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Chronic diseases can often be managed by constantly delivering therapeutic 

amounts of drug for prolonged periods. A controlled release for extended duration 

would replace the need for multiple and frequent dosing. Local drug release would 

provide added benefit as a lower dose of drug at the target site will be needed as 

opposed to higher doses required by whole body administration. This would provide 

maximum efficacy with minimum side effects.  

Nonetheless, a problem with the known implantable drug delivery devices is 

that the delivery rate cannot be controlled, which leads to drug being released in an 

unpredictable pattern resulting in poor therapeutic management of patients. This 

dissertation is the result of development of an implantable drug delivery system that is 

capable of long-term zero order local release of drugs. The device can be optimized to 
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deliver any pharmaceutical agent for any time period up to several years maintaining a 

controlled and desired rate.  

Initially significant efforts were dedicated to the characterization, 

biocompatibility, and loading capacity of nanoporous metal surfaces for controlled 

release of drugs. The physical characterization of the nanoporous wafers using 

Scanning electron microscropy (SEM) and atomic force microscopy techniques (AFM) 

yielded 3.55 x 104 nm³ of pore volume / μm² of wafer surface. In vitro drug release 

study using 2 - octyl cyanoacrylate and methyl orange as the polymer-drug matrix was 

conducted and after 7 days, 88.1 ± 5.0 % drug was released. However, the initial goal 

to achieve zero order drug release rates for long periods of time was not achieved. 

The search for a better delivery system led to the design of a perforated 

microtube. The delivery system was designed and appropriate dimensions for the 

device size and hole size were estimated. Polyimide microtubes in different sizes (125-

1000 μm) were used. Micro holes with dimensions ranging from 20-600 μm were 

fabricated on these tubes using photolithography, laser drilling, or manual drilling 

procedures.  

Small molecules such as crystal violet, prednisolone, and ethinyl estradiol were 

successfully loaded inside the tubes in powder or solution using manual filling or 

capillary filling methods. A drug loading of 0.05 – 5.40 mg was achieved depending 

on the tube size and the drug filling method used.  

The delivery system in different dimensions was characterized by performing 

in vitro release studies in phosphate buffered saline (pH 7.1-7.4) and in vitreous humor 

from the rabbit’s eye at 37.0 ± 1.0°C for up to four weeks. The number of holes was 
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varied between 1 and 3. The tubes were loaded with crystal violet (CV) and ethinyl 

estradiol (EE). Linear release rates with R2>0.9900 were obtained for all groups with 

CV and EE. Release rates of 7.8±2.5, 16.2±5.5, and 22.5±6.0 ng/day for CV and 

30.1±5.8 ng/day for EE were obtained for small tubes (30 μm hole diameter; 125 μm 

tube diameter). For large tubes (362-542 μm hole diameter; 1000 μm tube diameter), a 

release rate of 10.8±4.1, 15.8±4.8 and 22.1±6.7 μg/day was observed in vitro in PBS 

and a release rate of 5.8±1.8 μg/day was observed ex vivo in vitreous humor.  

The delivery system was also evaluated for its ability to produce a biologically 

significant amounts in cells stably transfected with an estrogen receptor/luciferase 

construct (T47D-KBluc cells). These cells are engineered to produce a constant 

luminescent signal in proportion to drug exposure. The average luminescence of 

1144.8±153.8 and 1219.9±127.7 RLU/day, (RLU = Relative Luminescence Units), yet 

again indicating the capability of the device for long-term zero order release.  

The polyimide device was characterized for biocompatibility. An automated 

goniometer was used to determine the contact angle for the device, which was found to 

be 63.7±3.7degreees indicating that it is hydrophilic and favors cell attachment. In 

addition, after 72 h incubation with mammalian cells (RAW 267.4), a high cell 

distribution was observed on the device’s surface. The polyimide tubes were also 

investigated for any signs of inflammation using inflammatory markers, TNF-α and 

IL-1β. No significant levels of either TNF- α or IL-1β were detected in polyimide 

device. The results indicated that polyimide tubes were biocompatible and did not 

produce an inflammatory response. 
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  Statement of Objectives and Significance of Research 

Zero order drug release is defined as a mechanism wherein a drug is released at 

equal increments from the reservoir per unit time. Linear drug release profiles provide a 

more stable therapeutic drug level over time and therefore provide a more predictable 

clinical response. Ideal drug delivery processes would therefore be expected to exhibit 

zero-order kinetics.  

This dissertation is the result of an effort to develop a micro scalable perforated 

drug delivery system that is capable of long-term zero order delivery of drugs locally to 

the desired site. As such the device may be useful for management of debilitating and 

chronic conditions that require long-term drug therapy. The device is manufactured from 

an impermeable and biocompatible material. In its most basic form, the medical device 

acts as a housing for the drug reservoir, and means for facilitating release of drug from 

the drug reservoir to an anatomical site. It has holes of various sizes penetrating the wall 

of the device allowing interaction of the drug with the surrounding environment. The 

release of the drug from the device is achieved without the use of a release control 

polymer or a membrane. Physicochemical parameters of the drug such as solubility, 

molecular weight, and density loaded inside the device influence the drug release. The 

holes on the surface of the device are fabricated in a symmetrical manner such that they 

are equidistant from each other and from the ends of the device. In addition, the size of 

the holes is comparatively lesser than the total device size which enables the drug release 

from each hole to be independent of each other. The delivery system should be able to 
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deliver a variety of pharmaceutical agents for treatment of various diseased states such as 

cancer, pain management, and for ophthalmic diseases.  

The following specific aims were proposed: 

1. Determine if nanoporous metal surfaces could be used as templates for drug 

delivery devices. The study was done as preliminary work to develop a novel drug 

eluting stent. This study was discontinued when problems with production 

occurred and evolved into the concept of diffusion of a drug across a hole present 

on the surface of a microtube. 

2. Design and develop a drug delivery platform consisting of perforated microtubes 

that are capable of exhibiting zero-order drug release. The development process 

included selection of appropriate dimensions, material, and technique for its 

manufacture. 

3. Develop methods for loading of the device using a model drug. 

4. Perform in vitro drug release studies: 

a. To evaluate the scalability of the micro perforated drug delivery system. 

b. To evaluate the capability of the drug delivery system for long-term zero 

order drug release. 

5. Perform ex vivo drug release studies in vitreous humor from the rabbit’s eye. 

6. Evaluate the micro perforated drug delivery system for a second drug, ethinyl 

estradiol, producing a biological response in T47D-KBluc cells using estrogen-

responsive luciferase reporter system 

Although considerable advancements have occurred in controlled release 

technology, oral and parenteral formulations still face challenges in delivering drugs 
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across a physiological barrier. For instance, blood-brain, blood-eye, and blood-

cerebrospinal fluid barriers are very selective in regulating the type of molecules that can 

move across them. Therefore there is a need to be able to locally deliver drugs to these 

sites in a controlled manner. 

Another problem commonly observed during management of chronic diseases 

such as diabetes, hypertension, and uveitis is the need for repeated and frequent dosing of 

the patient. For example, repeated injections that are required in management of Type 1 

diabetes are inconvenient and painful to patients. As such, long-term therapies are 

generally inconvenient and generally result in patient noncompliance. Long-term 

therapies often result in patient noncompliance. Current interventional techniques have 

been developed that are capable of long-term release. However, these technologies can 

only last up to several days or months and need replacement thereafter. 

Additionally, new advancements in drug discovery bring in new and complex 

molecules that are not compatible with the standard modes of drug delivery. For example, 

drugs based on proteins and peptides get denatured easily in the digestive environment 

when given by oral route. A solution to this problem would be to develop a drug delivery 

device that can also protect the drug under hostile physiological environments. At the 

same time, the device will also prevent release of toxic amounts of the drug in the body. 

Therefore, this dissertation is a result of a need of a drug delivery system that can provide 

following characteristics: 

1. The device must be capable of long-term zero order drug release. This will ensure 

constant amounts of drugs being delivered to the desired site for prolonged 

periods. 



 4

2. The drug delivery device must reduce the need for repeated dosing. This 

translates into reduced healthcare costs, reduce hospital visits, and improve 

patient compliance.  

3. The drug delivery should be implantable and capable of local drug delivery. This 

will reduce the problems associated with biological barriers, increase efficacy, 

and decrease side effects associated with conventional drug that are delivered to 

the entire body  

4. The device should be able to be used for diverse diseased states, such as cancer 

and pain management and can be tailor made to deliver a variety of small 

molecules, proteins and peptides, biomarkers, and genetic material. 

5. The drug delivery device should improve patient comfort by decreasing risk, pain, 

and inconvenience to the patient. 

6. The device must be inert, robust, impermeable, and biocompatible protecting the 

body from leakage of the drug and inappropriate dosing. 

