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Effective medium theory of sub-wavelength metallic, semiconducting and
dielectric nanostructures that encompasses their electric, magnetic and magneto-
electric response at optical frequencies is introduced. Theory development is moti-
vated by the recent surge of interest in electromagnetic metamaterials: nanostruc-
tured composites with unusual or naturally unavailable electromagnetic properties.
Unlike numerous other studies, this work focuses on strongly sub-wavelength (unit
cell size a < A/n) structures inasmuch as non-subwavelength composites, in gen-

eral, cannot be described with effective medium parameters. The theory starts



from purely electrostatic description of non-magnetic composites and uses plasmon
eigenfunctions as the basis. Magnetism and other retardation phenomena are taken
into account as perturbations of electrostatic equations. Theoretic description is
validated by experimental data on extraordinary optical transmission through sub-
wavelength hole arrays in crystalline silicon carbide films. It is shown that one of
the most amazing applications of optical metamaterials, known as the “superlens”,
enables deeply sub-wavelength spatial resolution not limited by Abbe’s resolution
of a microscope. Theoretical grounds and designs of proof-of-principle verification
experiments for near-field sub-wavelength imaging are presented. Theoretical prin-
ciples and formulas are applied to the problem of engineering an optical negative-
index metamaterial (NIM) that may be used to improve the near-field superlens.
NIM engineering begins with simple two-dimensional examples (cylinder arrays, wire
pairs) and advances to more complicated metamaterials (strip-film and strip-wire
arrays, tetrahedral clusters). Finally, the concept of liquid negative-index metaflu-
ids (NIMF) based on plasmonic nanoclusters is introduced and exemplified using
tetrahedral cluster colloids. Clusters of plasmonic nanospheres, known as Artificial
Plasmonic Molecules (APM), can be easily fabricated in macroscopic amounts and,
depending on their symmetry, may exhibit three-dimensionally isotropic electromag-

netic response.
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effective permittivity e.g. Fixed structural parameters: L, = 100 nm
, w = b0 nm, ds = 15 nm. The three sets of structures differ by the
following parameters: (1) df =0 and h = 7 nm (L, = 44.5 nm), (2)
df = 6.5 nm and h = 10.25 nm (L, = 50.5 nm), (3) df = 8.5 nm and
h =11.25 nm (L, = 52.5 nm). The bands with e.g < 0 and peg < 0
are almost separated for dy = 6.5 nm, but overlap for dy = 8.5 nm. .
FElectrostatic potential and electric field profiles corresponding to
the lowest-frequency electric (left) and lowest-frequency magnetic
(right) resonances of the SPOF metamaterial with parameters listed
in Fig. 4.13 and dy = 8.5 nm (set 3). Magnetic resonance is associated
with electric quadrupole plasmon resonance. . . . .. ... ... ..
Comparison between the quasistatic dielectric permittivity eys com-
puted using recipes of Section 2.2 and fully electromagnetic e.g ex-

tracted using single-layer EMPR. . . . .. ... ... ...
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4.16

4.17

4.18

4.19

4.20

Effective index of refraction neg for different sets of parameters for
a single DNM layer. Set 1 (green): L, = 150nm, L, = 52nm,
w = 90nm, d; = 15nm, dy = 8nm, h = 1llnm. Set 2 (blue):
L, = 100nm, L, = 52.5nm, w = 50nm, ds; = 15nm, dy = 8.5nm,
h = 11.25nm. Set 3 (red): L, = 100nm, L, = 57nm, w = 40nm,
ds = 15nm, dy = 10nm, h = 13.5nm. Evidently the double-negative
band of SPOF can be tuned to any wavelength in near-IR and the
entire visible spectrum, while remaining in deeply sub-wavelength
TEZIME. . . v vt o e e e e e e e e e e e
The ratio Re neg/Im neg characterizing the losses in the system as
a function of formally introduced gain (modeled by Im €4 of the
wrong sign) in the dielectric layer for a single DNM layer. Structural
parameters: L, = 100nm, L, = 51.5nm, w = 50nm , d, = 15nm,
dy ="7.5nm, h =10.75nm. . .. ... ...
Effective index of refraction of SPOF metamaterial computed with
EMPR procedure for different number of layers m; (green: m; = 2,
red: my; = 3, blue: m; = 4). Solid lines: Re neg, dashed lines; Im neg-.
Structural parameters are chosen as L, = 100 nm , L, = 102.5 nm,
w = 50 nm, dg = 15 nm, dy = 8.5 nm, h = 11.25 nm. Evidently the
negative index band in the range A = 640 — 680 nm exists for any
number of layers. . . . .. ... oo L
Scanning Electron Microscopy image of a single-layer SPOF meta-
material fabricated by Davanco et al. from gold and transparent
polymers [DZF07]. Grating period 150 nm, strip width 80 nm,
thickness of strips and film ~ 20 nm, dielectric spacer between strips
and film ~ 15 nm. Image courtesy Marcelo Davanco, Xuhuai Zhang
and Stephen Forrest, Univ. of Michigan. . . . ... ... ... ...
Examples of electrostatic resonances of a tetrahedral plasmonic
molecule. Left column: potential on the surface. Right: potential
(color) and electric field (arrows) in cross-sections. The lowest-lying
resonance of each irreducible representation (see Table 2.2) except
triplets (11, T») is presented. Gap-to-diameter ratio in the cluster is

1/10. Triplets are shown separately in Fig. 4.21. . ... ... .. ..
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4.21

4.22

4.23

4.24

4.25

4.26

Positions of the two lowest-lying electrostatic resonances as a function
of the gap-to-diameter ratio. Left vertical axis: resonant permittivity
of a plasmonic particle relative to that of solvent (e,/€s); the plots
are applicable universally to any metal and solvent. Right axis:
resonant wavelength for gold silica-coated tetramers in the index-
matching solvent with ny = 1.4, assuming dielectric function of gold
from [Pal85]. Insets: electrostatic potential and electric field profiles
of these T} and T, modes in clusters with gap/diameter=0.1.

Extinction (solid) and absorption (dashed) cross-sections a tetramer
consisting of solid gold particles with D = 90 nm, gap 2 nm, in solvent
with refractive index ng = 1.4. . . . . . . . . .. ... ... ...,
Extinction (solid) and absorption (dashed) cross-sections a tetramer
consisting of solid gold particles with D = 120 nm, gap 2 nm, in
solvent with refractive index ng =1.4. . . . . . .. . ... ... ...
Field profiles at the two resonances of a tetramer characterized in
Fig. 4.23. Color: out-of-plane magnetic field H, in the plane contain-
ing centers of 3 spheres. Arrows: in-plane electric induction (D, D,)
in the same plane. Left: electric-dipole resonance at A = 756 nm;
right: magnetic-dipole resonance at A\ = 935 nm. Horizontal axis: x,
vertical: 4. . . . . e e
Effective permittivity e.g of a solution with uniformly distributed
tetramers (solid gold spheres, D = 90 nm, gap 1 nm, index of solvent
ns = 1.4, volume per cluster V5 = 0.0115 um?). Electric-dipole
resonance (A = 810 nm) and magnetic-dipole (A = 890 nm) anti-
resonance are identified by peaks in Imegg. . . . . . . ..o
Effective magnetic permeability peg of the tetramer colloid described
in Fig. 4.25. Electric-dipole anti-resonance (A = 810 nm) and
magnetic-dipole (A = 890 nm) resonance are identified by peaks in

Im e Inset: local magnetic field enhancement, max |H/Hp|. . . .
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4.27

4.28

Comparison between quasistatic and electromagnetic calculations of
teg for the tetramer colloid described in Fig. 4.25. Solid and dotted
lines (labeled pem) are calculated from electromagnetic scattering
simulations using the standard retrieval method [SVKS05]; dashed
and dash-dotted lines (fiqs) — from electrostatic simulations using
effective medium estimate (2.21) with the magnetic polarizability
(2.48). The position of magnetic plasmon resonance in formula (2.48)
is retardation-corrected using the technique described in Section 2.5.
A photorealistic ray-tracing simulation of a straw in a glass filled
with lossless negative-index metafluid, produced by Christoph Hor-
mann [DWLHO06]. Reproduced from C. Hormann’s Worldwide Web

publication http://www.imagico.de/pov/metamaterials.html.
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Chapter 1

Introduction: Electromagnetic
Metamaterials and their

Applications

1.1 The concept of electromagnetic metamaterial: en-

gineering mesoscopic magnetism

A new area of electromagnetics has recently emerged: electromagnetic meta-
materials. The emergence of this new field happened in response to the demand
in materials with the electromagnetic properties that are not available in naturally
occurring media.

One of the best known properties unattainable without significant metama-
terial engineering is a negative refractive index. The main challenge in making a
negative index material (NIM) is that both the effective dielectric permittivity eqq
and magnetic permeability peg must be negative | |. Numerous applications
exist for NIMs in every spectral range, from microwave to optical. Those include
“perfect” lenses, transmission lines, antennas, electromagnetic cloaking, and many
others [ ) , ) ]. Recent theoretical | , | and experi-
mental | ] work demonstrated that for some applications such as electromag-
netic cloaking it may not even be necessary to have a negative index: just controlling

the effective magnetic permeability suffices. In cloaking applications | |, val-



ues of magnetic permeability between zero and ~ 2 are required; in other words, the
difference | — 1| has to reach values of order unity. In NIMs, this difference has to
exceed unity significantly.

Control over the magnetic permeability u is therefore a key to implementing
some of the most exciting electromagnetic devices, ranging from superlenses | ]
to invisibility cloaks | , |, electromagnetic wormholes [ | and
quantum levitation | ]; we will discuss some of them in more detail below.
First realizations of negative-p materials (NMM) and negative-index materials
(NIM) were made in the microwave part of the spectrum [ ]. The unit cell
of the proposed composite materials consisted of a metallic split-ring resonator
(SRRs) [ | (responsible for the negative permeability peg < 0) and a
continuous thin metal wire | | (responsible for the negative permittivity
ot < 0). Remarkably, even in the first microwave realizations of the NIM its unit
cell was strongly sub-wavelength: a/\ =~ 1/7, where a is the lattice constant and A
is the vacuum wavelength. In fact, the condition of a < A must be satisfied in order
for the effective description using e.g and peg to be sensible. If the electromagnetic
structure consists of larger unit cells with a > A\/2n4, where ng is the refractive
index of a substrate onto which metallic elements are deposited (e.g. Duroid in
some of the recent microwave experiments | ]), they cannot be described by
the averaged quantities such as permittivity and permeability. It is the high A\/a
ratio that distinguishes a true electromagnetic metamaterial from its more common
cousin, photonic crystal | , ].

Above-mentioned applications of NMMs and NIMs would be even more
fascinating if they worked for the optical frequencies. There are several obvious
reasons for the optical band to be very important to mankind. First, our eyes
can only see electromagnetic radiation in the visible band; applications that use
light as a messenger delivering information directly to our vision must therefore
rely on this narrow band. For example, concealing spy airplanes from potential
enemy might be useful in the RF spectrum, but making warriors transparent would
be useful only in the visible band (Fig. 1.1). Second, wavelength of visible light
A =400 — 700 nm is a lot closer to the nanoscale (defined as the range of sizes from
1 to 100 nm) than wavelength of microwaves and RF radiation. Thus, even a factor
of 10 enhancement of imaging resolution relative to A would allow us to handle

nano-sized objects. Third, photons of optical radiation are a lot more energetic and



Figure 1.1: Left: A frame from a popular cinematographic film “Predator” (1987):
electromagnetic camouflage of the extra-terrestrial Predator. A thin optical layer
around the hunter presumably bends light (or transfers it by other means) to
conceal the contents of the cavity. Right: a spherical shell bends the flow lines
of electromagnetic flux (thick curves) around its core, ensuring that its scattering
cross-section and thus disturbance of external field vanishes. Simulation made with
COMSOL RF package [Com006].



thus interact with matter more efficiently: they can do various jobs ranging from
photolithography [ | to surface-enhanced Raman scattering | , ].

Controlling, or enhancing the magnetic response function xs(w), however, is
a lot more difficult than controlling electric response. In vacuum, there is a precise
symmetry (duality) between electric and magnetic fields; as a result, intensities of
FE and H fields of a plane wave in vacuum are identical. This symmetry is broken in
matter because it consists of electric charges only; magnetic charges have never been
found in nature. Some interaction between magnetic field and ordinary matter still
exists, though: that is because electrons, nuclei and atoms possess magnetic dipole
moments. These magnetic dipole moments come from two sources: (1) intrinsic
spins of electrons (and nuclei), and (2) angular moments associated with orbital
motion of electrons (and nuclei) in atom or molecule around its center of mass.
While the former is an essentially quantum phenomenon requiring relativistic field
theory | |, the latter moment can be crudely explained using the classical Bohr
model of electron orbiting in electrostatic Coulomb field of a nucleus. Such orbital

motion is similar to a current loop and naturally produces a magnetic dipole moment

.1 .
M=—Fxj 1.1
5T X I (1.1)
where ] = et. Substituting the radius of the orbit » ~ ap, where ap is the Bohr
radius, and electron velocity v/c ~ a, where a = 1/137 is the fine structure constant,
it is found that a typical value of orbital magnetic moment should be of order Bohr

magneton
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up = aeapg/2 = (1.2)

On the other hand, typical values of electric dipole moment, either induced or
permanent, for a single atom, should be of order eap. Magnetic moments of nuclei
related to their intrinsic and orbital spin are suppressed by large factors M, /me,
where M, is a nucleon mass, and can be ignored in comparison with electron
contributions. Ultimately, it is the small velocity of electrons v/c ~ a that makes
interaction between electric charges in matter and magnetic field so small.
Interaction between electric and magnetic fields of light with atomic systems
can be quantified by introducing tensors of linear electric and magnetic response.

Electric polarizability tensor of a single atom (or molecule) ag in the frequency



domain is given by a general expression | ]
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where |0) is the ground state of the system, wno = (E, — Ep)/h are the complex
resonance frequencies (including the natural linewidth I',,0/2 = —Im wyo) and p'is
the operator of dipole moment (compare this with our Eq. 2.28 from Sec. 2.2 and
with Eq. 24 of Ref. | ]). Note that electric polarizability tensor is different from
the tensor of coherent scattering only by complex conjugation of wy,g in the second
term of (1.3), as shown in Ref. | |. Hence the results of coherent scattering
theory can be used to calculate effective medium parameters.

By analogy with Eq. 1.3, magnetic polarizability 043& of an atomic particle is

given by

M

:0)(0 1107 0] i
hz [ n\,uw _Iug\n> N <n\u3\*>< Iz |n>]7 (1.4)
= no — W Wy tw

in which the magnetic dipole operator ji is defined as [ ]

1 - - 8
= 7 x 7| dPz = (L 7), 15
fi= o [rx il de=pp(E+ (15)
where L = —i7 x V is the dimensionless orbital moment and § is the spin moment

operators; for electrons s = 1/2. Evidently, since angular momentum operators I_:,
§ have matrix elements of order unity, the matrix elements of MD operator are of
order up = 3a(eap) in atomic systems.

In accordance with the Drude-Lorentz theory of linear resonances, the abso-
lute value of a linear polarizability as is largest at the resonance frequency, i.e. at
w = Re wpo with some n, where we have |aps| ~ p%/(hlm0/2); the real part of apy

has a maximum and a minimum at frequencies wyo+ = Re wpg & T'no/2, where
max [Re ayy| = 1/2max |aps| ~ p% /Al 0. (1.6)

Hence, ays could be strongly enhanced, if for some reason I';q is very small.
One good reason why it could be small is that for magnetically-active (M1)
transitions, electric-dipole transitions are prohibited by parity selection rule. There-

fore, if there are no other radiative channels determining rate of decay of the state



|n), natural linewidth I',o is determined by magnetic dipole radiation and is sup-

2

pressed by factor (wpgap/c)?> ~ o2 in comparison with the natural width of E1

transitions. The rate of electric dipole radiation is

43

T = ——
ED = 353

|(nlpl0)]* ~ (can)?w?/(hc?), (1.7)

omitting all numerical factors of order 1, and for optical transitions with frequency
Wpo ~ WB = me4/2h3 it becomes I'gp ~ a4c/aB. The rate of magnetic dipole
radiation is then I'yyp ~ a?T'gp ~ a6c/aB. Thus, the ratio MZB/FLFMD, proportional
to the quality factor of magnetic resonances, becomes of order (eap)?/(hRl'gp) ~
(ap/a)®. Let us see if that might be enough to obtain optical magnetism on the
macroscopic level.

Magnetic susceptibility x = (u — 1)/(47) of a medium consisting of
non-interacting identical particles dispersed in a dielectric medium is approxi-
mately | , | x = anr/Vo, where Vp is the volume per particle (specific
volume). In the densest possible environment, a solid crystal, atoms of size ~ ap
are closely packed, so that 1 ~ a% and Y ~ a~3. Thus, it may seem possible to
have atomic substances with magnetic susceptibility comparable with or exceeding
1 in absolute value. Unfortunately, this estimate is deceptive, as it does not
account for widening of the natural linewidth of single-atom MD-transitions. Line
broadening is completely unavoidable at solid (or liquid) state densities, when
distances between particles contributing to p-resonance approach ag ~ 0.1 nm or
not even ag/a ~ 10 nm. At such densities, optical spectral lines with width as
small as T'psp ~ a’Tgp ~ 106 s71 ~ 1078 eV are very hard to find. As a result, in
all known homogeneous atomic or molecular substances, ranging from crystalline
and amorphous solids to liquids and gases, magnetic permeability is practically
indistinguishable from unity at wavelengths A = 100 — 1000 nm. In addition, even
if such small widths could be achieved, large magnetic susceptibilities would only
exist in extremely narrow frequency bands Aw ~ 1078 eV; usefulness of such a
magnetic material would be rather questionable.

This simple scaling analysis of electric and magnetic light-matter interac-
tions shows that achieving values of magnetic susceptibility close to or exceeding
unity, as required for exciting applications cited above, is unrealistic at optical fre-

quencies using conventional (atom-based) materials. We can, however, go beyond



(pneTa) conventional materials and explore possibilities that emerge in composite
metamaterials consisting of mesoscopic “meta-atoms”. Note that optical wavelength
A > \g = 2mwc/wp ~ 100 nm is at least 47/ = 47 - 137 ~ 1.7 - 103 times larger
than the size of an atom (~ 2ap ~ 0.1 nm) or a typical unit cell in atomic crys-
tals; that is because energies of optical transitions are of order Rydberg energy
(Ry = me*/2h? ~ 13.6 e¢V) or less. In Richard Feynman’s terms, there is “plenty
of room at the bottom” for mesoscale optical metamaterials: one can use meta-
atoms much larger than 2ap =~ 0.1 nm yet much smaller than optical wavelength
A ~ 100 — 1000 nm. Hence, the size of a meta-atom does not have to be restricted
to scales ~ ap, if its elementary components are bound together by forces other
than static Coulomb 1/r? force. Also, a meta-atom may contain multiple charges
responding collectively to the external field — a phenomenon known as plasmon
polariton. In a sense, we are engineering the Bohr magneton by increasing effective
charge e and effective “Bohr radius” ap; however, not much can be done to acceler-
ate electron velocity v < ¢ so the magnetic response is still going to be much weaker
than electric.

In addition, we may also engineer the frequencies of magnetic-dipole active
transitions: those need not be related to atomic or molecular spectral lines, but could
be transitions between energy levels of an almost macroscopic many-body system.
In solid state physics, elementary excitations are often seen as quasi-particles; two
examples of quasi-particles that can be used for mesoscale electromagnetic metama-
terials are surface plasmon-polaritons and surface phonon-polaritons. Resonances of
these two types, though very different in physical nature, can be used interchange-
ably for sub-wavelength metamaterial engineering, as we shall see in Chapters 2, 3
and 4. This is because mesoscopic structures are essentially macroscopic in compar-
ison with atomic sizes (grain size > 1 A); as a result, they can be described by local
dielectric permittivity (7). Surface polaritons exist as long as €(7) is negative in
some sub-domains of the structure; the physical nature of phenomena causing neg-
ative sign of local permittivity is irrelevant on the mesoscopic level of description.
Consequently, metamaterials designed with plasmonic components can be modified
to work with phonon-polaritonic components and vice versa; the required modifica-
tion is essentially a dimension scaling that accommodates for the difference between
plasmon and phonon-polariton frequencies.

In such a way, we have naturally come to the idea of mesoscopic metama-



terials: composite media consisting of wisely arranged particles of appropriately
tailored size, shape, composition and morphology. Electric currents in these parti-
cles mimic the orbital motion of electrons in atomic systems and provide artificial
orbital magnetism that resembles conventional diamagnetism, in the following sense.
Magnetization of the proposed meta-magnetic systems exists only while it
is being induced by external high-frequency fields, and during a short relaxation
period. This relaxation time is determined by (a) rate of spontaneous radiation and
(b) rate of dissipation. While the former can be strongly quenched by arranging ra-
diators into omnidirectionally periodic arrays (i.e. photonic crystals), not much can
be done to suppress resistive damping (except, perhaps, superconductivity | D).
On the contrary, electronic, atomic and molecular magnetic moments are perma-
nent (if they aren’t zero because of vanishing total spin): quantum mechanics allows
charged particles to oscillate even in the ground state, which by definition has no
decay rate. Thus, in paramagnetic substances (including gases, liquids and solids)
the average magnetic moment may vanish in the absence of external field due to
chaotic orientations of individual building blocks, but each block has a permanent,
constant magnetic moment proportional to its spin. In diamagnetic substances, the
building blocks (atoms, molecules) do not have a permanent magnetic moment, be-
cause of zero total spin of an atom; this resembles mesoscopic magnetism studied in
this work. However, diamagnetic materials become magnetized (thanks to Larmour
theorem) even in static magnetic field alone; no electric field is necessary for that.
Such fundamental difference (the need for external high-frequency electric
field) between “true” magnetics and “meta” magnetics makes it somewhat difficult
to study or even define the magnetic permeability at optical frequencies. One cannot
study the high-frequency response of such structures to magnetic field alone, and
high-frequency magnetic field cannot exist without the accompanying electric field.
Some scientists, including L. D. Landau | ] and A. M. Agranovich | ], have
used this argument to denounce the very notion of magnetic permeability at optical
frequencies. For example, Lev Landau made a famous claim | ] that “magnetic
permeability p(w) ceases to have any physical meaning at relatively low frequencies;
taking the difference p(w) — 1 into account would be an unwarrantable refinement”
(in the Russian original textbook it was worded even stronger: “illicit accuracy
exceeding” ). Landau’s argument is based essentially on an assumption that magnetic

susceptibility x(w) = (u(w) — 1)/(47) is only meaningful when the magnetization



current ¢V x M (curl of magnetization M = (B — H)/(4r)) is large compared to
the displacement current dP/dt; the total current in the definition (1.1) is the sum
of the two:

j=0P/dt+ ¢V x M. (1.8)

Here and everywhere in this Dissertation, it is assumed that conductivity is absorbed
into complex permittivity € = ¢’ +iw/c; thus the displacement current also contains
conduction current.

The claim of “no magnetism at optical frequencies” | | was accompanied

by a crude microscopic estimate leading to a strong inequality
x(w) ~ (wa/c)? < 1 (1.9)

for atomic substances at optical frequencies, where a ~ 2ap ~ 1 A is the size of an
atom.

Agranovich and Gartstein further quantified this argument in Ref. | ]
by providing an estimate of magnetization of a homogeneous cylinder with dielectric
and magnetic permeabilities €, p placed inside a solenoid of radius [. They came to
an interesting conclusion: the “true” magnetic moment of a body associated with
its p(w) will exceed its “fake” magnetic moment related to electric displacement

currents as long as
1 (wl\?

Combining this criterion with Landau’s estimate (1.9) and the requirement of macro-
scopic size of the sample, [ > ap, they reproduced Landau’s argument that the cri-
terion for “true magnetism” (1.10) cannot be satisfied in atomic systems at visible
frequencies, and thus optical magnetism is impossible.

To address this argument, we first note that in purely dielectric systems all
magnetic moment (as defined by Eq. 1.1) comes from displacement current oP /ot =
—iwP. Hence, magnetic susceptibility studied in this work is entirely “fake” in the
sense of Ref. [ |. However, we argue that inequality (1.10) cannot be used
to meaningfully discriminate between the “true” and “fake” magnetization even in
conventional magnetic substances. It seems possible to violate the condition (1.10)
even at relatively low frequencies in conventional materials, where the “legality” of u

has never been questioned (for example, if for some reason x is extremely small and



e is sufficiently large). For several reasons, it is impossible to separate the magnetic
phenomena associated with displacement and magnetization currents. First, it is
known that the magnetization current can be included into displacement current

(regardless of their absolute values), if non-local response, i.e. spatial dispersion, is

allowed | ]. After temporal and spatial Fourier transformations, this inclusion
can be written as | , , , ]
- ” A2k? _ kik;
(0. F) = . F) + o (1= 7 ) (5”- - k;) RERES

assuming, for simplicity, isotropic magnetic permeability p(w). This inclusion of the
entire electromagnetic response into dielectric response is possible at any frequencies,
radio and optical alike.

Second, from microscopic viewpoint, the orbital part of magnetization in
atomic systems comes from electric currents, as we noted above; it is hence analogous
to the &P /Ot contribution in classical electrodynamics. At the same time, in many
cases it is impossible to separate the orbital (E) contribution to magnetization from
the spin (3) part, rendering discrimination between two parts of magnetic moment
meaningless. Third, from the most fundamental, quantum field theory, point of view,
it was shown | ] that the magnetization related to intrinsic magnetic moment
of electrons (and their spin s) — probably the most real of all real magnetic moment
densities — is a quantum mechanical current constructed from relativistic electron
wave functions using Dirac y-matrices: j* = eypy*1p. We conclude that impossibility
to separate on the fundamental level the spin-related current from orbital current
does not invalidate the description of materials with magnetic permeability or makes
the notion of i less valuable to electromagnetic theory of materials. The real science
behind the undoubtedly correct claim of “no optical magnetism in conventional
materials” is the inequality (1.9).

Perhaps what was also implicit in Landau’s remark on magnetic permeabil-
ity, is the competition between magnetic-dipole (M1) and electric-quadrupole (E2)
transitions | |, which both lead to resonant terms in spatially-dispersive per-
mittivity eefr(w, k) of comparable strength (see the note on p. 155 of Ref. | D).
This coincidence sometimes makes it difficult to clearly separate magnetic phe-
nomena from effects of similar strength not describable by peg (for discussion, see

Ref. | ]). In this work, we will present two- and three-dimensional examples of

10



metamaterials where magnetic dipole phenomena cannot be confused with electric
quadrupoles (EQ), because symmetry-related selection rules prohibit EQ transitions
in MD resonances (Sec. 4.1 and Sec. 4.4).

Designing magnetic metamaterials for optical frequencies, unfortunately, has
proven to be much more challenging than for microwaves. The real challenge
comes from the necessity to keep the building blocks much smaller than wavelength.
Microwave structures can be made extremely sub-wavelength using several standard
microwave approaches to making a sub-wavelength resonator: enhancement of the
resonator’s capacitance by making its aspect ratios (e. g., ratio of the SRR’s radius
and gap size) high, inserting high-permittivity materials into SRR’s gap, and so on.
Simply scaling down NIMs from microwave to optical wavelengths does not work
for two reasons.

First, to develop a A/10 unit cell requires much smaller (typically, another
factor 10) sub-cellular features such as metallic line widths and gaps. For A =1 ym
that corresponds to 10nm features which are presently too difficult to fabricate. For
example, the classic SRR has been scaled down to A = 3 um, but further wavelength
reduction using the same design paradigm seems unpractical. Second, as the metal
line width approaches the typical skin depth [y =~ 25nm, metal no longer behaves
as an impenetrable perfect electric conductor (PEC). Optical fields penetrate into
the metal, and the response of the structure becomes plasmonic.

These difficulties have not deterred the researchers from trying to fabricate
and experimentally test magnetically-active and even negative index structures in
the infrared [ , , , ] and even visible | ,

| spectral regions. Because fabricating intricate metallic resonators on a
nanoscale is not feasible, much simpler magnetic resonances such as pairs of metallic
strips or wires | , , | or metallic nanoposts | | have
been used in the experiments. Unfortunately, so far there has been no success in
producing sub-wavelength magnetically-active metamaterials in the optical range
satisfying a < A\/2ng4, where ny is the refractive index of a dielectric substrate
or filler onto which magnetic materials are deposited. The reason for this is very
simple | |: in the absence of plasmonic effects, simple geometric resonators (such
as pairs of metal strip or wires) resonate at the wavelength A\ ~ 2ny4L, where L is
the characteristic size of the resonator. In other words, “simple” metallic resonators

are not sub-\ resonators.
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Fortunately, metallic resonators can be miniaturized using plasmonic ef-
fects | , , , ]. In the optical regime metals can no longer
be described as perfect electric conductors. Instead, they are best described by a
frequency-dependent plasmonic dielectric permittivity e(w) = €’ + i€”. For low-loss
metals such as silver, €’ < |¢/| and ¢ <« —1. Therefore, there is a significant field
penetration into metallic structures that are thinner than or comparable with the
skin depth Iy = \/27v/—¢ ~ 25nm. In metals €(w) is determined by the Drude
response of the free electron to the optical fields; metals are utilized in Chapter 4. In
crystalline semiconductors, the dielectric function is determined by Drude-Lorentz
response of optical phonons of the crystalline lattice; substances of this type are

considered in Chapter 3.

1.2 History and applications of electromagnetic meta-

materials

Since the rebirth of Veselago perfect lens idea in light of recently discovered
metamaterials | ) |, the number of publications on the matter and
related issues (such as plasmonics, phononics, metamaterials, nano-photonics, nano-
antennas, optical nano-circuit engineering, etc.) has sky-rocketed, and it continues
to grow. Here, only selected publications that may be seen as important milestones
in the field are highlighted.

One of the most well-publicized applications of electromagnetic metamateri-
als is negative refraction and related phenomena. The recent boom in EM metamate-
rial research was caused largely by a series of papers by John Pendry | ], David
Smith | , | and their collaborators, where it was demonstrated, for the
first time, how negative-index materials can actually be fabricated. Those authors
were certainly not the first ones to consider negative index of refraction. Brief his-
torical overviews of negative-index research have been recently published, e.g. by S.
Tretyakov | | and V. Shalaev [ ]. It is pointed out in | ] that negative
phase velocity was discussed as early as in 1904 by scientific giants Arthur Schuster
and H. Lamb. Professor L. I. Mandelshtam taught negative refraction as a plausible
physical phenomenon at Moscow University in the early 1940’s | |. Another
Russian scientist, G. D. Malyuzhinets considered implications of the backward-wave

media on the Sommerfeld radiation boundary condition | |. Importantly, he
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provided probably the first-ever physical model for a backward-wave medium. His
construction was a one-dimensional LC-circuit transmission line; such structures and
the methodology of RF circuit engineering are very actively pursued in the modern
metamaterial literature | , , , , ]. Amongst other impor-
tant publications on NIMs in mid-XX century we can point out D. V. Sivukhin’s
1957 paper | | and V. E. Pafomov’s 1959 paper | | where they showed
that negative index of refraction can be implemented as a double-negative medium
(DNM), i.e. a medium with simultaneously negative € and u, and R. A. Silin’s 1959
paper | ] describing periodic media (or photonic crystals, as we call them now)
with negative dispersion.

Another milestone in NIM history was put by Prof. V. G. Veselago (Moscow
Inst. Phys. Tech.) in 1967 | ]. Veselago introduced now-popular terms “right-
handed” and “left-handed” media, referring to the handedness of vector triplets
(E, H, E) in regular and negative-index media. He pointed to some of the counter-
intuitive properties of left-handed media, including inverse Doppler effect, backward
Cerenkov radiation and negative radiation pressure. Moreover, he discovered the
“perfect lens”: a flat slab of double-negative medium providing perfect relocation of
field distributions from one plane (object) to another (image). Veselago’s analysis,
however, was based essentially on geometric (ray) optics. He did not prove an
important property of his flat lens: that it actually “resolves” (in the sense explained
in Chapter 3) spatial details much smaller than the wavelength of light. In fact, in an
ideal superlens, there is no lower limit on the feature size; this curious mathematic
fact and its physical explanation (surface waves) had to wait until 2000 to be
discovered by J. Pendry, D. R. Smith and others | , ]

The timely combination of the mathematical proof of perfect imaging [ ]
and the experimental demonstration of negative-index structures | | caused a
considerable public stir over metamaterial research. However, initial excitement with
the “perfect lens” has largely decayed by the time this Dissertation was written. It
was proven | , , ] that any realistic losses in a NIM lens reduce
super-resolution essentially back to the Abbe’s resolution limit; this issue will be
discussed in Chapter 3. Sub-wavelength spatial harmonics providing enhanced res-
olution in a realistic superlens survive only within limited distances from the source
plane. Therefore, proof-of-principle studies of the original Veselago-Pendry-Smith

superlens have essentially concluded by year 2007 with demonstration of deeply sub-
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wavelength spatial resolution in the near field | , , |, which is
the subject of Chapter 3.

In response to the serious limitations in a realistic superlens, two approaches
to overcoming these difficulties have been proposed and actively studied in the
years 2001-2007. One approach is to overcome resistive damping in metamaterials
by mixing them with active (gain) media | , , , , ,

]. Multiple implementations of metamaterials with gain have been proposed,

ranging from simple mixtures of laser dye molecules with NIMs [ , | or
stacking layers of NIMs with layers of lasing media [ , |, to stimulated
emission via surface-plasmon modes | , , , , ) . A

comprehensive list of articles on this matter published by 2006 has been compiled
by V. Shalaev in Ref. | ]. He concluded that it should be feasible to use gain
materials to compensate for the losses introduced by plasmonic nanostructures in
NIMs. This conclusion is reaffirmed by the results of Section 4.3, and it motivates
the studies of optical NIMs presented in this work.

Another approach to overcoming the difficulties of the original superlens is
a novel phenomenon dubbed “hyperlensing” [ ]. A hyperlens of Refs. | ,

| is a cylindrical, essentially two-dimensional structure filled with anisotropic
indefinite medium | ]. By indefinite medium we mean that the signs of at least
one of its constitutive parameters, €cf, fleff O Neg, has different signs for different
polarizations of light (e.g., €;z€,y < 0); many of the metamaterials of Chapter 4
and the multi-layered superlens of Chapter 3 are indefinite media in certain fre-
quency bands. Hyperlenses proposed in Refs. | , | and implemented in
Ref. | | use indefinite permittivity tensor with negative radial component and
positive tangential component. The dispersion relation of light in indefinite medium
is hyperbolic:

K kg o

R 1.12
co ‘67*‘ 0 ( )

hence the absolute value of the wavenumber |E | is not restricted by the wavenumber
of light in vacuum ko = w/c. As a result, spatial Fourier harmonics with extremely
small wavelengths A\, = 27/ \E| can propagate in such media. The significance of the
hyperlens is that it converts evanescent waves emanating from the object (which
carry information about sub-wavelength features) into propagating waves and brings

them to the surface, thus magnifying the object from sub-A to supra-A dimensions.
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Since these waves are not evanescent (exponentially decaying), they need not be
exponentially enhanced, as they must be in the original negative-index superlens.
Hence the hyperlens is much less sensitive to resistive damping in metallic substances
used for its fabrication [ ] than the superlens. An interesting combination of
cylindrical geometry and multilayered superlensing dubbed “magnifying superlens”
has been recently proposed and experimentally demonstrated | ]. Another
variant of the magnifying hyperlens, with surface corrugations converting from
evanescent to propagating waves on the lens’ outer surface, has been proposed by
Liu, Zhang et al. | ].

It has become obvious in the recent years that with electromagnetic meta-
materials, some of the wildest mathematical constructions may become, to a limited
extent, a physical reality. For instance, the above-mentioned indefinite medium is
a model of Minkowski space-time, because one of the spatial coordinates plays the
role of time. Mathematically, frequency-domain equations (Poisson or Helmholtz)
effectively become hyperbolic (wave) equations. The idea of seeing anisotropic € and
1 tensors as metric tensors | ) | of a space-time manifold has proven to
be extremely fruitful in the past two years, resulting in a new boom of publications
on electromagnetic metamaterials [ , , , , . It
was shown by Pendry et al. | | that it is possible to choose the tensors e and
4 in a coating around an object in such a way that the whole structure has ex-
actly zero cross-section for all angles of incidence and all angles of scattering (see
Fig. 1.1(right)). Their solution, dubbed invisibility cloak, is universal: it provides
perfect concealment of objects of any size (compared with wavelength), any shape
and arbitrary composition. The solution is essentially a concentric spherical shell
with radii R, > R; that combines impedance-matching property (¢ = u) with a
conformal transformation that ensures proper bending of electromagnetic flux flow

around the inner core:

R, [r—Ri\’
= = , 1.13
Err Moy R, — R; < r ) ( )
= €5 = Hop = Ho (1.14)
€ =€ = = = = .
06 PP Koo Koo R, — R;
The inner surface of invisible shell is, in a sense, an event horizon | |: no ra-

diation can penetrate into or from the inner core, which is electromagnetically dis-
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connected from the outside world. Depending on specific applications, this isolation
can be seen as an advantage or drawback; for spying purposes a combination of an
invisibility cloak with a one-way mirror that leaks some radiation into the hidden
cavity (and perhaps actively compensates for this loss on the opposite side) would
be a lot more useful | ].

More recently, Pendry et al. have also provided the two-dimensional

version | | of their solution; cylindrical cloaking was immediately demon-
strated experimentally for microwave radiation | |. It was further
discovered | ] that an alternative “cloaking” solution exists in two dimen-

sions which, in fact, requires no magnetic permeability tensor. The solution of
Ref. [ | ensures perfect bending of electromagnetic flux, much the same way
as in Ref. [ | and Fig. 1.1(right), although it is not precisely reflection-free
or shadow-free. The latter two properties require perfect impedance matching
between the cloaking device and ambient medium, which is practically impossible
without manipulating the magnetic permeability p (impedance of a wave is a ratio
1'/2/€/2). This motivates further studies of magnetic metamaterials, as they seem

to be the only hope for implementing the perfect invisibility cloak | ].

1.3 Statement of the problem

In this Chapter, we have explained the importance and novelty of engineering
electromagnetic metamaterials. This motivates the studies of sub-wavelength phe-
nomena in plasmonic or phonon-polaritonic structures presented in this work. The
goal of the dissertation is essentially three-fold. First, we need to develop an analytic
theory and a general framework for understanding and designing electromagnetic
metamaterials. Second, we want to create some of the most challenging metamate-
rials that have not been convincingly demonstrated so far — double-negative meta-
materials (DNMs) for optical frequencies, covering parts of spectrum from near-UV
to mid-IR. Third, we want to demonstrate that at least one of the most exciting
(and historically first) applications of DNMs — the superlens — is a meaningful
scientific and technological tool enabling deeply sub-wavelength resolution. These
problems are solved in Chapters 2-4. Concluding Chapter 5 provides a summary of

results and outlines some of the unsolved questions that emerged in these studies.
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Chapter 2

Quasistatic Perturbation
Theory of Sub-wavelength
Plasmonic and Polaritonic

Crystals

In this Chapter, we introduce an effective medium theory of sub-wavelength
metallic, semiconducting and dielectric nanostructures that encompasses their elec-
tric, magnetic and magneto-electric response at optical frequencies. Theory devel-
opment is motivated by the recent surge of interest in electromagnetic metama-
terials: nanostructured composites with unusual or naturally unavailable electro-
magnetic properties. Unlike numerous other studies, this work focuses on strongly
sub-wavelength (unit cell size a < A\/n) structures inasmuch as non-subwavelength
composites, in general, cannot be described with effective medium parameters. The
theory starts from purely electrostatic description of non-magnetic composites and
uses plasmon eigenfunctions as the basis. Magnetism and other retardation phe-
nomena are taken into account as perturbations of electrostatic equations.

The theory consists of two major components: (1) definitions for effective
medium parameters in terms of quasistatic electric fields, and (2) methodology for
computing these fields in the form of eigenmode expansions. As a result, sim-

ple closed-form expressions for effective dielectric permittivity e.g(w) and magnetic
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permeability ueg(w), as well as optional magneto-electric response functions, are
obtained. This new theory is entirely general in the sense that it is applicable to
nano-structures with arbitrary geometry of plasmonic (or polaritonic) inclusions.
For a general geometry of inclusions, the theory is semi-analytical: numerical coef-
ficients in analytical formulas are typically computed numerically from electrostatic
eigenfunctions of the relevant plasmon states. This semi-analytical approach can be
seen as an efficient characterization tool for electromagnetic metamaterial design:
in most cases, only a few resonance eigenstates need to be found numerically in or-
der to estimate the optical properties of a nanostructure in a wide frequency range.
Several examples of negative permeability and negative index plasmonic metama-
terials are used to illustrate the theory. Finally, theoretic description is validated
by experimental data on extraordinary optical transmission through sub-wavelength

hole arrays in crystalline silicon carbide films.

2.1 Motivation for theory development

Presently, the only sufficiently general method for theoretic characterization
of electromagnetic metamaterials is by carrying out fully electromagnetic scattering
simulations, obtaining complex transmission (¢) and reflection (r) coefficients, and
then calculating the effective parameters €. and peg of the metamaterial from r
and t using inverse Fresnel-Airy formulas for a homogeneous magneto-dielectric slab,
as described in a number of earlier works | , | and Section 4.2.4. Such
direct approach is lacking the intuitive appeal and rigor of the earlier microwave work
that provided semi-analytic expressions for both €qg [ | and pesr | .
Moreover, the extracted parameters of a periodic structure exhibit various artifacts
such as anti-resonances | ] that make their interpretation even less intuitive.

Recent progress has been made in rigorously calculating the quasistatic
dielectric permittivity e of plasmonic nanostructures | , , ,

| exhibiting optical magnetism. In fact, the frequency dependence of eys(w)
of an arbitrary periodic nanostructure can be reduced to a set of several num-
bers | , | (frequencies and strengths of various electric dipole reso-
nances) that can be obtained by solving a generalized eigenvalue equation. How-
ever, there has been a very limited progress in calculating the magnetic permittiv-

ity of such structures. Only for several specific structures has peg(w) been calcu-
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lated [ , , |, usually under highly restrictive assumptions.

It would be highly desirable if a simple formula expressing peg(w) in terms of
several easily computable parameters could be derived. The increased complexity of
new devices based on magnetic metamaterials | ] further highlights the need
for such rapid and intuitive determination of peg(w). Simply put, it is important to
obtain rigorous expressions for peg(w) that are similar in their form and complexity
to those available for eqs(w). In addition, the formulas for e,s(w) themselves need
further refinement. For example, when the size of a plasmonic nanostructures
becomes a sizable fraction of the wavelength (as small as A\/6), the assumption
of ect & €qs loses accuracy. One of the reasons is that the electric dipole resonances
acquire a considerable electromagnetic red shift | ] that needs to be accounted
for. The main objective of this Chapter is to derive, in the limit of @ < A, accurate

formulas for eqf(w) and peg(w).

2.2 Effective quasistatic dielectric permittivity of a

plasmonic metamaterial

In this Section, we present the foundation of electromagnetic effective
medium theory of sub-wavelength nanostructures: plasmon resonance theory of
electric response in composite media. This theory consists of two basic components:
(a) definitions of dielectric permittivity tensor, which contains full information
about electric response of bulk nanostructures (subsection 2.2.1), and (b) solutions
of electrostatic Poisson equation driven by external electric field in the form of
plasmon eigenmode expansions (subsection 2.2.2). Our theory is a somewhat
generalized formulation of the Bergman-Stroud theory of plasmon resonances in

binary composite media [ , , ].

2.2.1 Capacitance and dipole moment definitions of effective per-
mittivity

In this subsection, several definitions of effective permittivity are introduced.

It is shown analytically that in the quasistatic limit all of these definitions are

mathematically equivalent forms of the same definition, which we call the “dipole

density” definition. The deep-laid origin of this definition will be elucidated in
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subsection 2.4.1.

