.  However, 

recently there has been an increased interest in an alternative mechanism, in which the 
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treatment itself induces an altered, drug resistant or tolerant, phenotypic state (Pisco and 

Huang, 2015; Greene and Gevertz, 2017). The ability of cells within a population to 

transition from a drug-sensitive to a drug resistant state is demonstrated in a number of 

cancer types and in response to both targeted and cytotoxic therapies in cancer (Brock, 

Chang and Huang, 2009a; Zhou et al., 2014; Pisco and Huang, 2015; Greene and Gevertz, 

2017; Hardeman et al., 2017).  In this section, we will highlight the evidence for drug-

induced phenotypic switching in cancer and overview the many ways in which these altered 

phenotypic states have been characterized in the context of drug resistance.  

Targeted therapies are designed to specifically target and kill or inhibit the growth 

of cancer cells exhibiting a characteristic not present in high abundance on normal healthy 

cells. This could include anything from cell surface receptors often over-expressed in 

cancer to oncogene addictions in certain cancer types. Some examples of these targets for 

which known therapies have been developed include: Kras addicted pancreatic ductal 

adenocarcinoma (PDAC) (P. Chen et al., 2018), HER2+ breast cancer (Hangauer et al., 

2017), EGFR positive non-small cell lung cancer, and BRAF mutated melanoma (Keisha 

N Hardeman et al., 2017; Paudel et al., 2018).  The promise of targeted therapies is based 

on the assumption that cancer cells are dependent on activation of the specific target, and 

variants with pre-existing resistance to that target are rare.  However, a number of studies 

of targeted drug treatments on “oncogene addicted” cancers have demonstrated that 

exposure to targeted treatment can enable cells to adapt to an alternative, potentially 

reversible, cell state.  For example, in Kras addicted PDAC, Kras inhibition treatment 

results in the induction of a drug-tolerant cell state characterized by differences in cell 
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morphology, proliferative kinetics, and tumor-initiating capacity (P. Chen et al., 2018). 

This drug-induced tolerant state is demonstrated to be reversible, resulting in no significant 

mutational or transcriptional changes but changes in gene expression related to cell 

signaling and focal adhesion pathways that cause the cells to have an increased dependence 

on adhesion for viability in vitro (P. Chen et al., 2018). Similarly, in HER2+ breast cancer, 

lapatinib treatment induces a non-mutational “persister” cell state that is characterized by 

a transient dependency on GPX4 (Hangauer et al., 2017). In this work, the ability to 

capitalize on non-genetic heterogeneity and phenotypic plasticity is demonstrated by 

attacking the drug-induced GPX4 dependent state with a GPX4 inhibitor, resulting in cell 

death in vitro that is not observed on the parental cell line alone with GPX4 inhibitor 

(Hangauer et al., 2017).  

In addition to targeting drug-induced states based on their molecular dependencies, 

recent work has also shed light on characterizing the drug-induced state via broader 

phenotypic changes. For example, BRAF mutated melanoma cells states have been defined 

in terms of their tumor metabolic phenotype (Keisha N Hardeman et al., 2017).  In this 

work, it is observed that cells fall along a spectrum of sensitivity to BRAF inhibition, with 

cell states resistant to BRAF inhibition characterized by a metabolic phenotype of oxidative 

phosphorylation instead of glycolysis. Thus, to overcome resistance to BRAF inhibition 

treatment, melanoma cells were treated with zalcitabine, a drug that suppresses normal 

oxidative phosphorylation and forces cells into glycolysis,. They found that cells could be 

resensitized to BRAF inhibition, thus demonstrating the reversibility of the drug resistance 

via driving the alternative metabolic phenotype (Keisha N Hardeman et al., 2017).  In this 
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context, knowing both the phenotype of the BRAF sensitivity and the metabolic phenotype 

allowed researchers to probe whether or not the phenotypic switching observed in response 

to drug was directly linked to an alternate phenotype. These types of relationships to 

characterize drug-induced phenotypes can be useful in developing targeted treatment 

strategies aimed at rationally modifying the landscape in favor of cell states with greater 

drug susceptibility. 

The idea that cancer cells might evade attack from targeted treatment by utilizing 

alternative pathways for survival is quite rational, however, how does a specific multidrug 

resistant phenotype emerge in response to broad-based chemotherapeutic agents? Again, 

observed drug resistance is classically explained by selection of resistant mutant cancer 

cells, however recent work has demonstrated that a multi-drug resistant state, characterized 

by expression of the MDR1 drug-pumping family of genes, is directly induced via 

“Lamarckian” induction, following exposure to chemotherapy in HL60 leukemic cells 

(Pisco and Huang, 2015). Lamarckian induction is induction driven by epigenetic changes 

and transcriptional plasticity that can contribute to drug resistance in addition to 

“Darwinian” natural selection.  This landmark paper not only demonstrated a drug-induced 

phenotypic state characterized by the functional ability to efflux drug, but also that this 

drug-induced phenotype was a result of cell-autonomous gene induction that was 

independent of fitness benefit, as the elevated levels of expression of MDR1 proteins were 

still observed even in the inhibition of the functional drug pumping mechanism.  These 

findings introduced the idea that drug exposure can “instruct” a cell to switch between 

attractor states in a directed manner. Not only does this finding indicate that drug-induced 
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attractor states should be examined to identify novel targets of overcoming resistance, but 

also implies that drug treatment schedules must take resistance induction dynamics into 

consideration when developing optimal treatment strategies. This concept has been 

explored by a number of recent theoretical works (Gatenby, 1991; Gatenby et al., 2009; 

Wood et al., 2012; Greene and Gevertz, 2017). While understanding the dynamics of drug 

resistant phenotypes over time is important, it is equally important to integrate this 

knowledge into a mechanistic understanding of the biological process that drives drug-

induced resistance. While the drug-induced resistant state has been characterized by a 

specific resistance mechanism, the MDR1 high state (Pisco and Huang, 2015), it is quite 

likely that multi-drug resistance is due to multiple resistance mechanisms.  To understand 

the processes driving resistance induction, it is sometimes necessary to identify and 

quantify non-genetic heterogeneity through much higher throughput molecular and 

physical measurements. 

BRIEF OVERVIEW OF RELEVANT TOPICS IN COMPUTATIONAL ONCOLOGY 

In this section, we will give a brief literature review of the pivotal works in three 

areas of computational oncology that are contributed to and or utilized in this dissertation 

work: bioinformatics for “omics” data analysis, stochastic modeling of individual cell 

behavior, and finally, ordinary differential equations for modeling tumor dynamics.  This 

review is by no means comprehensive, and we refer the reader to various reviews and 

commentary pieces in mathematical oncology for further reading (Gatenby and Maini, 

2003; Byrne, 2010; Gallasch et al., 2013; Enderling and Chaplain, 2014; Yankeelov et al., 
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2016; Anderson and Maini, 2018). Mathematical and computational modeling are powerful 

tools to test biological hypothesis, confirm experimental observations, and simulate 

dynamics of complex systems. For this reason, they have the power to improve our 

understanding and decision-making process in oncology by enabling the simulation of a 

number of different scenarios, all of which would be infeasible or unethical to test in a 

laboratory or clinical setting.  

Mathematical modeling translates qualitative hypothesis and observations, such as 

those described above regarding intratumoral heterogeneity, into quantitative models 

directly comparable with experimental data. In this dissertation, mathematical models will 

be used to reveal underlying compositions of heterogeneous populations, investigate the 

relevance of ecological principles in early-stage tumor growth, and to learn from 

multimodal datasets to develop mechanistic models capable of optimizing treatment 

regimens. To place this dissertation in context and provide background to readers, we will 

review key previous work in the field.  

Bioinformatics for interpreting “omics” data sets 

 We begin with an overview of recent advancements in bioinformatics as it is 

applied to genomic and transcriptomic data sets in cancer. Recent technological 

advancements such as Next-Generation sequencing (Behjati and Tarpey, 2013) and 

scRNA-seq have enabled major advancements in the breadth and depth of our 

understanding of the genetic and expression signatures of individual and populations of 

cells. However, without advancements in the computational tools used to analyze these 

data sets, making sense of them, and in particular using them to answer a relevant biological 
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question, would be quite difficult with traditional statistical methods alone. Although 

advancements in informatics approaches are not major contribution of this dissertation 

work, they were an essential component for making use of the scRNA-seq data sets used 

in Chapter 4. For a more detailed overview of the field of bioinformatics, we refer the 

reader to comprehensive review papers in bioinformatics (Diniz and Canduri, 2017), and 

for a more comprehensive overview of the potential for machine learning to permeate 

medicine, we refer the reader to a recent book by researcher Eric Topol (Topol, 2019).  

 Advances in high-throughput sequencing now enable biological data to contain an 

unprecedented level of information, requiring novel approaches and methodologies to give 

biological meaning to the data generated. This new data has largely led to the development 

of the new fields of bioinformatics and computational biology which have an integrated 

interface with molecular biology. These fields truly began with the publication of the 

structure of DNA by Watson and Crick in 1953 (Crick and Watson, 1953), but were 

significantly advanced by computing power allowed for sequencing, annotation, 

processing and analysis of genomic data (Verli, 2014).  

With these technologies came new computational methods for making sense of this 

data. For example, one critical step in analysis of biological sequences, whether they be 

derived from DNA or RNA, is alignment of sequences for comparison and quantification. 

Alignment methods such as Needleman-Wunsch and BLAST (Prosdocimi et al., 2002) are 

two examples of local and global alignment programs, respectively, that enable the 

quantification of specific pieces of genomic information for use in downstream 

interpretation. For example, in scRNA-seq pipelines, alignment is used to map reverse-
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transcribed cDNA (derived from RNA) to reference genomes where each individual 

sequence is compared to many possible genes. Alignment is also used in these pipelines to 

“cluster” pieces of cDNA with their unique molecular identifiers and their cell barcodes, 

both pieces of information which are used to quantify the abundance of a large number of 

individual genes in individual cells (Klein et al., 2015). These advances and others, often 

referred to as preprocessing, are often followed by normalization, statistical methods used 

to allow for comparison across genes, cells, and samples (Diniz and Canduri, 2017). 

Advances in these techniques are critical for enabling downstream analysis via proper 

quantification of the quantities of interest, for example barcode abundance, mutational 

profiles, or gene expression levels.  

 The aforementioned methods provide a critical first step to getting raw sequencing 

read data into an interpretable format. Even after these processing steps however, there is 

still often a huge breadth of high dimensional, high-throughput data. Interpreting this data 

and recognizing features or patterns that might be relevant to biology, is just one place 

where machine learning methods can enter the biological arena. Machine learning 

algorithms can learn patterns in data for discovering structure in unlabeled data to simplify 

via dimensionality reduction or organize data via clustering methods (Kann et al., 2019). 

These approaches can be used for a wide range of applications, such as visualization of 

clusters of phenotypes, predicting future expression, and identifying common mutational 

profiles, just to name a few. As these types of data become more common in both research 

and clinical settings, it is likely that machine learning algorithms will be applied to assist 



 22 

in making these data types actionable to researchers, physicians, health care systems, and 

ultimately patients (Topol, 2019).  

Stochastic models to describe individual cell birth, death, and interactions 

 Much as the field of cancer modeling began with descriptions of continuous and 

deterministic systems, the field of modeling chemical reactions also began this way and 

was extended to describe the time evolution of chemically reacting systems via discrete, 

probabilistic molecular events (Gillespie, 1977). Most relevant to the field of subcellular 

and cellular interactions are the contributions of Daniel T. Gillespie, who developed a 

foundational algorithm for stochastic simulation that is still used to this day (Gillespie, 

1977, 2014). Mathematical oncologists have more recently realized the need to develop 

discrete models of cancer cells in order to account for the behavior of individual cells 

(Enderling and Chaplain, 2014) that drive behavior of metastatic spread and early-stage 

tumor growth. The first to develop a model that explicitly accounts for the behavior of 

individual cells was (Anderson et al., 2000) where he modeled how individual cells could 

migrate beyond a margin of cancerous tissue that was visible by surgeons, predicting 

further penetration into healthy tissue than a continuum model would have predicted. Since 

this work, a number of other discrete models have been developed using a variety of 

techniques such as the Pott’s model (Turner and Sherratt, 2002; Poplawski et al., 2010), 

cellular automata (Rocha et al., 2018), agent-based models (Kansal et al., 2000; Zhang et 

al., 2009; Araujo et al., 2018), and multiscale models which combine continuum and 

discrete modeling in the relevant regimes (Ramis-Conde et al., 2008; Zhang et al., 2009).  

These stochastic models have been used to describe intracellular interactions (i.e. the 
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observed stochasticity in gene expression due to chemical reactions within cells), and to 

describe the individual interactions of cells with themselves and the environment.  

 Stochastic models of cell-level behavior have been successfully used to describe 

and explain observations of cancer cells, such as the non-constant time between cell-

divisions and deaths (Stukalin et al., 2013; S. X. Sun, 2015). A number of stochastic models 

to describe cancer cell birth and death events have been used to predict population 

dynamics. These models typically allow for the exploration of mechanistic hypotheses 

regarding the probabilities of birth and death events and how they depend on the presence 

of other species or environmental factors (Nowak, 2006; S. X. Sun, 2015).  For example, 

(West et al., 2016) developed a stochastic model of tumor growth that uses a Moran birth-

death process, which describes how heterogeneity increases over time due to molecular 

mutations in independent cells (West et al., 2016). Additionally, (West and Newton, 2018) 

also showed that stochastic models of individual cell-to-cell interactions describe a number 

of the most commonly observed continuous models of growth behavior, depending on the 

functional nature of the interactions between individual cells, demonstrating potential 

mechanistic underpinnings of observed phenomenological behavior. These works 

demonstrate the power that stochastic modeling and simulations has to recapitulate 

observed experimental behaviors of cancer cells in a wide variety of settings. 

 Stochastic models have been used extensively to simulate and ultimately explain 

expected behaviors for different scenarios. For example the observed behavior of the “go- 

or-grow” phenomena which leads to an emergence of a slowing of growth at low cell 

densities (a phenomena known as an Allee effect) (Böttger, Hatzikirou and Voss-böhme, 
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2015). However, many of these models are extremely computationally expensive, 

requiring stochastic simulation algorithms (Cao and Petzold, 2006) for each forward 

function evaluation. In the past, this had necessarily limited their capacity to be calibrated 

to experimental data. However, with novel technological advances now enabling more 

precise capturing of experimental data (for example single-cell resolution fluorescence 

activated cell sorting [FACS] measurements), the ability to calibrate these models has 

become more tractable using moment-closure approximations. The use of moment-closure 

approximations for parameter estimation from data was introduced in (Fröhlich et al., 

2016), and applied to reveal sources of heterogeneity in FACS sorting data and drug 

response data (Frohlich et al., 2018; Loos et al., 2018). This work is a key contribution to 

integrate stochastic modeling into data analysis. This method will be applied to single-cell 

resolution tumor cell growth data in Chapter 3 of this dissertation, where we investigate 

the mostly likely structure of the observed growth behavior of small, initiating populations 

of cancer cells. 

Ordinary differential equations for describing the interactions and dynamics of the 

tumor and its components 

 The field of mathematical oncology dates back to the 1960s and emerged out of a 

practical problem- how best to dose newly developed chemotherapeutic agents. These 

models intended to describe the number of tumor cells as a function of time, in order to 

predict and compare the effects of treatment on cancer progression. However, describing 

the number of tumor cells in time is remarkably challenging, so instead researchers turned 

to a slightly more straightforward question of how tumor cell number changes in time, 
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resulting in differential equation models that describe the the possibilities of birth, death, 

and quiescence (Enderling and Chaplain, 2014). The first models were mostly descriptive, 

rather than mechanistic, and intended to reproduce the gross behavior of the tumor size 

over time (Anderson and Maini, 2018). Since then, the role of ordinary differential 

equations (ODEs) have evolved to both answer clinical questions regarding cancer growth 

and treatment as well as to improve our understanding of the underlying complexities of 

cancer biology.  

The first major contribution to mathematical oncology came in the form of an ODE 

describing the total tumor cell number in time. In the 1960s, physician Howard Skipper 

performed a series of experiments in leukemia that demonstrated what is still largely used 

today- the log-kill hypothesis (Skipper, 1964). This model posits that the number of cells 

killed by a treatment is directly proportional to the number of cells present, i.e. a constant 

fraction of cells is killed with each treatment. This finding in turn led to the largely still 

pervasive idea that, if the goal is to seek a curative treatment, the maximum tolerated dose 

is the best chance at eradicating all of the tumor cells. 

Building upon this work, physician Larry Norton later showed that a non-constant 

growth rate, in which only a fraction of the population of cells is in a proliferative state, 

explains the observed growth dynamics in solid tumors (such as breast cancer), in which a 

slowing of growth rate as the tumor gets larger is observed (Norton, 1988). The Norton-

Simon model, as the name implies, merged these two ideas to propose that the fraction of 

tumor cells killed by a treatment is not just proportional to the number of cells present, but 

the number of proliferative cells present in the tumor, which in Norton’s model is non-
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constant (i.e. Gompertzian, in which the number of tumor cells over time gradually slows 

(Winsor, 1932; Norton, 1988).  As a result of this finding, the first clinical trial designed 

based on a mathematical model of treatment response was tested (Citron et al., 2003). The 

findings revealed that, as the model suggested, a dose-dense scheme is more effective than 

a conventional dosing regimen.  

Additional examples of phenomenological differential equations used to make 

treatment decisions can also be found in modeling radiation therapy. In radiation therapy, 

two types of dynamics of cell death are observed to occur, those that cause near immediate 

cell death proportional to the dose, and cell death that is delayed and occurs as cells attempt 

to pass through the cell cycle and undergo mitotic catastrophe due to the DNA damaged 

induced via radiation (Brenner, 2008). In order to account for these observed dynamics in 

treatment response, a linear-quadratic model (Brenner, 2008) was proposed which is able 

to describe the observed changes in cell number via two parameters for the two rates of 

cell death. Both the linear-quadratic model in radio therapy, and the Norton-Simon model 

of chemotherapy response represent ways in which descriptive models, describing only 

population dynamics, have been able to have a significant clinical impact, improving how 

treatments are administered throughout the field. 

However, ODEs have not been limited to phenomenological models describing 

population dynamics of tumors. Instead, ODEs have become critical for bridging the gaps 

between biological hypotheses of process at all different scales- from the intercellular level 

to describe gene network interactions (Rohrs, Makaryan and Finley, 2018) to models of 

heterogeneous subpopulations related to processes such as epithelial-to-mesenchymal 
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transitions, immunological responses (Jarrett, Bloom, et al., 2018; Poleszczuk and 

Enderling, 2018), and drug-sensitivity states (Greene, Sanchez-Tapia and Sontag, 2018b; 

Greene, Gevertz and Sontag, 2019). The past few decades have seen an abundance of ODE 

models, built with biological hypothesis about the nature of component interactions, and 

able to be compared directly with experimental data. These models have a unique place in 

the field, as they represent one way of bridging the field of cancer systems biology, which 

seeks to make sense of individual interactions and components and their effects on the cell, 

tissue, or organ-level, with mathematical modeling. These mechanistic models can thus 

represent quantitatively different biological hypothesis and can be used when compared 

with experimental data to test these hypotheses and drive future experiments to validate 

those hypotheses. 

There are a number of significant contributions of ODE-based models to the field 

of mathematical oncology at all different levels. Of particular relevance to this dissertation 

for understanding the role of tumor heterogeneity in cancer progression, are models of 

heterogeneous subpopulations defined by their drug sensitivity states. James Greene and 

Eduardo Sontag (Greene, Gevertz and Sontag, 2019) propose a model of drug-induced 

resistance which describes a population of cancer cells made up of resistant and sensitive 

cells. These two subpopulations grow according to logistic growth at independent rates, 

have different death rates consistent with the log-kill hypothesis described above, and are 

able to transition from one state to the other. This mathematical description of drug-induced 

resistance is described by a transition rate, proportional to the observed treatment, at which 

sensitive cells can transition into the resistant cell state. The structure of this model was 
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built based on a number of experimental observations describing the direct induction of a 

resistant phenotype in response to drug, as is described above (Pisco et al., 2013; Fallahi-

sichani et al., 2017). This model not only provides a mathematical framework for testing 

this hypothesis of drug-induced resistance, but also has utility in optimizing treatment 

regimens. Just as the log-kill hypothesis indicated that a maximum-tolerated dose would 

be an optimal treatment strategy, the degree at which a treatment induces resistance 

changes optimal strategies for drug dosing. For example, Green and Sontag (Greene, 

Sanchez-Tapia and Sontag, 2018b) show that if a treatment does not induce resistance, then 

constant treatment improves overall tumor control, however if treatment-induced 

resistance is present, then pulsed treatment that includes a drug “holiday” allows for 

regrowth of sensitive cells and improves overall treatment response.  

In conclusion, ODE models provide an excellent framework for investigating a 

number of questions in mathematical oncology and systems biology, and their utility often 

lies in their ability to be directly compared to experimental data. While PDEs and stochastic 

models require more extensive data collection to reproduce forward model simulations, the 

outputs of ODEs are typically single variable described over time, which we can often 

capture experimentally and clinically (albeit not always at the level of detail described by 

the mechanistic model). Because of their ability to extend to new mechanistic insight 

gained by biologists, as well as their ability to be calibrated and validated to data, ODEs 

are a promising path forward for improving our understanding of underlying cancer 

biology as well as answering practical question regarding treatment optimization. In this 

dissertation, we will attempt to bring together the insight from experimental biology to 
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build mechanistic models, calibrated to experimental data, to answer questions regarding 

underlying population composition dynamics, cooperative growth, and drug-resistance 

dynamics.  

BRINGING TOGETHER MATHEMATICIANS, BIOLOGISTS, AND EVERYONE IN BETWEEN TO 

BREAK DOWN INTERDISCIPLINARY BOUNDARIES 

This dissertation represents an exercise in integrated team science. The three main 

projects described here were unique in the ways in which each different discipline 

contributed, but what weaves through them all is the ways in which the expertise from 

experimental biologists, bioinformatics, technology developers, and computational 

modelers each contributed significantly to the works. Throughout each progress, we 

experience both barriers to entry in terms of entering into a collaborative project, as well 

as discovering the constant need for dialogue between all involved parties to break down 

these barriers and put the integrative goals into practical actions. In many ways, this 

dissertation mirrors to a greater degree my experiences at a quantitative cell modeling 

hackathon, which is described below and put into the context of the broader implications 

of the struggles and need for collaborate science at large (Pan and Johnson, 2019).  

In ecological systems, evolutionary novelty is often found at the boundaries 

between disparate ecosystems—the so-called ‘‘edge effect.’’ In a similar fashion, 

conceptual breakthroughs in the natural sciences are often found at the boundaries between 

disparate disciplines. For instance, the modern synthesis in evolutionary genetics arose 

when statistical thinking was combined with Mendelian and Darwinian theories of 
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inheritance and speciation. The Human Genome Project combined efforts in mathematical 

modeling, molecular biology, and algorithm development to create our current 

understanding of our genetic information.  

Scientific funding agencies recognize this core principle, and both the NIH and 

NSF have broadly promoted interdisciplinary research through their mission statements 

and funding efforts, such as the NIH Common Fund. However, in putting interdisciplinary 

science into action, scientists face several challenges: the risk associated with dabbling in 

the unknown with no guarantee of success; the uneasiness of thinking outside of a 

‘’comfort zone’’ that reflects decades of specialized training; and the communication 

challenges that arise between collaborators who speak different ‘‘languages.’’  

As graduate students with interests in interdisciplinary science, we (Johnson & Pan) 

were aware of these obstacles when our programs advertised a ‘‘cell modeling hackathon,’’ 

which promised to bring together 30 mathematical modelers and biologists to Half- Moon 

Bay, CA in a three-day collaborative workshop modeled after similar events in Silicon 

Valley. While we may have initially been unsure of what to expect, we found that the cell 

modeling hackathon acted as a pilot study in addressing the challenges of creating 

interdisciplinary collaborations, and left participants with the experience, knowledge, and 

confidence to put these into action.  

The challenges we face as interdisciplinary scientists 

The first challenge in collaborative science that the hackathon successfully 

addressed was the high barrier to entry. The ‘‘activation energy’’ of exploring an 

interdisciplinary question can deter collaborations in different ways. For example, trainees 
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suffer an opportunity cost when exploring a new field before having established a specialty 

of their own. Faculty, on the other hand, must weigh their pre-existing commitments 

against spending the time to find a collaborator who is equally interested in their questions. 

The hackathon solved this problem in a few ways: first, the short three-day duration 

minimized the time commitment for attendance; and second, the organizers secured NSF 

funding (UCSF, 2014) to cover the cost of attendance for all participants. These two 

features lowered the typically high energy barrier of delving into interdisciplinary science 

for both trainees and professors alike.  

The accessibility of the event led directly to the second critical component that 

made the event successful: the diversity of attendees. On the first day of the hackathon, all 

participants were given 60 seconds and one slide to introduce themselves and their 

interests. From the outset of these ‘‘lightning talks,’’ we were struck by the diversity in 

geography, research interests, fields of study, and career levels, with equal representation 

between professors and trainees. And just as particles in a highly entropic state can freely 

explore all possible states of a landscape, these energetic lightning talks lowered the 

barriers for interaction and allowed for novel collaborations that may not have occurred in 

a more structured educational setting.  

This highly entropic state encouraged a third key aspect of participant behavior: 

leaving one’s comfort zone. Because no specific project was announced in the call for 

attendance, participants came in with few defined scientific expectations other than to learn 

something new. Following the buzz of the lightning talks, participants went on ‘‘speed-

dating rounds’’ with potential collaborators to brainstorm hackable project ideas. The result 
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was that each participant found themselves in a previously unexplored state—from 

mathematics professors encountering new biological entities to model to experimentalists 

discovering how models can inform and advance their hypotheses. Teams began to form 

on the ‘‘edges’’ of common interests spanning theoretical and experimental disciplines. At 

the end of this period, we had small teams focusing on topics spanning biological networks 

to the biophysics of plant seed expansion to modeling cell motility.  

Putting principles to practice  

For the remainder of the three-day hackathon, groups focused on modeling their 

chosen biological questions. However, as with any new group effort, the initial 

‘‘honeymoon’’ phase gave way quickly to the tension of overcoming the barriers that exist 

between disciplines. Critically, the three features of the hackathon that facilitated group 

formation—the low barrier entry, the diversity of the attendees, and the willingness to leave 

one’s comfort zone—allowed groups to overcome these challenges in a fluid way. While 

modelers and biologists initially faced a language barrier, this gave way to active learning 

between group members. The need to accomplish a common goal in a short amount of time 

meant that asking ‘‘stupid’’ questions was a necessity as opposed to a risk.  

Furthermore, because all participants came in on an equal footing and with diverse 

expertise, participants found themselves serving as a student in one exchange and a teacher 

in the next. This is in stark contrast to more formal workshops where professors lecture to 

trainees. Abby Gerhold, assistant professor of cell biology at McGill University, found this 

inversion of the academic hierarchy rewarding. ‘‘Sometimes,’’ she said, ‘‘a student 

recently entered into a field makes a better teacher than someone who has been operating 
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in that sphere for many years, as they can remember what it was they did not know before 

entering.’’  

To us, this active learning across all disciplines and career levels was the key 

outcome that defined the hackathon’s success. For modelers, the hackathon was a chance 

to think deeply with a biologist to contextualize their mathematical skills. As Wanda 

Strychalski, assistant professor of mathematics at Case Western Reserve University, put it, 

‘‘It’s important for modelers to be tied to a specific problem and to actually help the 

biologist for the research to have scientific relevance.’’ As students, we found ourselves 

explaining advanced mathematical approaches to professors, while we acquired insight 

into what models need to account for in complex biological systems to create new 

hypotheses. These kinds of exchanges became the hallmark of our next few days 

together—punctuated with more light-hearted moments including meals, early morning 

runs, and late-night beers.  

During the capstone presentations on the last night of the hackathon, we were struck 

by the uncanny creativity and insight that groups deployed to model their biological 

phenomena. Although of course not all questions were answered in three days, several 

groups designed wet lab experiments to be performed once everyone got home. But beyond 

the tangible success of the specific collaborative projects, the capstone presentations left 

participants with a sense of potential and empowerment. They had gone through all the 

steps—overcoming the obstacles to forming collabo- rations and then actually struggling 

to work together—delegating expertise, constantly switching roles from teacher to 

learner—to produce something meaningful. This short, three-day experience became a 
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springboard for exploring the enormous landscape of possibilities that emerge when 

different disciplines come together, address the challenges they must face, and leave with 

the knowledge, power, and confidence to bridge that gap in the future.  

Several of the lessons from the hackathon can be applied to interdisciplinary 

workshops at large. First, prioritizing a low cost of entry (in both money and time) and a 

diverse base of attendees can lead to a willingness to leave one’s comfort zone that is 

essential for interdisciplinary research. Second, encouraging active learning between 

participants spanning career levels and expertise can help overcome communication 

barriers and unlock ‘‘edge effects’’ between disciplines. While the funding for this 

particular event was obtained through an experimental NSF grant, similar events have been 

included at the beginning or the end of specialized interdisciplinary conferences (examples 

include the Cold Spring Harbor Networks meeting (Cold Spring Harbor Laboratory: 

Meetings & Courses Program, 2019) as well as the CiViC users meeting (CiViC: Clinical 

Interpretation of Variants in Cancer, no date). Hackathon-style events have also been used 

by funding agencies, such as the Gordon Betty Moore Foundation (Gordon and Betty 

Moore Foundation, 2020) to generate new ideas for funding. Regard- less of the specific 

questions or format, we believe that following the basic principles addressed in the cell 

modeling hackathon will allow its success to be widely replicated in institutions worldwide 

and join others (Bauer et al., 2018; Justman, 2018) in the call for focused collaborative 

efforts in our scientific community.  

A preview of some of the interdisciplinary scientific efforts to follow  
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 Each of the three body chapters represent examples of highly collaborative, 

integrated, scientific work, which dealt with and attempted to address some of the 

aforementioned challenges. In the second chapter, we present a project that is truly data-

driven, and seeks to use drug response assays from multiple time points throughout 

treatment to uncover differences in subpopulation composition of sensitive and resistant 

cell states during treatment response. This work was initiated by Grant Howard, who 

performed all of the experimental work for the project and drove the conceptual question 

of how to use mathematical modeling to reveal the observed differences drug resistance 

over time. This necessitated much dialogue between all involved parties, and truly sought 

to answer a relevant question given the available data. 

 The project described in the third chapter instead focuses on answering a specific 

biological question- namely is it possible to identify from cell line data an ecological 

phenomenon known as the Allee effect in cancer cell growth dynamics. The Allee effect 

describes a situation in which, at low population densities, the per capita growth rate 

positively scales with population density, thought to be due to cooperative interactions. 

This biological question was of interest because of its vast implications in tumor initiation 

and metastasis, and its lack of experimental validation due in part to the difficulty of 

measuring cancer cells at very small population sizes. Taking advantage of novel 

technological advances, this project captures high-throughput, single cell resolution data, 

and used the full breadth of available data to calibrate to stochastic models of tumor growth. 

Here, stochastic models were necessary to one; make use of all of the data, but two; to 

deconvolve the difference between stochastic small-size effects and true cooperative Allee 
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effects. This work represents a case in which novel technological advancements in data 

collection enabled the application of more sophisticated mathematical methods to answer 

a relevant biological question. 

 Lastly, in the fourth chapter of this dissertation, we describe a project that was truly 

a collaborative effort between every single member of the lab. From the technology 

development enabling lineage-traced single cell RNA sequencing (Al’Khafaji, Deatherage 

and Brock, 2018; Al’Khafaji et al., 2019), and the corresponding bioinformatics and data 

normalization performed by Russ Durrett, Eric Brenner, and Daylin Morgan, required to 

link the immense amount of raw data to useful gene-cell-lineage data sets to the 

longitudinal treatment response experiments acquired by Grant Howard in the same cell 

line. The two “separate” efforts were able to corroborate one another in that Grant’s data 

only described gross population dynamics amenable to understanding total tumor cell 

number over time, whereas the lineage-traced scRNA-seq represented a few static 

snapshots of the underlying biology of the cell population. Given the depth of the scRNA-

seq and breadth of the treatment response data, this project sought to make use of all of the 

available data to develop the most informed mathematical framework to understand 

treatment response dynamics. We demonstrate in this work the vast improvements made 

possible by positioning a mathematical model with the task of making sense and making 

use of all possible sources of data, and hope that this work reflects not only the power of 

collaborative science but an example in which a mathematical model can be of use to a 

variety of different disciplines and interests. 
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2Chapter 2:  A multi-state model of chemoresistance to characterize 
phenotypic dynamics in breast cancer 

PREFACE 

In this chapter, a data-driven combined experimental-computational investigation 

is presented. The goal of this work was to use time-resolved dose-response assays 

following a drug treatment, to reveal how cancer cell populations were responding over 

time to a pulse treatment of chemotherapy. In order to do this, we developed a new method 

of analyzing serially acquired drug-sensitivity assays, and demonstrated that this 

framework could be used to identify the composition of mixed populations of cells via a 

separate validation experiment and testing of the mathematical framework. The findings in 

this investigation revealed that the drug resistance of a population changes dynamically 

following treatment, and inspired future investigations to be presented in subsequent 

chapters. 

ABSTRACT 
The development of resistance to chemotherapy is a major cause of treatment 

failure in breast cancer. While mathematical models describing the dynamics of resistant 

cancer cell subpopulations have been proposed, experimental validation has been difficult 

 
2 Note: This chapter is based on an article originally published as: 
Howard, G.R.*, Johnson, K.E.*, Ayala, A.R., Yankeelov, T.E., & Brock, A. (2018). A multi-state model of 
chemoresistance to characterize phenotypic dynamics in breast cancer. Scientific Reports, (July), 1–11. 
https://doi.org/10.1038/s41598-018-30467-w.  
*=equal contribution 
Author contributions: 
Conceptualization: Amy Brock, Grant R. Howard Investigation: Grant R. Howard, Kaitlyn E. Johnson, Areli 
R. Ayala, Data curation: Grant R. Howard, Kaitlyn E. Johnson, Areli R. Ayala, Formal analysis: Grant R. 
Howard, Kaitlyn E. Johnson, Amy Brock, Thomas E. Yankeelov, Writing- original draft: Grant R. Howard, 
Kaitlyn E. Johnson, Amy Brock, Writing- review and editing: Grant R. Howard, Kaitlyn E. Johnson, Amy 
Brock, Thomas E. Yankeelov,  Supervision: Amy Brock Project Administration: Amy Brock Funding 
acquisition: Amy Brock. 
 



 38 

due to the complex nature of resistance that limits the ability of a single phenotypic marker 

to sufficiently identify the drug resistant subpopulations. We address this problem with a 

coupled experimental/modeling approach to reveal the composition of drug resistant 

subpopulations changing in time following drug exposure. We calibrate time-resolved drug 

sensitivity assays to three mathematical models to interrogate the models’ ability to capture 

drug response dynamics. The Akaike information criterion was employed to evaluate the 

three models, and it identified a multi-state model incorporating the role of population 

heterogeneity and cellular plasticity as the optimal model. To validate the model’s ability 

to identify subpopulation composition, we mixed different proportions of wild-type MCF-

7 and MCF-7/ADR resistant cells and evaluated the corresponding model output.  Our 

blinded two-state model was able to estimate the proportions of cell types with an R-

squared value of 0.857. To the best of our knowledge, this is the first work to combine 

experimental time-resolved drug sensitivity data with a mathematical model of resistance 

development.  