The project was initiated with an aim to develop a polymer free drug delivery 

device with an emphasis on developing a DES. Since polymers, which were needed for 

controlled drug release, were causing vascular complications such as restenosis and 

thrombosis in stents, a polymer free system was envisioned. Nanoporous surfaces were 

evaluated for their capability to hold drugs. Although, nanoporous surfaces demonstrated 

promising results in drug elution, the novel idea of developing a micro-perforated drug 

delivery micro-device was further investigated.  
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The micro drug delivery system hence developed offers specific advantages - 

1. It is free from initial burst release of drugs. 

2. It can be manufactured from a variety of biocompatible materials. 

3. It can be made from both metal and non metal surfaces keeping the metal to artery 

ratio minimal and thus inhibiting the prevalence of any immunogenic response 

from the body due to injury during device implantation. 

4. As the device can be made from non-metal surfaces hence it is MRI safe.  

5. The device after implantation should require minimal post surgical supervision.  

6. It is scalable and the device size and the hole size can be tailor made to fit the 

requirements for management of a specific diseased states. 

7. Due to its micro size and flexibility the device can be implanted at complex 

anatomical sites such as glands, eye, coronary arteries, and cerebro-spinal regions. 
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Chapter 1: Local Drug Delivery Devices for Long-term Zero Order 

Release 

1.1 NEED FOR A DRUG DELIVERY SYSTEM FOR LONG-TERM ZERO ORDER 

RELEASE 

Oral, topical and inhalation are the oldest modes of drug administration. The 

modern era has witnessed development of alternate routes such as, systemic, intravitreal, 

and pulmonary delivery of drugs. The new and conventional routes of drug delivery have 

been well accepted due to many advantages that they offer. Tablets, capsules, eye drops, 

creams and lotions offer convenience and ease of use. Intravenous injections deliver drug 

directly into the blood stream achieving high bioavailability and less wastage and is 

essential for drugs that are not well absorbed by other routes. Pulmonary drug delivery 

enables delivery of poorly absorbed drugs, such as insulin and vasopressin for treatment 

of diabetes insipidus, without encountering the first pass hepatic metabolism [1, 2]. 

However, these popular modes of drug administration have limitations. Injections, 

intravenous or otherwise, are inconvenient, especially when repeated dosing is required 

to treat chronic conditions. In such circumstances, a patient is either required to return to 

a medical professional regularly or must learn to self inject (such as for diabetes 

mellitus). Apart from the discomfort and nuisance, there is also the risk of infection if the 

needle is not clean.  

Topical delivery intended for dermal use has limited applications. Skin imposes 

physiochemical obstacles to drug permeation [3]. A drug has to be adequately lipophilic 
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to be passively delivered via the skin [4]. Eye drops, although convenient, are very 

inefficient as about 95% of the applied drug is lost to absorption by the conjunctiva and 

through tear drainage [5]. The absorbed drug is released into the blood stream, where it 

can have detrimental side effects elsewhere in the body. An important example would be 

timolol which is used to treat glaucoma [6] but may also causes side effects such as, 

bronchiospasms, depression, and heart failure [7].  

Oral delivery systems also offer convenience in administration but not all drugs 

can be given orally. Some drugs may not be properly absorbed through the stomach wall; 

may be degraded by the gastrointestinal tract; or may irritate the stomach causing 

unwanted side effect. Insulin, a protein based drug, is one such example that cannot be 

given orally since it would be degraded by proteolytic enzymes and therefore, must be 

given by injection [8]. Pulmonary drug delivery is very wasteful and associated with low 

efficiency and poor reproducibility, thus increasing the treatment expenditure [9].  

In addition, these traditional methods of drug delivery more commonly result in 

patient non-compliance or discomfort when used for treating chronic diseases. In lieu of 

these limitations, efforts have been made to achieve optimized drug therapy by 

developing controlled drug delivery systems. A zero-order release rate is desirable 

because a constant amount of drug is released over a period of time (Figure 1.1). The 

drug dose to be administered can be calculated to remain in the therapeutic range without 

the fear of overdose or underdose. 
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Figure 1.1:  Zero-Order Release Curve 

 

1.2 DRUG-DEVICE COMBINATION PRODUCTS AS IDEAL CONTROLLED DRUG 

DELIVERY SYSTEMS 

Targeted and controlled delivery of drugs is a relatively new technology. Drug 

device combination systems have their origins in mid 1960’s when Dr. Judah Folkman 

first proposed the use of Silastic® tubing as an implant for prolonged drug therapy [10]. 

He accidentally discovered that when a silicone rubber tubing, which was used to supply 

blood to rabbits, is exposed to anesthetic gases, the rabbits fell asleep [11]. This 

observation gave him an idea to develop a reservoir type zero order drug delivery system. 

Folkman and other researchers have been interested in zero order and sustained release 

systems due to many advantages that they offer [12]: 

1. Drug levels are continuously maintained at a desirable therapeutic range. 
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2. Adverse effects are reduced by targeting delivery to a specific site and 

avoiding distribution to unwanted tissues. 

3. Dose of drug is decreased while mean residence time is increased. 

4. A decrease in administered doses decreases patient trauma and improves 

patient compliance. 

5. An inert and impermeable device protects the drug in the hostile 

environment.  

6. Drugs that have short in vivo half-lives can be administered directly at the 

desired site. 

 

Controlled drug delivery (CDD) devices have been designed as ingestible 

capsules, transdermal patches, implants, and ocular or vaginal inserts. In the following 

section, few of the commonly used zero-order drug delivery devices have been reviewed. 

The review will highlight the goal of this dissertation and will also help to understand the 

significance of CDD’s as important therapeutic tools.  

 

1.2.1 Ocusert® 

Ocusert® is a pilocarpine containing CDD device which was developed by Alza 

Corporation to treat glaucoma [13]. Alza Corporation, founded by Dr. Alejandro 

Zaffaroni in 1968, developed a zero-order CDD systems based on Folkman’s 

observations [14]. This collaboration resulted in the development of world’s first zero-

order drug device combination product, called Ocusert® in the 1970’s for treatment of 
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glaucoma. The device consists of Pilocarpine, a muscarinic agonist that decreases the 

intraocular pressure 

Figure 1.2 illustrates the construction and dimension of Ocusert®. The device 

consists of a drug reservoir and a rate controlling membrane made of poly(ethylene-co-

vinyl acetate) [15]. The device is placed in a manner similar to contact lenses. The 

Ocusert® system, continuously releases pilocarpine locally to the eye at a programmed 

rate of 20 -40 μg per hour for seven days [16].. In comparison with the 2% or 4% eye 

drops of pilocarpine, the Ocusert® system proved effective in treatment of glaucoma but 

with fewer side effects [17, 18].  

 

 

Figure 1.2:  A schematic diagram of Ocusert®. The pilocarpine core is sandwiched in 
between two polymeric membranes which control the release rate [19] 
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1.2.2 Progestasert® 

Progestasert®, an intrauterine device , is another CDD system which was 

developed by Alza Corporation [20]. As illustrated in Figure 1.3, the hollow stem of the 

T-shaped device serves as the reservoir for 38 mg progesterone. The hormone 

progesterone, is an important female reproductive hormone which is responsible for 

menstrual bleeding [21-23]. Progesterone makes the cervical mucus thicker and changes 

vaginal epithelium so that the sperm cannot reach the egg [24, 25]. The rate controlling 

membrane in the device is made of poly(ethylene-co-vinyl acetate) that provides an 

average release rate of 65 μg/day [20]. The device proved as an effective contraceptive 

device for at least one year [26-29]. In some countries such as France, Progestasert® is 

even approved for 18 months of use [30].  

 

 

Figure 1.3: Progestasert® [31] 
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1.2.3 Norplant® 

Norplant® is a levo-norgestrel subdermal implant consisting of a set of six small 

silastic capsules that are placed under the skin of a woman’s upper arm (Figure 1.4). The 

implantation consists of a minor surgical procedure that lasts for10-15 minutes. A local 

anesthetic is applied on the inside of the upper arm, and a small incision, about 2 mm 

long is made. The capsules are placed one at a time in a fan shape setting. Norplant® was 

developed by Population Council in 1983 as a direct extension of Dr. Folkmans findings 

of 1964 [32-35]. The Norplant® capsules are 34 mm long and 2.4 mm in diameter and 

contains 36 mg of levo-norgestrel [32]. The implant releases drug at a steady rate of 30 

μg/day. The implant was designed to last for up to five or six years [36]. The fertility can 

be restored within days of the implant removal and does not depend on duration of use 

[32, 36-39].  