The most simple and intuitive method of introducing the effective dielectric
permittivity of a complex periodic plasmonic metamaterial is to imagine what
happens when a single cell of such structure is immersed in a uniform electric
field. To better illustrate the notion of effective permittivity, calculations in this
subsection are simplified by assuming that the unit cell is a rectangular block of
dimensions a, x a, x a, with the center at the origin of Cartesian coordinate system,
zyz. The unit cell is assumed to consist of a plasmonic inclusion with a complex
frequency-dependent dielectric permittivity e(w) embedded into a dielectric host
with the dielectric permittivity €;. The plasmonic inclusion does not have to be
connected and it may intersect the unit cell boundary. We further assume in this
subsection that the structure has three planes of symmetry (zy, zz and yz). In
that case the effective permittivity tensor is diagonal: €qs = diag(efy, e¢f, €2Z). This
restriction will be lifted in subsection 2.2.2, where effective permittivity tensor is
found in the most general form.

Applying a constant electric field Ey = &,Foy + éyEoy + €-Ep is equivalent

to solving the Poisson equation for the potential ¢:
v (e%) —0 (2.1)

on the rectangular domain V' = [—a,/2,a,/2] X [—ay/2,a,/2] X [—a./2,a./2]. The
external electric field E, determines the boundary conditions satisfied by ¢: (1)
0(a0/2..2) = d(~ay/2,9,2) — Eoas, (2) 0w, ay/2,2) = o, ~a,/2,2) — Eoyay,
and (3) ¢(z,y,a,/2) = ¢(x,y, —a,/2) — Ep.a,. We now view the unit cell of a meta-
material as a tiny capacitor immersed in a uniform electric field which is created by
the voltage applied between its plates. For calculating egg” assume that the voltage
Vo = Eogza, is applied between its sides = —a,/2 and © = a,/2, and that Ey, =
Ep, = 0. From the potential distribution ¢(z,y, z) the required surface charge den-

sity on the “capacitor plate” x = —a, /2 is o(y, z) = (7 - 5) = —€q0z0(—ay/2,y, z).
+ay/2 +a-/2
ay/2 f az/2
capacitor plate x = a, /2 is oppositely charged. The capacitance of this capacitor,

The total charge on the capacitor is Q = [ dz o(y, z). The opposite
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C = €¥(ayaz)/ay is thus given by C' = Q/Vp, or

T
q

€qgs — — 20\ —Qx/2,Y,2) =
4 E()ayaz /a v/2 Y /az/2 ¢( Y )

G/y/2 +az/2
dzDy(x = —ay/2,y). 2.2
anyaz - ay [ p /2,9) (2.2)

The egf component is determined similarly by applying the voltage Vy = Eyyay
between the capacitor plates y = —a,/2 and y = a,/2. Constants e, ey and
€2 depend on the frequency w because of the e(w) dependence of the plasmonic
permittivity. Therefore, extracting the frequency-dependent components of €4
tensor involves scanning the frequency w, repeatedly solving (2.1) with the described
boundary conditions, and applying the capacitance-based definition of €45 given by
Eq. (2.2). We refer to this technique of extracting the electrostatic e.g-tensor as the
“frequency scan” technique. As it turns out, there is a faster and more physically
appealing approach to calculating egf(w), described in Sec. 2.2.2.

We note that the definition of quasistatic permittivity given by Eq. (2.2)
coincides with the electromagnetic definition of e.g,

(ayaz)_1 faz/%d faz/2 dzDy(—ay/2,y, 2)

:I::E
o = R : (2.3)
0zt [%2 Ay (x, —ay /2, ~a-/2)
introduced earlier by Pendry, Smith et al. | ], which was derived | ] from

the integral form of Maxwell’s equations.

The capacitor model can be shown to be equivalent to another intuitive
definition of €45 based on the dipole moment density. The total dipole moment
of a unit cell p = fvﬁ dV  (where P = %E is the polarization density) is
linearly proportional to the external electric field Ey. On the other hand, the dipole
moment of a block of homogeneous medium with anisotropic permittivity tensor effs

is p; = (eqs — 5”) . Therefore, €4s can be defined by requiring that

axayaz( — 09 Ey; = /dx dy dz (e — 1) E;. (2.4)
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Because f dx dy dz F; = azaya.Fo;, this dipole density definition of e4s simplifies to
azayazeéjsE(()’;—) = /dw dy dz ng) = /d:r dy dz € EZ-(k), (2.5)

where the external field E(()];) = Fydj;, applied to the unit cell produces the total
internal field E(k), and k = 1,2,3. The internal electric fields are computed by
solving Eq. (2.1) subject to its Eék)—dependent boundary conditions. Equation (2.5)
is equivalent to the capacitance-based definitions of ey given by Eq. (2.2). Indeed,

in periodic structures the flux of electric induction D in, for example, z-direction is

conserved:
ay/2 az/2 ay/2 az/2
Oy dy/ dzD,(x,y, z / dy/ (OyDy +0.D) =0, (2.6)
—ay/2 ax/2 ay/2 az/2
because D = —eV¢ is divergence-free (6 D= 0) and periodic in coordinates y and

z. In other words, the identity | D,dz dy dz = a, [ Dydy dz holds, which completes
the proof of equivalence between definitions (2.2) and (2.4) in the limit of vanishing
phase shift per unit cell.

Owing to an identity

/VdVDi = %gds zi(D - t), (2.7)

where 7 is the unit normal to the closed surface of integration S = 0V (unit cell

boundary), Eq. (2.5) may also be presented in a surface integral form:
”E = f dS z;(D®) . 7)., (2.8)

where V' = agaya; is the volume of the unit cell. This surface integral indeed reduces
to the surface charge on the capacitor plates. For example, for z-polarized external
field (k = 1) we obtain

72 48 (D 7i) = (—a2/2)(~Q) + (a2/2)Q = a,Q, (2.9)

providing another proof of equivalence between definitions (2.2) and (2.4). Note

that Eq. (2.8) can be used for determining all (diagonal and off-diagonal) elements
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Figure 2.1: Potential distribution ¢ inside a lattice of (a) split rings (left), and
(b) metal strips separated by a metal film (right) corresponding to electrostatic
resonances responsible for the magnetic response. Arrows: E= —6g{>. Electrostatic
resonances occur at (a) €..s = —82 (A = 1.5 um) for split rings, and (b) €,.s = —8.8
(A= 0.5 pm) for strips, assuming that the plasmonic material is silver.

of tensor €q¢ of an arbitrary nanostructure (with or without inversion symmetry of a
unit cell), because the number of unknown components of e is equal to the number

of equations.

2.2.2 Electrostatic eigenvalues and eigenmode expansions

The frequency scan technique described in subsection 2.2.1 is a simple yet
time consuming approach to calculating the quasistatic response of sub-wavelength
metamaterials. Electrostatic eigenvalue (EE) approach [3592, SEBO1, SU04a] allows
one to calculate this response for a wide range of frequencies by evaluating the
position and strength of the electric dipole-active plasmon resonances in that range.
As we shall see from examples below, there are only a few eigenmodes that contribute
to €gs, making the EE approach extremely efficient. Additional theoretical insights
(such as the Hermitian nature of ey that is not evident from Eq. (2.5)) can be gained
from the EE approach. In addition to reviewing some of the known facts about
the EE approach [3592, SFB01, SBIK04] to calculating €45, we extend the original
theory of plasmon resonances to include plasmonic metamaterials with continuous
plasmonic phase. Such structures have become increasingly important in the field
of negative index materials (NIMs) since the introduction of the so-called fishnet
structure [ZFP 705, DEW00], as well as the SPOF structure [LF'US06, LEUSO7,
US07b, US07a].
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One way of obtaining eigenvalue expansions is the generalized eigenvalue dif-
ferential equation (GEDE) [ , |. Another, essentially equivalent, method
is based on a surface charge integral equation (SCIE) [ , |. The steps
of the GEDE approach are briefly described here, with the details appearing else-
where [ , ]. We assume that a periodic nanostructure consists of two
dielectric, non-magnetic materials: one with a frequency-dependent permittivity
€(w) < 0 and another with permittivity e;. Local permittivity of such a structure
TL)G(F)]’ where §(7) = 1 in the subdomain V}, C V representing
the plasmonic inclusion and §(7) = 0 in V\V,, and s(w) = (1 — e(w)/eq) " is the
frequency label.

First, the GEDE

is €(F,w) = €4 [1 -

v [H(F)%n} = 5,V2, (2.10)

is solved for the real eigenvalues s,. Spectral properties of the GEDE are discussed
in detail in | , | and references therein. Second, the solution of Eq. (2.1)

is expressed as an eigenmode expansion [ ]

n ((z)m ¢0)
— Sn ((z)m an)

O = o)+ 3 S én(F), (2.11)

n>0

where the scalar product is defined as (¢,v) = [, dVOV¢* - Vb, and g = —Ep - 7
represents the uniform external field. Third, the quasistatic permittivity is calcu-
lated by substituting ¢(7) from Eq. (2.11) into any of the equivalent definitions of
€qs- For example, the dipole moment definition (2.4) leads to the following analytical

expression for €qs:
g v, f4 v ij
€s(w) = €a (%- -0 BN, (2.12)

where

£ =V (@ny0) (6, 25) [ (dns 6n) (2.13)

are the electric dipole strengths of the n'* resonance, normalized to the volume
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Vp = fvp dV of the plasmonic phase contained within one unit cell, and

f=0i=> fi (2.14)

n>0

is the measure of the electric response of the continuous plasma phase. From the
expression for fﬁj we note that only dipole-active resonances having a non-vanishing
dipole moment (¢, ;) contribute to the dielectric permittivity. Example of such
resonances is shown in Fig. 2.1(a) for the split rings (SR). But the electrostatic
resonance of the SPOF structure shown in Fig. 2.1(b) is not dipole-active. It does
not contribute to €45 but, as will be shown in Sec. 2.3.1, contributes to the magnetic
permeability.

Application of the equivalent capacitance definition given by Eq. (2.8) leads
to the same Eq. (2.12) with the same F5. However féj is obtained in a different

(and more instructive) form:

i~ LN @) [ ey 000 2.15
o= %%(%%)7{ Yon’ 219

where 9/0n is the normal derivative, ¢ = Vip $ dSH:L‘i%, and surface integration
is carried out over the boundary of a unit cell. Combining Eqs. (2.14),(2.15) results
in a generalized sum rule for plasmonic oscillators in nanostructures that contain a
continuous plasmonic phase.

The non-negative quantity fy vanishes if the plasmonic phase of the metama-
terial does not form a continuous path in the direction of the applied electric field, a
path that would connect the “capacitor plates” and enable the current flow [ ].
The new expression (2.15) for the residue fy provides analytical proof of this pre-
viously noted fact. We observe that the surface integrals in (2.15), as well as ¢**
vanish whenever the boundary of a unit cell does not cross the polaritonic phase. It
is evident that a repeating unit cell can always be chosen in non-percolating polari-
tonic crystal so as to avoid any intersections with polaritonic particles, even though
in densely packed crystals it might be necessary to choose a non-rectangular, non-
convex unit cell different from the traditional Wigner-Seitz shape. Thus, the pole
of €45 at s = 0 exists if and only if the negative-e phase is continuous.

To illustrate the eigenmode expansion method, we chose the two-dimensional
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Figure 2.2: Effective dielectric permittivity ¢/§ of the SPOF (Sec. 4.3) structure
(with the film in yz plane) calculated using two methods: electromagnetic EMPR
procedure described in Sec. 4.2.4 (solid and dotted curves), and quasistatic formula
(2.12) (dashed and dash-dotted). Red-shifted green dashed curve differs from the
black dashed one by the frequency shift (2.76) discussed in Sec. 2.5. Structure
parameters: periods a, = 100 nm, a, = 75 nm, strip width w = 50 nm, strip

thickness t; = 15 nm, film thickness dy = 5 nm, strip separation in a pair h =

= Ime
gs

- = Reg (uncorrw)
gs n

15 nm; plasmonic component: silver (Drude model with parameters from |
immersion medium: e¢; = 1.
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Strip Pair One Film (SPOF) | ) , , | structure intro-
duced in Sec. 4.3.The real and imaginary parts of the yy-component of €y corre-
sponding to electric field along the film are plotted as dashed and dash-dotted lines
on Fig. 2.2, respectively. The green and black dashed lines show Re egf with and
without the retardation correction to the frequency of the plasmon resonances. It
is generally known | | that frequencies of the optical resonances of finite-sized
nanoparticles (with the typical spatial dimension w) are red-shifted from their elec-
trostatic values because of the retardation effects proportional to n? = w?w?/c%. As
shown in Sec. 2.5, these shifts can be expressed as corrections to the frequency labels
Sni Sp = 5,(10) + 8%2)7’]2, where sﬁ?) are the electrostatic resonances and sg) are the
retardation corrections computed in Sec. 2.5. To obtain any meaningful comparison
between the electromagnetically-extracted values of e.4 and the electrostatic egs,
these corrections must be included even for the structures as small as A/10.

In the chosen range of frequencies, there are only two dipolar resonances that
contribute to €¥¥; quasistatic curves in Fig. 2.2 are computed from the Eq. (2.12)
with the following numerical coefficients: conduction pole residue f§¥ = 0.043,
electric resonance strengths f{¥ = 0.0045, f3¥ = 0.0005, and pole positions s, =
57(10) + 37(12)772 with sgo) = 0.0426, sgo) = 0.1630 and 552) = —0.007, sg) = —0.004.
The other component of €4 has no resonances between A = 500 — 800 nm and
remains approximately constant, €ff ~ 1.2 in the frequency range covered by
Fig. 2.2. Quasistatic calculations of egé’ are compared with the €., = € of a
single layer of SPOF extracted from the first-principles EM scattering simulations
using the “standard” Effective Medium Parameter Retrieval (EMPR), described in
Refs. | , , | and Section 4.2.4. Electromagnetic simulations
are performed using FEFD method implemented in the software package COMSOL
Multiphysics | ]. Overall, agreement between e and €4 is very good every-
where except near the strong absorption line associated with electric resonance at
~ 700 nm. Inside that band (680 — 720 nm) the shape of ey strongly deviates
from Drude-Lorentz resonance shape. We speculate that this irregularity of €ep, is
related to the large phase shift per cell § = k,a, = Re [\/e@f}waw /c neglected in the
quasistatic approximation based on periodic electrostatic potentials. More accurate
description of €. should include spatial dispersion | ]. Development of an ad-
equate theory of this phenomenon in sub-wavelength plasmonic crystals (SPCs) is

under way.
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2.3 Electromagnetic susceptibilities of plasmonic

nanostructures

In Section 2.2 we have described several theoretical approaches to calculating
€eff = €gs for sub-wavelength nanostructures. A much more challenging problem is
addressed in this Section: computing the magnetic permeability peg(w). One of
the intriguing results is that peg(w) can be strongly dependent on the propagation
direction for low-symmetry structures such as the recently described MSP (Sec. 4.2)
and SPOF (Sec. 4.3) metamaterials.

In this Section, a simplified approach to the calculation of effective medium
parameters is presented. We derive electric and magnetic polarizabilities of a sin-
gle plasmonic “inclusion” (which may consist of more than one particle). Optical
properties of periodic or random ensembles of identical inclusions (with the average
distance between particles L much smaller than wavelength \) can be estimated from
single-particle polarizabilities using effective medium theories | ]. A more accu-
rate and thus more complicated theory that explicitly takes periodicity of nanopar-
ticle arrangement into account and intrinsically incorporates near-field interactions

between adjacent cells will be developed in Section 2.4.

2.3.1 Electric and magnetic response to the lowest order in retar-

dation parameter

In this subsection, we present a perturbation theory that uses electrostatic
effective medium theory, formulated in Section 2.2, as the starting point. Unlike ear-
lier two-dimensional treatments [ |, this theory is applicable to both two- and
three-dimensional structures. Calculations in this subsection are presented for three-
dimensional plasmonic (or polaritonic) structures; expressions for two-dimensional
systems are easily derived by replacing the measure of integration dV — a.dzxdy,
where a, is an arbitrary “period” in the z-direction, which can be set to a unit
length. The expansion parameter of this theory is the dimensionless retardation pa-
rameter 17 = wa/c. The goal of this subsection is to obtain a self-consistent analytic
expression for electric and magnetic polarizabilities of a plasmonic nanostructure in
the form of resonance expansions. For simplicity, we assume that the structure is

an isolated particle or a finite collection of particles placed in transparent dielectric
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medium with permittivity ¢4 > 0; the total volume of plasmonic phase, fvp dv, is
denoted V,.

In conventional atomic crystals, low-frequency magnetism stems mostly from
internal and orbital magnetic moments of electrons. In dielectric structures, includ-
ing plasmonic metamaterials, magnetism originates from polarization and conduc-
tion currents; total local current equals jioy = —iw(e — 1)E /4m where the local
complex permittivity € also contains conductivity. These currents determine both
electric and magnetic polarizabilities of a particle, xg and xps. We shall define
these quantities in such a way that they vanish when the dielectric permittivity of
the particle, €(w) equals permittivity €4 of surrounding medium. To calculate these
relative polarizabilities, we use “excess” currents, jep = —iw(e — ed)E /4m. Excess
currents vanish outside of the plasmonic phase.

To describe the response of plasmonic inclusion, it is convenient to decompose
electric and magnetic fields into “incident” and “scattered”, i. e. E = Em +Esc and
H= ﬁm +H sc, such that ESC and H sc vanish in the absence of plasmonic structure.
For the incident fields, we use a plane wave in the uniform medium that surrounds
plasmonic inclusion: E;, = EoeiE'F and H;, = ﬁoeiE'F, where \la =k = /eqko and
ko = w/c. The incident fields are transverse, and Hy = NGRS Ejy], where 7 = k/|K|
is the unit vector in the propagation direction. Thus the incident fields are purely
solenoidal, V- Em =Vv- FIm =0.

The electric dipole moment of the particle (in excess to the uniform ambient
medium) is defined as g = [dV (e — €q)E/4m. The magnetic dipole moment is
calculated as 1 = [dV M, where M = [ X jes] is the magnetic polarization
density. For a particle of a general shape, four electromagnetic polarizabilities can
be introduced according to the linear relations between excited dipole moments and

the amplitudes of incident fields:
pi = XgEOj + X?\Z[EHOja (2.16)

m; = XiEj'MEOj + X?&Hﬂj. (217)

Polarizabilities xo (o« = E, ME, EM, M) have dimensions of volume and are pro-
portional to the volume V), of the plasmonic inclusion. Note that the amplitude
vector Eo (and, correspondingly, ﬁo) of the incident wave can be complex in the

general case of elliptic polarization.
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Our goal is to determine the four tensors x,, each in the lowest order
of the perturbation theory that treats retardation effects as corrections. Optical
magnetism, that is, magnetic polarizability x,s, appears in the O(w?) order of
this perturbation theory [ , |. Magneto-electric polarizabilities x /g and
XEMm appear in the O(w) order. Electric polarizability is determined mostly by
electrostatic effects and is dominated by its zero-order part.

In accordance with this ordering, we calculate electric and magnetic dipole
moments in the two lowest non-vanishing orders, namely, 7 = p{® + 1) and
m =m® +m? and extract all the four polarizabilities in Eq. (2.16,2.17) from
linear relations p(®) = XEE07 ) = XMEﬁO, mt) = XEMEO, and m® = XMﬁo-
We note that since j in the definition of magnetic moment 17 already has one factor
of w, to determine x s (and xgps) in the lowest order it suffices to calculate E with
the first-order electromagnetic corrections.

The single-particle polarizability tensors can be used to calculate effective
medium parameters of the medium that consists of ensembles of identical particles
dispersed in a uniform dielectric substance with permittivity e;. A strongly inho-
mogeneous medium supports propagation of light waves over long distances in two
cases: (a) when the size of individual scatterers is much smaller than the wavelength
A in surrounding medium, or (b) when the structure is periodic. Case (a) is known
as the effective medium regime, while case (b) is referred to as the Bloch-Floquet
regime or a photonic crystal regime. In the effective medium regime, appropriate
quantities to describe the propagation of a plane wave are dielectric and diamagnetic
susceptibilities of the compound medium. In general, for a linear medium there are
four such (tensor) quantities. In the so-called Tellegen representation, they relate

electric and magnetic induction with electric and magnetic field intensity | ):

ot (2.18)

In the most general case where magneto-electric susceptibilities feff, éeg do not
vanish, the medium is called bianisotropic | ]. To the lowest order in the particle

number density | |, single-particle polarizabilities are related to effective medium
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parameters by linear relations

€d = ey + dmx D)V, (2.19)
€9 = 4nx o)V, (2.20)
e = 8 + dmxd IV, (2.21)
¢ = dnxL, V. (2.22)

These identities can be found by comparing the total electric and magnetic moments
inside a volume V that contains one plasmonic inclusion, with those of a block of
homogeneous effective medium | |. Here, volume V' represents specific volume
per particle in the case of random distribution, or the volume of a unit cell in a
periodic structure. More accurate effective medium theories that account for the
influence of surrounding effective medium on each particle in the ensemble | ]
can be developed and will be reported elsewhere | ].

Now we proceed to evaluating the scattered fields, ESC, and subsequently,
each of the four polarizability tensors. The scattered electric field E,. can be
decomposed into the potential and solenoidal parts, ESC = _»pot + Esol = —ﬁ@sc +
ik:offsc, where V - A'SC = 0. Note that ffsc is related to the scattered magnetic
field: ﬁsc =V x ffsc. It can be demonstrated ffsc is first order in 7, making
the contribution of ffsc to Esc second order in 7. Therefore, the lowest-order
(n?) expression for xj; can be found without directly computing Ay, or scattered
magnetic fields, with a limitation discussed below using the example of a single
sphere.

The potential part of E,. is determined from V - D = 0, resulting in
ﬁeﬁpot = —VeEj, — VeEgy = — (Em + ikogsc> . 66, (2.23)

where k:gffsc can be neglected to order n?. For completeness, we note that ffsc is
computed, to the lowest order in 7, as
— V24D = ikgeV DO — ik (¢ — eq) B (2.24)

wmn "

Following the eigenvalue expansion formalism introduced by Bergman et
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al.[ |, @ is expanded as Py (7) = >, o cn®dn(7), where ¢, are electrostatic
eigenfunctions of the GEDE with homogeneous boundary conditions ¢, = 0 at
infinity. This eigenmode expansion is justified because the full set of ¢,,(z) functions
is a complete basis in the space of solutions to Laplace equation [ ] with the
stated boundary conditions at infinity. The coupling coefficient ¢, between Eln(ﬂ =
EoeiE'F and the n*" plasmon eigenmode is found by applying the EE approach
described in Sec. 2.2.2 to Eq. (2.23):

sn [(Vén)EmbdV

2
@) — s [(Famzeay O (2.25)

Cp = —

Expanding the plane wave E;, = Eget* @ in the powers of k up to the first
) , (1)

order, we obtain ¢, = ¢, + ¢, ', where

1 Sn = [(Vn)(@-7)™m0dV
Ey - —
s(w) — sp J(Vor)?20dV

,m=0,1. (2.26)

The scattered field E. is now used to calculate o and m, and, consequently,
Xo- For simplicity, we choose the center of mass of the plasmonic inclusion as the
origin of coordinate system, such that [79dV = 0. For the zeroth-order electric

dipole moment, we obtain

7O = /E_Ed (Eo+zc V¢n>dV:

n>0
_ —%Edﬁo _ Eid Sn f(Van de_f EQ ng)n)gdv (2.27)
4ms 4ms §— Sp f(V¢n)29dV

After simple transformations and using S(S i B sjsn - %, electric polarizability
tensor is found: N N
.. V €d fZ] 1]

iy . 'p JO_ n 2.28

XE 4m ( s + n§>:0 s—58p, ]’ (2.28)

where the dimensionless coefficients in the numerators are

fij _ f ( z¢n deV ]¢n (2 29)
" AR |
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f=0i=> _fi. (2.30)
n>0
It is worth noting that effective permittivity of a particle ensemble calculated by
substituting the quasistatic polarizability (2.28) into effective medium formula e?& =
€ddij + 47rxg /V is precisely the same as the exact electrostatic result (2.12).

In the next order, electric dipole moment is given by

S — _ [ gy — 4N [
P 47?8/va dv 4m§00n prndv. (2.31)

The term with fvp Efi)dv, where EZ&? = Eoi(E - 7) is eliminated by the proper
choice of the origin of coordinates (in the particle’s center of mass). Expressing Fy

through Hy as Eg = 6;1/2 [ﬁo x U], and using k = k’oe;ﬂ, we find the coefficient of
proportionality between 7 and ﬁo:

oV, (GY Gyl
X]\]/[E = —ZkOEdE (S + Z 5 — s, ) (2'32)
n>0
where -
B O; oy )dV 0-7) (€ - [U X Vp])dV
g _ IO 500G hav .
Vp i, (Von)2dV
Gy =-> GU. (2.34)
n>0

Next, we calculate the magnetic moment of the plasmonic inclusion. In the

first non-vanishing order,

8rs s

- Z’foed/ 7y BOgy — _tkoca Zc,@/ 7 X VndV. (2.35)
Vo n>0 Vb

The term with pr 7 x EodV is eliminated by our choice of coordinate center. After
simple transformations, we find the coefficient of proportionality between m(!) and
Eo:

. v, (HY H?
P = ikoeg2 | =% = 2.36
XEM Z06d47r< S +§s—sn>’ ( )
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where
i — 1 fv [ x Vu])dV fv jfn)d
n 2 fovp V¢n 2dV

: (2.37)

HY ==> Hj. (2.38)

n>0
In the next order, magnetic dipole moment is given by m(?) = “g'% fvp 7 X
EMV, where E® = Eoik(U-F) — > >0 c%l)ﬁgbn Expressing again Ey through Ho,

we find magnetic polarizability as the coefficient of proportionality between m®

and H()Z

y k2eqVi, [ Fi9 Y

ij __MoSdVp [ Fo n
XM — An ( s +Zs—8n> ’ (2:39)

n>0
where
i _ 1 fv [P % Vn])dV fv T 7)(& - [T x V])dV (2.40)
n 2 2 ’ ’
Vo, (Vo 2V
| y
By = / (@ 7) (5 7)6ij — vij] dV/Vy = D FJ. (2.41)
2 Vp n>0

2.3.2 Magnetic polarizability of a single sphere

Unlike féj , which vanishes in the case of an isolated particle due to the
identity (2.15), the quantities Féj, Géj and Héj may not vanish. The pole at s =0
in expressions (2.32,2.36,2.39) is unphysical and indicates that the lowest-order (in
frequency) expressions for xas, xapp and gy should not be used in the limit of
very large negative dielectric contrasts, i.e. when 0 < s(w) < 1. In this regime,
plasmonic particles behave as good conductors. Expulsion of magnetic field from
plasmonic phase becomes so strong, that, in fact, scattered magnetic field H sc 18
nearly equal in magnitude (and opposite in sign) to the incident magnetic field Hjp.
Present theory treats H sc as perturbation and is therefore inaccurate in this regime.
This limitation manifests in Eq. (2.39) as an unphysical pole at s = 0. Its origin
can be seen from Mie theory of a dielectric sphere.

For a sphere, all plasmon resonances have zero magnetic strength, FY = 0;
this will become obvious from Eq. (2.54) in Section 2.3.4. Hence, the only remaining

quantity in formula (2.39) is ng. Assuming that k|jz and Hol|z, and eg = 1, we
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2z __ z2 _ 1 5 : :
find Fj* = fvp 5dV/V, = 3547 R’/V,, where R is the radius of the sphere and
V, = 4n/3R3. Our formula (2.39) gives xp;r = X35 = —k*V,F§*/s(w). Thus, we
obtain xas/R* = 3 (e—1)(kR)?. The exact Mie result for the magnetic polarizability

of a dielectric sphere in vacuum is

Xym  3ie~™cosn — L cot mnysing — (1 — -5)sinn/n

XM _ A , , (2.42)
R3 23 1+ Lcotmn+i(l—-15)/n

where 7 = kR and m? = ¢(w). Equation (2.42) can be simplified in two limiting
cases: (a) n < 1 and arbitrary m, and (b) |m?| > 1 and arbitrary 1. The former
expansion results in

a 1
X /R = g5 (m? = D+ 0(n'"), (2.43)

in agreement with Eq. (2.39). The latter expansion results in

XE\I}) 3ie~"(ncosn — sinn)
AM Skl . (2.44)
R3 23 (n +1)

By taking the limit n = kR — 0 in XS\Z), we recover the textbook result for magneti-

zation of a perfectly conducting small sphere: Xg\l/i,) = —1/2R3. Therefore, XE\C/L[) over-
estimates the magnetic polarizability of the sphere whenever n < 1 but |mn| > 1.
The quasistatic theory developed here suffers from the same limitation. Never-
theless, the analytic expression for the magnetic polarizability xas of a plasmonic
nanostructure given by Eq. (2.39) answers several conceptually important questions

outlined below.

2.3.3 Dependence of the magnetic polarizability on the propaga-
tion direction

The magnetic strength F,7, given by Eq. (2.40), may depend on the orien-
tation of the wave vector k (or electric field Eo) in the plane orthogonal to H.
Consequently, any component of magnetic polarizability XZ]'\J/'[ near a magnetic plas-
mon resonance can be anisotropic. This happens because the magnetic strength
is a product of two factors: (i) coupling of the incident plane wave to a plasmon
mode, and (ii) magnetic moment contained in the excited mode. While the lat-

ter is independent of the direction of k or Eo, the former coupling is determined
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by the inhomogeneity of the electric field EgeiE‘F and, therefore, depends upon the
orientation of the orthogonal pair (k, Ep).

We use a two-dimensional structure, a metallic strip pair (see Sec. 4.2), to
illustrate the anisotropy of scalar x s = x737 in optical metamaterials. This structure
has attracted a great deal of attention as a magnetic component of NIMs [ ,

]. Quasistatic values of the effective permeability from Eq. (2.39,2.21) (la-
beled as jiqs) are compared with those (labeled as jiem) extracted from the single-
layer electromagnetic scattering simulations using Effective Medium Parameter Re-
trieval (introduced in Section 4.2.4). The two illumination geometries and the re-
sults are shown in Fig. 2.3. Unit cell dimensions are given in the caption to Fig. 2.3.
Both quasistatic and electromagnetic results plotted in Fig. 2.3 demonstrate that
the strength the magnetic plasmon resonance excitation depends strongly upon the
direction of the wave vector k of the incident wave. Maximum deviation of Leg from
unity is an order of magnitude larger when k is perpendicular to the strips. The
high degree of anisotropy of peg is related to the relatively low symmetry group
(Cay) of the two plasmonic strips.

Anisotropy of the scalar magnetic permeability u., for optical metamaterials
based on strip pairs allows one to conclude that, in principle, peg introduced recently
for optical frequencies does not have the same properties as the conventional perme-
ability of magnetic bodies at low frequencies | ]. For example, it is implied in
the definition of magnetic permeability that the magnetization of a body depends
only on the direction of magnetic field, but not of the electric field. Magnetization
of conventional diamagnetic substances does not depend, in the first approximation,
on the direction or the intensity of electric field. At high frequencies, however, it is
impossible to have the magnetic field without the electric; they are always acting
together. In metal-dielectric structure, which respond strongly to electric fields, it
is therefore not surprising that the orientation of external electric field is just as
important as direction of incident magnetic field.

Fortunately, there exist situations when E—dependence of optical permeabil-

ity vanishes; they are studied in the next subsection.

36



2.5

- EM T e
A red shifti 'Y
oH mu,. N T % N X
- Reu Iy : ll
m N —
15H ™" as s lap sk
. - Reus(uncorr.wn) 1 SL Iy \ x
= - 1 Bl T FU N S
1 - N

_l SN i i i
400 420 440 46 480 500
Wavelength [nm
12 T T T
o R I s S
0.8 i : S :
— Re uem
v Imp
0.6} em
£ ---Re uqs
= -= Imp
0.4} =
—02 ; ; ; ;
400 420 440 460 480 500

Wavelength [nm]

Figure 2.3: Effective magnetic permeability pZf of the metallic strip pair (MSP)
structure calculated using two methods: electromagnetic EMPR (solid and dotted
curves), and the quasistatic result (2.39,2.21) (dashed and dash-dotted). Top:
traditional strip orientation (strips along the incident E field); bottom: unit cell
rotated by 90° (strips along the wave vector E) Orientation of the strips and the
incident electric field are shown in the insets. Green dashed curves incorporate
the retardation frequency shift given by Eq. (2.76) in Sec. 2.5. For comparison, the
black dashed curve is not corrected with that frequency shift. Structure parameters:
periods a; = a, = 100 nm, strip width: w = 50 nm, strip thickness ¢; = 15 nm,
strip separation in the pair: h = 15 nm; strips are made of silver (Drude model with
parameters from | ]) and embedded in vacuum (g = 1).
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2.3.4 Magnetic polarizability of particles with discrete rotational

symietry

For plasmonic nanostructures with an axis of rotation the anisotropy of
some components of Xé\j4 may disappear. For example, suppose that z-axis is an
axis of rotational symmetry C,, of order n > 3, i.e. the particle is invariant with
respect to a 27 /n-radian rotation (in periodic systems, only n = 3,4, 6 are allowed).
Then it can be shown that the v-dependent coefficients in F?* for ¢||Z and 7||y
are equal in magnitude but differ in sign: [ a:aai;edv =—7 y%&dv. Therefore,
fm%@d\/ = %f (m% — y%) 0dV, and all magnetic strengths F?* as well as

F§* become isotropic:

(Jy, (& - [ x Vn])dV)?

1
22 — - : (2.45)
4V [ (Vén)2dV
1
F* = / [ — 22 dV/V, = > FZ*. (2.46)
1y, n>0

Moreover, if the structure is isotropic in all directions (i.e., its symmetry group
belongs to the cubic class), all electromagnetic polarizabilities become independent

of k-direction and form a symmetric set:

5 Vo (1 A pLph
gy o_ V2 R L 1aJ n
XE - €d47_[_ (S (51] pnpn> + 5 — Sn> s (247)

n>0 n>0

g v, (1 o mi m’
2
Xip = _k06d4§. (s <Jz‘j — E miﬁﬂ%) + E 5 i 32) ) (2.48)

n>0 n>0
y V(1 ;o pi mJ
1) —_ _ 'p - o 1.7 n'tn
XME Zk06d4ﬂ_ (S ( Zmnpn> + Z 5 — Sn) ) (249)
n>0 n>0
X = —Xhe (2.50)
where -
f Sy
o (251)
(Vo Jy, (Von)2av)
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7 X VndV
iy = & b (2.52)

2 (v, J, (Fonrav)”

are the normalized electric and magnetic dipole moments of the plasmon states and

Jij =1 fvp (728;j—x;2;)dV/V, is a normalized inertia tensor of a plasmonic inclusion.

Considering the importance of the normalized dipole moments (2.51,2.52)
contained in a plasmon eigenmode for the fast characterization of electromagnetic
response of plasmonic metamaterials, we also present simplified expressions for p,,
and M, in which the volume integrations are reduced to surface integrals over the
surface S, = 9V, of the plasmonic inclusion. Taking the volume integrals “by parts”
and using V x 7= 0 and V¢, = 0 in Vp, we find:

"ad)n
e dS
5 = 95, ™5 (2.53)

(Vp fsp ¢n%ds> 1/27

fo=1 fs, : (2.54)

2 (Vi s, onlimas)

where the normal derivative d¢,,/0n is evaluated on the plasmonic (inner) side of

surface S),. Expressions (2.53,2.54) are computationally more efficient than their
volume equivalents (2.51,2.52). Moreover, it becomes apparent from (2.54) that,
regardless of the multipolar order of the resonance ¢,, all electrostatic resonances
of a single particle with spherical symmetry (e.g., a solid sphere or a concentric
nanoshell) carry no magnetic moment, since ¥ x 77 = 0 on a spherical surface. We
have used this fact in Sec. 2.3.2.

Expression (2.48) shows that for sufficiently symmetric structures it is pos-
sible to introduce an isotropic x s, independent of the direction of applied electric
field. A two-dimensional example of a plasmonic metamaterial with isotropic scalar
leff 18 & square array of plasmonic nanorods | , , |; it is studied in
detail in Sec. 4.1. An example of three-dimensionally isometric structure with fully
isotropic permittivity and permeability is a tetrahedral plasmonic cluster introduced

and studied using theoretic results of this Section in Sec. 4.4.
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2.3.5 Electric and magnetic multipolar decompositions of the plas-

mon states

It has been observed earlier [ ) | that in the structures with a
sufficiently high spatial symmetry only some plasmon resonances may have a non-
vanishing magnetic moment given by Eq. (2.52). Such eigenmodes are sometimes
referred to as magnetic plasmon resonances (MPR) [ |. For example, if the
structure has an inversion center, its electrostatic eigenfunctions ¢, can be either
even or odd with respect to spatial inversion. It follows from the definitions of f,ij
and FY that even modes have a vanishing electric strength while the odd modes have
a vanishing magnetic strength. If inversion center is the only non-trivial element of
symmetry, i. e. the structure’s symmetry group is Cj, all even modes are magnetic
resonances (F, # 0) and odd modes — electric resonances (f,, # 0). For example,
the electrostatic resonance of the SPOF structure shown in Fig. 2.1(b) has a finite
magnetic strength proportional to n?.

In structures with higher symmetries, electric and magnetic eigenmodes can
be identified by their irreducible representation. It can be shown that electric
strength fr may only be non-zero if the corresponding potential ¢, transforms
under the same representation as the coordinate x (and similarly for f4¥ and f2¥).
For the magnetic strength F?* to be non-vanishing, the potential ¢,, must transform
as an operator of rotation around z-axis (R, ), which is a component of a pseudovec-
tor. Standard character tables of the point groups of symmetry [ | provide
the information necessary for assigning magnetic or electric dipole activity to various
resonances.

Since the early days of the NIM structures based on strip pairs it was
accepted that MPRs in two-dimensional structures with Cy, symmetry are electric
quadrupoles (see Sec. 4.2 and Sec. 4.3). The fact that optical magnetic susceptibility
is a phenomenon of order (wd/c)?, where d is a characteristic size of a magnetic
resonator, may seem suggestive that MPRs are electric quadrupoles in general.
However, this generalization is incorrect: in structures with high symmetry, modes
that carry magnetic dipole moment (2.52) are not necessarily electric quadrupoles.
For example, it will be shown in Sec. 4.1 that in 2D plasmonic crystals with Cly,
symmetry, such as square arrays of round nanorods, magnetic resonances are electric

octupoles | ] (azimuthal angular moment M = 4). In general, magnetic modes
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Group Electric resonance | Magnetic resonance and its LOEM
(f5™9 4 0; fz #0) (F2™ £ 0;F3* 4 0)
D, B, A] E7(J = 2); Ay(J = 3)
Dy, E.; Az, Eqy(J = 2); Agg(J = 4)
Degp, Ery; Aoy Elg(J = 2); A2g(<] = 6)
ng Eu; AQu Eg(J = 2); AQQ(J = 4)
Ty T T (J=3)
On Ty Tig (J =4)
1y, Tiy Tig (J =6)

Table 2.1: Examples of non-bianisotropic 3D point groups, their irreducible repre-
sentations related to electric and magnetic resonances, and the Lowest-Order Elec-
tric Multipole (LOEM) of magnetic resonances.

in 2D crystals with Cy, symmetry are two-dimensional 2n-poles (n = 2,3,4,6). On
the other hand, in two-dimensional C), crystals without axes of reflection, magnetic
modes are always electric quadrupoles regardless of n.

In more complicated cases, such as 3D crystals, information about the lowest-
order non-vanishing electric multipole moment of an eigenmode may be found with
help of point group theory | ]. For example, magnetic modes with non-
vanishing F?* turn out to be hexadecapoles (J = 4, 27/ = 16) in plasmonic crystals
with point groups Dyp, D3q and Op. In hexagonal group Dgp, modes with F?* # 0
are electric hexacontatetrapoles (J = 6,27 = 64). Examples of exceptions from the
“MPR is a quadrupole” rule for 3D point groups are summarized in Table 2.1.

To provide a more general insight into the electromagnetic properties of
plasmon eigenstates, we perform a systematic decomposition of all modes into
electric and magnetic multipoles based on their rotational properties and inversion
parity. Such decomposition arises from the observation that all 3-dimensional point
groups are subgroups of the full group of the sphere O(3) = SO(3) Q) C;. Irreducible
representations of the latter group are well-known | |; they are characterized
by the angular momentum J = 0,1,2,... and inversion parity P = £1. An electric
27_pole is a rank-J tensor with inversion parity (—1)7. For example, the electric
dipole is a vector that changes sign upon inversion. A magnetic 2/-pole is a rank-.J
tensor of parity (—1)7/*!. For instance, the magnetic dipole does not change sign
upon inversion and is a pseudovector. This identifies all irreducible representations

of O(3) as either electric or magnetic multipoles.
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’ Ty H Example function ‘ Electric 27/-poles ‘ Magnetic 27-poles

Ay || 1; P yP 422 xyz 0,3,4,6, ... 6,9, 10, 12, ...
Ay R.R,R, 6,9, 10, 12, ... (0), 3, 4,6, ...
E || {22%-x%y? x%-y%} 2,4, ... 2,4, ..
T, {R:, Ry, R} 3, ... 1, ..

To {x,y,2} 1, .. 3, ...

Table 2.2: Multipolar decomposition of irreducible representations of the symme-
try group Ty. Ellipses (...) denote all multipoles higher than the last listed. R, is
the rotation operator (pseudovector). The non-physical magnetic monopole (pseu-
doscalar representation) given in parentheses cannot be constructed from electric
charges. Dipoles (J = 1) are shown in bold face.

To illustrate this method, a complete multipolar decomposition of Ty group
was performed; the results are presented in Table 2.2. The electric multipole part of
Table 2.2 can be found in a variety of books on point groups [ |; the magnetic
multipole analysis of plasmon eigenmodes reported here has not been performed
prior to this work. From Table 2.2 we see that, for example, Ai-symmetric modes
of a tetramer may contain electric monopoles and octupoles, and also magnetic
64-poles, but they must have vanishing electric quadrupole and magnetic dipole
moments. Modes of 77 symmetry may have non-vanishing magnetic dipole and
electric octupole moments. Modes of type T5 contain electric dipoles and magnetic
octupoles. These results will be used in Sec. 4.4 for designing electromagnetic
metafluids based on tetrahedral nanoclusters.

With regard to the method of multipole decomposition, it is interesting to
note that in structures with inversion symmetry, all irreducible representations are
organized into “dual” pairs: representations in each pair differ only by inversion
parity and are labeled by the same symbol with an additional index g (gerade,
inversion-even) or u (ungerade, inversion-odd). Since magnetic and electric multi-
poles of the same order have opposite parity, the magnetic multipole composition of
each representation can be trivially obtained from electric multipole composition of
the “dual” representation. For example, consider the largest of all 3D point groups:
full icosahedral group Ij, (Table 2.3); its relevance to metamaterial fabrication may
be fully appreciated from Sec. 4.4. The fact that an even 4-fold degenerate represen-
tation G, of icosahedral group Iy, consists of electric 27-poles with J = 2n (n > 2)

translates into the fact that the odd representation G, conmsists of magnetic 22"-
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‘ I H Example function \ Electric multipoles \ Magnetic multipoles ‘
A, L, iyt 0,6,10,12,16,...(2n) 15,21,25,27
Tig {R:, Ry, R.} 6,10,...(2n) 1,5,...(2n41)
T4 8,...(2n) 3,...(2n+1)

G, 4,...(2n) 3,7,...(2n+1)

H, {272-x%-y%, x2-y2, xy, xz, yz} 2,...(2n) 5,...(2n+1)

A, 15,21,25,27 (0),6,10,12,16,...(2n)
T (x,y.2} 1,5,...(2n4+1) 6,10,...(2n)

Toy {x3 33,23} 3,...(2n+1) 8,...(2n)

Gu || {x(2*-y?),y(2%-x?) 2(x2-y?) xyz} 3,7,...(2n+1) 4,...(2n)

H, 5,...(2n+1) 2,...(2n)

Table 2.3: Multipolar decomposition (up to J = 30) of irreducible representations of
the symmetry group I;,. Ellipses (...) denote all 27-poles higher than the last listed
(of parity indicated in parentheses). Dipoles (J = 1) are shown in bold face. Irreps
Tyg, Gy, Ay and H, can be exemplified by polynomials of order > 3 (not shown).