INTRODUCTION 
We aim to investigate how the therapeutic sensitivity of a breast cancer cell 

population changes over time following exposure to a pulse of chemotherapy. We 

hypothesize that intratumoral heterogeneity and cellular plasticity play a direct role in the 

progression of resistance. This hypothesis is based on previous work demonstrating that 

exposure to chemotherapy induces gene expression changes, metabolic state transitions, 

and increased drug resistance in subsets of cancer cells(Brock, Chang and Huang, 2009a; 



 39 

Piyush B Gupta et al., 2011; Saunders et al., 2012; Basanta et al., 2013; Lavi et al., 2013; 

Pisco et al., 2013; Brock, Krause and Ingber, 2015; Shajahan-Haq, Cheema and Clarke, 

2015; Brock and Huang, 2017; Keisha N Hardeman et al., 2017). We test this hypothesis 

of the direct role of the changing composition of subpopulations of differing drug resistance 

in the observed resistance response using mathematical modeling to estimate the relative 

frequencies of cells in different drug sensitivity states over time.  

Approximately 30 percent of women diagnosed with early-stage breast cancer 

develop resistance and ultimately progress to metastatic breast cancer(Rivera and Gomez, 

2010). Doxorubicin is a standard-of-care cytotoxic agent indicated for the treatment of 

breast cancer; however, the average time to develop resistance to doxorubicin is only 6 to 

10 months (Rivera and Gomez, 2010). Thus, it is critical to develop a mathematical-

experimental approach to describe and predict the conditions and dynamics associated with 

the onset of resistance in vitro, ultimately to improve the efficacy of clinical treatment 

regimens.  We and others have demonstrated evidence of cellular plasticity and adaptability 

in response to treatment with chemotherapy (Brock, Chang and Huang, 2009a; Piyush B 

Gupta et al., 2011; Saunders et al., 2012; Pisco et al., 2013; Brock, Krause and Ingber, 

2015; Brock and Huang, 2017). For example, it has recently been revealed that melanoma 

cells exhibit heterogeneity in their metabolic state, with cells utilizing different amounts of 

oxidative phosphorylation and aerobic glycolysis (Keisha N Hardeman et al., 2017). In this 

study of the role of metabolic usage in drug response, functional heterogeneity played a 

direct role in drug resistance as treating with a drug that inhibited aerobic glycolysis led to 

an increase in sensitivity to treatment (Keisha N Hardeman et al., 2017). The ability of 
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individual cells to transition from a drug-sensitive to drug-resistant state has been observed 

in HL60 leukemia cells following chemotherapy exposure.  Pisco et al. demonstrated that 

a subpopulation of cells increases expression of the ABC-transporter protein MDR1 in 

response to a chemotherapeutic pulse, leading to increased drug efflux and increased 

chemoresistance in those cells(Pisco et al., 2013).  These experimental results focus on 

specific drug resistance phenotypes that emerge in cell subpopulations following treatment.  

However, because of the vast complexity of resistance mechanisms, it is difficult to identify 

a single molecular marker of drug resistance that encompasses all drug resistant cells 

(Ibrahim-Hashim et al., 2017; Wooten and Quaranta, 2017). 

Mathematical descriptions of the dynamics of drug resistance may play a critical 

role in the development of strategies to combat drug resistance(Panetta, 1997; 

Mumenthaler et al., 2013; Chisholm, Lorenzi and Clairambault, 2016; Enriquez-navas et 

al., 2016; Yankeelov et al., 2016; Wooten and Quaranta, 2017). Theoretical models have 

been proposed that incorporate heterogeneous subpopulations in predicting and optimizing 

treatment response(Foo and Michor, 2009; Wilkinson, 2009; Silva and Gatenby, 2010; 

Greene et al., 2015; Mumenthaler et al., 2015; Badri et al., 2016; Harris et al., 2016; 

Poleszczuk et al., 2016; Hansen, Woods and Read, 2017; Matthew T. McKenna, Weis, 

Brock, et al., 2018) however, these models have not been fully validated with experimental 

cell population data in vitro or in vivo. While approaches that incorporate the heterogeneity 

of resistant and sensitive subpopulations are promising, they remain largely theoretical in 

nature(Panetta, 1997). Strategies such as optimal control theory(Foo and Michor, 2009; 

Greene et al., 2015)(treatment aimed at maintaining the optimal composition of cell 
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subpopulations), adaptive therapy(Gatenby et al., 2009), and alternate metronomic dosing 

schemes(Foo and Michor, 2009; Montagna et al., 2014) have rarely been implemented in 

patient care because of lack of experimental validation.  Validation of the presence of the 

predicted subpopulations proposed in these models is essential for progressing from 

theoretical predictions to implementation. 

Although resistance to chemotherapy is a major cause of failure in breast cancer, 

we do not currently have a mathematical model describing the development of resistance 

in the context of a dynamic heterogeneous cancer cell population. Conversely, 

experimental evidence concerning the variety of biological mechanisms of drug resistance 

is largely derived from static biological observations(Gottesman, 2002; Abuhammad and 

Zihlif, 2013). Many studies have relied on chemoresistant cell lines established by long-

term exposure of cells to escalating doses of chemotherapeutic agent.  In some cases, the 

chemotherapeutic is a required component of the cell culture media, to maintain resistant 

cell lines with a median lethal dose (LD50) up to 14 times higher than the original cell 

line(Abuhammad and Zihlif, 2013).  Resistance observed in these cell lines may not be 

physiologically relevant to the clinical onset of chemoresistance, in which transient drug 

resistance may be induced in response to periodic treatment.  

In this contribution, we calibrated experimental drug sensitivity data to multiple 

dynamic population models to test the hypothesis that there is a time-dependent population 

response to a chemotherapy treatment, and that this response is best described by models 

that incorporate heterogeneity and cellular plasticity. We combine the functional relevance 

of experimentally observed drug resistance data with various mathematical models to 
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reveal the dynamic proportions of cells in subpopulations defined by their degree of drug 

resistance.  To validate that our modeling approach was able to identify the composition of 

a cell population, we applied the model to known mixtures of reference cell populations 

with different resistance.  To the best of our knowledge, this is the first effort to temporally 

resolve the proportion of drug sensitive and resistant cells in an experimental population in 

response to transient drug exposure.  

MATERIALS AND METHODS 

Data acquisition 

Cell Culture 

MCF-7 human breast cancer cells were obtained from ATCC and maintained in 

MEM (Minimum Essential Media, Thermo Fischer) supplemented with 10% fetal bovine 

serum (Gibco) and 1% Penicillin-Streptomycin (Gibco).  MCF-7/ADR human breast 

cancer cells were obtained from Robert Clarke(Vickers et al., 1988) and maintained in 

MEM (Gibco) supplemented with 10% fetal bovine serum (Gibco), 1% Penicillin-

Streptomycin (Gibco), and 500 nM doxorubicin (Sigma-Aldrich).  A subline of the MCF-

7 breast cancer cell line was engineered to constitutively express EGFP (enhanced green 

fluorescent protein) with a nuclear localization signal (EGFP-NLS).  Genomic integration 

of the EGFP expression cassette was accomplished utilizing the Sleeping Beauty 

transposon system (Kowarz, Loescher and Marschalek, 2015). The EGFP-NLS sequence 

was ordered as a gBlock from IDT and cloned into the optimized sleeping beauty transfer 

vector pSBbi-Neo. pSBbi-Neo was a gift from Eric Kowarz (Addgene plasmid #60525) 
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(Kowarz, Loescher and Marschalek, 2015). To mediate genomic integration, this two-

plasmid system consisting of the transfer vector containing the EGFP-NLS sequence and 

the pCMV(CAT)T7-SB100 plasmid containing the Sleeping Beauty transposase was co-

transfected into the MCF-7 population utilizing Lipofectamine 2000. mCMV(CAT)T7-

SB100 was a gift from Zsuzsanna Izsvak (Addgene plasmid # 34879)(Mátés et al., 2009). 

GFP+ cells were collected by fluorescence activated cell sorting.  This MCF-7-EGFPNLS1 

cell line is maintained in MEM (Gibco) supplemented with 10% fetal bovine serum and 

200 µg/mL G418 (Caisson Labs). 

Time resolved resistance measurement 

MCF-7 cells were plated at 6600 cells/cm3 and cultured for two days in growth 

media.  The media was then exchanged for growth media containing 500 nM doxorubicin. 

After 24 hours, the doxorubicin media was removed and replaced with growth media to 

end the drug pulse.  Cells were passaged and counted weekly and drug sensitivity assays 

were performed weekly, as described below.  Cell number counts at each week were used 

to determine the average per capita growth rate per day of the recovering cell population 

(Figure 2.1a). The pulsed dosing of doxorubicin, followed by weekly drug sensitivity 

assays for 8 weeks, was repeated for a total of five independent MCF-7 cell populations in 

order to obtain multiple replicates at each time point assayed. 
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Figure 2.1: continued next page, Experimental and modeling workflow: a. MCF-7 
breast cancer cells are treated with an initial pulse of doxorubicin (500 nM) for 24 hours. 
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After treatment, the instantaneous growth rate is measured at each week. However, the 
subpopulation composition of drug sensitive and resistant cells is not easily identifiable 
from any single biomarker, as is indicated by the gray cells. To quantify the changes in 
drug resistance as the population responds to treatment, a subset of cells are extracted each 
week and a drug sensitivity assay is performed. b. Using the combined data set containing 
a drug sensitivity assay at each time point, multiple mathematical models are tested to 
determine the optimal method for capturing the dynamic response of the cell population. 
Model selection statistics indicate that a multi-population model of at least two 
subpopulations is the optimal model. c. The dynamic two population model estimates the 
presence of two subpopulations with distinct LD50s and variances corresponding to a 
sensitive and resistant subpopulation. The model mandates that these states remain constant 
throughout drug response, with the changes in drug sensitivity of the whole population 
resulting from changes in the proportions of the areas under the curve of the sensitive 
versus the resistant population. The model reveals the composition of resistant and 
sensitive subpopulations at each time point, as is indicated schematically by the ability to 
identify the proportions of red and blue cells in the population at each week. 
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Weekly drug sensitivity assay 

Each week, a subset (300,000) of the cells that were exposed to doxorubicin at the 

start of the experiment were plated into a 12-well plate in growth media.  After two days 

of culture, media was exchanged for growth media containing doxorubicin at a range of 

concentrations (0, 4, 14, 24, 36, 48, 60, 72, 84, 96, 120, and 144 µM).  Twenty-four hours 

after this dosing, the cells (including supernatant media) were collected via trypsinization, 

pelleted, and resuspended in 20 µL of media. Live and dead cells were identified with 

acridine orange and propidium iodide (ViaStain AOPI Staining Solution, Nexcelom 

Bioscience) and quantified with a Nexcelom Cellometer VBA.  The ratios of live to dead 

cells were used to determine the viability at each concentration of doxorubicin (Figure 

2.1a).  

Cell mixtures for model validation 

MCF-7-EGFPNLS1 and MCF-7/ADR cells were counted, mixed at desired ratios 

(1:0, 3:1, 1:1, 1:3, and 0:1), and plated in 12-well plates as described above (Weekly drug 

sensitivity assay).  For each defined mixture, a sample of the untreated sample was counted 

in the Nexcelom Cellometer VBA to determine the measured percent of resistant cells, 

using the EGFP fluorescence of the MCF-7-EGFP-NLS1 cell line as a marker for the 

number of MCF-7-EGFP-NLS1 cells which are wild-type with respect to drug sensitivity.  

The measured percent of cells of each type was calculated by normalizing based on 

measurement of fluorescence in pure wild type (MCF-7-EGFP-NLS1) and MCF-7/ADR 

samples.   
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Data Analysis  

Calibration of experimental data to multiple structural models of dose-response 

The combined data set containing the drug sensitivity assays from each week were 

fit to three different models (Table 2.1). The combined data set consists of three variables, 

the time (in weeks) post-initial doxorubicin exposure, the concentration of doxorubicin 

applied at that time, and the corresponding cell viability. To perform an estimation of the 

parameters for all three models, a nonlinear, least-squares approach was implemented in 

MATLAB (Mathworks). Sigmoidal viability curves are often used to describe 

chemotherapy dose-response curves (Gardner, 2000) because they correspond to a 

population of cells that die at different doses that can be described with a unimodal 

distribution of cells versus dose as shown in in Figure 2.1b.  The parameters of the 

sigmoidal dose response function are physically identifiable as the dose at which half the 

cells die (LD50) is the center parameter (css) and the standard deviation of the unimodal 

distribution is inversely related to the slope of the sigmoidal dose-response curve (mss ).  

The single static population model is the simplest of the models and ignores the temporal 

dependency of response. Here the drug response of the combined data set is described by 

a single homogenous cell population with a single (static) LD50 and slope.  The single 

static population model equation is: 

𝑉"#$%&'"()(#*(𝑑) = 	
0123

45'(166(78966))
  (1) 

where V is the proportion of cells viable at the dose, d, of doxorubicin in µM applied, css is 

the LD50 of the population, mss is the slope at which the cells die due to increases in 

concentration, and Vmax is the maximum viability of the cell population (as measured by 
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the assay in absence of drug).  The Vmax parameter is included to normalize for naturally 

occurring cell death independent of the effects of doxorubicin.  The single static model 

represents the null hypothesis that the initial pulsed dose has no time-dependency in its 

effect on the cancer cell population. 

Description Model equation Variables and parameters 

Single static 
model 

𝑉"#$%&'"()(#*(𝑑) = 	
𝑉:);

1 + 𝑒(:!!(?@*!!))
 

V = fraction of cells viable in population 
Vmax = maximum viability of cell population 
(baseline viability at dose = 0 µM) 
d = dose of doxorubicin (µM) 
mss = slope of loss of viability as dose 
increases, mss  =  
css = LD50 to describe all data assuming no 
change in time 
d = dose of doxorubicin (µM) 

Single dynamic 
model 

𝑉!"#$%&'(#)*"+(𝑑, 𝑡) = 	
𝑉*),

1 + 𝑒(*./(0)('2+./(0)))
 

msd(t)= slope of loss of viability as dose 

increases, msd(t)=    for each population 
csd (t)= LD50 to describe data at each time 
point 

Two population 
dynamic model 

𝑉034545(𝑑, 𝑡) = 	𝑉𝑚𝑎𝑥(
𝑓!&#!(𝑡)

1 + 𝑒6*.78.('2+.78.)9
+

1 − 𝑓!&#!(𝑡)
1 + 𝑒6*:7.('2+:7.)9

) 

msens(t)= slope of loss of viability as dose 

increases, msens(t)  =  
mres(t)= slope of loss of viability as dose 

increases, mres(t)=    
csens= LD50 to describe sensitive population 
cres= LD50 to describe resistant population 

Table 2.1: Mathematical models to describe dynamic drug sensitivity data:  We 
present the equations used for each of the three different structural models that were fit the 
time-resolved drug sensitivity assays.  The column labeled, “Model equation” provides the 
functional form of the equation, with t representing a parameter that was fit to the data set 
at each time point measured.  The column labeled, “Variables and parameters” describes 
the variables used in terms of their physical meaning and their relation to the time-resolved 
drug sensitivity assays. 

 

The single dynamic population model incorporates a temporal dependency when 

fitting the combined data set. For each time point that drug sensitivity was assessed, the 

data is fit to an individual dose-response curve to generate LD50 and slope parameters. The 
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model describes the drug response as a single homogenous population whose drug 

tolerance can change in time. The single dynamic population model equation is: 

𝑉"#$%&'?C$):#*(𝑑, 𝑡) = 	
0123

45'(167(D)E78967(D)F)
 (2) 

where the csd and msd (LD50 and slope, respectively) parameters pertaining to each week, 

leading to a 16-parameter model (slope and LD50 at each of the 8 weeks). This model is 

akin to individually fitting a dose response curve to each week that the drug sensitivity 

assays were performed.  

Finally, the two-population dynamic model describes a cell population with two 

cell states that differ in drug sensitivity. The dynamics of the drug response are captured 

by the relative frequency of cells in each state at each time point. The two-state dynamic 

population model equation is:  

𝑉(GHIHI(𝑑, 𝑡) = 	𝑉𝑚𝑎𝑥( M6NO6(()

45'E16NO6(7896NO6)F
+ 4@M6NO6(()

45'E1PN6(789PN6)F
)	(3) 

where each cell state is modeled as a subpopulation of cells whose LD50 is centered about 

a mean and slope (csens, msens and cres, mres, respectively) which remain constant over time 

and whose fsens and fres (1 - fsens) parameters can vary to best capture the drug sensitivity 

assay at each week. To fit the two-state model to data from multiple time points, the 

parameters of the sensitive and resistant slope and LD50 were forced to be constant at all 

time points, and the sensitive and resistant fraction parameters were allowed to float at each 

week, leading to a 12-parameter model (4 fixed parameters, 8 time-dependent fraction 

parameters for each of the 8 weeks). Equation 3 describes two cell states with distinct LD50 

values whose relative frequencies are able to change in time after initial chemotherapy 
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exposure, but whose LD50s remain constant.  The overall cell population viability 

(measured) is modeled as a direct sum of the viability response in each subpopulation.   

Statistical analysis and model selection 

For all three models, the confidence intervals on the parameter estimates were 

constructed using the bootstrapping method of replacement (Efron, 1987), with 500 

bootstrapped simulated data sets. For each model, the mean-squared error and the Akaike 

Information Criterion (Konishi and Kitagawa, 2008) were calculated for stand-alone model 

statistics.  The Akaike Information Criterion estimator (i.e., the AIC value) is used for 

direct model comparison. The AIC value evaluates a model based on goodness of fit and 

penalizes for the complexity of the model using the number of parameters, with a lower 

AIC value indicating a better model.  These evaluation criteria are used to determine the 

most appropriate model to describe the dynamic dose response data (Figure 3.1b, Table 

2.2). 
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 Single static 
model 

Single dynamic 
model 

Two population 
model 

Number of 
parameters 2 16 

2 per time point 
12 

4 + 1 per time point 
AIC value -2004.4 -2015.6 -2126.4 

Mean-squared 
error 

0.057 0.040 0.024 

Table 2.2: Model fit and model selection statistics indicate the two population model 
is the optimal model: The two population dynamic model has the lowest AIC value and 
the lowest mean-squared error, indicating that the this model is superior to the single 
dynamic population model and the single static population model. The number of 
parameters for the single dynamic model and the two population model vary by the number 
of time-resolved drug sensitivity assays examined. In this case, for the single dynamic 
model there are two model parameters of LD50 and slope at each time point examined. In 
the two population model, there are four model parameters of LD50 and slope for the 
sensitive and resistant populations respectively, which remain constant, and one additional 
parameter per time point is used to describe the proportion of cells in each subpopulation 
at the time the cells were assayed. 
 

 

 

 

 

 

 

 

 

 

 

 

 



 52 

Model validation 

To validate the modeling approach, we tested each models’ ability to identify 

known mixtures of wild-type MCF-7 cells with MCF-7/ADR resistant cells.  The same two 

population model and fitting algorithm described above (in the section labeled, Calibration 

of experimental data to multiple structural models of dose-response) were used to fit the 

combined data set containing a mixture identification, concentration of doxorubicin, and 

corresponding cell viability.  Therefore, in this validation step, instead of grouping the data 

by week post drug treatment, we grouped by mixture composition.  We allowed each group 

of mixture replicates to be fit to their own fractional parameter and maintained that the 

LD50 and centers of the two populations remain constant as described previously. We 

evaluated the model output of relative frequencies against our measured relative 

frequencies of wild-type MCF-7 and MCF-7/ADR cells (see Cell mixtures for model 

validation). The bootstrapping method of replacement, again with 500 simulated data sets, 

was used to construct the 95% confidence intervals for each parameter estimate. 

RESULTS 

Cancer cell population exhibits time-dependent response to pulse treatment 

To determine whether the resistance of the MCF-7 population changes in time after 

the pulse treatment of doxorubicin, we fit the combined data set to both the static and 

dynamic single population models, as shown in Figure 2.2a & b.  In Figure 2.2a, the 

experimentally measured viability is shown alongside the single static population model 

curve, for both the untreated controls (black) and the pulse-treated cell populations 
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(purple).  The LD50 to describe the resistance of these populations is 37.0 +/- 3.5 µM and 

50.4 +/- 2.4 µM for the untreated and treated populations, respectively. Both slope and 

center parameters for the single static population model can be found in Table 2.4. In Figure 

3.2b, we show the LD50 estimates, with the 95% confidence intervals, from the single 

dynamic model over all 8 weeks.  The lower AIC value of the single dynamic model (-

2015.6) compared to the single static model (-2004.4) indicates the time-resolved dose-

response data are better described by the single dynamic model that allows the slope and 

LD50 value of the population to change at each time point (Table 2.2).  The pattern in 

estimates of the LD50 values in the single dynamic model (Figure 2.2b) corroborate this 

statistical analysis, showing a significant peak in the drug resistance at intermediate time 

points, with an LD50 at week 2 at 67.2 +/- 10.0 µM, followed by a slow return towards 

baseline, reaching 46.4 +/- 5.1 µM at 8 weeks.  The LD50 and slope parameter values for 

the single static population model for all time points can be found in Table S2.2 of the 

Supplementary Materials. 
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Figure 2.2:  Time-resolved drug sensitivity assays fit to multiple models: a.  The static 
single population model (solid lines in panel a) demonstrates that the average resistance of 
the 8 weeks of compounded drug sensitivity data significantly increases from an LD50 = 
37.0 +/- 3.5 µM  for the untreated to an LD50 = 50.4 +/-2.4 µM  following exposure to 
pulse-treatment of doxorubicin b. The LD50 estimates resulting from analysis with the 
dynamic single population model indicates that the increase in resistance is time-
dependent, peaking at 2 weeks after treatment with an LD50 = 67.2 +/- 10.0 µM, followed 
by a slow return towards baseline resistance levels, reaching an LD50 = 46.4 +/- 5.1 µM at 
8 weeks. c. The two population dynamic model displays the model-estimated proportions 
of a population with LD50 = 79.7 +/- 6.5 µM (resistant) and a population with LD50 = 
22.4 +/- 2.0 µM (sensitive).  The relative proportions of these two populations change over 
time, yielding the observed LD50 for the overall population. In panels b and c, parameter 
fits at each time point are connected by a line for visual aid and the error bars represent the 
95% confidence intervals on the parameter values using the bootstrapping method of 
replacement with n=500. 
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Incorporating heterogeneity via drug sensitivity states improves description of 

response 

To determine whether the dynamic drug response could be explained by a model 

of two subpopulations, we fit the data to the two population dynamic model to determine 

the degree of drug sensitivity of the two subpopulations and the resulting sensitive and 

resistant fraction parameter estimates at each week, with their 95% confidence intervals 

(Figure 2.2c).  The two-state dynamic model estimates the presence of a resistant 

subpopulation with an LD50 of 79.7 µM +/- 6.5 µM and a sensitive subpopulation with an 

LD50 of 22.4 +/- 2.0 µM (Figure 2.2c). The parameter values for the sensitive and resistant 

slope and center, and the fractional parameters, can be found in Table S3 of the 

Supplementary Materials. We again use model selection to demonstrate that the two 

population model is an improvement over the single dynamic population model for 

describing the dynamic drug response of the cell population.  Support for selection of this 

model is indicated by the lower AIC value (-2126.4) of the two population dynamic model 

compared with the single dynamic model (-2015.6) (Table 2.2).  The results of the model 

selection analysis for describing dose response curves with multiple conditions (in this case 

time points) reveals that the differences in dose-response can not be modeled well by 

allowing each condition to be fit to a single sigmoidal curve allowed to shift, but rather is 

improved by modeling a sum of sigmoids corresponding to a multi-modal distribution of 

cells versus lethal dose whose proportions of cells in each state can change for each 

condition.  To illustrate the improvement in fit to the data, Figure 2.3a displays the two-

state model curve overlaid on the dose-response data at 2 and 8 weeks, demonstrating the 
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ability of the “shoulders” in the curve to fit the initially steep loss of cell viability at lower 

doxorubicin concentrations, as well as the persisting cell viability at higher doxorubicin 

concentrations. Figure 2.3b indicates the model output of relative frequencies of resistant 

and sensitive subpopulations for the model fit and data shown in Figure 2.3a.  The 

improvement in fit of the two-state model is additionally supported by the lower mean- 

squared error value for the two-state model than the single dynamic model (mean-squared 

errors of 0.024 and 0.040, respectively), despite it having less parameters than the single 

dynamic population model (Table 2.2).   

 

Figure 2.3: Example fit of drug sensitivity to the two-population model: a. Best fit of 
the two- population model to the dose response data at two and eight weeks post-treatment 
demonstrates the ability of the model to capture the differences in subpopulation levels at 
the different time points. b. Two population model output of parameter values of resistant 
and sensitive fractions at 2 and 8 weeks. The error bars represent the 95% confidence 
intervals on the parameter values using the bootstrapping method of replacement with 
n=500. 
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Subpopulation levels of resistant cells transiently increase 

The key result for the treatment of doxorubicin on the MCF-7 cell line is that the 

proportion of cells in the resistant state is consistently higher than baseline from weeks 2 

to 5 after the initial drug pulse, followed by return towards the initial resistant and sensitive 

subpopulation levels (Figure 2.2c).   The measured per capita growth rate per day (births 

per cell per day minus deaths per cell per day) (Figure 2.4a) was used to estimate the total 

number of cells at each week.  The number of total cells was combined with the fractional 

parameter estimates at each week (Figure 2.2c) to obtain estimates of the number of 

resistant and sensitive cells at each week in the treated population (Figure 2.4b,c).  These 

estimates are purely empirical and make no assumptions about the mechanism at which the 

cells in each state reached the estimated number of cells at each time, allowing for the 

possibility of differential growth rates, drug sensitivities, and cell state transitions to 

determine the corresponding subpopulation levels. This differs from other published work 

which has assumed sensitive and resistant cells have different growth rates (Matthew T. 

McKenna, Weis, Brock, et al., 2018) and distinct transition rates; here we do not attempt 

to define the mechanism by which the number of cells in each state was obtained.  

 



 58 

 

Figure 2.4: Data driven estimates of phenotypic dynamics: a.  Per capita growth rate 
(number of births per cell per day minus number of deaths per cell per day) of the entire 
cell population following pulse treatment of doxorubicin. Error bars represent the 95% 
confidence intervals from three replicates with per capita growth rate measured at each 
week. b. Estimates of the number of resistant and sensitive cells over time are obtained by 
combining bulk population growth rate to estimate the total number of cells, with the 
estimates of subpopulation fractions from the two population model output.  The estimates 
of the number of resistance and sensitive cells are purely empirical—cell numbers in each 
state can be obtained by a combination of differential growth rates, drug sensitivities, or 
cell state transitions and we do not attempt to identify which the means at which the cell 
numbers are obtained. Error bars are the compounded 95% confidence interval of the per 
capita growth rate measurement and the parameter estimation of resistant fraction from the 
two population model output using the bootstrapping method of replacement with an 
n=500. The number of cells is plotted in logarithmic scale. c. A closer look in numeric 
scale of weeks 1-3 displaying the higher number of resistant cells over this time interval. 
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Model validation confirms ability to reveal subpopulation composition defined by 

drug sensitivity 

Without a molecular marker of drug resistance, the estimated changes in drug 

resistant and drug sensitive subpopulations from our two-state model are difficult to 

validate; that is, we did not know for certain that our model estimated parameters of 

resistant and sensitive fractions reflect the true subpopulation compositions. We validated 

the modeling approach by generating experimental reference standards consisting of 

mixtures of the wild-type MCF-7 cell line with its corresponding doxorubicin resistant cell 

line, the MCF-7/ADR. We evaluated the ability of the model to estimate the subpopulation 

composition of each reference mixture. In Figure 2.5a, the two population dynamic model 

fit for each mixture is overlaid on the dose-response data for the corresponding mixture. In 

Figure 3.5b, the measured percent of wild-type and MCF-7/ADR cells are plotted as the 

line of unity against the parameter estimations of the percent of resistant cells from the 

model output (Table 2.3).  The measured proportions of wild type and ADR cells versus 

the model output have a coefficient of determination (R-squared) of 0.857 (Figure 2.5b).  
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Figure 2.5: Model validation via identification of mixed populations:  a. The two-
population model fit for each mixture of MCF-7/ADR resistant cell line and wild-type 
MCF-7 cell line overlaid on the experimentally measured drug sensitivity for the 
corresponding mixture.  b. Model-estimated percent of MCF-7/ADR cell line in mixture 
versus the measured MCF-7/ADR cell percentage using fluorescence cell counting. The 
coefficient of determination (R-squared) value of 0.857 indicates the efficacy of the 
fractional estimates from the two population model output. 
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 Measured Model 

LD50ADR 187.5 +/- 3.8 186.7 +/-4.6 

slopeADR 0.034 +/- 0.0039 0.028 +/-0.0028 

LD50WT 37.1 +/- 3.3 35.95 +/-2.8 

slopeWT 0.055 +/- 0.0077 0.060 +/-0.0076 

frac0%ADR 0.07 +/-0.01 0.05+/- 0.03 

frac25%ADR 0.30 +/-0.04 0.44 +/-0.04 

frac50%ADR 0.54 +/-0.05 0.075 +/-0.04 

frac75%ADR 0.83 +/-0.05 0.91 +/-0.04 

frac100%ADR 1.0 +/- 0.02 1 +/- 0.0272 

Table 2.3: Model validation demonstrates identifiability of subpopulation 
compositions: Measured versus two population model estimated parameters indicate the 
model’s ability to reveal the known proportions of the MCF-7/ADR resistant cell line 
mixed with the wild-type MCF-7 cell line. “Measured” LD50 values and slopes indicate 
the LD50 and slope of the isolated pure MCF-7/ADR cells and pure wild-type MCF-7 cells 
fit to the single static population model. Measured resistant fractions are measured 
precisely using the Nexcelom fluorescence imaging counter of the number of green 
fluorescent wild-type MCF-7 compared to the total number of brightfield cells counted.   
 

DISCUSSION 

The key results of this combined experimental and modeling approach demonstrate 

time-dependency in the response to a clinically relevant pulse-dose chemotherapy 

treatment, and a modeling system that reveals estimates of the composition of a cancer cell 

population with functional heterogeneity in its chemoresistance. We have identified that a 

transient increase in drug resistance is observed following drug exposure and have shown 

that this can be best described through a model that captures the changing compositions of 

distinct subpopulations defined by drug sensitivity.  These subpopulations were not 
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previously identified due to the complex nature of drug resistance mechanisms. The 

novelty in this modeling framework is that it is driven from drug sensitivity assays only, 

without imposing any assumed characteristics or isolated parameter measurements.  A 

data-driven approach allows the model system to be applied to a variety of cell types and 

drug conditions; for example, in the model validation step, a mutant cell line with high 

resistance to doxorubicin is assessed. The key finding of this paper is to establish a 

foundation for describing observable resistance progression throughout time by revealing 

subpopulations that are not identifiable by molecular markers alone.   Future work will 

need to systematically investigate the molecular and cellular mechanisms of these observed 

dynamics.  

We acknowledge the many limitations of this study. The granularity of the 

modeling system was limited by technical constraints of the experiment dosing scheme.  

Bottlenecking of the population in the initial pulse-treatment limited the number of cells 

available at subsequent weeks for the corresponding drug sensitivity assay. While we were 

able to measure the response to 12 distinct doxorubicin concentrations each week, this was 

not sufficient to implement a multi-population model with more than two states, due to a 

lack of statistical power to significantly resolve differences in subpopulation compositions 

in time.  We acknowledge that a model of only two subpopulations does not capture all 

likely relevant cell types but believe that this represents a useful simplification of resistance 

development. In the model validation phase, we were able to estimate the fractions of cells 

in each state with an R-squared value of 0.857 (Figure 3.5b). We were also able to estimate 

the LD50s of the two populations in mixture using the model within the 95% confidence 



 63 

intervals of the isolated LD50s when fit to the static single population model alone (Table 

2.3). It is possible that discrepancies in the fractional parameter estimates compared to the 

measured mixtures of the wild-type and resistant cell types may arise from biological 

interactions between the two that may increase the effective resistance of the cells when in 

contact with one another. A goal of future studies is to investigate the role of cell-cell 

interactions in drug resistance.   

To ensure that the model parameters are uniquely identifiable and are not overfit to 

the experimental data sets, we tested the parameter identifiability of the model using 

simulated data with noise generated from the measured variability as a function of dose in 

the experimental data (Figure 2.6). We randomly generated 100 simulated data sets 

containing 5 different mixtures of resistant and sensitive cells to obtain a distribution for 

each of the parameter values, with the 95% confidence intervals around the true model 

parameter values shown in (Figure 2.7), demonstrating that the variability in the estimated 

LD50 (Figure 2.7a), slope (Figure 2.7b), and fraction parameters (Figure 2.7c) was 

reasonably small. We then addressed question of the proximity at which the fractional 

parameters could be distinguished from one another by generating simulated data sets with 

experimental noise as described, this time containing either mixtures of mostly low levels 

of resistant cells (Figure 2.7a) or of mostly high levels of resistant cells (Figure 2.7b). In 

Figure 2.8, the distribution of fractional parameter estimates is displayed as histograms, 

with each mixture labeled by color. We performed pairwise t-tests between each of the 

distributions of fractional parameter estimates to confirm that the distributions are 

statistically significantly different.  
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Experimental in vitro models of resistance to cytotoxic chemotherapy typically 

utilize resistant cell lines developed via continuous exposure to increased drug 

concentration (Ke et al., 2011; Abuhammad and Zihlif, 2013). In most cases, drug resistant 

phenotypes are characterized by an end-point analysis following the stabilization of a 

resistant cell population.  Previous work in the field has indicated that the resistant 

phenotype of doxorubicin-resistant MCF-7 arises by a multi-factorial process because of 

observable differences in morphology, gene expression, and DNA content between MCF-

7 and MCF-7 resistant cell lines (Abuhammad and Zihlif, 2013).  The MCF-7/ADR 

resistant cell line used in our model validation step has an LD50 value of 187.5 +/- 3.8 µM 

(Table 3.3) and is thus more than 5 times more resistant than the wild-type MCF-7 with an 

LD50 value of 37.5 +/- 3.8 µM (Table 2.3). The MCF-7/ADR we used typically show a 

larger proportion of spindle-shaped cells that grow in a more dispersed manner than the 

wild-type cells (Ke et al., 2011). Other groups have developed resistant MCF-7 cell lines 

that are 14-fold more resistant to doxorubicin than the original MCF-7 cell 

line(Abuhammad and Zihlif, 2013). They report that the MCF-7 resistant cells are on 

average larger, contain multiple nuclei, and upregulate genes involving metabolism, drug 

efflux, and down regulate genes involving DNA repair(Abuhammad and Zihlif, 2013).  

While these experimental observations provide us with key observables to identify as 

markers of resistance, they do not address the dynamical changes associated with resistance 

as it develops, nor are they all encompassing.  To our knowledge, previous studies 

involving resistant cell lines have not reported time-resolved measurements of drug 

resistance following a clinically relevant pulsed dose chemotherapy treatment.   
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Mathematical modeling of heterogeneity in cancer cell populations has been 

investigated via multiple structural models(Panetta, 1997; Foo and Michor, 2009; Silva and 

Gatenby, 2010; Mumenthaler et al., 2013, 2015; Greene et al., 2015; Badri et al., 2016; 

Chisholm, Lorenzi and Clairambault, 2016; Enriquez-navas et al., 2016; Harris et al., 

2016). In particular, many models have provided predictive capabilities of cell-line specific 

drug sensitivity (McKenna et al., 2017), as well as insightful metrics for capturing the 

growth inhibitory capacity of different drugs(Hafner et al., 2016; Harris et al., 2016). 