 

Figure 1.4: Implantation procedure for Norplant® [40] 
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1.2.4 Osmotic Pumps (OROS® and DUROS®) 

Development of osmotically controlled oral drug delivery systems (OROS®) was 

pioneered by Alza in 1980’s and 1990’s [14]. The simplest of such system is an 

elementary osmotic pump [41] wherein, a water soluble drug core is contained in a semi 

permeable membrane (Figure 1.5). The membrane is permeable to water but not to the 

drug molecules. An opening is drilled on the surface of the membrane to allow for drug 

release. As the water moves through the membrane due to osmosis, it pushes the drug out 

of the orifice. A similar system known as The OROS®/Push Pull System was designed by 

Alza to overcome the problem of delivering poorly soluble drugs. As illustrated in Figure 

1.6, the OROS® system consists of a drug layer on top of an osmotically active push layer 

[41]. Pfizer used the push-pull osmotic technology to develop extended release tablets, 

namely Procardia XL (nifedipine) and Glucotrol XL (glipizide) for treatment of angina 

and high blood glucose, respectively. A single extended release tablet is capable of 

releasing the drug at a constant rate of over 24 hours [42-44]. The controlled delivery of 

the drugs into the gastrointestinal lumen using osmotic pumps is independent of pH or 

gastrointestinal motility. 

Durect Inc. has used the OROS® technology to develop DUROS®, a 44 mm long 

and a 3.8 mm diameter osmotic implant made of titanium reservoir [45]. Developed for 

the delivery of leoprolide to treat prostrate cancer, the DUROS® implant can hold 65 mg 

of the drug with a release rate of 120 μg/day for one year [46]. The implant can be used 

for site specific applications and can be scaled-up to hold 1000 mg of drug [45]. 
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Figure 1.5: An elementary osmotic pump 

 

 

 

Figure 1.6: The push-pull osmotic delivery system 
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1.2.5 Vitrasert®, Retisert®, and Iluvien® 

Vitrasert® and Retisert® are sustained release intraocular drug delivery devices 

marketed by Bausch & Lomb. The underlying technology was developed by Control 

Delivery Systems which was acquired by pSivida Corp. in 2005 [47]. Bausch & Lomb 

obtained the licensing rights of the devices in 2005 [48]. Vitrasert® was approved by 

FDA in 1996 whereas, Retisert® (Figure 1.7) which is a second generation reservoir style 

implant to Vitrasert® was approved by FDA in April 2005 [49-51]. Vitrasert® delivers 

ganciclovir for the treatment of cytomegalovirus retinitis, whereas Retisert® contains 

fluocinolone acetonide for the treatment of uveitis [52-54].  

Each Vitrasert® Implant contains 4.5 mg of ganciclovir, and is designed to release 

the drug over a period of 5 to 8 month [55]. Retisert® consists of a compressed drug 

pellet in a silicone elastomeric cup, holds 0.59 mg of drug, and has nominal dimensions 

of 3 mm x 2 mm x 5 mm [56]. The implant is surgically placed into the vitreous humor. 

As the water enters through the orifice on the cup, the drug dissolves and diffuses out of 

the device with a constant release rate of approximately two years. 

Iluvien®, is a third generation eye drug delivery systems designed for treatment 

of diabetic macular edema is currently in its Phase III clinical trials [57]. The device was 

licensed to Alimera Sciences in 2008 [58]. The device holds 2 mg of fluocinolone 

acetonide and measure 3.5 mm in length and 0.37 mm in diameter and releases 0.23 

μg/day for three years [59]. Figure 1.8, illustrates a schematic diagram of Iluvien®. 
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Figure 1.7: A schematic diagram of Retisert® 

 

 

Figure 1.8: A schematic diagram of Iluvien® 

 

1.3 INTRODUCTION TO A SCALABLE MICROPERFORATED DRUG DELIVERY 

DEVICE 

The chronological review of previous drug delivery devices has pointed out one 

common fact. Over the years, the dimension of the device has decreased and the duration 

of release has increased. The constant reduction in size has improved immunological 

responses, biocompatibility, and reduced side effects associated with earlier devices [60, 

61].  
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As a focus of this dissertation, a novel drug delivery system has been developed 

that can be fabricated in variable shapes and sizes. The device consists of an impermeable 

reservoir provided with microperforation through which the drug diffuses. If the drug has 

appropriate solubility, it will diffuse out through the holes following zero order kinetics. 

Figure 1.9 illustrates one such example of the device. The device is scalable and can 

measure as thin as a human hair [62] or bigger in size. The rate of drug release can range 

from several days to several years by manipulating the number of holes, size of the holes, 

size of the tube, length of the tube, drug density inside the tube, and solubility of the 

drug. The drug delivery system is multifunctional as it can be used for management of 

several diseased states depending on the drug loaded inside the device.  

 

 

Figure 1.9: The drug delivery system with microholes on the surface. The holes are 
equidistant from each other and from the ends of the tubes. The size of the 
device and the perforations can be scaled to fit the need of the therapeutic 
application 

  

The following chapters discuss the historical events that led to the development of 

the microperforated drug delivery system of Figure 1.9. The perforated device was being 

developed as a component of a drug eluting stent (DES). The idea of developing the 

perforated system as a general purpose drug delivery device was serendipitous as the 
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drug release studies (Chapter 5) suggested that the perforated tubes can be extended to 

other diseased states as well. However, before the perforated device was designed, the 

initial research efforts were focused exclusively on developing a DES. To achieve this 

goal, a nanoporous metal surface was characterized which could be potentially used to 

manufacture next generation DES. The nanoporous surfaces were developed in 

collaboration with Setagon Inc. The nanopores were loaded with a model drug and in 

vitro release studies were performed. Although extended release was observed, the 

primary objective to obtain zero order drug release rates was not achieved using the 

nanopores. This preliminary work with the nanoporous surfaces has been summarized in 

Chapter 2 of this dissertation.  

The work with nanoporous surfaces was discontinued as a better idea of 

developing a DES composed of perforated microtubes (of Figure 1.9) was envisioned. 

The idea was to mount the drug releasing perforated microtubes on the stent skeleton 

(Figure 3.2, Chapter 3). Since, fabrication of the stent skeleton from a metal alloy was 

more of an engineering challenge than a pharmaceutical task; it was decided to fabricate 

the stent skeleton commercially. Accordingly, initial efforts were concentrated solely on 

developing and characterizing the drug eluting perforated tubes that could later be used 

with the stent skeleton. A step by step developmental process has been summarized in 

Chapter 3 with respect to designing of the stent, finding appropriate dimensions for both 

the stent and the perforated tubes, and fabrication of holes on the microtubes.  

Once, the holes were fabricated on the microtubes, the next step was to load the 

tubes with drugs. Hence, in Chapter 4 drug loading data using different techniques and 

different drugs has been summarized.  
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The next step was to evaluate the drug loaded perforated tubes for their capability 

to produce zero order release rates. The delivery system was evaluated in vitro in 

phosphate buffered saline (PBS) and ex vivo in vitreous humor from the rabbit’s eye. The 

corresponding drug release data has been summarized in Chapters 5 and 6. The release 

studies indicate that the perforated tube is capable of delivering drugs at zero order for 

long periods of time ranging from several months to several years. These results were 

unexpected and suggested that the perforated tubes by themselves are efficient drug 

delivery systems that can be used for management of diverse diseased states that require 

long-term therapy. 

Hence, the focus of the dissertation has now broadened and involves development 

of a general purpose device and is not limited to merely DES, which now can be one of 

its many applications. The various therapeutic applications of the device have been 

summarized in Chapter 9 of this dissertation. Most of these applications require the 

device to be implanted. Since the success or failure of an implantable device greatly 

depends on how it interacts with the body, in vitro biocompatibility evaluation was 

performed and has been summarized in Chapter 7. In Chapter 8 of this dissertation, 

further proof of concept has been provided by evaluating the device’s capability to 

release biologically significant doses in luciferase transfected cells.  
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Chapter 2:  Preliminary Work with Nanopores and Metal Surface 

 

 

2.1 INTRODUCTION 

The research project was started with a goal to develop a novel drug eluting stent 

(DES). The idea was to manufacture a DES made up of a nanoporous metal surface, with 

nanopores acting as drug reservoirs. The initial efforts with nanoporous surfaces will be 

discussed in the present chapter. The reasons for investigating a nanoporous surfaces to 

improve drug delivery methods may be better understood after the following review of 

current developments in drug delivery methods. 

Current targeted therapy is centered around nanoparticles which may help to 

decrease the drug toxicity by improving target specificity and delivery efficiency [63-66]. 

A popular example is Abraxane®, an albumin bound nanoparticles form of paclitaxel, 

which is free from solubilizers, shows excellent efficacy, and is less toxic than the 

original drug [67, 68]. 

While the earlier research has been focused on development of drugs, present 

methodologies target development of the delivery device itself [69-71]. Local delivery of 

a drug to a specific site enhances the safety and efficacy by improving its bioavailability 

and decreasing the side effects. In addition, an implantable drug delivery device offers 

various advantages such as maintenance of therapeutics blood levels, improved patient 

compliance, less wastage of drug, and avoidance of a repeated administration [72].  

The past few years have witnessed advancements in nanotechnology. Nanorobots 

capable of treatment, prophylaxis, and diagnosis represent the next generation of drug 
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delivery devices [73, 74]. Carbon nanotubes have been developed to seek and destroy 

tumor cells [75]. Accordingly, conventional drug delivery devices such as stents, ocular 

implants, and nasal devices are also being fabricated as nano devices for better delivery 

of proteins, DNA, enzymes, and other biological materials. Recently, Martin et al tailored 

the width of microfabricated nanochannels to solute size and to control diffusion kinetics 

of macromolecules [76]. 