227+l _poles with n =1 and n > 3

poles (n > 2). Likewise, the presence of electric
in Gy-symmetric modes implies that Gy modes also contain magnetic multipoles of
the same orders. In groups without inversion center, the duality between electric
and magnetic multipoles can be less trivial: in the T; case (Table 2.2), it appears as
duality between singlet modes (A; <> Aj), triplet modes (77 < T5) and self-duality
of the doublet E.

In the structures without an inversion center, some eigenmodes may trans-
form as both the coordinate x and rotation R,, meaning that they contribute to
both electric dipole moment p, and magnetic moment m,. Whenever such modes
exist, the structure is termed bianisotropic: it may not be described with eqg(w) and
et (w) tensors alone | |. The simplest structure where such modes do exist is a
particle without any symmetry at all (trivial Cy group). Split rings (SR), as well as
split-ring resonators (SRR), are examples of bianisotropic structures | ],

and their electrostatic resonances shown in Fig. 2.1(a) contribute to both p2f and

Trr

€gs -

Our symmetry classification of electric and magnetic modes allows us to
formulate the necessary and sufficient condition for absence of bianisotropy. A
structure can only be bianisotropic (i.e., have non-vanishing electro-magnetic cross-
polarizabilities) if there is an irreducible representation of its symmetry group that

represents both a component of a real vector and a pseudovector. The presence of
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inversion symmetry is a sufficient condition for non-bianisotropy, because it splits
all modes into parity-even and parity-odd, thus prohibiting electric and magnetic
dipole moments from being non-zero simultaneously. As seen from Table 2.2, tetra-
hedral group T} is an example of a non-bianisotropic point group without inversion
symmetry. Only the following point groups in 3 dimensions are non-bianisotropic:
Cpp for n > 2, Dy, for n > 2 (including cylindrical group Dsop), Dpg for n > 3,
So = C, Sap, for n > 3, and the four non-chiral cubic groups Ty, Ty, Oy, 1. Many
of these groups, namely, C(2,1 1), San for n > 2, D(an 1), Dand for n > 2, and Ty,
have no inversion center. These examples show that inversion symmetry is not a
necessary condition for the artificial molecule to be non-bianisotropic.

An important subclass of bianisotropic structures are chiral (dissymmetric,
enantiomorphic) structures. Chiral particles possess a property termed handedness
or enantiomorphism: their mirror image is geometrically different from themselves.
Chirality therefore requires that the structure does not have any symmetry planes or
improper rotation axes; although a structure with mirror planes may still be bian-
isotropic. Chirality of the optical response of plasmonic nanostructures is charac-
terized by non-vanishing diagonal components of tensors &, (ot (0r polarizabilities
XZ}\Z}[ o8 X% ). Since averaging over orientations removes all components of tensors
XME, XEMm except the diagonal ones, isotropic systems can still be chiral. The de-
gree of chirality of their optical response is characterized by one scalar quantity, e.g.
X37p given by Eq. (2.49). It is interesting to note that chiral plasmonic particles
can have a completely isotropic electromagnetic response even without averaging
over orientations; this is the case when they belong to one of the three chiral cubic
groups: tetrahedral T', octahedral O, or icosahedral I. Nanostructures of this type
of symmetry are described by the full set of isotropic electromagnetic susceptibili-
ties (2.47,2.48,2.49).

2.4 Perturbation theory of optical response for periodic
plasmonic nanostructures
In this Section we develop a homogenization theory of periodic plasmonic
metamaterials that encompasses both their averaged electric response (through the

effective dielectric tensor e.g(w)) and the effective magnetic permeability peg(w).

The theory extends in a perturbative manner the existing homogenization theory
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of differential equations with periodic coefficients. One of the intriguing results is
that the magnetic plasmon resonance, which corresponded to a pole of magnetic
polarizability xas(w) in Section 2.3, becomes the zero (in lossless limit) of magnetic
permeability peg(w) when periodicity effects are taken into account. This theoretical
finding is supported by numerical simulations of arrays of strip pairs introduced in
Section 2.3.

2.4.1 Homogenization of electrostatic equations with periodic co-
efficients

In this subsection we review a multi-scale approach | , , | to
calculating the effective permittivity of a metamaterial, and reveal the mathemat-
ical origin for the dipole-density definition of €.¢ in periodic nanostructures. Also
known as the homogenization theory of differential operators with periodic coeffi-
cients | ) , ], this is the most vigorous approach to homogenizing
a periodic metamaterial with a unit cell size a being much smaller than that of
the typical variation scale A of the dominant electrostatic potential ®. As in the
previous sections, the key assumption leading to the electrostatic approximation is
that wa/c < wA/c < 1. Under this set of assumptions, the frequency w enters only
as a parameter determining the dielectric permittivity of the plasmonic dielectric
permittivity €(w). As we show below, the results of this rigorous theory are in total
agreement with a more intuitive “capacitor” model described in the previous section.
The method is applicable to periodic structures in any number of dimensions.

The basis of the method is the two-scale expansion. Let X be the macroscopic
coordinates enumerating the cells (large scale), and E the local coordinates (small
scale). The fields depend weakly on X and strongly on E The potential qﬁ()_f ,5)
and the local permittivity e(g) are periodic in local coordinates f_: the latter can be
restricted to one cell.

To quantify the difference between large and small scales, one introduces a
small parameter 7 = a/A and assumes that V, = V¢ +7Vx. Naturally, 7 is the
expansion parameter of a perturbation theory series: ¢(z) = ¢o(X,&) + 791 (X, &) +
2¢9(X, €) + O(73). The Laplace equation Ve(x)Vi¢(x) = 0 becomes

(Vg+TVX)6(§)(V§+TVX)¢(X,§) = 0. (2.55)
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The goal of homogenization theory is to show that there exists a macroscopic
potential ¢nqcero(X) that obeys Laplace-Poisson equation in a certain homogeneous,
possibly anisotropic, medium. In doing so, both the rigorous definitions of @yqcr0(X)
and ei]i;f are discovered. This goal is achieved by expanding (2.55) in powers of 7.

This gives

Vee(§)Vedo(X, ) +

+ m{(Veel®) + e©)Ve) Ve (X. ) +
+ Vee(§)Vehn(X, )} +
+ P Vxd© V(X ) +
+ (Ve + Vee(€) Vx (X, €) +
+ o VeelOVeha(X,0) | = 0. (2.56)
Terms with different powers of 7 must vanish independently, which gives us three
equations:
Vee(€)Vedo(X, &) =0, (2.57)
(Vee(€) + e(§)Ve)Vxdo(X, §) + Vee(§) Ve (X, §) =0, (2.58)
Vxe(§)Vxoo(X,§) +
F(e(§)Ve + Vee(§)) Vx d1(X, §) + Vee(§) Veda (X, §) = 0. (2.59)

Their solution is carried out in three easy steps. First, eq. (2.57) is satisfied by
choosing ¢g = ¢o(X) which is independent of . This function ¢o(X) plays the
role of macroscopic potential, as we shall see further. Second, ¢1(X, &) is expressed

through the macroscopic gradients of ¢q:

ni(x.6 = -20 8 50, (2.60)

where (;i(fc) (&) (i =1,2 in 2D) are periodic basis functions that solve equations

Vee(©) Vel (€) = (Vee(€)) - & (2.61)
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Equation (2.61) is called the auxiliary homogenization problem, and it is
identical to the master equation (2.1) of the “capacitor” model. Indeed, eq. (2.61)
is simply

Vee(©)Ve(0ll(€) - &) =0, (2.62)

in which we identify the “external” potential ¢gx)t = —¢; corresponding to a uniform
electric field of unit amplitude polarized in the i-th direction. Their sum qﬁgz)t(é ) =
Gin + ¢sc satisfies (2.1).

Finally, the macroscopic equation for ¢o(X) is obtained by substituting ¢
(2.60) into (2.59) and averaging over the local variable &:

Vx, (€(€)d; — (&) Ve, + Vee(€)sL(€)) Vix, d0(X) + (2.63)
H(Vee(§) Ve (X, ) = 0. (2.64)

Full derivatives of periodic functions have zero average, and thus, the above equation
reduces to Vx, €. VX, Pmacro(X) = 0, where ¢pmacro(X) = ¢0(X) = (#(X,€)) and

= ((€)3 — V0D (©) = (O Ve, (& — 0¥ (©) ). (2.65)

Here (-) = [-d¢/ [ 1d€. To identify this definition of e.g with the capacitor model,
we note that E()(¢) = vg(—¢§2 (€)+¢&;) is the total electric field excited by external
electric field Ey = Eyje; with unit amplitude Ey; = 1. Equation (2.65) is simply
ei]f‘f = (e(¢ )E(] )(§ )), in exact agreement with eq. (2.5) and its equivalent forms.

7

2.4.2 Optical magnetism in periodic plasmonic structures

In Section 2.2 it was demonstrated that there are multiple ways to define
€off, and they all agree with each other in the sub-wavelength limit, 7 = wa/c < 1.
However, as the retardation parameter 1 becomes larger, discrepancy between the
capacitance and dipole density definitions grows.

Similarly to the dielectric permittivity, magnetic permeability of a periodic

structure can be defined in two ways. On one hand, there is a field averaging
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definition | , ]

z/2 a
,uzé _ (azay) faa//Q dzx f y//g dsz(x7 Y,z = _az/2) (2.66)
¢ _lfa’:/Q deH,(z = —az/2,y = —ay/2, 2)

analogous to the capacitance model (2.3).
On the other hand, one can calculate the magnetic dipole moment m =
il dzdyM of a unit cell (per unit length in 2D), where M = > [ % 7 is the magnetic

polarization density, and postulate that

1
4

m; = (ugf - (5”) Hy;. (2.67)
This gives a different definition of magnetic permeability, which was used in a
number of works | ) , ]. While rigorous proof of their equivalence is
yet to be published, it is known | ] that in the limit of small 7 definitions
(2.66,2.67) of pes agree.

It seems likely that a vigorous mathematical theory of magnetic homoge-
nization will be based on a generalized multi-scale expansion technique described in
Section 2.4.1. Recently, an important step in this direction has been made | ],
which resulted in an eigenvalue expansion formula for peg(w) of dielectric photonic
crystals with high dielectric contrast, €/e; > 1. Unfortunately, technique proposed
in [ | is only applicable to large and positive dielectric contrasts. Plasmonic
resonances, which occur in the €¢/e; < 0 regime, cannot be found as the eigenvalues
of Helmholtz equation used as the basis of that technique [ ].

In this subsection, we present a perturbative homogenization theory that
uses electrostatic plasmon eigenfunctions, which are known to provide a complete
orthogonal basis in the appropriate linear space | , |, as the starting
point. This theory is applicable to both two- and three-dimensional structures. The
expansion parameter of this theory is the frequency w, or rather the dimensionless
retardation parameter 7 = wa/c. The goal of this Section is to obtain a general
analytic expression for peg of a periodic plasmonic nanostructure in the form of an
eigenmode expansion similar to [ |. This way both the frequencies and strengths
of approximately Lorentz-shaped resonances will be recovered.

When electrostatics is used as the base of a perturbation theory, it is easier

48



to start from the dipole density definition (2.67), which expresses peg through the

local quasistatic electric currents proportional to the electric field:
j=——=——(e—1)E. (2.68)

Optical magnetism appears in the w? order of this perturbation theory | ,

]. Since the current expression (2.68) already has one factor of w, to determine

teg in the lowest order it suffices to calculate E with the first-order electromagnetic
corrections.

To isolate the role of electrostatic resonances, it is convenient to split electric
and magnetic fields into “incident” and “scattered”, i. e. E = Em + Esc, such that
E,. would vanish in a homogeneous structure. To achieve this, we use the following
ansatz: incident fields will be given by a plane wave in a homogeneous medium with
wavenumber E, i. e. En = EgeiE'F and ﬁm = ﬁoei’z’;. After the effective medium
parameters e.g and peg are expressed through E, we will relate k with the frequency
and effective medium parameters using the dispersion relation of transverse waves
in a homogenized medium: k = \/écq/ftew/c. This ansatz is somewhat similar
to the Maxwell-Garnett homogenization theory, where individual particles to be
homogenized are assumed to be immersed into an effective medium with some
unknown e.g and peg. Note that because incident fields satisfy Maxwell’s equations
in the homogenized medium, we have Hy = Z7 iy x EO], where Z, = /flefr //€eft
is effective impedance and 71 = E/ ]E\ is the direction of phase velocity. From this
point, we assume that k||&, Eo||§ and Hy||2. Therefore, piog = S

In order to find the scattered electric field ESC, we further decompose it into
the potential and solenoidal parts, Esc = Hpot + Esol = —ﬁ@sc + ikoffsc, where
V- ffsc =0 and kg = w/c. Vector potential ESC is related to the scattered magnetic
field: Hy, = (teft — 1)ﬁm +V x A,.. Tt can be demonstrated that A, vanishes in
the limit w — 0, i.e. its perturbative expansion begins from the first order in w.
Contribution of ffsc to ESC thus appears in the second order. It is the benefit of our
approach that the lowest-order part of peg — 1 can be found without computing [fsc
or magnetic fields. The potential part of E,. is determined from V - D = 0, which
gives Eq. (2.23) already used in Sec. 2.3; in that equation, koffsc can be neglected
in the first approximation.

In analogy with the work | ], we will represent ®,. in the form
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Qyo(X,z) = >, cn(X)pn(x), where ¢, are electrostatic eigenfunctions of the
GEDE with periodic boundary conditions. Function ®4.(X,z) is periodic in the
“local” coordinate z and depends upon the “macroscopic” coordinate X as the
macroscopic fields, i. e. o e*X. Such expansion is justified because the full
set of {¢,(z)} functions is a complete basis in the space of periodic potential
functions | , |. The coupling coefficient ¢, between E;, = Egeth(X+2)
and the n'" plasmon eigenmode is found from (2.23) and is given by Eq. (2.25).
Coefficients ¢, (X) = ¢,(0)e*X absorb the phase shift per cell; it is sufficient to
calculate them in the very first cell, i.e. at X = 0. Expanding the plane wave
E;, = Eoeikx formally in powers of k up to the first order, we have ¢, = C%O) + cg),
where

my _ _ 1 m Sn oz J(Véu)am0dv
Cn = T (i/€etiv/Hettko) () — Ey T(Von)260dV ,m=0,1.  (2.69)

Sn

Now that the scattered field ESC is known, we use the dipole density definition
(2.67) to calculate peg. For simplicity, we assume that the structure has a center of
inversion that coincides with the center of mass of a unit cell. Choosing it as the
origin of coordinate system, we have [78dV = 0 and [7dV = 0. This eliminates
the term [(e — 1)7 x EodV, and also guarantees that the dipole eigenmodes ¢,, in
®,. excited by uniform field Eo do not carry magnetic moment, as explained below.
Under these assumptions, plog — 1 o< k3.

Currents excited directly by E;, in (2.68) give a trivial diamagnetic contri-

bution to pes:

_ k(2)/~beff 2 €d 2
Apigiam = 57 (eg—1) [ z2dV — ~ = 0dv | . (2.70)

Quasistatic currents due to ESC ~ —ﬁ@sc give the plasmon resonance part of the

magnetic permeability:

F7* 1
A,U/plasm = _kged,ueﬂ Z ﬁ + k’gedﬂeffg Z F£Z7 (2-71)
n n

Sn

where we have introduced the magnetic strength of nt" resonance, a quantity with
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460 470 480 490 500
Wavelength [nm]

Figure 2.4: Effective magnetic permeability pZ; of the MSP structure calculated
using EMPR procedure (Sec. 4.2.4). Solid and dotted curves: strips perpendicular
to the wave vector k (and parallel to electric field Ejy of the incident wave); dashed
and dash-dotted curves: strips parallel to k:, perpendicular to Eo. Note: magnetic
cut-off (Re peg = 0) is polarization-independent. Structure parameters: periods
a; = ay = 100 nm, strip width w = 50 nm, strip thickness t; = 15 nm, strip
separation in a pair h = 15 nm; plasmonic component: silver (dielectric function
from | | with 100-fold reduced Im ¢€); immersion medium: e; = 1.

dimension of area:

L (x%@) AV [ (8. - [F x Vn]0) dV

F?77 = — 2.72
" 2 V [(Vn)20dV (2.72)
Finally, permeability is determined from pieg — 1 = Aptgiam + Aliplasm:
1 FZZ
l— — =pug — koed — k2eg Z (2.73)
Hetr - 8"

where ;2% = k2(eq — 1)(Z) and F&* = (<§0> - Fn>
Equation (2.73) differs from our earlier result (2.21,2.39,2.40) formally by

a replacement peg — 1 — 1/peg. This means, in particular, that, in the absence
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of resistive losses (Im ¢ = 0), the frequency of magnetic plasmon resonance wy,,
defined as s(wp) = sp, is the frequency of magnetic cut-off (e = 0). To confirm
this prediction and validate the theory, formula (2.73) is plotted in Fig. 2.4 for
an array of strip pairs, introduced in Section 2.3. To isolate the magnetic cutoff,
losses in metal (imaginary part of esq) were 100-fold reduced in simulations. As we
have already seen in Section 2.3.3, magnetic strength of plasmon resonances F?* in
strip-pair structures strongly depends on the orientation of electric field; however,
the frequency of plasmon resonance s, does not. Therefore, if the formula (2.21)
is valid for plasmonic crystals, the positions of magnetic resonances (defined by
maxima of either Re pieg or Im peg) should be the same for both polarizations;
but if the periodicity-corrected formula (2.73) is valid, magnetic cut-off Re peg = 0
instead of magnetic resonance should be polarization-independent. It is evident
from Fig. 2.4 that magnetic cut-off (Re peg = 0) is located at A = 476 nm for
both polarizations, while frequencies of magnetic resonance (or absorption lines)
are polarization-dependent. Numerical simulations thus clearly demonstrate that
the corrected formula (2.73) obtained from enhanced effective medium theory of this
Section gives more adequate description of optical magnetism in periodic structures
than single-resonator theory of Section 2.3.

Invariance of the magnetic cut-off frequency with respect to propagation
direction (given by the Bloch wave vector E) in sub-wavelength plasmonic crystals
can be easily understood in terms of the photonic band structure. Indeed, magnetic
cut-off frequency corresponds to the frequency of the I'-point (E = 0) on the
dispersion surface of a photonic crystal. Therefore, if a branch of the dispersion
surface can be described by effective medium parameters (6?&, pig) at all, pZi must

be zero at that frequency regardless of the polarization.

2.5 Electromagnetic red shifts of plasmonic resonances

In Sections 2.3 and 2.4 we have developed a quasistatic perturbation theory
that gives approximate expressions for effective medium parameters of complex
nanostructures. It was found that in the first order to the expansion parameter
n (dubbed “retardation parameter”), magneto-electric coupling phenomena arise,
and optical magnetism occurs in the second order. Optical magnetism is not the

only second-order retardation phenomenon that can be described in the framework
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of this theory. From Fig. 2.3(a) we observe that the frequency of the magnetic
resonance determined from electromagnetic simulations (solid curve) is red-shifted
with respect to the frequency of the corresponding electrostatic resonance (black
dashed curve). It can also be seen from Fig. 2.2 that electric dipole resonances
in FEFD simulations are red-shifted with respect to their electrostatic positions.
Both shifts are explained in this Section as the retardation-induced corrections to
the positions of the purely electrostatic plasmon resonances. The theory presented
here is a volumetric reformulation and a slight generalization of a result found using
surface charge integral equation (SCIE) | ]. General formulas of this Section
cover arbitrary geometries in any number of dimensions (including 2D and 3D) and
may also account for periodicity and interactions between adjacent cells in plasmonic
metamaterials.

Retardation-related frequency shifts of plasmon resonances are always red
(regardless of their multipolar nature) and can be understood physically as follows.
Quasistatic currents associated with electric fields of electrostatic resonances induce
magnetic fields via Ampere’s law. These magnetic fields generate secondary electric
fields according to the Faraday’s law. The latter contribute to the Poisson equa-
tion V - eE = 0, causing shifts in electrostatic eigenvalues. While such frequency
shifts have been calculated earlier for isolated plasmonic nanoparticles, they have
never been calculated for periodic plasmonic metamaterials. These shifts have been
derived earlier from the SCIE formalism; here, we use the GEDE formalism and a
generalization of the standard perturbation theory (formulated in Section 2.7) to
obtain new analytic expressions for retardation shifts. These results are not limited
to isolated inclusions; red shifts in periodic collections of particles can be calculated
by utilizing periodic boundary conditions. In this Section, V represents either a unit
cell of a periodic structure, or the entire space (for isolated particles).

We use the results of the perturbation theory sketched in Sec. 2.4. To the
lowest order in 7 and in the close vicinity of the n* plasmonic resonance (i.e., at
§ ~ 51(10), where sﬁ?) is the purely electrostatic eigenvalue of the Eq. (2.10)), the

vector potential induced by the n'” electrostatic resonance is found from Eq. (2.24):

—,

AD (7 = ik / AV G — 7))V (), (2.74)
1%
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where € = €4 (1 KQ) 0) and G(7 — 7) is the Green’s function of Poisson equation

with appropriate boundary conditions on V. Thus computed vector potential A( )

contributes to Poisson equation:

1 -
dv'G(r,r") (1 - (0)9> Vo = 5,V20. (2.75)

n

VOV® + k3ea VO - /
\%4

This is a generalized linear eigenvalue problem with integro-differential op-
erator. Treating the integral term as a perturbation, (see Section 2.7), corrections

(0)

to electrostatic eigenvalues sp’ can be shown to be:
1 -
Sn

< /V (%n)QedV) _1, (2.76)

where §dS is a surface integral over a closed surface S, of the plasmonic inclusion
(which reduces to a contour integral for 2D crystals). The renormalized s, is
calculated as s,, = 3%0) + 3%2).

Volume integral in Eq. (2.76) can be reduced to a surface integration over
the surface .S, of plasmonic inclusion using the following technique. Equation (2.24)

can be re-written back in its original, curl-curl form (omitting the drive term with

—

Ezn)
V x [V x AD] = ikgeVa). (2.77)

An equation of the form V x [6 x A] = F' can be solved by applying the following

identity twice:
V x A(F) = | dV'V'G(F,7) x F(7) = / AV'G(F, 7))V x F(7)].  (2.78)
\%4
Introducing the auxiliary vector function | ]

a7, ) = / VG, TG ) = -V / VG — G — ), (2.79)
1% Vv
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we find the vector potential generated by a single plasmon eigenmode ¢,:

— N N k

ADG) =ik [ avia(r) x [9 x '0,] = o5t (2.50)
v 50
. j{ as'a(r, ™) x [it x V'ou()]. (2.81)
Sp
Consequently, the correction to electrostatic eigenvalue is found:
#”Z%@(fcﬁ@ﬁwﬂf(ﬁﬂmﬁwqﬁxﬁwAWO- (2.82)
S, Sy

-1
. < 7{9 ¢n‘9;j:ds> (2.83)

where the normal derivative 0¢,/0n is evaluated on the plasmonic side of surface
Sp. A particular case of this formula has been previously reported for isolated
three-dimensional particles [ .

Despite substantial progress in calculations of periodic Green’s func-
tions | ], closed-form expressions for double- or triple-periodic G in two or
three dimensions are not known. However, there exists one simple yet exact result

for a 2D Green’s function in the limit a, > a, | ):

. 1 ((y—y)? a
G2(T7ﬂ):2a<( a ) *|y*?/|+€y -
x y

—ﬁ In [1 — 2e~ 2 W=Y1/% cog(27|x — 2| fag) + e_4ﬁ|y_y/|/“’”} . (2.84)
The function (2.84) is periodic only in the z-direction. It is therefore applicable
only for |y — /| < ay, i.e. when plasmonic inclusions are much thinner in the
y-direction than the period (w, < a,). For periodic metamaterials based on
“current loops” (strip pairs, horse shoes, etc.), interaction between consecutive layers
of resonators is usually insignificant, and the function (2.84) provides reasonable
approximation. When the condition w, < a, is satisfied, one can use expression
(2.84) with interchanged variables < vy, a; < a,. When both dimensions are
small, wy , < az,y, a symmetrized (in z,y) version of Eq. (2.84) is used.
Retardation frequency shifts of selected electric and magnetic resonances are

illustrated on Fig. 2.2 and Fig. 2.3, respectively. Frequency shifts are calculated
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using Eq. (2.76) with the Green’s function given by Eq. (2.84). It is apparent
that the quasistatic Eqs. (2.12,2.73) with frequency corrections corresponding to
Sp = 8%0) + sg) (green dashed curves on Fig. 2.2,2.3) are in much better agreement
with the electromagnetic e.¢ and peg than the unperturbed electrostatic eigenvalues

s (black dashed curves).

2.5.1 Analytic calculation of retardation effects for a circular cylin-
der

In this Section we verify the new formula (2.83) analytically in the case
of an infinitely long circular cylinder. For a single cylinder, electromagnetic scat-
tering problem can be solved analytically without making assumptions about the
wavelength-to-diameter ratio (van de Hulst theory). For a plane wave scattering off

a cylinder, Mie-van de Hulst expansion coeflicients are

J) (mx)J,(x) — mJ,(mz)J), (x)

=T (ma) Hy(z) — mdy (ma) H (z) (2.85)
_2im
o = T ) B () — md () (1) (2.86)
where = = koR is the dimensionless size parameter of the cylinder, m = /e(w) is

the refractive index inside the cylinder, and H, = H,(ll) = J, + 1Y, is the Hankel
function of the first kind. Without loss of generality, we assume that the medium
outside the cylinder is vacuum (eg = 1).

Exact frequencies of all plasmon resonances can be found as zeros of the
denominators of either a, or b,. Plasmon resonances are characterized by their
multipolar order n. Resonant permittivities €, can be found analytically in the

limit of small kg R using Laurent series for Bessel and Hankel functions:

(koR)? 3
en=—1— 53— +0(kR)’, n>2, (2.87)
1 ' koR
6 =—1-— <4 — v+ %Z —In °2> (koR)* + O(koR)?, (2.88)

where vg = 0.577215665 is the Euler-Mascheroni constant.

All plasmon resonances collapse to ¢ = —1 in the electrostatic limit (kgR —
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0). Consequently, electrostatic eigenvalue €®) = —1 is the only eigenvalue of the cir-
cular cylinder, and it is infinitely degenerate. In general, degeneracy of unperturbed
eigenvalues requires proper diagonalization of the unperturbed problem, leading to
the so-called secular perturbation theory. However, non-secular theory is still appli-

cable when perturbation V satisfies
(m|V|n) =0Ym,n : sy, = sp. (2.89)

Fortunately, electromagnetic perturbation does possess this property: it does not
mix plasmon resonances with different multipole orders.

Our formula (2.83) can be applied analytically to all plasmon modes of a
cylinder, except in the special case of dipolar modes (n = 1), as we shall see

immediately. Vector function @ in (2.83) is given for a single 2D scatterer by

1
200 (7, 7") = —E(F—'F') (In|F—7|+C), (2.90)
where C is an arbitrary constant. The value of this arbitrary constant does not
affect frequency corrections (2.83) for any resonances except those that carry dipolar

(2)

moment: indeed, a variation of this constant induces a change in s,
9ok jq{ ds¢O (r)7i - 7{ ds' (7 — ) x [ x VO ()] -
oc ™" 4 " "
-1
a¢(0)
(0)Z%n
(y{ O, o ds , (2.91)

which is proportional to the electric strength f, of this resonance. Therefore, for
dipolar modes of an isolated two-dimensional particle the formula (2.83) does not
give a definite value. The case of dipolar modes in 2D is clearly special, because, as
we see from van de Hulst theory result (2.88), dipolar eigenfrequencies are complex
even in the lossless case. This hurdle originates from the fact that electric dipole

2

radiation scales as w* in two dimensions — same as the order of corrections that

we are calculating perturbatively. In 3D, electric dipole radiation appears in order
w3 and does not influence second-order corrections 5%2). Neither does it influence
2D double-periodic arrays of scatterers: there is no radiative losses (associated with

Sommerfeld boundary condition at infinity) in fully periodic systems.
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We now proceed to direct evaluation of the formula (2.83). In polar coordi-
nates (7, 0), the potential of the 2n-polar electrostatic resonance inside the cylinder
can be written as

o0 (r,0) = (r/R)"sinnb, r < R. (2.92)

For example, dipolar eigenmode (n = 1) is simply gbgo) = y/R. Due to rotational
invariance of the cylinder, sines in (;5,(10) can be replaced with cosines without affecting
the final result. The normalization factor equals
(0) 8¢£LO) 2m .9
%qﬁn ———ds = n/ df sin”nf = nm. (2.93)
on 0

Radius-vector equals ¥ = R(cos 02 +sin 67). The unit vectors of normal and tangent
directions on the circle are given by 7() = cos 62 +sin 87 and £(6)
We note that ¥ — 7 = 2R sin G_Telf(e%(”) and 71(0) x ﬁgb&o) (0"
aid of identity

= —sinfz+-cos 0y.
159957 With th
29— With the

0—0 _.6+6
7i(0) - [2Rsin 1" ) x [7(0') x V()] =
. 2N
— _ / 5
= —sin(f — ¢') 20 - (2.94)
we finally obtain
1 27 27
s = (koR)Q/ d0/ df' sin nf cosnd’ sin(6 — ') -
4 0 0
_ 0
o |Gsin =0 (2.95)

We have verified analytically that for n = 2,3,4,6 these integrals give 57(12) =

— 4((12’21%_);, regardlessly of the value of C # 0. Corrections to 620) are expressed

through s linearly:

Oe 1
(2) — (2) — (500)24(2) — Z4(2)
€ 550 s = (s),)" sy 25n (2.96)

Perturbed resonant permittivities are thus €, = —1 — (kgR)?/(n? — 1) + O(koR)3,

in agreement with the exact result (2.87).
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2.6 Application of the theory: extraordinary trans-
mission through sub-wavelength hole arrays in SiC

membranes

In this Section, it is shown that perforated SiC membranes can be used for
engineering optical properties of metamaterials in the infrared. The complex-valued
frequency-dependent effective dielectric permittivity eeg(w) of a single membrane
can be controlled by the size and spacing between the holes. Regions of the anoma-
lous dispersion and strong absorption described by eqg(w) have been identified and
related to the excitation of even-parity surface phonon polaritons of a smooth SiC
film. The effective permittivity description has been validated by comparing trans-
mittance and absorbance of the film obtained from €qg(w) with that calculated using
first principles electromagnetic simulations. Theoretical predictions of the enhanced
transmission and absorption in the perforated film have been verified experimentally
using FTIR micro-spectroscopy. For the first time, the dependance of enhanced
transmission and absorption on the incidence plane of the incoming radiation has
been studied.

A sub-wavelength hole in a metallic screen is one of the simplest objects in
nano-optics. The calculation of light transmission through a single hole in a thin,
perfectly conducting screen was one of the first analytically solved problems in sub-
wavelength optics. Bethe’s famous result | | indicated that the transmission
coefficient through a sub-A hole is extremely low: it rapidly decays with the hole
diameter D as (D/A)%, where ) is the wavelength of light. This low transmission
considerably diminished the perceived utility of a nano-hole as a nano-photonic de-
vice. However, a real metallic screen is neither perfectly conducting nor infinitely
thin. Nor must the nanoholes be isolated: they can form periodic or quasi-periodic
arrays. A new surge of interest in nanoholes followed the remarkable discovery by
Ebbesen and collaborators | | of extraordinary optical transmission (EOT)
through sub-\ periodic hole arrays. The original experiments were done using opti-
cally thick substrates for which the extraordinary transmission is most dramatic: no
light is transmitted through the films in the absence of holes but, contrary to Bethe’s
prediction, a rather significant transmission was observed when the sub-wavelength

hole array was present. A number of analytic tools based on EOT are already under
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development [ ], including refractive index sensors | |, infrared absorption
spectroscopy | ] sensors, and multispectral biosensors | .

The enhanced transmission was attributed to resonant excitation of surface
plasmons. The role of surface plasmons in the enhanced transmission was ques-
tioned in a number of consequent publications | , ] and still remains a
subject of some controversy. The main reason for this controversy is that several
complicated phenomena are playing out in EOT experiments. In addition to sur-
face plasmons, more conventional diffractive and interference phenomena such as
waveguide resonances | , ], Wood’s anomalies, and quasi-bound
modes | ] were shown to contribute to (or in some instances be the sole
cause of) the extraordinary transmission. For example, extraordinary transmis-
sion has been observed at THz and even microwave frequencies for which sur-
face plasmons do not exist [ , ]. It was later theoretically demon-
strated [ ] that holes and other perforations in a thick perfectly conduct-
ing metal (which do not support the “true” surface plasmons) can support the so-
called “spoof plasmons.” In an optical experiment similar to the original EOT work,
all these effects (surface plasmons, “spoof plasmons,” Wood’s anomalies, waveguide
resonances) occur at the same time because the EOT wavelength is very close to
the Wood’s anomaly: A ~ ,/e;L, where L is the array’s periodicity and €g4 is the
dielectric permittivity of the substrate that supports the metal film.

In this Section, we describe a series of experiments (supported by theoretical
calculations and first-principles electromagnetic simulations) enabling us to clearly
separate EOT due to diffractive effects from the EOT due to the excitation of
surface polaritons (SPs). Here, the general term polariton refers to either plasmon
polaritons or phonon polaritons. First, the perforated films are optically thin,
ruling out “spoof polaritons.” Second, all measurements are carried out in the mid-
infrared part of the spectrum, with the films made of silicon carbide (SiC). SiC is
a low-loss polaritonic material that has a negative dielectric permittivity e(w) for
a range of frequencies referred to as the reststrahlen band. Therefore, the surface
polaritons responsible for mid-IR EOT are the surface phonon polaritons (SPPs).
Because SiC films are thin (Agiqn = )\/47r\/H > H), the SPPs responsible for
EOT are double-sided polaritons, i.e., they exist on both SiC—vacuum interfaces.
Third, the high-index substrate is eliminated by using air-bridged (suspended) SiC

membranes, thereby ensuring that EOT is observed far from the grazing-angle
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(Wood’s) anomalies at the substrate-film interface. This enables us to observe
EOT in the sub-wavelength regime (D < A and L < \) where only SPPs and
not diffractive effects can be responsible for EOT.

Using polarized FTIR micro-spectroscopy and detecting both transmitted
and reflected radiation, we demonstrate, in adjacent frequency ranges, extraordi-
nary optical transmission and absorption of the incident radiation. Our theoretical
calculations and numerical simulations show that both phenomena are caused by
the excitation of quasi-electrostatic SPPs. It is shown that a perforated film can be
described as a metamaterial with the effective permittivity e.q = €, + i¢; strongly
modified by the excitation of SPPs. Armed with €., transmission and reflection
coefficients T" and R can be determined using Fresnel formulas for a dielectric slab.
Regions of the enhanced transmission and absorption are related, respectively, to
the lowering of |e,| and increase of ;.

We show that SPPs supported by the perforated film give rise to the poles of
the e which becomes substantially different from e(w) of the smooth SiC film in the
vicinity of SPP resonances. The effective permittivity description is enabled by the
sub-wavelength nature of the perforated membranes. We demonstrate that only the
slow surface polaritons (SSPs) whose in-plane electric field is even with respect to
the mid-plane of the film contribute to the effective permittivity. The role of SPPs in
EOT can be phenomenologically interpreted as Fano | , ] resonances.
The first-principles explanation of the enhanced transmission and absorption using a
quasistatic €. = €gs developed in this Chapter removes the phenomenological aspect
of the interpretation based on Fano resonances. In addition, we theoretically show
that two types of SPPs are supported by the hole arrays in a polaritonic membrane:
localized surface polaritons (LSPs) and delocalized SSPs. The LSPs are shown to
exist inside the frequency band corresponding to —1 < €(w) < 0, where they cannot

decay into propagating SPPs.
2.6.1 Effective optical constants of hole arrays in the quasistatic
approximation

In this Section we apply theoretical techniques introduced in Section 2.2 to
a simple three-dimensional metamaterial: a square array of circular holes in a thin

film. Our approach relies on the quasistatic approximation which assumes that a
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patterned metamaterial (such as, in our case, SiC film perforated by a hole array)
can be described by a quasistatic dielectric permittivity eqs(w) obtained by solv-
ing an electrostatic problem | , , | of the material’s response to
an imposed electric field EO(F, t) = Eoe_i”t. To characterize this system, we use a
combination of the frequency scan (Section 2.2.1) and eigenmode expansion (Sec-
tion 2.2.2) techniques, as described below. The method plasmon resonance has been
successfully applied in the past to periodic sub-\ crystals consisting of interpenetrat-
ing positive-€ dielectrics | ], or non-connected polaritonic inclusions [ ]. To
our knowledge, this is the first application of this method to the system with con-
tinuous polaritonic (negative-permittivity) phase, which supports delocalized surface
phonon-polaritons. These delocalized surface polaritons are responsible for the ex-
traordinary optical transmission observed in experiments conducted by Korobkin et
al. [ , , |, as will become obvious from discussions in subsec-
tions 2.6.2-2.6.3.

Owing to the periodicity and symmetry of the perforated membrane, it is
sufficient to solve electrostatic Eq. (2.1) inside the unit cell. Because we are mostly
concerned with the small incidence angle transmission, only the in-plane component
of the permittivity tensor will be of interest. Therefore, Ey = Eyé,, where the film
is parallel to the x-y plane, will be assumed.

Since our structure has three orthogonal planes of symmetry (z =0, y =0
and z = 0), the dielectric tensor is diagonal. Moreover, €5 = eqd, because z is the

4-fold axis of symmetry:

N fu

€ = €og = €gs(w) = 1 @) nz>0 @) =5 (2.97)
where f, = |(¢n, 2)|2/[V(dn, n)] (n > 0) is the electric dipole strengths of the n'®
resonance, and fo = V,/V =3 _ fu.

Note that in the limit of the smooth film fy = 1, f, = 0 for n > 0,
and eqs(w) = €(w). While the oscillator strengths f, (n > 0) can be computed
numerically from their corresponding eigenfunctions ¢,, calculating fy requires a
detailed knowledge of all f,,’s (or ¢,’s).

An alternative method of calculating fy and f,’s is to directly solve Eq. (2.1)
assuming a uniform electric field Ep, and then to substitute the solution ¢(7) into
Egs. (2.4) or (2.2) defining é,s. We used the commercial finite-element solver COM-
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Figure 2.5: Volume-averaged electric field enhancement inside a hole in a SiC film.
Sample: H = 458 nm SiC film perforated with a L = 7 ym square array of D = 2 ym
round holes (blue solid line). Insets: ES potential profile at the resonances: (left)
LSP resonance, and (right) SSP(1,0) resonance. Green dashed line: L = 6 pum, red
dash-dotted line: L =5 pm.
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Figure 2.6: Effective quasistatic permittivity of a perforated SiC film (electrostatic

FEM simulation). Sample: H = 458 nm SiC film perforated with a L = 7 um
square array of D = 2 pym round holes.
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SOL to calculate the quasistatic response of a perforated films for experimentally
relevant parameters. Because the most dramatic results were obtained for the sam-
ples with thickness H = 458 nm, period L = 7 pum, and hole diameter D = 2 um,
all theoretical calculations (except the ones shown in Figs. 2.5 and 2.9 where the
period and hole diameter varied) were done for these specific dimensions of the hole
array. Also, the following expression for the dielectric permittivity of a doped (with

a finite conductivity o) SiC film has been used:

w? — w%o +iTw io

i = — 2.98
€sic(w) = oo w? —wh, +ilw o (2.98)

where wpo = 972 em~! (Ao = 10.288 pm), wro = 796 cm™! (Ao = 12.563 pm),
I' =525 cm™!, 0 = 346.2 cm™', and €5 = 4.71 were found to give the best fit to
the experimental transmission data for the unperforated membrane.

Real and imaginary parts of eqs(w) are plotted in Fig. 2.6. The strongest
electrostatic resonance can be clearly identified as the maximum of Im [eqs(w)].
The extracted eqs(w) can be fitted to Eq. (2.97) to determine the dipole oscillator
strengths fo and f,, as well as their spectral positions w, corresponding to s(wy,) =
sn. The following values of the electrostatic eigenvalues s, and electric dipole
strengths f,, of the dominant dipole resonances were found to be: sg =0 (g = —0)
with fo ~ 0.88, 51 =~ 0.1241 (&1 = —7.058) with f; ~ 0.041 (the strongest resonance),
s9 &~ 0.1958 (eg ~ —4.107) with fo ~ 0.0054, s3 ~ 0.255 (e3 ~ —2.922) with
f3~0.0036, and s4 ~ 0.666 (¢4 ~ —0.50) with f; ~ 0.0049.

To better identify different contributing resonances of the structure, we have
calculated electric field Eye (averaged over the volume of a hole) in response to
ac electric field Ey, as a function of frequency. The ratio of Eyoe/Fy is plotted in
Fig. 2.5 for a fixed hole diameter D = 2 pym and variable period L. Four enhancement
spikes corresponding to resonances of €q(w) can be identified for all periods. By
comparing Figs. 2.5 and 2.6 we note that some of the resonances that manifest in
the field enhancement pictures (second and third from the right in Fig. 2.5) barely
contribute to the effective dielectric permittivity e,s. That is due to several factors,
for example, high localization of the enhanced fields or cancelation between the
fields in different parts of the structure, or even the enhancement of the orthogonal
component of the electric field. These effects can be appreciated from the potential

plots for different resonances in Fig. 2.8. More detailed discussion of the electrostatic
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Figure 2.7: Theory: reflectance (R, blue lines), transmittance (7', green lines) and
absorbance (A, red lines) of a perforated SiC film, relative to the same quantities of
a smooth film. Solid lines: first-principles FEFD simulation of EM wave scattering;
dashed lines: theoretical estimate based on €4 (see Fig. 2.6).

resonances is found in Sec. 2.6.2.
Once the effective permittivity eqs(w) is known, one can estimate the trans-
mission (7') and reflection (R) coefficients of the sub-wavelength array using well-

known formulas for a homogeneous slab. At normal incidence, these formulas read:

2

. 2
1 — r2)etho(n—1)H
(1=rpe : (2.99)

1 _ T%EQikonH

7“1(1 _ e2ikonH)
1 _ T%EZikonH

T —

where n = | /eqs, ko = w/cand r1 = (1 —n)/(1+n).