Explorations into different therapy strategies such as optimal control theory have utilized 

the concept of resistant and sensitive cells within a tumor or cancer cell population (Foo 

and Michor, 2009; Silva and Gatenby, 2010; Mumenthaler et al., 2013, 2015; Greene et 

al., 2015; Badri et al., 2016; Enriquez-navas et al., 2016; Harris et al., 2016; Hansen, 

Woods and Read, 2017).  Many models of in vitro and in vivo cancer progression utilize 

compartmental ordinary differential equations and partial differential equations. In these 

models, oftentimes a number of key assumptions are made. For instance, in one model of 

a heterogeneous tumor, it is assumed that drug resistance is inversely related to 

proliferation rate (Gatenby et al., 2009). Other models assume that all sensitive cells are 

susceptible to the chemotherapy, and do not account for the ability of initially sensitive 

cells to acquire drug resistance(Panetta, 1997). While these models can be extremely useful 

in capturing drug response and demonstrating the theoretical response to alternate 

treatment strategies under these sets of conditions, some of their predictions have yet to be 

fully validated experimentally due to technical limitations in identifying drug resistant 

subpopulation levels over time.       
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 In this work, we reveal the dynamic changes in subpopulation composition in 

response to a pulse treatment of drug.  In the future, time-resolved subpopulation relative 

frequencies can be used to develop a model that describes the relative stability of drug 

sensitivity states and how they change in response to chemotherapy exposure. Ultimately, 

the results of these experimentally guided models can be used to predict the effect, in terms 

of composition of resistant cells, of a specific dosing regimen on a cancer cell population 

over time. The goal of future studies is to use the proposed modeling framework to develop 

and experimentally validate optimal dosing regimens to be used to combat 

chemoresistance.  

CONCLUSION 

We present this work as one demonstration of the role of heterogeneity in the 

development of drug resistance.  Our analysis indicates that the response to pulsed 

chemotherapy is time-dependent and that the two-population model identifies 

subpopulation compositions that change over time. The approach we describe here 

uncovers chemoresistant subpopulations in breast cancer cell lines and is generalizable to 

any system in which subpopulations may play a role in a dynamic measurable outcome.  
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CHAPTER 2 SUPPLEMENTARY FIGURES AND TABLES 

Figures 

 
Figure 2.6: Two-population model and an example simulated data set with 
experimental noise. a. We inputted model parameters to simulate a resistant population 
with an LD50 of 185 µM and a sensitive population with an LD50 of 35 µM, and resistant 
fractions from 0-100 %, and simulated data with noise added according to experimentally 
distributed noise.  b. This plot indicates the standard deviation in the measured cell viability 
of all mixtures of the naïve MCF-7 cells and the MCF-7/ADR resistant cells as a function 
of dose.  The observed variability in viability measurements shown here were used to 
simulate data sets with experimentally observed noise. This plot indicates that the highest 
variability in cell survival response occurs at intermediate doses. 
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Figure 2.7: Parameter distributions for fitting of simulated data sets with 
experimental noise. a.  We display the ninety-five percent confidence intervals around 
100 fitted LD50 sensitive and resistant parameters for the simulated data sets in order to 
demonstrate the relative error in parameter identifiability of the LD50 values at the 
experimental noise observed.  b. We display the ninety-five percent confidence intervals 
around 100 fitted sensitive and resistant slope parameters for the simulated data sets in 
order to demonstrate the relative error in parameter identifiability of the slope values at the 
experimental noise observed. We observe a higher relative error in the sensitive slope than 
in the resistant slope.   c.  We display the ninety-five percent confidence intervals around 
100 fitted fraction estimate parameters for the simulated data sets in order to demonstrate 
the relative error in parameter identifiability of the fractions at the experimental noise 
observed.  We observe the error to be fairly consistent across all of the mixtures. 
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Figure 2.8: Parameter distributions around clustered input fraction parameters are 
identifiable within 10% with current experimental noise. a. Model parameters of 
clustered low resistant fractions were input at intervals of 10% from 0-30% resistant. One 
hundred simulated data sets with experimental noise were fit to obtain 100 model parameter 
estimates for each fractional parameter. We compared each pairwise set of low resistant 
fraction parameter distributions with a multiple comparison t-test in Matlab and found 
significant differences with a p-value of 9.92×10-8. b. The same procedure was performed 
for high resistant fractions at intervals of 10% increase from 70-100% resistant.  Again, the 
distributions of high resistant fraction parameter estimates were significantly different with 
a p-value of 9.92 × 10-8. 
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Figure 2.9  Data from the model validation experiment is used to estimate sources of 
error.  The standard deviation among each set of replicate measurements is graphed 
against its average value, with each set of replicates represented as a single point.   
 

Tables 

 Treated Untreated 

 lower 
bound value upper 

bound 
lower 
bound value upper 

bound 
LD50 48.0 50.4 52.4 33.5 37.0 40.5 
slope 0.038 0.044 0.049 0.045 0.0577 0.071 

Table 2.4  Parameter values for the single static population model (LD50 values are 
in units of µM doxorubicin.) 
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 Treated Untreated 
 lower 

bound value upper 
bound 

lower 
bound value upper 

bound 
LD50 t = 0wk 40.1 43.6 47.1 40.2 43.6 47.2 
LD50 t = 1wk 39.6 45.0 50.4 31.2 36.4 41.6 
LD50 t = 2wk 57.1 67.1 77.1 35.4 41.4 47.4 
LD50 t = 3wk 47.9 53.9 60.0 27.4 31.0 34.7 
LD50 t = 4wk 44.8 50.9 57.0 32.9 37.7 42.4 
LD50 t = 5wk 43.8 50.2 56.5 31.6 37.1 42.6 
LD50 t = 6wk 43.8 49.8 55.7 33.7 38.2 42.6 
LD50 t = 7wk 43.6 48.9 54.3 37.1 41.8 46.4 
LD50 t = 8wk 40.8 46.2 51.7 32.1 36.1 40.1 
slope t = 0wks 0.039 0.052 0.065 0.039 0.052 0.065 
slope t = 1wks 0.031 0.051 0.069 0.036 0.057 0.077  
slope t = 2wks 0.020 0.031 0.043 0.032 0.049 0.067 
slope t = 3wks 0.026 0.039 0.052 0.046 0.064 0.083 
slope t = 4wks 0.030 0.045 0.060 0.039 0.057 0.074 
slope t = 5wks 0.030 0.045 0.060 0.036 0.053 0.070 
slope t = 6wks 0.029 0.041 0.054 0.043 0.060 0.076 
slope t = 7wks 0.035 0.049 0.063 0.039 0.056 0.072 
slope t = 8wks 0.035 0.049 0.064 0.43 0.064 0.084 

Table 2.5 Parameter values for the single dynamic model (LD50 values are in units 
of µM doxorubicin.) 
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 Treated Untreated 
 lower 

bound value upper 
bound 

lower 
bound value upper 

bound 
LD50 res 73.2 79.7 86.3 73.2 79.7 86.3 
LD50 sens 19.2 22.4 25.6 19.2 22.4 25.6 
slope res 0.037 0.043 0.050 0.037 0.043 0.050 
slope sens 0.073 0.115 0.158 0.03 0115 0.0158 
fracres t = 0wk 0.379 0.497 0.626 0.379 0.497 0.626 
fracres t = 1wk 0.406 0.507 0.608 0.280 0.381 0.483 
fracres t = 2wks 0.597 0.733 0.869 0.356 0.464 0.572 
fracres t = 3wks 0.500 0.597 0.693 0.174 0.270 0.367 
fracres t = 4wks 0.473 0.585 0.697 0.286 0.392 0.500 
fracres t = 5wks 0.460 0.563 0.667 0.279 0.381 0.483 
fracres t = 6wks 0.448 0.548 0.648 0.310 0.406 0.502 
fracres t = 7wks 0.449 0.551 0.653 0.350 0.464 0.578 
fracres t = 8wk 0.395 0.499 0.603 0.256 0.361 0.465 

Table 2.6 Parameter values for the two-population model (LD50 values are in units 
of µM doxorubicin.) 
 

Additional Analysis/Discussion 

Discussion of Intrinsic Stochastic Biological Variability and Sources of Error 

While we often look at variation in measured data and mentally summarize it as 

“measurement error”, the controls present in our model validation experiment allow us to 

decompose this variation into several sources of error.  Error in the viability measurement 

performed using the Nexcelom Cellometer is approximately 0.5%, estimated using 

replicate measurements drawn from a single pool of cells.  The variation in viability is 

larger, at an average of 2.2% across all samples, but is also non-uniformly distributed, as 

shown in Figure 2.9. 

Part of this variation can be explained as the result of differences in the proportion 

of cells of each subline plated into a given well; this variation has a standard deviation of 

approximately 1.7%.  In Figure 2.9, however, the standard deviation ranges as high as 9%, 
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indicating that an additional source of variation is present, and appears to be dependent on 

the population viability for that set of replicate measurements.  We believe that this is best 

described as an actual variability in the response that replicate populations will display 

when given the same stimulus, due to downstream effects of stochastic variation in the 

early response.  Among other things, we are aware that confluence has a large effect on 

cell survival – as a result, random fluctuations in early survival could snowball into these 

substantial differences over the duration of the drug perturbation.  As each cell dies, it 

increases the probability that other nearby cells will die.  (We speculate that this is mediated 

by the loss of pro-survival signals which the cells exchange.)  Any fluctuation of survival 

in the early stages of the response is then propagated and amplified, magnifying the 

fluctuations into the pattern of variation seen here in supplemental Figure 2.9. This theory 

is consistent with the non-uniform distribution of variability; doses that are high or low 

enough to have more deterministic effects show minimal variation, more comparable to the 

error known to be present from variation in the initial seeding proportions and technical 

error in the assay while in doses where the probability of death is closer to 50%, a marginal 

change in the probability of survival is more likely to influence the outcome. 
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3Chapter 3:  Stochastic parameter estimation to reveal an Allee effect in 
tumor growth 

PREFACE 

This work provides an illustrative example of one way in which we can utilize 

technological advances in data acquisition to improve our mechanistic understanding of 

biological phenomena. In this instance, we were able to acquire data at a precision level of 

single-cell resolution cell counting capabilities via the Incucyte and were able to seed cells 

at precise low initial cell numbers using Fluorescence Activated Cell Sorting. Combining 

these two advances in a high throughput manner enabled for data collection in which we 

could achieve very high time resolution data for a large number of replicates- thus giving 

us the ability to capture the variability in growth dynamics. We harnessed this capability 

by combining it with mathematical modeling; namely the ability to derive explicitly, from 

a mechanistic model of tumor cell growth dynamics, the expected mean and variability in 

the observed data for the stochastic growth process being studied. This work represents 

one neat way in which new technological advances can be met with existing mathematical 

frameworks for improved mechanistic understanding. Potential extensions of this work 

span both further biological investigation of cooperative interactions that give rise to 

observed Allee effects, but also more broadly the further development of analytical tools 
 

3 Note: This chapter is based on an article originally published as: 
Johnson, K.E., Howard, G.R., Mo, W., Strasser, M.K. Lima, E. A. B. F., Hunag, S., & Brock, A. (2019). 
Cancer cell population growth kinetics at low densities deviate from the exponential growth model and 
suggest an Allee effect. PLoS Biol 17(8):e3000399. https://doi.org/10.1371/journal.pbio.3000399 
Author contributions: 
Conceptualization: Sui Huang, Amy Brock,.Data curation: Kaitlyn E. Johnson, Grant Howard, William Mo, 
Formal analysis: Kaitlyn E. Johnson., Funding acquisition: Sui Huang, Amy Brock, Investigation: Kaitlyn E. 
Johnson, Methodology: Kaitlyn E. Johnson, Grant Howard, Michael K. Strasser, Ernesto A. B. F. Lima, Sui 
Huang, Amy Brock, Project administration: Amy Brock, Supervision: Amy Brock, Visualization: Kaitlyn E. 
Johnson, Writing – original draft: Kaitlyn E. Johnson, Amy Brock, Writing – review & editing: Michael K. 
Strasser, Sui Huang, Amy Brock.  
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in which we can utilize the full distribution of data for model fitting- replacing fitting the 

average of data set to fitting for a full distribution. A number of mathematical techniques, 

including the one presented in this work, offer ideas as to how this can be done for new 

sets of problems. 

ABSTRACT 
 Most models of cancer cell population expansion assume exponential growth 

kinetics at low cell densities, with deviations to account for observed slowing of growth 

rate only at higher densities due to limited resources such as space and nutrients. However, 

recent preclinical and clinical observations of tumor initiation or recurrence indicate the 

presence of tumor growth kinetics in which growth rates scale positively with cell numbers. 

These observations are analogous to the cooperative behavior of species in an ecosystem 

described by the ecological principle of the Allee effect. In preclinical and clinical models, 

however, tumor growth data are limited by the lower limit of detection (i.e., a measurable 

lesion) and confounding variables, such as tumor microenvironment, and immune 

responses may cause and mask deviations from exponential growth models. In this work, 

we present alternative growth models to investigate the presence of an Allee effect in 

cancer cells seeded at low cell densities in a controlled in vitro setting. We propose a 

stochastic modeling framework to disentangle expected deviations due to small population 

size stochastic effects from cooperative growth and use the moment approach for stochastic 

parameter estimation to calibrate the observed growth trajectories. We validate the 

framework on simulated data and apply this approach to longitudinal cell proliferation data 

of BT-474 luminal B breast cancer cells. We find that cell population growth kinetics are 
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best described by a model structure that considers the Allee effect, in that the birth rate of 

tumor cells increases with cell number in the regime of small population size. This indicates 

a potentially critical role of cooperative behavior among tumor cells at low cell densities 

with relevance to early stage growth patterns of emerging and relapsed tumors. 

INTRODUCTION 
The classical formulation of tumor growth models often begins with the assumption 

that early stage tumor growth dynamics are driven by cell-autonomous proliferation, 

manifested as an exponential increase in cell number. The exponential growth model 

describes a growth rate that is proportional to the number of cells present and is often 

captured by a single growth rate constant at this stage. However, current imaging 

technologies have a lower limit of detection of about 1 million cells on a typical CT scan 

(Kobayashi et al., 2017), and thus measurements of the growth dynamics of very small 

tumor cell populations are not typically captured in the clinical setting (Kobayashi et al., 

2017). Recent findings in preclinical mouse models (Panigrahy et al., 2012) and from 

clinical outcomes following tumor resection (Neufeld et al., 2017) reveal that tumor growth 

at low tumor cell densities does not match the expectation of exponential growth. In 

addition, observations of in vitro cell growth have long recognized that very low seeding 

density may have a detrimental effect on population fitness. These findings give rise to an 

intriguing possibility: does tumor cell growth deviate from the model of exponential 

growth at low tumor cell densities? In this study, we ask whether early stage tumor growth 

kinetics exhibits a behavior analogous to a principle in ecology known as the Allee effect, 
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in which the fitness of a population, measured by the per capita growth rate, scales with 

population size at low population sizes. In ecology, the Allee effect arises due to 

cooperative growth, such as cooperative predation, feeding, and mating 

systems(Courchamp, Berec and Gascoigne, 2008). In tumors, there exists an abundance of 

evidence for subclonal interactions among cells, e.g., with specific subpopulations 

releasing signaling molecules critical to the growth of other subsets of cells(Scheel et al., 

2011; Cleary et al., 2014; Marusyk et al., 2014; Archetti, Ferraro and Christofori, 2015; 

Kumar et al., 2018). Thus, it is quite intuitive that cancer cell growth may exhibit 

cooperative interactions analogous to the cooperation among species in an ecosystem. 

The ability to describe and predict tumor growth is essential to developing 

strategies to eradicate cancer cell populations (Yankeelov et al., 2016; Matthew T. 

McKenna, Weis, Brock, et al., 2018). Understanding tumor growth kinetics at low cell 

numbers is of clinical importance because they govern tumor initiation, treatment response, 

and recurrence. In ecology, the Allee effect has informed strategies for the control of 

invasive species (Cloonan et al., 2008) and has been used to predict how an introduced 

species might take hold in a new environment (Courchamp, Berec and Gascoigne, 2008). 

Applying ecological principles to control tumor growth is a growing interest (Gatenby, 

1991; Mcgregor, Axelrod and Axelrod, 2008; Chen and Pienta, 2011; Basanta et al., 2013; 

Korolev, Xavier and Gore, 2014; Amend and Pienta, 2015; Amend et al., 2016; Han et al., 

2016; Axelrod and Pienta, 2018; Kaznatcheev et al., 2019; Kimmel et al., 2019). A better 

understanding of the factors that govern tumor cell growth at early stages could help to 
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improve predictions of initial growth, relapse, and metastasis, as well as guide therapeutic 

strategies borrowed from ecological principles to control tumor progression. 

Although exponential growth is a common initial assumption used to develop more 

complex models of tumor progression, few models strictly interested in characterizing 

tumor growth prescribe a fixed birth and death rate over time and population size. Many 

modifications have been made to account for a changing growth rate as the population 

grows. The widely used Gompertzian model is a phenomenological model that introduces 

a growth rate that decays exponentially with time (Winsor, 1932; Benzekry et al., 2014; 

Pacheco, 2016). Similarly, the logistic growth model exhibits a modification that 

introduces a population size dependency, slowing the growth rate as the population size 

approaches carrying capacity (Benzekry et al., 2014; Pacheco, 2016). This can be 

explained mechanistically as a result of competition over finite space and nutrients. Further 

refinements to these models have used a statistical mechanics framework to explicitly 

introduce a correlation function, reducing the number of accessible growth states of 

individual cells as the population size increases, leading to slowing of growth (West and 

Newton, 2018). Other mechanistic models have used a replicator system of equations for 

competing species, with population-dependent fitness based on a payoff matrix (Gerlee and 

Altrock, 2017). Stochastic models of tumor growth have also been used to describe tumor 

growth based on a Moran birth–death process, a stochastic model that describes how 

heterogeneity increases over time due to molecular mutations in individual cells (West et 

al., 2016). This stochastic modeling framework leads to a population-dependent fitness 

landscape that exhibits nonconstant tumor growth rates; specifically, tumor growth rates 



 79 

that slow in the later stages of development (West et al., 2016). Although all of these 

models take into account decreasing growth rates as the population grows(Winsor, 1932; 

Speer et al., 1984; Norton, 1988; Benzekry et al., 2014; Pacheco, 2016; West et al., 2016; 

West and Newton, 2018), none explicitly investigate the opposing effect of an increase in 

growth rate with population size at low population densities. 

Recent evidence of deviations from exponential growth at early stages of tumor 

growth have been observed in glioblastoma, in which patient brain tumors were resected 

and monitored over time for relapse (Neufeld et al., 2017). These studies of relapsed tumor 

growth revealed that the observed growth rate at the clinically detectable stages of tumor 

growth failed to match models of simple logistic growth and instead were better described 

by a weak Allee effect model. In the weak version of the Allee effect, populations grow at 

a much slower rate at very low tumor cell numbers but continue to grow for any initial 

population size. By contrast, a strong Allee effect describes a population that becomes 

extinct below a threshold initial population size. In ecology, both strong and weak Allee 

effects are observed (Courchamp, Berec and Gascoigne, 2008). Although the observation 

of a weak Allee effect in glioblastoma recurrence is certainly provocative, it is limited by 

the fact that the earliest stages of tumor growth from low cell densities cannot be easily 

detected in vivo and thus the critical measurements at the relevant regime cannot be 

captured with current imaging technologies. Numerous studies have investigated the 

manifestation of the Allee effect in ecology (Duncan et al., 2014; Wittmann, Gabriel and 

Metzler, 2014; Vieira, Ribeiro and Souto, 2015; Bose et al., 2017) and a few have posed 

theoretical implications and possible mechanisms of cooperative kinetics of the Allee effect 
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in cancer growth (Rodriguez-brenes, Komarova and Wodarz, 2013; Böttger, Hatzikirou 

and Voss-böhme, 2015; Greene et al., 2016; Konstorum, Hillen and Lowengrub, 2016; 

Sewalt et al., 2016). However, none have performed an in-depth quantitative analysis of 

cancer cell proliferation kinetics captured in the low cell density regime. The explicit 

investigation of the Allee effect in describing tumor growth dynamics at low population 

sizes is the main contribution of this paper. 

In this study, we investigate the behavior of various structurally distinct models of 

tumor growth representing alternative hypotheses of growth dynamics that consider the 

Allee effect. We present a framework for the analysis of cancer cell growth at low cell 

densities in a controlled in vitro setting in which cells are subject to optimal growth 

conditions with sufficient nutrients and space. Monitoring growth in vitro allows for 

studying the effects of cell number on growth in the absence of confounding factors, such 

as the immune system interactions and tissue microenvironmental factors, in order to test 

explicitly the dependence of growth dynamics on cell density. We take advantage of recent 

technological advances that allow for the seeding of a precise small initial cell number and 

the ability to measure cell number at single-cell resolution and at high-temporal resolution. 

This enables capturing of accurate growth kinetics in the low cell-density regime in which 

the Allee effect is most relevant and cannot be studied in vivo. Because we focus our 

examination in the low cell-density regime exclusively (<200 cells in a 1 mm3 well), our 

modeling analysis excludes additional terms that describe the slowing of cancer cell 

population growth at higher densities in which competition for limited resources and space 

becomes relevant. We examine the average behavior of 3 models of increasing complexity: 
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the exponential growth model, a strong Allee model, and an extended Allee model that can 

be either strong or weak. 

              At the small population size of interest in this study, the inherent stochasticity of 

the birth–death problem leads to a nonzero probability of extinction, even for a model of 

constant, net-positive birth rate minus death rate. This phenomena, in which the average 

population behavior appears to have a reduced growth rate because some trajectories 

become extinct and have a growth rate of zero, is known in ecology as demographic 

stochasticity (Courchamp, Berec and Gascoigne, 2008). In order to disentangle these 

stochastic effects of small population sizes that decrease observed average growth rate 

from true cooperative effects, we develop 7 stochastic models whose average behavior 

follows one of the deterministic models. In this framework, each stochastic model 

represents a different hypothesis of the mechanism underlying the growth kinetics. For 

each stochastic model, we perform a parameter estimation using the method of moments 

(Fröhlich et al., 2016) and use model selection to identify the model most likely model to 

describe the growth data (Fröhlich et al., 2016). This is performed for both a simulated data 

set and the in vitro BT-474 breast cancer cell line data to test the hypotheses that our 

framework reveals an alternative tumor growth model that incorporates an Allee effect. 

MATERIALS AND METHODS  

Data processing and aanlysis 
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All mathematical modeling and analysis was performed in MATLAB. Code and data for 

all analysis is available on Github at: https://github.com/brocklab/Johnson-

AlleeGrowthModel.git. 

 

Cell culture and low cell density seeding 

The human breast cancer cell line BT-474 was used throughout this study. BT-474 is a 

standard cell line from ATCC. Cell lines were maintained and studied in Dulbecco’s 

Modified Eagle Medium (DMEM, Thermo Fischer Montreal, Canada) supplemented with 

insulin (Gibco Gaithersburg, MD) and 10% fetal bovine serum (Gibco) and 1% Penicillin-

Streptomycin (Gibco Gaithersburg, MD Gaithersburg, MD). A subline of the BT-474 

breast cancer cell line was engineered to constitutively express enhanced green fluorescent 

protein (EGFP) with a nuclear localization signal (NLS). Genomic integration of the EGFP 

expression cassette was accomplished through the Sleeping Beauty transposon system 

(Kowarz, Loescher and Marschalek, 2015). The EGFP-NLS sequence was obtained as a 

gBlock from IDT and cloned into the optimized Sleeping Beauty transfer vector psDBbi-

Neo. pSBbie-Neo was a gift from Eric Kowarz (Addgene plasmid #60525) (Kowarz, 

Loescher and Marschalek, 2015). To mediate genomic integration, this two-plasmid 

system consisting of the transfer vector containing the EGFP-NLS expression cassette and 

the pCMV(CAT)T7-SB100 plasmid containing the Sleeping Beauty transposase was co-

transfected into a BT-474 cell population using Lipofectamine 2000. mCMV(CAT)T7-

SB100 was a gift from Zsuzsanna Izsvak (Addgene plasmid # 34879) (Mátés et al., 2009). 

GFP+ cells were collected by fluorescence activated cell sorting. BT-474-EGFPNLS1 cells 
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are maintained in DMEM (Gibco Gaithersburg, MD) supplemented with insulin (Sigma 

Life Science St. Louis, MO), 10% fetal bovine serum (Fisher), and 200 µg/mL G418 

(Caisson Labs Smithfield, UT). Cells were grown in precoated culture dishes at 37 °C in a 

humidified, 5% CO2, 95 air atmosphere. Cells were seeded into the center 60 wells of a 96-

well plate (Trueline Saint-Anne-de-Bellevue, Quebec, Canada) at precise initial cell 

numbers using fluorescence activated cell sorting (BD Fusion Franklin Lakes, NJ) plate 

sorting at single-cell precision. Plates were kept in the Incucyte Zoom, a combined 

incubator and time-lapsed microscope. Initial cell seeding numbers were verified by eye at 

4× magnification using an image taken within 4 hours from the FACS seeding. Low cell 

density cultures were allowed to grow in media for 7 days and were subsequently fed fresh 

media every 2 to 3 days for up to 2 weeks. 

 

Time-lapse imaging 

Time-lapse recordings of the cell cultures were performed using the whole-well 

imaging feature in the Incucyte Zoom (Essen Biosceince Ann Arbor, MI). Cells were 

maintained in the Incucyte at 37°C in humidified 5% CO2 atmosphere. Phase contrast and 

green-channel images were collected every 4 hours for up to 2 weeks. 

Image analysis 

Recorded green-channel images were analyzed using the built-in analysis program 

in the Incucyte Zoom (Essen Bioscience Ann Arbor, MI) software analysis package. The 

true initial cell number of each well was confirmed by eye from the images at 4× 

magnification, and cell-number trajectories were binned accordingly. For each 96-well 
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plate, an image processing definition was optimized using the built-in software and 

confirmed by eye to account for background fluorescence and local bubbles. Wells whose 

cells died off or did not exhibit any growth and wells without of focus images were 

removed from analysis. 

RESULTS 

The deterministic strong and weak Allee effect models 

This work studies stochastic growth models because of the inherent stochasticity of 

cell growth processes in the regime of small cell numbers that is the focus of our work. 

However, the structure of the functional forms of the kinetic equations describing the cell-

number changes can be understood within a deterministic framework, thus providing a link 

to the historical and most widely implemented tumor growth models. The deterministic 

models involving the Allee effect are chosen because they have previously shown to be 

useful for applied ecologists working in regimes in which the Allee effect is relevant 

(Courchamp, Berec and Gascoigne, 2008). 

At the core of our modeling effort are the following 3 deterministic 

phenomenological models of increasing complexity that describe cell population growth 

kinetics. The first model represents the null model of tumor growth (Pacheco, 2016) where 

the growth rate (QR
Q(

) is proportional to the number of cells present, N, and a single growth 

rate constant, g, resulting in the classical exponential growth model: 

?R(()
?(

= 𝑔𝑁(𝑡) (1) 
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𝑁(𝑡) = 𝑁U𝑒%( (2) 

This model describes N cells that exhibit cell autonomous proliferation (Fig 1A) and a 

constant per capita growth rate (
7V
7D
R

) given by the growth rate constant g over time and cell 

number (Fig 3.1B) for initial cell numbers N(t = 0) = 3, 8, and 16 cells displayed in (Fig 

3.1A, 3.1B, and 3.1C). In the remainder of the manuscript we denote the initial cell number, 

N(t = 0) by N0. The normalized growth rate (𝑙𝑜𝑔(R(()
RY

) is constant for each initial condition, 

with all growth curves falling on a line of equal slope (Fig 3.1C). Eq. 1 and 2 represent the 

well-known exponential growth model and the simplest of the tumor growth models 

analyzed. 
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Fig 3.1: Average behavior of exponential, strong, and weak Allee models for different 
initial conditions. (A, D, and G) Deterministic growth curves of the exponential growth 
model (blue), the strong Allee model (pink), and the weak Allee model (green), 
respectively, shown for N0 = 3, 8, and 16 for all models. (B, E, and H) Per capita growth 
rates demonstrate that growth rate increases in time with cell number for both Allee models. 
(C, F, and I) For normalized cell numbers, a clear difference is observed in the slopes 
depending on the initial cell number for both Allee models. Data and code used to generate 
this figure can be found at https://github.com/brocklab/Johnson-AlleeGrowthModel.git. 

  

Most departures from the exponential growth model of cancer cells (Eq. 1 and 2) 

describe cancer cell growth in which the growth rate is proportional to the number of cells 

present but with modifications that account for slowing of growth over time and/or with 

increasing population size. For example, in the classical formulation of the logistic growth 

model (Pacheco, 2016), the growth rate is characterized by a growth rate constant g 
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modulated by an additional term to describe the slowing of growth rate as the population 

approaches carrying capacity (K): 

 ?R(()
?(

= 𝑔(1 − R(()
[
)𝑁(𝑡) (3) 

The logistic growth model describes cells in 2 regimes: when N <<K the R
[

 term is 

negligible and the cells essentially exhibit exponential growth, and when N is near K, the 

net growth rate (?R
?(

) slows towards zero as N approaches K and the 1 − R
[

 term approaches 

zero. 

We present the logistic growth model (Eq. 3) to demonstrate that the second model 

equation (Eq. 4), the strong Allee model, is analogous to the logistic growth model, except 

that the dependency on N in this model occurs in the opposite regime—introducing an 

Allee effect term of 1 − ]
R

 that lowers the observed growth rate at small N near the Allee 

threshold A: 

 ?R(()
?(

= 𝑔(1 − ]
R(()

)𝑁(𝑡) (4) 

This model describes N cells whose net growth rate exists in 2 distinct regimes: when N is 

less than the Allee threshold (A), the Allee effect term 1 − ]
R

 in Eq. 4 becomes negative 

and the net growth rate (?R
?(

) becomes negative, predicting the population will ultimately go 

extinct (Fig 1D; N0 = 3). When N(t) is near A but larger than A, the net growth rate is slowed 

by a factor of 1 − ]
R

 (Eq. 4) but remains positive, resulting in a growth rate that scales with 

cell number, as can be seen for the per capita growth rate over time for N0 = 8 (Fig 1E). 
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When N(t) is much larger than A, the Allee effect term (1 − ]
R

) becomes negligible and the 

cell population begins to behave like in the exponential growth model (Fig 1D and 1E). 

This behavior in which a population is predicted to go extinct below a critical threshold 

(here A) describes a strong Allee effect. The expected scaling of the normalized growth 

rate (𝑙𝑜𝑔(R(()
RY
)) demonstrates the expected differences in net growth rate based on initial 

seeding number (N0) for a strong Allee model (Fig 1F). As expected, only initial conditions 

greater than the Allee threshold of A = 5 (corresponding to N0 = 8 and 16) result in a net 

positive growth rate. This model is able to explain the threshold-like behavior observed in 

preclinical studies of engrafted tumors in mouse (Panigrahy et al., 2012), where, below a 

threshold number of inoculated cells, tumors never form. To account for weak Allee effect 

behavior, in which the growth rate is always greater than zero for any N0, we introduce the 

third deterministic model, the extended Allee model: 

 ?R(()
?(

= 𝑔(1 − ]5^
R(()5^

)𝑁(𝑡) (5) 

This model is similar to the strong Allee model (Eq. 4) but introduces an additional 

parameter τ that allows the model to exhibit either a strong Allee effect when A is positive, 

or a weak Allee effect when 𝜏 > |𝐴| and A < 0. When weak Allee conditions hold, at low 

N the (]5^
R5^

) term always remains less than 1 but greater than zero, keeping the net growth 

rate positive but resulting in a growth rate that approaches zero as N decreases. Fig 3.1G, 

3.1H, and 3.1I display the behavior of the extended Allee model with parameters that 

produce a weak Allee effect. The extended Allee model explains potential weak Allee 

effects, such as those observed in glioblastoma resection (Neufeld et al., 2017). See Table 
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3.3 for a complete description of each of the 3 deterministic models, their parameters, and 

their behaviors. 

Extension to stochastic growth models 

Given that the growth kinetics are measured here in very small cell populations, 

where the expected variability of individual cell behavior with respect to division “birth” 

and “death” events (which jointly determine net growth rate ?R
?(

) is high, this scenario can 

give rise to apparent growth kinetics that deviate significantly from the average population 

behavior. In order to detect slowing of growth that is not due to stochastic small population 

effects that result in reduced average observed growth, a stochastic modeling framework 

was implemented to test the relevance of the Allee effect models presented above. 

Stochastic models are often derived from microscopic models that describes density-

dependent birth and death rates. However, in this approach, we chose the expressions for 

our stochastic models in order to recapitulate a first-order moment (mean) that matched the 

corresponding deterministic ordinary differential equation (ODE) of the Allee effect. Birth 

and death rates were thus chosen not directly from a first-principles derivation of a 

microscopic model but based on reasonable hypotheses consistent with the Allee effect 

model behavior. 

We developed 7 stochastic models whose expected mean cell number in time ⟨𝑛(𝑡)⟩ 

are equivalent to that predicted by the deterministic models described above (Eq. 1, 4, and 

5). For each deterministic model structure, the total number of cells n(t) is modeled by the 

ODEs in Eq. 1, 4, and 5 above. The time evolution of n(t) for the stochastic models are 

defined by the following birth and death events (Fig 3.2A): 
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 Event	1:birth𝐶 → 2C(reaction	rate:	𝑟birth(𝑛)) 

 Event	2:death𝐶 → ∅(reaction	rate:	𝑟death(𝑛)) 

Where rbirth(n) and rdeath(n) describe the rate at which the events occur, which may depend 

on the number of cells, n, present or be constant. The probability of an event i happening 

in an infinitesimal time step 𝛥t is given generally by the product of the rate of the event, 

the state of the population, and the time step: 

 𝑃'{'$( = 𝑟'{'$((𝑛)𝑛𝛥𝑡 (6) 

 For our purposes in modeling tumor growth, we limit the possible events to birth or death 

events, and in all cases, the probability of an event occurring is a function of n, because it 

is a first-order reaction described by the schematic in (Fig 2A). 
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Fig 3.2: A stochastic model of tumor growth and expected outputs if Allee effect is 
present. (A) Schematic illustration of generalized stochastic framework in which a cell can 
either give birth or die at a rate given by 𝑟|#}(~ or 𝑟?')(~ respectively. (B) Schematic of the 
expected results from fitting of the simplest birth–death model with each data set grouped 
by initial cell number (N0), where, if an Allee effect is present, we expect to observe that 
either the birth rate constant (b) (red) or death rate constant (d) (blue) change with the initial 
condition. (C) Schematic of the expected outcomes of fitting full data set to the simple 
birth–death model (left) and a model incorporating an Allee effect (right). 
 

For each model presented, the generalized framework described above holds and only the 

birth and death rates (rbirth and rdeath) differ for each model based on the hypothesis about 

the dependency of the birth or death rate on cell number. To give an illustrative example 

of the components of the stochastic model, we explicitly state the reaction rates and the 

resulting birth and death probabilities for the simple birth–death model. To remain concise, 

for the remaining 6 Allee models described, we just present the birth and death probabilities 

for each model. 