A nanoporous metal surface offers one such improvisation possibility for DES 

and was characterized for its drug loading and drug release capabilities. The drug can be 

loaded into the nanopores either as nanoparticles in solution form, or as a polymer-drug 

system. These pores can either be built directly on a surface or a nanoporous membrane 

can be adhered to the surface of an implant or a drug delivery device (e.g. stent). 

Inorganic materials, such as aluminum and gold were evaluated as suitable 

surface materials to develop nanopores. Both aluminum and gold, have been extensively 

used in development of novel nano-diagnostic tools [77, 78]. They are known to improve 

the mechanical stability while maintaining the required biocompatibility and being soft 

materials, they also offer ease in fabrication [79-81].  

Hence, initial efforts were directed towards evaluation of stainless steel and 

aluminum as prospective coating materials for future development of implant with depots 

on its surface. Stainless steel itself is biocompatible and offers good material properties 

[82-85]. However, in vitro testing of aluminum coating revealed oxidative instability in 

phosphate buffer. Hence, gold coating which is biologically inert [86, 87] was selected 

for fabrication of nanopores. The fabrication of the nanopores was undertaken by 

Nanomedsystems, (formerly Setagon, Inc.) (Charlottesville, VA, USA). 
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Nanopores were fabricated using photolithography techniques. Fabrication of 

nanostructures by lithography has been explained in detail in literature [88, 89]. Briefly, 

silicon wafers were coated with a combination of gold and silver. A photomask was used 

to transfer the pattern onto the wafer and a layer of photosensitive polymer (photo-resist) 

was applied using spin coating technique. The wafers were then exposed to ultraviolet 

light. The mask protects the portion of the wafer it covers, whereas, the uncovered part 

gets etched by light. Silver, which was used as a sacrificial material was precipitated out 

leaving nanopores behind.  

The next step was to estimate the volume of the pores. Accordingly, nanopores 

were physically characterized using scanning electron microscopy (SEM) and atomic 

force microscopy (AFM). The dimensions of the nanopores were estimated and the 

measurements were used to determine the total volume of pores available for drug 

loading and the capability of a nanoporous surface as a suitable drug carrier. For purpose 

of estimation, a bare metal stent, was used as a reference. Hence, the volume of 

nanopores if they were built on a stent surface was calculated. 

The drug loading capacity of nanopores was analyzed using a solution of 2 – octyl 

cyanoacrylate and methyl orange as the drug-polymer matrix. Methyl Orange (4-

dimethylaminoazobenzene-4'-sulfonic acid, sodium salt) is a pH indicator commonly 

used in titrations [90]. Methyl orange was chosen as the model drug because it has sharp 

end point and gives a prominent color in solution, which assisted in its analysis both 

visually and spectrophotometrically. A solution of 2-octyl cyanoacrylate was used as the 

polymer matrix. Poly (2-octyl cyanoacrylate) is approved by FDA and is being currently 

used as a tissue adhesive [91]. Several articles in literature have suggested the use of 
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poly(alkylcyanoacrylates) as the drug carrier [92-94]. The drug-polymer mixture was 

loaded into the nanopores. The role of the polymer here is to control the release of methyl 

orange from nanopores, which would otherwise release quickly owing to its high 

solubility. The present investigation has also been recently published [95]. 

2.2 MATERIALS AND METHODS 
 

2.2.1 Materials 

Aluminum coated stainless steel tubes, bare silicon wafers, gold coated silicon 

wafers, and nanoporous gold-coated silicon wafers were obtained from Nanomedsystems, 

(formerly Setagon, Inc.) (Charlottesville, VA, USA). A bare metal stent (Palmaz-

Schatz® Balloon-expandable stent, Size = 15 x 3.0 mm) was obtained from The 

University of Texas Health Sciences Centre, (San Antonio, TX, USA). Methyl Orange 

was obtained from Fisher Scientific (Pittsburgh, PA, USA). Band-Aid ® Brand Liquid 

Bandage, containing 2-octyl cyanoacrylate as the active ingredient, was obtained from 

the local CVS store (Austin, TX, USA). 

2.2.2 Surface Analysis of Aluminum Coated Stainless Steel Tube 

Aluminum was selected for coating, as it is a soft metal and would thus facilitate 

drilling of pores. The durability of aluminum coated stainless steel tube was tested by 

immersing the tube in phosphate buffer saline (PBS, pH 7.4) for seven days. Scanning 

electron microscope (SEM) pictures of tubes were taken before (Figure 2.1 and 2.2) and 

after (Figures 2.3 and 2.4,) the PBS treatment using a Hitachi S–4500II microscope. As 
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illustrated in Figures 2.3 and 2.4, fractured coating with signs of corrosion was observed. 

The X-ray diffraction spectrometry (XRDS) and energy dispersive spectrometry (EDS) 

were used to detect if corrosion (alumina) was responsible for coating fracture. 

 

 

Figure 2.1: An aluminum coated stainless steel tube at 50X magnification 

 

Figure 2.2: An aluminum coated stainless steel tube at 50,000 X magnification 
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Figure 2.3: The aluminum coating was fractured after treatment with PBS for seven 
days (Magnification: 100X) 

 

 

Figure 2.4: The fractured coating at 10,000 X magnification 
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2.2.3 Surface and Dimensional Analysis of Nanoporous Wafers 

The bare metal stent was characterized using a Hitachi S – 4500II Scanning 

electron microscope. The stent is made of 87 mini cylindrical rods (Figure 2.5). The 

length, width, and thickness of the rods were estimated from SEM micrographs (Figure 

2.6). Three wafers from each group of wafers were selected and their surface morphology 

was compared using the SEM (Figure 2.7, 2.8, & 2.9). Dimensional analysis of the 

nanoporous wafers were performed using SEM and atomic force microscopy (AFM). The 

AFM topographic images of the nanoporous wafers were analyzed using the ‘particle 

analysis’ and the ‘section analysis’ commands yielding length, width, area of the pores 

and depth of the pores, respectively. The software used in AFM was Nanoscope 5.12b48 

and the cantilever used was of 300 kHz frequency. 

 

Figure 2.5: A skeleton design of a bare metal stent composed of 87 mini cylindrical rods  
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Figure 2.6: SEM pictures of the stent were used to estimate the length of the cylindrical 
rods 

 

 

Figure 2.7: Silicone wafer (Magnification: 500,000 X) 
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Figure 2.8: Gold coated silicone wafer (Magnification: 200,000 X) 

 

 

Figure 2.9: Nanoporous gold coated silicone wafer (Magnification: 200,000 X) 

 

2.2.4 Drug Loading of Nanoporous wafers  

Three nanoporous wafers were weighed gravimetrically and a thin layer of an 

ethanolic solution of methyl orange was applied onto the surface. The silicon gold 

nanoporous surface was inert to alcohol. Afterwards, ethanol was evaporated using a heat 

gun. The wafers were weighed again to determine the amount of methyl orange loaded 
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onto each wafer. The gravimetric method proved to be accurate and precise in the weight 

range loaded in the nanoporous surface. A drop of 2–octyl cyanoacrylate solution was 

then applied onto the wafer followed by the addition of a drop of water for 

polymerization of the monomer. The weight of cyanoacrylate added was estimated using 

the weight difference of the drug loaded wafers before and after application of the 

cyanoacrylate. SEM pictures were then taken.  

2.2.5 Drug Release Study 

The in vitro drug release study was performed in a non stirred environment 

according to a previously published method [96]. The drug loaded wafers were immersed 

in a vial containing 10 ml of distilled water. After each 24 hr period, the solution was 

collected and retained for absorbance measurements to assure even dispersion of the 

compound, placed in a clean quartz cuvette and its absorbance measured at 464 nm 

against a blank standard.  

 

 2.3 RESULTS AND DISCUSSION 

2.3.1 Detection of Oxidative Degradation of Aluminum Coating 

After immersing in PBS for seven days, the aluminum coating appeared to be 

fractured and corroded. The corrosion of aluminum which occurs due to its oxidation 

results in the formation of alumina, Al2O3. The detection of corrosion in the form of 

alumina was analyzed by X-Ray Diffraction Spectrometry (XRDS). However, XRDS 

didn’t prove to be effective in detecting corrosion because of the amorphous nature of the 
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sample (coating). As illustrated in Figures 2.10 and 2.11, the XRD spectra obtained from 

sample didn’t match with the standard. 

In the next step, energy dispersive spectrometry (EDS) was used to analyse the 

alumina coating because by coupling SEM with EDS, it is possible to obtain the precise 

elemental composition of the material. As illustrated in Figure 2.12, high percentages of 

both aluminum (13.63%) and oxygen (57.83%) were obtained. Sharp peaks of aluminum 

and oxygen in the EDS spectra further confirmed the presence of alumina and hence 

corrosion in the sample (Figure 2.13). As a result, due to chemical and mechanical 

instability in the physiological environment, alumina was rejected as the coating material. 