We have calculated transmittance T° and absorbance A = 1 — R — T of
the perforated film, subtracted the corresponding quantities for the non-perforated
film (eqs replaced by esic), and plotted the corresponding differential quantities in
Fig. 2.7. The absorption spike (red dashed line) is caused by the peak of Im[eqs] at
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A =)\ = 11.45 pum in quasistatic approximation, and corresponds to the resonant
frequency. The transmission maximum occurs because of the decrease of the absolute
value |Refeqs]| (with the rise of Releqs] < 0) at A = Mgz = 11.6 pm, as seen in
Fig. 2.6. In agreement with Lorentz theory of resonant response, this rise of Releqs] <
0 takes place below the resonance frequency. Enhanced transmission predicted from
€qs thus occurs for Apq, > A1 — slightly red-shifted from enhanced absorption
band. Because spacing between the holes (L = 7 pum) is nearly comparable with the
wavelength (A ~ 11 pm), the quasistatic e, is only an approximate description of the
perforated film. Therefore, fully electromagnetic (EM) calculations of 7" and A were
executed using the finite-element frequency domain (FEFD) solver COMSOL. The
results displayed in Fig. 2.7 (solid lines) show qualitative agreement with the €qg-
based calculation, with the exception that all transmission and absorption maxima
are slightly red shifted. This red shift is a previously noted | | effect explained
by the EM corrections to the purely ES response of sub-A polaritonic structures.
To summarize the theoretical results presented in Fig. 2.7, we have found
that extraordinary transmission through optically thin perforated SiC membranes
can be explained using the concept of the effective dielectric permittivity of the sub-
wavelength metamaterial. As Fig. 2.6 indicates, sub-A holes introduce a significant
(and disproportionate to their overall surface area of under 6%) correction to the
dielectric permittivity of the smooth film creating strong resonant features in eqs(w).
The strongest modification occurs in the imaginary part of 4. The physical origin
of this modification is the excitation of electrostatic (or quasi-electrostatic when
L/X ~ 1) resonances. The prominent reduction of the absolute value |Releys]| due
to the excitation of the strongest resonance results in the prediction of an additional
transmittance of 15% — more than twice the geometric area of the holes. Even
more dramatically, absorbance is predicted to increase by 35% (from less than 1%).
These theoretical predictions are fully confirmed by our experiments as detailed in
Sec. 2.6.3. Below we investigate the nature of quasi-electrostatic resonances that
have been shown above to shape the transmission and absorption properties of sub-
A hole arrays in SiC films and relate them to the better known SPPs supported by

smooth films.
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2.6.2 Connection of resonances of a perforated film to surface po-

laritons of a smooth film

Surface polaritons have been suspected of playing an important role in EOT
ever since its discovery | ]. Polarization and dispersion properties of SPs re-
sponsible for transmission resonances have been subsequently explored experimen-
tally [ ) , | and theoretically | , ] for thick
films, and their connection to the SPs of smooth (unperforated) films has been
noted. The connection is made by wavenumber matching: resonances of a perfo-
rated film with period L are commonly related to SPs of a smooth film with the
in-plane wavenumbers k(,, ,) = ‘%(m@ +ny)| = ZTW\/rn?——i—nQ, where m and n are
integers. Resonant effects such as enhanced transmission and absorption | ]
are expected to occur at frequencies close to those of the smooth film surface po-
laritons wsp(K(mpny). For optically thick films, the k-dependent SP frequency is
given by an implicit formula: ck\/l—i—e——l(ujgp) ; a slightly more complicated for-
mula for the frequency of slow surface polaritons must be used for thin films. The
in-plane component of the electric field of the SSP is even with respect to the mid-
plane of the film. In the electrostatic limit (L < \), wsp(k) is given implicitly by
e(wsp(k)) = —tanh 1 (kH/2).

When the size of the holes becomes of the same order as the period, res-
onance frequencies are likely to get significantly shifted from their smooth-film
values of wsp(k(myy). This frequency shift has been noted in a number of ex-
periments | , , | and attributed to scattering of SPs into
light. We find that in the sub-wavelength (quasi-electrostatic) regime there is an-
other reason for the red shifting of the EOT maximum: the electrostatic resonances
are hole-size dependent, explained in detail below. First, we have solved the GEDE
equation to obtain several electrostatic resonances, shown in Fig. 2.8. The lowest
frequency SSPs can be identified as modified by the presence of a large-hole SSP(1,0)
and SSP(1,1). Qualitatively, this identification can be made by the visual inspection
of Figs. 2.8(a,b), where the electrostatic potential and electric field in the mid-plane
of the perforated film are shown.

To make this identification more quantitative, we have decomposed the
electrostatic potential into 2D sin /cos Fourier series. The strongest ES reso-

nance, shown in Fig. 2.8(a), is dominated by the Fourier component sin(kx), where
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Figure 2.8: Electrostatic potential and electric field profiles in the mid-plane of qua-
sistatic dipolar eigenmodes of a perforated film (same as in Fig. 2.6). (a) Delocalized
resonance corresponding to SSP(1,0); (b) SSP(1,1); (c) single-hole resonance (LSP).
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k = 27 /L, thus justifying its identification with the SSP(1,0) of the smooth film. The
second strongest resonance, shown in Fig. 2.8(b), has a dominant Fourier component
sin(kx) cos(ky) corresponding to the SSP(1,1), although it is appreciably hybridized
with higher order SSPs. The third strongest resonance, visible in Fig. 2.5 (not
shown in Fig. 2.8), is a mixture of several Fourier components sin(mkx) cos(nky)
with m = 1,2 and n = 0,1,2. Mixing between different smooth film polaritons is
thus more prominent for shorter-wavelength modes. It appears that surface polari-
tons with the wavelength comparable to or less than the hole diameter D are more
strongly hybridized due to the presence of the holes. The ES resonances of the perfo-
rated film—originating from SSPs of the smooth film—occupy a significant volume
of the film, and, more importantly, their frequency is clearly period-dependent (see
Fig. 2.5); therefore, we refer to these ES resonances as delocalized SSPs. Frequen-
cies of all delocalized resonances (field enhancements due to the three strongest are
shown in Fig. 2.5) are located in the spectral region where Relesic] < —1. This
is expected because this spectral interval corresponds to propagating slow surface
polaritons.

We have investigated frequency dependence of delocalized resonances on the
hole diameter D. Resonance positions corresponding to D = 0 (smooth film)
were obtained by interpolation. Noting that Re [¢] is a monotonic function of the
frequency w and using Re [e(w)] as a frequency label, we have used GEDE to compute
the spectral positions of the electrostatic delocalized resonances (green dashed lines
in Fig. 2.9) SSP(1,0) and SSP(1,1). A significant red shifting of the strongest
electrostatic SSP(1,0) resonance is observed: Ae(PS) ~ —2 as the hole diameter
increases from D = 0 (smooth film) to D = 2 um (perforated film). From the first-
principles FEFD simulations we have also calculated the values of Re [¢] as a function
of the hole diameter for which an absorption peak is observed (blue solid curve).
Even for the smooth film, electromagnetic resonances are red shifted with respect to
their electrostatic counterparts because the array period L = 7 pm is comparable to
the wavelength, and the electrostatic calculation is only approximately valid. The
red shift between the electrostatic and electromagnetic resonances increases as holes
get larger, partly due to quasistatic retardation effects quantified in Sec. 2.5 and,
in part, due to radiation from the holes | , ] (in Sec. 2.5 there
was no radiation, because the structures were assumed periodic or uniform in all

directions). According to the FEFD simulations, for D = 2 pm holes the amount of
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Figure 2.9: Position of delocalized resonances SSP(1,0) and SSP(1,1) as a func-
tion of hole diameter D. Squares — position of absorption lines in quasistatic 3D
simulations (interpolated with dashed curves), diamonds — electrostatic GEDE sim-
ulations; stars — absorption lines in EM FEFD simulations (interpolated with solid
curves). Extrapolation to D = 0 is also shown.

red shift of the SSP(0,1) resonance from its smooth film values is Ae(PM) ~ —3.6.
Comparing AeEM) to Ae®S) | we conclude that only about one half of the red shift
of the absorption peak from the position of the smooth film SSP(1,0) resonance can
be attributed to retardation effects. The second half is a purely electrostatic effect
that occurs due to hybridization of the electrostatic SSP resonances in the presence
of a large hole.

No identification with one of the smooth film SSPs can be made for the LSP
resonance at A = 10.5 ym shown in Fig. 2.5. In fact, this surface wave resonance,
highly localized near the hole perimeter, can be thought of as an even-parity “defect
state” created by the presence of a single hole in a negative-e¢ film. Because the
frequency range for which —1 < e(w) < 0 is a stop-band for even-parity propagating

SPs, the even-parity LSP can exist in this frequency range alone. Because of the
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localized nature of the LSP, its frequency is insensitive to the proximity of other
holes (i.e., to the period L) but is sensitive to the aspect ratio of the hole and even
to the radius of curvature of hole edge. As may be seen in Fig. 2.5, frequencies of the
three red resonances (A > 10.6 pum) are located in the Relegic] < —1 band and are
all dependent on L. On the contrary, the blue resonance (Ao ~ 10.5 yum) belongs to
the —1 < Relesic] < 0 range and is period-independent. Another striking difference
between the red and blue resonances is that the former are very delocalized, while
the latter is strongly localized near the hole (see the two insets to Fig. 2.5).

To summarize, we have theoretically explained transmission and absorption
anomalies of sub-wavelength hole arrays by introducing the effective permittivity of
a perforated membrane with a complex frequency dependence caused by resonant
coupling to surface phonon polaritons. Two types of phonon polariton resonances
are theoretically uncovered: (i) delocalized modes related to slow surface polaritons
(SSPs) of a smooth film, and (ii) a localized surface polariton (LSP) of a single
hole in the spectral range complementary to that of SSPs. We have also discussed
the red shift of the transmission/absorption maximum through a perforated film
with large holes from the position corresponding to the frequency of a smooth film
SSP. This diameter-dependent shift comes from the combination of two factors: (a)
a purely electrostatic effect of the resonant frequency shift of a perforated film,
and (b) a purely electromagnetic effect of radiation through a finite-diameter hole
combined with SSP retardation in a finite-size unit cell. The relative importance of

(b) increases with the hole diameter.

2.6.3 Experimental verification of the theory: spectroscopy of per-
forated SiC membranes

In this Section experimental measurements of the EOT and enhanced optical
absorption (EOA) in sub-wavelength array of holes drilled in air-bridged (suspended)
SiC films is described. All experiments are done in the mid-infrared frequency range
(7 pm < X < 16 pm) which encompasses the reststrahlen band of SiC inside which
€ < 0. The FTIR micro-spectroscope used in this study collects all transmitted and
reflected light, enabling us to separately compute scattered and absorbed fractions
of the incident light in a manner similar to an earlier study | | of a hole

array in a metal screen. The high accuracy of our measurements and the utilization
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of an infrared polarizer enables us to separate the peaks of EOT and EOA for both
s and p polarizations. Moreover, by rotating the stage on which the perforated
film is positioned, the incidence plane of the beam with respect to the rows of the
array could be changed for each polarization. This additional flexibility enables
us, for the first time, to experimentally demonstrate a high (up to a factor of two)
anisotropy with respect to different orientations of the incidence plane. Even for
the appreciably sub-A arrays (L = 7 pum, A ~ 12 um) used in this study, this
high anisotropy is observed for fairly small (= 20°) incidence angles. Depending on
the incidence plane orientation, absorption spectra are shown to exhibit single- or
double-peaked transmission spectra.

Using the dielectric permittivity e(w) of SiC given by Eq. (2.98) with ex-
perimentally determined optical constants, we compared theoretical (from the first-
principles FEFD simulations) and measured reflection R(\), transmission T'()\), and
absorption A(A) = 1 — R — T coefficients. The results obtained for an s-polarized
incident beam with the incidence plane corresponding to ¢ = 0° (parallel to rows of
holes) are plotted in Fig. 2.10 for the 7-um-period array of 2-uym-diameter holes. In-
cidence angle 6 = 22° was assumed for numerical simulations. Given finite spread in
0 and ¢ for realistic experimental conditions, the agreement between theory and ex-
periment is good. Both T'(\) and R(\) exhibit characteristic kinks at the frequencies
corresponding to excitation of SPPs. The shapes of these kinks is reminiscent of Fano
resonances. They represent interference between radiation transmitted through the
film (continuum state) with the radiation re-emitted by SPPs through the holes
(discrete state). In most experiments to date, identification of the continuous and
discrete states was elusive [ |, mostly because of the close proximity between
Wood’s anomalies and SPP resonances. In our experiment there is no ambiguity in
identifying the dominant continuum state due to optical transparency of the film.
Nor is the identification of slow surface polaritons as discrete states ambiguous be-
cause they are well separated from Wood’s anomalies. In fact, our spectra are taken
for the 10.5 um < A < 12.5 um reststrahlen frequency band of SiC inside which
esic < 0. Wood’s anomalies corresponding to A =~ L = 7 um are clearly outside of
the spectral range of our experiments.

Experimental results shown in Fig. 2.10 (solid lines) demonstrate that
transmission peaks correlate with the absorption peaks (as has been previously
noted | ]) because both are related to the excitation of SPPs. In full
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agreement with FEFD simulation results shown in Fig. 2.10 (dashed lines) and
theory presented above, the transmission peak is red shifted from the absorption
peak. To our knowledge, this is the first experimental observation of this frequency
shift.

100

R, T, A (%)

10 10.5 11 11.5 12 12.5
Wavelength (micron)

Figure 2.10: Reflection, transmission, and absorption spectra in blue, green, and red,
respectively, for the 7-pm-period array of 2-pym-diameter holes under s-polarized
light and with ¢ = 0 sample orientation. The experimental FTIR results (solid,
courtesy D. Korobkin and B. Neuner III) are in agreement with simulation results
(dashed).

While most hole array studies involve optically thick (several times thicker
than the skin depth) films, our optically thin samples allow non-vanishing transmis-
sion without any perforations. Although it was generally believed that optical thin-
ness allows for transmission significant enough to deem holes unnecessary | ],
Fig. 2.10 demonstrated that holes modify transmission spectra to such an extent
that optical thinness is not a detriment. This modification occurs in a specific spec-
tral range where surface polaritons are excited. To quantify the role of the holes,
spectra of smooth SiC membranes located next to the perforation windows were

measured and subtracted from the corresponding hole array spectra.

73



Absorption (%)
N
o

10.5 11 115 12 125 13 10.5 11 11.5 12 12.5 13
Wavelength (micron) Wavelength (micron)

Figure 2.11: Absorption spectra for the 7-pym-period array of 2-um-diameter holes
under (a) p-polarized radiation and (b) s-polarized radiation with non-perforated
film spectra subtracted. To study angular anisotropy, the sample was rotated in the
z-y plane in increments of 45° from 0° to 135°. Data courtesy D. Korobkin and B.
Neuner ITI.

Spectra were taken under various conditions: s- and p-polarized IR radiation
was used, and the sample was rotated in the z-y plane in 45° increments from
0° to 135°. The results in Fig. 2.11 and Fig. 2.12 are displayed in a manner
to show angular anisotropy at fixed polarizations. It is seen that spectra change
considerably when the sample is rotated from a parallel to diagonal orientation.
For the p-polarized radiation with the incidence plane parallel to rows or columns
(¢ = 0° or ¢ =90°) both absorption (Fig. 2.11(a)) and transmission (Fig. 2.12(a))
exhibit double-peaked spectra. Qualitatively, this is related to the fact that the
radiation, incident at an angle 6, can strongly couple to two SSPs with kiSP =
27 /L + sinfw/c. When the sample is rotated by 45°, the two peaks are too close
to each other to be clearly distinguished. An opposite trend is observed in s-
polarization as shown in Fig. 2.11(b) and Fig. 2.12(b): for ¢ = 0°,90° there is a
single absorption/transmission peak which splits into two when the sample is rotated
by 45°. As expected, the A(\) and T'(\) spectra are invariant with respect to a 90°
rotation as confirmed by all plots within Fig. 2.11 and Fig. 2.12—a reassuring sign
that the array holes were precisely placed to form a symmetric, evenly spaced lattice.
Through the aforementioned 90° sample symmetry, an absorption or transmission
spectrum will alternate between one and two peaks with rotation; this effect could

be used in spectral filtering applications and for the identification and alignment of
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Figure 2.12: Transmission spectra for the 7-pm-period array of 2-um-diameter holes
under (a) p-polarized radiation and (b) s-polarized radiation with non-perforated
film spectra subtracted. To study angular anisotropy, the sample was rotated in the
z-y plane in increments of 45° from 0° to 135°. Data courtesy D. Korobkin and B.
Neuner III.

sample orientation.

Another interesting and potentially useful property of perforated hole arrays
is their extraordinary birefringence with respect to light polarization. For a given
sample orientation (¢ = 0° in Fig. 2.13 and ¢ = 45° in Fig. 2.14) transmission and
absorption spectra are plotted for s- and p-polarizations and compared with the
corresponding numerical simulations. For both sample orientations, we find that a
very significant birefringence in transmission of order |Ty — T},| ~ 20% can be ob-
tained for the two polarizations. That is significantly higher than the birefringence
from the unperforated film (about 5%). Enhanced s/p polarization birefringence
can be explained using the qualitative band diagram of SPPs [ ]. Such en-
hanced birefringence will manifest itself in polarization conversion (e.g., from linear
to elliptical) if the incident polarization is a superposition of s and p polarizations.
Experimental indications of polarization rotation have already been found in ear-
lier experiments [ , ], although the connection to s—p polarization
birefringence has not been made.

Experimental results shown in Fig. 2.13(a) and Fig. 2.14(a) show a very
good qualitative agreement when compared to their simulation counterparts shown
in Fig. 2.13(b) and Fig. 2.14(b). For the ¢ = 0° sample orientation, s-polarized

light results in a strong single absorption/transmission peak, splitting to twin peaks
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Figure 2.13: Absorption and transmission spectra from (a) experiments and (b)
simulations for s and p polarization at 0° sample orientation with non-perforated
film spectra subtracted. Absorption peak splitting, observed when changing from
s to p polarization, is clearly seen in (a) and (b) with similar split peak-to-peak
magnitude and frequency differences. Electromagnetic simulations (b) clearly agree
with measured spectra (a) for both s and p polarizations. Data courtesy D. Korobkin
and B. Neuner III.

with p-polarized light, seen in Fig. 2.13. The peak splitting in Fig. 2.13(a) found
experimentally is verified by simulations and shown in Fig. 2.13(b) with similar split
peak-to-peak magnitude and frequency differences. Peak splitting in p polarization
and the lack thereof in s polarization has been noted earlier | ] for thick
metallic films.

We also find a significant s—p polarization birefringence for the ¢ = 45°
sample orientation. Although the quantitative agreement between the experimental
and theoretical results for the sample orientation of ¢ = 45° shown in Fig. 2.14(a)
and (b), respectively, is less impressive than that for the ¢ = 0° sample orientation
Fig. 2.13(a) and (b), the qualitative agreement is quite good. Both the primary and
much smaller secondary absorption/transmission peaks in both polarizations are
seen in experiments and simulations. The primary peaks in Ap and Tp are shifted
to frequencies higher than those of Ag and Tg, an experimental result (Fig. 2.14(a))
reproduced through simulation (Fig. 2.14(b)). While the peak magnitude difference
between Ap and Ag in Fig. 2.14(a) is not seen in Fig. 2.14(b), the frequency shift
of 0.12 pum occurs in both experiments and simulations. Numerical difference be-
tween electromagnetic simulations and experimental results can be caused by several

reasons: uncertainty in the dielectric function of perforated SiC, significant spread
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Figure 2.14: Absorption and transmission spectra from (a) experiments and (b)
simulations for s and p polarization at 45° sample orientation with non-perforated
film spectra subtracted. While the main s and p polarization absorption peak
magnitudes differ in (a) but not (b), both sets display a similar frequency shift and
maintain similar relative shapes. Data courtesy D. Korobkin and B. Neuner III.

in the angles of incidence at the sample, and insufficiently precise decomposition
of optical spectra into s and p polarization caused by uncertainties of the beam
propagation inside the FTIR device. Future experiments with infrared laser sources
will allow us to better control angles of incidence and polarization and improve
quantitative agreement with the theory.

In conclusion, we have theoretically and experimentally investigated the
phenomenon of enhanced optical transmission (EOT) in mid-infrared through a
square array of sub-wavelength round holes milled in an optically thin polaritonic
(SiC) membrane. We have theoretically demonstrated and experimentally verified
that EOT is accompanied by a slightly blue shifted absorption peak corresponding to
enhanced optical absorption (EOA). Both EOT and EOA were shown to be caused
by the excitation of quasi-electrostatic resonances of the film that can be traced
to even-parity surface phonon polaritons of the smooth film. Enhanced absorption
and transmission as high as nearly 40% each have been shown for the arrays in
which holes occupied only 6% of the total area. Such high absorbance indicates
that perforated SiC films can be used as highly efficient tunable thermal radiation
source.

The major differences of our experiments from the earlier EOT experiments

are as follows: (a) optically thin phonon-polaritonic films (SiC) are used; (b) SiC
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films are suspended (air-bridged, i.e., there is no underlying substrate); and (c) the
hole array is essentially sub-wavelength (the ratio of the period L and diameter
D to wavelength A are L/\ ~ 0.6 D/X\ ~ 0.2). This choice of the experimental
parameters enabled us, for the first time, to definitively eliminate diffraction and
interference effects (Wood’s anomalies, “spoof polaritons,” waveguide resonances,
and quasi-bound modes) as being responsible for EOT/EOA, and to demonstrate
that both phenomena are caused by the excitation of surface phonon polaritons.
Because of the sub-wavelength nature of the perforated hole array, we have been
able to model it as a metamaterial described by the effective (quasistatic) dielectric
permittivity obtained using electrostatic simulations. For the first time, we have
investigated the dependence of EOT and EOA on both incident wave polarization
(s and p) and incidence plane orientation with respect to the rows of the holes.
The high degree of anisotropy with respect to the incidence plane orientation has
been demonstrated and theoretically explained. Strong polarization dependance
can be utilized in polarization converters while strong anisotropy can be used as a

diagnostics of the film orientation in sensing applications.

2.7 Appendix: Perturbation theory of the generalized

linear eigenvalue problem Lu = ARu

In this Section, we develop general perturbation theory for a generalized
linear eigenvalue problem, such as, for example, electrostatic eigenvalue equation
2.1. Only the first order corrections are derived here, to be used in calculations of
electromagnetic retardation effects in Chapter 2.

Consider a linear equation of the form
(Lo + Vi)é — A(Ro + Vi) = /. (2.100)

where \ is a parameter, f is external drive (independent of ¢), and Vi, Vi are small
perturbations of operators Ly and Ry, respectively. All these operators are integro-
differential operators defined on a certain domain D. The functions ¢ belong to a
certain linear space (D), which characterizes the physical boundary conditions
imposed upon ¢. Assuming that perturbations Vi, Vi are of the same order

and proportional to the same small parameter, conventional perturbation theory
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in this parameter can be developed, under the following circumstances. Suppose
that solutions of the unperturbed eigenvalue problem Lg¢ = ARg¢ comprise a full
and orthogonal basis in 3 (D), denoted {¢£LO)}, such that LOQS%O) = A%O)Ro@(f)) and
f D ¢£2)R0¢$L0)dV = Omn f D ¢&°)Ro¢$?)dv. In that case, it is possible to determine
the solutions of the driven problem solely from knowledge of these unperturbed
eigenfunctions {gb%o)}.

Let us begin with the non-driven case, (Lo+ V)¢ = A(Ro+ Vr)¢. Perturbed

eigenfunctions are expanded in the basis {¢£LO)}:

Sn = (6nm + Qnm) 'Y, (2.101)

m
where au,,, are of the same order as Vp and Vgi. For our purpose, we need only
corrections linear in Vi and Vgi. The eigenvalue )\, is expanded similarly: A\, =
)\,(10) + )\g) + O(V#). Omitting simple algebra, we give only the final result. First-

order correction to the eigenvalue is given by

[ e (Vi = ADVR) e dv

A = : (2.102)
I 6 Ropav
and first-order corrections to the eigenfunctions are given by
(0) O 1, — 2Oy 60) g1/
oMy =3 o (1)_Jp¢m (Vi = n Vr)én dV. (2.103)

A A [y W Red v

These expressions are derived under implicit assumption that the unper-

turbed spectrum AS’) contains no degenerate eigenvalues. They are valid even when

degenerate eigenvalues are present, as long as perturbations Vi, Vg do not mix
eigenfunctions belonging to the same eigenvalue. In that case, indefinite ratios
I o (Ve -2 VR) gl av

(0) _(0)
A=A
tromagnetic perturbations to electrostatic equations possess the full symmetry of

= 0/0 should be omitted from summation. Fortunately, elec-
the electrostatic problem, which is stored in the function €(r). Consequently, they

do not induce coupling between eigenmodes that are degenerate because of the ge-

ometric symmetry of €(r).
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The solution to the driven problem is also expanded in the basis {¢$LO)}:

6= cndl, (2.104)

0, (1)

where ¢, = ¢, + ¢’ + O(VLZ). After some simple algebra we get

(0)
UL L A— (2.105)

A =) [, o Rop P av

and (0) 01, L (0)
D = (0 Jpén” (Vi R)? (2.106)

A =) [ o0 Rogav

Up to the first order in perturbation, we thus obtain

OFF (1)
en O 4 el = 5 Jp 9 “(); 5 1-— g\)n . (2.107)
AY =) [ 8 Rogt dv AP A

)

From the physics viewpoint, corrections )\511 to eigenvalues correspond to
frequency shifts of externally driven resonances. It is therefore desirable to present
solutions of the driven problem in the form that includes resonant denominators

with corrected frequencies of the resonances. Noticing that

1 1 A )
= 1—— | +0(VD), (2.108)
OO RSO OIS L

we achieve this goal by writing the solution in the desired form

Jp &) fdv
A9 L aADy - A) [ 6 Rop\Vdv

o(r)=> o (r) t (2.109)
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Chapter 3

Sub-wavelength Resolution with

a Flat Superlens

In the previous Chapter, we have developed a theory of sub-wavelength pho-
tonic, plasmonic and polaritonic structures, with the emphasis on their resonances
and behavior in the long-wavelength limit. This theory provides a general framework
for description, analysis and engineering of electromagnetic nanostructures. Devel-
opment of such a theory is motivated partly by this Chapter, which deals with one
of the most exciting applications of electromagnetic nanostructures: sub-wavelength
resolution via the “superlensing” phenomenon.

In this Chapter, a novel approach to making a superlens in the infrared
frequency band is described. Materials with negative dielectric permittivity e are
utilized in this approach. Those could be either plasmonic (metals) or polaritonic
(semiconductors) in nature. A possible application of the negative-epsilon superlens
devised here is laser-driven near field nanolithography. Theoretically, any plasmonic
or polaritonic material with negative ¢ = —e; sandwiched between dielectric layers
with €4 > 0 can be used to significantly decrease the feature size. It is shown that a
thin slab of SiC is capable of focusing the mid-IR radiation of a CO4 laser to several
hundred nanometers, thus paving the way for a new nano-lithographic technique:
Phonon Enhanced Near Field Lithography in Infrared (PENFIL). Although an
essentially near-field effect, this resolution enhancement can be quantified using
far-field measurements. Numerical simulations supporting such experiments are

presented.
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Several objectives are fulfilled in this Chapter. For the first time, sub-
micron super-resolution is realized at the mid-infrared frequency produced by a
CO4 laser. Thanks to our choice of the relatively long operating wavelength, we
were able to fabricate an ultra-thin SiO»-SiC-SiO4 superlens that satisfies the small
retardation | ]. This demonstration paves the way for various nano-lithographic
applications that can take advantage of the widely available and highly efficient CO9
laser. It also proves that the resolution of at least 1250 nm ~ A/9 has been achieved.
Thus, this demonstration goes beyond the previously accomplished resolution of
the order of a wavelength | | and even beyond the resolution \/6 recently
reported by X. Zhang et al.| | in the UV regime.

This Chapter is organized as follows. Section 3.1 provides introductory notes
on sub-wavelength imaging. Basic elements of the theory of near-field imaging
with flat “superlenses” are presented in Section 3.2, which also introduces our
implementation of a near-field superlens. Section 3.3 describes our original design
of a far-field diagnostic that reveals formation of an image with strongly sub-
wavelength features. Section 3.4 presents a few optical measurements from the
proof-of-principle experiments that support the theory presented in Sections 3.2
and 3.3.

3.1 Introduction: imaging with a flat superlens

The wave nature of light places a stringent limit, known as the Abbe res-
olution limit [ |, on the resolution of a microscope: the minimal feature
size that can be detected by any conventional (far-field) optical system, with ac-
ceptance angle «, immersed in a host medium with dielectric permittivity e, is
A =1.22)\/(2\/€,sina), where A is the wavelength of light.

Another well-known example of the resolution limit due to diffraction of
light is a sub-wavelength diffraction grating with a period D. When illuminated by
a laser beam with the wavelength A > D, such diffraction grating produces only
one (zeroth) diffraction order in the far field. All other diffraction orders |m| > 1
are evanescent with the decay constants xI* = 27|m|/D. That implies that after
a distance Ax > D/27 all information about the diffraction grating is lost, and a
hypothetic light-sensitive screen placed in the image plane at a distance Ax behind

the grating is going to be uniformly illuminated. Restoring the information about
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the grating (or, equivalently, making the intensity in the image plane non-uniform)
requires amplifying evanescent diffraction orders.

While resolution can be enhanced beyond the canonical \/2 limit by using
high-¢;, materials (as it is done in liquid or solid immersion microscopy [ D,
the truly impressive gains in resolution may require unconventional materials and
approaches. One approach is the construction of electromagnetic metamaterials.

Metamaterial is a general term referring to man-made composites of natural
materials which have the desirable properties unavailable in the naturally occur-
ring materials. There has been a particular interest in engineering electromagnetic
properties of metamaterials that enable unconventional approaches to controlling

light propagation. For example, metal-dielectric composites have been used to en-

hance light intensity for nonlinear spectroscopic applications | ], induce very
strong nonlinear effects | ], design highly reflective [ ] or selectively
transmissive | , | mirrors.

The most fascinating metamaterials contain natural ingredients with both
positive and negative dielectric permittivity e. For example, a sub-wavelength
diffraction pattern of a periodic slits array has been reproduced in the imaging
plane (on a photoresist) using a dielectric/silver stack [ , |. Enhanced
transmission through a slab of negative ¢ material sandwiched between two layers
of positive e material has been recently demonstrated | ].

Another, even more exotic example of metamaterials are the so-called double-
negative (or left-handed) materials | , ) , , ].
Double-negative metamaterials (DNMs) utilize combinations of various resonant el-
ements | , |, which create negative dielectric permittivity and mag-
netic permeability. The possibility of accessing the sub-wavelength resolution using
the so-called superlens | ) | is the most challenging and technologically
rewarding application of the double-negative materials (DNMs).

The advent of a new class of Negative Index Materials | , ]
(NIMs) generated a significant optimism for enabling sub-wavelength resolution
in optical systems. NIMs are artificial materials that have a negative index of
refraction: Re neg < 0. The sign of refractive index is, by definition, the sign

of projection of the phase velocity upon the group velocity:

signRe neg = sign(vyy, - Ugr). (3.1)
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Figure 3.1: Schematic of a near-field lens: a thin slab of material with e & —1 is used
to image a narrow (sub-wavelength) slit in a screen illuminated by a long-wavelength
laser source.

It can be shown that DNMs are a subclass of NIMs: transverse waves in a isotropic
double-negative medium have oppositely directed wave vector k and Poynting flux
P = %[E' x H], which corresponds to negative index. The notion of NIM is broader
than DNM, because refractive index can be defined even in metamaterials where
effective medium description is impossible. Non-homogenizable metamaterials with
well-defined effective index include non-subwavelength photonic crystals (PhC).

A negative-index slab supports surface waves that can be externally excited,
for example, by an evanescent diffraction order of an illuminated sub-wavelength
diffraction grating. Under special conditions that will be explained below these
surface modes can become exponentially increasing inside the NIM slab as a function
of the distance from the interface between the ordinary and negative index media.
This spatial growth can compensate for the exponential decay (evanescence) of
those waves in an ordinary material. Thus a slab of NIM material designed to
resolve spatial features much smaller than the wavelength of light has been dubbed a
“perfect lens” | ] (see schematics of a flat lens in Fig. 3.1). The super-resolution
of a “perfect lens” is entirely due to the excitation of such surface waves.

Unfortunately, double-negative and negative-index materials do not occur in
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nature and must be engineered as metamaterials. Successful experimental demon-
strations of the negative refraction in the microwave frequency range have been re-
cently published | , , |. However, despite several theoretical
advances | , ], NIMs in the highly desirable infrared or optical frequency
ranges have been elusive so far. Conventional photonic crystals have been shown to
produce images that still make a significant fraction of A\/2. To make a step in the
direction of strongly sub-wavelength resolution, we demonstrate in Subsection 4.1
that a sub-wavelength plasmonic crystal (SPC) supports double-negative modes, and
can be potentially used for making a superlens. Several designs of double-negative
metamaterials are engineered in Chapter 4.

As soon as the fundamental role of surface waves in the “perfect lens” was
realized, and enormous challenges in creating the “true” double-negative Veselago
lens were faced, two side branches of the superlens research have formed. In one
branch, researchers hoped that negative index of refraction, regardless of its mech-
anism, can be used to implement the “perfect lens”. This hope was founded on two
facts: (i) in the limit of geometric optics, index of refraction determines paths of
light rays unambiguously in homogeneous media (through eikonal equation), and
(ii) rays of light experience negative refraction on the interface between positive
and negative index media. Since the notion of refractive index is broader than that
of effective permittivity, impedance or permeability, it is possible to create com-
plex media (e.g., photonic crystals) displaying both negative index and negative
refraction on flat interfaces. According to this school of thought, achieving negative
magnetic permeability at optical frequencies is unnecessary or even irrelevant, since
the notion of permeability can be dropped.

The second branch of research abandoned the hope for “perfect imaging” by
means of negative refraction (which is, strictly speaking, a far field phenomenon),
and focused on the role of surface polaritons in sub-wavelength near-field imaging.
Surface polaritons exist on interfaces with negative dielectric contrast (ez/e; < 0).
Again, there is no need for “optical magnetism”: magnetic permeability need not
be negative or even well-defined.

As a big disappointment, it was quickly realized that the lack of optical NIMs
would not be the only obstacle in creating the perfect lens. Even more significantly,
losses severely limit the thickness of a flat negative-index lens [ ) ,

|. Specifically, it has been recently demonstrated | ] that, when realistic
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material losses are accounted for, the resolution enhancement by the “perfect lens”
is limited to the near-field zone.

In the near-field zone the two types of waves, P-polarized (with magnetic
field parallel to the NIM interface) and S-polarized (with electric field parallel to
the NIM interface) decouple from each other. Electrostatics largely governs the
behavior of the P-polarized waves | |, and the value of 1 becomes irrelevant to
surface wave excitation. Therefore, one does not need to employ NIMs for making
a “perfect” near-field lens. Naturally occurring materials with ¢ < 0 can be used
instead. Low-loss negative € materials include metals (mostly Ag and Au) and polar
crystals (ZnSe, GaP, SiC) [ ]. The original proposal for a “perfect lens” | 1,
as well as the improved calculations [ ], advanced the idea of using a low-loss
metal with € &~ —1 for significant improvement of the near-field resolution. We
refer to the phenomenon of improving the near-field resolution by a slab of material
with € < 0 as near-field superlensing. This phenomenon was recently experimentally
demonstrated in the ultraviolet band | | with a 35 nm-thick silver film, and a
resolution of about A/6 has been claimed. More recently, near-field superlensing has
been experimentally demonstrated in the mid-infrared band | |; the latter
experiment provided a direct proof of a ground-breaking /20 resolution of single
two-dimensional objects such as holes.

The significance of a near-field superlens is that it improves spatial resolution
of near-field imaging. In other words, for a given distance between the imaged object
and the imaging plane, a superlens creates a sharper (higher spatial resolution)
image than that created without its assistance. Conversely, the superlens enables
increasing the distance between the source and the imaging plane while maintaining
spatial resolution. A realistic superlens does not “beat the diffraction limit” because
such limit only exists in the far field.

Resistive losses is not the only factor limiting the resolution of a near-field
superlens. Another important factor [ | is retardation, i. e. the finite thick-
ness of the lens compared with the wavelength of light. Retardation effect dom-
inates over losses whenever the inequality o/e; < eqw?d?/c? is satisfied | ],
where € = —¢4 + i0 is the complex dielectric permittivity of a negative-e mate-
rial surrounded by a regular dielectric with permittivity ¢4. Several recent experi-
ments | , | used a relatively low loss silver as a negative-e material,

and were securely within the limits of this inequality. Therefore, retardation was the
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dominant resolution-limiting factor. Theoretical calculations demonstrate [ ]
that, in the retardation-limited case, uniform amplification of a broad range of
transverse wavenumbers works properly only for very thin superlenses, wd/c < 0.3.
For thicker superlenses there is still a significant amplification coefficient T'(k,) of
the large transverse wavenumbers £, in the image in comparison with the un-assisted
near field image. However, T'(k,) is not a flat function of k,,. Therefore, such a super-
lens can only be used for imaging objects of small transverse feature size separated
from each other by a much larger distance.

In Section 3.2, we describe an implementation of a planar superlens for
mid-infrared spectral range (around 11pm) based on a three-layered structure of
sub-micron thickness, SiO9/SiC/SiOg, in which the polaritonic material SiC has a
negative dielectric permittivity in the restrahlen band between the frequencies of the
transverse and longitudinal optical phonons. The fabricated superlens consists of a
400 nm thick film of SiC inserted between two 200nm thick SiO9 dielectric layers.
Far-field diagnostics of superlensing based on measuring transmission coefficients
through the metal-coated superlens has been implemented using a tunable COg laser
and Fourier Transform Infrared (FTIR) micro-spectroscopy. This work breaks the
new ground for developing metamaterials in the mid-IR part of the electromagnetic
spectrum that is of considerable interest for medicine and biology | ]. Strong
interest in mid-IR free-space communications coupled with the recent breathtaking
progress in quantum cascade lasers [ | provides yet another incentive to the
development of metamaterials in mid-IR. Another attraction of using polaritonic
materials with the negative € in mid-IR (e. g., SiC, ZnSe, TiO3) is that their
electromagnetic properties can be readily tuned by applying an external electric
field | , ].

3.2 Theory and simulations of the near-field superlens

It was noted previously by several theorists that planar slabs of materials with
€ < 0 can be used instead of negative-index metamaterials for enhancing the near-
field image | , , ]. Materials with ¢(w) < 0 in a limited frequency
range are common in nature. For example, free electrons in metals account for their
negative dielectric permittivity: € = ¢, — w?/w(w +iy) < 0 for w < w,/\/€. Here

wp is the plasma electron frequency, eq > 0 is the frequency-independent dielectric
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contribution of bound electrons, and y is the damping rate. For example, for silver
e, = 5, hwy, = 9.1eV, and hy = 0.02eV. Another class of the so called polaritonic
materials (SiC, ZnSe, GaP, etc.) exists for which € < 0 occurs for frequencies in
the far to mid-IR band. The frequency-dependent dielectric permittivity of these

crystals is given by the approximate formula

w? — w%o +ilTw

(3.2)

€T Coo 2 —wi, +iTw’
where wrp and wro are the frequencies of the transverse and longitudinal optical
phonons, respectively. The finite phonon lifetime is accounted for by the damping
constant I' in Eq. (3.2). For example, for SiC wro = 972cm™!, wro = 796cm—!,
€eo = 6.5 and T' = 5cm~!. The so called restrahlen band wrp < w < wro for
which e < 0 is typically in mid to far infrared for polaritonic materials (PM’s). The
low damping rate of optical phonons makes PMs attractive for developing enhanced
near-field lenses in the mid to far-infrared range.

Enhancing the near field image, thereby improving its spatial resolution, is
important for developing new nano-lithographic tools. In this Section, we describe
a new nanolithographic tool, Phonon Enhanced Near Field Infrared Lithography
(PENFIL) that utilizes a thin (about 400 nm) film of SiC sandwiched between two
thin layers (about 200 nm each) of SiOs. By tuning the high-power radiation of a
COq laser to the wavelength (= 11.1um) for which egic = —e€gi02, a 100nm wide
slit on the front side of the SiO3/SiC/SiO2 sandwich can be accurately imaged
onto its backside side by a laser beam normally incident on the front side. A
thin layer of thermoresist deposited on the backside the sandwich can thus be
patterned on a 1200-nm scale using a high power COs laser beam. This super-
resolution corresponding to A/100 is accomplished by a purely near-field effect:
strong coupling to the broad wavenumber range of surface phonon polaritons at
the SiO9/SiC interface. Below we also demonstrate how, by adding an additional
set of narrow slits on the backside of the SiO2/SiC/SiO9 sandwich, the transmission
coefficient through the structure can be correlated to the existence of the above
mentioned near-field effect.

Below we review the theory of near-field superlensing as applied to the
Si02/SiC/SiO2. The principle of enhanced near-field imaging using thin slabs of a

negative-e¢ material € &~ —¢y inserted between low-loss dielectric with permittivity €4
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is shown in Fig. 3.1. A single sub-wavelength slit (or a periodic array of slits spaced
by D < \) of width Ay < A located at = 0 is illuminated by a normally incident
laser, and is imaged onto the focal plane behind the film. It follows from Fig. 3.1
that the focal distance of a superlens is equal to the thickness of the polaritonic
material d. We assume that the imaging wave is p-polarized, i. e. the non-vanishing
field components are B, E,, and E,. Magnetic field B, in the object plane can be

decomposed into planar waves:

400
B.(x=0,y) = / dkApe™V,
—0

where A(k) is the wave amplitude which is non-vanishing up to k¥ = k.. In the
case of a periodic array of slits the integral turns into a sum of the harmonics of
kp = 27/D: A(k) = S+ A,,0(k —mkp), where m is the diffractive order. Tt
will be assumed that all |m| > 1 diffractive orders are non-propagating (evanescent).
Given the magnetic field distribution at the slit B, (y,z = 0), magnetic field

in the image plane B, (y,x = 2d) is given by

+oo
B.(y,x = 2d) = / dy'Bo(y/x = 0)G(y — o). (3.3)

— 00

The Green’s function G(y — v') is given by | , , , ]

G=(2nr)! / o dk T(k)e™, (3.4)
where
T(k) _ 4(Xd/6d)(Xp/6) €xXp (_de) ’ (35)

(Xp/€ + Xa/€a)? exp (xpd) — (Xp/€ — Xa/€a)? exp (—Xpd)

and the evanescence constants in the regular and polar materials are, respectively,

Xd = VK% — €qw?/c? and x, = \/k? — ew?/c?. Perfect restoration of the image is

only possible for e = —eg4 and x;, = xq4. For non-magnetic materials (1 = 1) xp > Xxa-
Therefore, T'(k) cannot be equal to unity for all k’s. The expression for T'(k) can
be simplified in the most relevant here limit of |k| > |eglw/c and € = —e4 + io:
4 —2kd
T(k) ~ c (3.6)

(6 — ieqw? [k2c?) + 4e—2kd’
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Figure 3.2: Dielectric permittivities € = €1 4 iea of SiOy and SiC (see legend) as a
function of the laser wavelength A\ measured in microns.

where 0 = 0 /€4 characterizes losses in the negative-e material. If both positive and
negative-e¢ materials are lossy, & is the sum of the losses in both materials. Note that
losses (proportional to &) and retardation (proportional to egw?/k?c?) cumulatively
cause T'(k) to deviate from unity. Because the highest resolved wavenumber k o< 1/d,
retardation dominates when & < eqw?d?/c?.

Dielectric permittivities of SiC and SiOs are plotted as a function of the laser
wavelength A inside the tunability range of a COs laser in Fig. 3.2. Dielectric per-
mittivity of SiO2 was interpolated from Ref. | ], and that of SiC was computed
from Eq. (3.2) with parameters | , | wro = 972cm™!, wrp = 796cm !,
€oo = 6.5 and I' = 5em 1.

Accessing the wavelengths in the 10.7 < A < 11.4um range requires using a
13C 160, gas filling. Rapid increase in the real and imaginary parts of € = € + ieg
of SiC towards the longer wavelengths corresponds to the transverse optical phonon

resonance at A ~ 12.6pum while a similar increase of €; o of SiOy towards shorter
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wavelengths corresponds to the resonance at A ~ 9um. Fortunately, there exists a
wavelength A ~ 11pm for which e%ic = —6?102 = —3.76 and €5 are very small for
both materials. Dissipation limits the resolution of surface wave enhanced imaging
[ , ] if |e2/e1| > eqw?d?/c?, where d is the width of the negative e slab.
For the subsequent simulations we choose the width of the SiC to be d = 400nm,
and the opposite limit holds: (63102 + egic)/e?o"’ = 0.1 but w?d?/c? x 6?102 ~ 0.2.
Therefore, the SiC thickness limits the resolution | ].