In the simple birth–death model, the birth rate and death rates are independent of 

cell number, n. They are described by rate constants, denoted b and d: 

 𝑟|#}(~ = 𝑏 (7) 
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 𝑟?')(~ = 𝑑 (8) 

And birth and death probabilities in time step 𝛥t of 

 𝑃|#}(~ = 𝑏𝑛𝛥𝑡 (9) 

 𝑃?')(~ = 𝑑𝑛𝛥𝑡 (10) 

The average behavior in this model corresponds to the exponential growth model (Eq. 1 

and 2), where the growth rate constant g is equivalent to the birth rate constant (b) minus 

the death rate constant (d) (g = b − d). For the remaining stochastic models we introduce 

birth and/or death rates that are functions of n, corresponding to the hypotheses that the 

birth and/or death rates are not constant and instead depend on the population size, n. 

Similar to the way that stochastic growth models have modified the growth rate with a term 

that decreases growth rate in proportion to increasing n (i.e., in the work by Sun and 

colleagues (S. Sun, 2015), where the division rate k is defined as 𝑘 = 𝑘U − 𝛾𝑛), we 

prescribe modifications to birth and death rates that decrease birth rates proportional to the 

reciprocal of n. We note that this nonlinear dependency is prescribed as such in order to 

achieve the desired slowing of growth rates at low n that the Allee effect models produce 

(Eq. 4 and 5). The first stochastic Allee model is the strong Allee on birth model. 

 𝑃|#}(~ = (𝑏 − ]
$
(𝑏 − 𝑑))𝑛𝛥𝑡 (11) 

 𝑃?')(~ = 𝑑𝑛𝛥𝑡. (12) 

This model hypothesizes that the birth probability is lowered by a factor proportional to 

the growth rate (b − d) and the reciprocal of n, and thus for large n, the ]
$
 term in Eq. 12 is 
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negligible, but at small n the birth probability is significantly decreased by the Allee term, 

resulting in a lower birth probability and observed slower net growth. 

Alternatively, we can hypothesize that the Allee effect acts to increases the death 

probability at n near A, resulting in the strong Allee on death model probabilities of 

 𝑃|#}(~ = 𝑏𝑛𝛥𝑡; (13) 

 𝑃?')(~ = (𝑑 + ]
$
(𝑏 − 𝑑))𝑛𝛥𝑡. (14) 

And lastly, we present a model that assumes that the Allee effect term acts equally on both 

decreasing the birth probability and increasing the death probability for n near A, resulting 

in 

 𝑃|#}(~ = (𝑏 − ]
$
(|@?)
�
)𝑛𝛥𝑡; (15) 

 𝑃?')(~ = (𝑑 + ]
$
(|@?)
�
)𝑛𝛥𝑡. (16) 

For simplicity, this model assumes that the Allee term acts equally, with half of its effect 

decreasing the birth rate and half increasing the death rate at n near A. Of course, there 

could be an infinite number of ways of distributing the Allee threshold onto the birth and 

death probabilities, and this could have been introduced with an additional fractional 

parameter. However, for simplicity, we only consider equal partitioning of the Allee effect 

on both birth and death rates. 

The last family of stochastic models corresponds to the extended Allee model (Eq. 

5). Again, this model introduces birth and death rate dependencies on n. By the same 

arguments described for the strong Allee effect model, the extended Allee effect model can 
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manifest itself either on the birth probability only, the death probability only, or the birth 

and death probabilities equally, leading to the following birth and death probabilities. 

If the Allee effect acts on birth only: 

 𝑃|#}(~ = (𝑏 − (𝑏 − 𝑑) ]5^
$5^

)𝑛𝛥𝑡; (17) 

 𝑃?')(~ = 𝑑𝑛𝛥𝑡. (18) 

If the Allee effect acts on death only: 

 𝑃|#}(~ = 𝑏𝑛𝛥𝑡; (19) 

 𝑃?')(~ = (𝑑 + (𝑏 − 𝑑) ]5^
$5^

)𝑛𝛥𝑡. (20) 

If the Allee effect term acts on birth and death equally: 

 𝑃|#}(~ = (𝑏 − (|@?)
�

]5^
$5^

)𝑛𝛥𝑡; (21) 

 𝑃?')(~ = (𝑑 + (|@?)
�

]5^
$5^

)𝑛𝛥𝑡. (22) 

A complete description of each of the above 7 stochastic models grouped by the 

corresponding deterministic model and their assumptions of birth or death mechanism is 

displayed in Table 3.1. 
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Exponential model 
family 

Strong Allee model family Extended Allee model family 

Mean cell-number change expressed as a deterministic ODE of each family of stochastic models 

𝑑𝑁(𝑡)
𝑑𝑡 = 𝑔𝑁(𝑡) 

𝑑𝑁(𝑡)
𝑑𝑡 = 𝑔(1 −

𝐴
𝑁(𝑡))𝑁(𝑡) 

𝑑𝑁(𝑡)
𝑑𝑡 = 𝑔(1 −

𝐴 + 𝜏
𝑁(𝑡) + 𝜏)𝑁(𝑡) 

Probabilities of birth and death events to describe stochastic models within each family 

𝑃|#}(~ = 𝛥𝑡(𝑏𝑁) 

𝑃?')(~ = 𝛥𝑡(𝑑𝑁) 

Allee effect on birth rate Allee effect on birth rate 

𝑃|#}(~ = 𝛥𝑡(𝑏𝑁 − (𝑏 − 𝑑)𝐴) 

𝑃?')(~ = 𝛥𝑡(𝑑𝑁) 

𝑃|#}(~ = 𝛥𝑡(𝑏𝑁 − (𝑏 − 𝑑)𝑁(
𝐴 + 𝜏
𝑁 + 𝜏)) 

𝑃?')(~ = 𝛥𝑡(𝑑𝑁) 

Allee effect on death Allee effect on death 

𝑃|#}(~ = 𝛥𝑡(𝑏𝑁) 

𝑃?')(~ = 𝛥𝑡(𝑑𝑁 + (𝑏 − 𝑑)𝐴) 

𝑃|#}(~ = 𝛥𝑡(𝑏𝑁) 

𝑃?')(~ = 𝛥𝑡(𝑑𝑁 + (𝑏 − 𝑑)𝑁(
𝐴 + 𝜏
𝑁 + 𝜏)) 

Allee effect on birth and death Allee effect on birth and death 

𝑃|#}(~ = 𝛥𝑡(𝑏𝑁 − (
(𝑏 − 𝑑)
2 )𝐴) 

𝑃?')(~ = 𝛥𝑡(𝑑𝑁 + (
(𝑏 − 𝑑)
2 )𝐴) 

𝑃|#}(~ = 𝛥𝑡(𝑏𝑁 − 𝑁(
𝑏 − 𝑑
2 )(

𝐴 + 𝜏
𝑁 + 𝜏)) 

𝑃?')(~ = 𝛥𝑡(𝑑𝑁 + 𝑁(
𝑏 − 𝑑
2 )(

𝐴 + 𝜏
𝑁 + 𝜏)) 

Table 3.1: Stochastic growth model families whose average behavior correspond to 
one of the deterministic growth models. For the Allee model families, within each 
family, the Allee effect can alter birth, death, or both probabilities, representing distinct 
mechanistic hypotheses. Abbreviation: ODE, ordinary differential equation 
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To simulate growth trajectories of the stochastic models, we use the Gillespie algorithm 

(Text 3.1) (Gillespie, 1977, 2014). The above models are used to test the relevance of the 

Allee effect in cancer cell population growth. The conventional exponential growth model 

(Eq. 1 and 2) assumes that growth rate (birth rate minus death rate) is constant and 

independent of initial condition. To test the validity of this assumption in an exploratory 

analysis, we first fit each group of trajectories individually for each initial cell number, N0. 

If an Allee effect is present in the data, a systematic increase in the fitted birth rate constant, 

b, or decrease in death rate constant, d, with increasing initial cell number would be 

expected (shown schematically in Fig 3.2B). We next investigated the relevance of the 7 

stochastic models by fitting the simulated cell-number trajectories from all initial 

conditions to each stochastic model described above (Eqs. 9–22) to determine which model 

structure best describes the observed growth dynamics (shown schematically in Fig 23.C). 

Parameter estimation and model selection framework 

          The parameters of stochastic processes are often inferred using approximate 

Bayesian computation(Beaumont, Zhang and Balding, 2002), which require exhaustive 

stochastic simulations in order to minimize the differences between simulation and 

experimental data for each parameter set searched. These algorithms require a high number 

of simulating runs, making them computationally expensive and instantiating issues of 

nonconvergence and model selection (Robert et al., 2011). To render inference on the 

stochastic process feasible, we apply the moment-closure approximation method described 

in Frohlich and colleagues (Fröhlich et al., 2016) to fit the 7 proposed stochastic growth 

models to experimentally measured growth curves (Fig 3.3). 
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Fig 3.3: Moment-closure approximation approach for stochastic parameter 
estimation. Framework for moment-closure approximation approach to derive moments 
from the ME of a stochastic process and how model expected moments are fit to stochastic 
data. BIC, Bayesian Information Criterion, ME, master equation 
 

The master equation of a stochastic process 

The master equation (ME) describes the change in the probability distribution that the 

system has (in this case number of cells, n) as a function of time. From the ME, the time 

derivative of the moments, or expected values of n, n2,…nm can be derived. In this 

framework, we developed stochastic models so that the derivative of the first-order moment 

corresponds to one of the deterministic models presented (Eq. 2, 4, and 5). The ME 

describes the probability of their being n cells at time t as a sum of probabilities of a birth, 

death, or neither event occurring given there are n − 1, n + 1, and n cells at time t, 

respectively: 
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?IO(()
?(

= 𝑟|#}(~(𝑛 − 1)𝑝$@4(𝑡) − [𝑟?')(~(𝑛) + 𝑟|#}(~(𝑛)]𝑝$(𝑡) + 𝑟?')(~(𝑛 +

1)𝑝$54(𝑡), (23) 

where rbirth and rdeath are functions of the parameters b, d, A and/or τ for each of the 7 

stochastic structural models (Table 3.4). 

Derivations of moment-closure approximations from the master equation  

From longitudinal data of cell number over time (N(t)), with sufficient replicates, 

we expect to be able to measure the mean and variance in cell number over time. We want 

to be able to directly compare the mean and variance in the experimental longitudinal data 

to the model expected mean and variance in time as a function of the model parameters. 

We therefore want to derive the first and second moments from the ME. From the ME of 

each stochastic model (S3.2 Table), the time derivative of the first and second moments 

were derived according to the procedure outlined in (Houchmandzadeh, 2009)(Text 3.2). 

Using the definition of variance, the ODEs of the mean and variance for each model can 

be written in terms of the lower order moments (⟨𝒏⟩ and ⟨𝒏𝟐⟩), where ⟨. . . ⟩ denotes the 

expectation value of the moment; Table 3.1). Within each family of models (exponential, 

strong Allee, and extended Allee; Eq. 2, 4, and 5) the stochastic forms (Eq. 9–22) share the 

same mean ODE corresponding to their deterministic model family but differ in their 

variance based on whether the Allee effect alters the birth, death, or both event terms. The 

time evolution of the variance can be used to properly identify individual rate parameters 

such as the birth and death rates because the variance in time is proportional not just to the 
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net growth (birth minus death rates) but to the sum of the birth and death rates, as shown 

in S3.1 Fig. 

For each stochastic model, we confirmed that the mean and variance of a simulated 

data set of 5,000 trajectories with known parameters matched the derived model mean and 

variance described in Table 3.2. (See Text 3.3 Text, Figs 3.11-3.17.) 

Model Mean ⟨𝒏(𝒕)⟩  Variance ⟨𝜮(𝒕)⟩ 
Simple birth-death 𝑑⟨𝑛⟩

𝑑𝑡 = ⟨𝑛⟩(𝑏 − 𝑑) 
𝑑⟨𝛴##⟩
𝑑𝑡 = 2(𝑏 − 𝑑)⟨𝛴##⟩ + (𝑏 + 𝑑)⟨𝑛⟩ 

Strong Allee on 
birth 

𝑑⟨𝑛⟩
𝑑𝑡 = ⟨𝑛⟩(𝑏 − 𝑑)(1 −

𝐴
⟨𝑛⟩) 

𝑑⟨𝛴##⟩
𝑑𝑡 = 2⟨𝑛�⟩(𝑏 − 𝑑) − 2⟨𝑛⟩(𝑏 − 𝑑)𝐴

+ (𝑏 + 𝑑)⟨𝑛⟩ − (𝑏
− 𝑑)𝐴 − 2⟨𝑛⟩(𝑏
− 𝑑)(⟨𝑛⟩ − 𝐴) 

Strong Allee on 
death 

𝑑⟨𝑛⟩
𝑑𝑡 = ⟨𝑛⟩(𝑏 − 𝑑)(1 −

𝐴
⟨𝑛⟩) 

 

𝑑⟨𝛴##⟩
𝑑𝑡 = 2⟨𝑛�⟩(𝑏 − 𝑑) − 2⟨𝑛⟩(𝑏 − 𝑑)𝐴

+ (𝑏 + 𝑑)⟨𝑛⟩ + (𝑏
− 𝑑)𝐴 − 2⟨𝑛⟩(𝑏
− 𝑑)(⟨𝑛⟩ − 𝐴) 

Strong Allee on 
both 

𝑑⟨𝑛⟩
𝑑𝑡 = ⟨𝑛⟩(𝑏 − 𝑑)(1 −

𝐴
⟨𝑛⟩) 

𝑑⟨𝛴##⟩
𝑑𝑡 = 2⟨𝑛�⟩(𝑏 − 𝑑) − 2⟨𝑛⟩(𝑏 − 𝑑)𝐴

+ (𝑏 + 𝑑)⟨𝑛⟩ − 2⟨𝑛⟩(𝑏
− 𝑑)(⟨𝑛⟩ − 𝐴) 

Extended Allee on 
birth 

𝑑⟨𝑛⟩
𝑑𝑡 = ⟨𝑛⟩(𝑏 − 𝑑)(1 −

𝐴 + 𝜏
⟨𝑛⟩ + 𝜏) 

𝑑⟨𝛴##⟩
𝑑𝑡 = 2⟨𝑛�⟩(𝑏 − 𝑑) + ⟨𝑛⟩(𝑏 + 𝑑)

− 2⟨𝑛�⟩(𝑏

− 𝑑)(
𝐴 + 𝜏
⟨𝑛⟩ + 𝜏) − ⟨𝑛⟩(𝑏

− 𝑑)(
𝐴 + 𝜏
⟨𝑛⟩ + 𝜏)

− 2⟨𝑛�⟩(𝑏 − 𝑑)(1

−
𝐴 + 𝜏
⟨𝑛⟩ + 𝜏) 

Table 3.2. Differential equations of the moment-closure approximations of the mean 
and variance for each stochastic model obtained from the ME using the moment 
approach. Abbreviation: ME, master equation 
 
 
Maximum likelihood and Bayesian parameter estimation 

To infer the parameters of the stochastic models, a maximum likelihood 

parameter estimation approach was employed using derivations from Frohlich and 
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colleagues (Fröhlich et al., 2016). The likelihood function assumes that the measured 

mean and variance of the data at each time point tk is normally distributed around the 

model predicted first moment (mean cell number (𝜇#(𝑡�, 𝜃)) and mean variance in cell 

number (Σ##(𝑡�, 𝜃)) with standard deviations for each distribution of mean cell number 

and variance in cell number given by 𝜎��,�(𝜃) and 𝜎���,�(𝜃)respectively. These standard 

deviations in the first moment and variance, 𝜎�(𝜃) and 𝜎�(𝜃), are functions of the 

parameters 𝜃 and were derived by Frohlich and colleagues (Fröhlich et al., 2016). The 

likelihood function (Eq. 24) and its corresponding negative log likelihood (Eq. 25) are the 

following: 

 

𝐿(𝜃) = ∏ 4

������,�
� (�)

𝑒𝑥𝑝( − 4
�
(��((�,�)@���,�

���,�(�)
)�)#,� × ∏ 4

���� ��,�
� (�)

𝑒𝑥𝑝( −#,�

4
�
(���,�((,�)@¡

¢��,�
� ��,�(�)

)�) ; (24) 

𝑁𝐿𝐿(𝜃) = 4
�
∑ (𝑙𝑜𝑔 2𝜋𝜎��,�

� (𝜃) + (��((�,�)@���,�
���,�(�)

)�)�,# + 4
�
∑ (𝑙𝑜𝑔 2𝜋𝜎���,�

� (𝜃) +�,#

(���,�((,�)@¡
¢��,�

� ��,�(�)
)�). (25) 

These weigh equally the likelihood of the measured mean and variance of the data from 

each trajectory over all time points measured. To perform maximum likelihood parameter 

estimation, we used the fminsearch function in MATLAB to minimize the NLL(𝜃) (Eq. 

25). For this optimization, non-negative parameters (rate constants b and d) were log-

transformed while parameters allowed to be negative (extended Allee model Eq. 17–22 
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parameters A and 𝜏) were normalized between 0 and 1 over a domain of reasonable values 

of A and 𝜏. We used the log of the slope of the mean cell number in time as an initial guess 

for the growth rate (b − d), a death rate of d = 0.0005 cells/hour, A = 1 or −1 and 𝜏 = 2 were 

used in order to make a conservative initial guess. 

Uncertainty analysis and parameter identifiability 

A key benefit of the moment approach for stochastic parameter estimation is that 

deriving a system of coupled differential equations enables the use of already established 

methods for parameter identifiability and uncertainty analysis. To evaluate structural 

identifiability from each model, a differential algebra approach (Meshkat, Sullivant and 

Eisenberg, 2015; Brouwer et al., 2017) was used to reveal identifiable combinations of 

parameters in terms of the output we were able to measure in time—in this case, both the 

mean and the variance of the cell-number trajectories in time. (See Text 3.4 for an example 

of this approach applied to the birth–death model). This analysis revealed that the 

parameters in all 7 models are uniquely identifiable. 

To ensure that the predicted mean and variance of the models exhibited 

distinguishable differences from each other qualitatively, we investigated some illustrative 

cases of the expected mean and variance for a simple birth–death model, a strong Allee 

model, and a weak case of the extended Allee model (Figure 3.18A and 3.18B). Likewise, 

to ensure the different forms of the stochastic models within each broader class of 

deterministic models were distinguishable by the expected differences in their variance 

(Table 3.1), we display the solutions of the expected mean and variance for strong and 

weak Allee effects on both birth, death, and equally on both (Figure 3.19A-D). This gave 
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us confidence that the candidate models were theoretically distinguishable using the mean 

and variance of the data collected. To evaluate whether these model parameters were 

practically identifiable and quantify the corresponding uncertainty on these model 

parameters, the profile likelihood method was used as described in (Raue et al., 2009). The 

profile likelihood method evaluates the ability to uniquely identify each parameter 

individually by profiling one parameter at a time, fixing it to a range of values, and fitting 

for the rest of the parameters at each fixed value. The resulting curvature of likelihood is 

used to evaluate the uncertainty on the parameter and determine confidence intervals. 

 

Modeling framework is able to distiniguish between different growth models from 

simulated stochastic trajectories 

            The parameter estimation and model selection framework were verified by 

applying the calibration scheme to simulated data from a model of intermediate 

complexity—the strong Allee effect on birth (Eq. 11 and 12). Using the Gillespie 

algorithm(Gillespie, 1977, 2014), we generated 5,000 simulated trajectories from initial 

conditions of N0 = 3, 5, and 10 from the strong Allee effect on birth model. In order to most 

closely simulate the expected experimental data, the stochastic trajectories were sampled 

every 4 hours corresponding to the time intervals used in the experimental measurements 

of cell growth, and the mean and variance were calculated at each time point. A constant 

random noise term was added to the measurements of mean and variance in time in order 

to generate trajectories that resembled experimental measurements of mean and variance 

and to simulate the additive noise of the experimental system (Fig 3.4A and 3.4B). The 
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simulated data were fit to the 7 candidate models (Eq. 9–22, Table 3.2) representing the 

range of biological hypotheses, with model complexities ranging from 2 to 4 parameters. 

To identify the most likely underlying model structure from each of the candidate 

stochastic models, the Bayesian Information Criterion (BIC) was used for model selection 

(Raftery, 1999; Wagenmakers and Farrell, 2004; Loos et al., 2018) (See Text 3.5). As 

expected, the strong Allee effect on birth had the lowest BIC value (Fig 3.4A), revealing 

that the underlying model structure was correctly identified. The BIC weighting analysis 

(Wagenmakers and Farrell, 2004) (Text 3.5) revealed strong evidence in favor of the strong 

Allee effect on birth (Fig 3.4B), indicating the ability of the BIC value to distinguish 

between overly simple models with 2 parameters and overly complex models with 4 

parameters (Fig 3.4C). In order to ensure the method was not overweighing goodness of 

fit, the data were down-sampled from the true data collection interval of every 4 hours to 

every 36 hours to demonstrate that down-sampling changed the magnitudes of the BIC 

values but did not affect the order of the BIC values of each model relative to one another 

(Figure 3.20). The chosen model provided a good fit to the mean and variance in the data 

(Fig 3.5B and 3.5C), and the parameter search displayed the expected convergence of 

accepted parameter values (Fig 3.5D). Profile likelihoods on parameter distributions 

demonstrated that each of the parameters were practically identifiable and parameter 

estimates fell close to the true parameters (Fig 3.5E, 3.5F and 3.5G). The true parameter 

values of b = 0.00238, d = 0.0005, and A = 2 fell within the confidence intervals of the 

profile likelihood analysis of the fitted parameters of [0.02340–0.02425] for b, [0.00461–

0.00563] for d, and [1.853–2.026] for A. This confirms that the calibration approach selects 
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the appropriate underlying model structure from a set of hypotheses and properly identifies 

the parameters. 

 

 

Fig 3.4: continued on next page, Model selection based on the BIC identifies the 
ground truth model in simulated data. (A) ΔBIC values (𝐵𝐼𝐶# − 𝐵𝐼𝐶:#$) are plotted for 
the fit of the simulated data set to each of the 7 models from left-to-right: simple birth–
death model (b − d), strong Allee model on birth (strAb), strong Allee model on death 
(strAd), strong Allee model on birth and death (strAbd), weak extended Allee model on 
birth (wkAb), weak extended Allee model on death (wkAd), and weak extended Alee model 
on birth and death (wkAbd) compared with the highest quality, minimum BIC value model: 
the strong Allee model on birth. (B) BIC weighting reveals strong evidence to choose the 
strong Allee model over the other candidate models. (C) Number of parameters of each 
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model as a measure of relative complexity of the model. The data and code used to generate 
this figure can be found at https://github.com/brocklab/Johnson-AlleeGrowthModel.git.  
Abbreviations: BIC, Bayesian Information Criterion 
 

 
Fig 3.5: Fit to mean and variance from simulated stochastic data set. (A) Example of 
stochastic growth model output from 5,000 simulated cell-number trajectories with initial 
condition of N0 = 5 and a birth rate of b = 0.0238, death rate of d = 0.005, and an Allee 
threshold A =2, revealing the expected variability in growth dynamics apparent at low 
initial numbers. (B) From the simulated stochastic trajectories, we sample time uniformly 
and measure the mean cell number at each time point for N0 = 3, 5, and 10. (C) Again from 
the simulated stochastic trajectories, we sample time uniformly and measure the variance 
in cell number at each time point for N0 = 3, 5, and 10 (D) Display of parameter space 
searched, with parameter sets of b, d, and A colored by likelihood, indicating the framework 
converges on the true parameters. (E) Profile likelihood analysis of birth rate parameter 
estimate (red dot) of b = 0.0238 [0.02340–0.02425] with true b = 0.0238 (green line). (F) 
Profile likelihood analysis of death rate parameter estimate (red dot) d = 0.0051 [0.00461–
0.00563] with true d = 0.005 (green line). (G) Profile likelihood analysis of Allee threshold 
parameter estimate (red dot) of A = 1.9393 [1.853–2.026] with true A = 2 (green line). The 
data and code used to generate this figure can be found at 
https://github.com/brocklab/Johnson-AlleeGrowthModel.git. 
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Experimental measurement reveals scaling of growth rate with initial cell number 

Next, we investigated whether the growth of cancer cells in vitro is governed by alternative 

growth models other than the exponential growth model commonly used to describe tumor 

cell growth well below carrying capacity. BT-474 breast cancer cells were seeded at a 

precise initial cell number ranging from 1 to 20 cells per well of a 96-well plate, and time-

lapse microscopy images were collected every 4 hours for replicate wells at each initial 

condition (20–50 wells per condition; see Cell culture and low cell density seeding). 

Example images are shown in Fig 3.6A, 3.6B, and 3.6C. Cell number as function of time 

was measured for a total of 328 hours (just under 2 weeks) and cell-number counts in time 

were determined using digital image processing for each individual well imaged (see Time-

lapse imaging and image analysis). 

 

Figure 3.6: BT-474 cancer cells in culture exhibit growth rate scaling with initial cell 
density. (A, B, and C) Representative images from day 1 (A), day 6 (B), and day 14 (C) of 
BT-474 GFP labeled cells proliferating in vitro. (D) Individual cell-number trajectories for 
different N0 = 2, 4, and 10. (E) Average cell number every 4 hours from each trajectory of 
N0 = 2, 4, and 10. (F) Cell number in time normalized by initial cell number in log scale 
reveals scaling of growth rate by initial cell number, with g = 0.00665 ± 0.00684, 0.00745 
± 0.00499, and 0.00813 ± 0.00296 for N0 = 2, 4, and 10, respectively.The data and code 
used to generate this figure can be found at https://github.com/brocklab/Johnson-
AlleeGrowthModel.git. 
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The true initial cell number (N0) sorted into each well was confirmed by eye from 

the initial image, and wells were binned according to the observed initial cell number. Cell-

number trajectories of wells with initial cell numbers of 2, 4, and 10 cells are shown in Fig 

3.6D in red, green, and blue, respectively. As a preliminary analysis of this data, we fitted 

each well individually to the exponential growth model (Eq. 1 and 2) to obtain a distribution 

of growth-rate constants at each initial condition. The mean growth rates for N0 = 2, 4, and 

10, respectively, were g = 0.00665 ± 0.00684, 0.00745 ± 0.00499, and 0.00813 ± 0.00296. 

Fig 6 displays the average cell-number trajectory (Fig 3.6E) and the normalized growth 

rate (𝑙𝑜𝑔(R(()
RY
); Fig 3.6F) for the measured data at each time point. These results indicate 

clear deviations from the simple exponential growth model in which the normalized growth 

rate (𝑙𝑜𝑔(R(()
RY
)) is expected to be identical for all initial conditions (see Fig 3.1C). Instead, 

growth behavior resembled the characteristic scaling of normalized cell numbers by initial 

cell number that is observed for both Allee effect models (Fig 3.1F and 3.1I). The scaling 

of average growth rate with initial cell number had been observed by Neufeld and 

colleagues (Neufeld et al., 2017) in their in vitro studies of cell culture, providing us with 

the motivation to further investigate whether an Allee model better describes BT-474 breast 

cancer cell growth. 

To ensure that the observed differences in growth rate at low cell densities were 

significantly different from what is observed at normal cell culture seeding densities, we 

sorted N0 = 512 and N0 = 1,024 cells and captured 30 growth trajectories from each initial 

condition. The mean and standard deviation of the growth rates were not significantly 
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different from one another and also significantly higher than the observed low cell density 

growth rates, with g = 0.0112 ± 0.00062 and g = 0.0115 ± 0.00074 for N0 = 512 and N0 

=1,024, respectively (Figure 3.21). The absence of density-dependent growth rates at these 

higher initial cell numbers may explain why the Allee effect hasn’t been described using 

standard cell culture seeding densities. 

Fit of experimental data to stochastic growth models reveals Allee effect 

The variability in the observed cell-number trajectories for a single initial condition is 

reflected in the experimental measurements of BT-474 cells growing at low initial cell 

densities (Fig 3.6D). This variability in cell growth dynamics is expected due to the 

inherent stochasticity of the birth and death processes, which is apparent at the small 

population sizes measured in this study (Fig 3.5A). Because stochasticity is more apparent 

and can be observed experimentally at the low cell numbers (Fig 3.6D), such dynamics are 

appropriately modeled by a stochastic rather than a deterministic process. In order to 

determine whether the preliminary observations of growth-rate scaling with the initial cell 

number could be described by alternative models of cell population growth that consider 

the Allee effect, the experimental data of BT-474 growth trajectories shown in Fig 3.6D 

for initial cell numbers of 2, 4, and 10 were calibrated to the 7 stochastic models using the 

stochastic modeling framework presented above (Fig 3.3). 

Fitting each initial condition separately to the simple birth-death model reveals net 

growth rate increases with initial cell number 

To determine whether birth and/or death rates depend on the initial cell number, we first 

fit the data for initial cell number of N0 = 2, 4, and 10, grouped by initial condition N0 
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individually, to the stochastic simple birth and death model (Eq. 9 and 10) using the 

workflow described in Fig 3.3. The results of the fitting to the mean and variance in time 

to the simple birth–death model for each initial condition are shown in Fig 3.7 (3.7A, 3.7B, 

and 3.7C for the mean and 3.7D, 3.7E, and 3.7F for the variance). Each data set of a single 

initial condition N0 revealed identifiable birth and death rate parameters via profile 

likelihood analysis (see Figure 3.22). Birth and death rate maximum likelihood parameter 

estimates are shown in Fig 3.7G, with confidence intervals obtained from the profile 

likelihood analysis (Figure 3.22). Parameter estimates for birth rates by initial cell number 

are b2 = 0.00793 [0.00785–0.00794], b4 = 0.00945 [0.0093–0.0096], and b10 = 0.0113 

[0.0112–0.0114], and for death rates, the parameter estimates are d2 = 6.67 × 10−18 

[−0.0005 to 0.0001], d4 = 0.0011 [0.0008–0.0013], and d10 = 0.00286 [0.0025–0.0028] for 

N0= 2, 4, and 10, respectively. The trend suggests a slight increase in net growth rate (birth 

rate minus death rate) with initial cell number, as is consistent with the preliminary growth 

rate analysis by initial cell number (Fig 3.6F) but inconsistent with the conventional 

exponential growth hypothesis, which should yield the same growth rate (and same birth 

and death rates), independent of the initial cell number. 
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Fig 3.7: Best fit of each initial cell-number means and variances in time to stochastic 
birth–death model reveals net growth rate increases with initial cell number. (A, B, 
and C) Data mean over time compared to best fit to model mean. (D, E, and F) Data 
variance in time compared to best fit to model variance. (G) Best fit birth and death rate 
parameters for the stochastic birth–death model fit to each initial condition, with 
confidence intervals determined from profile likelihoods. Parameter estimates for birth 
rates by initial cell number are 𝑏� = 0.00793	[0.00785– 0.00794], 𝑏° =
0.00945	[0.0093– 0.0096], and 𝑏4U = 0.0113	[0.0112– 0.0114], and for death rates, the 
parameter estimates are 𝑑� = 6.67	 ×	10@4²	[−0.0005	to	0.0001], 𝑑° =
0.0011	[0.0008– 0.0013], and 𝑑4U = 0.00286	[0.0025– 0.0028] for N0 = 2, 4, and 10, 
respectively. The data and code used to generate this figure can be found at 
https://github.com/brocklab/Johnson-AlleeGrowthModel.git. 
 

Fit of low seeding density data to all stochastic models reveals a weak Allee effect 

The growth data from the initial conditions of N0 = 2, 4, and 10 were combined and fit to 

each of the 7 candidate models using the moment-closure approximation workflow 

described in Fig 3.3 (Fröhlich et al., 2016). The BIC values for each model fit were 

computed and compared with the minimum BIC value (Fig 3.8A), and the corresponding 

BIC weights were calculated (Fig 3.8B) based on the goodness of fit and the complexity 

of the model (number of parameters; Fig 3.8C). We note that both the strong and weak 

Allee effect on birth models have significantly lower BIC values than the null model of the 

simple birth–death model (Fig 3.8A), providing strong, consistent evidence for the 
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presence of an Allee effect in some form in this data set. Using the BIC weights to evaluate 

statistical significance between the models revealed that the weak Allee effect on birth is 

more likely than the strong Allee effect on birth model, with a BIC weight of essentially 1 

to 0 for the weak Allee effect on birth versus the strong Allee effect on birth model. The 

best fit of the weak Allee effect on birth model to the mean and variance of the data is 

shown in Fig 3.9A and 3.9B, respectively (See Figures 3.23-3.28 for the fit of the data to 

all 7 candidate models). 
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Fig 3.8: Weak Allee model on birth best describes BT-474 in vitro growth data. (A) 
𝛥BIC values for the fit of the data to each of the 7 candidate stochastic growth models 
shows that the weak Allee model on birth exhibits the lowest BIC value. (B) BIC weights 
for each model indicate that the weak Allee model on birth is significantly better than all 
other models. (C) Number of parameters in each model as a measure of model complexity. 
The data and code used to generate this figure can be found at 
https://github.com/brocklab/Johnson-AlleeGrowthModel.git  BIC, Bayesian Information 
Criterion 
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Fig 3.9: Mean and variance of data fit to a weak Allee model on birth. (A) Best fit of 
data mean to model mean displays the model fits the data well over all 3 initial conditions 
and over the time course. (B) Best fit of data variance to model variance displays the model 
fits the data well. (C) Profile likelihood analysis of birth rate around maximum likelihood 
𝑏 = 0.0101 [0.010068– 0.010181]. (D) Profile likelihood analysis of death rate around 
maximum likelihood 𝑑 = 4.3613	 × 	10@³ [−7.270	 × 	10@³	to	1.599	 × 	10@°]. (E) 
Profile likelihood analysis of Allee threshold 𝐴 = −3.1576 [−3.8593	to	 − 2.4559]. (F) 
Profile likelihood analysis of the overall shape parameter 𝜏 = 7.480 [6.8871– 9.0393]. 
The data and code used to generate this figure can be found at 
https://github.com/brocklab/Johnson-AlleeGrowthModel.git. 
 
 

The profile likelihoods used to determine the 95% confidence intervals of the best 

fitting parameters of b = 0.0101 [0.010068–0.010181], d = 4.3613 × 10−5 [−7.270 × 10−5 

to 1.599 × 10−4], A = −3.1576 [−3.8593 to −2.4559], and 𝜏 = 7.480 [6.8871–9.0393] are 
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displayed in Fig 3.9C, 3.9D, 3.9E, and 3.9F respectively. The discrepancy between the 

goodness of fit in the model mean and variance compared to the data is likely because an 

unbiased approach (as is prescribed in (Fröhlich et al., 2016)) was used to weight the fit of 

both the mean and variance equally, using the likelihood function described in Eq. 24. In 

theory, the relative weighting of the value of these 2 outputs could be tuned to reduce the 

error between the model and measurements in either the mean or variance. The results of 

model selection for the weak Allee effect model for the BT-474 data indicates that, outside 

of the effects of demographic stochasticity, any initial cell number is predicted to, on 

average, develop into a growing cell population, but the growth rate is expected to be 

significantly slower at low cell numbers. 

DISCUSSION 

The availability of single-cell resolution live imaging of cancer cell growth in a 

controlled in vitro setting starting at the population size of a single cell allowed us to 

examine in detail the influence of absolute cell number in a cell population on growth rate. 

Using mathematical modeling, we investigated the departure from simple first-order 

exponential growth kinetics in which the growth rate is proportional to the population size 

(cell number). Cell–cell interactions, as best known from quorum sensing in bacteria (Jiang 

et al., 2019), underlie the cell-number dependence of growth rates. Most work on such 

dependence have been concerned with the slowing of growth with increasing cell number, 

e.g., due to approaching the carrying capacity of the cell culture. Here, we focus on the 

initiation of cell growth from a few individual cells and ask whether cooperative behavior 
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or the Allee effect, as it is known from ecology, can be detected in a departure from 

exponential growth kinetics as predicted by mathematical models that consider the Allee 

effect. Because at the early stages of growth (from one cell or a few) growth kinetics is 

subjected to stochastic fluctuations due to small cell numbers, we formulated stochastic 

models that consider the Allee effect. We have demonstrated a framework for testing the 

relevance of a set of stochastic models of cancer cell growth applied to high-throughput, 

single-cell resolution data. 