 

 

Figure 2.10: XRD spectra of alumina coating (sample) 
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Figure 2.11: XRD spectra of alumina (standard) 

 

Figure 2.12: Elemental composition obtained from EDS shows high percentage of both 
aluminum and oxygen in the coating. 
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Figure 2.13: Sharp peaks of oxygen and aluminum confirmed the presence of alumina in 
the sample. 

 

2.3.2 Dimensional Analysis of Nanopores 

The length and width of nanopores can be measured manually from SEM pictures 

of nanoporous gold coated silicon wafers. However, depth could not be ascertained using 

SEM Estimation of depth of the pores is an important criterion in determining the exact 

volume available for drug loading. Hence, the wafers were analyzed again using AFM 

Figures 2.14 (a) and 2.14 (b) illustrate, analysis of depth and area of the pores in 1 μm2 

area of the wafer. Table 2.1 represents the statistical data of the three nanoporous wafers 

analyzed by AFM The data indicates uniformity as all the analytical measurements have 
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relative standard error below 20 %. The SEM pictures suggest the pores to be cylindrical 

in shape. Hence the volume was estimated using the equation: 

Volume of a cylinder = (Area of Base) x Depth     (1)  

 

In the calculations, area of base and depth were obtained from particle analysis in 

AFM (Table 2.1). Thus, 

 

Volume of Pores  = (1.32 x 103 nm2) x (26.9 nm) 

= 3.55 x 104 nm3 

Hence, 1 μm2 of wafer surface contains on an average 3.55 x 104 nm3 of pore 

volume which can also be translated as the volume of pores available per unit μm of 

length.            (2) 

2.3.3 Surface Analysis of a Stent and Estimation of Volume of Pores on its Surface 

The calculations are based on the design of a commercially available bare metal 

stent (Figures 2.5 & and 2.6, previously mentioned in Section 2.2.3). The stent is 

cylindrical in shape with open ends. It is made up of 87 mini cylindrical rods, which have 

void spaces in between. Figure 2.6 indicated the length of the cylindrical rods as 1.30 

mm. Hence,  

Total length available on stent for fabrication of nanopores  = 87 x 1.30 mm  

= 0.113 m         (3) 
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Hence, total volume of pores available on entire length of the stent can be given 

by = (Volume of pores/μm) x (Total length of stent) 

= (3.55 x 104 nm3/ μm) x (0.113 m) 

= 4.01 x 109 nm3, which is the volume available for drug loading.  

 

Figure 2.14: The figure shows the nanopores as analyzed using AFM (a) - (Top) - The 
section analysis of 1 μm2 area of the wafer using AFM shows top view of 
the nanopores as indicated by brown region and was used to analyze the 
depth of the pores (b) - (Bottom) - The particle analysis of 1 μm2 area of 
the wafer using AFM shows horizontal view of the nanopores as indicated 
by the red region and was used to analyze the length, width, and area of 
the pores in the wafers  
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Table 2.1: Statistical Analysis of Nanoporous Wafers using Dimensions obtained from 
AFM 

 Area 
(nm2) 

Diameter 
(nm) 

Length 
(nm) 

Width 
(nm) 

Depth 
(nm) 

Wafer 1 1440.2 27.2 57.1 14.4 23.0 

Wafer 2 1448.4 32.3 72.6 17.4 30.5 

Wafer 3 1063.5 22.5 53.3 12.8 27.4 

Average 1317.4 27.3 61.0 14.9 26.9 

SD 219.9 4.9 10.2 2.3 3.8 

% CV 16.7 17.9 16.7 15.6 14.0 

 

2.3.4 Drug Release Study 

The aim of this study was to test the drug loading capacity of nanopores and the 

effectiveness of poly (2-octylcyanoacrylate) as an extended release polymer matrix. 

Figure 2.15 illustrates a nanoporous wafer loaded with methyl orange and polymer. The 

drug loading data is illustrated in Table 2.2. A uniform w/w ratio of methyl orange and 

cyanoacrylate, 0.70 ± 0.04 was applied to the wafers. A single coat of polymer and model 

drug on the untreated wafer resulted in 7 days of drug release. Average cumulative 

percentage release of 88.1 ± 5.0 %, equivalent to 220 ± 97 μg/day of methyl orange, was 

released for first 7 days (Figure 2.16). The drug delivery study can be extended to other 
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polymer as well. The polymers may be bioadhesive which will allow the implant to 

deliver the drug to the targeted site. Certain patients may be hypersensitive to polymers 

[97]. In such cases, biodegradable or bioabasorbable polymers may be used which gets 

completely metabolized after elution of the drug leaving the metal alone. The device later 

gets endothelialized preventing further complications such as thrombosis and platelet 

activation. 

 

 

 

Figure 2.15: SEM picture of a nanoporous gold silicon wafer treated with methyl orange 
and cyanoacrylate. 
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Table 2.2: Drug Loading Data (N=3). 

 
Weight of 

Wafer 
in mg 

Weight of Methyl 
Orange 

loaded ( D ), in mg 

Weight of 
cyanoacrylate 

added ( C ), in mg 

Ratio of D:C 
 

Wafer 1 34.0 2.5 3.6 0.7 

Wafer 2 30.6 1.5 2.4 0.6 

Wafer 3 33.9 1.2 1.9 0.6 

 

 

 

Figure 2.16: A cumulative % release profile of methyl orange from cyanoacrylate 
polymer matrix. Values are presented as mean with standard 
deviation, n = 3. 
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2.4 CONCLUSION 

Aluminum was found to be unsuitable for making implants due to its chemical 

and mechanical instability in the physiological environment. Gold proved to be an 

effective material for the fabrication of nanopores. The volume calculations indicate that 

nanopores offer significant volume for the purpose of drug loading. They can be 

fabricated in different patterns and by different techniques, to meet the volume 

requirements of a certain application. The standard metric techniques such as SEM and 

AFM have proven to be useful tools in analyzing nano features. Poly (2- octyl 

cyanoacrylate) can be successfully used to prolong methyl orange release from 

nanoporous surface, metals, and probably other surfaces. They may either be used alone 

or in conjunction with other polymers for drug delivery.  

The preliminary work with nanopores was discontinued because of reports in 

literature which pointed to problems arising in implants due to polymers [97, 98]. In 

addition the primary objective to obtain zero order drug release rates was not 

accomplished. Therefore, other concepts of develop a polymer free DES were researched. 

A new stent was designed that was composed of two parts - the stent skeleton and the 

perforated microtubes. The following chapter discusses the various steps that were 

involved in designing of the stent and its fabrication.  

 



 39

Chapter 3: Designing and Fabrication of the Drug Delivery Device 

 

3.1 INTRODUCTION 

As the initial studies with nanopores did not meet the primary objective of 

producing zero order drug release rate, a new stent was designed that consisted of 

perforated microtubes that can be built in or mounted on the stent itself. Although 

originally designed to be part of the drug eluting stent (DES), the perforated tubes later 

on demonstrated that they can also be used as independent drug delivery systems. This 

observation was made after the in vitro drug release studies of Chapter 5 revealed that the 

perforated tubes are capable of long-term drug release ranging from several months to 

years. A chronological description that explains the advancement of the perforated tubes 

from merely being a component of a DES to being currently developed as a general 

purpose drug delivery device has been discussed in the present and following chapters. 

Before discussing the long-term drug delivery capability of the perforated drug 

delivery system, it is important to understand the dimensional and material considerations 

that were involved during the device development. The device design and fabrication 

have been discussed in this chapter.  

The present chapter also discusses the initial motives and reasons to develop the 

perforated tubes as part of the DES. The following discussion involves a review of 

prophylactic use of DES in medical practice; their complications; and advantages of a 

polymer free DES in reducing these complications.  
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3.1.1 Drug Eluting Stents – Advantages and Disadvantages  

The first generation DES, the CYPHERTM Sirolimus Eluting Coronary Stent 

(Johnson & Johnson) and the Paclitaxel Eluting TAXUSTM Stent (Boston Scientific) were 

introduced in 2003 and 2004, respectively to prevent restenosis (renarrowing of the 

coronary artery) after stent deployment [99, 100]. Since their inception, DES have 

significantly reduced the rate of clinical restenosis as compared to bare metal stents 

(BMS) and conventional balloon angioplasty [101-105]. An ideal DES was visualized to 

possess following characteristics: 

1. Polymers should allow ideal drug release. 

2. Drugs should inhibit vascular smooth cell proliferation and inflammation and 

prevent restenosis. 

3. The stents becomes part of the vasculature to prevent any late inflammations / 

thrombosis. 

4. The stent should allow collateral circulation. Collaterals are blood vessels that 

are formed by angiogenesis and which act as a bypass to supply blood flow to 

ischemic regions due to stenosis of epicardial arteries [106, 107]. 