Eq. 3.6 demonstrates that while a far-field “perfect lens” is not achiev-
able given realistic material losses, improvement in near-field resolution is possi-
ble | ]. As an object to be imaged onto the focal plane we have chosen a
periodic set of slits of the width Ay = 500nm spaced by a period D = 2.5um.
Because the first evanescent diffraction maximum decays by one e-folding after a
distance L = D/27, a convincing demonstration of superlensing requires that the
lens’ thickness 2d > L. In the absence of near-field superlensing, an electromag-
netic wave transmitted through the periodic array of slits in the object plane turns
into a planar wave propagating normally to the lens after a distance L behind the
object plane. Therefore, the focal plane is uniformly illuminated if the laser fre-
quency w = 2mc/A does not satisfy the superlensing condition Re[e(w)] = —Releq].
Non-uniform illumination can occur under two conditions: (a) superlensing, and (b)
excitation of the slab resonances of the slab superlens. We use computer simulations
to demonstrate the strongly resonant nature of the superlensing phenomenon and
to illustrate the three vastly different frequency regimes: superlensing at A = 11um;
excitation of the slab resonance at A = 10.7pm; and total loss of resolution (uniform
illumination of the focal plane) at A = 11.25um.

Superlensing at A = A\p = 11um is demonstrated in Fig. 3.3. Strong field
enhancement at the right SiO9/SiC boundary is indicative of evanescent wave am-
plification by the superlens. Image of the slit is formed on the back side of the lens
(SiO2/vacuum boundary). Profiles of the electric field amplitude behind the screen
(solid line) and in the focal plane (dashed line) are shown in Fig. 3.3(bottom). While
the sharp sparks behind the metal screen are not resolved in the focal plane (they
are represented by a very large wavenumber k, such that T'(k) is small), the overall
width of the slit is captured. It is apparent from Fig. 3.3(bottom) that the adjacent
slits separated by D = 2.5um are well resolved. The actual FWHM of the slit image
is better than D/2 which corresponds to the spatial resolution better than A\/8. It
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is also noteworthy that, apart from the spikes corresponding to “sparking” at the
edges of the slit, the shape of the electric field behind the screen mimics that of
the slit. This is an indication of very small reflections from the superlens because,
otherwise, the field profile near the metal screen would have been modified by the
reflected wave. Incidentally, small reflection coefficient has been predicted [Shv03a]
in the superlensing regime. Therefore, Fig. 3.3(bottom) contains two indication of
superlensing at A = Ag: (a) FWHM of the slit image in the focal plane is signifi-
cantly smaller than the slit spacing D, and (b) apart from the spikes at the sharp
edges of the screen, electric field profile behind the screen sharply reproduces that

of a slit.
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Figure 3.3: Superlensing at A = 11um. Top: Color-coded magnetic field strength
B, and B, = const isocontours and Poynting vectors (arrows) in and around
the SiO2/SiC/SiO9 superlens illuminated by a normally incident from the left p-
polarized electromagnetic wave. Bottom: Electric field magnitude |E | in the object
plane behind the screen (z = —400nm, solid line) and in the focal plane (z = 400nm,
dashed line). Spikes in the object plane are due to “sparking” at the edges of the
slit. SiO regions: —400 < z < —200 nm, SiC region: —200 < z < 200 nm.
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Figure 3.4: Evolution of transverse Fourier harmonics of B,(x = const, y) along the
optical axis = in a superlens excited by a screen with periodic array (D = 2.5um)
of slits (0.5um wide), at the superlensing frequency (A = 10.972um). Dielectric
constants used are eg;c = —3.76 + 0.24¢ and €g;0, = 3.76 + 0.17¢. The first and
second harmonics are dominated by the exponentially growing terms in the negative
dielectric slab (—200 < x < 200 nm). The boundaries of SiC and SiO2 layers are
indicated by thick solid lines.

To better illustrate the image formation in this superlens, we have numeri-
cally solved (using FEFD method implemented in Femlab [ ]) the problem of a
three-layered structure excited by an incident plane wave passing through a periodic
array of slits made in a silver screen (Fig. 3.4). The fields after the screen can be
decomposed into Fourier harmonics which evolve as e**V ek —k>z along the optical
axis, where ko = 27/ is the vacuum wavenumber. Within the layer of negative
dielectric, there are both exponentially growing and exponentially decaying waves.
Even though we do not have a rigorous solution of this essentially 5-layered problem,
we know that when a slab with dielectric constant e is surrounded by medium with

dielectric constant €4, the ratio of magnetic fields on the opposite sides of the slab
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equals| ]

Ap(x = d/2) _ 2(xp/€)e 7" k=2rm/D. (3.7)

Ap(r =—=d/2)  (xp/e+ xa/ea) + (Xp/€ — Xa/€a)e™ 2w ?

At the superlensing frequency we have by definition |e + ¢4] < 1, and the harmonic

enhancement can become large:

Ap(z =d/2) = 2¢
Az =—d/2) ~ e+ eq

e~ 2D i —1,2,3... (3.8)

at least for small m, but it decreases exponentially with the order of Fourier har-
monics m. In our case, ¢ ~ 3.76, ¢ + ¢4 ~ 0.4i, d/D = 0.16, which gives the
estimate of the amplitude enhancement ~ 7 for m = 1, = 2.5 for m = 2 and = 0.9
for m = 3, in qualitative agreement with the Fig. 3.4. This analysis illustrates how
the super-resolution is obtained in this structure, and convinces us that at least the
first harmonic, which is responsible for resolving the features about D/2 in size, is

enhanced exponentially in the SiC layer.
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Figure 3.5: Absence of the superlensing for two representative wavelengths A = A\;
(left) and A = Ay (right). Total electric field |E| is plotted behind the metal screen
(solid lines) and in the focal plane (dashed lines). For A\; = 11.25 spatial resolution
in the focal plane is lost: electric field profile in the focal plane is almost uniform.
For Ay = 10.7um the electric field profile in the focal plane is strictly sinusoidal
indicating a slab resonance.

Superlensing is a resonant phenomenon strongly dependent on the radiation

frequency w because Re[e(w)] = —Releg] must be satisfied. We illustrate the absence
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of superlensing for A # Mg by two examples: A = A\ = 11.25um and A = Ay =
10.7pum. Total electric field |E | is plotted behind the screen and in the focal plane
in Fig. 3.5 for A = Ay and A = X\y. For A = \; we find (see Fig. 3.5[left]) that
|E | is almost uniform in the focal plane indicating the lack of superlensing. Spatial
information about the periodic slit array is lost in the focal plane because evanescent
diffractive orders |m| > 1 are not amplified by the SiO5/SiC/SiOy lens, and the
only non-evanescent m = 0 diffractive order results in a uniform illumination of
the focal screen. Another indication of the lack of superlensing is a significant
reflection from the SiO2/SiC/SiO lens that manifests itself in a strongly distorted
field distribution behind the screen. For A = A9 we also find (see Fig. 3.5[right])
that the profile of | E| in the focal plane does not resemble the image of a single slit.
The almost perfectly sinusoidal dependence of |E | on y is caused by the excitation
of the electromagnetic resonance of the SiO2/SiC/SiOxq lens | ]. We have chosen
the two non-resonant wavelengths A1 and Aq sufficiently outside of the superlensing
region that our simulations have shown to be in the 10.85um < A < 11.05um range.

The difference between the superlensing case of A = A¢ (Fig. 3.3) and the two
representative non-superlensing cases of A = A\ (Fig. 3.5) is sufficiently striking
to convince us that superlensing is a real near-field effect that can be diagnosed by
careful measurements of the field profile in the focal plane. Unfortunately, these
near-field measurements can be fairly challenging because they may require a sub-
micron spatial resolution.

We have also simulated transmission of mid-IR radiation through the SiOs-
SiC-SiO9 superlens without the image-forming metal screen (Fig. 3.6). The purpose
of this numerical experiment is to verify the recent prediction | | that a
negative-e material can become totally transmissive when encased inside a positive-
€ dielectric. Although Fabry-Perot resonances of dielectric slabs, resulting in 100%
transmission, are very well known, it is quite remarkable that total transmission can
be achieved with sub-wavelength sandwich-like structures. The key to this effect
is that an electromagnetic wave propagating normally to the material interface of
a sub-wavelength structure and polarized parallel to the interface experiences an

average dielectric permittivity given by the effective medium theory [ |:

e”(w) = (d161 + d2€2)/(d1 + dg) (39)
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Here di2 and €12 label the thicknesses and dielectric permittivities of the two
materials comprising the sub-wavelength sandwich. Total transmission through the
structure is expected if ¢ = 1. This phenomenon cannot be realized for most
materials: if €12 > 1, then ¢ > 1. For polar materials with e < 0 there exists,
however, a particular frequency w; for which ¢ (w1) = 1. The physical basis for the
enhanced transmission is that the reflection from the negative-¢ material is exactly

canceled by the reflection from the positive-e¢ coating.

1 0 — 1,

e : : —_ SiOzlSiC/siO2
0.9F 0.9F Qg ovvdendi| L g
0.8 0.8F N\ :
g orf 0.7f S\
2
g 06p; 2 0.6\
3 >
o =
5 0.5 - é 0.5F
17} \ & oabi N
g 0.4} .
8 H
< 0.3 0.3fF N
=
0.2 0.2 v
0.1 [0S S PP PAREEN, Ny
) . . . . 0 . A — it
600 800 1000 1200 1400 1600 800 850 900 950 1000
wavenumber, cm’ wavenumber, cm

Figure 3.6: (a) Transmission through a three-layer SiO2(200nm)-SiC(400nm)-
Si02(200nm) nanostructure. Dot-dashed line indicating perfect transparency at

wi = 93lem™!: simulation result, losses in SiOy and SiC are neglected. Solid line:

simulation result, losses are included. Dashed line: experimental measurements us-
ing FTIR microscope. (b) Reflection from a 400nm SiC film (dashed line) and a
Si02(200nm)-SiC(400nm)-SiO2(200nm) composite film. Addition of the 400nm (or
A/25) SiOy coating reduces the reflection coefficient by a factor 6 at w = 930cm 1.

Enhanced transmission was numerically simulated by assuming that €; =
€5i0, | |, €2 = egic from Eq. (3.2), and d; = da = 400 nm. The results of the
numerical simulation of the EM wave incident on the three-layer structure are shown
in Fig. 3.6. Neglecting material losses in SiO5 and SiC by retaining only the real part
of the dielectric permittivity yields a dashed-line curve indicating total transmission

at w; = 930cm~1.

This transmission maximum is expected to be experimentally
observable because, at that frequency, losses in SiC and SiO9 are small. The other
two higher frequency transmission maxima are located close to phonon resonances
of SiO2, where Re(egio,) < 0 and Re(egic) > 0. These transmission maxima are
not expected to be observable because of the very high losses in SiOs. Indeed, when

the imaginary parts of the dielectric permittivities are included, the transmission
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curve represented by the solid line has a single well-formed maximum at w = w;.
The peak transmission falls short of 100% to about 92% because of the finite losses.
The experimentally measured transmission curve (dashed line) indeed closely tracks
the numerically simulated solid line. The small dip near the expected transmission

maximum appears to be caused by sample contamination resulting in absorption.

3.3 Far-field detection of superlensing: design of the

proof-of-principle experiments

Sio, SiC SiO,
200 nm 400 nm 200 nm

500 nm Au or Ag 500 nm, Au or Ag

Object slits / \ Diagnostic slits

2.5 um period 2.5 pm period

Figure 3.7: SiO2/SiC/SiO4 superlens with two sets of slits: image-forming Object
Slits and Diagnostic Slits. Only Sample IN for which Diagnostic Slits are directly
opposite to the Object Slits is shown. In the Sample OUT Diagnostic Slits are
laterally displaced by D/2 = 1.25um.

Simulation results of Section 3.2 indicate that superlensing is a real near-field
phenomenon that can be diagnosed by careful measurements of the field profile in
the focal plane. Unfortunately, these near-field measurements can be challenging in
mid-IR part of the spectrum. For example, one cannot employ photoresist [MBW04,
FLSZ05], as it is typically done in UV, because low-energy infrared photons do not
affect it. Near field scanning optical microscopy (NSOM) has also been relatively
undeveloped in mid-IR until recently [TIKU06]. Our solution is a new far-field
diagnostic of image localization. In this Section we present numerical calculations
demonstrating how transmission through a double set of nano-slits (one set on the
front and another on the back side of the SiO2/SiC/SiO4 superlens) can serve as a
reliable proof of superlensing at A = 10.97um, and a valuable test bed for studying

the sensitivity of superlensing to the laser wavelength.
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Figure 3.8: Resonant transmission through a double set of nanoslits. Case IN (left):
diagnostic slit in front of the object slit. Case OUT (right): diagnostic slit displaced
laterally by D/3 = 400 nm. Other parameters: same as in Fig. 3.3.

To devise a far-field diagnostic of superlensing we added a second metallic
screen on the back side (focal plane) of the SiO2/SiC/SiO lens. A periodic set of
diagnostic slits is cut in the screen. The slits are identical in width Ay and period
D to those on the front side of the lens. We consider two kinds of diagnostic slits:
in-phase (cut exactly across the lens from the image-forming slits) and out-of-phase
(laterally displaced in y-direction from the image-forming slits). The SiO3/SiC/SiOq
lens with in-phase (out-of-phase) slits will be referred to as the IN (OUT) Samples,
respectively. The IN sample is shown in Fig. 3.7. Let us denote the frequency-
dependent transmission coefficient through the IN Sample as T;,(w) and through
the OUT Sample as the Ty (w).

The IN and OUT samples were numerically simulated. In Case IN the
diagnostic slit is positioned directly opposite the object slit, so that the image of
the object slit fits inside the diagnostic slit as shown in Fig. 3.8 (left). Hence, a
relatively high transmission through the two sets of slits is expected. Indeed, the
transmittance is Ty, = 44.5%. In Case OUT shown in Fig. 3.8 (right) the diagnostic
slit is laterally displaced by D/3 = 400 nm. As evident from Fig. 3.8 (right), the
metal screen of the diagnostic grating obscures the image of the first slit. Hence, the
expected transmittance is low. Indeed, it is found to be only T, = 9.7%, yielding
the transmission contrast of Tj,/Toy: = 4.6 for these two cases. Both simulations

were done for the resonant A = 10.97um.
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To demonstrate that such a high transmission contrast is the consequence of
superlensing, we have carried out transmission simulations for cases IN and OUT
using a different laser wavelength achievable by a COs laser, A = 11.262um. For
that wavelength, €3¢ = —6.55 +0.37: and €502 = 3.29 4 0.244, and no superlensing
effect is expected. Transmission coefficients for the two cases are Tj, = 30% and
Tyt = 35%, respectively. So, indeed, the displacement of the diagnostic slit has
very little effect on transmission in the absence of superlensing. This decrease in
the transmission contrast for the two slit positions was to be expected. Indeed,
when the two sets of slits are separated by the vacuum region, the transmission for
coincident slits (Case IN) is T, = 77.5% while for the displaced slits T,y = 77.2%.

Relative Transmission

10.6 10.7 10.8 10.9 11 111 11.2 11.3 11.4
A, microns

Figure 3.9: Theoretical calculation of the ratio of transmissions through IN and
OUT Samples. Lateral shift between slits in the OUT sample is D/2. Large peak
at A\g = 11pm indicates superlensing.

It is easy to see why T}, (w)/Tou(w) carries information about superlensing.
In the absence of superlensing (for example, for A = A1) an electromagnetic wave
that penetrates through the object slits into the lens consists of multiple diffractive
orders. However, after a distance Az = D/(2m) only the fundamental m = 0
diffractive order survives as all other diffractive orders are evanescent. Therefore,
the second metal screen (in the focal plane of the lens) is uniformly illuminated as
shown in Fig. 3.5(left). Consequently, the relative phase of the diagnostic slits with
respect to the object ones is irrelevant, and Tj,(w1) = Tyue(wr). The situation
drastically changes for near the superlensing wavelength A\ = )\y. Because the

superlens focuses radiation transmitted through a given slit directly in front of that
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slit as shown in Fig. 3.3, the relative position of the diagnostic slits with respect to
the image-forming object slits becomes crucial. Specifically, it is natural to expect
that transmission through the IN Sample is going to be much higher than through
the OUT Sample at the superlensing wavelength. The ability of a superlens to
amplify evanescent diffractive orders makes the transmission coefficient through the
structure dependent on the relative lateral positions of the object and diagnostic
slits.

Numerical simulations confirm these simple qualitative arguments. The
frequency-dependent ratio Tj, /Ty (this time for lateral displacement D/2) is plot-
ted as a function of the laser wavelength in Fig. 3.9. A sharp peak at A ~ 10.97um
signals superlensing. Away from that point Tj,/Tpu ~ 1. To summarize, we have
designed a simple far-field test of superlensing that requires measuring the ratio of
transmission amplitudes for Samples IN and OUT. This diagnostic is remarkable in

that it uses far field measurements for diagnosing a near-field effect.

3.4 Experimental evidence of superlensing: far-field

spectra

In Section 3.3, we have devised a spectroscopic far-field diagnostic of su-
perlensing by producing periodic arrays of sub-micron slits on both surfaces of the
superlens as shown in Fig. 3.7. One set of image-forming slits creates localized
sources while the other set of diagnostic slits is used for collecting the transmitted
light. Spatial localization of the image is confirmed by varying the lateral position
of the diagnostic slits.

To confirm the predictions of the theory and demonstrate formation of sub-
wavelength images, Korobkin et al. | , ] have fabricated several sam-
ples with diagnostic IN an OUT double sets of slits (Figures 3.10, 3.11). By using a
broadly tunable FTIR microscope, they measured reflection and transmission coef-
ficients of the superlensing structures designed in Sections 3.2, 3.3, covering a wide
band around the polaritonic resonance in SiC and the superlensing resonance of the

structure with resolution 1 cm™1.

Fabrication of the superlens and experimental
procedures are described in detail in Refs. | ) ].
Fig.3.12 shows transmission through the 200 nm SiO2/400nm SiC/200nm

SiOs structure for the symmetric IN and half-period shifted OUT groove positions.
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Figure 3.10: Left upper corner: SEM image of a segment of SiO2/SiC/SiOy mem-
brane covered with a 60nm thick gold film on both sides. The plane of view is tilted
by 52°. Bottom: periodic array of slits produced in the gold film using ion milling.
Image courtesy D. Korobkin.

One can see that the curves are dramatically different only in the vicinity of the
superlensing wavenumber. The ratio of those two curves is shown in Fig.3.13 (black
solid curve). The maximum ratio is reached at Kpeqr = 924 £ 0.5 cm~ L

As a control experiment, it was demonstrated that superlensing in its origi-
nally conceived form | ] requires a symmetric superlens, i.e. that the amounts
of the positive and negative ¢ materials must be the same. When the amounts of
SiO9 and SiC are not equal, the superlens does not work. To demonstrate that
we have measured Tjy,(w) and Tpue(w) for a sample that consists of the Au(60nm)-
Si02(400 nm)-SiC(400 nm)-SiO2(400nm)-Au(60nm) layers. The ratio Ty, /Tpu: that
serves as a diagnostics of superlensing was plotted in Fig. 3.13 as a dashed pink line.
The difference between the cases of the symmetric and non-symmetric superlenses
is dramatic: the non-symmetric superlens does not exhibit the spike associated with

the superlensing. The experiment of Korobkin and Neuner III did not only confirm

the superlensing effect in mid-IR, but also demonstrated its highly resonant nature.
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Figure 3.11: Optical transmission microscope image (x100 objective) of the diag-
nostic structure with half-period shifted slit arrays on both sides of the superlens.
Darker lines between bright lines represent the slits on the other side. Image cour-
tesy D. Korobkin and B. Neuner III.

None of the earlier demonstrations of superlensing | , | demonstrated

such strong frequency dependence of superlensing.

3.5 Conclusions

In conclusion, we have experimentally demonstrated that a nanoscale meta-
material consisting of SiC (negative permittivity crystal) and SiOy (positive permit-
tivity dielectric) can be used as a near-field superlens in mid-IR capable of signif-
icantly enhancing near field resolution. Superlensing manifests itself in imaging a
sub-micron slit cut in a metal screen with a resolution exceeding the usual near-field
resolution.

A novel far-field diagnostic of superlensing has been developed theoretically
and implemented experimentally using a tunable CO, laser and a spectral FTIR
microscope. By studying transmission through the superlens over a broad range
of mid-IR frequencies (600 < w < 1500cm™!), we demonstrated that superlensing
is a highly resonant phenomenon occurring in the vicinity of the frequency wq for

which the resonance condition Reegic(wp) = —Reegsio,(wo) is satisfied. Because
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Figure 3.12: FTIR measurements of transmission through the IN (pink solid curve)
and OUT (black dashed curve) samples. Data courtesy D. Korobkin.

the transverse shift of the second set of slits causes full loss of transparency, this
diagnostics confirms that the constructed dielectric superlens has resolution of at
least 1250 nm ~ A\/9 at A ~ 11pm.

We have also demonstrated that a three-layer sub-wavelength structure con-
sisting of positive and negative permittivity materials behaves as a metamate-
rial with an effective dielectric permittivity given by the effective medium theory.
This was experimentally proven by us by demonstrating the enhanced transmis-
sion through the structure whose effective dielectric permittivity is tuned to that
of vacuum. This work paves the way to designing metamaterials with desirable
electromagnetic properties in mid-IR. We envision, for example, using electrically
tunable negative-e materials, such as TiOs, as ingredients for electrically controlled
metamaterials.

It is interesting to note that after this theoretic work and proof-of-principle
experiments were concluded in 2006, deeply sub-wavelength resolution with infrared
light was demonstrated with the designed superlens by the Nano-Photonics Group
at the Max-Planck-Institute for Biochemistry, Germany [ ]. Figure 3.14

shows near-field infrared SNOM images of three rows of holes that range in diameter
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Figure 3.13: Ratio of the transmission coefficients through the IN and OUT Samples
as a function of the laser wavelength. Black solid curve: the “right” superlensing
structure (200/400/200 nm), pink dashed curve: a structure with “wrong” thickness
ratio (400/400/400 nm). Data courtesy D. Korobkin.

from 1200 nm (bottom row) to 860 nm (middle row) and 500 nm (top row). This
demonstration has proven that this superlens is capable of resolving essentially
two-dimensional objects (circular holes), which is a major improvement relative to
earlier superlens demonstrations that utilized 1D gratings (as described in Sec. 3.4).
In addition, deeply sub-wavelength (up to A/20) resolution was obtained, for the
first time, on a series of 2D objects (holes) spaced from each other by only \/5 ~
2 pm. This ground-breaking accomplishment validates theoretic work and test-bed

experiments discussed in this Chapter.
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Figure 3.14: Scanning near-field optical microscopy (SNOM) through a 880-nm-
thick superlens structure designed in this Chapter. Left: infrared amplitude in the
image plane at A = 10.85 pym. Right: infrared phase contrast at A = 11.03 pm.

Images courtesy T. Taubner and R. Hillenbrand.
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Chapter 4

Engineering Negative-Index
Metamaterials for the Flat

Superlens

The ability of periodic dielectric structures to significantly alter the propa-

gation of light has been realized with the introduction of a photonic crystal | ,

, , |. To maximize the effect of the structure on the dispersion
properties of propagating electromagnetic waves, the crystal period is typically of the
order of the light wavelength. Light propagation is affected in several ways: through
creation of the stop-bands (band gaps) separating adjacent propagation bands,
group velocity reduction near the propagation band edge, generation of cavity states
localized near a defect [ |, polarization-dependent birefrigence | ],
and extreme anisotropy with respect to propagation direction [ , ]. Ap-
plications of dielectric photonic crystals (PhC) include low-loss fibers | ],
microcavity lasers [ ], band-edge quantum cascade lasers, cavity quantum
electrodynamics, and development of novel quarter waveplates | ].

Several even more exotic applications of dielectric PC’s have been recently
suggested: development of the so-called left-handed (or negative index) materials,
flat photonic lenses, and sub-wavelength imaging [ | capable of exceeding
the diffraction limit. Since the resolution of any PC-based lens is limited by the
crystal period [ |, beating the diffraction limit requires using a PC with a

sub-wavelength period | ]. In addition to dielectric PhCs, a new class of metal-
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lic photonic crystals (MPC) has recently drawn attention because of their wide
bandgap for short wavelengths [ | and the ability to act as efficient filters of
electromagnetic radiation | , ]. Even more exciting electromagnetic phe-
nomena occurring in MPCs are the existence of left-handed waves | | which
can be used for sub-wavelength imaging | | and extreme field enhancement
by arrays of metallic nanorods [ | which can be used for surface-enhanced
Raman scattering (SERS). Since all these applications require sub-wavelength scale
MPCs, it is important to understand and classify the types of electromagnetic waves
supported by such structures.

Moreover, in the optical/UV frequency range metals behave very differently
than at the longer wavelengths. Because of the strong (plasma-like) frequency
dependence of the metallic dielectric permittivity e(w) in that frequency range,
metallic inclusions are referred to as plasmonic. Accounting for the dispersion
of €(w) becomes necessary, even further complicating an already challenging task
of calculating the detailed photonic bands of a PC. To address this challenge, we
develop a new technique for calculating dispersion properties of sub-wavelength
plasmonic crystals (SPC). This technique is based on the assumption wd/c < 1,
where d is the crystal period and c is the speed of light in vacuum. However, we go
beyond the traditional electric dipole approximation | , | and demonstrate
how higher-multipole plasmonic resonances can produce magnetic moments of a
plasmonic inclusion and give rise to electromagnetic waves with a negative magnetic
permeability. When metals are used as negative € inclusions, the typical lattice
period that satisfies the ”sub-wavelength” criterion is under 50 nm. Therefore,
metallic SPCs are necessarily nanostructured. Because the focus of this work is
on plasmonic structures, the metallic inclusions will be occasionally referred to as
nanorods or nanoparticles.

In this Chapter, we examine several geometries of sub-wavelength plasmonic
crystals and in each case, determine if (and how) the structural parameters of such
crystals can be chosen to create a double-negative, negative-index band. In two out
of four considered geometries, we succeed in finding bands with negative index of re-
fraction. Section 4.1 introduces a two-dimensional SPC consisting of closely-packed
metallic cylinders placed in a dielectric matrix. In Section 4.2, another geomet-
rically simple and easy-to-fabricate SPC is studied: arrays of metallic strip pairs

(MSP). It is shown that despite initial hopes, this structure cannot be both deeply
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subwavelength and exhibit negative index at the same time. Problems associated
with simple MSP metamaterial are successfully resolved in Sec. 4.3, which intro-
duces a novel, easy-to-fabricate Strip Pair One Film (SPOF) structure. Proof is
provided that SPOF metamaterial can exhibit negative index of refraction even in a
deeply subwavelength (a/\ = 7) regime. This Chapter concludes with Section 4.4,
which describes an experimentally realizable nanoparticle colloid exhibiting mag-
netic resonances in strongly sub-wavelength regime. We believe that this Section
is an indication that the extremely challenging task of fabricating negative-index

liquids (or gels) can be solved in the near future.

4.1 Plasmonic nanorod array as a negative-index meta-

material

In this Section we demonstrate how electromagnetic properties of periodic
two-dimensional sub-wavelength plasmonic structures consisting of closely-packed
inclusions of materials with negative dielectric permittivity € in a dielectric host
with positive €, can be engineered using the concept of multiple electrostatic reso-
nances. Fully electromagnetic solutions of Maxwell’s equations reveal multiple wave
propagation bands, with the wavelengths much longer than the nanostructure pe-
riod. It is shown that some of these bands are described using the quasistatic theory
of the effective dielectric permittivity ey, and are independent of the nanostructure
period. An additional propagation band characterized by a negative magnetic per-
meability develops when a magnetic moment is induced in a given nano-particle by
its neighbors. Imaging with sub-wavelength resolution in that band is demonstrated.

Electrostatic resonances of isolated nanoparticles occur when a metallic
or dielectric particle with a negative frequency-dependent dielectric permeability
€(w) < 0 is imbedded in a dielectric host (including vacuum) with a positive di-
electric permeability €, > 0. The wavelengths A\ of the incident electromagnetic
radiation that resonate with a small particle of a characteristic size d < A\ depend
on the particle shape and the functional dependence of €(w). By changing the shape
and internal composition | ] of nanoparticles resonances can be shifted to the
wavelength optimized for a particular application. Close proximity of other small
particles can also strongly affect the resonances. We explore this proximity effect

in order to engineer electromagnetic properties of periodic arrays of metallic parti-
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cles. Because the particle size R and separation d are significantly smaller than the
radiation wavelength in vacuum \ = 27¢/w, we call these crystals Sub-wavelength
Plasmonic Crystals (SPC).

By numerically solving Maxwell’s equations, we identify two classes of waves
supported by an SPC: (a) hybridized Dipole Modes (DM) that are characterized by
a quasistatic period-independent dielectric permittivity €qs(w), and (b) hybridized
Higher-Multipole Modes (HMM) that depend on the crystal period d. Two types
of DMs are identified: almost dispersionless (non-propagating) collective plasmons
(c)

(CPL) satisfying the w(k) = wgc) dispersion relation (where w;”’ are multiple zeros
of €4s), and propagating collective photons (CPH) satisfying the k2c? = wlegs(w)
dispersion relation. The mean-field dielectric permittivity ey calculated from the
quasistatic theory | , | is found to be highly accurate in predicting wave
propagation even for SPCs with the period as large as A/2w. DM wave propaga-
tion bands are ”sandwiched” between multiple resonance wzm and the cutoff wi(c)
frequencies of the SPC.

The new HMM propagation bands are discovered inside the frequency inter-
vals where €45 < 0 and, by the mean-field description, propagation is prohibited.
HMM bands should not be confused with the usual high order Brillouin zones of a
photonic crystal because the latter do not satisfy the d < A condition. One HMM
band defines the frequency range for which the sub-wavelength photonic crystal
behaves as a double-negative metamaterial (DNM) that can be described by the
negative effective permittivity e.g < 0 and permeability p.g < 0. Magnetic proper-
ties of the DNM are shown to result from the induced magnetic moment inside each
nanoparticle by high-order multipole electrostatic resonances of its neighbors. It is
shown that a thin slab of such DNM can be employed as sub-wavelength lens capable
of resolving images of two slits separated by a distance < A. We will concentrate

on two-dimensional SPCs only.

4.1.1 Propagation bands in a two-dimensional SPC

For the remainder of this Section we concentrate on transverse magnetic
(TM), also known as p-polarized, electromagnetic waves propagating in the x — y
plane of a two-dimensional photonic crystal. Photonic crystal is assumed to be

a square array with period d of cylindrical inclusions (rods of radius R infinitely
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extended in the z—direction) with dielectric permittivity e imbedded in a host
material with dielectric permittivity €, = 1, as shown on the inset of Fig. 4.1.
The non-vanishing EM field components are H,, E,, and E,. Propagation bands

can be obtained by solving the nonlinear eigenvalue equation for H,:

- 1 - w?
v H)="H, 41
v <e<w,f>v ) 2 (1)

where H, satisfies phase-shifted boundary conditions at the edges of the elementary
cell:
H.(d/2,y) = e*TH,(~d/2,y), H.(x,d/2) = ™I H (x,—d/2) (4.2)

The electric field of the wave is given by E(Z) = —i[c/we(Z)|é, x VH,. The dielectric
permittivity e(w,#) is assumed to be piecewise constant: e(w,Z) = e(w)0(T) +
en[l — 0(Z)], where 6(Z) is a Heaviside function equal to 1 inside the plasmonic
cylinder and 0 outside. Solving Eq. (4.1) yields the dispersion relation w vs. k=
ky€y + ky€,, where —mw/d < kg, k, < m/d. Due to band folding, multiple Brillouin
zones (propagation bands) separated by stop-bands are revealed. Thus w2 where
n labels the Brillouin zones (BZ), is a multi-valued function of k and crystal period
d. The band edge k=0 (T-point) corresponds to periodic boundary conditions on
H,.

There is an important difference in the electromagnetic properties of dielec-
tric (with frequency-independent e(w) = ¢;) and plasmonic (with e(w) =1 —w?/w?)
photonic crystals in the limit of d — 0. For small \E| < 7/d EM waves propagating
through the former can be described using the effective medium d—independent di-
electric permittivity e.g only for the lowest BZ. For the upper BZs wave frequencies
scale inversely proportionally with d. On the other hand, there are two classes of
waves supported by a plasmonic PC:

(i) Non-resonant waves (dipole modes) which exist far from electrostatic
resonances, and are described by the dispersion relation k? = e.g(w)w?/c?, where
for d — 0 €cp = €qs(w). The quasistatic dielectric permittivity eqs(w) is calculated
using the conventional QSED theory | , | as explained in Sec. 4.1.3.

(ii) Higher-multipole resonances with the dispersion relation w = w(k?d?).
Although these waves are predominantly electrostatic, they can excite a finite mag-

netic moment inside the plasmonic inclusions. These profound differences between
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dielectric and plasmonic periodic structures are caused by the electrostatic reso-
nances introduced in Section 4.1.2.

In the rest of the Section we concentrate on the specific SPC shown as an
inset in Fig. 4.1: a square lattice of round (R = 0.45d) almost-touching plasmonic
cylinders with the frequency-dependent dielectric permittivity e(w) = 1 — w2 /w?
characteristic of collisions-free electron gas described by the Drude model. The

cylinders are separated by the lattice period d = c/w,.

4.1.2 Electrostatic resonances in SPCs

For a sub-wavelength rod the right-hand side of Eq. (4.1) can be neglected
as long as w?d?/c?> < 1 (because VH, ~ H,/d). Hence, the total magnetic field
satisfying Eq. (4.1) can be expressed as H, = Hgs + Hi, where Hgys satisfies the
generalized nonlinear eigenvalue equation (for a real number €(w) and, therefore,
implicitly for w):

-V (e—lﬁHqs) —0, (4.3)

where H satisfies the phase-shifted boundary conditions described by Eq. (4.2).
Equation 4.3 is an eigenvalue equation only in the sense of having non-trivial
solutions only for certain values of e. The E—dependent eigenvalues ey) of the
Eq. (4.3) form a discrete spectrum (j € N), and the superscript (r) denotes the
resonance. The constant eg.r) combined with material dispersion e(w) defines the
mode frequency w](.r) which can be used to calculate H; assumed to be a small

correction (of order w?d?/c?) to Hys. The inhomogeneous equation for Hj is

w2

-V (a‘lﬁHl) = 5 He, (4.4)

where H; also satisfies Egs. (4.2).
It can be shown that the EM waves with frequencies close to wj(-r)(l_f') are
predominantly electrostatic. Indeed, the electric field E = —i[c/we]é, x VH, can be

separated into the electrostatic and solenoidal components: E = Ees + Esol, where

Eos = —i[c/we]@, x VHes (4.5)
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and

Eyo = —ilc/wel@, x VH. (4.6)
From ]Hqs] > |H;| it follows that |Eqs| > |Egy|. It is straightforward to show that
V X Eey = 0, so that the electric field is indeed predominantly electrostatic. Thus,
it can be expressed as the gradient of an electrostatic potential ¢: Eqs = —Vqﬁ.
Because in the electrostatic limit Maxwell’s equations simplify to V - (e ) =0, two
equations for ¢ and H, are simultaneously satisfied for a sub-wavelength plasmonic

crystal:

v (6_16Hqs> =0 and -V (eﬁ(b) =0. (4.7)

Equations (4.7) will be used in Section 4.1.4 to derive a useful duality relationship
between resonances and cutoffs of electromagnetic waves propagating in an SPC.
Note that the electrostatic assumption can only be used in close proximity of the

(r

resonant frequencies w; ), Away from resonances a different procedure described in
Section 4.1.3 must be used to describe the propagation of EM waves in an SPC. The
perturbative calculation of H; according to Eq. (4.4) also loses validity away from
the electrostatic resonances.

Electrostatic resonances for the specific SPC are calculated for a range of
propagation wavenumbers k inside the Brillouin zone by solving the eigenvalue
equation (4.7) for ¢. For computational convenience Eq. (4.7) is recast in the form

of
v [e(f)%,} — V20, (4.8)

where ¢; are the potential functions corresponding to electrostatic resonances sat-
isfying the periodically phase-shifted boundary conditions analogous to Eq. (4.2),
and s; = (wl(r) Jwp)?. The dependence of s; on the wavenumber is presented in
Fig. 4.1, where the inset shows four unit cells of the SPC. The wavenumber k is
labeled in Fig. 4.1 according to the standard convention: I' — X direction is along
the xr—axis and I'— M along the diagonal of the SPC. The finite elements code FEM-
LAB | | was used to solve Eq. (4.8). All eigenvalues were computed to at least
fourth decimal accuracy as verified by successive refinements of the computational
mesh.

Different curves represent different families of resonances labeled according

to their symmetry at the I'-point (IZ = 0). For example, the resonance labeled as
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Figure 4.1: Electrostatic resonances of the square lattice SPC consisting of almost
touching plasmonic cylinders with R/d = 0.45 (shown as inset). Vertical axis:
s =1/[1 — e(w)] = w?/w?, horizontal axis: wavenumber. Scanned eigenvalue range:
0<s<045
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By is a quadrupole: its lowest azimuthal dependence is qbZ(Bz) o sin 26 at the I'-

point. Azimuthal dependencies of some of the other resonances are: ¢§A2)
(octupole), gb(EI)

7

o sin 46
x cosf, and qSEEy) x sinf (dipoles). Angular dependencies of
the E-modes is given for k = 6ké,, where dkd is infinitesimal. Resonances labeled
as Iy and F, are special because they have a non-vanishing dipole moment, and
describe the modes resonantly excited by a uniform E = Epé, or E = Eyé, fields,
respectively. I, and E, are hybridized dipole resonances while the others (e. g. A
and Bsg) are higher-multipole resonances (HMR). Note that the wavenumber enters
Eq. (4.7) only through the boundary conditions, and only through the combinations
kyd and kyd. Therefore, the dispersion relations for all resonances have the w vs.
\E|d dependencies, and, therefore, are period-dependent.

It would be tempting to assume that the propagation curves in Fig. (4.1)
calculated in the vanishing period limit w?d?/c? < 1 accurately describe all waves
propagating in a finite-d SPC. This turns out not to be the case. Electrostatic
calculation is accurate only in close proximity of electrostatic resonances. Away
from those resonances the electrostatic assumption is invalid, and other modes
emerge. For instance, by numerically solving the full electromagnetic Eq. (4.1),
we have identified a propagating mode below the lowest In frequency) electrostatic
E, resonance (s < 0.14). That mode merges with the E, curve for k| > 1/d.

It is also found, based on the group theoretical analysis of Eq. (4.1) explained
in Sec. 4.1.5, that the electromagnetic modes form a doublet at the I'—point corre-
sponding to the F, resonance. The degeneracy is removed for finite k= ki€, and
the doublet is split into lower and higher frequency modes. The low-frequency mode
of the doublet referred to as a bulk plasmon (BP) is z— polarized, practically dis-
persionless, and has the propagation properties almost identical to the electrostatic
E, mode. The high-frequency mode referred to as the plasmon polariton (PP) is
y— polarized and occupies a much wider frequency range than the BP: between the
E, and E, resonances. For large ]E| > 1/d the PP’s frequency approaches that
of the E resonance, and the dispersion curve of the PP merges with that of E,.
The x— and y—polarized electromagnetic waves are strictly frequency-degenerate at
the I'—point, whereas the approximate electrostatic calculation in Fig. (4.1) gives
a misleading impression that they are not. Both BP and PP are hybridized dipole
modes because, as shown in Sec. 4.1.3, their fields can be expanded as a sum of

hybridized dipole resonances.
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Other propagating electromagnetic modes of a finite-period SPC are not
frequency-degenerate at the I'—point. Those modes indeed are the hybridized
higher-order multipole resonances. Even for finite sized nanoparticles HMR’s dis-
persion relations are very accurately described by the dispersion curves shown in
Fig. 4.1. Electromagnetic properties of HMR bands are period-dependent because
w depends on |k|d.

4.1.3 Quasistatic electric dipole theory of SPC

Away from multipolar electrostatic resonances a well-established methodol-
ogy exists for characterizing the frequency-dependent electromagnetic properties of
a nano-structure. This is done by introducing a frequency-dependent quasistatic
dielectric permittivity eqs(w) of a nanostructure | , ], as described in de-
tail in Section 2.2. We refer to this approach as the quasistatic electric dipole
(QSED) theory because it takes into account only hybridized dipole resonances of
the nano-structure. For the frequencies sufficiently distanced from higher-multipole
resonances this is a justifiable assumption: dipole scattering by individual particles
dominates over the multipolar scattering.

From the theory of quasistatic permittivity presented in Section 2.2 it follows
that only the resonances with a non-vanishing dipole moment at the I'-point con-
tribute to eqs(w). For example, the E, resonances from Fig. (4.1) contribute to €qs
while the As, Bs, and E, do not. We conjecture, and later verify, that the quasistatic
dielectric permittivity eqs(w) calculated from Egs. (2.12,2.13) can be used for deriv-
ing the dispersion characteristics of y—polarized electromagnetic waves propagating
in x—direction.

The dipole strengths can be significantly simplified for a square lattice of
round plasmonic rods. Because the square lattice is invariant with respect to the
transformations of the Cy, point group | |, all periodic solutions transform
according to one of the irreducible representations (irreps) of Cy,: four singlets
(commonly labeled as Ay, A9, Bi, and Bs) and one doublet E. The electrostatic
eigenfunctions with a non-vanishing dipole moment qﬁl(-E) and gng) have the symme-
try of E. By symmetry, inside a given rod each ¢§E) can be expanded as the sum
of multipoles: .

ot (r,0) = 3" APV (r/R)* U sin (20 + 1)6. (4.9)
=0
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Because ¢ is a piecewise constant function of the radius, and V2¢; = 0 inside and

outside of the rod, for any ¢; we can simplify
V2¢; = 8(r — R) x [0r¢i(r = R+ 0) — 9,¢;(r = R+ 0)]. (4.10)
By continuity of €(r)0,¢; we can further simplify
V2¢i = 6(r — R)(e; — 1)0ri(r = R—0). (4.11)

Using the multipole expansion inside the rod one finds that the dipole strength is

proportional to the dipole component of gbZ(E):

fi= (Ag)Q/i(zz +1) <A§l+1)2. (4.12)

=0

For the plasmonic structure analyzed here there are three significantly strong
hybridized dipole resonances: (s1 = 0.1433, f; = 0.8909), (so = 0.4025, fo = 0.064),
and (s3 = 0.6275, f3 = 0.0366). In general, there are infinitely many hybridized
dipole resonances, most of them clustering around the singular point of s; = 1/2 (or
wi = wp/ v/2) which corresponds to the resonance of an isolated plasmonic rod. In
Section 2.2, a generalized sum rule for electric oscillators was proven. In the case
of disconnected plasmonic inclusions such non-touching cylinders, the quantity fo

vanishes, and the sum rule reduces to
(o @]
Y =1 (4.13)
n=1

Because numerically 2731:1 fn = 0.992, we are justified in neglecting weaker dipole
resonances and using the strongest three in Eq. (2.12) for calculating eqs(w). The
potential functions ¢; of the three strongest dipole resonances (corresponding to
the electric field in z—direction) are shown in Fig. 4.2(a~c). The first resonance
is primarily dipolar (o< cos€) while the second one has a significant sextupolar
(ox cos 30) component. Thus, the close proximity of the rods in the lattice results
in a strong hybridization of the odd multipoles with the dipole. Moreover, the
hybridized dipole resonances wy) = 0.38wy, wg) = 0.63wp, and wér) = 0.79w,
occur at the frequencies controllably different (through the R/d ratio) from that
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Figure 4.2: (a-c) The potential functions of the three strongest hybridized dipole
resonances of the SPC with parameters from Fig. (4.1), in the order of decreasing
dipole strength (contours) and the corresponding electric field (arrows). (d) Qua-
sistatic dielectric permittivity eqs vs. w calculated from Eq. (2.12) using the three
strongest resonances.

of an isolated rod, w( = wp/ V2. Red-shifting of the strongest dipole resonance
of a nanoparticle due to close proximity of other nanoparticles has been observed
experimentally [MJB00].