The 7 distinct candidate stochastic models of growth describe various modifications 

of the exponential growth model by incorporating growth-rate dependencies on the size of 

the population. The average behaviors of these models are examined in the deterministic 

form, and corresponding stochastic models that lead to the average behavior are developed. 

To test the relevance of the proposed stochastic models, the moment-closure approximation 

method (Fröhlich et al., 2016) for parameter estimation in stochastic models (Fig 3.3) is 

applied to the high-throughput cell growth data. We first validated our framework by 

computational simulation of growth trajectories using a model of intermediate complexity. 

The parameter estimation framework was applied to the simulated data, confirming the 

ability of the framework to properly identify the underlying model structure and the true 

parameters. The framework is applied to a data set with a number of replicates from 3 

initial conditions of N0 = 2, 4, and 10 BT-474 breast cancer cells. The fit of this growth 

data reveals that the weak Allee model with decreasing birth probability at a low cell 

number best describes the observed in vitro growth dynamics. 
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The presence of an Allee effect, even in the nutrient- and space-rich cell culture 

setting, implies that cancer cells likely exhibit cooperative growth. The ubiquitous cellular 

heterogeneity in tumors suggests that cooperative interactions between distinct subsets of 

cells must be present in order to maintain the observed heterogeneity. Evidence for noncell 

autonomous growth via eco-evolutionary interactions was recently observed by 

Kaznatcheev and colleagues (Kaznatcheev et al., 2019), from which they observed a fitness 

benefit to combining fluorescently labeled cancer associated fibroblasts from parental and 

resistant cell lines and observed a benefit in growth rate of each independent cell type. 

Other microscopic experimental systems in which frequency dependent fitness effects have 

been considered include Escherichia coli, yeast, and other cancer cell types (Kaznatcheev 

et al., 2019). Recent work by Marusyk and colleagues (Marusyk et al., 2014)  has found 

evidence for noncell autonomous proliferation using a mathematical modeling framework, 

showing that the null hypothesis of no clonal interactions can be easily rejected in favor of 

a model that considers a specific clone that helps support the growth of all other clones. 

Additionally, studies in which clonal diversity has been manipulated by combining clones 

in culture have demonstrated that the presence of diverse clones is necessary to obtain the 

observed growth rate achieved in multiclonal parental cell cultures (Wangsa et al., 2018). 

Single-cell and clonal analysis has enabled the detection of secreted growth 

inducing factors, such as ILII (Marusyk et al., 2014), Wnt1 (Cleary et al., 2014), IGFIII 

(Archetti, Ferraro and Christofori, 2015), and other paracrine factors (Hoelzinger, Demuth 

and Berens, 2007; Scheel et al., 2011) in certain clones that result in an increased growth 

rate in the surrounding nonproducing clones. Bioinformatic analysis of single-cell gene 
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expression data has allowed for the identification of specific subsets of cells that produce 

high levels of certain ligands and coexist in a population with cells that contain high 

expression levels of the cognate receptors (Graeber and Eisenberg, 2001; Zhou et al., 2017; 

Kumar et al., 2018). Prior to single-cell analysis capabilities, these types of interactions 

were not readily detectable from bulk gene expression measurements. In such data, the 

coexpression of a ligand and its cognate receptor in the same sample (a cell population) 

has by default been interpreted as autocrine signaling (Graeber and Eisenberg, 2001). Both 

paracrine and autocrine signaling are likely to play a significant and varying role in tumor 

growth. 

In the field of tumor growth modeling, a few studies have considered the role of the 

Allee effect and the importance of incorporating it to describe and predict the effects of 

cooperative growth. Bottger and colleagues (Böttger, Hatzikirou and Voss-böhme, 2015) 

developed a stochastic model in which an Allee effect naturally manifests based on 

assumptions that cancer cells can either exist in a migratory state or a proliferative state. 

Additional theoretical work has focused on spatial interactions between cancer cells and 

incorporated the Allee effect in a model for spatial spreading of cancer (Sewalt et al., 2016). 

However, most classical tumor growth models rely on the assumption that early stage 

growth dynamics match the single exponential growth model (Winsor, 1932; Speer et al., 

1984; Benzekry et al., 2014; Lima et al., 2016; Pacheco, 2016; West and Newton, 2018). 

The weak Allee effect revealed in this work provides evidence that descriptions of early 

stage growth dynamics, which are relevant to progression, relapse, and metastasis, may be 

improved by taking into account the expected slowing of growth at low cell numbers. 
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Beyond improving predictions of tumor growth and relapse dynamics, a model that 

considers the Allee effect may help to explain how cancer cell populations are able to go 

extinct after therapy despite the prediction of the log-kill hypothesis, which states that the 

probability of a cell being present after treatment, if a tumor is initially large, is greater 

than zero (Poleszczuk and Enderling, 2018). 

Although much work in tumor biology has led to an appreciation for cancer as an 

evolutionary process, a focus on cancer cells as ecosystems of interacting species or 

subpopulations may yield new insights. The possibility of exploiting ecology for the 

treatment of tumors based on studies in conservation biology about extinction and control 

of invasive species has been previously proposed (Gatenby, 1991; Mcgregor, Axelrod and 

Axelrod, 2008; Chen and Pienta, 2011; Basanta et al., 2013; Korolev, Xavier and Gore, 

2014; Amend and Pienta, 2015; Amend et al., 2016; Han et al., 2016; West and Newton, 

2018; Axelrod and Pienta, 2018; Kimmel et al., 2019). However, this is the first work to 

our knowledge that has explicitly tested for the presence of the Allee effect in a regime in 

which low cancer cell populations can be measured and fit to a number of stochastic model 

structures representing different biological hypotheses about the Allee effect. Our finding 

is consistent with preclinical (Panigrahy et al., 2012) and clinical observations (Neufeld et 

al., 2017; Spiteri et al., 2018) of threshold-like behavior of tumor growth or slowed tumor 

growth following resection. Evidence for the Allee effect is also consistent with evidence 

of cooperation among cancer cell subclones as has been amply demonstrated (Brown et al., 

1990; Axelrod, Axelrod and Pienta, 2006; Cleary et al., 2014; Marusyk et al., 2014; An et 

al., 2015; Archetti, Ferraro and Christofori, 2015). An understanding of subpopulation 
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interactions and their molecular mediators that drive the observed Allee effect offer new 

approaches to manipulate cancer cell growth dynamics in favor of extinction. Allee effect 

models have been used to compare the impact of alternative management scenarios on 

threatened or exploited populations that are not readily accessible to experimentation 

(Courchamp, Berec and Gascoigne, 2008). Although the models themselves are 

phenomenological, the principles behind them, such as growth promoting cooperation, 

have been confirmed by ecological observations. The concept of cooperation promoting 

growth is intuitive to both the ecologist and modeler, in a similar fashion to the way we 

understand the carrying capacity term in the logistic growth model to represent the 

biological phenomena of slowing growth due to finite resources and space, and in the same 

manner, we intend knowledge of the Allee effect to be useful in a variety of contexts. 

This study, which seeks to establish feasibility of detection and mathematical 

description of the Allee effect by observing growth kinetics, has obvious limitations with 

respect to biological interpretation of the relevance of results. Most notably, we apply the 

modeling and analysis framework to an in vitro data set for a single breast cancer cell line. 

The in vitro system may not faithfully represent in vivo growth dynamics, although we 

expect, and others have shown evidence that(Neufeld et al., 2017; Spiteri et al., 2018), the 

Allee effect would only be more pronounced in vivo. An in vitro setting provides cells with 

all of the growth factors, nutrients, and space to robustly grow at low cell densities, whereas 

these factors may be less abundant for tumor cells in vivo at a low cell density. Although 

numbers of replicates for each initial condition N0 were relatively high (20 to 50 replicates) 

compared with typical growth studies, an increase in the number of replicates would likely 
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lead to an improvement because the variance in the data should increase in accuracy with 

increasing sample size. In order to confirm that the Allee effect is a hallmark of tumor 

growth, a wide range of tumor types will need to be investigated. Additionally, the model 

presented here is phenomenological; we do not infer the mechanisms by which an Allee 

effect may be occurring such as in (Böttger, Hatzikirou and Voss-böhme, 2015; Sewalt et 

al., 2016), nor do we explicitly develop a model of subpopulation interactions as had been 

done in (Marusyk et al., 2014). Future work will focus on investigating the molecular and 

cellular mechanisms for an Allee effect and developing a model of heterotypic 

subpopulation interactions that also considers phenotypic plasticity (Piyush B Gupta et al., 

2011; Zhou et al., 2014; Pisco and Huang, 2015; Jolly et al., 2017). 

This work provides a framework for in-depth investigation of mathematical models 

of stochastic growth that incorporate the Allee effect and shows that an Allee effect model 

may be more suitable to describing early stage tumor growth dynamics than the exponential 

model. The potential role of the Allee effect opens a variety of new possibilities for 

understanding and controlling tumor growth. Biological mechanisms of cooperative 

growth that may be critical for cell populations to enter a highly proliferative regime need 

to be further investigated, because these mechanisms may be critical to preventing and 

predicting metastases and tumor relapse. 

CHAPTER 3 SUPPLEMENTARY FIGURES, TABLES, AND TEXT  

Figures 
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Figure 3.10: Illustrative example demonstrates that increasing magnitude of birth 
and death rate parameters increases variance in time, enabling the identifiability of 
b+d. The net growth (b-d) was held constant and the magnitude of b and d were 
simultaneously increased in order to demonstrate the effect on the time evolution of the 
variance. This example is used to explain intuitively how the measurement of variance in 
time enables the proper identification of the b and d parameters uniquely, even while the 
time evolution of the mean cell number remains constant. 
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Figure 3.11:  Confirmation that moment approach derivations match measured mean 
and variance from simulated stochastic trajectories (a) Example of stochastic growth 
model output from 5000 simulated cell number trajectories starting at a single cell with 
birth rate of b = 0.0238 and a death rate of d = 0.005, revealing the expected variability in 
growth dynamics that is not averaged out at low initial numbers (b) Stochastic growth 
trajectories uniformly samples every 4 hours (c) Measured mean at each time interval from 
simulated data with model expected mean as a function of time for the true parameters 
overlaid. (d) Measured variance at each time interval from simulated data with model 
expected variance as a function of time for the true parameters overlaid. 
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Figure 3.12: Confirmation that moment approach derivations match measured mean 
and variance from simulated stochastic trajectories for strong Allee model on birth 
(a) Measured mean at each time interval from simulated data with model expected mean 
as a function of time for the true parameters overlaid. (b) Measured variance at each time 
interval from simulated data with model expected variance as a function of time for the 
true parameters overlaid. 
 

 
Figure 3.13: Confirmation that moment approach derivations match measured mean 
and variance from simulated stochastic trajectories for strong Allee model on death 
(a) Measured mean at each time interval from simulated data with model expected mean 
as a function of time for the true parameters overlaid. (b) Measured variance at each time 
interval from simulated data with model expected variance as a function of time for the 
true parameters overlaid. 
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Figure 3.14: Confirmation that moment approach derivations match measured mean 
and variance from simulated stochastic trajectories for strong Allee model on birth & 
death (a) Measured mean at each time interval from simulated data with model expected 
mean as a function of time for the true parameters overlaid. (b) Measured variance at each 
time interval from simulated data with model expected variance as a function of time for 
the true parameters overlaid. 

 
Figure 3.15: Confirmation that moment approach derivations match measured mean 
and variance from simulated stochastic trajectories for weak Allee model on birth (a) 
Measured mean at each time interval from simulated data with model expected mean as a 
function of time for the true parameters overlaid. (b) Measured variance at each time 
interval from simulated data with model expected variance as a function of time for the 
true parameters overlaid. 
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Figure 3.16: Confirmation that moment approach derivations match measured mean 
and variance from simulated stochastic trajectories for weak Allee model on death (a) 
Measured mean at each time interval from simulated data with model expected mean as a 
function of time for the true parameters overlaid. (b) Measured variance at each time 
interval from simulated data with model expected variance as a function of time for the 
true parameters overlaid. 

 
Figure 3.17: Confirmation that moment approach derivations match measured mean 
and variance from simulated stochastic trajectories for weak Allee model on birth & 
death (a) Measured mean at each time interval from simulated data with model expected 
mean as a function of time for the true parameters overlaid. (b) Measured variance at each 
time interval from simulated data with model expected variance as a function of time for 
the true parameters overlaid. 
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Figure 3.18: Comparison of similar simple birth-death, strong, and weak Allee 
expectations for the time evolution of the mean and variance. (a) Expected  time 
evolution of the mean cell number for the simple birth-death model (red), the strong Allee 
model on birth (blue) and the weak Allee model on birth (green) with the same birth and 
death rates for all but with A=2 for the strong Allee model and A=-2, t=3 for the weak 
Allee model indicates significant differences in trajectories for N0 = 5, 10, & 15 (b) 
Expected time evolution of the variance in cell number for the same initial conditions and 
parameters. 
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Figure 3.19: Demonstration of effect of Allee mechanism on birth or death probability 
on the variance. (a) As expected, for constant parameters the mean cell number in time 
for the strong model is the same for the strong Allee model on birth, death, or both. (b) The 
expected time evolution of the variance for the strong Allee model on the birth probability 
(cyan), death probability (dark blue) and them equally (black) (c) As expected, for constant 
parameters the mean cell number in time for the weak Allee model is the same for the 
strong model on birth, death, or both. (b) The expected time evolution of the variance for 
the strong model on the birth probability (yellow), death probability (green) and them 
equally (black). 
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Figure 3.20: Decreased time resolution of data does not change fitting results, weak 
Allee model on birth is consistently chosen. (a) Example of down sampled time 
resolution from original data (red) to data every 24 hours (blue) (b) BIC values for each 
model fit at data sampled every 4, 12, and 24 hours respectively reveals weak Allee model 
has consistently the lowest BIC value and is chosen every time. 

 
Figure 3.21: Normal cell culture density exhibits expected constant growth rate (a) 
Thirty growth rate trajectories for seeding of N0 = 512 (green) & N0 = 1024 (cyan) (b) 
Normalized cell number in time by N0 reveals expected constant growth rate (c) Average 
growth rate and for N0=512 (green) of g = 0.0112+/- 0.00062 and N0 = 1024 g = 0.0115 +/- 
0.00074 
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Figure 3.22: Profile likelihood analysis on birth and death rates for individual cell 
numbers N0= 2, 4, & 10 reveals practical identifiability of the birth and death rate 
parameters for datasets of each individual group of N0 trajectories. (a), (b), (c). Profile 
likelihood analysis on birth rate parameter for N0=2, 4, &10 respectively. (d), (e), (f). 
Profile likelihood analysis on death rate parameter for N0 = 2, 4, & 10 respectively. 
 

 
Figure 3.23: Data fit to birth-death model results in a BIC= 1.9e4. (a) Mean of the data 
(red) to the best fitting birth-death model mean (blue). (b) Variance of the data (green) to 
the best fitting birth-death model variance (blue). 
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Figure 3.24: Data fit to strong Allee on birth model results in a BIC= 9e3. (a) Mean of 
the data (red) to the best fitting strong Allee on birth model mean (blue). (b) Variance of 
the data (green) to the best fitting strong Allee on birth model variance (blue). 

 
Figure 3.25: Data fit to strong Allee on death model results in a BIC= 1.8e4. (a) Mean 
of the data (red) to the best fitting strong Allee on death model mean (blue). (b) Variance 
of the data (green) to the best fitting strong Allee on death model variance (blue). 
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Figure 3.26: Data fit to strong Allee on birth & death model results in a BIC= 1.4e4. 
(a) Mean of the data (red) to the best fitting strong Allee on birth & death model mean 
(blue). (b) Variance of the data (green) to the best fitting strong Allee on birth & death 
model variance (blue). 

 
Figure 3.27: Data fit to weak Allee on death model results in a BIC= 1.5e4. (a) Mean 
of the data (red) to the best fitting weak Allee on death model mean (blue). (b) Variance of 
the data (green) to the best fitting weak Allee on death model variance (blue). 
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Figure 3.28: Data fit to weak Allee on birth & death model results in a BIC= 1.0e4. 
(a) Mean of the data (red) to the best fitting weak Allee on birth & death model mean 
(blue). (b) Variance of the data (green) to the best fitting weak Allee on birth & death model 
variance (blue). 
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Table 3.3: Deterministic model structures to describe three distinct tumor growth 
dynamic model hypotheses. 
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Table 3.4: Master Equations to describe each of the stochastic model structures. 
 
 
Text 
 
Text 3.1: Stochastic model simulation using the Gillespie Algorithm  

To evolve the stochastic model forward, we implement the Gillespie algorithm 

(Gillespie, 1977, 2014) by initializing the number of cells to begin with and the rate 

parameters that describe the probability of either a birth or death event. The Monte Carlo 

step is performed to generate random numbers that determine the next event (either a birth 

or a death) to occur as well as the time interval until that event occurs. The probability of 

a given event to be chosen is proportional to the reaction propensity and the time interval 

to the next event is exponentially distributed with mean of the reciprocal of the sum of the 

probability of any of the events occurring.  This process is described below: 
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Where P(birth) and P(death) are specific to the stochastic model structure (See Table 3.4 

for definitions that correspond to each model). These steps were repeated for up to 5000 

repetitions. Because the time step was probabilistic, each stochastic trajectory was sampled 

to obtain a uniform time interval where the number of cells was recorded at each time based 

on the number at the event equal to or before the interval.  

 

This same derivation (Houchmandzadeh, 2009) was repeated to find up to the 4th moment, 

and the definition of the variance was used to derive the expected time-derivative of the 

variance use to identify the magnitude of the birth and death rate. 

Text 3.2: Derivation of the moment-closure approximation for the first moment of 

the birth-death model 

Starting from the CME for the birth-death model below, we apply the ånmth operator (in 

the case of the first moment m=1) over the time derivative of the probability of their being 

n cells at time t to obtain the dime derivative of the expectation of n.  
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We apply the  ånmth operator to each term on the RHS of the CME. We can then use the 

fact that the summation from -¥ to ¥ is the same over n-1, n+1, and n to transform the pn+1 

and pn-1 to pns by transforming each term on the RHS so that n-1= n, and substituting into 

each multiplicative term accordingly as shown below: 

 

Factoring out pn and applying like terms: 

 

Applying the  ånmth operator gives the time derivative of the expected first moment in 

terms of the first moment of n itself. In this case, we can solve this analytically to obtain 

the moment-approach approximation for the mean cell number of the stochastic birth-death 
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process described by exponential growth with a growth rate equal to the birth rate minus 

the death rate.  

 

This same derivation (Houchmandzadeh, 2009) was repeated to find up to the 4th moment, 

and the definition of the variance was used to derive the expected time-derivative of the 

variance use to identify the magnitude of the birth and death rate. 

Text 3.3 Confirmation that derivations of mean and variance for each model match 

the mean and variance from simulated data with known parameters 

The moment-approximation derivations from the CME were confirmed to match 

the measured moments from simulated data from the Gillespie algorithm. In Figure 3.11, 

five thousand trajectories are simulated from the stochastic birth-death model (Eq. 5 &6) 

with an initial cell number on N0=5 and a birth rate of b = 0.0238 cells/ hour and a death 

rate of d = 0.005 cells/hour (Figure 3.4A). The stochastic simulation trajectories were 

sampled every 4 hours, and the mean and variance in cell number were calculated at each 

time point (Figure 3.4B). Figure 4C shows the measured mean from simulated data and the 

expected mean are a near perfect match, and Figure 3.4D shows the measured and expected 

variance are as well. See Figures 3.11-3.16 for confirmation that the expected mean and 

variance from the remaining six stochastic models match the measured mean and variance 

from simulated data. 
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We repeated this procedure of simulating 5000 trajectories and computed the 

measured mean and variance for the remaining the strong Allee stochastic model family 

and the extended Allee model. We directly compared this to the solution of the moment 

approach approximation system of ODEs presented in Table 3.1.  

Text: 3.4. Theoretical identifiability of the structural models using the differential 

algebra approach applied to the simple birth-death model as an example 

The differential algebra approach (Meshkat, Sullivant and Eisenberg, 2015; Brouwer et al., 

2017) requires equations be written to describe the process being modeled and the 

measurements available. In this case, we are modeling the linear two compartment system 

of differential equations that describes the time evolution of the mean and the variance in 

the bulk cell number. Because our experimental system is able to capture a high number of 

growth trajectories at low initial cell densities, we are able to measure the mean and 

variance throughout time for each initial condition. For the birth and death model, this leads 

to the following set of model and measurement equations from Table 3.1.  

 

Next, we can rewrite these in terms of the measurable outputs y1 and y2. We solve for n 

from the derivative of V differentiate, then set this equal to the derivative of n. 
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The coefficients in front of the measurable outputs are the identifiable parameter 

combinations, which we set equal to a1, a2, and a3. We then use substitution and 

replacement to solve for the parameters b & d in terms of the identifiable combinations.  

 

 

If we can isolate each parameter in terms of identifiable combinations (a1, a2, and a3) 

alone, then the parameters are structurally identifiable, as is shown here by the isolation of 

b & d. Note that the unique identifiability of b and d, not just (b-d) would not be identifiable 

without the measurement of the variance (specifically because the time derivative of the 

variance is proportional to b+d), as is explained in Figure 3.10. We performed this analysis 
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for all seven stochastic model structures and found all parameters to be uniquely 

structurally identifiable. 

Text 3.5: Model Selection using Bayesian Information Criterion and BIC weights 

To investigate competing hypotheses about the underlying structure of tumor growth 

dynamics, the seven distinct stochastic models were compared using the Bayesian 

information criterion (BIC) (Raftery, 1999; Loos et al., 2018). The BIC takes into account 

both goodness of fit of the model and penalizes for complexity of the model in terms of 

number of parameters, and has been shown to be an inexpensive approximation to the 

Bayes factors, which gives the favor of a model over another (Loos et al., 2018). In order 

to ensure the method was not overweighing goodness of fit, the data was down-sampled 

from the true data collection interval of every 4 hours to every 36 hours to demonstrate that 

down-sampling changed the magnitudes of the BIC values but did not affect the order of 

the BIC values of each model relative to one another (Figure 3.20). To evaluate statistical 

significance between models with BIC values that were very close to one another, the 

methods presented in Waenmakers & Farrell et al (Wagenmakers and Farrell, 2004) of BIC 

weighting were used which are given by: 

  

From this equation, each model is assigned a relative weight, whose sum add to 1 based on 

the probability that it is the most parsimonious model to describe the data.  
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4Chapter 4:  Integrating transcriptomics and machine learning with 
longitudinal data into a mathematical framework to describe and 

predict resistance 

PREFACE 

This work represents a truly integrative, collaborative project consisting of a 

number of separate but corroborating analysis by all members, past and present, of the 

Brock lab.  The main crux of the project is built upon the lineage-traced scRNA-seq system 

developed by Aziz Al’Khafaji during his time as a graduate student (Al’Khafaji, 

Deatherage and Brock, 2018). This novel technological advancement enabled linking of 

phenotypes via single cell transcriptomes with lineage identity of each individual cell. The 

functional power of this technology is critical to the machine learning component of this 

project that will be described, essentially enabling us to “see the future” of individual cell 

fates. The experimental and computational work to generate these lineage-traced 

transcriptomics data sets is a separate project in itself, and was performed by Aziz 

Al’Khafaji, Daylin Morgan, Eric Brenner, and Russell Durrett. This process is both labor 

and time intensive, and I am very grateful for them for letting her “use” the data set in its 

complete form for the purpose of this project. Likewise, the ability to characterize with 

such breadth the treatment response dynamics of this cell line to a series of pulse-treatments 

of doxorubicin was also no small endeavor, this work was performed by Grant Howard, 

 
4 This chapter is based on a paper in submission that is available in pre-print form at: 
Johnson, K.E., Brenner, E., Howard, G.R., Al’Khafaji A., Mo, W., Morgan, D., Gardner, A., Jarrett, A., 
Sontag, E. D., Yankeelov, T.E., Brock, A. (2020). Integrating multimodal data sets into a mathematical 
framework to describe and predict therapeutic resistance in cancer. bioRxiv 943738; 
doi: https://doi.org/10.1101/2020.02.11.943738 
Author Contributions: 
KJ and AB designed the study; GH, DM, EB, AG, and AA performed experiments; WM curated the data; 
KJ, GH, DM, EB, AG, RD and WM analyzed the data; KJ performed mathematical modeling; ES, AJ, TY 
advised on mathematical modeling, KJ and AB wrote the manuscript with input from all authors; all 
authors read and approved the manuscript.   
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again as a part of a larger project to characterize treatment response in different treatment 

conditions. All authors contributed critical and meaningful feedback regarding the use of 

these data sets for this project, giving suggestions, explanations, and computational tools 

for handling the diverse data sets. The work outlined below describes a mathematical 

framework to integrate molecular level data with population-size data to improve our 

understanding of treatment response dynamics that can ultimately be leveraged to develop 

optimal therapeutic regimens. 

ABSTRACT 

A significant challenge in the field of biomedicine is the development of methods 

to integrate the multitude of dispersed data sets into comprehensive frameworks to be used 

to generate optimal clinical decisions. Recent technological advances in single cell analysis 

allow for high-dimensional molecular characterization of cells and populations, but to date, 

few mathematical models have attempted to integrate measurements from the single cell 

scale with other data types. Here, we present a framework that actionizes static outputs 

from a machine learning model and leverages these as measurements of state variables in 

a dynamic mechanistic model of treatment response. We apply this framework to breast 

cancer cells to integrate single cell transcriptomic data with longitudinal population-size 

data. We demonstrate that the explicit inclusion of the transcriptomic information in the 

parameter estimation is critical for identification of the model parameters and enables 

accurate prediction of new treatment regimens. Inclusion of the transcriptomic data 

improves predictive accuracy in new treatment response dynamics with a concordance 

correlation coefficient (CCC) of 0.89 compared to a prediction accuracy of CCC = 0.79 
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without integration of the single cell RNA sequencing (scRNA-seq) data directly into the 

model calibration. To the best our knowledge, this is the first work that explicitly integrates 

single cell clonally-resolved transcriptome datasets with longitudinal treatment response 

data into a mechanistic mathematical model of drug resistance dynamics. We anticipate 

this approach to be a first step that demonstrates the feasibility of incorporating multimodal 

data sets into identifiable mathematical models to develop optimized treatment regimens 

from data.  

INTRODUCTION 

The development of resistance to chemotherapy is a major cause of treatment 

failure in cancer. Intratumoral heterogeneity and phenotypic plasticity play a significant 

role in therapeutic resistance (Ferrall-Fairbanks et al., 2019)(Syed et al., 2019) and 

individual cell measurements such as flow and mass cytometry (Pyne et al., 2009) and 

scRNA-seq (Islam et al., 2014) have been used to capture and analyze this cell variability 

(Guo et al., 2018; Kumar et al., 2018; Wang et al., 2019; Zhao et al., 2019). Although 

attempts have been made to extract dynamic information from scRNA-seq via pseudo-

time(Cho et al., 2018) or RNA velocity approaches (Manno et al., 2018), these high-

throughput “omics” approaches come from cancer cell populations at a single time point. 

Snapshot information alone has provided immense insight to the field: illuminating novel 

molecular insight about distinct subpopulations (Al’Khafaji et al., 2019), developing 

detailed hypothesis about population structure (Smalley et al., 2019), and even 

demonstrating the ability to predict clinical outcomes (Ferrall-Fairbanks et al., 2019). 



 143 

However, outside of the field of differentiation (Stumpf et al., 2017), most “omics” data 

sets have not been directly integrated with longitudinal population data—which are critical 

to understanding the dynamics of cancer progression. 

Longitudinal treatment-response data in cancer have been used to calibrate 

mechanistic mathematical models of heterogeneous subpopulations (Matthew T McKenna 

et al., 2018; Brady et al., 2019; Smalley et al., 2019) of cancer cells. These models describe 

cancer cells dynamically growing and responding to drug with differential growth rates 

and drug sensitivities. Knowledge of these model parameters have enabled the theoretical 

optimization of treatment protocols (Greene, Sanchez-Tapia and Sontag, 2018a; Gevertz, 

Greene and Sontag, 2019; Greene, Gevertz and Sontag, 2019), and have been applied 

successfully to prolong tumor control in both mice (Smalley et al., 2019) and patients 

(Gatenby et al., 2009; Brady et al., 2019). Critical to the success of these modeling 

endeavors is the ability to identify and validate critical model parameters from available 

data (Prokopiou et al., 2015). Identifiable and practical models are necessarily limited in 

their capacity to explain biological complexity based on the available longitudinal data, 

which is often limited to total tumor volume or total cell number in time. While we have 

evidence of complex relationships between distinct subpopulations of cells (Al’Khafaji et 

al., 2019) that give rise to observed behavior, the ability to track these subpopulations 

longitudinally for use in model calibration and parameter estimation remains a challenge 

(Howard et al., 2018).  

One way to resolve this challenge would be to work with both types of data (the 

snapshot “omics” data sets to provide details of distinct subpopulations, and longitudinal 
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population-size data) and use them jointly to inform the calibration of a mechanistic model.  

In this study, we sought to develop a flexible framework for integrating informatics outputs 

from high-throughput single-cell resolution data with longitudinal population-size data to 

demonstrate the feasibility of utilizing multimodal data sources in mathematical oncology. 

The integration of single cell data into a mathematical modeling framework has been 

successfully employed in the field of differentiation by quantifying the changing proportion 

of cells in distinct cell states over time (Stumpf et al., 2017).  This approach has yet to be 

applied to cancer, where the effects of exponential growth and death due to drug exposure 

results in changes in phenotypic composition that are independent of directed transitions 

between cell states. To better understand these dynamics, we collect longitudinal 

population-size data in response to treatment with chemotherapy doxorubicin. We combine 

this with snapshots of lineage-traced scRNA-seq data and build a classifier to estimate 

phenotypic composition, via the proportion of sensitive and resistant cells, at distinct time 

points during treatment response. Despite differences in data acquisition, time resolution, 

and data uncertainty, we demonstrate that these two measurement sources can be used to 

estimate cell number in time and phenotypic composition in time, which can be compared 

to their corresponding model outputs. To reflect varying degrees of confidence in the 

measurement sources, we develop an integrated calibration scheme that relies on Pareto 

optimality and demonstrate that the phenotypic composition information is essential for the 

identifiability of model parameters from data. We validate the model results by 

demonstrating that they can accurately predict the response dynamics to new treatment 

regimens. We propose this framework as a crucial next step towards combining tumor 
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composition information with longitudinal treatment data to improve prediction and 

optimization of treatment outcomes.  

MATERIALS AND METHODS 

Experimental model and subject details 
 
Cell culture 

The human breast cancer cell line MDA-MB-231(ATCC) was used throughout this 

study. Cells were maintained in Dulbecco’s Modified Eagle Medium (Gibco) and 

supplemented with 1% Penicillin-Streptomycin (Gibco) and 10% fetal bovine serum 

(Gibco) under standard culture conditions (5% CO2, 37°C).   

A subline of the MDA-MB-231 breast cancer cell line was engineered to 

constitutively express EGFP (enhanced green fluorescent protein) with a nuclear 

localization signal (NLS). Genomic integration of the EGFP expression cassette was 

accomplished through the Sleeping Beauty transposon system (Kowarz, Loescher and 

Marschalek, 2015). The EGFP-NLS sequence was obtained as a gBlock from IDT and 

cloned into the optimized sleeping beauty transfer vector containing the EGFP-NLS 

expression cassette and the pCMV(CAT)T7-SB100 plasmid containing the Sleeping 

Beauty transposase was co-transfected into a MDA-MB-231 cell population using 

Lipofectamine 2000. mCMV(CAT)T7-SB100 was a gift from Zsuzsanna Izsvak (Addgene 

plasmid #34879) (Mátés et al., 2009). GFP+ cells were collected by fluorescence activated 

cell sorting. MDA-MB-231 cells are maintained in DMEM (Gibco), 10% fetal bovine 

serum (Gibco) and 200 µg/mL G418 (Caisson Labs). Cells were seeded into the center 60 
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wells of a 96 well plate (Trueline) at about 2000 cells per well. During the monitoring and 

treatment, plates were kept in the Incucyte Zoom, a combined incubator and time-lapsed 

microscope. Cells were fed fresh media every 2-3 days for up to 5 weeks. HEK293T cells 

were cultured in DMEM with GlutaMAX supplemented with 10% FBS, 4.5 g/L D-glucose, 

110 mg/L sodium pyruvate, streptomycin (100ug/mL) and penicillin (100 units/mL). 

Longitudinal treatment response data  

The EGFP-labeled subline of MDA-MB-231 breast cancer cells were used for 

longitudinal treatment response. Cells were passaged into the center 60 wells of 96 well 

plates at a density of about 2000 cells per well. Two days later, cells were treated with a 24 

hour pulse-treatment of doxorubicin at concentrations ranging from 0-1000 nM, with 6 

replicates of each dose. Dosed media was applied to cells and treatment response was 

monitored using the Incucyte. After 24 hours, the dosed media was replaced with normal 

media and monitoring continued. Cells were fed fresh media every 2-3 days for the duration 

of the monitoring period (up to 5 weeks).  

Lentiviral assembly  

Lentiviral assembly was performed using the Lenti-Pac HIV Expression Packaging 

Kit (GeneCopeia). Two days prior to lentiviral transfection 1.5 million HEK293T cells 

were plated in a 10 cm tissue culture dish. Forty eight hours after plating, cells were 

70−80% confluent and transfected with 9 µL of Lipofectamine 2000 (Thermo Fisher 

#11668027), 1.5 µg per well of PsPax2 (Addgene #12260), 0.4 µg/well of VSV-G 

(Addgene #8454), and 2.5 μg of Lenti-Pac HIV mix (GeneCopoeia).  Media was replaced 

24 hours post transfection with 10 mL DMEM supplemented with 5% heat inactivated FBS 
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and 20 μL TiterBoost (GeneCopoeia) reagent. Media containing viral particles was 

collected at 48 and 72 hours post transfection, centrifuged at 500g for 5 minutes, and 

filtered through a 45 μm poly(ether sulfone) (PES) low protein binding filter. Filtered 

supernatant was stored at −80 °C in aliquots for later use. 

Barcode labeling  

MDA-MB-231 cells were transduced with the Cropseq-BFP-WPRE-TS-hU6-N20 

lentivirus in growth media with 1 μg/mL polybrene. After 48 hours of incubation, 1000 

BFP+ cells were isolated by FACS to establish a population with initial diversity of ~1000 

unique barcodes. To reduce the likelihood that two viral particles enter a single cell, the 

lentiviral transduction multiplicity of infection was kept below 0.1.   

Drug treatment of barcoded cells for scRNAseq and recovery 

Barcode labeled MDA-MB-231 cells (5 replicate wells) were treated with 

doxorubicin (550 nM) for 48 hours in growth media, washed and replaced with fresh 

growth media.  Surviving cells were maintained in growth media and passaged up serially 

from 0.1 x 106 to 20 x 106 cells.  

scRNA-seq  

Cryopreserved samples from drug-naïve and two samples of doxorubicin-treated 

cells frozen at 7 and 10 weeks post-treatment were harvested, sorted by FACS to collect 

the BFP+ population. Cells were loaded into wells of a Chromium A Chip, and libraries 

were prepared using the 10XGenomics 3’ Single Cell Gene Expression (v2) protocol. 