However, even before the introduction of first commercial DES, Virmani et al 

suggested that the potential problem with DES may arise due to the “nonerodable thick 

polymer sleeve, very high concentration of the active drug, extended release kinetics, 

loose stent architecture, and inhomogeneous drug delivery” [108]. These problems tend 

to be  associated with late stent thrombosis (LST) which renarrows the arteries increasing 

the risk of myocardial infarction [109-112].  
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3.1.2 Understanding Late Stent Thrombosis 

The mechanisms of restenosis and LST associated with DES have recently been 

reviewed [113] and polymers that have been used for release control have been 

associated with the DES failure. Under mechanical stress such as during implantation of 

stents, polymers might crack leading to injury to arterial wall. Injury activates platelet 

aggregation and blood clotting leading to LST. Cracking of polymer may also lead to 

drug dumping at the injured arterial site delaying the healing of the stent 

(endothelialization). The incomplete endothelialized stent becomes a site for platelet 

adhesion increasing the probability of LST.  

Hypersensitivity to polymers might incite inflammation reactions. Due to allergy, 

a marked activation of inflammatory cells such as leucocytes at the site of stent has been 

observed [114]. Leukocyte have also been linked to the formation of neointimal 

hyperplasia along with platelet adhesion indicating the central role of inflammation in 

both restenosis and LST [115-117]. As illustrated in Figure 3.1, the dose dumping in DES 

leads to delayed healing or incomplete endothelialization of the stent structure. The 

exposed site becomes a probable target for platelet adhesion and auto-immune response, 

which may lead to LST. 
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Figure 3.1: A comparison of the two DES, Cypher and Taxus stents with their bare 
metal stent counterparts, BxVelocity and Express respectively 28 days after 
implantation. The bare metal stents are completely endothelialized whereas, 
the drug coated stents show incomplete endothelialization due to drug over 
exposure [118]. 

3.1.3 Rationale for device development 

A plethora of new DES’s have been introduced after TAXUSTM and CYPHERTM 

stents. The next generation stents have shown some promising results. However, most of 

these stents were conceptualized before the discovery of LST and its implications. The 

latest FDA approved stents, such as XIENCETM (Abbott Vascular) and ENDEAVORTM 
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(Medtronic) are still questionable for their long-term usage. Hence, there is a need of a 

stent system that does not require a polymer to control drug release. Such system should 

be capable of delivering a combination of drugs at concentrations sufficient to inhibit 

restenosis without delaying the healing of the stent.  

Material considerations, surface characteristics, and appropriate size of the device 

were some of the factors that were kept in mind while designing the device. A drug 

delivery device in general and a coronary stent specifically, should exhibit the following 

characteristics [119-121].  

1. It should limit recoil and should not shrink back after it has been expanded 

and deployed.  

2. It should be flexible to pass through circuitous vessels. 

3. It should be opaque to X-ray and other radiations (radiopacity).  

4. It should have sufficient radial strength. The device should be able to 

withstand the inner radial pressure of the artery. However, it should not be 

too stiff as to cause damage to the arterial wall. 

5. It should have low profile and a low metal to artery ratio. A low surface area 

of the stent ensures less damage to the inner wall of the vessel and less 

thrombus or platelet formation. 

6. The material used to manufacture the device should be biocompatible, 

hemocompatible, and should not propagate thrombus formation. 

7. The device should be electro polished to remove surface roughness. A mirror 

finish helps to reduce the platelet adhesion when the device comes in contact 

with the blood. 
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8. As polymers have been known to be the genesis of restenosis and LST, a 

polymer free DES would be ideal. 

 

3.2 DESIGN OF THE DRUG ELUTING STENT 

Keeping the above ideal characteristics in mind a new stent was designed (Figure 

3.2). The stent was designed after a comprehensive research of limitations of past and present 

stents and the improvements that can be incorporated in their design. However, that 

discussion is focused on engineering aspects of the design and will be a deviation from the 

main theme of this dissertation. As illustrated in the figure, the stent consists of two 

components – stent skeleton and perforated microtubes mounted on top of the skeleton. The 

stent skeleton would serve as the scaffold to keep the artery open whereas, the drug delivery 

device would release the anti-restenosis drug. The design of the perforated tubes is based 

on the principle of simple diffusion. A programmed release is desired from the perforated 

microtubes, such that the device is capable to release drugs for at least 28 days at a 

controlled rate. Figure 3.2, illustrates a sketch of the design. The device consists of a 

hollow drug reservoir with holes on the surface. The drug travels from inside of the 

reservoir to the outside into the dissolution medium following its concentration gradient. 

As illustrated in Figure 3.3, the tube is the drug reservoir with holes on the 

surface. The drug travels from inside of the reservoir to the outside into the dissolution 

medium following its concentration gradient. A sink condition outside the device enables 

zero order release and is the driving force for drug release. When the device comes in 

contact with an anatomical site the drug is released into the site (Figure 3.4).  
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Figure 3.2: A design of the DES comprising of a stent skeleton mounted with perforated 
tubes. 

 

\ 
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Figure 3.3: A sketch of the perforated microtube. The device consists of a micro tube 
with micro perforations on one side of its surface. The diameter of the 
device can range from several micrometers to millimeters. The hole size can 
range from 20 μm to several hundred microns depending on the need of the 
application. 

 

 

 

Figure 3.4:  The drug is released from the drug delivery device into the targeted site. 
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3.2.1 Material Considerations for the Manufacture of Stent Skeleton and Drug 

Delivery Device 

Current DES consists of drugs which are embedded and released from within 

(matrix) or surrounded by and released through (reservoir) polymers. An example of 

reservoir type system is the CYPHER stent. The polymer matrix consists of parylene C 

(poly-(p-xylelene) polymer with one repeat chlorine group per repeat unit), polyethylene-

co-vinyl acetate (PEVA) and poly n-butyl methacrylate (PBMA) [122]. A combination of 

the two polymers mixed with Sirolimus (67%/33%) makes up the basecoat formulation 

which is applied to a parylene C treated stent. A drug-free topcoat of PBMA polymer is 

applied to the stent surface to control the release kinetics of Sirolimus. The drug/polymer 

coating is adhered to the entire surface (i.e., luminal and abluminal) of the stent. The 

TAXUS Express stent, serves as an example of matrix type system where, the only 

inactive ingredient is poly(styrene-b-isobutylene-b-styrene), a tri-block copolymer [123]. 

The polymer is mixed with the drug Paclitaxel and then applied to the entire surface of 

the stent.  

However, the polymers have been associated with the problems of LST. Hence, 

there is a need for a polymer free stent which is capable of controlled release of drugs. 

The Cobalt Chromium–L605 alloy was selected as the material of choice to manufacture 

the stent skeleton of Figure 3.2. The alloy is ideal for stent manufacture because of the 

following desirable properties that it possess [124-126]. 

1. It is biocompatible and corrosion resistant. 
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2. The density and elastic modulus of L605 are better than 316L stainless 

steel (another popular stent material). Elastic modulus is the mathematical 

value of a substance’s tendency to be deformed non-permanently when a 

force is applied to it. It is obtained as the stress / strain ratio. 

3. Its high density and high radial strength allows thinner struts, radiopacity, 

and high elastic modulus, which limits recoil and improves flexibility.  

4. Thinner struts allow lower profile. 

5. L605 is non- ferromagnetic and thus MRI (Magnetic Resonance Imaging) 

safe. 

Polyimide was selected to manufacture the drug delivery device because: 

1. It is inert, corrosion resistant, and chemical resistant [127]. 

2. It exhibits high mechanical toughness and thermal stability [127]. 

3. Because of its high degree of ductility and inherently low coefficient of 

thermal expansion, polyimide can be readily implemented into a variety of 

microelectronic applications [128, 129]. 

4. It has a high tensile strength and tensile elongation which facilitates the 

placement of a polyimide matrix through the tortuous blood vessels to the 

desired site of location [130, 131].  

5. Polyimides are hemocompatible, biocompatible, and can be used for 

invasive clinical applications [132]. 
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3.3 MATERIALS AND METHODS 

 

3.3.1 Materials 

A bare metal stent (Palmaz-Schatz® Balloon-expandable stent, Size = 15 x 3.0 

mm) was obtained from The University of Texas Health Sciences (San Antonio, TX, 

USA). Prednisolone was obtained from Sigma-Aldrich (St. Louis, MO, USA). Polyimide 

tubings were obtained from Microlumen Inc (Tampa, FL, USA). All reagents used for 

photolithography process were provided by the clean room facility in Micro-electronics 

research centre, located in the J.J. Pickle research centre, The University of Texas at 

Austin (Austin, TX, USA).  