The corresponding quasistatic dielectric permittivity eqs is plotted in
Fig. 4.2(d) as a function of the frequency w. Infinities of ey correspond to
electrostatic dipole resonances. In calculating eys(w) we have neglected the finite
damping in the plasmonic rods. If damping is accounted for, the infinities of €4
are removed. Another set of special frequencies W' are the cut-off frequencies

i
for which 6qs(w§c)) = 0. For the structure analyzed here there are three such

(c)

frequencies: w;’ = 0.61w,, wéc) = 0.77w,, and w:(f) = 0.93wp,. Note that e is
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independent of the SPC periodicity scale d and is only dependent on the geometry
(i. e. R/d). Therefore, the quasistatic eqs approach is the effective medium theory

which neglects the internal structure the SPC.

4.1.4 Duality theorem for SPC: relation between cut-off and reso-

nance frequencies

We have discovered that for a highly-symmetric square lattice the cut-off

and resonance frequencies are related to each other by a simple formula: for each

( (c) (6)) _

7 ) % -

1/ e(w](-r)). Numerical calculation of the zeros of €45 from Eq. (2.12) accurately con-

resonance frequency w ") there exists a cutoff frequency w;”’ for which e(w
firms the duality principle. Below the duality principle in an SPC is rigorously de-
rived. This principle is a combination of a known duality theorem of two-dimensional
electrostatics | ] with rotational invariance of Cy, lattice (or any lattice with
C), axes of symmetry, n = 3,4,6).

First we review a related duality principle for the resonances of an isolated
plasmonic nano-cylinder of an arbitrary shape. Recall that Eqgs. (4.7) are simultane-
ously satisfied for the electrostatic potential ¢ and magnetic field Hys. Because the
electric field is normal to ¢ = const lines and along the Hys = const lines, Egs. (4.7)
simply illustrate that in electrostatics there are two equivalent descriptions of the
electric field: using potentials and field lines. Both Hys and ¢ must vanish far away
from the cylinder. It follows from Egs. (4.7) that if a resonance is supported by a
rod of an arbitrary transverse shape for ¢ = €1, then there exists another resonance
for eg = 1/€1 | ]. For the resonances with € = €; and e = €3 electric field lines
and potential iso-contours are simply interchanged. Hence, the duality principle for
isolated nano-rods: all electrostatic resonances occur for frequency pairs (w1, ws)
such that €(wy) = €1 and €(wa) = 1/€;.

Symmetry considerations must be used for deriving a duality relation for
a two-dimensional SPC. Let’s assume that an electrostatic resonance is found for
€ = €1 for a y—polarized electric field. The corresponding potential eigenfunction ¢
is a solution of Eq. (4.7) and satisfies the following homogeneous conditions at the
unit boundaries (x,y) = (£d/2,+d/2): (a) ¢1 and its derivatives are periodic; (b)
b1(y = £d/2) = 0; (c) Dpo1 (x = £d/2) = 0. By symmetry, another eigenfunction ¢,
obtained by a 90—degree spatial rotation of ¢; also satisfies Eq. (4.7). Next, consider
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a pair of magnetic field functions H fz = ¢1 and H f Y = él, and the frequency wo
such that e(wp) = 1/€1. It follows from Eq. (4.7) that HF= and HE both satisfy
Eq. (4.1) in the quasistatic limit of w?d?/c? < 1. Moreover, the periodic boundary
conditions satisfied by (HF=, H P Y) indicate that the pair are the magnetic fields of
the BP and PP at the cut-off point of k = 0 (see Eq. (4.2)). Therefore, wy is the
cut-off frequency. The inverse is also true: if the cut-off frequency is w3, than there
is a resonance at w4 such that e(ws) = 1/€(ws).

Using a frequency-dependent label s(w) = 1/(1 — e(w) (which reduces to
s(w) = w?/w? for the plasmonic dielectric permittivity e(w) = 1 — w?/w?), the

duality condition can also be expressed as s(cuz(r)) + s(w](.c)) = 1 (which reduces to

wiz ™) + A wg for the plasmonic €). We have verified that indeed, with high
accuracy, wET)Q + wéc)z = w?, wéT)Q + wéc)z = w?, and wi(f)Q + w%c)z = w? for the

particular plasmonic structure considered in this Section.

4.1.5 Correspondence between electromagnetic and quasistatic
bands associated with electric dipoles

Symmetry considerations are very useful in classifying the electromagnetic
modes supported by an SPC. The square lattice of the SPC is invariant with respect
to the transformations of the Cy, point group | ]. Symmetry arguments can be
most readily applied to the highly symmetric I'-point of the electromagnetic bands
corresponding to k = 0. The eigenmodes of Eq. (4.1) satisfy the periodic boundary
conditions at the I'-point. Thus these periodic solutions transform according to one
of the irreducible representations (irreps) of Cy,: four singlets (commonly labeled as
A1, Ay, By, and By) and one doublet E. The I'-point solutions can also be labeled
according to their irreps. Only the doublet F has a non-vanishing dipole moment.
Therefore we expect that some of the solutions of Eq. (4.1) are non-degenerate at
the I'—point (singlets) while others are doubly-degenerate (doublets).

By numerically solving Eq. (4.1) some of the representative propagation
bands have been computed for a range of frequencies 0 < w < 0.7w,, and propagation
wavenumbers k = ké,. The resulting w vs. k dispersion relations are marked by
symbols (circles and triangles) in Fig. (4.3). The lowest propagation band (circles)
starts at the origin and approaches what appears to be a resonance. Electric field

of the propagating mode is primarily in y-direction, and the resonant frequency is
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Figure 4.3: Propagation bands in an SPC with parameters from Fig. 4.1 and
d = c/wp. Circles and triangles: calculated by solving Eq. (4.1). Solid lines:
predictions of the quasistatic electric dipole theory, k = | /egsw/c.

close to that of the lower E, resonance (w = 0.37w,) in Fig. (4.1) at the I'-point.
The two frequencies cannot be expected to exactly coincide because the SPC period,
while sub-wavelength, is still finite: d = ¢/wy.

The upper propagation band starts at w ~ 0.6lw,, where it turns out
to be a doublet consisting of (i) a non-propagating collective plasmon BP with
w(k) =~ 0.61wy, (not shown due to its flatness in frequency), and (ii) a propagating
PP whose dispersion is shown by circles in Fig. (4.3). The frequency of the BP
coincides with that of the F, resonance in Fig. (4.1). That is so because EM fields
of the BP are largely electrostatic (|E;| > |H.|) for all values of k. The propagation
band of the PP is very narrow: 0.6lw, < w < 0.63wp; it is bounded from above
by a resonance at w = 0.63w, which coincides with that of the upper F, resonance
in Fig. (4.1) at the I'-point. As explained in Sec. 4.1.3, for small k¥ < 7/d these
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two propagation bands are sufficiently far away from electrostatic resonances to be
accurately described by the scale-independent effective dielectric permittivity eqs(w)
calculated using QSED theory. The results of the full electromagnetic calculation
(circles) closely follow the theoretical curves k = | /eqsw/c.

The middle propagation band (marked by triangles) corresponds to the elec-
trostatic resonance Ay shown in Fig. (4.1). Wave dispersion in this band cannot be
derived from eys because of its proximity to the octupole resonance. Note that for
the As-symmetric band we have dw/0k < 0: its group and phase velocity oppose
each other. Such behavior is also found in negative refractive index meta-materials
which are characterized by the negative effective permittivity €. < 0 and perme-
ability peg < 0 [ ]. Section 4.1.7 explains the origin of the negative effective

magnetic permeability of this wave.

4.1.6 Transverse and longitudinal modes associated with qua-
sistatic permittivity

Propagation properties of electromagnetic waves through any medium (in-
cluding an SPC) characterized by the effective medium e.4(w) can be obtained by
solving the Maxwell’s equations in the medium for space-averaged quantities H and
£ ]:

TWEfF

g, (4.14)

ﬁxfz%wueﬂﬁ, VxH=-
where the electromagnetic field is assumed to be harmonic in time.

The prescription for calculating the averaged fields for a three dimensional
photonic crystal has been introduced elsewhere | ) ]. Modifications to
those procedures were made in order to adapt them to the two-dimensional problem
at hand. Specifically, we assumed that the elementary cell is a cube with the height
d in the z—direction. Because all physical quantities (electric and magnetic fields)
are z—independent, surface integrals over the faces parallel to z are reduced to line
integrals. For two dimensions, and assuming that the elementary cell of the SPC is
centered at the origin, the averaged & and D are defined as Ey=d~ 1 N +;/22 dy Ey(z =
—d/2,y), &, = d~ 1f+j/22dx Ey(x,y = —d/2), Dy = d~ 1fd232d:vEy(x,y = —d/2),

D, =d ! [° déig dyE,(x = —d/2,y). Since away from electrostatic resonances SPC
does not exhibit magnetic properties, it is assumed that peg = B./H, = 1, where

Bz = d_ZfdAHz(ajvy)v H, = Hz(x = _d/27y = _d/2) [ ]
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For small |k| < 1/d the standard definition of eog = Dy /&, = D, /&, exactly
coincides with that of e;s. Therefore, eq(w) computed from Eq. (2.12) replaces g
in Egs. (4.14). Assuming a planar wave with a wavenumber E, it is found from
Eq. (4.14) that two distinct classes of modes are supported by the medium: (a)
longitudinal modes with € || k, and (b) transverse modes with £ 1 k. We refer to
the longitudinal waves as bulk plasmons (BP) and the transverse ones as plasmon
polaritons (PP). The dispersion relation for a BP is w(E) = wEC). Thus the cut-off
frequencies also coincide with those of the BPs. For example, wgc) almost exactly
coincides with the frequency (evaluated at the I'-point) of the longitudinal resonance
E, shown in Fig. 4.1. The small difference is due to the finite ratio of d/X. The
dispersion relation for a PP is [k|2 = egw?/c2.

The frequency bands between the cut-offs and resonances define the non-
resonant propagation bands of the PP’s. From Fig. 4.2(d), there are four propagation
bands (where €45 > 0) predicted by the quasistatic theory for w < w,. The first
propagation band is fairly broad, extending from w = 0 to wgr) = 0.38w,. The
second band is very narrow: between w§c) = 0.6lw, and wg) = 0.63wp. This
band is "sandwiched” between two electrostatic resonance curves shown in Fig. 4.1:
longitudinal resonance E, and transverse resonance £,. Two modes exist inside the
band: a BP with w(E) = w§c) and a PP. These propagation bands are also revealed
by the full electromagnetic simulation of Eqs. (4.1,4.2), and are shown in Fig. 4.3
(circles) to be in a very good agreement with the prediction of the QSED theory
(solid lines). The third, also very narrow, propagation band is between wéc) = 0.77Tw,

and w:({) = 0.79wp, and it also supports a non-propagating BP and a propagating

PP. The fourth band extends upwards in frequency from wz(,)c) = 0.93wp. None of the
four propagation bands are revealed by the approximate electrostatic calculation

which resulted in the band structure shown in Fig. 4.1.

4.1.7 Propagation bands associated with negative magnetic perme-
ability: origin of negative refraction

In Section 4.1.3 electromagnetic properties of the SPC for frequencies suf-
ficiently distanced from higher multipole resonances were described using the qua-
sistatic electric dipole theory. The justification for QSED theory is that the dipole

scattering of incident electromagnetic waves by individual nanoparticles dominates
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over high-multipole scattering. This is not the case for frequencies very close to
those of electrostatic multipole resonances | |. For those frequencies mul-
tipolar scattering is resonantly enhanced, and can dominate over the dipolar scat-
tering. That the QSED theory may be inadequate for describing all propagating
modes in an SPC becomes apparent by noting that the propagation band marked
by triangles in Fig. (4.3) belongs to the frequency range where e;s < 0. Therefore,
in the vicinity of the Ay electrostatic resonance QSED description breaks down, and
the resonant frequency broadens into a frequency band with a finite group velocity
Ty = Ow/OF.

Moreover, we show that an SPC can also exhibit a finite magnetization,
ie. B #* H. Whether or not finite magnetization exists depends on the azimuthal
dependence of the resonant field. Here we concentrate on the A, resonance. Recall
that in the vicinity of electrostatic resonance H, = Hqs+H1, where H g is responsible
for the electrostatic (potential) portion of the electric field, and H; is perturbatively
calculated using Eq. (4.4). Although the electric field near resonance is mostly

electrostatic, it possesses a non-vanishing solenoidal component:
E=-V¢+85, (4.15)
where S is a purely solenoidal field V.S = 0, and ¢, S satisfy

VxS=i

%Hqséz and  — V26~ igéz- (66*1 x ﬁHqs) . (4.16)
It is this small (to order w?d?/c?) solenoidal part of the electric field that is respon-
sible for the magnetic properties of an SPC. Those magnetic properties can manifest
themselves as the negative magnetic permeability in the vicinity of an electrostatic
resonance, and give rise to the negative refractive index | ].

The magnetic permeability peg is affected because the Ao mode carries the
electric current which produces a finite magnetic moment. The electrostatic E—field

of the mode inside the plasmonic rod is derived from the electrostatic potential
(As) r 4n
= N (—) in 4nd. 4.17
o) nEZI . 7) sindn (4.17)

Electric field lines correspond to the iso-contours of the quasistatic magnetic field
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given by

Hys = inlAQ) <%>4n cos 4nf. (4.18)
n=1

The expansion coefficients (I>£LA2) and H7(1A2) are found numerically by solving

Eqs. (4.7) with periodic boundary conditions. Although we label electromagnetic
modes according to the spatial symmetry of their electrostatic potential, note from
Eqs. (4.17,4.18) that the electrostatic potential and the magnetic field transform
according to the As and A irreducible representations, respectively. This is a
general property of a square (and hexagonal) SPC’s: ¢ and Hy belong to the
complimentary irreducible representations.

The monopole term HSAQ) does not contribute to the electrostatic field in
the quasistatic limit. However, for a finite particle size there is a non-vanishing
solenoidal electric field according to Eqgs. (4.15,4.16). By the Stokes’ theorem, the
azimuthal electric field inside the particle is found from 27rEy = i(WT2)HéA2)w /c to
be Ey = i(wr/ QC)H(()A2). The corresponding electric current in the plasmonic rod is
given by Jy = —HO(A2) w?r/2¢? x (e —1). This current produces a magnetic moment
density M = (1/2¢)(F x &Jp), where the average is taken over the unit cell. After

straightforward algebra one gets
M = (pH{* /167)(1 — €)w>R?/c?. (4.19)

The magnitude of the induced magnetic moment depends on two factors: the particle
size (through the w? R?/c? term) and the inter-particle proximity (through the value
of H(SA2) which rapidly decreases as the function of R/d).

Importantly, Fig. 4.3 reveals that there is another propagation band (dia-
monds) in the frequency range for which no propagation is expected due to €4 < 0.
Note that the mode’s group velocity vy = dw/0k < 0 opposes its phase velocity —
an indication that we are dealing with a DNM. For k = 0 this mode’s H. has the
symmetry of the A; irrep of the symmetry group Cy,, and can be expanded inside

a given plasmonic rod as

H.(r,0) = > A" [Iy(wv/=er/c)/Iin(wv/—€R/c)] cos (4k0), (4.20)

k=0

o0

124



where I; is the modified Bessel function of order [. Because there is no dipole
component in H,, the A; mode does not contribute to the quasistatic permittivity
€qs- We therefore refer to this and other singlet modes as the higher-order multipole
resonance (HMR) bands. For the SPC at hand, the largest term in the expansion
is the octupole term A®, and the next largest is the monopole term A©O) that is
responsible for the magnetic moment induced in the photonic structure as explained
earlier. Therefore, the mode is an HMR, with predominantly m = 4 component.
We have calculated the effective permittivity €. and permeability peg using
the procedure explained in Sec. 4.1.6. Both e.g and peg have been calculated for
a range of wavenumbers k = ké, and the corresponding frequencies w(k). For
kd < 7 it follows from the analyticity of w(E) that the frequency depends only
on |k| and not on its direction. For kg = 0.6/d and wy = 0.6wp, (or neg = —1)
we numerically computed that peg = —2.35 and e.g = —0.427. Therefore, at
this frequency our SPC can be viewed as a double-negative material. This is
consistent with the negative group velocity of the As wave. Note that the hybridized
monopole/octupole resonance affects not only the magnetic permeability of the SPC,
but also the dielectric permittivity: the effective medium calculation using Eq. (2.12)

yields eqs(wp) = —0.65 that is significantly different from e.q.

4.1.8 Sub-wavelength resolution with SPC slab in a double-
negative propagation band

DNM-based flat superlenses capable of sub-wavelength imaging have been
proposed | ]. The condition for superlensing is that the DNM with the dielectric
permittivity € < 0 is embedded in a host medium with €, = —e. We have tested a
six-period thick plasmonic SPC for the superlensing effect by embedding it inside
the hypothetic host with €, = 0.55. This particular choice of —e.g < €, < —€qs Was
not optimized, and is one among the several that showed superlensing. To verify the
sub-wavelength resolution, we simulated the distribution of the magnetic field |E |
behind a screen with narrow slits of width A, = A/5 separated by a distance 2A,,.
As depicted in Fig. 4.4, where only two slits are shown, a planar wave with frequency
w = 0.6w,, is incident on the screen from the left. A six-period long plasmonic SPC
of width D = 0.6) is positioned between 0 < z < D. The distribution of |E| in
the # — y plane is shown in Fig. 4.4(a). Also, in Fig. 4.4(b) |E| is plotted in two
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Figure 4.4: (a) Left: Magnetic field distribution behind an illuminated periodic slit
array, with a six-period SPC, parameters as in Fig. 4.2. (b) Right: \E\ in the object
plane (blue solid line); in the image plane for wy = 0.6w,, without damping (red
dashed line) and with damping characteristic of silver (green dot-dashed line); in
the image plane for w = 0.606w, (black dotted line).

cross-sections: the object plane right behind the screen (at z = —D/2 4+ \/10, solid
line), and in the image plane (at * = 3D/2 — \/10, dashed line). Object plane
is slightly displaced from the screen to avoid E-field spikes at the slit edges. The
two sub-wavelength slits are clearly resolved. Increasing the incident frequency by
just 1% (outside of the DNM band) results in the complete loss of resolution in the
image plane (dotted line).

Even small material losses can have a strong effect on the resolu-
tion | ].  While the DNM band for the plasmonic SPC is quite narrow,
wk =0) —w(k = n/d)]/w(k = 0) = 0.055, it is still broader than the collisional
linewidth for some plasmonic materials. For example, for silver € = ¢, —w? /w(w+iv),
where €, ~ 5, w, = 9.1 eV, and v = 0.02 eV | ]. Fig. 4.4(b) (dash-dotted line)
confirms that, although finite damping 7/w, = 0.002 reduces the field amplitude in
the image plane, it does not affect the image contrast.

We have found numerically that an electromagnetic wave with the frequency
inside the As band incident from vacuum onto an SPC can couple into the crystal
with very little reflection. Moreover, we observed strong enhancement of the field
amplitude inside the crystal. The band flatness in a plasmonic SPC translates
into very sharp excitation resonances, and large enhancements of the incident field.

This enhancement is caused by the very low group velocity of the A band. In
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Section 4.1.9 we speculate how the flatness of this band and its proximity to the
plasmon polariton band (see Fig. 4.4(b)) can be employed to improve the surface-
enhanced Raman scattering, which relies on resonantly enhanced structure response

at the incident and Raman-shifted re-emitted frequencies.

4.1.9 Applications of SPC to surface-enhanced Raman scattering
(SERS)

Close proximity of the two flat propagation bands of a two-dimensional SPC
shown in Fig. (4.3) (labeled by circles and triangles) may be useful for surface-
enhanced Raman scattering (SERS) | ]. Arrays of closely-spaced nanoparti-
cles are known to cause a significant enhancement of the local fields with respect
to the incident laser field: R = Fiocal/Fine > 1 | , , |. This
enhancement is caused by coupling to the narrow electrostatic (plasmon) resonance.
The narrower is the resonance (dw = w1/Q, where @ > 1 is the quality factor), the
higher is the enhancement. Molecules placed in the region of the enhanced incident
field with the frequency w; re-emit at the Raman-shifted frequency ws = wi; — €,
where €2, is the vibrational frequency of interest. The spectacular enhancements of
the Raman signal observed in the experiments | | are related to the fact that
electromagnetic fields at both w; and ws are enhanced by the structure. Only in
that case the enhancement of the Raman signal scales as R*. The field enhancement
R is proportional to Q. The exact proportionality coefficient can substantially ex-
ceed unity for the nanoparticles with sharp features (for example, prisms with sharp
corners or almost-touching nanospheres).

The implication of both the emitted and absorbed light being inside the
resonance curve is that w; —wy < 1/Q, or that Q < Q,/w;. Because the Raman
enhancement scales as R*, the largest electromagnetic enhancement is proportional
to (w1/8%)*. This estimate puts an upper limit on the vibrational frequencies that
can be detected with SERS while still enjoying the enhancement benefits. For
example, for Q, = 1000cm~! and w; = 30,000 cm~! (corresponding to A\; = 350
nm) the electromagnetic Raman signal enhancement is only of order 105. Although
higher enhancements have been reported, they are primarily found in the narrow gap
between dimer-forming nanoparticles | |. If the separation between the Stokes

and fundamental frequencies is larger than w; /@, these dramatic enhancements of
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the Raman signal cannot be realized.

Our suggestion is to employ two well separated propagation bands each of
which is very flat. If each of the bands has the spectral width of (dw;) and (dws),
and the frequency separation between the bands is €, > (dw;2), then these two
bands can be employed for detecting the vibrational frequency €2,. Band separation
can be easily tuned by changing the rods’ radii R and, possibly, their shapes. The
magnitude of the signal enhancement is governed by the width of each individual
band dw; 2) while the detected vibrational frequency is governed by the separation
between the bands. One example of such closely located flat bands is shown in

Fig. 4.3 (two upper bands marked by triangles and circles).

4.2 Negative-index metamaterials based on metallic

strips

Electromagnetic properties of two-dimensional metallic nano-structures in
the optical frequency range are studied. One example of such structure is a periodic
array of thin metallic strip pairs. Magnetic response of these structures is stud-
ied, as is the closely related emergence of the negative index of refraction (NIM)
propagation bands. The presence of such bands is found to critically depend on the
proximity of electric and magnetic dipole resonances. It is demonstrated that the
frequencies of those resonances are strongly dependent on the ratio of the structure
thickness and the plasmonic skin depth. Electromagnetic structures that are much
thicker than the plasmonic wavelength are shown to exhibit standard broad antenna
resonances at the wavelength roughly twice the strip length. As the structures are
scaled down to resonate in the visible/mid-infrared, electrostatic resonances deter-

mine electromagnetic properties of such materials.

4.2.1 Motivation: quest for easy-to-fabricate optical metamaterials

Meta-materials is a general term referring to man-made composites which
have the desirable properties unavailable in the naturally occurring materials. Ex-
tending the range of materials’ electromagnetic properties is currently the main
driving force behind the development of meta-materials. For example, it has re-

cently been demonstrated that meta-materials containing split ring resonators can
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have a negative magnetic permeability ¢ < 0 in the microwave [ | and
even THz [ ] frequency ranges. When additional elements, such as con-
tinuous conducting wires | |, are introduced into an elementary cell of a
meta-material, both dielectric permittivity and magnetic permeability can be made
negative | |. Such negative index materials (NIMs) with £ < 0 and p < 0 are
particularly promising because of the possibility of making a ”perfect” lens with the
sub-wavelength spatial resolution [ ]. NIMs can be very useful for many other
microwave and optical applications | , , , , | as well.

Developing NIMs for optical frequencies, however, has proven to be challeng-
ing. Although there are naturally occurring materials (metals, polaritonic materials
such as SiC, ZnSe, MnO in mid-infrared) with the negative ¢, using the scaled-down
version of the original split-ring resonator is more challenging due to fabrication
issues. For example, the original double split ring concept | ] was replaced
by the simplified single split ring resonator (SRR) | | to demonstrate mag-
netic response in the infrared part of the spectrum. Even further simplifications of
the unit cell may be necessary to develop magnetic response at near-infrared/visible
frequencies. As the resonant structures are simplified, there is less opportunity for
increasing their capacitance and inductance by making their aspect ratios (e. g.,
ratio of the SRR’s radius and gap size) high. Hence, increasing the ratio of the res-
onant wavelength A to the cell periodicity L becomes more difficult. It is the high
A/L ratio that distinguishes a true meta-material from its more common cousin,
photonic crystal [ , ].

Another limitation of the split-ring resonator was recently recognized: be-
cause it does not have an inversion symmetry, electromagnetic resonances cannot be
classified as purely electric dipole or magnetic dipole resonances. Consequently, both
electric and magnetic responses are strongly excited at the same frequency unless
significant modifications of the structure | | are made. Therefore, it can
be difficult to experimentally distinguish between the two. This was experimentally
demonstrated at infrared frequencies [ | by exciting the magnetic resonance
of a split ring in the illumination geometry that had the incident and induced mag-
netic fields orthogonal to each other. This property of non-centrosymmetric struc-
tures is known as bianisotropy. Electromagnetic wave propagation in bianisotropic
structures is substantially different than that in NIMs [ ]. On the other

hand, electromagnetic modes of centro-symmetric structures can be classified ac-
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cording to their spatial symmetry as electric dipolar, electric quadrupolar, magnetic
dipolar, etc. Thus, one can identify frequency ranges where the structure has either
electric or magnetic response.

In order to realize NIMs at high (optical) frequencies, there is a need to con-
sider electromagnetic materials with the unit cell satisfying the following conditions:
(a) fabrication simplicity, (b) inversion symmetry (to avoid bi-anisotropy), (c) avail-
ability of both magnetic and electric resonances in close frequency proximity of each
other, and (d) small elementary cell size compared to the wavelength. We will con-
sider the simplest metallic structures, metallic strip pairs, and demonstrate using
numerical simulations how the negative index property emerges from electric and
magnetic resonances. We will show how sub-wavelength infrared resonances of these
structures naturally occur as the structures become thinner. These resonances are
electrostatic in nature, and their resonant frequency is determined by the shape of
the structure and the frequency-dependent dielectric permittivity of the metal. The
transition from geometric resonances (dependent on both the shape and the scale
of the structure) to plasmonic (electrostatic) resonances (shape-dependent, scale-
independent) occurs when the smallest dimension of the structure becomes smaller
than the skin depth.

4.2.2 Negative refraction with perfectly conducting strip pairs

The concept of a resonance is fundamental to understanding and designing
meta-materials. This is especially true when very exotic electromagnetic properties
of a metamaterial are desired, such as, for example, a negative magnetic perme-

ability. For example, the approximate formula for the magnetic permeability of a

meta-material consisting of SRRs | | reads
Fuw?
=1- 4.21
Heft w2 _ wﬂ T il ( )

where F' is the fractional area of a unit cell occupied by the SRR, wys is the
magnetic resonance frequency, and I' is the resistive loss coefficient. The filling
factor F' is typically kept small to avoid strong interaction between adjacent unit
cells. Therefore, peg(w) < 0 only for w’s in the close vicinity of the magnetic

resonance frequency wys. A similar expression | | exists for a periodic meta-
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material consisting of wire elements into which cuts are periodically introduced:

2 2
wp — Wg

€ef =1 — (4.22)

w? — w? + iwl’
where w), is the characteristic ”plasma” frequency and wg is the cut-wire resonance
frequency. Except for a very specific and often practically challenging case of
uninterrupted wires (wg = 0), negative €. exists in the immediate proximity of
the electric resonance at w = wg. Thus it can be argued that developing a NIM
may require finding a resonant structure that has adjacent electric and magnetic
resonances.

Luckily, the simplest structure exhibiting nearby resonances consists of two
thin metallic strips placed next to each other. A layer of such metallic strips
(vertically stacked on top of each other) is shown in Fig. 4.5. For computational
simplicity and to facilitate qualitative understanding, the strips are assumed to
be infinitely extended in the z—direction. All calculations below assume that the
fields are not varying in the z—direction as well. A P-polarized electromagnetic wave
with non-vanishing F,, E,, and H, field components incident on the layer can excite
both electric and magnetic resonances. Because no resonances are expected to be
excited by the S-polarized electromagnetic wave, our calculations are restricted to
P-polarization.

Magnetic resonance is excited because the magnetic field H, of the incident
wave is normal to the plane of the strip pair. The double-strip structure has the
center of inversion symmetry. This symmetry ensures that the structure is not bi-
anisotropic: electric and magnetic resonances occur at different frequencies. The
magnetic resonance can thus only be excited by the magnetic field perpendicular to
x — y plane. It cannot be excited by the electric field alone (with magnetic field in
the x — y plane) as it is the case with bi-anisotropic structures | , .
In any case, the assumption of field invariance along the z—direction precludes us
from modelling such a case.

To determine and characterize possible resonances of a perfectly conducting
metallic strip pair (MSP), we have numerically calculated the transmission coeffi-
cient T'(w) of a P-polarized electromagnetic wave normally incident on a single layer
of vertically stacked MSPs as a function of the incident wave frequency w. MSP
layer geometry is defined by the following parameters: H/L, = 0.64, W = D = H/8.
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Figure 4.5: Two horizontally spaced layers of vertically stacked pairs of metallic
strips. Layers are infinitely extended in y—direction with periodicity L,. Separation
between strips is D, height and width of each strip is H and W, respectively.
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Here L defines the spatial scale, and L, is the periodicity in y—direction. The sim-
ulation was done using a commercial finite elements code FEMLAB | | that
solves a two-dimensional fixed frequency Helmholtz equation for the magnetic field

H,:

w2

—V?H, = =, (4.23)

where the following boundary conditions are satisfied: (a) 0,H, = 0 at the metal
surface (here ), is the normal derivative), (b) 0, H, +iwH,/c = 2iwHy at x = —Lp,
and (¢) 0,H, —iwH,/c = 0 at © = Lp. Here 0, is the normal derivative at the
metal surface, Hy is the amplitude of the electromagnetic wave incident on the
structure from the left, and x = +Lp are the computational domain boundaries.
Boundary condition (c) corresponds to the source-free radiative boundary condition.
Boundary condition (b) corresponds to the radiative boundary condition with an
external source. For all simulations w < 2m¢/L making the single-layer structure
a sub-wavelength diffraction grating. The computational domain was chosen large
enough so that the evanescent diffractive orders are negligibly small: Lg = 5L.

The assumption that MSP is a perfect conductor is accurate only when the
strip thickness W is much larger than the skin depth of the incident light. For
most metals this translates into W > 20nm for infrared frequencies. Most recently
reported experimental results (see, for example, Reference | ]) on detecting
magnetic response in the infrared do indeed fall under the ” perfect conductor” cate-
gory. The plot of T'(w) shown in Fig. 4.6(left) exhibits two pronounced transmission
dips. The first dip at wL/c = wg)L/c ~ 2.7 is very broad and relatively shallow.
Plotting the fields structure (electric and magnetic fields) at that frequency reveals
its electric dipole nature: the bottom (top) caps of both metallic strips are positively
(negatively) charged. Magnetic field between the strips is essentially zero because
electric current in both strips flows in the same direction.

The high-frequency dip at wL/c =~ 4.6 is both narrower and deeper: trans-
mission reduces to numerically undetectable level. Note that this dip occurs when
H/X\ =~ 0.44 (where \ = 2mc/w is the light wavelength), corresponding to the well-
known half-wavelength antenna resonance. The structure of the fields is, however,
much more complicated at that frequency than at the wg) frequency. To understand
the structure of the fields better, a leaky mode analysis (LMA) was developed. LMA

enables us to extract resonances of the structure by assuming that the electromag-
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Figure 4.6: (Left) Transmission coefficient through a single (in z-direction) layer

of perfectly conducting metallic strip pairs (MSP) shown in Fig. 4.5. MSP’s

parameters: L, = L, H/L = 0.64, W = D = H/8. The two transmission

dips correspond to the excitation of a broad electric dipole resonance E1 (at

wg)L/c ~ 2.7) and a closely-spaced electric and magnetic dipole resonances E2

and M2 (at wg’)ML/c ~ 4.6). (Right) Electric field (arrows) and magnetic field
(1)

isocontours corresponding to wy”.

netic fields concentrated in the vicinity of the structure is weakly coupled to the
outgoing radiative mode. By imposing the source-free radiative boundary condi-
tions at * = £Lp (where Lp > L), the complex frequencies w = w, — iw; of the
leaky modes can be extracted. Radiative losses are characterized by w; while the

real mode frequency is w;.

4.2.3 Leaky mode analysis of magnetic and electric resonances

Natural frequencies of the leaky modes of a single layer of MSP’s are found
by solving Eq. (4.23) as an eigenvalue equation for a complex frequency w = w, —iwj,
subject to the source-free radiative boundary conditions. Only weakly leaking modes
with w; < w, were studied. Specifically, the following boundary conditions have
been imposed: 0,H, + iw,H,/c = 0 at x = —Lp and 0, H, — iw,H,/c = 0 at
x = Lp. Because the boundary conditions are dependent on the frequency of the
leaky mode we are seeking by solving the eigenvalue Eq. (4.23) for w, we have used

an iterative procedure. First, a trial wﬁl) is chosen and the complex eigenvalue w®)

(2)

is obtained. Then the real part of w) is chosen as wy~’, and the process is repeated
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Figure 4.7: Leaky mode profiles corresponding to the magnetic dipole resonance at
w](é)L/c = 4.68—0.43i (left) and wg)L/c = 4.73—0.49 (right). MSP geometry is the
same as in Fig. 4.6. Electric field strength and direction is shown by proportionate
arrows. Iso-contours and coloring correspond to the magnetic field.

until convergence is reached after N iterations: Re (w(N )) = cu?(nN). The iterative
sequence typically converged after fewer than 10 iterations.

The numerically computed eigenfrequencies are w](\?L /¢ = 4.68 — 0.43¢ and
wg) L/c = 4.73 — 0.49i. Their identification as magnetic and electric dipole reso-
nances, respectively, is done by inspecting electric and magnetic field profiles of the
respective eigenmodes shown in Fig. 4.7. The field structure of the electric dipole
resonance in the right Fig. 4.7 is the same as in Fig. 4.6(right), and is identified as
the electric dipole resonance. Field distribution corresponding to w = wﬁ) shown in
the left Fig. 4.7 is qualitatively different. Inspection of the charge distribution on the
metal surface indicates that the electric dipole moment of the MSP is equal to zero.
That is because the charge distribution possesses an inversion symmetry. However,
the quadrupole electric moment and the magnetic dipole moment are not vanishing.
The latter is finite because the currents are flowing in the opposite direction in the
two MSP-forming strips. The non-vanishing of the magnetic moment can also be
seen in Fig. 4.7(left) by inspecting a strong enhancement of the magnetic field in
the region between the metallic strips.

Two important lessons can be learned from this single-layer LMA. First, it
confirms that the electric and magnetic resonances occur at different frequencies

due to the inversion symmetry of the MSP. Second, this example illustrates that,
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vacuum |Y dielpctric vacuum

Figure 4.8: Two horizontal layers of vertically stacked pairs of metallic strips em-
bedded in a dielectric with ¢; = 4. Layers are infinitely extended in y—direction
with periodicity L,. Geometric parameters: L, = 0.64L, L, = 0.8L, H/L = 0.64,
W =D=H/S.

while the frequencies of the two resonances are not identical, they do occur in a
relatively close proximity of each other. Therefore, one can expect that there is a
finite frequency interval where both €. < 0 and peg < 0 for an infinitely extended
in both = and y directions (multi-layer) structure. An important downside of the
MSP-based design of a NIM is that the resulting meta-material is not strongly sub-
wavelength: L/\ =~ 0.75 at the magnetic resonance. That is due to the extreme
simplicity of the MSP structure: none of the capacitance-increasing techniques used
in the design of an SRR [PHRS99] have been employed here. On the other hand,
the simplicity of the MSP structure makes it attractive for deployment as a building
block of a visible/near-IR NIM. The structure can be made sub-wavelength due to
the emergence of the plasmonic resonances as the strip width W becomes smaller.
This approach to miniaturization of the unit cell to the sub-\ level is described in

Section 4.2.5.

4.2.4 Demonstration of negative index in MSP metamaterial using
Effective Medium Parameter Retrieval (EMPR)

A sub-wavelength negative index meta-material can be designed by embed-

ding metallic strip pairs in a high-¢ dielectric and taking advantage of the proximity
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of the electric and magnetic resonances demonstrated in Section 4.2.3. Specifically,
we model a NIM consisting of periodically repeated, with horizontal and vertical
periods L, = 0.64L and L, = 0.8L, MSP’s. The sketch is given in Fig. 4.8. Here
L is a geometric scale of the meta-material in terms of which its parameters (peri-
odicity, the shape of its constituent MSP) are expressed. MSP’s are assumed to be
embedded in a high dielectric permittivity material with ¢; = 4. Embedding MSP’s
in a dielectric serves two goals: (i) lowering the resonant frequency by approximately
V€4, and (ii) defining a sharp clearly defined interface between vacuum and NIM.
The effective impedance Zeg(w) and refractive index neg(w) can be extracted from
the reflection and transmission coefficients r(w) and ¢(w) through a slab of thus

constructed meta-material with thickness A [ , ]:

Zup(w) = + iz - 8 - r;z (4.24)
neft (W) = 1?;;(72, (4.25)
where
X = cos(negwA/c) = (1 —r2 + %) /(2t), (4.26)
Y = emefiwBle — X 4 \/X2 1. (4.27)

The signs in expressions (4.24) and (4.27) are chosen such that the conditions
Re (Zeg) > 0 and Im (neg) > 0 are satisfied | ].

The transmission/reflection coefficients ¢(w) and r(w) are complezr numbers
containing both the phase and amplitude information (unlike the the transmission
amplitude T' = [t|? plotted in Fig. 4.6(left) for a single layer of MSP’s in vacuum).
We have used the standard approach developed earlier | , | for extract-
ing an unambiguous refractive index by varying the slab thickness. In our case,
varying A = NL is equivalent to varying the number of elementary unit layers V.
This number is varied from N,,;, > 1 t0 Npgz > Niin With unit increment, so that
the phase ¢y of the complex exponent in Eq. (4.27) for N layers does not change
by more than m when one switches from N layers to N 4+ 1. In photonic crystals,
this assumption always holds, because the x-component of the Bloch wavenumber

kBiloch = nefw/c cannot exceed 7/ L, in magnitude, so that |kpjocn Le| < 7, and thus
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Figure 4.9: Left: Extracted dielectric permittivity € and magnetic permeability peg
for a NIM consisting of a square lattice of metallic strip pairs (MSP) embedded in
a €g = 4 dielectric. Right: Band diagram w vs k exhibiting a negative index band.
Wave vector k = ke, directed along z—direction. MSP’s geometric parameters:
L,=0.64L, L, =08L, H/L =0.64, W =D = H/S.

the phase ¢ = kpioecn N Lz + 109 can not change by more than 7. This property of
periodic structures allows one to eliminate phase jumps greater than 7 and to draw
a smooth, nearly linear curve ¢ vs. N. This curve is used to extract vg. After
subtraction of ¢. = 27[1hg/(27)] from ¢ (brackets denote rounding to nearest inte-
ger) each point of the curve ¢ — ¢, represents the actual value of neg(N)NwL,/c,
where neg is the effective refraction index of the structure with N layers. If all
neg(N) are approximately the same, the meta-material behaves as a homogeneous
effective medium. This assumption has been tested and found to be satisfied for all
structures described here.

The effective dielectric permittivity and magnetic permeability are related
t0 Zogr and Negr aS €off = Noft /Zeft a0 Lot = Neff Zog. Numerically extracted eog and
e are plotted in Fig. 4.9. Reflection and transmission coefficients were obtained
for an electromagnetic wave incident along the x—direction on a meta-material
slab. Therefore, the extracted e.g is the gy, component of the effective dielectric
permeability tensor . Because the structure is clearly anisotropic (z and y directions
are not equivalent), only wave propagation in the z— direction is considered. The
negative index is exhibited only along that direction.

From Fig. 4.9(left) follows that the extracted values of €. and peg of such

meta-material are both negative in the vicinity of w = 2¢/L. Therefore, this
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meta-material is expected to support electromagnetic waves with a negative re-
fractive index. To demonstrate the presence of a negative index band, the band
structure of the meta-material was calculated by imposing phase-shifted periodic
boundary conditions [ ] at the left and right cell boundaries: H,(z = 0,y) =
exp (tkLy)H,(xr = Ly,y) and 0, H,(x = 0,y) = exp (tkLy)0,H.(x = Lg,y). The
wavenumber k satisfies 0 < k < w/L, condition. Solving Eq. (4.23) as an eigenvalue
equation for w yields the dispersion curve w vs k plotted in Fig. 4.9(right). The
second propagation band indeed has a negative refractive index because its group
velocity opposes its phase velocity: dw/dk < 0.

One drawback of the present NIM design is that the unit cell of this meta-
material is only marginally sub-wavelength: L, /A = 0.2. Even this modest minia-
turization of a unit cell is accomplished by embedding the MSP’s in a high-¢ material.
While such materials can be found in near and mid-infrared (for example, €g; = 12),
they are less common in the visible. The solutions of Eq. (4.23), with perfectly
conducting boundary conditions at the metal surface, are scalable, i. e. determined
by a single dimensionless parameter wl/c for a given geometry of the MSP layer.
Therefore, making a strongly sub-wavelength MSP-based NIM in the optical range
is as hard (or harder, given the absence of suitable high-¢ dielectrics) as in the mi-
crowave range. A different approach must be used. One such approach described

below is to take advantage of the plasmonic resonances of an MSP.

4.2.5 Plasmon resonances of ultra-thin MSPs

The concept of using electrostatic resonances for inducing optical magnetism
was recently | , , | introduced by us. In those papers electrostatic
resonances of periodic plasmonic nanostructures have been employed to induce mag-
netic properties due to close proximity of adjacent nanowires. Higher multipole
electrostatic resonances were shown | ] to hybridize in such a way as to in-
duce magnetic moments in individual nanowires. Strong electrostatic resonances
of regularly shaped nanoparticles (including nanospheres and nanowires) occur for
—2 < ep < —1, where €, (w) = eg(w) + i€er(w) is the frequency-dependent dielectric
permeability of the metal from which the MSP is made.

The drawback of such designs | , | is that if metal is used in such

a meta-material, negative index is found only for the frequencies at which resistive
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Figure 4.10: Frequency dependence of the transmission coefficient through a single
layer of plasmonic MSP’s spaced in vacuum by L, = 0.8L. Geometric parameters
of the MSP: H/L = 0.64, W = D = H/8. Solid line: L = 250nm, dashed line:
L = 175nm, dot-dashed line: L = 125nm.

damping is high: if —2 < eg < —1, then ¢; is comparable to eg. Qualitatively,
this occurs because of inter-band transitions in metals. Moving away from inter-
band transitions (and corresponding high losses) requires reducing the frequency
w and, therefore, increasing the absolute value of ep(w). Making the structures
resonate at the frequency w such that er(w) < —1 requires moving from simple
shapes (cylinder, sphere, etc.) to more complicated geometric shapes characterized
by extreme aspect ratio values. For example, it is known | ] that gold
nanoshells with a dielectric core/metall shell structure resonate at a much lower
frequency than pure gold nanoparticles if the thickness of the gold shell is much
smaller than the core radius. As demonstrated below, MSP’s shown in Fig. 4.5
exhibit electrostatic resonances for eg < —1 if H > W, D.

The fundamental wave equation that must be solved for the magnetic field
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H, is

- 1= w?
—-V.|-VH, | =5H,, 4.2
o (bom) -2 a2

where €(z,y,w) is a frequency and position-dependent function: € = €,,(w) inside
the metallic strips and ¢ = 1 outside the strips. Here ¢€,,(w) is the material-
dependent dielectric permittivity. For most metals €, = 1 — w}% Jw(w + i) is a
good approximation obtained on the basis of the Drude model. Below we use the
typical for many metals (but specific to Au) material constants: ¢/w, = 23nm and
['/wp, = 3x1073. Equation (4.28) replaces Eq. (4.23) which assumed that a metal is
a perfect conductor. Both equations give the same result if the skin depth [y, ~ ¢/w),
is much smaller than the metal thickness W.