Paired end (PE) sequencing of the libraries was conducted using a NovaSeq 6000 with an 

S1 chip (100 cycles) according to the manufacturer’s instructions (Illumina). 
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Plasmid assembly for isolation of lineages 

After selecting the lineages of interest for isolation, an array of barcodes  was 

assembled as described in (Al’Khafaji, Deatherage and Brock, 2018). Briefly, 

oligonucleotide pairs for the barcode of interest were ordered with specific overlapping 

sequences to both direct assembly of barcode array and integration into the plasmid for 

isolation. The barcode arrays were ligated, and gel purified to proceed with only a fully 

assembled array in cloning. The fully assembled barcode array was cloned into the BbsI 

site with standard restriction digest cloning. This double stranded barcode array was 

inserted into a plasmid backbone upstream of a minimal core promotor (miniCMV) and 

sfGFP to generate the Recall plasmid. This was repeated with individual barcodes of 

interest.  

Recall of isolated sensitive and resistant clones by COLBERT 

Barcoded MDA-MB-231 cells were seeded in 6 well plates and transfected using 

Lipofectamine 3000 (ThermoFisher) with 225 ng dCas9-VPR-Slim and 275 ng Recall 

Plasmid per well. Forty eight hours after transfection, GFP+ cells were single cell sorted 

by FACS into a 96 well plate and spun for 1 minute at 1000g. Sorted cells were expanded 

until 80% confluency and passaged into a single well of a 48 well plate. Upon first passage 

following sort, 1/6 of the cells or ~5000 live cells were resuspended in a PCR reaction mix 

to confirm lineage identity through PCR amplification and subsequent Sanger sequencing 

of barcode region.  

Alignment to reference genome 
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The GTF file included with cellranger’s GRCh38 3.0.0 reference was modified to 

create a “pre-mRNA” GTF file so that pre-mRNAs would be included as counts in the later 

analysis. Cellranger’s (v3.0.2) mkref command was then used to create a pre-mRNA 

reference from the GTF file and a genome FASTA file from the GRCh38 3.0.0 reference. 

FASTQ files of the scRNA-seq libraries were then aligned to the new pre-mRNA reference 

using the cellranger count command, producing gene expression matrices. The matrices 

for the different samples were concatenated into a single matrix using the cellranger aggr 

command with normalization turned off, so that the raw counts would remain unchanged 

at this point. 

Filtering and normalization 

The filtered matrices produced by cellranger were loaded into scanpy 

(v1.4.4)(Wolf, Angerer and Theis, 2018). Cells were annotated by sample and lineage 

membership. Only cells meeting the following requirements were retained for further 

analysis: (a) a minimum of 10000 and maximum of 80000 transcript counts, (b) a 

maximum of 20% of counts attributed to mitochondrial genes, and (c) a minimum of 3000 

genes detected. Genes detected in fewer than 20 cells were removed. Normalization was 

conducted based on the recommendations from multiple studies that compared several 

normalization techniques against each other (Büttner et al., 2019; Luecken and Theis, 

2019; Vieth et al., 2019). In brief, three steps were performed: (a) preliminary clustering 

of cells by constructing a nearest network graph and using scanpy’s implementation of 

Leiden community detection (Traag, Waltman and van Eck, 2019), (b) calculating size 

factors using the R package scran (L. Lun, Bach and Marioni, 2016), and (c) dividing 
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counts by the respective size factor assigned to each cell. Normalized counts were then 

transformed by adding a pseudocount of 1 and taking the natural log. 

Regressing out cell cycle expression signatures 

Using a list of genes known to be associated with different cell cycle phases (Tirosh et al., 

2019) , cells were assigned S-phase and G2M-phase scores. The difference between the 

G2M and S phase scores were regressed out using scanpy’s regress_out function. 

Quantification and statistical analysis 

Machine learning of cell phenotypes 

The machine learning classifier of sensitive and resistant cell phenotypes was built 

from the normalized, pre-processed single cell gene expression matrix with lineage 

identities from the pre-treatment time point only. For the cells in the pre-treatment sample, 

the lineage abundance at the pre-treatment time point (proportion of cells in each lineage) 

was calculated and compared to the lineage abundance at the combined post-treatment time 

points. If the lineage was not observed in the post-treatment time points, the lineage 

abundance post-treatment was assigned a zero. The change in lineage abundance (% post -

% pre) was found for each lineage in the pre-treatment time point (See Fig. 3A). Based on 

this change in lineage abundance distribution, the pronounced tails of the distribution were 

used for classification. Cells whose lineage abundance change was positive, i.e. the lineage 

abundance increased post-treatment, were labeled as resistant in the pre-treatment time 

point. Cells whose lineage abundance change decreased by more than 5% were labeled as 

sensitive in the pre-treatment time point. This resulted in 815 cells and their corresponding 

20,645 normalized gene expression levels being used to form the training set gene-cell 
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matrix containing a cell’s gene expression vector and corresponding identity (with a 0 being 

sensitive and a 1 being resistant). This gene-cell matrix was then used to build a classifier 

capable of predicting the identity of new cells based on an individual gene expression 

vector.  

 A principal component classifier was built using the methods for eigendigit 

classification proposed in (Tunio et al., 2018) for performing face recognition. In short, we 

perform principal component analysis of the gene-cell matrix from the labeled sensitive 

and resistant cells only. Each labeled cell’s gene expression vector is projected into 

principal component space, made up of the gene loadings of each of the 20,645 genes and 

the optimal number of principal components. To classify new cells based on their gene 

expression and corresponding projection into PC space, the k closest cells to the new cell 

in the labeled class are found using a Euclidian distance metric. If the new cell’s k 

neighbors give the cell a probability of being resistant of greater than a certain threshold, 

than that cell is classified as resistant. If it is less than the cut-off threshold, it is classified 

as sensitive. This process is repeated for all unclassified cells from the remaining pre-

treatment time points and all of the post-treatment time points. All calculations of principle 

component coordinates and knn-probabilities were found using python’s scanpy package. 

The number of components, neighbors, and threshold probability were optimized via 

coordinate optimization described below.  

PCA classifier hyperparameter optimization 

 Using the labeled sensitive and resistant cells from the pre-treatment time point, 5-

fold CV was used to split the cells into evenly class-balanced groups of training and testing 
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data sets. Coordinate optimization was then used to iteratively find the optimal number of 

both nearest neighbors (k) and number of principal components (n) for correctly identifying 

the class of each cell. Coordinate optimization works by essentially iteratively optimizing 

the two variables of interest, here k and n, until they no longer change values. In this case, 

we first set the number of principal components to a single value and iterated through a 

range of nearest neighbors to find the number which gave the highest mean AUC (area 

under the curve) over all 5 folds of cross validation (Figure. 4.8A). Once the optimal 

number of neighbors was found for that number of principal components, the number of 

neighbors was set to that value and the optimal number of principal components was varied 

over a range of values, and again the highest mean AUC over all 5 folds of cross validation 

was found (Figure 4.8B). Then we set the number of neighbors to this value and repeated 

the search for the optimal number of principal components. This process was repeated until 

the optimal number of neighbors and number of principal components no longer changed 

with each iteration. Using the optimal hyperparameters, we projected all of the labeled cells 

into the full classifier model and found the ROC curve for different probability thresholds 

for classifying cells as sensitive or resistant. While many appeared to be reasonable, we 

chose a threshold value of P(resistant)= 0.2 as our cut-off for calling a cell resistant, as this 

generated a realistic proportion of cells in each class at the pre-treatment time point.  

Model of drug resistance dynamics 

 The mathematical model of drug-induced resistance, in which treatment exposure 

directly induced phenotypic transitions into the resistant cell state, was introduced in 

(Greene, Gevertz and Sontag, 2019). Their original model described sensitive cells (S) and 
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resistant cells (R) independently growing according to logistic growth and independently 

dying due to drug treatment (u(t)) via a log-kill hypothesis. The model includes an explicit 

role for the transition of sensitive cells into resistant cells via a rate of drug-induced 

resistance (a) which is modeled as a linear function of treatment u(t). Additionally, their 

full model included additional terms of spontaneous, treatment-independent resistance (e) 

proportional to the number of sensitive cells present, as well as a resensitization term (g) 

describing treatment-independent transition from the resistant to the sensitive cell state.  

𝜕𝑆
𝜕𝑡 = 𝑟¶𝑆 ·1 −

𝑆 + 𝑅
𝐾 º − Ee+ 𝛼𝑢(𝑡)F𝑆 − 𝑑"𝑢(𝑡)𝑆 + g𝑅	 

𝜕𝑅
𝜕𝑡 = 𝑟½𝑅 ·1 −

𝑆 + 𝑅
𝐾 º + (e+ 𝛼𝑢(𝑡))𝑆 − 𝑑½𝑢(𝑡)𝑅 − g𝑅			 

In order to have the best possible chance of identifying these model parameters from data, 

we simplified the original model. We assume that the treatment-independent transition into 

the resistant state (e) and the resensitization (g) are negligible, yielding the following 

system of equations. 

𝜕𝑆
𝜕𝑡 = 𝑟¶𝑆 ·1 −

𝑆 + 𝑅
𝐾 º − 𝛼𝑢(𝑡)𝑆 − 𝑑"𝑢(𝑡)𝑆	 

𝜕𝑅
𝜕𝑡 = 𝑟½𝑅 ·1 −

𝑆 + 𝑅
𝐾 º + 𝛼𝑢(𝑡)𝑆 − 𝑑½𝑢(𝑡)𝑅	 

Where rS and rR are the sensitive and resistant subpopulation growth rates and dS and dR 

are the sensitive and resistant subpopulation death rates, assumed to be linearly 

proportional to the effective dose (u(t)). We assume that the sensitive cells grow faster than 

the resistant cells so that rs>rr , as is consistent with the mechanism of action of cytotoxic 
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therapies targeting rapidly proliferating cells (Anderson et al., 2006; Greene, Gevertz and 

Sontag, 2019). We assume dS>dR as sensitive cells should die more quickly in response to 

drug than resistant cells, by definition. We modeled the effect of the pulse-treatments as 

single pulses of u(t) whose maximum is given by the concentration of doxorubicin and 

whose effectiveness in time decays exponentially. 

𝑢(𝑡) = 𝑘4𝐶?}�%𝑒��( 

The constants k1 and k2 were chosen so that u(t) is scaled between 0 and 5 and so that the 

effective dose decays over a time scale consistent with experimental observations of 

doxorubicin fluorescent dynamics in vitro (McKenna et al., 2017; Matthew T. McKenna, 

Weis, Quaranta, et al., 2018). Numerical simulations of the forward model for a given 

treatment regimen were implemented in MATLAB using the backward Euler method. 

 To evaluate and compare the effect of treatment regimens on the cell population, 

we utilized an unbiased time-to-event metric proposed for use in evaluating treatment 

benefit in clinical trials (Johnson et al., 2019), (there called TTB120 time to reach 1.2*N0), 

and here which we call critical time or tcrit, defined as the time to reach 2*N0. The longer 

the tcrit, the longer the “tumor burden” is held below this threshold, and therefore the more 

effective the treatment regimen. This critical time can be simulated for a given u(t) in our 

model and can also be measured experimentally for most doses administered. We therefore 

use this output, as well as the phenotypic composition at tcrit (fs(t=tcrit)), as outputs for 

performing sensitivity analysis to assess the effect of parameters on the observed drug 

response.  

Sensitivity analysis of model parameters 
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As part of the model development process, we performed a sensitivity analysis to 

assess the effect of individual model parameters on the model output. Although there are a 

number of choices to use for model outputs, we chose to capture the broad drug response 

of the population using the critical time (tcrit), and the phenotypic composition f(t=tcrit) at 

that time, as we expect these are two outputs we would feasibly observe in an experimental 

setting, as the time to population rebound and the phenotype observable via scRNAseq or 

some other phenotypic characterization. We first performed a global sensitivity analysis on 

the set of parameter bounds that were well outside the parameter ranges of the calibrated 

parameters and their associated errors. The results of the sensitivity analysis will reveal the 

most important parameters of the system, causing the greatest variation in outputs. This 

exercise should identify any model parameters that the model is insensitive to, and 

therefore may present opportunities to simplify the model to capture the same dynamics 

while reducing uncertainty by eliminating the number of free parameters to be fit.  A 

Sobol’s global sensitivity method is applied, which is a method that utilizes the analysis of 

variance (ANOVA) decomposition to define its sensitivity indices (Jarrett et al., 2015).  As 

a global method, random sampling is performed twice over the parameter space of the eight 

parameters (six free, two carrying capacities), with the number of parameters by N 

simulations matrices denoted by X and Z. The bounds of the global sensitivity analysis 

were chosen to be well outside of the 95% confidence intervals around each best fitting 

parameter from the profile likelihood analysis. The total effects are then calculated using 

the following: 
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𝑆�̅ =
1

2𝑁𝜎� ¿ À𝑓E𝑥ÂF − 	𝑓E𝑧Â�, 𝑥Â@�FÄ
�

R621Å6

ÂÆ4

 

Where s2 is the variance of the outputs from the first set of N random samples computed 

from evaluating over all xj in X, and the function evaluations of f(xj) and f(zj, xj-u) are the 

outputs (tcrit or f(t=tcrit)) of the model at parameter values xj compared to the function 

evaluated at parameter values zj for one parameter, and xj for all the remaining parameters. 

The total effects were calculated for each parameter value for outputs of both critical time 

(tcrit) and phenotypic composition (f(t=tcrit)) for four doses ranging from 0 to 500 nM. 

Large sensitivity indices between parameters and model outputs characteristics indicate 

that small changes in the parameter values will result in large variations in the output 

behavior. For this investigation, to ensure the convergences of the indices, a base simulation 

size of N=5000 is chosen, resulting in (5000 x 2 x 4 doses x 2 outputs x 8 

parameters=640,000) simulations to generate the indices. For this study, only the total 

effects of the model outputs of tcrit and f(t=tcrit) are reported. Specifically, the critical time 

and phenotypic composition at critical time is recorded for each random simulation and 

each dose, and per the Sobol method, the total effects indices derived from the variances 

of these outputs is calculated, which account for variations in individual parameters as well 

as additional effects resulting from the combined variation of parameters. A sensitivity cut-

off of 0.05 is used, indicating parameters that cause less than 5% of the total variation of 

that model output.  
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 To perform a local sensitivity analysis, we varied each parameter independently 

from a single parameter set chosen from the set of Pareto optimal sets. To perturb each 

parameter, we chose a high parameter value of two times its optimal value, and a low 

parameter value of half its optimal value. We used these high and low parameter values, 

holding all other parameters constant, and ran the forward model and recorded the response 

over a range of doxorubicin doses from 0-500 nM, for both the effect in critical time (tcrit) 

and phenotypic composition at critical time (f(t=tcrit)). For each independent parameter 

perturbation, we computed a high and low sensitivity score for the the ith parameter, for 

the two model outputs (tcrit or f(t=tcrit)) as: 

𝑆#	5 = ¿ À𝑓ÂE𝑥HI(F − 𝑓ÂE𝑥~#%~FÄ
�

$7Ç6N6

ÂÆ4

 

𝑆#	@ = ¿ À𝑓ÂE𝑥HI(F − 𝑓ÂE𝑥~#%~FÄ
�

$7Ç6N6

ÂÆ4

 

Which is the sum-squared difference between the output values (tcrit or f(t=tcrit)) for each 

jth dose in the range of doses, for both the high and low parameter sets, for each ith 

parameter.  The sum of the high and low sensitivity scores for each parameter were than 

ranked for the two outputs of tcrit and (f(t=tcrit)). This analysis reveals the most important 

parameter in driving changes in output behavior of the model locally around the best fitting 

parameters.  

Model fitting with multiple measurement sources  
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To perform model fitting, we used two sources of measurement data: cell number 

in time (N(t)) in response to the pulsed doxorubicin treatments, and estimates of the 

phenotypic composition, f(t), at three time points total (before and two post-treatment). 

The data were collected in two separate experimental settings, with two different carrying 

capacities, which we refer to as KN and Kf. The longitudinal cell number data was recorded 

in 96 well plates, resulting in a different carrying capacity than the lineage-traced single 

cell RNA sequencing experiment in which the population was expanded out to a 15 cm 

dish due to the need for large cell numbers for running on the 10x Genomics system. The 

carrying capacity of the longitudinal data, KN, was found by fitting the untreated control to 

a logistic growth model and allowing both the effective growth rate of the total population 

(geff) and KN to be fit to the data (See Figure 4S.11).  

𝜕𝑁
𝜕𝑡 = 𝑔'MM𝑁 ·1 −

𝑁
𝐾R
º 

We set this carrying capacity in the model going forward for fitting the longitudinal data. 

For the carrying capacity of the single cell RNA sequencing experiment, Kf, we used 

Thermo-Fisher published “Useful Numbers for Cell Culture” as an estimate(Thermo Fisher 

Scientific, no date), where the manufacturer cites the number of cells at confluency of 20 

million cells. Going forward, we fit the remaining 6 parameters of q=[f0, rS, rS/rR ratio,a, 

dS, dR/dS ratio] where these represent: the initial fraction of sensitive cells prior to 

treatment, the sensitive cell growth rate, the ratio of the resistant to sensitive cell growth 

rate, the rate of drug-induced resistance, the sensitive cell death rate, the ratio of resistant 

to sensitive cell death rates, respectively. All six parameters were found to be globally 
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sensitive in one or more of the treatment conditions when looking at either tcrit or f(t=tcrit), 

and so we decided it was reasonable to try to fit them all from the observed data. We note 

rS/rR ratio and dS/dR ratio are used for ease of parameter estimation. Since we assumed that 

rr<rs and dr<ds, we can search the ratio, rS/rR ratio = rR/rS and dS/dR ratio = dR/dS, between 

0 and 1 when performing parameter estimation. 

 To estimate the model parameters q, we used both measurement sources N(t) and 

f(t) and a regularization term, l, which is allowed to vary between 0 and 1 to reflect varying 

degrees of confidence in the two measurements sources. The data were fitted using a 

weighted-sum-of-squares-residual function described below: 

 

 

For the N(t) data, the uncertainty in the data (s2N) at each time point was quantified using 

the standard deviation of the cell number over the six replicate wells. For the uncertainty 

in the f(t) estimates, we compute the Bernoulli sample variance of  

𝜎È� =
𝜙(1 − 𝜙)

𝑛  

where n is the number of Bernoulli samples (which here is the number of cells in the data 

set) at each of the three time points. However, this leads to an underestimate in the 

uncertainty in the f(t) estimates, which depend significantly on where the threshold is 

chosen. For this reason, we added an uncertainty term of technical noise stech=0.01 to this 

estimate. In reality, the magnitude of the uncertainty in the f(t) is not necessarily known, 

J (θ ) = λ
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and the introduction of the regularization term, l, in practice allows us to vary the degree 

of certainty we have in each measurement source relative to the other.  

The key feature of the introduction of the regularization term l means that we can 

tune the joint objective function to favor minimizing error in N(t) and f(t). In other work 

in the biomedical field using multi-objective function optimizations, the number of data 

points from each measurement source is typically similar, as most data is acquired 

longitudinally (Jarrett, Bloom, et al., 2018).  However, in this case we have significantly 

higher time and dose resolution in our N(t) data (472 data points) compared to our f(t) data 

(3 data points), and thus chose to include normalization terms in our objective function  

(Eq. 3) to account for the different resolutions of the data N(t) and f(t) data. Because the 

data come from distinct measurement sources, the robust quantification of comparative 

uncertainty is not known a priori, as we do not intuitively know whether or not the f(t) 

estimates from scRNA-seq are inherently more or less reliable than the longitudinal 

population size data. We expect this problem to be present for any measurements taken 

from different measurement sources. Thus, we introduce the regularization term  l, which 

enables tuning of the certainty in favor of one measurement source over the other. We 

observe a trade-off in goodness of fit where if we assign a high value to l, very close to 1, 

this puts more confidence on our f(t), and if we assign a lower  value to l, this puts more 

confidence in our N(t) data, and favors minimizing the error in that fit.  

We first perform parameter estimation using weighting normalized only by the 

number of data points, with a value of l = 0.5 which we call l*. We use a multistart search 
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algorithm where we randomly initialize the guess of the initial parameter vector over a 

range of reasonable parameter space for 100 initial parameter sets. We use the fminsearch 

function in MATLAB to search for a set of parameters, q, that minimized J(q) for l=l* 

for each initial guess. We then select the parameter set that produces the lowest objective 

function value, J(q). The results of this optimization are presented in order to show an 

example of a single calibrated parameter set compared to the observed data, as well as to 

test the identifiability of those parameter values, which we call q*. This set of parameter 

values was also used for the local sensitivity analysis.  

In order to allow for flexibility and generalizability of the approach for multimodal 

data sets, we sought to find more than a single optimal parameter set, but a “front” of 

solutions that could take into consideration the potentially varying degrees of confidence 

in the two types of measurement sources. We pulled from the field of economics to 

introduce a concept known as Pareto optimality (Censor, 1977), in which our set of Pareto 

optimum parameter sets reflects solutions in which an improvement in the fit to N(t) leads 

to a trade-off resulting in a worse fit in f(t). To find the Pareto front set of solutions, we 

varied the regularization term l from one which only considers the N(t) data (l=0), to one 

which only considers the weighs the f(t) data (l=1). We generated a vector of 1000 ordered 

l values and iterated through 1000 optimizations at each value of l. We used the concept 

of homotopy continuation (Coetzee and Stonick, 1996) to initialize the guess for each 

optimization as the best fitting parameter set q from the previous iteration. For each 

optimization, we recorded all of the parameter values, the sum-of-squares error in N(t), the 
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sum-of-squares error in f(t) the CCC in N(t), and the CCC in f(t). The results of the initial 

optimization are shown in Supp. Fig. S4.4A, colored by their l value. Next, we filtered the 

parameter sets, by only keeping those whose parameter values led to a CCC in both N(t) 

and f(t) greater than 0.8 (Figure 4.11B). From that filtered parameter set, we then found 

the Pareto boundary by removing any parameter sets where there existed another parameter 

set with a lower error in N(t) and f(t) (Figure 4.11C). The resulting parameter sets formed 

a front, where as we increase the regularization term l, the error in f(t) fit to the data 

decreased as the error in the N(t) data increased. With this set of Pareto front parameter 

sets, we looked at the individual parameter values and examined how they varied as we 

varied l and thus as we improved the accuracy in fit to one data set over another (Figure 

4.12). We could then look at the distribution of parameter values to see which parameter 

values were stable across objective function weightings, and which were most dependent 

on the weight of the data sets relative to one another (Fig 4.6L-Q, Figure 4.13). The 

parameter values chosen all fell well within the 95% CI of q* (Figure 4.13).  

Structural identifiability of model parameters 

We will demonstrate the structural identifiability of the individual model 

parameters using the differential algebra approach. Structural identifiability of a model and 

its parameters from a set of measurable outputs tells us that in theory, given perfect data, it 

is possible to uniquely identify model parameters. Structural identifiability is a pre-

requisite for practical identifiability of model parameters from observed data. We start by 
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presenting the non-dimensionalized model and measurement equations, assuming we can 

measure both N(t) and f(t). 

𝜕𝑆
𝜕𝑡 =

(1 − (𝑆 + 𝑅))𝑆 − 𝛼𝑢(𝑡)𝑆 − 𝑑"𝑢(𝑡)𝑆	 

𝜕𝑅
𝜕𝑡 = 𝑝½(1 − (𝑆 + 𝑅))𝑅 + 𝛼𝑢(𝑡)𝑆 − 𝑑½𝑢(𝑡)𝑅			 

𝑁(𝑡) = 𝑆(𝑡) + 𝑅(𝑡)	 

𝜙(𝑡) =
𝑆(𝑡)

𝑆(𝑡) + 𝑅(𝑡) 

We assume all parameters are non-negative and 0 < 𝑝} < 1 represents the relative growth 

rate of the resistant population with respect to the sensitive population scaled by the 

carrying capacity, and 𝑝} < 1 assumes that resistant cells grow more slowly than sensitive 

cells. In work by Greene et al (Greene, Sanchez-Tapia and Sontag, 2018a), they 

demonstrate that, if they assume dr=0, i.e. resistant cells are not killed by drug, and that the 

initial state of the population is completely comprised of sensitive cells (i.e. N0=S0), than 

the remaining parameters are uniquely identifiable from observations of total cell number 

alone. 

 We would like to extend this analysis by determining the identifiability of a new 

experimental system in which not only can N(t) = S(t) + R(t) be observed, but so also can 

the fraction of cells in each state over time, here denoted as f(t). Under these circumstances, 

we want to test the identifiability of the model which now allows for a net-positive death 

rate due to drug, dR, and can have any composition of initial sensitive and resistant cells. 
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We follow the same arguments outlined in (Greene, Sanchez-Tapia and Sontag, 

2018a), along with the complete explanation of the approach with illustrative examples, 

for the case of multiple outputs from (Sontag, 2017). We start by formulating the dynamical 

system relevant to our in vitro experimental system. Of note, even though we separately 

measure N(t) and f(t) at discrete time points, since this analysis is for structural 

identifiability and assumes perfect, noise-free data, we will transform the observable 

outputs of N(t) and f(t) into: 

𝑆(𝑡) = 𝜙(𝑡)𝑁(𝑡) 

𝑅(𝑡) = (1 − 𝜙(𝑡))𝑁(𝑡) 

Treatment is initiated at time t=0, at which we make no assumptions about the composition 

of the population such that S(0) = S0, R(0) = R0. Here 0<S0+R0<1. We note this is due to 

the non-dimensionalization in which we now track the proportion of confluent cells i.e. 

𝑆(𝑡) = ¶Ê(()
[

 and	𝑅(𝑡) = ½Ê(()
[

 (see (Greene, Sanchez-Tapia and Sontag, 2018a)) for 

additional details. We can now formulate our system in input/output form as: 

𝑥̇(𝑡) = 𝑓E𝑥(𝑡)F + 𝑢(𝑡)𝑔E𝑥(𝑡)F 

𝑥(0) = 𝑥U 

Where f and g are: 

𝑓(𝑥) = Ì
(1 − (𝑥4 + 𝑥�))𝑥4
𝑝}E1 − (𝑥4 + 𝑥�)F𝑥�

Í		 

 

𝑔(𝑥) = Ì
−(𝛼 + 𝑑")𝑥4
𝛼𝑥4 − 𝑑}𝑥�

Í		 
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and x(t) = (S(t), R(t)). As is standard in control theory, the output is denoted by the variable 

y which in this work corresponds to S(t) and R(t) obtained from the transformations of the 

measured variables N(t) and f(t)  

𝑦4(𝑡) = ℎ4E𝑥(𝑡)F = 𝑥4(𝑡) 

𝑦�(𝑡) = ℎ�E𝑥(𝑡)F = 𝑥�(𝑡) 

A system in this form is said to be uniquely structurally identifiable if the map (𝑝, 𝑢(𝑡)) →

(	𝑥(𝑡, 𝑝), 𝑢(𝑡)) is injective (Brouwer et al., 2017; Sontag, 2017; Eisenberg, 2019), where 

p is the vector of parameters to be identified. In this instance p = (S0, R0, ds, dr, a, pr), the 

initial states and the parameters. Local identifiability and non-identifiability correspond to 

the map being finite-to-one and infinite-to-one, respectively. Our objective is then to 

demonstrate unique structural identifiability for model system and hence recover all 

parameter values p from the assumption of perfect, noise-free data. 

To analyze identifiability, we utilize results appearing in (Greene, Sanchez-Tapia 

and Sontag, 2018a) and (Sontag, 2017), where a differential-geometric perspective is used. 

For the structural identifiability, we hypothesize that we have perfect (hence noise-free) 

input-output data is available of the form of y1 and y2 and its derivatives on any interval of 

time. We then, for example, make measurements of: 

𝑦4(0) = ℎ4(𝑥4(0)) 

𝑦4̇(0) =
𝜕
𝜕𝑡Ð(ÆU

ℎ4(𝑥4(𝑡)) 

𝑦�(0) = ℎ�(𝑥�(0)) 
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𝑦�̇(0) =
𝜕
𝜕𝑡Ð(ÆU

ℎ�(𝑥�(𝑡)) 

We can relate their values to the unknown parameter values p. If there exists inputs u(t) 

such that the above system of equations may be solved for p, the system is identifiable. The 

right-hand sides of the above the equation for x(t) may be computed in terms of the Lie 

derivatives of the vector fields f and g. The Lie differentiation LxH of a function H by a 

vector field X is given by: 

𝐿;𝐻(𝑥) = ∇𝐻(𝑥) ∙ 𝑋(𝑥) 

Iterated Lie derivatives are well-defined, and should be interpreted as the function 

composition, so that for example 𝐿C𝐿;𝐻(𝑥) = LÖ(𝐿;𝐻) and 𝐿;�𝐻(𝑥) = 𝐿;(𝐿;𝐻). 

 Defining observable quantities at the zero-time derivatives of the generalized 

output y = h(x): 

𝑌(𝑥U, 𝑈) =
𝜕�

𝜕𝑡�Ù
(ÆU

ℎ(𝑥(𝑡)) 

Where 𝑈 ∈ 𝑅� is the value of the control u(t) and its derivatives evaluated at 𝑡 = 0:	𝑈 =

(𝑢(0), 𝑢Ê(0), …𝑢�@4(0)). The initial conditions x0 appear due to evaluation at t=0. The 

observation space is then defined as the span of the 𝑌(𝑥U, 𝑈) elements: 

𝐹4 = 𝑠𝑝𝑎𝑛½{𝑌(𝑥U|𝑈) ∈ 𝑅�, 𝑘 ≥ 0} 

We also defined the span of iterated Lie derivatives with respect to the output vector fields 

f(x) and g(x): 

𝐹�:= 𝑠𝑝𝑎𝑛½{𝐿#4, … 𝐿#�ℎÂ(𝑥U)|(𝑖4, … 𝑖�)Î{𝑔, 𝑓}�, 𝑘	³	0, 𝑗Î{1,2}} 
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As is outlined in (Sontag, 2017), (Wang and Sontag, 1989) proved that F1=F2, so that the 

iterated Lie derivatives F2 may be considered as the set of “elementary observables”. 

Hence, identifiability may be formulated in terms of the reconstruction of parameters p 

from elements in F2. Parameters p are then identifiable if the map 

𝑝 → {𝐿#4, … 𝐿#�ℎÂ(𝑥U)|(𝑖4 … 𝑖�) ∈ {𝑔, 𝑓}�, 𝑘 ≥ 0, 𝑗	𝑗Î{1,2}} 

Is one-to-one. For the remainder of this analysis, we investigate the mapping defined here, 

because if one can reconstruct the values of p from the elementary observables (evaluated 

at the initial state), we can uniquely identify the parameters. This enables us to find the Lie 

derivatives for the two outputs h1(x) and h2(x), which will be found in terms of the 

parameters p and x1 and x2. Then we can recall the evaluation at t=0 given by x0 = (S0, R0), 

and our ability to observe these at t=0 allows us to set x1 = S0 and x2 = R0 and isolate the 

parameter p recursively from the observables and the Lie derivatives. 

 Using the input-output system written in terms of f and g we can write the following 

Lie derivatives: 

𝐿Mℎ4 = (1 − x4 − x�)x4 

𝐿Mℎ� = 𝑝}(1 − x4 − x�)x� 

𝐿%ℎ4 = (α + då)x4 

𝐿%ℎ� = 𝛼𝑥4 − 𝑑}𝑥� 

𝐿M𝐿%ℎ� = 𝛼𝑥4(1 − 𝑥4 − 𝑥�) − 𝑑}𝑝}𝑥�(1 − 𝑥4 − 𝑥�) 

 

Recursively solving using x0 = (S0, R0) to find the parameters p: 
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𝑆U = ℎ4(𝑥U) 

𝑅U = ℎ�(𝑥U) 

𝑝} =
𝐿Mℎ�

𝑅U(1 − 𝑆U − 𝑅U)
 

 

𝑑} =
1

𝑅U(1 − 𝑝})
Ì

𝐿M𝐿%ℎ�
1 − 𝑆U − 𝑅U

− 𝐿%ℎ�Í 

𝛼 =
𝐿%ℎ� + 𝑑}𝑅U

𝑆U
 

𝑑" =
𝐿%ℎ4
𝑆U

− 𝛼 

 

Since F1 = F2, all of the above Lie derivatives are observable via appropriate treatment 

protocols. Thus by incorporating knowledge of f(t), all parameters in system 1 are 

structurally identifiable. This represents an improvement over the identifiability with N(t) 

alone as a measurable output and allows us to introduce a non-zero dR parameter, which 

we have reason to believe based on experimental evidence, is the more biologically 

relevant scenario.  

RESULTS 
Utilizing a Model of Sensitive and Resistant Subpopulations to Describe and 

Optimize Drug Response Dynamics 

To describe and predict the dynamics of cancer cells in response to treatment, we use a 

mechanistic model that describes sensitive and resistant cell subpopulations growing, 
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dying, and transitioning from the sensitive, S,  to resistant, R, state as a direct result of 

treatment (Greene, Gevertz and Sontag, 2019).	

𝜕𝑆
𝜕𝑡 = 𝑟¶𝑆 ·1 −

𝑆 + 𝑅
𝐾 º − 𝛼𝑢(𝑡)𝑆 − 𝑑¶𝑢(𝑡)𝑆	 

 

𝜕𝑅
𝜕𝑡 = 𝑟½𝑅 ·1 −

𝑆 + 𝑅
𝐾 º + 𝛼𝑢(𝑡)𝑆 − 𝑑½𝑢(𝑡)𝑅	 

(Eq. 1) 

In this model (Fig 4.1A), sensitive and resistant cells grow via a logistic growth hypothesis 

at their own intrinsic growth rates (rS and rR) and a joint carrying capacity (K), which will 

either take the value of KN for the carrying capacity of the cells in the longitudinal treatment 

experiment or Kf for the carrying capacity of the cells in the scRNA-seq experiment. 

Sensitive and resistant cells are killed by the drug at a rate of dS and dR respectively, that is 

proportional to the number of cells in each subpopulation and the effective dose, u(t), 

following the log-kill hypothesis. By definition, we set dS > dR such that sensitive cells will 

be more susceptible to death due to treatment than resistant cells. Treatment drives cells 

from the sensitive subpopulation into the resistant subpopulation at a rate a, which is 

linearly proportional to the number of sensitive cells present and u(t). 
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Fig 4.1. Mathematical Model of Treatment-induced Resistance and its Implications. 
A. Sketch of the model structure (Eq 1). The model describes sensitive and resistant 
subpopulations growing exponentially at independent growth rates. In response to 
treatment, sensitive and resistant cells are killed by the drug. The exposure to drug drives 
sensitive cells into the resistant phenotype. B. Input effective dose dynamics (u(t)) for 
pulse treatment of doxorubicin chemotherapeutic, where exponential decay is assumed 
(Eq. 2). C. Example of model predicted tumor dynamics under repeated pulse treatments. 
Sensitive (green) and resistant (red) subpopulation dynamics are predicted by the model. 
D. Example model predicted total cell number in time in response to a single pulse 
treatment. The efficacy of a treatment regimen is quantified by the time to reach 2*N0, 

which we call tcrit with a longer tcrit indicating a more effective treatment. Experimentally, 
we can only measure total cell number longitudinally. E. Fraction of cells that are 
sensitive (green) and resistant (red) in the population over time in response to a single 
pulse treatment. The phenotypic composition is measured using single cell 
transcriptomics at discrete time points. F. Pulsed (blue) and constant (black) effective 
dosing regimens (u(t)). The constant dose is equal to the average of the pulsed dose over 
time for ease of comparison (see text for details). G. Example trajectory of total cell 
number in time for a constant dose (black) and a pulsed dose (blue) for the case where 
there is no drug-induced resistance (a = 0), indicating that optimal tumor control (longer 
critical time) is reached for the constant dose (black) compared to the pulsed dose (blue). 
H. Example trajectory of total cell number in time for a constant dose (black) and a 
pulsed dose (blue) for the case where the drug does induce resistance (a > 0), indicating 
that in this case the optimal tumor control is reached by applying pulse treatments  
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To investigate the effect of different treatment regimens, we make a simple 

assumption about the pharmacokinetics of pulsed drug treatments, assuming exponential 

decay of the effective dose, u(t), of the drug, as has been shown by others in greater detail 

(McKenna et al., 2017; Matthew T. McKenna, Weis, Quaranta, et al., 2018).  