 

3.3.2 Estimation of Appropriate Dimensions for the Device 

In order to obtain the dimensions for the different components of stent illustrated 

in Figure 3.2, a reference stent, Palmaz-Schatz stent, was analyzed by SEM (Figure 3.5 & 

3.6). The different parts of the stent, such as length and width of the connectors, diameter 

of the stent, diameter of the drug delivery tubes, were manually estimated to calculate the 

appropriate dimensions for the novel DES.  
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Figure 3.5: Optimal diameter of the stent and the optimal distance between connectors 
was calculated using above SEM pictures 
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Figure 3.6: SEM pictures used to estimate the length and width of the arms and 
connectors 
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3.3.3 Finite Element Analysis of the Stent Structure 

Finite Element Method (FEM) allows design of a mechanical structure to be 

developed and optimized before it is manufactured [133]. Hence, the design of Figure 

3.2, was corroborated using FEM The early detection of limitations in designs avoids 

unnecessary cost in development of the prototype. The FEM was used to study the stent 

expansion and possible shortcomings of the design such as, stent shortening, lack of 

flexibility, and uneven distribution of stress. 

 

3.3.4 Estimation of Hole Size 

After the dimensional considerations of the stent skeleton were taken into 

account, the next step was to develop the perforated drug delivery system. Although the 

tubes were commercially available, the holes still needed to be fabricated on them. Two 

important features were taken into consideration while deciding for an appropriate hole 

size. Firstly, the holes should not be blocked by the red blood cells, whose size ranges 

from 8 to 10 microns. Secondly, the hole should be big enough to allow drug molecules 

in solution or suspension to diffuse out of the holes. Hence, the next step was to 

determine particle size for a model drug, prednisolone. The particle size distribution of a 

poorly water soluble drug, prednisolone [134, 135] was measured using Malvern 

Mastersizer 2000 ((Malvern Instruments, Ltd., Worcestershire, UK)), to estimate the 

appropriate hole size. A nominal amount of prednisolone powder was dispersed in 

deionized water and added to the Malvern apparatus, with recirculation and sonication, 
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until a percent obscurance of between 9% - 12% was acquired. When using the Malvern 

particle sizer, data is obtained as volume data (percentage frequency of cumulative 

volume).  

 

3.3.5 Coating of Polyimide Matrices with a Biocompatible Alloy 

The polyimide tubes were coated with L605 alloy to impart exterior toughness 

along with surface smoothness. As illustrated in Figure 3.7, a rough surface is more prone 

to platelet activation (precursor for inflammation and thrombogenicity) as compared to a 

polished surface [136]. The coating of polyimide matrix with Co-Cr alloy enabled us to 

lower the surface roughness making the polymer more suitable for in vivo use. 

The coating methodology has been described elsewhere in detail [137, 138]. 

Briefly, polyimide tubes were coated with the alloy using dc magnetron sputtering of 

metals. The substrate to be coated (polyimide tube) is placed between two electrodes in 

air, at high vacuum. The sputtering system consists of a vacuum chamber, which is filled 

with argon gas. The cathode consists of a target made out of metals that need to be 

deposited (such as cobalt, chromium, nickel, etc). A high voltage is used to ionize the gas 

which then strikes the cathode forcing it to cast off metal particles on the substrate as an 

adherent film. An example of sputtering mechanism is shown in Figure 3.8. Here, the 

cobalt is extracted from the cathode and dislodged to the substrate as a metal film.  
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Figure 3.7: At t = 0 minutes, the electropolished stent (A) showed a smooth surface 
whereas the unpolished device’s surface (B) was originally rougher. Blood 
exposure for 120 minutes resulted in cell deposition on few areas of the 
electropolished stent’s surface (C). In contrast, the unpolished device 
developed a rough coating consisting of large amounts of cell deposition 
(mainly platelets and macrophages) and fibrin (D) [136]. 
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Figure 3.8: Sputtering mechanism for coating of a metal ion onto a polyimide substrate 
[139] 

 

3.3.6 Characterization of Coating Composition  

The composition of the biocompatible alloy coating was characterized using 

Electron Dispersive X-ray Spectrophotometer (EDS). EDS is an analytical technique that 

employs X-rays to reveal the elemental composition of the specimen. As the X-ray 

bombards the specimen, it emits spectra that are specific for an element. Hence, in the 

case of a metal alloy sample, the resultant spectrum provided a fingerprint representation  

of its composition and thus its identity. The thickness of the deposited film was evaluated 

using the Molecular Force Probe 3D (MFP-3D) Atomic force microscopy (Asylum 

Research, Santa Barbara, California). 
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3.3.7 Fabrication of Holes on the Polyimide Matrix 

The holes can be produced by either laser drilling or photolithography techniques. 

Initially laser drilling was used to fabricate the microholes on the microtubes, however a 

more economical and practical method amenable to mass production was developed 

using photolithographic techniques. The lithography process which has been used to 

fabricate holes has been covered in our United States Provisional Patent Application 

(61/225,309 and 61/225,352). The technology to fabricate micro-structures on planar 

silicon wafers is well developed. The patents define the methods which can be used to 

fabricate micro-structures such as micro holes on non planar surfaces, for example, 

polyimide tubes.  

A step by step illustration is shown in Figure 3.9. Briefly, the polyimide matrix is 

coated with chromium metal and placed on nano trenches (grooves) made previously on a 

silicone wafer. A layer of photoresist is applied by spin coating at 4800 rpm for 60 

seconds. The photoresist coated matrix is baked for few minutes at 100°C to remove off 

any excess solvent. A photomask is generated from a premade data file. The photoresist 

is exposed to ultraviolet light through the photomask, and the pattern from the mask is 

imprinted onto the photoresist. The pattern is dry etched to the underlying chromium 

layer and to the polyimide surface. Reactive ion etching is used to remove both the 

chromium layer and the polyimide surface producing holes. The surface of the polyimide 

covered with photoresist remains unharmed. The FEM analysis of the stent design, 

coating of the tubes, and photolithography were conducted in collaboration with Dr. Paul 

Ho and his graduate students at the Pickle Research Center (The University of Texas at 

Austin).  
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Figure 3.9: Holes are made on the surface of the polyimide matrix using photolithography techniques. 
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3.4 RESULTS AND DISCUSSION 

 

3.4.1 Dimensions for the Stent and Drug Delivery Device 

From the dimensional analysis of Figures 3.5 & 3.6 (illustrated previously in 

section 3.3.2), inside diameter of the stent was found to be 3.5 mm. Distance between the 

connectors and length and width of the arms were 0.96 mm 1.46 mm, and 80 μm, 

respectively. The length of the reference stent was 15 mm. The stents’ diameter and 

length can range from 2.0 - 4.0 mm and 8.0 – 28.0 mm, respectively, depending on size 

of the coronary artery and extent of blockage [140]. In accordance to these results, the 

dimensions of the various components of Figure 3.4 were selected. For the stent skeleton 

which is made of Co-Cr alloy, width of the stent struts and length and diameter of the 

stent were selected as 80 μm, 21 mm, and 3 mm respectively. For the drug delivery 

device which is made of polyimide tube, a length of the tubes is 20 mm was selected. A 

slightly larger size tubes (OD=165μm; ID=125 μm) were selected to achieve effective 

drug loading. 

 

3.4.2 Finite Element Simulation of the Stent Design 

The Finite Element Method revealed few drawbacks in the initial design (Figure 

3.10). During expansion, the sharp angles between the arms and the connectors lead to 

stent shortening. The expanded stent also had uneven distribution of stress points, which 

may cause recoil under arterial pressure (Figure 3.11). However, by making slight 
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modification in the design of the stent, significant improvements were achieved (Figures 

3.12 & 3.13). The sharp angles in the initial design were replaced with smooth rounded 

curves. The stent shortening was decreased and the stress was evenly distributed along 

the stent structure resulting in uniform expansion. A 3D model further reveals the 

uniformity in structure after design modification (Figure 3.14). 

 

\ 

Figure 3.10:  Initial sketch of the stent that was designed. Here, the three nodes of the 
structure are marked with letters A, B, and C. The nodes serve as reference 
point to indicate any shortening of length after expansion. 

 



 60

 

Figure 3.11: The nodes A, B, and C become misaligned after expansion indicating 
uneven expansion and stent shortening. 

 

 

Figure 3.12: The nodes of the stent struts were rounded to distribute the stress evenly 
during expansion. 
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Figure 3.13: Even and symmetric expansion of the stent after modification of the initial 
design. 

 

 

Figure 3.14: A 3-D model of the design. 
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3.4.3 Particle Size Distribution of Prednisolone to Estimate the Hole Diameter 

The particle size experiment was performed in triplicate to estimate the particle 

size of prednisolone using water as the dispersion medium. As also reported previously in 

literature [141, 142], the data in Figure 3.15 is presented as three separate trials instead of 

the customary presentation of average with standard deviations. Li et al have mentioned 

that “although the results from the Malvern Mastersizer show particle mean size, and 

volume distribution can be reconstructed with acceptable accuracy, however, the 

recovery of standard deviation is sensitive to noise effect and can be very large as 

compared to the experimental data” [143]. Hence, it is more suitable to present the data 

as separate trials rather than average cumulative value. Figure 3.15, illustrates the results 

that were obtained from the three experiments. More than 80% of the particles lie within 

the 20 μm range. Hence, a range of 20 - 40 μm was selected as the suitable size for holes 

which will allow substantial drug release if prednisolone was loaded inside the device. 