We refer to metallic structures with characteristic thickness W < c/w),
as plasmonic. An array of plasmonic MSPs presented a very different medium
to an incident electromagnetic wave than an array of perfectly conducting MSPs
described in Section 4.2.2. Because of the dependence of ¢, on the frequency, these
structures are no longer scalable — unlike the perfectly conducting MSP’s. For
example, if the transmission coefficient Ty = T'(wp) through the layer of MSP’s
is observed for a characteristic structure size Ly, then one cannot expect that
T(Swy) = Tp for a scaled down structure with a characteristic size L = Ly/S.
Scalability of perfectly conducting MSP’s presents a serious disadvantage for making
a sub-wavelength NIM: no matter how small is the unit cell, NIM behavior is
observed at a proportionally short wavelength. The question posed by us here
is: does the lack of scaling for realistic (plasmonic) MSPs at the optical frequencies
enable a sub-wavelength NIM, or does it make the structures disproportionately
large?” Below we demonstrate that the lack of the simple scaling enables sub-
wavelength meta-materials. However, the same MSP-based design that reveals
negative index behavior when the unit cell is large (and the wavelength long) may
not reveal such behavior for scaled-down unit cells.

To investigate the lack of scalability in plasmonic structures we simulated
transmission through a single layer of MSP’s spaced in vacuum by L, = 0.8L.
For three different structures with L = 250nm, L = 175nm, and L = 125nm the
transmission coefficient is plotted in Fig. 4.10 as a function of the dimensionless
parameter wL/c. The same perfectly matched boundary conditions at x = +Lp

and periodic boundary conditions at y = +L,,/2 were applied as in the simulations
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described in Section 4.2.2. The difference is that Eq. (4.28) is solved instead of
Eq. (4.23) and that a finite-permittivity material with €,,(w) is assumed inside the
MSP’s instead a perfect conductor. For this simulation we have neglected the very
small damping constant I' < w. Two important differences between the perfectly
conducting and plasmonic case are apparent when comparing any one of the three
curves in Fig. 4.10 to Fig. 4.6(left). First, transmission dips (magnetic dipole
resonances) in the plasmonic case are much sharper. We have verified that the
dips indeed correspond to the excitation of magnetic resonances by inspecting the
magnetic field distribution. Indeed, magnetic field is strongly concentrated inside the
MSP as shown in Fig. 4.7(left). Second, the normalized frequencies corresponding
to the magnetic resonance are smaller in the plasmonic case: wg\? L/c ~ 1.05 for
the L = 125nm plasmonic case vs w](\?L/c = 4.7 for the perfectly conducting case.
Because resistive damping is neglected in our plasmonic simulations, the sharpness
of the resonance is indeed related to the lower normalized frequency: optically small
objects with L < A experience low radiative damping.

Comparison between the three curves in Fig. 4.10 also shows that thinner
structures are more sub-wavelength. This proves that the plasmonic structures
are not scalable. In fact, reducing the scales size of the structure by a factor 2
(from L = 250nm to L = 125nm) reduces the normalized resonance frequency
w](&[)L /¢ by an almost equal factor. This implies that as the structures become very
small, the resonant wavelength reaches a certain saturation value. Miniaturizing the
structures further makes them progressively more sub-wavelength. Therefore, the
non-scalability of the magnetic resonances of plasmonic MSPs is advantageous for
designing sub-wavelength meta-materials.

It is instructive to note that the widths of the MSPs in the three cases
shown in Fig. 4.10 are, in the descending order, W = 20, 15, 10nm. Therefore, all
three MSPs are thinner than the skin depth lg ~ ¢/w, = 23nm. It is in this
regime of ultra-thin metallic structures that the electrostatic effects are expected to
become prominent. To demonstrate that plasmonic effects indeed become dominant
for the three structure sizes considered here, it is instructive to calculate the real
values of €, (w](\?) at the magnetic resonance frequencies. Those are: €, = —31 for
L = 250nm, €,, = —27 for L = 175nm, and ¢,, = —25 for L = 125nm. Evidently,
as the structures shrink, the ¢,, reaches some fixed value. This effect is consistent

with the observation that shrinking the structure size does not affect the resonant
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Figure 4.11: Left: Magnetic resonance at €; = —22.75, right: electric resonance at
€2 = —9.9. Contours: lines of equal potential ®;. Resonances are computed for a
periodic meta-material with L, = 0.64L, L, = 0.8L, H/L =0.64, W = D = H/8.

frequency. Below the magnetic resonance in sub-wavelength MSPs is shown to be

electrostatic in origin.

4.2.6 Plasmon resonances in quasistatic approximation

In the limit of wL/c < 1 the right hand side of Eq. (4.28) representing the
retardation effects can be neglected, yielding V- (e_lﬁﬂ z) = 0. This equation is
equivalent [SU04a, SUO5] to assuming that the electric field is purely electrostatic:
E= EES, V x EES =0, or EES = —6@, where @ is the electrostatic potential.

The Poisson’s equation in the medium satisfied by & is
V- (eﬁcb) —0, (4.29)

where, as in Eq. (4.28), € = e(z,y,w) is the function of space. Equation (4.29)
can be solved as a generalized eigenvalue equation for the positions of electrostatic
resonances s;, as described in detail in Section 2.2. For a lossless plasmonic material,

the relationship between eigenvalues s; and eigenfrequencies w; is particularly simple:
si = w?/wg. (4.30)

Thus, small values of s; correspond to low frequencies and large negative values of

the corresponding €, (w;).
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Bearing in mind that we are interested in describing the y-polarized wave
propagation in a periodic structure, ®;(y = £L,/2) = 0 and ®;(x = —L,/2) =
®,(x = L,/2) boundary conditions [ | were used. The finite elements code
FEMLAB | | was used to solve Eq. (4.8). Thus obtained resonances can
be classified according to the symmetry of the potential function ® with respect
to symmetry group transformations of the unit cell. For example, the electric
quadrupole resonance shown in Fig. 4.11(left) corresponding to s; = 0.042 (or
€1 = €pg = —22.75) is even with respect to spatial inversion and odd with respect
to mirror reflections in 4y — z and « — z planes. The electric dipole resonance shown
in Fig. 4.11(right) has an odd inversion symmetry, and odd(even) mirror symmetry
with respect to reflection in  — z (y — z) planes. This resonance occurs at sa = 0.09
(or €2 = egp = —9.9). As was earlier demonstrated | |, resonances with such
spatial symmetry contribute to the quasistatic dielectric permittivity e,,. Electric
dipole resonant frequency wgp corresponds to divergent (or very large, in the case
of finite resistive losses) dielectric permittivity. This is easy to see by inspecting
the potential distribution in Fig. 4.11(right). The potential difference between
y = +L,/2 and y = —L,/2 planes is equal to zero. However, the electric field
flux through those planes (which is proportional to the electric charge) is finite.
Therefore, the capacitance of such a capacitor and, correspondingly, the effective
dielectric permittivity, are infinite. The electric quadrupole resonance at the lower
frequency wgg does not contribute to the dielectric permittivity. But, as shown
below, when small but finite retardation effects are retained, this resonance acquires
a magnetic dipole component.

These FEM modeling results highlight yet another important property of
plasmonic strip pairs: electrostatic resonances occur at the frequencies correspond-
ing to a large negative value of €,,. This is an important distinction from the
electrostatic resonances at €,, ~ —1 of regularly shaped (circular | | or trian-
gular | ]) plasmonic structures studied by us earlier: large values of |e,,| occur
at lower frequencies where absorption due to interband transitions is small.

An important finding of the electrostatic analysis is that electric and mag-
netic dipole resonances occur at rather different wavelengths. This is in sharp con-
trast to the case of perfectly conducting MSPs, where the two resonances are at
very close frequencies. The assumption of perfect conductivity is valid only for the
structures that are much thicker than the skin depth: W > A,. Using the above
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example of an ultra-thin structure and the tabulated values of ¢, for gold, it is
found that the electric quadrupole (and the related to it magnetic dipole) resonance
occurs at A = 770nm while the electric dipole resonance is at A = 590nm. This large
difference results in the disappearance of the negative index band in the miniatur-
ized MSP-based structure. Thus, even though the MSP-based meta-material with
a large unit cell can exhibit a NIM band as shown in Fig. 4.9(right), a scaled-down

structure does not necessarily support such a band.

4.2.7 Magnetic moment at the electric quadrupole resonance

It is rather remarkable that the frequency wgqg of the electric quadrupole
resonance calculated by simulating our system in the electrostatic approximation
corresponds to €, = —22.75. As was shown in Section 4.2.5, the magnetic reso-
nance moves from ¢, = —31 for L = 250nm to €,, = —27 for L = 175nm, and to
€m = —25 for L = 125nm as the MSPs are getting progressively smaller. These
values are remarkably close to €, (wgg) at the electric quadrupole resonance fre-
quency, suggesting that there is a natural connection between the two. Below we
demonstrate that indeed, the electric quadrupole acquires a finite magnetic mo-
ment when the retardation effect (finite value of wL/c) is accounted for. A some-
what related effect was described for a U-shaped nano-antenna using a different
approach | , ].

We start by separating the total magnetic and electric fields into H, =
Hqs + Hy and E = EES + S_", where EES = jce IV x ﬁqs/w and S = ice 1V x
H, Jw. Physically, this separation means that the electric field is divided into the
electrostatic (Egg = —V®) and solenoidal (V - S = 0) parts. Magnetic field is split
up into the quasistatic Hys satisfying V- (e_lﬁﬂqs) = 0 and the electromagnetic
H, parts. The quasistatic magnetic field is small to order wL/c compared with the
electrostatic electric field: |Hqs| ~ (wL/c) |Eps|. The electromagnetic component
H, satisfies, to first order in w?L2/c2, Eq. (4.4) from Sec. 4.1.2, i.e. V - (%§H1> =
‘;’—;Hqs. Therefore, Hy is even smaller that Hys: |Hy| ~ w?L?/c?|Hqs|; Hy is neglected
in what follows. Magnetic field Hqs = €,Hgys can be calculated from V x Hys =
—iweEpg/c. The peak amplitude of the magnetic field |Hys| can be evaluated by
noting that, from the VxE £s = 0, the vertical component of the electrostatic field
E, inside the metal strips is related to the peak horizontal electric field F, at the
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caps of the strips through |E,| = |E;|D/H. Therefore, |Hys| ~ (WWD/cH)|ep || Ey|.
Thus, |Hys| < |Ey| because W < H, D < H, and, by assumption, wH/c < 1.

Effective magnetic permeability of a meta-material differs from unity due to
induced magnetic moments. The electric current pattern through the MSPs at the
quadrupole resonance is clearly such that the currents flow in opposite directions
through the adjacent strips. It would be a mistake, however, to assume that the
entire current contributes to the generation of the magnetic moment. In determining
the contribution of the induced electric current in the MSP to the magnetic moment,
it is essential to keep in mind that the current pattern contains both the magnetic
dipole and electric quadrupole [ ]. The quadrupole part originates from the
electrostatic field and does not contribute to the magnetic moment. The magnetic
dipole portion of the current originates from the solenoidal component of the electric
field S that can be calculated | ] from Hgg:

V x § = iZ Hye., (4.31)
c
and V- S = 0. The magnitude of S inside the strips is estimated as
|S| ~ (wW/c) |Hys|, (4.32)

where |Hys| is the peak value of Hys between the strips. The magnetic moment
density is given by M = (1/2¢)(F x Jg), where Jg = —iw(ey, — 1)S represents the
solenoidal component of the electric field and the (...) stands for averaging over the
unit cell. For the MSP it is estimated that

[NE| ~ plem — 1] (@*WD/c?) | o), (4.33)

where p = 2W H/(L;Ly) is the fractional area of the unit cell occupied by the MSPs.
This qualitative estimate highlights the fact that magnetic properties of plasmonic
nanostructures are indeed proportional to the retardation effects and, therefore,

scale as the square of the frequency.
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4.2.8 Conclusions

Electromagnetic properties of two-dimensional meta-materials consisting of
an array of metallic strips pairs (MSPs) are investigated using electromagnetic
simulations. Simulated transmission through a single layer of MSPs show that
electromagnetic resonances corresponding to electric and magnetic dipole resonances
can be excited. Large MSPs such that the strip thickness significantly exceeds
the skin depth can be modeled as perfect conductors. Perfectly conducting MSPs
are shown to possess electric and magnetic dipole resonances which are very close
in frequency. This property of MSPs is used to demonstrate a sub-wavelength
negative index meta-material based on MSPs. These resonances are related to the
well-known antenna resonances occurring at the wavelength approximately equal
to twice the strip height H. A new approach to making a strongly sub-wavelength
MSP-based meta-material is demonstrated. This approach involves reducing the size
of the unit cell to the point at which plasmonic (electrostatic) resonances of MSPs
become dominant. Two types of electrostatic resonances, dipole and quadrupole, are
investigated. The quadrupole resonance is shown to contribute to magnetic moment

of the meta-material and, therefore, to result in the optical magnetism.

4.3 Deeply sub-wavelength negative-index metamateri-

als combining metallic strips and films

In this Section, an optical negative index metamaterial with deeply sub-
wavelength unit cells is introduced. Because of its sub-wavelength nature, this NIM
operates in effective medium regime, and thus it can be characterized by mean-
ingful e.g and peg. It is demonstrated that e.q retains its physical meaning even
in the negative-index band, thus proving that this NIM is also a doubly-negative
metamaterial (DNM). The DNM can operate in the near infrared and visible spectra
and may be manufactured using standard nanofabrication methods. The structure’s
unit cell comprise a continuous optically thin metal film sandwiched between two
identical optically thin metal strips separated by a small distance form the film.
The incorporation of the middle thin metal film avoids limitations of metamate-
rials comprised of arrays of paired wires or strips (patches) to operate for large

wavelength-to-period ratios. Extensions of the presented two-dimensional structure
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to three dimensions by using square patches are straightforward and will enable
more isotropic metamaterials that exhibit negative refraction for all polarizations

and angles of incidence.

4.3.1 Introduction and motivation

Metamaterials are artificial composite materials that possess electromagnetic
properties not found in natural substances or structures. Doubly negative metama-
terials (DNM) are metamaterials that are characterized by permeability, permittiv-
ity, and index of refraction simultaneously having negative real parts [ ]. Due
to their unique electromagnetic properties, DNMs have a number of important po-
tential applications including the construction of perfect lenses [ , ],
transmission lines | ], and antennas | , , ]

First practical realizations of DNM were introduced in the microwave and
then THz regimes | ) ) ) ) . For example, mi-
crowave and THz DNMs were constructed from periodic unit cells comprising split
ring resonators and straight wires | ]. In these DNMs the split ring resonators
and wires support strong magnetic and electric resonance that result in frequency
bands of negative permittivity and permeability that can be tuned to overlap. Ex-
tending the operational spectrum of DNMs to optical frequencies is an important
ongoing task among physical and engineering communities.

However, realizations of DNMs in the optical and, especially, near-infrared
(IR) and visible spectra are challenging. For instance, it has been demonstrated
that scaling of the split ring resonator based metamaterials to the visible regime
fails for realistic metals due to the saturation of the magnetic resonance frequency
and increased loss [ ]. Recently, several structures have been suggested to
operate as DNMs in the optical regime | , ) ) ].
These optical DNMs can be classified into two types. One type incorporates arrays
of plasmonic rods (Sec. 4.1)or spheres | | of subwavelength size forming two-
and three-dimensional DNMs. The operation of these structures is based on the
existence of quasistatic resonances supported by subwavelength particles when the
frequency of operation approaches the plasma frequency of the particles in the
ambient environment. Unfortunately, due to this property, such DNMs will not

operate in spectral ranges extended to near-IR. Moreover, these designs may lead
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to excessively high losses for realistic materials and cannot be easily realized using
standard nanofabrication techniques.

The second type of optical DNMs represents several variations of pairs of
patterned thin metal films, including arrays of paired strips (Sec. 4.2), paired wires,
staples, and paired perforated plates | , , , ]. The
operation of these structures is based on the existence of plasmonic resonances
of magnetic and electric type supported by cavities formed between the pairs of
particles. These structures allow a greater flexibility in tuning their electromagnetic
properties and they can be manufactured using standard nanofabrication techniques.
However, none of these structures were shown to operate in a wide spectral range
from near-IR to visible. Moreover, all these structures comprise unit cells that are
only marginally subwavelength (with the vacuum wavelength to period ratio being
around 2.5) when the frequency of operation is in the near-IR or visible parts of the
spectrum. For instance, it was shown in Section 4.2 that arrays of MSPs (and, hence,
arrays of paired wires and patches) cannot support overlapping frequency bands of
magnetic and electric resonances when the wavelength-to-period ratio is large. This
restriction represents a major limitation for these structures to be considered in
effective medium regime. Indeed, it is well known that a structure can be regarded
as a quasi-homogeneous metamaterial only when its unit cell is much smaller than
the wavelength of operation scaled to the effective index of refraction. Otherwise,
the behavior of light is dominated by diffraction and Bragg scattering phenomena.

In this Section we introduce a novel DNM structure that modifies the MSP
structure described in Sec. 4.2 by adding a thin metal film in the middle plane
between the strips. We show that this simple modification entirely avoids the
limitations of the simple MSP structure. The new design provides the following

unique properties and features:
e tunable operation in a wide optical spectral range from near-IR to visible,

e true metamaterial design consisting of a periodic unit cells of size much smaller

than the effective wavelength of operation, and
e design compatible with standard nanofabrication techniques.

The introduced DNM structure is modeled analytically and numerically to elucidate

the physics behind its operation as well as to provide simple means to tune its
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effective permittivity, permeability, and index of refraction.

4.3.2 Description of the SPOF geometry

Consider a composite metamaterial consisting of a periodic array of unit
cells as shown in Fig. 4.12. The structure is uniform in the y dimension. The unit
cells are arranged periodically in the x and z directions with periods L, and L.,
respectively. The structure comprises a finite number of m; layers in the z direction
and an infinite number of unit cells in the = direction. Every layer comprises an
infinite metal film of thickness d¢ and an infinite array of metal strip pairs (MSPs) of
width w and thickness ds (Fig. 4.12). In the z dimension, the strips are arranged in
pairs symmetrically with respect to the unit cell symmetry plane (z = 0). Because
the unit cell contains one film and a pair of strips, we refer to this structure as the
Strip Pair One Film (SPOF) metamaterial. This name was chosen to distinguish
it from an alternative NIM design that contains two films and two strips per unit
cell | ].

The distance between the bottom face of the top strip and the top face of
the bottom strip equals 2h. The strips and the film are assumed to be made of
same metal characterized by a relative permittivity with Re €, < 0 in the optical
frequency regime (e.g., silver or gold). It is assumed that dy, dy, h, L, and L, are
all much smaller than the (free-space) wavelength of illumination A. In addition,
ds and dy are assumed to be smaller than w, such that possible charge and current
gradients in the strips and the film occur primarily in the horizontal (z) dimension.
The whole metallic structure is embedded into a homogeneous dielectric material
with permittivity e; of a total thickness H = myL,. In this Section, harmonic
time dependence o ™! of electromagnetic fields is assumed and suppressed in
what follows. Under this convention for complex field phasors, passive materials
are characterized by negative imaginary part of € and pu.

As shown below, the presence of the middle metal film avoids the limitations
of the double-strip (double wire or patch) structure in achieving simultaneously
negative €. and pueg in deeply subwavelength optical regime. Moreover, it will
be shown that for a TM polarization (magnetic field being along the y axis) and
for special combinations of the structure parameters and frequency of illumination,

the structure in Fig. 4.12 is equivalent to a slab made of a DNM characterized
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Figure 4.12: Schematic of the Strip Pair One Film (SPOF) structure.

simultaneously by negative real parts of the effective permittivity, permeability,
and index of refraction. It is noted that the introduced array of strips is a 2D
counterpart of a 3D structure comprising doubly periodic arrays of rectangular or
square patches, and therefore the results presented here are directly extendable to
more general 3D configurations leading to DNMs with properties nearly independent

of light polarization and plane of incidence.

4.3.3 Electric and magnetic resonances in SPOF structure

The structure in Fig. 4.12 can be viewed as a periodic array of cavities formed
in the volumes between the strips that support resonances, i.e. source-free fields.
Understanding the behavior of these resonances is essential for unraveling the optical
properties of the structure. Luckily, the SPOF system is one of a few sub-wavelength
geometries that has been described analytically [LFUS06, LEUS07]. Under several
assumptions that hold for thin metallic films and strips used to construct NIMs in
near-IR or the visible range, Lomakin et al. [LFUS06, LEUS07] obtained closed-
form expressions for frequencies of all relevant electric and magnetic resonances in
SPOF metamaterial. To describe the resonances of a unit cell, a well-known cavity
model can be adapted from electromagnetic analysis of patch antennas [JI189] and

modified to take into account plasmonic effects, i.e. the penetration of the fields into
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thin metal films. Results of Lomakin et al. | , | are condensed in this
paragraph, as they enable profound understanding of MSP-based metamaterials and
some of the findings of Sec. 4.2.

Due to the unit cell symmetry around z = 0, the structure supports reso-
nances for which magnetic field has either even or odd parity with respect to the
z = 0 plane. First, consider the resonances with even magnetic field symmetry:
Hy(—z) = Hy(z). For this symmetry, no current flows in the central film, and hence
the film has no effect on resonances of this type. In contrast, the currents in the
top and bottom strips are strong and they flow in opposite directions, forming a
current loop (closed by pure displacement currents between the tips) and leading to
strong magnetic response. The magnetic field of the magnetic resonances is given
approximately by

H = §A(wnm, 2) sin(mq(z — w/2) /w), (4.34)
where ¢ is an integer counting the number of field oscillations in the x direction
within strip width w (¢ = 1 for the lowest resonance), A(wmagn, #) is an even function
of z, and w,, is the magnetic resonance frequency satisfying the following dispersion

relation obtained by matching the fields outside and inside the cavity:

YEP 1Y, (1 —icotk,h) =0, (4.35)

where k, = \/eq(wm/c)? — (mq/w)? and Y, = wieq/(ck.).

To obtain an approximate expression for the frequency of magnetic resonance
(W) in this regime, Lomakin et al. | , | assume that |k.h| < 1,
and wy,, < weq/(w,/€q); these assumptions are justified by the solution found.
Assuming also that metal dielectric function is approximated by a lossless Drude

model, €, (w) ~ —w?/w?, it is demonstrated | , ] that

(4.36)

This expression shows that the structure in Fig. 4.12 supports magnetic
resonances even when the cavity has a subwavelength size. Moreover, Eq. 4.36 shows
that the resonant frequency no longer depends solely on the length of resonators (as

it is the case with PEC antenna resonances), but rather it is determined by the
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shape and the material properties of the composites. In fact, properties of deeply
sub-wavelength metal-dielectric structures with optically thin elements are (almost)
independent of length. The physical reason for this scale invariance is that the fields
inside the resonator are essentially quasistatic and can be described to the zero order
approximation by either electrostatic potential ¢ (see Chapter 2) or by the stream
function 1 (defined as E = § x Vi, see Sec. 4.1 and Ref. | ]); the latter is
proportional to the magnetic field H,,.

In resonances with odd magnetic field symmetry, currents in the top and
bottom strips flow in the same direction thus resulting in electric dipole response
caused by non-zero average dipole moment; these resonances are referred to as
electric resonances. Since the symmetry does not prohibit currents in the central
symmetry plane, they do flow in the continuous central film and affect the modal
field structure of electric resonances significantly.

For this type of resonances, Lomakin et al. [ , | give an
analytic dispersion equation, which unfortunately cannot be resolved in closed form
using elementary functions without making drastic approximations. However, it can
be proven using the analytic dispersion equation that it has two solutions wém) for
each value of the integer ¢, corresponding to frequencies of the electric resonances of
order q. The two lowest-frequency electric resonances correspond to ¢ = 1. It was

found | | that these frequencies satisfy inequalities
wM < wy < w?. (4.37)

Moreover, in the limit of optically thin film (characterized by small absolute value

of sheet impedance Y{"™ = iko(em — 1)dy), the following strong inequality holds:

Wi < w2, (4.38)

As |Y5f M| (and optical thickness) increases, w? decreases towards Wi, and

in the limit |st ilm] — oo we have w,, = w£2). Such behavior allows the second
electric and first magnetic resonance bands to partially overlap. As was noted by
Lomakin et al. in Ref. | |, the second electric resonance at wéQ) is similar
to the electric resonance supported by MSP structures without continuous films.
The main difference between MSP and SPOF brought about by the central film

is therefore the existence of the lower-frequency electric resonance at wél); this
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resonance allows the negative-e.¢ and negative-u bands to overlap even when the
film and strips are substantially thinner than the skin depth of metal.

Recalling that the unit cell size of the structure in Fig. 4.12 is subwavelength,
the structure can be described by its effective permeability and permittivity, as
described in Chapter 2. Due to symmetry planes, it can be characterized by
diagonal permeability and permittivity tensors e?& and ,u?ﬁ. For the TM excitation
considered here, the relevant tensor components are ué’fyf, ecg and €. For normal
incidence (E = k2), only components €% and p’f matter: they determine both the

refractive index neg = \/€Zf,/plff and effective impedance Zeg = \/@/ Ve of

metamaterial surface. It is these components €2F and pZff that become negative near

the frequencies wél) and wy,, respectively.

It is important to note that the negative-c.¢ and negative-u bands in SPOF
can be tuned nearly independently in a very wide range from near-IR to visible. To
create a negative index of refraction at a desired wavelength, one may first choose
structural parameters w, ds and h to tune wy,. Then the film thickness dy can be
chosen so as to bring the electric resonance frequency wél) close to wy,. This second
step is possible because the magnetic resonance is very weakly dependent of d;.

It should also be noted that the location of the continuous film in the
central symmetry plane between the strips is critical for preserving the properties
of this NIM. Displacing the film to a different location may corrupt the NIM
band significantly as the even and odd resonances become combined resonances
of indeterminate parity. Moreover, the structure becomes generally bianisotropic:
to describe it in effective medium regime, it may be necessary to introduce an
additional constitutive parameter responsible for magneto-electric coupling between
magnetic (H,) and electric (£;) field components.

On the other hand, displacement of strips in each unit cell with respect to
each other does not destroy the center of inversion, reducing the overall point group
of symmetry from Cs, to C;. Fortunately, resonances in C;-symmetric are still clas-
sified as either electric or magnetic. This circumstance helps preserve the modal
structure of the unperturbed resonances of symmetric SPOF upon strip misalign-
ment in a pair, which is a common problem for nano-fabrication. In addition, C;
symmetry prohibits bianisotropy, hence preserving the notion of constitutive pa-
rameters €.g, e and their connection to electric and magnetic dipole resonances,

as described in Chapter 2.
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4.3.4 Numerical demonstration of negative index in SPOF meta-

material

To demonstrate negative index of refraction in the SPOF structure, we
performed a series of numerical FEM simulations in the frequency domain. The
effective permeability, permittivity, and index of refraction can be obtained from
EMPR procedure (introduced in Sec. 4.2.4). In all simulations we used SiO2 as an
embedding dielectric with the dielectric constant value of ¢; = 2.25. The metal was
assumed to be gold whose dielectric function is approximated by a Drude model
with parameters cited in Ref. | ]

Figure 4.13(a) shows the magnitudes of normal incidence, zeroth diffraction
order transmission coefficient Ty for a single layer (m; = 1) in the absence of the
central film (blue curves) and for central film thicknesses dy = 6.5 nm (green) and
dy = 8.5 nm. Other structural parameters are listed in figure caption.

In the absence of the central film (for pure MSP), two non-overlapping electric
and magnetic resonances are obtained at AEO) = 350 nm and A,; = 600 nm, respec-
tively. In the presence of the middle film, for smaller film thickness (d; = 6.5 nm),
three separate resonance dips are observed around )\22) = 435 nm, A, = 640 nm,
and /\gl) = 800 nm corresponding to electric, magnetic, and electric resonances,
respectively. As dy increases, the two longer wavelength (magnetic and electric)
resonances approach each other, and at dy = 8.5 nm they are very close to each
other around A = 680 nm. The longest wavelength resonance for dy = 0 and the
middle resonance for dy > 0 in Fig. 4.13(a) clearly correspond to bands of negative
pefr in Fig. 4.13(b). The longest wavelength resonances for dy > 0 in Fig. 4.13(a)
correspond to bands with Re €. < 0 in Fig. 4.13(c).

From the obtained results it is evident that in agreement with Sec. 4.2, no
bands with simultaneously negative Re pog and Re e.g are obtained when the central
film is absent. As predicted by the cavity model and analysis above, inserting a
film into the symmetry plane of MSP structure enables double-negative bands and
consequently, negative index of refraction.

To better understand the nature of two resonances (A, and /\S)) causing neg-
ative refraction, we calculated the field distributions in quasistatic approximation,
using recipes of Chapter 2. Figure 4.14 shows the field distribution corresponding

to magnetic and electric resonances within the cavity with the same parameters as
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Figure 4.13: Transmittance and extracted constitutive parameters versus the thick-
ness of the central film, d¢. (a) Magnitude of the zeroth order transmission coefficient
|Tol; (b) effective permeability pes ; (c) effective permittivity €. Fixed structural
parameters: L, = 100 nm , w = 50 nm, ds = 15 nm. The three sets of structures
differ by the following parameters: (1) dyf = 0 and h = 7 nm (L, = 44.5 nm), (2)
df = 6.5 nm and h = 10.25 nm (L, = 50.5 nm), (3) df = 8.5 nm and h = 11.25 nm
(L, = 52.5 nm). The bands with e, < 0 and pesr < 0 are almost separated for
dy = 6.5 nm, but overlap for dy = 8.5 nm.
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Figure 4.14: Electrostatic potential and electric field profiles corresponding to the
lowest-frequency electric (left) and lowest-frequency magnetic (right) resonances of
the SPOF metamaterial with parameters listed in Fig. 4.13 and dy = 8.5 nm (set
3). Magnetic resonance is associated with electric quadrupole plasmon resonance.

those used in Fig. 4.13(a) for dy = 8.5 nm (set 3). In full accordance with elec-
tromagnetic cavity model, resonance identified as electric ()\gl)) has x-odd, z-even
quasistatic potential ¢ plotted in Fig. 4.14 in color. Therefore, it corresponds to an
x-polarized electric dipole resonance. The resonance identified as magnetic (\,,) has
quadrupolar (odd-odd) symmetry of electrostatic potential, and therefore its stream
function ¢ (and magnetic field) is even-even. From the results in Figs. 4.13, 4.14
it is evident that the structure in Fig. 4.12 indeed can operate as a DNM having
a deeply subwavelength unit cell with a wavelength-to-period ratio of about 7, and
that the cavity model predictions are valid.

To verify that the phenomena leading to DNM operation are quasistatic
in their physical nature, we have plotted in Fig. 4.15 the effective permittivity
obtained via two methods: using EMPR procedure described in Sec. 4.2.4, and
using quasistatic theory presented in Sec. 2.2. It is evident that the quasistatic
approximation captures the behavior of e.g very well. Note that the position of the
resonance extracted from fully electromagnetic simulations is red shifted form its
electrostatic value because of the finite retardation effects proportional to (wL)?, as
described in Sec. 2.5.

Figure 4.16 shows that the structure in Fig. 4.12 can be tuned to operate as
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Figure 4.15: Comparison between the quasistatic dielectric permittivity eqs com-
puted using recipes of Section 2.2 and fully electromagnetic €. extracted using
single-layer EMPR.
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Figure 4.16: Effective index of refraction neg for different sets of parameters for a
single DNM layer. Set 1 (green): L, = 150nm, L, = 52nm, w = 90nm, ds; = 15nm,
dy = 8nm, h = 1lnm. Set 2 (blue): L, = 100nm, L, = 52.5nm, w = 50nm,
ds = 15nm, dy = 8.5nm, h = 11.25nm. Set 3 (red): L, = 100nm, L, = 57nm,
w = 40nm, ds; = 15nm, dy = 10nm, h = 13.5nm. Evidently the double-negative
band of SPOF can be tuned to any wavelength in near-IR and the entire visible
spectrum, while remaining in deeply sub-wavelength regime.
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Figure 4.17: The ratio Re neg/Im neg characterizing the losses in the system as
a function of formally introduced gain (modeled by Im €4 of the wrong sign) in
the dielectric layer for a single DNM layer. Structural parameters: L, = 100nm,
L, =515nm, w = 50nm , ds = 15nm, d; = 7.5nm, h = 10.75nm.

a DNM in the entire range from near-IR to visible by depicting Re neg and Im ng
for three sets of structure parameters, resulting in a double-negative band in three
wavelength ranges A = 820 — 1040 nm, 550 — 670 nm, and 500 — 560 nm respectively
for sets labeled 1,2,3.

Losses of the proposed DNMs are illustrated by Fig. 4.17, which shows
the ratio Re neg/Im neg, also known as the NIM Figure of Merit (FoM). Three
DNM structures are considered: one embedded in a passive dielectric and two
embedded in a dielectric with gain. Geometrical parameters of the DNMs and
selected values of gain are listed in the caption and legend. The considered values
of Im €4 = 0.03 (0.06) correspond to gain coefficient of 1500cm=' (3000cm ™),
respectively. Such values of the gain coefficient can be experimentally achieved with
semiconductor polymers or laser dyes [ , |. These parameters were
chosen to demonstrate a possibility to improve the DNM operation by means of

active materials. It is seen that the largest FoM is obtained for A = 620 nm in
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Figure 4.18: Effective index of refraction of SPOF metamaterial computed with
EMPR procedure for different number of layers m; (green: m; = 2, red: m; = 3,
blue: m; = 4). Solid lines: Re neg, dashed lines; Im neg. Structural parameters are
chosen as L, = 100 nm , L, = 102.5 nm, w = 50 nm, ds; = 15 nm, dy = 8.5 nm,
h = 11.25 nm. Evidently the negative index band in the range A = 640 — 680 nm
exists for any number of layers.

all three cases with larger FoM corresponding to larger gains. From these results
we learn that even in the passive version of SPOF metamaterial, optical losses are
reasonably low, thus allowing practical applications of the suggested DNM. The loss
can be further reduced by incorporating active materials with modest gain.

Figure 4.18 depicts the extracted Re neg for the structure described as set
3 in Fig. 4.16 (with dy = 8.5nm), now with variable numbers of layers m; > 1, in
order to demonstrate that the structure can operate as a bulk metamaterial. These
simulations show that although Re n.g depends weakly upon the number of layers,
it is reliably negative in the range 600 < A < 680 nm for any m;. Recent studies
indicate, however, that in the tight-binding regime where unit cells interact strongly,
effective medium parameters determined from EMPR procedure may depend upon
my a lot stronger | | than for the SPOF geometry reported here. Weak depen-

dence of the negative-index band upon the number of layers provides evidence that
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Figure 4.19: Scanning Electron Microscopy image of a single-layer SPOF metama-
terial fabricated by Davanco et al. from gold and transparent polymers | .
Grating period 150 nm, strip width 80 nm, thickness of strips and film ~ 20 nm,
dielectric spacer between strips and film ~ 15 nm. Image courtesy Marcelo Davanco,
Xuhuai Zhang and Stephen Forrest, Univ. of Michigan.

the properties of SPOF metamaterial are determined predominantly by properties
of a single resonator, in agreement with the concept of quasistatic electromagnetic
susceptibilities introduced in Section 2.3.

Finally, we note that the value of the scattering frequency I' in the Drude
model in all simulations above is more than 3 times larger as compared to values
, ]). Sim-

ulation results in this Section indicate that the SPOF structure performs very well

assumed for simulations in some other recent works (e.g. |

even with these, more realistic values of damping in noble metals. Evidently, reduc-
ing the value of I' by a factor of 3 would significantly enhance the NIM FoM of this

metamaterial.

4.3.5 Conclusions

A novel realization of a double-negative metamaterial (DNM) comprising
unit cells of deeply subwavelength size was introduced in this Section. The DNM

is composed of unit cells each comprising a continuous optically thin metal film
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sandwiched between two identical thin metal strips separated by a small distance
from the film. The region between the metal strips operates as a nano-scale sub-
wavelength cavity; this metamaterial’s properties are determined largely by the
resonances of such a cavity. It was shown that the SPOF structure supports both
magnetic and electric resonances that can be tuned to occur in overlapping fre-
quency bands. It was further shown that the crucial role in the ability to achieve
DNM operation is played by the presence of the middle film that enables tuning
the electric resonances independently from the magnetic ones. Tunability of this
structure is so high that the NIM band can be adjusted to any wavenumber from
near-infrared to the blue end of the visible band. Existence of the NIM band in the
bulk metamaterial is verified by multiple layer simulations, which confirm that the
negative index band is determined mostly by single-resonator properties and remains
intact in multi-layered structures. The proposed DNM can be manufactured using
standard nanofabrication methods from materials compatible with these methods;
gold and optically transparent polymers are typically used for the plasmonic and
dielectric components, respectively. First prototypes of the SPOF NIM have been
recently fabricated at the University of Michigan by the Optoelectronic Components
and Materials group | |; Figure 4.19 shows SEM image of a selected sample.
Extensions of the presented 2D structure to 3D by using patches instead of strips
are straightforward and will allow for constructing DNMs with effective parameters

independent on the incident plane and wave polarization.
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4.4 TIsotropic optical magnetism and negative refraction

in plasmonic metafluids

In this Section, we introduce a novel concept of electromagnetic metafluids
— liquid metamaterials based on Artificial Plasmonic Molecules (APM) | ,
]. Isotropic APMs in the shape of tetrahedral plasmonic nanoclusters are
analyzed using quasistatic plasmon resonance theory and vectorial finite element fre-
quency domain (FEFD) electromagnetic simulations. With the aid of group theory,
we identify the resonances that provide the strongest electric and magnetic response,
and study them as a function of separation between spherical nanoparticles. It is
demonstrated that a colloidal solution of plasmonic tetrahedral nanoclusters can act
as an optical medium with very large, small, or even negative effective permittiv-
ity, €eff, and substantial effective magnetic susceptibility xar = (peg — 1)/(47) in
the visible or near infrared bands. Ideas are suggested for further improvement of
magnetic metafluids, which will hopefully result in development of a negative-index
metafluid (NIMF).

4.4.1 Introduction and motivation

The optical properties of metallic multi-nanoparticle structures have been of
great theoretical and experimental interest in recent years due to biological and
chemical sensing applications, including Surface Enhanced Raman Spectroscopy
(SERS) and Localized Surface Plasmon Resonance (LSPR) sensing [ , ,

) , , , ]. In the former, large electric field
enhancements near the surfaces of particles or in the gaps of nanoparticle clusters
near the plasmon frequencies lead to an increased Raman cross section. In the
latter, a change of refractive index from a nearby molecule causes a red-shift of the
plasmon frequencies. Plasmonic nanostructures have also attracted a great deal of
attention as an approach to construct electromagnetic metamaterials — media with
optical properties previously unavailable in nature.

In this Section, we introduce a novel concept called a metafluid — a lig-
uid metamaterial containing Artificial Plasmonic Molecules (APMs) | ,

]. APMs are geometrically ordered aggregates of plasmonic nanoparticles

that typically consist of 2-15 individual “atoms”; structures of this type were recently
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fabricated from non-plasmonic materials | , ) , ].
With the flexibility to engineer APM geometries, the optical properties of APMs
can differ tremendously from those found in natural molecules. The size of an APM
greatly exceeds that of a typical molecule yet may be considerably smaller than
the optical wavelength. Due to the small spatial extent of the APMs compared
to optical wavelengths, the resulting metafluid can still be viewed as an effective
medium and characterized by its effective coefficients such as, for example, dielec-
tric permittivity and magnetic permeability. By changing the size and arrangement
of the constituent plasmonic nanoparticles inside an APM, the APM’s optical re-
sponse at the frequency of interest can be controlled in both magnitude (strong or
weak) and character (electric or magnetic, scattering or dissipative). Recent interest
in liquid-liquid optical waveguides [ | further motivates the development of
metafluids.

The term “metafluid” in this Section is composed of two words: metamaterial
and fluid. By “metamaterial” we mean an artificially created composite of regular
materials that exhibits unusual electromagnetic properties, such as, for example,
negative magnetic permeability or negative index of refraction. One can ascribe
effective index of refraction to a composite medium, for example, when the structure
is periodic (regardless of the distances between particles and their sizes). Such
situation is known as the Bloch-Floquet regime or the photonic crystal regime.
Assignment of refractive index is also possible in the effective medium regime, i.
e. when the size of individual scatterers is much smaller than the wavelength
in immersion medium. These two regimes are not mutually exclusive when the
distance between particles is sub-wavelength; in Section 4.4.5 we take advantage
of periodic boundary conditions to characterize the optical properties of a dense
nanoparticle colloid. Since optical parameters of an effective medium depend mostly
on the average distance between identical particles in the ensemble, and little on
the locations of individual particles, period-independent spectral features of periodic
ensembles must be shared by all random ensembles with the same particle number
density.

In this Section we theoretically investigate an APM composed of four metal-
lic nanospheres situated equidistant from one another at the vertices of a regular
tetrahedron, as the first candidate for optical metafluids. We refer to this structure

as the tetramer. This structure has recently attracted attention as a candidate for
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a coherently controlled nanorotor | |. For electromagnetic metafluids, APMs
with tetrahedral symmetry are attractive because their single-particle polarizabili-
ties are orientation-independent. We have already used this property of tetramers
in Sec. 2.3.4 to illustrate quasi-static magnetic response of rotationally-invariant
resonators. The effective dielectric tensor, €, of most fluids is effectively a scalar
because of the rapid rotation and high spatial density (~ 10** cm™3) of the con-
stituent molecules. However, when gigantic artificial plasmonic molecules described
in this paper are part of the metafluid, their rotational frequency and concentra-
tion in the solution may not be sufficient to provide isotropization by temporal and
spatial averaging. Therefore, the isotropic polarizability of tetrahedral plasmonic
molecules becomes crucial for ensuring that the tensors € and ji of a metafluid are
spherical. In addition, isotropy helps maintain effective medium regime by sup-
pressing non-coherent elastic scattering (related to transitions between degenerate
states with different projections of angular momentum) and suppressing non-scalar
coherent scattering (see §60 and especially Eq. 60.11 of Ref. | ]); both types
of scattering contribute to optical opacity of suspensions of freely-oriented systems.
Dynamic light scattering effects associated with fluctuations of particle orientations
and positions | | are out of scope of this Section.

In effective medium regime, appropriate quantities to describe the propaga-
tion of a plane wave are dielectric and diamagnetic susceptibilities of the compound
medium. In general, for a linear medium there are four such (tensor) quantities,
defined by Eq. 2.18 in Sec. 2.3. In this Section we focus only on non-bianisotropic
(non-gyrotropic) media, which can be described with an effective permittivity éog
and permeability fi.g only. In Section 2.3.5, it was proven that the tetrahedral
group Ty of the tetramer has sufficient symmetry to prohibit bianisotropy (i.e.,
magneto-electric coupling) in the electromagnetic response of sub-wavelength plas-
monic particles (see Table 2.2).

Thus, an effective medium composed of tetramers is isotropic, non-chiral, and
described by two scalar quantities, €. and peg. It should be mentioned that the
tetramer is not the only metamolecule that forms metafluids with such properties.
There are seven 3-dimensional point groups which guarantee a second-rank tensor
to be spherical: three chiral groups (7', O, I) and 4 non-chiral groups (Ty, Oy, T},
I1,). These groups are known as the cubic or isometric symmetries. We note that,

in general, magneto-electric coupling terms f and é do not average to zero when

166



accounting for the rotation of APMs. This means, for example, that a medium
consisting of chiral APMs is also chiral. The remaining 4 groups can be utilized
for the design of isotropic, non-gyrotropic optical metamaterials. The minimum
number of identical spherical nanoparticles is 4 for T; symmetry (vertices of a
regular tetrahedron), 6 for O, (octahedron), 12 for [Ij, (icosahedron) and 20 for
Ty, (pyritohedron), as summarized in Table 4.1. A tetramer is thus the minimal
non-chiral, fully isotropic “metamolecule”.