𝑢(𝑡) = 𝑘4𝐶?}�%𝑒��(, 

(Eq. 2) 

where Cdrug is the concentration of doxorubicin in nM, k1 is a scaling factor used to non-

dimensionalize the effective dose, and k2 is an estimated rate of decay of the effect of 

doxorubicin pulse-treatment on breast cancer cells. The effective dose decays over a time 

scale consistent with experimental measurements of doxorubicin fluorescence dynamics in 

vitro (McKenna et al., 2017; Matthew T. McKenna, Weis, Quaranta, et al., 2018). An 

example of the model-predicted treatment response dynamics (Fig 4.1C) for a pulse 

treatment given once every week (Fig 4.1B) demonstrates the response and relapse 

trajectory in cell number in time (N(t) in blue), along with the underlying phenotypic 

dynamics of S(t) and R(t). The result of the treatment is that cells in the sensitive population 

either die or transition to the resistant state, leading to an increase in R(t) over time even as 

S(t) decays and rebounds. For numerical simulations of Eq. 1, we refer to Methods: Model 

of drug resistance dynamics. 

While we can model the dynamics of heterogeneous subpopulations in terms of 

number of cells in each phenotypic state, most experimental or clinical workflows only 

allow for measurement of the total cell number (N(t)) over time (Fig 4.1D), as single 
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markers of resistance cannot usually be tracked throughout treatment. One unbiased metric 

to evaluate the response of cell populations to different drug treatments is to measure the 

time to return to some multiple of the initial cell number (Johnson et al., 2019). We define 

the critical time (tcrit) as the time it takes for the total cell number to reach double the initial 

cell number at the onset of treatment (Fig 4.1D). This metric has been shown to be 

consistent with “patient benefit” in comparing treatment protocols in pharmacology 

(Johnson et al., 2019). We employ it here as a single endpoint to evaluate the impact of a 

treatment on a cell population and to evaluate our model’s predictive capabilities as 

compared to experimentally measured values of critical time. For a given treatment, while 

we may not feasibly be able to monitor resistant and sensitive cell number longitudinally, 

we can estimate the phenotypic composition, which we define here by the sensitive cell 

fraction, fS(t) (or simply f(t)), which we will use as a shorthand in the remainder of the 

manuscript), throughout treatment response from our model (Fig 4.1E). Model outputs of 

N(t) and f(t) can be used directly to compare to measurements of cell number in time and 

phenotypic composition in time following a drug treatment. A full description of the 

parameters in the model system are described in Table 4.1.  
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Parameter Description Units Determination 

r
S
, r

R
 Growth rate of sensitive and resistant cell 

subpopulations  
hour -1 Fit from N(t) & 

𝜙(t) data 
α Drug-induced rate of transition from sensitive to 

resistant state 
nM-1 x hour -1 Fit from N(t) & 

𝜙(t) data 
d

S
, d

R
 Death rate of sensitive and resistant cell populations 

due to drug, d
R
<d

S  
nM-1 x hour -1 Fit from N(t) & 

𝜙(t) data 

𝜙0 Initial proportion of sensitive cells number of cells Fit from N(t) & 
𝜙(t) data 

K
N
  Carrying capacity for the longitudinal treatment 

experiment performed in a 96 well plate to measure 
N(t) 

number of cells Fit from N(t) 
untreated 
control 

K
𝜙
 Carrying capacity of the scRNAseq experiment 

performed in a 10 cm dish to measure 𝜙(t) 
number of cells Fixed 

tcrit Time for the number of cells to return to two times the 
initial cell number (N0) 

hours Data, fit, and 
predicted 

k
1
 Scaling factor to non-dimensionalize concentration in 

nM of doxorubicin 
nM-1  Fixed 

k
2
 Estimated rate of decay of effect of doxorubicin after 

pulse-treatment 
hour -1 Fixed 

Table 4.1. Description of model parameters to describe resistance dynamics.  Descriptions of 
the parameters either from measured data (Data), fit of the model to the N(t) (Fit from N(t)) or 𝜙(t) 
(Fit from 𝜙(t)), the model assumptions (Fixed), or predicted from the parameter estimation from 
the fitted model (Predicted).  We fit for six free parameters in the calibration scheme, as listed by 
the first four rows of the table.  

 

Previous work has demonstrated the theoretical implications of treatment-induced 

resistance on identifying optimal treatment regimens (Greene, Gevertz and Sontag, 2019). 

Here we also found that for a resistance-preserving therapy (i.e., a = 0), a constant dosing 

regimen optimizes tumor control (black line Fig 4.1F), leading to a longer critical time than 

the pulsed treatment (Fig 4.1G), whereas for a resistance-inducing therapy (i.e., a > 0) a 

pulsed treatment regimen (blue line Fig 4.1F) optimizes tumor control (Fig 4.1H). To 
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compare the effects of a constant versus pulsed dose, we simulated the effect of a constant 

dose (black line Fig 4.1F) equal to the mean value over the time interval simulated of the 

pulsed dose (blue line Fig 4.1F) in an attempt to reflect realistic toxicity constraints that 

would be present in a clinical setting when developing treatment regimens. This analysis, 

as well as further work to utilize this modeling framework to develop optimal treatment 

protocols (Greene, Sanchez-Tapia and Sontag, 2018a) indicates that identifying these 

model parameters is essential to implementing more sophisticated treatment strategies in a 

practical clinical setting. While (Greene, Sanchez-Tapia and Sontag, 2018a) show that the 

critical model parameters are theoretically structurally identifiable from population size 

data alone, we seek to demonstrate how this model can be practically identified from in 

vitro data using both longitudinal population size data (N(t)) and snapshot outputs of the 

phenotypic composition (f(t)) at a few time points, enabled by recent advances in lineage 

tracing (Al’Khafaji, Deatherage and Brock, 2018; Al’Khafaji et al., 2019) and scRNA-seq 

technologies. We present this project workflow in the experimental setting as proof-of-

concept of the ability to properly identify key model parameters from multimodal data sets, 

with the hopes that the approach of integrating snapshot with longitudinal data sets will 

eventually be brought to the clinic to develop optimized treatment regimens for existing 

therapeutic agents.  

To demonstrate the feasibility of integrating multimodal data sources into a 

cohesive modeling framework, we employ an experimental in vitro model system of MDA-

MB-231 triple negative breast cancer cells exposed to the chemotherapeutic doxorubicin. 

The combined experimental-computational workflow (Fig 4.2) starts by tagging individual 
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cells with unique barcodes that are integrated into the genome and expressed as sgRNA’s; 

this COLBERT cell barcoding platform has been described previously (Al’Khafaji, 

Deatherage and Brock, 2018). The barcode-labeled cell population is expanded to generate 

the naïve population for these studies (305 unique barcodes represents 305 clonal 

subpopulations).  Cells are then treated with doxorubicin (LD95, 550 nM) for 48 hours and 

allowed to recover; scRNA-seq is performed prior to treatment and from two parallel 

replicates after the population had regrown following the pulse treatment.  

The transcribed barcode sequence is measured with other transcripts in scRNA-seq.  

Clones which significantly increase in abundance after treatment are labeled as resistant 

and those which decrease are labeled as sensitive.  We then map the resistant and sensitive 

functional phenotypes to the transcriptomes of the individual cells they correspond to at 

the pre-treatment time point. A machine learning classifier is built based on the labeled cell 

identities and their transcriptomes, and we can apply this classifier to each of the 

“unknown” cell identities (phenotypes) from the remaining samples. Estimating the binary 

phenotype of each individual cell from a sample taken throughout treatment response, we 

quantify the phenotypic composition (f(t)) at each time point that scRNA-seq was 

performed. This phenotypic composition measurement can then be combined with 

longitudinal population size data from drug treatments at different concentrations, 

compared to corresponding model outputs, and serve to calibrate the mathematical model 

of drug-induced resistance (Figure 4.8). 
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Figure 4.2. Schematic of the workflow for identifying model parameters from data. At t = 0 prior 
to treatment, individual cells are tagged with a unique, heritable, expressed COLBERT barcode. Cells 
are treated with a pulse treatment of doxorubicin and allowed to recover from treatment, at which time 
the barcode abundance is quantified. Lineages whose barcode abundance increased from pre- to post-
treatment are assumed to have been in a phenotypic state at t = 0 that conferred them more resistant to 
drug than cells whose barcodes significantly decreased in abundance after treatment. Samples of the 
population were taken before and from parallel replicates sampled at two different time points after 
treatment for scRNA-seq. The transcriptomes in the pre-treatment samples of the cells tagged with 
resistant lineages are assigned resistant and the cells tagged with sensitive lineages are assigned 
sensitive. Using the gene-cell matrix and labeled class identities of sensitive or resistant from the pre-
treatment time point only, a classifier is built using Principle Component Analysis (PCA) to distinguish 
between sensitive and resistant cells. The classifier is applied to the remainder of transcriptomes of the 
cells, resulting in a prediction for each cell as either sensitive or resistant. These machine learning 
outputs are made actionable as state variables by using them to quantify the proportion of sensitive cells 
(f(t)) at the three time points. This is combined with separate experiments of longitudinal treatment 
response dynamics (N(t)) of the bulk population of the same cell type, and both serve as measured data 
to be compared to model predicted outputs for parameter estimation.  
 
Lineage-traced scRNA-seq enables identification of sensitive and resistant 

phenotypes  

To investigate the dynamic changes in phenotypic composition in response to 

treatment, we sought to characterize gene expression over time at the single-cell level. 
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ScRNA-seq was performed on a barcode-tagged cell population at three time points: 

immediately before treatment and at parallel replicate samples taken at 7 and 10 weeks 

after doxorubicin treatment (see Methods: Drug treatment of barcoded cells for scRNA-

seq and recovery). By quantifying the proportion of cells with each lineage identity before 

and aggregated after treatment, we could identify a functional phenotype associated with 

the pre-treatment transcriptomes. We quantified changes in lineage abundance (percent of 

the post-treatment population minus percent of pre-treatment population) of each lineage 

present in the pre-treatment sample to obtain a distribution of changes in abundance after 

treatment (Fig 4.3A). Cells whose lineage abundance increased by any amount after 

treatment were labeled resistant, and cells whose lineage abundance decreased by more 

than 5% were labeled sensitive (Fig 4.3A). All other cells remained unlabeled. This 

resulted in a training set of 815 labeled cells and their expression levels of 20,645 genes.  
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Figure 4.3 Functional Read-out of Changes in Lineage Abundance Allows Mapping 
of Phenotypes to Transcriptome A. Distribution of changes in lineage abundance from 
pre- to post-treatment indicates separation of lineages whose cells survive and proliferate 
and those that are more likely to have been killed by the drug treatment. B. Cells from the 
extremes of high and low lineage abundance changes (highlighted in green and red in A), 
projected into principal component space display separation along components (cells are 
projected into PC1 and PC2 space for visualization, full PC-space is made up of 500 
principal components, from the initial 20,645 genes detected). C. Example of remaining 
cells from t = 0 projected onto labeled cells in PC space and estimated as sensitive (olive) 
or resistant (pink). This was performed for the remaining two time points as well (t = 7 
weeks and t = 10 weeks) D. Proportion of cells classified as sensitive or resistant at each 
time point is quantified from each samples projection and classification as is displayed in 
C.  
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The cells from the identified lineages in the pre-treatment time point were labeled 

as sensitive or resistant as described above, and the labeled gene-cell matrix was used to 

build a classifier (based on principal component analysis) capable of predicting whether a 

cell is more likely to be in a resistant or sensitive state based on its gene expression 

information alone. See Methods: Machine Learning of Cell Phenotypes for full description 

of building of the classifier. The optimal hyperparameters of the number of nearest 

neighbors and the number of principal components for class separation were determined 

based on 5-fold cross validation and coordinate optimization and were found to be 500 

principal components and 73 nearest neighbors (Figure 4.9). A full description of the 

methods for hyperparameter optimization are outlined in the Methods: Hyperparameter 

Optimization. Labeled cells are projected into the principle component space, as is 

displayed visually using projections into only PC1 and PC2 in Fig 4.3B, for sensitive cells 

(green) and resistant cells (red). To identify the phenotype of new cells that the classifier 

is not trained on, we project each cell into the principle component space of the labeled 

cells. A k-nearest neighbor graph is constructed to identify the class of the 73 nearest 

neighbors in the space, and these are averaged to find the probability of the new cell being 

in the sensitive or resistant state, where cells above a probability threshold are estimated as 

sensitive (olive) and below the threshold are estimated as resistant (pink) (Fig 4.3C). This 

is done for the remaining pre-treatment samples as well as for the cells from the 7 week 

and 10-week time points (Figure 4.10) based on the single cell gene expression vectors 

(transcriptomes) of each individual cell. We use the machine learning output to predict 

each cell as either sensitive or resistant and make these predictions actionable by leveraging 
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them as measurements of state variables, the proportion of sensitive cells over time f(t) 

(Fig 4.3D). This quantity will be used as one measurement source for model calibration 

(Eq. 1) (Figure 4.8A & B) 

Ability to classify cells as treatment sensitive and resistant enables mechanistic 

insight into hallmarks of the resistant phenotype 

Having identified cells as either resistant or sensitive based on a functional read-

out of post-treatment abundance, we can use the class estimates to better understand the 

transcriptional differences between resistant and sensitive cells. Because the cells largely 

overlap in principal component space, we use Uniform Manifold Approximation and 

Projection (UMAPs) as an alternate dimensionality reduction technique for visualization 

only of the scRNAseq data from the three time points (See Methods: Filtering and 

normalization). UMAP projections allow for separation of the three time points (Fig 4.4A), 

and within this projection we can highlight which cells were estimated as sensitive (green) 

and which cells were estimated as resistant (red) (Fig 4.4E). We can see that the resistant 

and sensitive cells separate along the first two principal components from Fig 4.4B, where 

resistant cells accumulate in the upper right quadrant (high in PC1 and PC2) and sensitive 

cells aggregate in the lower left quadrant (low in PC1 and PC2). Although these principal 

components only make up a small proportion of the observed variance in gene expression 

(Figure 4.9D), we see a significant drop off in observed variance after the first few 

components, indicating that the weights of the genes in these first two components can 

likely provide us with some mechanistic insight as to which genes are most highly weighted 

in determining drug-resistance classification. We select a subset of the gene loadings and 
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plot their direction in the first two principal components (Fig 4.4C), along with a heatmap 

of the average expression levels for the sensitive and resistant cells for each time point for 

the top 50 weighted genes in PC1 (Fig 4.4D). The heatmap reveals that the patterns of 

regulation between genes in the sensitive and resistant cell classes are conserved across the 

time points. Examples of the differential expression of NEAT1, UBE2S, and TOP2A are 

shown in Fig 4.4 F, G, and H respectively. Comparing these gene expression maps to the 

UMAP of resistant and sensitive cell classes (Fig 4.4E) we can see that increased 

expression in NEAT1 is associated with resistance, while increased expression in UBE2S 

and TOP2A are associated with the sensitive state. Mechanistically, this corroborates 

previous findings, as NEAT1 has been shown to be associated with resistance in triple 

negative breast cancer (Shin et al., 2019). Although we do not perform detailed molecular 

analysis in this work, the framework presented here to distinguish sensitive and resistant 

cells over time can be used to perform a more detailed mechanistic investigation of 

molecular drivers of resistance, and that is an area of future work. For now, we present the 

results to demonstrate the interpretability of the classifier and its ability to be validated by 

examining the gene expression levels of known markers of resistance in the components 

of the classifier. 
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Figure 4.4. Principal Component Analysis and Differential Gene Expression Analysis 
Provide Molecular Insight into Drug Resistance Interactions A. UMAP projection of 
single cell transcriptomes colored by time point. B. Labeled sensitive and resistant cells 
projected into the space visualized by the first two principal components, PC1 and PC2, 
indicating that resistant cells cluster in the upper right quadrant (high in PC1 and PC2), and 
sensitive cells tend to cluster in the bottom left quadrant (low in PC1 and PC2). C. Gene 
loadings for selected genes plotted in the space of the first two principal components 
illuminates key genes that may be associated with resistance to doxorubicin. D. Heat map 
of the top 50 genes in PC1 comparing the average expression across the sensitive and 
resistant cell groups in the three time points, showing a characteristic pattern between 
sensitive and resistant cells across the three time points. The color bar is scaled within each 
gene (row). E. Single cells colored by sensitive (S) and resistant (R) cell classifier labels 
visualized via UMAP projections indicates drug sensitivity phenotypes cluster together, 
but not exclusively by the apparent UMAP clustering. F. UMAP projections of cells colored 
by expression level of NEAT1 indicates high expression of NEAT1 is associated with 
resistance. G. UMAP projections of cells colored by expression level of UBE2S indicates 
that high expression of NEAT1 is associated with sensitivity. H. UMAP projections of cells 
colored by expression level of TOP2A indicates that high expression of TOP2A is 
associated with sensitivity.  
 

Experimental measurements of population size dynamics in response to varying 

pulse treatments of doxorubicin 
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 In any attempt to model changes in subpopulation frequencies in cancer, bulk 

population dynamics reflecting differential growth rates and drug sensitivities need to be 

taken into account. In pivotal work by (Stumpf et al., 2017) in the field of differentiation, 

the proportion of cells in three well-defined differentiation states was used to calibrate 

mathematical models to describe the mechanism of directed transitions in the 

differentiation process. Over this time scale, it could reasonably be assumed that no 

significant differential growth rates accounted for changes in composition. However, in 

cancer and specifically in this study, we monitor populations over much longer time scales 

and it is necessary to also consider the contribution of differential growth and death rates 

among subpopulations. This requires measurements of both bulk population dynamics and 

subpopulation frequencies over time. In the experimental in vitro setting, quantifying bulk 

population size dynamics is quite feasible for a range of treatment conditions, allowing us 

to observe the differences in response due to various drug concentrations. Cells were 

treated with a 24-hour pulse of one of 10 doxorubicin concentrations (ranging from 0-1000 

nM, n= 6 replicate cell populations for each dose) (Fig 4.5A, 5B) and the cell number 

monitored throughout regrowth by time-lapse microscopy. The mean and 95% confidence 

intervals of cell number in time are shown in Fig 4.5C. For each dose, we measured the 

critical time, tcrit, on this measurement of treatment efficacy (Fig 4.5D). As expected, the 

higher the dose, the longer the population remained below the critical cell number. The cell 

number in time data, N(t), will be used as another measurement source for model 

calibration (Eq.1) (Figure 4.8C&D). 
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Figure 4.5. Longitudinal Treatment Response Dynamics for Pulse Treatments at Ten 
Different Drug Concentrations. A. Schematic of experimental set-up using time-
resolved fluorescence microscopy to measure the number of MDA-MB-231 GFP labeled 
breast cancer cells in response to doxorubicin concentrations ranging from 0-1000 nM 
treated for 24 hours and then allowed to recover in growth media. B. Estimated effective 
dose dynamics (u(t)) of the various pulse-treatments of doxorubicin. C. Number of cells 
in time, colored by drug concentration as in B, from six replicate wells. Error bars 
represent 95% confidence intervals around the mean cell number at each time point. 
Images were converted to cell number estimates every 4 hours. Time of monitoring 
ranged from 1 week (168 hours) for the untreated control to 4 weeks (672 hours) for the 
1000 nM dose. D. Experimental measurements of the tcrit for each doxorubicin treatment, 
legend as in B.  
 

Integrating estimates of phenotypic composition with longitudinal treatment 

response data is necessary for identifiable model calibration 

 To utilize all possible pieces of information available about the treatment response 

of this experimental system, we sought to develop an integrated model calibration scheme 
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that is capable of integrating information from multimodal data sources. Here, we apply 

the concept of pareto optimality (Censor, 1977) to reflect the trade-off between goodness-

of-fit in each of the two data sources: 1) from longitudinal population data, N(t), sampled 

at a high temporal resolution and for a number of doses, and 2) machine learning outputs 

that estimate the phenotypic composition f(t) at three distinct time points before and after 

treatment. For the following dual-objective function, we use a regularization term l, which 

can vary from 0 to 1 to reflect our varying confidence in the data from each of the 

measurement sources. Here we use weighted, non-linear, least squares as the simplest 

possible calibration method 

, (Eq. 3) 

where nf(t) is the number of f(t) time points, fj is the experimentally estimated f at time 

point j, f(q,uj) is the model predicted f for a given effective dose u at time j, s2fj is the 

variance in the measurement of f at time j, nN(t) is the number of total N(t) time points, ndoses 

is the number of different doses applied, nN(t)k is the number of time points in the kth dose, 

Ni,k is the measured number of cells at the ith time point for the kth dose, N(q,u) is the model 

predicted number of cells at time i for the kth effective dose, and s2N is the variance in the 

measurement of N at time i for the kth dose. The resulting objective function J(q), 

minimizes the sum of the squared error in the f(t) and N(t) data compared to the model 

predicted f(t) and N(t). The errors are weighted by the experimentally observed uncertainty 

in those estimates and normalized by the number of f(t) and N(t) data points. The results 

J (θ ) = λ
nφ (t )

(φ j
! −φi(θ ,uj ))

2

σφ j
2

j=1

nφ ( t )

∑ + (1− λ)
nN (t )

(Ni,k
! − Ni(θ ,ui,k ))

2

σ Ni ,k

2
i=1

nN ( t ) k

∑
k=1

ndoses

∑



 186 

of this parameter estimation, in terms of weighted error in N(t) and f(t) for varying degrees 

of confidence in each output are shown as the Pareto front set of solutions in Fig 4.6A. See 

Methods: Model fitting with multiple measurement sources for a description of how this 

front was found (Figure 4.11). The front is centered around l*=0.5, the regularization term 

value that equally weights the measurement sources based on the number of data points 

available from each measurement source. The best fitting parameter set resulting from 

using the objective function with a l=l* is denoted as q* (red dot in Fig 4.6A) and will be 

used to evaluate goodness of fit and prediction accuracy going forward.  
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Figure 4.6. continued on next page, Integrated model calibration to incorporate both 
measurement sources reveals identifiability of model parameters. A. The parameter 
sets, θ, that fall on the “Pareto front”, reflecting a tradeoff between goodness of fit in N(t) 
and f(t). Each dot represents a parameter set, θ, acquired by varying the regularization 
term, 𝛌, from 0 to 1 and then filtering solutions (Figure 4S.4) to within a reasonable 
accuracy in N(t) and f(t). The red dot parameter set represents when 𝛌= 𝛌*= 0.5 in which 
the weighting between the measurements sources is given equal weight and normalized 
based on the number of data points in N(t) and f(t) measurements. The Pareto front 
solutions are found by performing multiple optimizations at different values of 𝛌. Lower 
values of 𝛌 (blue) indicate improved fit in N(t) data, whereas higher values of 𝛌 (yellow) 
indicate improved fit of the f(t) data. B. Calibration results for longitudinal N(t) data from 
the four doses (0, 75, 200, and 500 nM) used for calibration for the parameter set θ* 
(represented by the red dot in A) C. Calibration results for phenotypic composition (𝜙(t)) 
data from the same parameter set θ* , yielding an accuracy in 𝜙(t), measured by the 
concordance correlation coefficient (CCC) of 0.93  D. Measured cell number N(t) verses 
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model calibrated cell number, yielding a concordance in N(t) of CCC = 0.93. E. Critical 
time from N(t) data compared to model calibrated critical time for selected parameter set 
(θ*) in red in (A) (CCC= 0.88). F. Profile likelihood curvature around the initial sensitive 
cell fraction (f0) to determine 95% CI on parameter of f0=0.80 [0.74, 0.86]. G. Profile 
likelihood curvature around sensitive cell growth rate (rS) reveals 95% CI of rS = 0.026 [ 
0.016, 0.033]. H. Profile likelihood curvature around the ratio of the resistant growth rate 
to the sensitive cell growth rate reveals a CI of rR/rS ratio= 0.056 [0.013, 0.12]. I. Profile 
likelihood around the drug-induced resistance rate, a of a = 0.19 [0.13, 0.30]. J. Profile 
likelihood around the death rate due to drug of the sensitive cell death rate with CI dS = 
0.048 [0.0092, 0.90]. K. Profile likelihood curvature of the ratio of the death rate due to 
drug of the resistant versus sensitive cell fraction with CI dR/dR ratio = 0.19 [-0.014, 2.1]. 
L. Distribution of Pareto front accepted parameter 𝜙0. M. Distribution of Pareto front 
accepted parameter rS. N. Distribution of Pareto front accepted parameter resistant to 
sensitive growth rate. O. Distribution of Pareto front accepted parameter a. P. Distribution 
of Pareto front accepted parameter dS. Q. Distribution of Pareto front accepted parameter 
resistant to sensitive cell death rate. 
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We use this parameter set, q*, (red dot in Fig 4.6A, red dots in Fig 4.6L-Q) to 

demonstrate an example of the N(t) data fit to the model (Fig 4.6B) and the f(t) data fit to 

the model (Fig 4.6C) with a CCC in f(t) = 0.93. We demonstrate that the model calibration 

is fairly accurate at calibrating the N(t) data (Fig 4.6D) with a CCC = 0.93, and is able to 

capture broader changes over the range of doses by properly matching the critical time 

(tcrit) as a function of dose (Fig 4.6E) for the four doses the model is calibrated on (CCC = 

0.9657). In the model development process, we tested to make sure that each of the 

parameters was sensitive to the relevant model outputs, in this case the critical time (tcrit) 

and the phenotypic composition at critical time f(t=tcrit), for a range of doxorubicin doses. 

Results from the global sensitivity analysis (See Methods: Sensitivity analysis of model 

parameters) revealed that all parameters are globally sensitive (i.e. contribute to least 5% 

of the overall value) in at least one of the model outputs for at least one of the drug doses 

(Figure 4S.5), except for the carrying capacities (KN and Kf) of the two experimental 

systems. We used this analysis to inform our decision to set the carrying capacities from 

separate experiments (Figure 4.13) and literature (Thermo Fisher Scientific, no date) and 

to try to fit all six remaining unknown parameters.  

A key goal of this work is not only to fit the model to multiple data sources, but to 

demonstrate that the use of the information gained from these dispersed data types is 

critical in enabling the practical identifiability of the six free model parameters in the 

mechanistic model. The ability to ensure that model parameters are identifiable from data 

enables us to have confidence in our interpretation of the values of the model parameters 
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to be used for making predictions and ultimately decisions, and thus is essential for 

eventually translating modeling frameworks like the one presented here to real-world 

settings. A critical first step is to demonstrate the structural identifiability of the system, 

which was shown (See Methods: Structural identifiability of model parameters) under the 

assumption of perfect data. Next, in order to test whether the calibrated parameter set q* is 

practically uniquely identifiable from the available data and the objective function (Eq. 3), 

we utilize the profile likelihood method (Eisenberg, Robertson and Tien, 2013; Brouwer et 

al., 2017; Eisenberg, 2019). We profiled each parameter independently at a range of values 

around its best fitting value, q*i, fitting for all the other parameters, and returning the 

resulting best possible objective function value (J(q)) for the new optimization problem 

(Fig 4.6F-K). Parameters that are easily identifiable will result in a tight curvature around 

the best fitting value, meaning that changing for example the value of the initial sensitive 

cell fraction (f0) leads to a large change in the best possible minimized error. Parameters 

are considered practically identifiable if the curvature of the objective function value 

crosses above the threshold of the 95% c-squared distribution (Raue et al., 2009) (red 

dashed line Fig 4.6F-K). The parameter value at which this threshold is crossed is 

considered the upper and lower bound of the 95% confidence interval in the parameter 

value (green vertical lines Fig 4.6F-K), providing an estimate of uncertainty in the best 

fitting parameter value q*i. The results of this analysis reveal that the six free model 

parameters are uniquely practically identifiable from the available data. The parameter 

relationships that result from profiling each individual parameter can be seen in Figure 
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4.14. In contrast, when the test of practical identifiability was repeated for the case in which 

the calibration was performed on the N(t) data alone (Figure 4.15), and the results revealed 

a number of non-identifiable parameters in practice (Figure 4.16). This analysis 

demonstrated that the incorporation of the snapshot phenotypic composition data was not 

only a useful additional piece of information, but essential to making the model calibration 

and parameter estimates identifiable and ultimately useful.  

 We further investigated the functionality of our Pareto front set of parameter values 

by examining the resulting distribution of parameter values that are accepted into the front 

(Fig 4.6L-Q). The distributions of parameter values tell us about which parameters, such 

as the sensitive cell growth rate, rS (Fig 4.6L), tend to be very stable regardless of the 

weighting, whereas other parameters, such as the degree of drug-induced resistance a (Fig 

4.6O), are more variable. We observed that the individual parameter values tended to vary 

systematically with the goodness of fit in N(t) vs. f(t) (Figure 4.17), however, all of the 

parameters in the distributions shown in Fig 4.6L-Q fall within the 95% CI around q* 

(Figure 4.18). We plot a few examples of the Pareto front solution sets fit to the N(t) and 

f(t) data in Figure 4.19, which demonstrates the relatively subtle differences between the 

fits depending on the weighting of each measurement source.  

 

Model validation using functional isolation of “sensitive” and “resistant” cells 

predicted from classifier 

 Because we rely on the machine learning classifier of cell phenotypes from 

transcriptomic data, we sought to validate our classifier model experimentally to ensure 
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that cells labeled as “resistant” and “sensitive” were exhibiting these expected phenotypes. 

Our mathematical model assumes that sensitive cells proliferate more rapidly than resistant 

cells (i.e. exhibit a higher growth rate) and that resistant cells are capable of improved 

survival in response to doxorubicin treatment. To test these attributes functionally, we used 

the COLBERT barcoding system (Al’Khafaji, Deatherage and Brock, 2018) to identify 

individual lineages from the pre-treatment sample who were labeled as sensitive and 

resistant based on their changes in lineage abundance, and subsequently isolated them 

experimentally from the replicate pre-treatment population using the COLBERT recall 

system (Al’Khafaji, Deatherage and Brock, 2018) (Fig 7A). Once isolated, cells were 

sorted into single cell clones for functional analysis of growth dynamics and drug 

sensitivity. Our results confirmed that the cells from the isolated sensitive lineage grow 

more quickly than the isolated resistant lineage (Fig 4.7B), with overall growth rates of 

gS=0.011 and gR= 0.005 per hour respectively (Figure 4.20). Drug sensitivity was assessed 

by dosing cells at 400 nM and 2.5 µM for 48 hours and immediately quantifying cell 

viability via a live-dead assay. The resistant lineage had higher percent viability at both 

doxorubicin concentrations, with a statistically significant difference in viability at the 

higher dose (Fig 4.7C).  
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Figure 4.7 Combined Model Validation via Lineage Isolation and Prediction of 
Treatment Response. A. Projection of classified sensitive and resistant cells at the pre-
treatment time point into principal component space, with cells from an isolated sensitive 
lineage (AA170) in bright green, and an isolated resistant lineage (AA161) in hot pink B. 
Growth rates of the 12 replicate wells of each isolated lineage reveal that the resistant 
lineage grows significantly more slowly than the sensitive lineage (p = 2.7e-6), as is 
predicted from the model parameters where rS > rR. C. Functional testing of the drug 
sensitivity of each lineage indicates that the cells from resistant lineage (AA161, pink) have 
a higher resistance, measured by cell viability at 48 hours, at both 400 nM and 2.5 µM 
doses of doxorubicin, with p-values of p = 0.1942 and p = 0.0023, respectively.   D. 
Prediction of treatment response at 25 nM, E. 50 nM, F. 100 nM, G. 150 nM, H. 300 nM, 
and I. 1000 nM from θ* (red dot in Fig 6A). The mean measured cell number in time and 
95% confidence interval from six replicate wells are shown for each treatment response. J. 
Scatterplot of model predicted N(t) versus experimental N(t) data for all 6 new treatment 
conditions with an overall CCC = 0.89. K. Scatterplot of model predicted critical time from 
selected parameter set versus experimentally measured critical time, indicating that 
although we might not be able to precisely predict the exact trajectories of cell number in 
time for each dose perfectly, we can globally capture the critical time (tcrit) for a range of 
doxorubicin concentrations, despite our model not being trained on these concentrations, 
with an overall CCC between model predicted critical time and observed critical times of 
CCC = 0.92. 
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Multimodal data sources can be leveraged to predict response dynamics to new drug 

concentrations 

A key advantage of leveraging multimodal data sources for parameter estimation is 

that we can uniquely identify the model parameters and use them to make predictions about 

the response dynamics to new treatment regimens. We validate the model predictions, 

obtained from running the model forward with parameter set q* with input effective doses 

described in Fig 4.5B for the six remaining pulse treatment of doxorubicin that were not 

used to train the model. The model predictions compared to the experimental 

measurements are shown for doses of 25 nM (Fig 4.7D), 50 nM (Fig 4.7E), 100 nM (Fig 

4.7F), 150 nM (Fig 4.7G), 300 nM (Fig 4.7H) and 1000 nM (Fig 4.7I). We evaluated the 

accuracy in all the model predictions over all six unobserved doses and see that we are able 

to predict the treatment response with reasonable accuracy (Fig 4.7J) with an overall CCC 

of 0.89 for each model predicted and measured cell number (N(t)) in time. When we repeat 

this calibration, removing that phenotypic composition data (by setting l=0) we get an 

overall predictive accuracy of CCC=0.79, indicating the improvement in predictive 

capabilities with insight of the phenotypic dynamics. While the individual trajectories may 

not precisely match the data at the 4-hour intervals measured here, they are able to predict 

the global behavior, via predicting the critical time as a function of doxorubicin, very well 

(Fig 4.7K) with a CCC of 0.92. These results demonstrate the flexibility and predictive 

capability of this modeling framework, demonstrating its utility in predicting the critical 

behavior needed to guide optimal-treatment decision making.  
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DISCUSSION 

Recent technological advances have enabled unprecedented, high-throughput 

single-cell molecular level insight of intratumor heterogeneity (Levitin, Yuan and Sims, 

2018; Suvà and Tirosh, 2019). The ability to precisely quantify intratumor heterogeneity 

(Ferrall-Fairbanks et al., 2019), and illuminate key subpopulations involved in response to 

treatment (Al’Khafaji et al., 2019), has the potential to improve both prognostic and 

therapeutics for cancer treatment. These genomic and transcriptomic data sets can direct 

the choice of specific cancer drugs and illuminate novel resistance pathways, as well as 

provide a prognostic marker for patients who receive it. Simultaneously, the role of 

mathematical modeling in oncology has been widely recognized (Rockne et al., 2019) and 

utilized to improve both our understanding of the dynamic mechanisms of drug response 

(Jarrett, Lima, et al., 2018; Matthew T. McKenna, Weis, Brock, et al., 2018; Smalley et 

al., 2019)  as well as to develop approaches to guide the design of adaptive patient-specific 

treatment plans (Gatenby et al., 2009; Prokopiou et al., 2015; Poleszczuk and Enderling, 

2018; Brady et al., 2019; Zhang et al., 2019). However, connecting the wealth of “omics” 

data at the molecular level with temporal dynamics used to calibrate mathematical models 

for adaptive therapies remains a major challenge in the field.  

Recognizing the critical roles of heterogeneity in cancer dynamics, mathematical 

models of tumor progression often include distinct subpopulations, such as cancer stem 

cells (Badri et al., 2016; Poleszczuk et al., 2016; Brady et al., 2019), or drug resistant and 

sensitive subpopulations (Greene et al., 2015; Howard et al., 2018; Gevertz, Greene and 

Sontag, 2019; Greene, Gevertz and Sontag, 2019). However, despite these models being 
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calibrated to observed experimental or clinical data, the underlying phenotypic 

composition that these model calibrations suggest cannot easily be validated, since the 

degree of resistance or stemness of a cancer cell population in time is not easily measured 

longitudinally via a single biomarker. The majority of these modeling endeavors utilize a 

single measurement source for longitudinal data acquisition and subsequent model 

calibration.  A few studies utilizing multimodal imaging modalities have harnessed the 

ability to quantify different aspects of tumor composition—such as vasculature, necrosis, 

and cellularity, to develop an integrated model calibration of multiple tumor system 

components (Jarrett, Bloom, et al., 2018; Hormuth et al., 2019). However, this integrated, 

multimodal approach has not explicitly included inference of the composition of 

heterogeneous subpopulations taken from separate “omics” datasets for direct model 

calibration. 

Here, we introduce an experimental-computational framework for utilizing 

multimodal data sets when parametrizing a mechanistic model of drug resistance dynamics 

in response to treatment in cancer. We demonstrate the applicability of this framework 

when applied to clonally-resolved scRNA-seq data combined with longitudinal treatment 

response data from a cancer cell line and assess the ability of the model to predict treatment 

response dynamics. To this end, we developed a machine learning classifier built upon 

clonal abundance quantification which estimates the class identity of an individual cell 

based on its transcriptome.  The machine learning outputs classified cell states and were 

used to assign values to the state variables in the mechanistic model: the number of cells 

in the sensitive or resistant phenotypic state at each time point. We combined these 
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estimates of phenotypic composition with population-level treatment response data to 

calibrate a mechanistic model of drug-resistance dynamics. We validated our machine 

learning classifier by isolating cells from lineages labeled as sensitive or resistant and 

testing them functionally. We showed that the presence of multiple measurement sources 

of data allows for the practical identifiability of the model parameters, which are then used 

to accurately predict the effect of new drug treatments on the cell population.  

 The power of mathematical models in oncology, especially those calibrated to real 

data, is that we can both use them to learn about the underlying mechanisms of the system 

behavior, and we can harness that knowledge to inform future decision making in an 

experimental or clinical setting (Yankeelov et al., 2013, 2015). Greene et al. (Greene, 

Gevertz and Sontag, 2019) demonstrate that knowledge of the parameters of the model 

presented here (Eq.1) can be used to drive optimal treatment protocol decisions; in 

particular they can help determine (for example) whether pulsed or constant treatment is 

preferred for a specific patient. The applicability of optimal control theory as it applies to 

cancer treatments relies on the ability to identify model parameters from data. While it has 

been shown that the model parameters presented in this paper can be identified from just 

the bulk population dynamics in theory (Greene, Sanchez-Tapia and Sontag, 2018a), in 

practice the number of experiments needed to test the conditions is quite difficult if the 

output is the bulk population dynamics alone. However, the identifiability problem 

becomes significantly easier if the knowledge of the underlying phenotypic composition is 

also plausible (See Methods: Identifiability of model parameters). In this work, we leverage 

high-throughput “omics” data sets, taken at just a few snapshots of time, to estimate the 
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phenotypic composition and demonstrate the improvement in identifiability of model 

parameters from including this data alongside longitudinal data.  

High-throughput single cell transcriptomics or other types of high throughput 

snapshot data can give an abundance of information about the heterogeneity and potential 

mechanisms of resistance of cell populations (Al’Khafaji et al., 2019; Ma et al., 2019). 

However, the ability to use this information beyond hypothesis generation (Smalley et al., 

2019), but to actually inform model calibrations, is still lacking. In this work, we attempted 

to overcome the problem of practical identifiability of model parameters from observed 

data by demonstrating how to explicitly integrate snapshot data about the relevant cell 

subpopulations into a model calibration. We argue that the ability to integrate information 

from snapshot data with temporal data is essential for the potential for the proposed 

mathematical oncology models to be practically useful, as these models should not “throw 

away” information but should instead be able to take into account explicitly as much 

available data as possible.  

The functional characterization of single cells via changes in lineage abundance 

post-treatment enabled us to identify novel mechanistic insights into which pathways and 

interactions are critical for surviving treatment response. While clustering of cells by their 

transcriptomes can enable identification of novel cell states, these cell states are not 

necessarily relevant to drug-tolerance. Once can see this quite simply in scRNA-seq 

pipelines as failure to remove cell cycle genes from the analysis reveals that cells will often 

cluster by cell cycle state (Luecken and Theis, 2019). While states of the cell cycle may be 

important for certain applications, they are often regressed out. However, we cannot regress 
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out other unknown phenotypic subpopulations, and thus these are what can emerge from 

unsupervised clustering algorithms. While these can provide novel insight about 

population structure, they may not be what is relevant to driving changes in treatment 

response behavior. Thus, the ability to read-out lineage identities represents a novel 

functional component that enables us to zoom in at the right phenotypic state-space relevant 

to our question- what cells are more drug resistant and which are more drug sensitive, and 

what is driving these changes? Because we used principal component analysis to build a 

classifier to separate the sensitive and resistant cells, we can look at the differences in gene 

expression patterns between the groups of cells we identified and propose potential novel 

interactions and new biomarkers. For example, our analysis reveals TOP2A, NEAT1, and 

UBE2S as delineators between sensitive and resistant cells. This knowledge can provide 

the basis for future work investigating the role of these genes and their related pathways in 

drug-response. 

While scRNA-seq has limitations in the clinical setting due to its high cost, in 

experimental settings barcode labeling fits rather flexibly into existing scRNA-seq 

workflows and can add a critical functional component to the phenotypic read-out, as we 

display in this work. In the clinical setting, other types of approaches to learn more about 

cancer cell composition are being employed in the era of precision medicine. From 

radiomics to genomics, it is becoming increasingly common for patients to have access to 

high-throughput measurements, or at least some insight into their mutational burden at 

certain time points. This information may be integrated into the clinical or tumor board’s 

decision-making process (He and Ahuja, 2015).  
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 We suggest that the approach here could be modified for the available types of 

snapshot data in different experimental or clinical settings, where it is expected that only  

sparse data in terms of tumor composition and longitudinal dynamics will be available. 

This could potentially be overcome in two ways: 1) simplifying the model structure to 

reduce the number of model parameters, or 2) setting some parameter values to those 

obtained from the literature, and only allowing a few (key) parameters to be patient-

specific, as is performed in (Brady et al., 2019). We anticipate that this integrated approach 

can be applied flexibly to incorporate and integrate snapshot data about population 

composition with longitudinal bulk population dynamics. While transcriptomic and 

longitudinal data have been used together in a number of studies, this is the first work to 

our knowledge that allows for explicit parameter estimation using multimodal 

measurement sources of varying time resolutions and enables flexible implementation 

depending on the degree of confidence in each data source.  The synergy of machine 

learning with mechanistic modeling integrates multimodal datasets and opens up new 

approaches to describe, predict, and ultimately optimize treatment response in cancer. 
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Figure 4.8: Measured and model predicted outputs to be used for parameter 
estimation from observed data A. Observed estimated fraction of sensitive cells (green) 
and resistant cells (red) from scRNAseq classifier at three time points 𝜙(t). B. Model 
predicted output of sensitive cell fraction dynamics (green) and resistant cell fraction 
dynamics (red) for an example parameter set. C. Observed number of tumor cells in time 
for pulse treatments of doxorubicin at 0, 75, 200, and 500 nM. D. Model predicted output 
of total cell number in time for a pulse treatment of 75 nM for an example parameter set. 
 
 
 
 
 
 
 
 



 202 

 
Figure 4.9: Optimization of Principal Component Classifier Hyperparameters use 
coordinate optimization and 5-fold Cross Validation. A. Number of nearest neighbors 
used in the classifier versus mean AUC from 5-fold CV to determine optimal number of 
neighbors of k=73. B. Number of principal components used in the classifier versus mean 
AUC from 5-fold CV to determine optimal number of components, n=500. C. ROC curve 
from classifier with optimized number of nearest neighbors and components for 
separating labeled cells. D. Proportion of variance explained by the principal components 
drops off sharply for higher PCs. 
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Figure 4.10: Single cell transcriptomes from each time point projected into principal 
component space and classified using nearest neighbors A. Lineage-abundance guided 
“labeled” cells projected into principal component space separate along components (PC1 
and PC2 shown here for visual effect). B. Unknown cells are projected into the principal 
component space of the labeled cells. C. Remaining cells from t=0 projected onto labeled 
cells in PC space and estimated as sensitive (olive) or resistant (green). D. Cells from t=7 
weeks projected alongside labeled cells. E. Cells from t=10 weeks projected alongside 
labeled cells.  
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Figure 4.11: Step-by-step refinement of accepted parameter sets to identify solutions 
along pareto front. A. The resulting weighted sum-squared error in N(t) (E

N
) and 𝜙(t) 

(E𝜙 ) of 1000 optimizations with the regularization term 𝛌, varying from 𝛌=0 (only 
fitting N(t) data), to 𝛌=1 (only fitting 𝜙(t) data). B. Filtering of parameter sets to require 
that parameter sets have a CCC>0.8 in both N(t) and 𝜙(t). C. Further filtering of 
parameter sets to remove “non-pareto” solutions- i.e. any parameter sets theta for which 
there exists another theta with a lower error in both 𝜙(t) and N(t). D. The final set of 
“pareto-front” solutions, which contain parameter sets for which an improvement in error 
in N(t) comes at a trade-off of a worsening in error in 𝜙(t). 
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Figure 4.12: continued on next page, Sensitivity Analysis of Model Parameters 
Reveals All Parameters are Locally and Globally Sensitive Under Treatment. A. 
Sobol’s total effects of each parameter globally on critical time for 0,75, 200, and 500 nM 
pulse treatments reveals that all fit parameters are above the threshold of sensitivity for at 
least one of those doses (the parameter contributes at least 5% to the critical time for at 
least one of the doxorubicin concentrations). B. Sobol’s total effects of each parameter 
globally on sensitive cell fraction for 0, 75, 200 and 500 nM pulse treatments reveals that 
most fit parameters are above the threshold of sensitivity for at least one of the doses. The 
carrying capacity of the single cell RNA sequencing experiment (K2) is the only 
parameter that is not above the threshold for any sensitivity analysis output or dose, and 
for this reason supports our decision to set that carrying capacity from a literature value 
(the expected number of 231 cells at confluence in a 10 cm dish, which the cells were 
expanded up to). C. An example of the model predicted critical time as a function of 
doxorubicin concentration, taken from the selected parameter set in red in Fig 5A. 
Critical time is chosen as an output for model sensitivity because it evaluates treatment 
response and drug sensitivity in of a cell population:drug concentration combination 
without biasing for response dynamics that might vary from system to system, and 
because it is most relevant to what we experimentally are able to observe (i.e. the cells 
rebounded to 2 times their initial cell number on this day). D. An example of the model 
predicted sensitive cell fraction at the critical time as a function of doxorubicin 
concentration, again for the selected parameter set in red in Fig 5A. This was chosen 
again because of its relevance to experimental workflows, as the time at which the 
population rebounds to 2 the seeding population might be a good time at which we could 
perform an experimental analysis of the tumor cell composition (i.e. scRNAseq). E. Local 
sensitivity in critical time produced by varying the selected parameter set by 50% above 
and below its value and recording the resulting change in critical time trajectory over a 
doxorubicin range of 0 to 500 nM. F. Local sensitivity in sensitive cell fraction at critical 
time produced by again varying the selected parameter set by 50% above and below its 
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value and recording the resulting change in sensitive cell fraction over a doxorubicin 
range of 0 to 500 nM.  
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Figure 4.13: Fit to untreated control to find effective dose and carrying capacity of 
MDA-MB- 231 cells in a 96 well plate. 
 

 
 Figure 4.14: Parameter relationships from profile likelihood analysis. Plot of the 
how each of the remaining 5 parameters varied while “profiling” A. 𝜙
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Figure 4.15: Fitting results without incorporating 𝜙(t). A. Model fit compared to N(t) 
when only using N(t) data for calibration. Because the higher doses (200 nM and 500 
nM) have a higher data uncertainty, we do not fit these doses well. The CCC of the mean 
N(t) compared to the model calibrated N(t) is 0.8471. B. Resulting model prediction of 
𝜙(t) dynamics, based on calibration from N(t) data only, with a CCC of 0.0913.  
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Figure 4.16: Profile likelihood results reveal that not all parameter are identifiable 
without incorporating 𝜙(t). A. Profile likelihood around 𝜙

0
, the initial sensitive cell 

fraction, reveals that in this case, parameter is identifiable, as it does eventually cross the 
95% 𝜒-

2
 threshold. B. Profile likelihood around the sensitive cell growth rate, r

s
, 

revealing the parameter is identifiable. C. Profile likelihood around the resistant-to-
sensitive cell growth rate ratio reveals the parameter is identifiable. D. Profile likelihood 
around the drug-induced resistance rate α, revealing the parameter is unidentifiable 
because none of the profiled values enable the objective function value, J(θ) to cross 
above the threshold, indicating the value of this parameter within this region does not 
affect the goodness of fit of the model to the data. E. Profile likelihood around the 
sensitive cell death rate, ds, revealing the parameter is identifiable. F. Profile likelihood 
around the resistant-to-sensitive cell death rate ratio, revealing the parameter is 
unidentifiable at the upper bound because the profiled values do not cross the objective 
function threshold, and therefore their value cannot be uniquely identified.  
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Figure 4.17: Variation of parameter values as a function of the regularization term 
𝛌, indicate that parameter values have directional bias in their goodness of fit in N(t) 
vs. the 𝜙(t). A-F. Parameter values over the range of l in the pareto front, colored by the 
value’s corresponding accuracy in calibration to the N(t) data (CCC

N
). G-L. Parameter 

values over the range of lambda in the pareto front, colored by the value’s corresponding 
accuracy in calibration to the 𝜙(t) data (CCC

𝜙
). 
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Figure 4.18: Pareto front parameter distributions fall well within the 95 % CI on θ*, 
found via the prolife likelihood method (Fig 6F-K) and displayed here by the green 
lines. A. Distribution of pareto front accepted parameter 𝜙

0
. B. Distribution of pareto 

front accepted parameter r
s
. C. Distribution of pareto front accepted parameter resistant to 

sensitive growth rate. D. Distribution of pareto front accepted parameter a. E. 
Distribution of pareto front accepted parameter d

s
. F. Distribution of pareto front accepted 

parameter resistant to sensitive cell death rate. 
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Figure 4.19: Fitting results for the range of pareto-front parameter sets A. Model fit 
to N(t) for the weighting by number of data points only (black, 𝛌 = 𝛌*), the lowest 𝛌 (𝛌 = 
0.3) favoring N(t) the most, and the highest 𝛌 (𝛌= 0.9) favoring 𝜙(t) the most. B Model 
fit to 𝜙(t) for the range of accepted pareto front parameter sets.  
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Figure 4.20: Growth dynamics of isolated sensitive and resistant cell lineages 
indicates that sensitive cells growth on more quickly than the resistant cells, validating 
our modeling assumptions. 
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Chapter 5: Conclusions and future work 

SUMMARY OF WORK AND FUTURE IMPROVEMENTS 

The aim of this research was to utilize experimental data from multimodal sources 

to improve how we describe, understand, predict, and optimize cancer progression in a 

research setting. The intention of this work is to demonstrate and validate, first in 

experimental cell line models, how mathematical frameworks can improve how data is 

used in the clinical setting. We believe that demonstrating the feasibility of these 

mathematical methods in vitro will help enable their translation and adaptation in real 

clinical practice to improve how doctors use data to inform treatment decisions.  

In Chapter 2, we describe an investigation into the dynamic response of a 

population of cancer cells following chemotherapeutic treatment. This work was the 

essence of data-driven, in that it was fully motivated by experimental findings and an 

attempt to gain an understanding from those experimental findings retrospectively. Breast 

cancer cells (MCF7) were treated with chemotherapeutic doxorubicin at a high dose for 24 

hours, and then maintained to monitor treatment response dynamics. In this work, we were 

interested in characterizing the drug-sensitivity of the cell population over time as the 

population responded to the chemotherapy, and so the drug-sensitivity of the recovering 

cell population to a range of doses of doxorubicin was measured weekly. Dose-response 

curves were analyzed to quantify the resistance of the population post-treatment in several 

different ways. The results of this analysis indicated that the population of cells transiently 

increased in overall resistance around three weeks after initial pulse-treatment.  

The methods presented in Chapter 2 reflect a creative solution to make use of the 

available dose-response curves that were acquired longitudinally. We developed a 

biological hypothesis about the underlying population structure, positing that either the 
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population was distributed unimodally with a potential for dynamic shifting of the central 

resistance, or that the population consisted of a bimodal distribution of resistance in which 

their exist two subpopulations with differing levels of resistance whose relative proportions 

of the population potentially shifted over time in response to the treatment. Using model 

selection criteria for a single fit to the same data set, we came to the conclusion that the 

more likely underlying population structure was bimodal, indicating evidence of 

underlying heterogeneity in the breast cancer cell line population. The analysis from this 

investigation led us to believe that there was a transient increase in the proportion of cells 

in the more resistant subpopulation around three weeks after treatment response, followed 

by a return to nearly the same proportions of resistant and sensitive cells. 

Although cell counting was performed each week as an attempt to quantify the 

population-size dynamics was made, this aspect of the experimental design could have 

been improved to quantify the unperturbed cell number over time. Ideally, to truly 

understand treatment response dynamics we needed not only instantaneous measures of 

cell viability as a function of dose, but also more precise and unperturbed measures of 

population size over time. This was certainly a drawback of the investigation, and future 

work in Chapter 4 improves upon this by using advances in technology to precisely monitor 

population size over time after a pulse treatment. Nonetheless, this work allowed us to 

“probe” the drug-sensitivity of the overall population over time during treatment response, 

which previously had not been performed systematically following a pulse-treatment of 

chemotherapy. We acknowledge that a two-state model of sensitive and resistant cells is 

likely a vast oversimplification of the distribution of cell-states, as they relate to drug 

sensitivity, that are likely to exist in the population. It is quite possible the distribution is 

not truly bimodal but instead multimodal, however, we were not  able to add additional 

complexity to our model to test that hypothesis with confidence. Future work in Chapter 4 



 216 

seeks to expand on this work by performing a more high throughput measurement of the 

population response to multiple chemotherapy concentration. It also improves on an 

attempt at assessing the underlying phenotypic composition of the population by instead 

using single cell gene expression and lineage tracing for high throughput, broad and deep 

quantification of individual cells within the population before and during treatment 

response. The work in Chapter 2 provided much of the motivation for the workflow and 

experimental design outlined in Chapter 4, while also attempting to address some of the 

shortcomings mentioned. 

In Chapter 3, we were interested in investigating the relevance of an ecological 

phenomena that describes the slowing of per capita growth rate of populations of species 

at low population densities, known as the Allee effect. This investigation was motivated 

by observations in both tumors inoculated into mice (Panigrahy et al., 2012) and regrowth 

of resected human glioblastomas (Neufeld et al., 2017), which both indicated that perhaps 

cancer cells do not simply grow autonomously at a constant per capita growth rate from 

the single cell level to the point of a detectable tumor. Anecdotally, it seemed quite 

plausible that cancer cells might need to reach a critical density before entering the 

“exponential phase” of growth; however, most mathematical models of tumor growth focus 

only on deviations from exponential growth at higher population sizes. Thus, we sought to 

set up a combined experimental-computational design to test whether or not cancer cells, 

cultured in a controlled, nutrient and space optimal environment, exhibited observable 

slowing of growth rate at low population densities. The novelty of this investigation was 

that, unlike in a pre-clinical or clinical setting, we had a technology to detect the growth 

dynamics of very small cancer cell population sizes at single cell resolution, with a high 

number of replicates. In order to disentangle the stochastic effects of small population sizes 

from true cooperative growth via an Allee effect, we developed a stochastic parameter 
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estimation framework, using the moment-closure approximations described in (Fröhlich et 

al., 2016) to compare the best structural model to describe the observed data.  

In this investigation described in detail in Chapter 3, we took advantage of the novel 

technological advances that now enabled for high-resolution and high-throughout data that 

could be readily compared to stochastic simulations of different Allee effect scenarios. The 

novelty in this framework is in how we utilized the available data-  to take advantage of 

the fact that we could measure the observed variability in cell growth trajectories, and use 

that information as an input for our model calibration. It is often the case that when we 

acquire cell population data we measure information about a distribution of values (i.e. 

protein expression levels by FACS) but oftentimes for data analysis a summary statistic 

(i.e. mean expression level, or percent of cells above a certain threshold of expression level) 

is more commonly used. While in most cases, these summary statistics are just as 

meaningful, in this specific case, understanding the full distribution of cell growth 

trajectories was necessary due to the expected variability in growth behavior inherent at 

small population sizes. While in most cases, these summary statistics are just as 

meaningful, in this specific case, understanding the full distribution of cell growth 

trajectories was necessary due to the expected variability in growth behavior inherent at 

small population sizes. In this work, we took the full distribution of replicates of growth 

trajectories and summarized them, by initial condition, into mean cell number and variance 

in cell number, in time. However, this potentially masks the full available distribution of 

the data set, which is shown for the final time point for each initial condition of N0= 2 (red), 

4 (green), and 10 (blue) cells in Fig. 5.1. For example, if the behavior of the cells ended up 

being bimodal, with cells falling into two subpopulations of slower or faster growers, the 

analysis in Chapter 3 would fail to capture those dynamics. Future work in this area could 

focus on how to better make use of the entire distribution of data for parameter estimation, 
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perhaps by testing each individual trajectory against a few candidate underlying 

distributions. Additional investigations could employ techniques such as Kalman-filtering 

or Gaussian processes to compare individual data points and infer underlying distributions 

over time.  

 
Figure 5.1. Final cell number distributions for initial conditions of 2, 4, and 10 cells. 
While the current framework utilized the mean and variance of each of these distributions 
at each time point the data was acquired, it does not explicitly use the full distribution at 
all time points, which could be problematic if for example we observe a multi-modal 
distribution that could be indicative of two possible phenotypes related to growth. Future 
work to improve upon this project might consider how the full extent of the observed 
distribution at all time points could be more fully utilized.  

Our overall conclusion from the analysis in Chapter 3 was that, even in the very 

controlled setting with optimal cell culture conditions, BT-474 breast cancer cell growth 

dynamics displayed a weak Allee effect, which results in a decrease in the birth rate as a 

function of the total population size.  We acknowledge that although this model was 

“selected” using model selection tools (BIC), this simply means it is the most likely of the 

candidate structural models. All candidate models were composed of the assumption that 

the cell population was made up of a single homogenous cell type, whose presence 

facilitated homotypic interactions leading to the positive scaling of growth rate with 

population size. This resulted in a phenomenological model to describe population 

dynamics. However, an area of future work is the investigation of a more mechanistic 
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model capable of characterizing the cooperative interactions that are likely due to distinct 

subpopulations playing complimentary roles that facilitate growth above a critical density. 

In order to further investigate these subpopulation interactions, distinct subpopulations of 

cells within a cell line can be isolated based on expressed of surface receptors, and the 

theory of cooperation between these cell types can be tested experimentally and analyzed 

via mechanistic mathematical models of cooperative interactions. 

The work in Chapter 3 provided an example of ways in which technological 

advancements in data collection can lead to the use of novel mathematical frameworks to 

best make use of these new high throughput, high resolution data sets. This theme continues 

into the work described in Chapter 4, in which high throughput longitudinal population 

size data and single cell transcriptomics data are utilized in a single mathematical 

framework in an attempt to develop a more informed understanding of treatment response 

dynamics. This work brought together a number of different expertise from the Brock lab. 

Technological advancements in expressed barcoding of clonal populations using the 

COLBERT system (Al’Khafaji, Deatherage and Brock, 2018; Al’Khafaji et al., 2019) 

developed by Aziz Al’Khafaji in the Brock lab enabled functional read-out of the lineage 

identity of cancer cells before, during and after treatment with chemotherapy doxorubicin. 

Pre-processing, read alignment, and normalization of the scRNAseq data set was 

performed by Russ Durrett, Eric Brenner, and Daylin Morgan, all who have developed 

expertise in the bioinformatics analysis of these transcriptomic data sets. Because these are 

cancer cell lines with stable phenotypes, Grant Howard separately performed high temporal 

resolution treatment response measurements of this breast cancer cell line to ten different 

pulse-treatment of doxorubicin and capture the population size dynamics for 6 replicates 

for each condition. Without all of their expertise, none of the work described in Chapter 4 

would have been possible.  
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These datasets combined provided an abundance of information about the MDA-

MB-231 breast cancer cell line response to treatment, and the major contribution of Chapter 

4 was to attempt to make sense of it. These diverse sets of data are integrated in a single 

mathematical framework in which the lineage-traced transcriptomics data is used to 

estimate the composition of the population over time, and the longitudinal treatment 

response data is used to monitor population size over time in response to different drug 

concentrations. The estimates of the cell identities from lineage-traced scRNAseq represent 

a relatively forward application of machine learning to biological data. Given a 20,000 

gene expression vector, and known class identities from changes in lineage abundance of 

those cells, we used principal component analysis to build a classifier capable of  

“predicting” the identity, in terms of drug sensitivity, of cells with unknown drug 

sensitivity identities. This output was chosen intentionally, because it was of interest to 

quantify the proportion of cells that were sensitive and resistant at the times that the 

transcriptomics data was acquired. These estimates went directly into a mechanistic model 

of treatment response dynamics, providing insight into the phenotypic composition at three 

time points.  While we acknowledge that reducing this breadth of molecular data to a binary 

classification of sensitive or resistant was quite reductionist, it enabled actionable 

comparisons for calibrating a model that describes how these subpopulations evolved. 

Future work should focus on other novel ways in which big data sets can leverage machine 

learning to potentially interact with mechanistic modeling, providing useful information to 

improve our ability to inform either of these models. It is a broad theme of this thesis that 

collaborative interactions across disciplines breeds more relevant scientific contributions, 

and it is my opinion that the realms of big data, machine learning, and mechanistic 

mathematical modeling are no different in that the contributions at the intersection of these 
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fields will prove the most fruitful to developing new advancements in biology and 

medicine. 

While the work in Chapter 4 intended to make the most use out of available data, 

in hindsight, many things would be done differently to improve the experimental workflow. 

For one, the doxorubicin concentration given to the cells that were to be sequenced with 

scRNA-seq would be the same as the treatment condition given to the cells acquired 

longitudinally, to minimize the potential free variables leading to differences in treatment 

response. Secondly, acquiring scRNA-seq during the intermediate time points of treatment 

response would have been crucial to understanding the changes in population composition 

at that time. However, because cells that have mostly died due to drug are not easily 

sampled for scRNA-seq, if we were to repeat the experiment we would look to increase the 

number of cells initially treated, and lower the dose of doxorubicin, enabling sequencing 

at the intermediate time point which represents when the cell population is likely 

responding to drug. Additionally, other, more flexible uses of the transcriptomics data set 

could be used as inputs into a mechanistic model. For example, instead of mandating that 

a cell either be classified as sensitive or resistant, a new cell could be mapped onto a 

spectrum of sensitivity, and the shift in these distributions could be used as inputs into a 

model that allows for a continuous distribution of drug sensitivity. There are a number of 

other methods one can think of to continue to develop more informed methods to make use 

of these data sets, and the work described in Chapter 4 is really only the beginning of a 

number of possible ways to integrate molecular level data into mechanistic modeling 

frameworks. The approach in Chapter 4 is intended to be seen as an example of one way 

to achieve this. It is intended to be thought provoking regarding other ways in both the 

research and clinical setting that multimodal data sets can be integrated to develop more 
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informed understanding of underlying biological systems to inform experimental or 

clinical decisions. 

Overall, several examples of novel methods of analyzing experimental cancer cell 

line data of a variety of sources are presented. Although these results are promising, there 

is room for optimization in each of the studies and potential future applications in both 

experimental and clinical settings.  

THE FUTURE OF PRECISION ONCOLOGY 

In this section, I will outline my broader vision for the way in which I believe 

mathematical oncologists should seek to position themselves in the field of cancer research 

and clinical oncology. These viewpoints are solely my opinions, and do not necessarily 

reflect the work presented in this dissertation exclusively, as here I will broadly focus on 

the potential clinical impact of the mathematical oncologist. While the work presented in 

this dissertation is based purely on experimental systems using cancer cell line model 

systems, a career goal of mine is to build upon these experiences focused on improving our 

understanding and knowledge of these biological systems to those that will directly impact 

clinical decision-making in oncology.  

In this dissertation, much of the data collected was not designed intentionally for 

the purpose of building mathematical models in oncology. Instead, for example in Chapter 

2 and Chapter 4, the data was collected using standard techniques in experimental biology 

to quantify and deepen the understanding of the biology of the cancer cell line during 

chemotherapy treatment. Whether that was assessed via a dose-response assay or a scRNA-

seq experiment, a diverse set of modalities were used that in theory, contribute to our 

understanding of the underlying process. However, most mathematical modeling efforts in 

oncology typically only take into account data amenable to modeling dynamical systems: 
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longitudinal data. Typically, mathematical oncologists will design experiments in order to 

capture this data appropriately in a way that is amenable to model calibration and 

downstream analysis. While I believe it is critical for the mathematical oncologist to play 

a role in experimental design, I also believe that the field of mathematical oncology needs 

to be more open and flexible to utilizing the available information, in whatever form it 

might be in.  

In real clinical decision making, physicians are tasked with using all available 

information about a patient to make their treatment decision, including baseline 

characteristics such as age, sex, and ethnicity, as well as the available blood levels, immune 

levels, as well as the “big data” of genomic information, histology, and anatomy from 

imaging. While it might be easy to criticize the physician for not applying longitudinal data 

analysis to improve understanding of the dynamics of the tumor growth and treatment 

response within the patient, this is not their job- it is ours. The physician must focus on 

caring for patients, ordering the right tests, gathering as much available information as 

possible. Likewise, the role of the experimental biologist is not to do this type of analysis, 

for they must be in the lab, performing relevant experiments in search of new and more 

effective treatment options. It is necessarily the job of the mathematical oncologist in this 

scenario to be tasked with making sense of all of the available information: baseline 

characteristics, “omics” data, blood levels, and tumor size dynamics, to help the physician 

make the most informed treatment decision. Instead of cherry picking the types of data that 

fit into the world of mathematics, we should instead be trying to bring math, along with 

simple retrospective analysis of historical data about treatment response outcomes, into the 

clinic. Instead of doing math for the sake of math, we should be doing math for the sake of 

helping improve treatment-decision making.  
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What does this look like in practice? The opportunities are immense, but not 

straightforward. Perhaps baseline characteristics should be used to determine which 

mathematical models of treatment response are more relevant for a given patient, or 

perhaps they should be used to inform the patients most likely parameter values for a given 

model, or to direct a treatment modality most likely to be effective. But how do these 

models take into account all the different forms of data that may or may not be available? 

This question largely remains unanswered, but I think it is the job of the mathematical 

oncologist to stretch themselves to think about ways to answer this question, how can we 

help doctors make these decisions, and patients benefit from them? While this is certainly 

an immense challenge, it is one that we cannot place on the burden of doctors or biologists, 

and it is one that we ourselves need to try to address, by learning about the problem 

intimately, via interacting with physicians and understanding their day-to-day decision 

making process, and by knowing well and making best use of the available data, both 

retrospectively and as it is observed in real-time. While the task at hand might require a 

combination of machine learning, mechanistic modeling, phenomenological modeling, and 

analysis of historical population data, it will certainly not be achieved by only one of these 

modalities. Working towards this goal will require an integrated, complex approach to 

come up with new creative solutions that span a variety of disciplines- from basic science, 

to mathematics and computation, to clinical care. All parties need to have a seat at the table 

and learn to communicate and collaborate with one another.  

In my final year of graduate school, I had the opportunity to attend an Integrated 

Mathematical Oncology Workshop at the Moffitt Cancer Center. The theme of the 

workshop was “Tumor Board Evolution”. Before I arrived, I didn’t know what a tumor 

board was, and so I assumed the workshop would just be an evolutionary approach to 

modeling cancer, of which I was relatively comfortable in as most mathematical oncology 
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models include some type of hypothesis regarding the evolution of tumor cells over time. 

Instead, the workshop was actually challenging the tumor board itself to evolve- by 

incorporating a mathematical oncologist. This is currently an ongoing experiment at 

Moffitt Cancer Center, and for this one week my teammates and I got to experience what 

a tumor board might be like. We met with surgical oncologists who performed surgeries to 

remove liver metastases from colorectal cancer patients, and they explained how at “tumor 

board” they presented their challenging cases to the entire team of oncologists: the 

radiologists, medical oncologists, and various surgeons- with the goal of coming up with a 

treatment plan for the patient, particularly when the case was not so straightforward. In the 

course of that week, we learned about the types of information the physicians had available 

to them about these patients during the course of their treatment, and all the many factors 

they had to weigh as they were adapting in real-time to the patient’s treatment response 

with the types of data they could use to assess that.  

While their options for treatment were sometimes limited, they still always had 

options, and struggled to select the right ones given the varieties of different pieces of 

information they had to weigh all at once about a patient. This is where I think the 

mathematical oncologist needs to step up- perhaps presenting the physician with a 

historical database of past treatment outcomes for similar patients to the one at hand, as 

well as providing a framework for interpreting the variety of types of data they have about 

an individual patient, and updating it in real-time in order to help them determine the course 

of action with the highest probability of success, given the available information. When I 

returned from this workshop, I began to tell my friend about this experience, and as I began 

to explain the “experiment” that we had undergone over the week she interjected- “Wait, 

so why don’t they already have the mathematical oncologists on the tumor board helping 
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doctors make sense of all these things?” I was immediately struck by the simplicity of this 

question- why weren’t we already doing this? I think we need to be.  

CONCLUDING REMARKS 

Several new approaches to utilize experimental data in mathematical oncology 

frameworks have been developed in this dissertation. Although in this dissertation, they 

are only applied to experimental systems in breast cancer cell lines, the broader goal of this 

work is to demonstrate how some of these questions could potentially be extended to a 

clinical setting. It is critical to be able to develop these workflows first in model systems 

experimentally, where experimental design limitations, as well as ethical and bureaucratic 

obstacles, are much more limited. We posit that this work represents a critical step forward 

to the field of mathematical oncology, as it seeks to demonstrate ways in which all different 

types of data sets can be utilized in an integrated manner to better inform the mathematical 

models that can drive improvements in treatment decision making. The ability to think 

critically and come up with creative solutions pulling from the expertise of a variety of 

disciplines is absolutely necessary to create impactful change in the field of cancer research 

and clinical care, and we hope that this dissertation work makes a small dent at contributing 

to this cause.  
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