Experimental routes exist to assemble colloidal nanoparticles into highly
ordered clusters. One experimental route to the assembly of tetramers and larger
symmetric structures, including isotropic 6-particle “octamers” and 12-particle
“lcosamers”, is particle clustering in an oil-in-water emulsion process [ .
Particles are first functionalized to be hydrophobic and then transferred to an
oil solvent. The oil is then added to water with surfactant and sheared in a
homogenizer, which yields surfactant-stabilized oil droplets in water. Next, the
oil is evaporated from the emulsion, and particles are forced into clusters due to
capillary forces and are held solidly together by van der Waals forces. Tetrahedral
clusters are separated from clusters of other particle number by centrifugation in a
density gradient. This technique for creating clusters is versatile and applies to all
types of particles ranging from silica to PMMA | ]. In addition, clustering
is possible for hydrophilic particles through a water-in-oil emulsion | ].

The remainder of the Section is organized as follows: in Section 4.4.2, the
plasmon modes of a tetramer are found using the new finite-element implementation
of the surface charge integral equation (SCIE) formalism | ]. Using group
theory, we classify the plasmon modes by their electric and magnetic properties.
Coupling between deeply sub-wavelength nanoparticles and optical fields is discussed
in Sec. 4.4.3. Quasistatic predictions are aided by fully electromagnetic simulations.
Section 4.4.4 deals with the optical absorption spectra in the tetramer system using
finite element frequency domain (FEFD) calculations. In Section 4.4.5, a tetramer
colloid is theoretically characterized as an effective medium with isotropic dielectric

permittivity and magnetic permeability.
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4.4.2 Quasistatic analysis of the plasmon modes of the tetramer

The two most frequently used methods to compute the plasmon resonances
of a complex nanostructure in the quasistatic (non-retarded) limit are the Plas-
mon Hybridization (PH) method | | and the Electrostatic Eigenvalue (EE)
approach | , .

In the PH approach, the plasmon modes of a multi-nanoparticle systems are
expressed as linear combination of the (primitive) plasmon modes of the individual
particles | ]. The primitive plasmon modes interact with each other through
the Coulomb forces induced by their surface charges. An appealing feature of
the PH approach is that its eigenvalue problem is very similar to the eigenvalue
problem for molecular orbitals in quantum chemistry. This analogy gives an insight
into the relationship between the plasmon modes of a composite structure and
the plasmons of its constituent particles, and encourages the use of the group
theory for symmetry classification of these modes | ]. In contrast with
the coupled-dipole approximation (CDA) | , ], PH method can account
for hybridization of primitive eigenmodes with arbitrary multipole order .

Electrostatic Eigenvalue approach | , | is a general method for
computing electrostatic eigenfunctions of arbitrarily-shaped particles or their en-
sembles. EE method does not take advantage of the simplicity of primitive plas-
mon modes, which makes it applicable also to structures with non-spherical parti-
cles [ , , ]. Our implementation of EE method for plasmonic
sphere clusters is briefly described below.

A surge of recent interest in optical properties of plasmonic nanoparticles
originates from the unique property of negative-permittivity interfaces to support
source-free excitations known as surface plasmons. These excitations exist even for
particle sizes much smaller than the wavelength of light at which they occur, which
suggests that they are electrostatic in nature. Consequently, they can be found as

solutions of the electrostatic Laplace equation with no external field or charge:
Ve(Z)Veo = 0. (4.39)

For homogeneous negative permittivity particles (¢, < 0) in a uniform transparent
immersion medium (es > 0), this equation can be recast as a linear generalized eigen-

value problem | | in which the electrostatic permittivity of plasmonic particles
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plays the role of an eigenvalue:
VO(Z)V¢ = sV26, (4.40)

where 6(Z) equals 1 inside the particle(s) and zero elsewhere, and s = 1/(1 —¢€,/¢5).
If the boundary of plasmonic particles is sufficiently smooth, differential
equation (4.40) can be reduced to a linear integral equation | ] for electrostatic

surface charges o:

o (&) = % 7{ d4S'0(F)A(F) - VoG (7, &), (4.41)

where G(Z, #') is the electrostatic Green’s function, 7i(Z) is the outward normal to

the surface of plasmonic particle, and

A= (ep —€5)/(ep +€5) (4.42)

is the electrostatic eigenvalue | -
The two approaches (4.40,4.41) are equivalent and yield essentially the same

set of electrostatic eigenvalues, related to the resonant permittivities according to
en =€s(1—1/sp) = €s(1+ X)) /(1= Ap). (4.43)

The corresponding eigenfunctions {o,} and {¢,} are related by integration,

On(Z) = %G(f, 7)on(7)dS’, (4.44)
or differentiation,
@ =""L5. E)=-""Las,/on (4.45)
Tl = Ty " dr e ’

where the outward normal derivative is applied to the potential inside the plasmonic
phase.

The only difference between approaches (4.40,4.41) occurs at the values of
s =0and s = 1, at which the volumetric equation (4.40) becomes meaningless, while
the surface equation (4.41) remains meaningful. As a result, an FEM discretization

of volumetric equation (4.40) returns many spurious, unphysical solutions with
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sp = 0 (e, — —00) and s, =~ 1 (e, — 0). It can be shown mathematically and
seen numerically using FEM discretization that the surface equation (4.41) does
have meaningful solutions corresponding to €, = —oo, and therefore, s, = 0 is
indeed an electrostatic eigenvalue. For a single connected surface, this eigenvalue is
not degenerate, and corresponds to a uniform charge distribution ¢,, = const # 0
on the particle surface. For disconnected surfaces consisting of a finite number N
of connected closed surfaces (for the tetramer, N = 4), the ¢, = —o0 eigenvalue
is N-degenerate; corresponding N linearly independent eigenfunctions are uniform
surface charge distributions on one of the NV particles with zero surface charge on the
remaining N — 1 particles (or linear combinations of such functions). Uniformity
of surface charges o, in these eigenfunctions holds true regardless of the particle
shape or symmetry (corresponding potential eigenfunctions ¢, would be constant
only for spherically or cylindrically symmetric particles). Note that although for a
single particle the ¢, = —oo eigenvalue can be excluded from spectral analysis of
optical response (because it corresponds to non-zero total charge Q@ = [ 0,dS =
const [dS # 0), in clusters with N > 2 particles linear combinations of such
eigenfunctions exist that do not violate charge neutrality of the cluster. Electrostatic
eigenvalue €, = —oo corresponds to resonances of perfectly electrically conducting
(PEC) particles. For strongly sub-wavelength metallic particles with plasma-like
dispersion (e =~ 1 — wg /w?) the corresponding resonant frequencies are well outside
the optical band and thus do not affect our analysis of optical metamaterials in the
visible or near-infrared bands.

Numerical discretization of both versions of the Electrostatic Eigenvalue
(EE) method is straightforward and was implemented using FEM software package
COMSOL Multiphysics. The differential equation (4.40) method may be preferable
for periodic systems | , , |, where periodicity is easily imposed
as boundary conditions for potential ¢, whereas in the surface integral approach
(4.41) periodic boundary conditions must be embedded into the Green’s function
G(#,7"). On the other hand, the volumetric equation (4.40) has many more degrees
of freedom for the same number of mesh elements on the particle surface than the
equivalent equation (4.41). In general, this leads to a large number of unphysical
solutions, especially near the singularities at s, = 0, s, = 1/2 and s, = 0.
The surface integral approach does not suffer from this problem as much as the

differential approach (4.40), at least for very smooth surfaces (such as spheres in
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this Section).

Aq
: /Qq'
Ay -
N

Figure 4.20: Examples of electrostatic resonances of a tetrahedral plasmonic
molecule. Left column: potential on the surface. Right: potential (color) and elec-
tric field (arrows) in cross-sections. The lowest-lying resonance of each irreducible
representation (see Table 2.2) except triplets (77, T5) is presented. Gap-to-diameter
ratio in the cluster is 1/10. Triplets are shown separately in Fig. 4.21.

Using the surface charge equation (4.41), we have performed finite element
method (FEM) calculations using experimentally relevant parameters. The lowest-
lying resonances of each symmetry type are plotted in Fig. 4.20. Since the elec-
trostatic spectrum is scale-invariant, the only dimensionless structural parameter in
the problem is the ratio of a sphere diameter D to the gap h between their surfaces.
Another dimensionless parameter, the dielectric contrast defined as the ratio of the
dielectric constant of the particles €, and the dielectric constant of the solvent ().
The dielectric contrast influences the energies of all electrostatic resonances. The
vacuum wavelength A, is not a parameter, but rather a label, related unambigu-

ously to the dielectric contrast e, /¢s.
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Figure 4.21: Positions of the two lowest-lying electrostatic resonances as a function
of the gap-to-diameter ratio. Left vertical axis: resonant permittivity of a plasmonic
particle relative to that of solvent (e,/€s); the plots are applicable universally to any
metal and solvent. Right axis: resonant wavelength for gold silica-coated tetramers
in the index-matching solvent with ng = 1.4, assuming dielectric function of gold
from [ ]. Insets: electrostatic potential and electric field profiles of these T} and
T5 modes in clusters with gap/diameter=0.1.
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4.4.3 Surface plasmon coupling with long-wavelength radiation

To understand how electrostatic resonances are excited by incident radiation,
and how they contribute to optical extinction and absorption spectra, one may start
with the quasistatic approximation, described in Chapter 2.

In the quasistatic approximation, the strongest interaction between incident
light and particles is the coupling of a nearly uniform electric field with the in-
duced electric dipole moment of the particles. The strength of this interaction is
characterized by the normalized dipole moment of an eigenmode (see Sec. 2.3),

. $T(—0¢n/0n)dS  _ [(~Vn)8dV (4.46)

(Vy § 60060/0ndS)"* (v, [(Von)26dV)""*

where o, (1) is the charge eigenfunction of n'" resonance, ¢, (z) is its potential, /0n
is the normal derivative, and V,, = [ 0dV is the volume of metal in a cluster.

According to equation (4.46), not all eigenmodes have a non-vanishing elec-
tric dipole moment; only those that transform under the same irreducible represen-
tation as &, namely, T, modes (Table 2.2), are allowed to have it. We note here that
on(z) and ¢, (z) have the same symmetry, and either can be used to characterize
the plasmon’s irreducible representation. To see that, recall that an integral of any
function other than a fully symmetric A; function will vanish; the product of two
functions — o, (z) and either Cartesian component of ¥ — may contain A; coupling
only if they both belong to the same representation. Therefore, o, () must belong
to the vector representation of the symmetry group T,. Standard character tables
of point groups allow one to identify the vector representation of Ty group as T (see
Table 2.2).

In addition to the strong excitation of electric dipole resonances, which re-
mains strong even in non-retarded limit, weakly inhomogeneous electric and mag-
netic fields of an incident electromagnetic wave also induce various electric and mag-
netic multipoles. Though lots of non-dipolar modes are excited by inhomogeneous
fields, only some of them carry magnetic dipole moment. This induced magnetic

moment can be calculated in quasistatic approximation from the total current

J=J.+0B/ot = %aﬁ/at (4.47)
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] Group H Min. polyhedron \ ED \ MD \ LOEM of MD ‘

Ty tetrahedron (4) T, | Th octupole (27 = 8)

Th pyritohedron (20) | T, | T, quadrupole (27 = 4)

Oy, octahedron (6) | Thy | Thg hexadecapole (27 = 16)
I icosahedron (12) | Ty, | Ti, | hexacontatetrapole (27 = 64)

Table 4.1: Non-chiral isometric (cubic) groups, their vector and pseudovector ir-
reducible representations related to electric and magnetic dipole resonances, and
the Lowest-Order Electric Multipole (LOEM) of magnetic dipole resonances. All
listed minimum-vertex polyhedra except the pyritohedron (7}) have been observed
in colloidal sphere clusters [ ]

in plasmonic particles:
M=+ [z« jedvz(e—1)/[fx(—v¢)]9dv (4.48)

After simple transformations, energy-normalized magnetic dipole moment of an
eigenmode can be expressed in terms of surface integrals (see Sec. 2.3):
T X T] ¢p dS
i = -3 6] nds (4.49)
(Vi f 6n 52 ds)

Expression (4.49) demonstrates that only eigenmodes that transform as a
pseudovector may have a non-vanishing magnetic dipole moment in the lowest order
to retardation parameter 1. According to Table 2.2, pseudovectors (such as the
rotation operator R, ) transform under the T representation of the group Ty.

The method for calculating electric and magnetic multipole compositions of
the plasmon states has been described in Section 2.3.5 and applied to the tetrahedral
group Ty in Table 2.2. The most important conclusion following from that analysis
is that only T (71) modes of tetramers can have non-zero electric (respectively,
magnetic) dipole moment. Considering that clusters of other highly symmetric
shapes, ranging from octahedral to icosahedral, have already been synthesized from
various dielectric materials | ], we have performed such multipolar analysis for
all non-chiral isometric (cubic) groups. Results that are relevant to electromagnetic
homogenization of colloids are condensed in Table 4.1.

In the remainder of this Section, we pay attention only to the 75 and T}

modes of tetramers. Amongst all 75 (or 77) modes, the ones with the lowest neg-
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ative resonant permittivity eigenvalue (thus, the lowest frequency) should have the
strongest electric (respectively, magnetic) response. This is because higher eigen-
modes of a particular symmetry type have additional sign changes in their surface
charge eigenfunction o, resulting in smaller coupling to the incident electromagnetic
field. In addition, the higher-frequency resonances experience stronger damping due
to the increase of resistive losses in metal.

Figure 4.21 shows a close-up of the plasmon resonance positions of the lowest
two modes of the tetramer, which happen to be T} and T, plotted against the gap-to-
diameter ratio of gold tetramers in a dielectric environment of index ng = 1.4. This
index of refraction corresponds to the dielectric medium in which a tetramer may
be found after the fabrication process with an appropriate index matching solvent.
Gold is assumed as plasmonic material through the remainder of this Section; the
dielectric function of gold is modeled using interpolation of optical constants from
reference | |. The graphical insets of Fig. 4.21 show electric fields in cross-

sections of these resonances.

4.4.4 Electromagnetic spectra of tetramer colloids

In the previous section we provided some insight into electromagnetic prop-
erties of symmetric tetrahedral clusters using quasistatic plasmon theory. In par-
ticular, we described plasmonic resonances that may have the right properties to
provide enhanced electric and magnetic susceptibilities. However, when finite-sized
clusters (not too small compared with the wavelength of light A = 27¢/w), retarda-
tion effects become important. Those include: shift in the resonant frequencies (see
Sec. 2.5) and excitation of resonant modes that do not possess an electric dipole
moment (Sec. 2.3.1). To predict the exact frequencies of these resonances and their
strength, we have made finite-element frequency-domain (FEFD) electromagnetic
simulations of tetramers using the commercial software package COMSOL.

Extinction and absorption cross-section are measured as functions of fre-
quency in the following fashion. A single tetramer is placed in a rectangular domain,
on lateral sides of which either periodic or mirror-symmetry boundary conditions are
applied. In effect, a doubly-periodic rectangular array (with periods L, L,) of iden-
tical tetramers is simulated. As long as individual tetramers interact only weakly via

their near-field, and far-field interactions are not resonantly enhanced | , ],
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spectra of ordered arrays are close to those of randomly distributed and oriented
tetrahedral clusters. These conditions are fulfilled by allowing sufficient separation
between tetramers, and by using wavelengths sufficiently longer than the largest of
the two periods, ruling out Wood’s anomalies | . The array is illuminated
by a monochromatic, linearly polarized plane wave of unit intensity, with E’ﬂg) and

H||%, incident normally (k = k&) on the yz-plane of the array.
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Figure 4.22: Extinction (solid) and absorption (dashed) cross-sections a tetramer
consisting of solid gold particles with D = 90 nm, gap 2 nm, in solvent with refractive
index ngy = 1.4.

Complex amplitudes of transmitted (¢) and reflected () waves are measured
in the far field, and interpreted as forward and backward scattering amplitudes,
respectively. This allows one to define extinction ¢y = (1 — T)Sp and absorption
oaps = (1 =T — R)Sy cross-sections, where Sy = L, L, is the cross-sectional area
of one unit cell, and T = [t|*> and R = |r|? are energy transmission and reflection
coefficients. In the limit of small extinction, oey;; is related to the decay constant

k (with dimensions of inverse length) through the usual formula x = o¢zn0, where
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ng = 1/Vp is the number density of tetramers, and Vy = SoL, = L,L,L, is the
specific volume per cluster. Indeed, if the distance between consecutive layers of
scatterers is L, then the wave intensity is damped by factor T = e *l+ ~ 1 — kL,
which implies k = (1 = T') /Ly = 0ext/(SoLz)-
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Figure 4.23: Extinction (solid) and absorption (dashed) cross-sections a tetramer
consisting of solid gold particles with D = 120 nm, gap 2 nm, in solvent with
refractive index ng = 1.4.

Optical spectra of tetramers made of 90 nm and 120 nm gold spheres are
presented in Fig. 4.22 and 4.23. In both cases, two strong resonances are observed
in the extinction and absorption spectra. The positions of these resonances are in
rough agreement with electrostatic predictions (see Fig. 4.21) for gap-to-diameter
ratios extrapolated to 2/90 and 2/120, although red-shifted notably. This electro-
magnetic red shift phenomenon is well understood in terms of the surface plasmon
dispersion relation | |; for sub-wavelength particles it can be quantified as
a correction to electrostatic eigenvalues | ]. Inspection of the field pictures

in these resonances (Fig. 4.24) confirms identification of these two lowest-frequency
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resonances as electric-dipole and magnetic-dipole. For our choice of tetramer orien-
tation, depicted in Fig. 4.24, the electric dipole resonance is associated mostly with
the electric polarization of the two frontal spheres which form a dimer with an axis

parallel to the incident electric field EO = FEyy.

Figure 4.24: Field profiles at the two resonances of a tetramer characterized in
Fig. 4.23. Color: out-of-plane magnetic field H, in the plane containing centers
of 3 spheres. Arrows: in-plane electric induction (D, D,) in the same plane.
Left: electric-dipole resonance at A = 756 nm; right: magnetic-dipole resonance
at A = 935 nm. Horizontal axis: x, vertical: y.

The magnetic dipole resonance is related predominantly to the sextupole (if
viewed two-dimensionally) resonance of the three spheres lying in the plane orthog-
onal to the incident magnetic field ﬁo = HyZz. This corresponds to the Ay plasmon
of the trimer in the plasmon hybridization model [BNNOG]. The electric field in this
resonance circulates around the center of the trimer, causing a non-vanishing mag-
netic flux ® = [ B, dz dy through the z = const plane. Since sextupolar symmetry
corresponds to an azimuthal number of My = 3, it is clear that this resonance is
also an electric octupole (J = 3, M; = 3) in three dimensions. The field picture
of the electrostatic Ti-symmetric resonance in the inset of Fig. 4.21 supports our
conclusion that the lowest-frequency resonance in optical spectra (Fig. 4.22, 4.23)

is related to the lowest T} resonance.
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4.4.5 Effective permittivity and permeability of tetramer colloids

Periodically-arranged cluster arrays are easier to characterize in electromag-
netic simulations than random suspensions: a simple procedure for retrieving effec-
tive medium parameters was introduced in Section 4.2.4. Yet, in effective medium
regime and for sub-wavelength inter-particle distances we expect that spectral fea-
tures related to single-cluster resonances are common for random and periodic en-
sembles. To complete our identification of electric and magnetic resonances of a
tetramer, we have applied that standard procedure and evaluated e.g and peg of a
cluster array.

A slightly different orientation of a tetramer has been chosen for these cal-
culations: it was determined that orienting the two opposite, orthogonal edges of a
tetrahedron along the major axes of rectangular cluster array minimizes splitting of
single-cluster resonances due to the nearest-neighbor interactions between clusters of
the lattice. Such judicial choice of orientation makes two of the tetramer symmetry
planes compatible with those of rectangular lattice. Since a tetrahedron does not
have three mutually orthogonal planes, this array lacks a central symmetry plane;
as a result, the simple EMPR procedure described in Sec. 4.2.4 may return different
effective medium parameters depending on which side of the slab is illuminated.

Fortunately, homogenization methods for asymmetric structures have been
recently developed [ |. It can be shown rigorously that in reciprocal (time
reversal invariant) systems, left-to-right (¢;2) and right-to-left (t2;) transmission co-
efficients for slabs are equal to each other, but reflection coefficients are generally
different (r12 # 721) [ ]. Tt was suggested | | that for asymmetric struc-
tures, a geometric average rq, = /r12721 should be used instead of ri2 or ra; as the
input for EMPR procedure of Sec. 4.2.4. It was rigorously proven in Ref. | ]
that such prescription leads to the correct effective medium parameters for layered
1D metamaterials consisting of alternating layers of homogeneous slabs. Assuming
that slabs of metamaterials can be approximated as homogeneous slabs with some
unknown eq and peg, this paradigm can be applied to periodic sub-wavelength com-
posites consisting of dielectric (or metallic) particles submerged into some uniform
dielectric (solid or liquid). With this amendment, EMPR procedure is applied in
this Section to colloids of tetramers. It was noted that the difference between 19

and 191 coefficients was generally comparable to numerical error in FEFD simula-
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tions. This observation is in agreement with the postulated rotational invariance
of electromagnetic response of a single tetramer, which is disturbed only weakly by

interactions between adjacent nanoclusters forming a square lattice.
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Figure 4.25: Effective permittivity e.g of a solution with uniformly distributed
tetramers (solid gold spheres, D = 90 nm, gap 1 nm, index of solvent ny = 1.4,
volume per cluster Vg = 0.0115 um?). Electric-dipole resonance (A = 810 nm) and
magnetic-dipole (A = 890 nm) anti-resonance are identified by peaks in Imeqg.

Effective medium parameters of slabs of periodic metamaterials, extracted
using EMPR, are known to exhibit some unusual (non-Lorentzian) behav-
ior | ], the origin of which had caused some debate in the past [ -
This behavior is believed to be associated with spatial dispersion in periodic
structures | |; examples of non-Lorentzian behavior include bands with
negative Im e.g in the vicinity of a magnetic resonance, or negative Im peg
around an electric resonance. In addition, real parts of €. (pef) show “reversed”
Lorentz-shaped kinks in magnetic (electric) resonances. These “anti-resonances” do
not violate any laws of physics: for example, the overall medium response remains

passive | ].  Another consequence of dealing with a periodic array is the
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fact that the effective permeability determined using the scattering procedure is
forced to go to zero near an electric resonance [ |. Indeed, the refractive
index nefr = /€eff/Hleff €quals kBlochc/w, but kpjoch is limited by the size of the
Brillouin zone | ]. A large rise of e (see Fig. 4.25) near electric resonance
thus inevitably causes ue.g to go down, as seen in Fig. 4.26. For the purpose of
demonstrating optical magnetism in metafluids, we focus on the vicinity of the

magnetic resonance frequency and disregard the above-mentioned artifacts.
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Figure 4.26: Effective magnetic permeability peg of the tetramer colloid described
in Fig. 4.25. Electric-dipole anti-resonance (A = 810 nm) and magnetic-dipole
(A = 890 nm) resonance are identified by peaks in Im peg. Inset: local magnetic
field enhancement, max |H/Hjp|.

For illustration purposes, we have made numerical simulations with an ex-
tremely small (1 nm) gap between spheres. Such a small gap serves to maximize the
frequency separation of the electric and magnetic resonances and to minimize the
effect of the former on the weak magnetic resonance. From Fig. 4.26, it is clear that
there is a regular, Lorentz-shaped magnetic resonance at A = 890 nm, somewhat

distorted by an adjacent anti-resonance band associated with the strong electric
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Figure 4.27: Comparison between quasistatic and electromagnetic calculations of
e for the tetramer colloid described in Fig. 4.25. Solid and dotted lines (labeled
tem) are calculated from electromagnetic scattering simulations using the standard
retrieval method | |; dashed and dash-dotted lines (f1qs) — from electrostatic
simulations using effective medium estimate (2.21) with the magnetic polarizability
(2.48). The position of magnetic plasmon resonance in formula (2.48) is retardation-
corrected using the technique described in Section 2.5.

dipole resonance, which begins at 850 nm. To make this magnetic resonance per-
fectly clear, we have also done these simulations with losses in gold reduced ten-fold
with respect to their true values. The dash-dotted curve on Fig. 4.26 demonstrates
that with low losses, negative permeability would be possible in a metafluid with
the cluster number density of 1/(0.0115 um?), in which clusters occupy 13% of the
volume.

In addition, quasistatic calculations of peg have been made using recipes from
Chapter 2, and compared with electromagnetic simulations in Fig. 4.27. Dashed and
dash-dotted lines were calculated using just one resonant eigenmode in Eq. 2.48.

Frequency of the plasmon resonance was corrected using the method presented in
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Sec. 2.5. As a triumph for the quasistatic theory of Chapter 2, there is excellent
agreement with EM scattering simulations for A > 890 nm; for shorter wavelengths
e from EM simulations is clearly affected by the strong electric anti-resonance,
which causes peg to deviate from pqs and even leads to change of sign of Im picgr, as
discussed above.

Although suspensions of solid gold particles in water or ethanol aggregate due
to strong van der Waals forces at much lower concentrations, typically 0.001 —0.01%
vol., colloids with ~ 100 nm-sized silica particles are stable with volume fractions ~
10% and even up to 50% | , ], which is close to the liquid-solid phase
transition in a hard-sphere system [ ]. We expect that silica-covered gold
nanoshells can be concentrated to 1% vol. and above. Experimental studies of such
nanoclusters, their formation and stability, are being conducted and will be reported
elsewhere. Note that if fluidity of a negative permeability metamaterial is not a
requirement, one can simply condense tetrahedral APMs to densities approaching
the close-packing density (~ 64% for random packing, ~ 74% for hexagonal or cubic
packing) to create a solid metamaterial with isotropic permittivity and permeability.
Achieving peg < 0 or eog < 0 at such high volume fractions is a much easier task
than in liquid form. Thereupon plasmonic metafluids can be used as precursors
to isotropic doubly-negative metamaterials operating in effective medium regime;
fabrication of photonic crystals and other non-subwavelength metamaterials using
colloid condensation has been previously demonstrated | , ].

Potentially, the strength of the magnetic resonance, characterized by the nor-
malized magnetic moment, (4.49), can be increased by utilizing nanoparticles with
more complicated shapes, including, for instance, non-concentric and non-spherical
nanoshells | ]. In addition, recent progress in fabrication of crystalline SiC
nanoparticles | | provides hope that negative-e nanoparticles with losses an
order of magnitude smaller than those in gold | ) ) , ]
can be utilized to create metafluids with optical magnetism in the mid-infrared
range. We observe from Fig. 4.26 that this 10-fold reduction of losses is sufficient
for achieving peg < 0 even without further enhancement of the magnetic response
through particle shape engineering or demanding higher cluster density.

Resistive damping and colloid stability are not the only problems that an
experimental demonstration of negative permeability in metafluids will face. Addi-

tional challenge comes from strong sensitivity of resonant frequencies to the gaps be-
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tween particles comprising an APM. The width of plasmon resonances in plasmonic
nanostructures is typically on the AAg ~ 100 nm scale for electric and AXy; ~ 10 nm
scale for magnetic resonances, as seen from Figures 4.25,4.26. From Fig. 4.21 we
can now estimate the allowed width of gap distribution in weakly polydisperse col-
loids. For example, if the gap-to-diameter distribution is centered at 0.06 (which
corresponds to a magnetic resonance at A ~ 650 nm if retardation red-shift can be
ignored), then in order to have magnetic resonances of most particles within the
+10 nm range around that wavelength, the gap/diameter ratios must be contained
in the 0.05 — 0.07 interval. For 100 nm spheres, this translates into a £1 nm re-
quirement for gap distributions. Although such unprecedented uniformity of gaps is
almost impossible to achieve with solid gold particles, it may be possible if thin gold
nanoshells are grown on silica nanoparticles, which can be created in almost perfectly
spherical shapes and with very smooth surfaces [ ]. Numerical simulations
indicate that effective medium parameters of metafluids with gold nanoshells differ
very little from those with solid spheres, as long as the shell is thicker than the skin
depth in metal (~ 20 — 25 nm).

In this Section, we have shown theoretically that colloidal solutions of plas-
monic nanoclusters can have both negative dielectric permittivity and negative mag-
netic permeability. However, the most exciting applications, such as the negative in-
dex metafluid (see Fig. 4.28), demand €. and g simultaneously negative. Achiev-
ing €. < 0 and peg < 0 at some frequency requires one more design step: the
positions of the strongest electric (ED) and magnetic dipole (MD) resonances must
be engineered such that wy;p > wgp. In that case, MD resonance could be placed
within the narrow e.g < 0 band above wgp. This could be accomplished by adding
to the metafluid plasmonic core-shell particles that have been shown [ ] to
exhibit red-shifted ED resonance. Alternatively, re-ordering of ED and MD reso-
nances in a tetramer can be accomplished by letting plasmonic spheres touch each
other in the cluster. More sophisticated choices of particle and cluster geometry and
topology are possible and may be utilized in negative-index metafluid engineering.

In conclusion, a new concept of metafluids has been introduced in this
Section. Metafluids consist of Artificial Plasmonic Molecules (APM) dissolved in
a regular fluid. A detailed study of APMs in the shape of tetrahedral plasmonic
nanoclusters is presented. The properties of plasmonic tetramers are investigated

using electrostatic methods aided by group theory and fully electromagnetic finite-
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Figure 4.28: A photorealistic ray-tracing simulation of a straw in a glass filled
with lossless negative-index metafluid, produced by Christoph Hormann [DWLHO6].
Reproduced from C. Hormann’s Worldwide Web publication http://www.imagico.
de/pov/metamaterials.html.
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element simulations. We found that in agreement with the quasistatic theory of
Chapter 2, electric response of Ty-symmetric metamolecules is dictated only by
Ts-symmetric plasmons and magnetic response only by 77 plasmon states, which
are excited by electric field as electric octupoles due to retardation effects. The
latter electric octupoles are shown to be associated predominantly with sextupolar
(J = 3) resonances of nanoparticle trimers. The electric and magnetic response of
the tetramer allows one to construct an effective medium with a completely isotropic
electric and magnetic response. Electromagnetic simulations indicate that achieving
€ef < 0 and peg < 0 in colloidal solutions of “artificial molecules” should be possible
using either sufficiently high concentrations of gold clusters or materials with low-

loss negative permittivity such as SiC in mid-IR.
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Chapter 5

Conclusions

5.1 Summary of results

Main scientific results of this dissertation can be summarized as follows.

In Sections 2.2-2.5, we have introduced an effective medium theory of sub-
wavelength (unit cell size a < A) metallic, semiconducting and dielectric nanostruc-
tures that encompasses their electric, magnetic and magneto-electric response at
optical frequencies. The theory departs from purely electrostatic description of non-
magnetic composites and uses surface plasmon eigenstates as the basis for analytic
expansions. Magnetism and other retardation phenomena are taken perturbatively
into account as corrections to electrostatic equations. The theory has revealed a
generalized sum rule for electric dipole oscillators and provided its rigorous proof.

In Section 2.6, we have theoretically predicted and experimentally confirmed
the phenomenon of enhanced optical transmission (EOT) in mid-IR through a square
array of sub-wavelength round holes pierced through an optically thin polaritonic
(SiC) membrane. It is shown and explained that EOT is accompanied by a slightly
blue-shifted absorption peak corresponding to enhanced optical absorption (EOA).
Both EOT and EOA were shown to be caused by excitation of quasi-electrostatic
polaritonic resonances of the film that can be traced to even-parity surface phonon-
polaritons of the smooth film.

In Chapter 3, a superlens in mid-infrared spectral range has been numer-
ically modeled and experimentally confirmed. The superlens is a flat sub-micron

three-layer structure, SiOy/SiC/SiOq9, in which the polaritonic material SiC has a
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negative dielectric permittivity in the reststrahlen band between the frequencies of
the transverse and longitudinal optical phonons. Superlensing takes place in a par-
ticular band (of width ~ 100 nm) around wavelength A ~ 11pm and manifests itself
in imaging a sub-micron slit cut in a metal screen with spatial resolution exceeding
the usual near-field resolution. A novel far-field diagnostic of superlensing that uses
a tunable COgy laser and an FTIR spectromicroscope has been developed theoreti-
cally and supported by experimental results. This diagnostic has confirmed that the
fabricated superlens has resolution of at least 1250 nm ~ A/9 at A ~ 11pm. More
recent experiments have brought this number down to 500 nm~ \/20.

In Chapter 4, four electromagnetic metamaterials have been suggested and
theoretically studied. In Section 4.1, a new class of two-dimensional periodic nanos-
tructured materials, Sub-wavelength Plasmonic Crystals (SPC), is introduced and
exemplified using a circular nanorod array. It is found that two types of propa-
gating EM waves are supported by SPCs: (a) scale-invariant modes whose disper-
sion relation is almost independent of the lattice period, and (b) scale-dependent
narrow-band resonances whose dispersion strongly depends on the lattice period.
The scale-invariant modes are accurately described using a frequency-dependent
QS permittivity eqs(w) and a vacuum magnetic permittivity ¢ = 1. The scale-
dependent resonances exist inside narrow frequency bands where they can have a
modified magnetic permittivity p # 1. Magnetic properties originate from the non-
vanishing magnetic moment produced by the currents inside any given plasmonic
inclusion due to the close proximity of the adjacent inclusions.

In Section 4.2, conceptually important electromagnetic properties of two-
dimensional meta-materials consisting of an array of metallic strips pairs (MSPs)
are studied. Simulations of scattering through a single layer of MSPs show that
electromagnetic resonances corresponding to electric and magnetic dipole resonances
can be excited. Perfectly conducting MSPs are shown to possess electric and
magnetic dipole resonances which are very close in frequency. This property of
MSPs is used to demonstrate a sub-wavelength negative index meta-material based
on MSPs. These resonances are related to the well-known antenna resonances
occurring at the wavelength approximately equal to twice the strip height H. A
new approach to making a strongly sub-wavelength MSP-based meta-material is
demonstrated. This approach involves reducing the size of the unit cell to the point

at which plasmonic (electrostatic) resonances of MSPs become dominant. Two types
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of electrostatic resonances, dipole and quadrupole, are investigated. The quadrupole
resonance is shown to contribute to magnetic moment of the meta-material and,
therefore, to result in the optical magnetism.

In Section 4.3, a novel realization (Strip Pair One Film) of a double-negative
metamaterial comprising unit cells of deeply subwavelength size was introduced.
It was shown that the SPOF structure possesses magnetic and electric resonances
that enable negative ueg and e.g in overlapping frequency bands. Tunability of this
structure is so high that the negative-index band can be adjusted to any wavenumber
from near-IR to near-UV. It was found that the middle film in the SPOF geometry
enables independent tuning of electric and magnetic resonances. The proposed DNM
has been manufactured by collaborators using standard nanofabrication methods.

In Section 4.4, a conceptually new field of research — plasmonic metafluids
— has been introduced. Artificial plasmonic molecules, tetramers of plasmonic
nanospheres, are investigated by means of the quasistatic theory of Chapter 2,
group theory and full-wave EM simulations. It is found that magnetic response
is dictated only by Tj-symmetric plasmon states, which possess magnetic dipole
moment but cannot be excited as electric dipoles or quadrupoles because their
ED and EQ moments are prohibited by symmetry-related selection rules. The
electric and magnetic response of the tetramer is used to construct an effective
medium with completely isotropic electric and magnetic response. It is shown that
achieving €. < 0 and peg < 0 in colloidal solutions of “artificial molecules” could
be possible with sufficiently high concentrations of nanoshells made of plasmonic

(gold) or polaritonic (SiC) materials.

5.2 Directions for future research

In accordance with a common law of nature, scientific studies raise more
questions than they solve. Below we outline several important issues that emerged
as a result of this study and await their solution.

1. A more general (and accurate) homogenization theory of periodic di-
electric (i.e., locally non-magnetic) composites with sub-wavelength unit cells that
accounts for optical magnetism and other dispersive properties is highly desirable.
In all likelihood, such theory must introduce a more general effective permittivity

tensor with spatial dispersion, €qg(w, fé) that incorporates electric-dipole active and
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magnetic-dipole active plasmon resonances as well as higher multipole resonances
that are not accounted for by €eg(w) and peg(w) introduced in this work. In addi-
tion, such homogenization theory could serve as a unification theory for phenomena
related to electromagnetic resonances of very different origin: from scale-invariant
electrostatic (plasmon) resonances (described in Chapter 2) to essentially electro-
magnetic resonances, such as antenna resonances of PEC strips (Sec. 4.2) and MD
resonance of a sphere (Sec. 2.3.2).

Such a theory could be an extension of the multi-scale homogenization ap-
proach introduced by Felbacq et al. | | for high-€ dielectric fibers. Unfortunately,
there seems to be no straightforward way to generalize the suggested formalism of
Ref. | | to allow negative-€ or finite-e dielectric components. A major mathe-
matical difficulty in constructing homogenization theories based on eigenmode ex-
pansions in the general electromagnetic case is the lack of appropriate orthonormal
basis: the eigenvalue problem that generalizes electrostatic Laplace equation to elec-
tromagnetic Helmholtz equation with arbitrary phase shift per cell (ka) is neither
self-adjoint nor symmetric. Only for vanishingly small phase shift per cell (when
the eigenvalue problem is symmetric | ]), or for very small period-to-wavelength
ratios (when non-retarded eigenfunctions can be used as a basis, Chapter 2) some
theoretic progress has been made.

In our perception, and in agreement with the logic of Chapter 2, a meaningful
homogenization theory of electromagnetic metamaterials must consist of two com-
ponents: (i) a rigorous definition of homogenized linear response tensor, eof(w, k),
expressing this quantity through integrals over local electromagnetic fields, and (ii)
an appropriate choice of orthonormal basis of eigenfunctions that allows eqg(w, E) to
be expressed as a sum over poles of the scattering matrix (i.e., all electromagnetic
resonances in the system). A solution to subproblem (i) has been suggested by
Pendry, Smith et al. | , , |; however, it is still not clear whether
their definition is accurate for large phase shifts per cell | ], and how it should
be applied in periodic systems with no evident choice of a unit cell. Solution to sub-
problem (ii) implies that an eigenvalue equation can be formulated on a unit cell
that allows numerical computation of all the eigenmodes and eigenfrequencies of the
periodic structure. The residue at each pole of €qg(w, E), i.e. strength of a resonance,
shall be expressed through integrals over a unit cell involving the eigenfunction of

that resonance.
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At this time, it is not known whether this maximum programme can be
accomplished. Existing works on electromagnetic homogenization | , ,

, ] automatically yield peg(w) = 1 for any non-magnetic composites
(i.e., if the local permeability p(#) = 1). This is clearly not the desired result,
and unless the methods of Refs. | , , , | can be extended
to compute spatially-dispersive permittivity eqq(w, E) (and not only on the disper-
sion surface w = w(k) of propagating modes, as was done in Ref. | ]), those
approaches cannot be used to explain optical magnetic phenomena or design optical
magnetic metamaterials. On the other hand, the results presented in Chapters 2, 4
and especially in Sec. 4.1 indicate that in the limit of small wa/c o< a/A all periodic
structures can be described by some sort of homogenized constitutive parameters,
even when the phase shift per cell ka is not small. Homogenization formalism of
Ref. | | points at the same conclusion; unfortunately, their method does not
allow treatment of negative finite € inclusions that support surface plasmon reso-
nances.

2. With regard to Chapter 3, we note that although the ideal superlens
is not limited to sub-wavelength distances between the object and image planes,
super-resolved (i.e. near-field) imaging on scales comparable with A has not yet been
demonstrated, since it requires a very low loss double-negative material operating at
optical frequencies. Considering that the only currently known implementation of
DNMs are resonant sub-wavelength plasmonic nanostructures, whose optical losses
are limited by resistive damping in metallic components (and further increased by
resonances that create negative i), it may be predicted that demonstration of “far-
field” superlensing will require design and fabrication of metal-dielectric composites
with large laser gain. This subject has attracted a great deal of attention in the
past few years (see Section 1.2), and researchers are hopeful that plasmonic (or
polaritonic) metamaterials with fine controllable balance between optical damping
and gain will be demonstrated in a not-so-distant future.

3. Even though this work does not specifically deal with issues such as
resistive damping and its compensation, there is one more thing that can be possibly
accomplished using the presented theory. The quality factor of magnetic resonances,
which determines the NIM Figure of Merit (FoM), is proportional to the ratio of
magnetic resonance strength to its width. While the latter is determined by resistive

damping, the former is dependent upon the shape of plasmonic (or polaritonic)
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inclusions and can therefore be maximized by a smart choice of this shape. Now,
thanks to Eq. 2.40 and Eq. 2.54, a mathematical problem can be formulated:
assuming that the smooth surface S is given by equation S () = 0, find the global

maximum of the dimensionless functional
M([S] = max F?* /d?, (5.1)
n

where d is the diameter of surface S, F;?* is the magnetic resonance strength (which
scales as d?) and max, runs over all plasmon states of surface S. Currently,
researchers use essentially random fingering aided by time-consuming modeling of
electromagnetic spectra to determine what shapes of plasmonic inclusions maximize
the magnetic response | , |; the current record of optical NIM figure
of merit stands at 3.37 for rectangular double fishnets [ ]. One possible
direction for research in this field, which may at least put an absolute upper limit
on the magnetic strength, if not solve the maximization problem (5.1), is finding
the sum rule for magnetic oscillator strengths. Analogy between expressions (2.28)
for electric and (2.39) for magnetic susceptibilities seems suggestive that such a sum
rule must exist in analogy with the electric oscillator sum rule (see Eq. 2.15,2.14
and Ref. | D.

4. This work shows that the very idea of introducing optical magnetic per-
meability pef(w), blasted half a century ago by L. D. Landau as “unwarranted”, is
in fact (i) physically justified (inasmuch as magnetic dipole resonances are impor-
tant to coherent scattering, Eq. 1.4), (ii) aesthetically appealing (as it implements
the symmetry between electric and magnetic fields) and (iii) insightful (both super-
lensing | | and impedance-matched cloaking [ | were discovered using the
notion of magnetic permeability). However, the peculiar properties of introduced
e (w) discovered in Chapter 2 suggest that caution should be exercised when ap-
plying conventional wisdom to the optical peg. For example, Eq. 2.40 predicts
dependence of p.g upon polarization of electric field in a wave. This means that
magnetic and electric phenomena in optical metamaterials are tied in a knot and
cannot be considered separately. As another example, note Eq. 2.73, which suggests
that the causal linear response function in plasmonic/photonic crystals is, in fact,
1 —1/pegr(w) rather than peg(w). This finding is confirmed by studies of spatial dis-

persion in crystals | |, which link 1 — 1/ueg to components of the derivative
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tensor O2eeg(w, k) /Ok? (see | , , ]), which are causal inasmuch as
€off (W, E) is causal at non-zero k [ , , |. Apparently, conventional
Kramers-Kronig relations may not be directly applicable to this peg(w) but may be
applicable to its inverse; this issue could be relevant to some of the non-Lorentzian
anomalies in magnetic homogenization results | |. Further theoretical studies
of optical metamaterials may be necessary to decide whether magnetic metamate-
rials of the described sort behave much like homogeneous substances with some €
and p; this will determine if they can be used in applications that motivated the
development of this field.

5. In relation to Sec. 4.4, it would be interesting to extend the studies of
plasmonic metafluids to embrace chiral metafluids. Quasistatic theory developed
in Sec. 2.3 shows that chirality is a phenomenon of order wd/c, while magnetic
polarizability is of order (wd/c)?. Seemingly, chiral susceptibility ¢ comparable
with unity should be easier to achieve than magnetic susceptibility |u — 1| ~ 1.
It is known that giant chirality is a pathway to backward waves and negative
refraction [ , , , , , |, alternative to double-
negative metamaterials. Studies of chiral metamolecules are being pursued by the

author and will be published elsewhere.
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