The range gives a starting value for manufacturing of holes on the surface of the tubes, 

which could be increased or decreased afterwards depending on the application, duration 

of release, and drug characteristics.  
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Figure 3.15: Particle size distribution of prednisolone from three experiments obtained using Malvern Mastersizer. A 20 
micron reference line is drawn to estimate the percentage of particles below that value. 
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3.4.4 Coating Characterization 

The exact composition of cobalt-chromium L605 alloy (Table 3.1) was obtained 

from a commercial website [144], specializing in alloy manufacture, and was used as  

standard. Three different batches of polyimide tubes were coated and coating 

composition was analyzed using EDS. As illustrated in Table 3.2, the experimental 

values were close to the standard values. 

 

Table 3.1: Cobalt-Chromium L605 Alloy Composition 

Element Nominal Composition in 

Percent 

Cobalt (Co) 

Chromium (Cr) 

Tungsten (W) 

Nickel (Ni) 

Iron (Fe) 

Manganese (Mn) 

 

50.0 

20.0 

15.0 

10.0 

3.0 

2.0 
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Table 3.2: The coating composition obtained using EDS from the three separate batches of coated polyimide tubes. 

Elements Batch 1 (%) Batch 2 (%) Batch 3 (%) Average (%) S.D. %C.V. 

Cobalt (Co) 

Chromium (Cr) 

Tungsten (W) 

Nickel (Ni) 

Iron (Fe) 

Manganese (Mn) 

 

56.1 

17.6 

17.9 

5.1 

1.8 

1.5 

 

48.9 

21.6 

19.3 

5.0 

2.7 

2.5 

 

53.2 

19.2 

16.5 

7.0 

2.4 

1.8 

 

52.7 

19.3 

17.9 

5.7 

2.3 

1.9 

 

3.6 

2.2 

1.5 

1.1 

0.5 

0.5 

 

6.9 

11.4 

8.3 

19.2 

21.5 

27.0 
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3.4.5 Surface Analysis of Coated Polyimide Tubes 

The atomic force microscope was used to analyse the surface characteristics 

because it is non damaging and has a three dimensional resolution. With this technique, it 

is possible to view and measure the textures and surface roughness in the nanometer 

range without any surface treatment [145]. Using the Molecular Force Probe 3D AFM, 

surface topography and roughness was investigated. From the investigation of 1.0 μm2 

area, the initial root mean square (RMS) roughness of polyimide surface was found to be 

0.97 nm (Figure 3.16). However, as illustrated in Figure 3.17, after coating the polyimide 

tubes with 30 nm of L605 alloy, the RMS roughness decreased to 0.62 nm making the 

surface very smooth. 

 

3.4.6 Analysis of Holes Manufactured by Photolithography 

Initially laser drilling was used to fabricate the microholes in the microtubes, 

however a more economical and practical method amenable to mass production was 

developed using photolithographic techniques. In addition, with photolithography it is 

also possible to produce high quality cuts with a relatively fast turn around. Figure 3.18 

illustrates holes that were produced on the polyimide tube using photolithography. The 

holes were very uniform without any jagged edges with an average size of 34.6 ± 6.3 μm 

(n=36). The holes produced by laser drilling had an average size of 32.9±1.7 μm (n=45). 
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Figure 3.16: Polyimide surface without coating. Root mean square roughness is 0.97 nm. 

 

 

Figure 3.17: Polyimide surface after coating with Co-Cr L605 alloy. Root mean square 
roughness is 0.62 nm. 
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Figure 3.18: Holes produced by photolithography on polyimide tubes. 

 

3.5 CONCLUSION 

It has taken significant time to manufacture the drug delivery device (polyimide 

micro tubes with holes). Although a simple manufacturing procedure has been described, 

but the actual process involved multiple steps with several method modifications. The 

Finite Element Method approved the initial design of the stent structure with slight 

modifications. The dimensions of both the stent and the drug delivery device were 

successfully estimated, which can be applied to produce a prototype. The coating of the 

polymer matrix with the biocompatible alloys reduced surface roughness encouraging the 

use of the device as an implant. The coating did not fracture after it was bent. Micro 

fabrication of polyimide matrices with photolithography and laser drilling yielded 

perforations between 25 – 40 μm size ranges.  
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After the holes were fabricated on the perforated tubes, the next step was to load 

the perforated microtubes with drug. The following chapter discusses the drug loading 

methodologies and data of the perforated polyimide tubes with different drugs. 

Even though the project was initiated to develop a polymer free DES, the 

preliminary in vitro drug release data (discussed in Chapter 5) suggested that the drug 

delivery device can be used for multiple applications such as management of pain, 

cancer, and ophthalmic diseases. From that point onwards, the focus has been on the 

development and the evaluation of the micro scalable perforated device as a general 

purpose drug delivery device.  
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Chapter 4: Drug loading of the micro scalable perforated device 

4.1 INTRODUCTION 

After fabrication of holes on the perforated microtube the next step in the 

development process was to load the perforated tubes with drugs. Drug loading is an 

important consideration because the way the drug is packed inside a reservoir greatly 

influences the drug release [146]. A loosely packed device with void spaces inside it may 

cause faster release as well as batch variations. A tightly packed device on the other hand 

ensures content uniformity and homogenous distribution of the drug.  

Drug loading of a micro device is challenging and commonly used powder feeder 

and filling methods are not suitable. The size also limits the use of other mechanical and 

electrical loading methods such as vacuum suction and voltage pulse [147]. Loading the 

micro tubes with hydrogels might seem like a plausible solution. Hydrogels are 

frequently used in controlled release systems because they are biocompatible and their 

swelling level can be easily manipulated to occupy the entire space inside the device 

[148]. However, duration and rate of drug release is dependent on hydrogel properties 

such as swellability, drug holding capability, and drug polymer interactions [148-150].  

An effective loading method was achieved with a high density suspension or a 

supersaturated solution of the drugs using micro syringes, touhy borst adapters, or 

capillary action. For this reason, solubility of the drug becomes an important factor in 

drug loading and selection of a model drug. However, other techniques such as the ones 

used for filling HPLC columns with stationary phases might also be used to fill the 
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microtubes. Three model drugs were used to validate the drug loading technique, namely 

prednisolone, ethinyl estradiol, and crystal violet. 

 

4.1.1 Prednisolone 

Prednisolone is a synthetic adrenocortical steroid drug metabolically 

interconvertible with prednisone [151, 152]. It is a potent anti-inflammatory and 

immuno-suppressant agent [153-156]. Prednisolone is soluble in methanol and dioxane, 

very slightly soluble in water, and one gram of the drug dissolves in about 30 ml of 

alcohol [157]. Figure 4.1 illustrates the molecular structure of prednisolone ((11β)-

11,17,21-trihydroxypregna-1,4-diene-3,20-dione) [158]. 

Prednisolone induces anti-inflammatory effect by inhibiting leukotriene 

production [159], and promoting cellular release of lipocortin-1[160] which prevents 

synthesis of prostaglandins’ precursor arachidonic acid [161]. It also blocks the release of  

inflammatory mediators  such as neutrophiles, macrophages, mastocytes [162, 163], and 

cytokines (interleukin-5, interleukin-8) [164]. Prednisolone is used in ophthalmics as an 

ointment or an eye drop to treat ocular inflammation [134, 165-168]. It is also used in 

post-operative eye surgery [169, 170]. Due to its inflammatory properties, prednisolone 

has also found its use in stents as an anti-restenosis drug [171]. Restenosis is a result of 

two major mechanisms, inflammation and cell proliferation at the site of injury in the 

stented artery. Drugs such as paclitaxel and sirolimus are being currently used in drug 

eluting stents to prevent scar-tissue growth and neointima formation A novel drug, TRM-

484, consisting of nanoparticles of prednisolone has reduced smooth muscle cell (SMC) 
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proliferation and macrophage migration in vitro [172]. The nanoparticles act on site 

specific targeting areas of injury at systemic concentrations without inducing the side 

effects associated with oral delivery.  

 

 

Figure 4.1: Molecular structure of prednisolone [158]. 

 

4.1.2 Ethinyl Estradiol 

Ethinyl Estradiol (EE or 17α-ethynylestradiol) is the synthetic analogue of the 

estrogenic steroid estradiol, which was synthesized in 1938 in Berlin [173]. EE is most 

commonly used in contraceptives and is at least 20 times as potent in oral doses than the 

natural estradiol hormone [174]. The IUPAC name of EE is 17-ethynyl-13-methyl-

7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta-a phenanthrene- 3,17-diol, and its 

molecular structure has been illustrated in Figure 4.2 [175]. It is soluble in vegetable oils, 

alkali hydroxides, practically insoluble in water and 1 part of the drug dissolves in 6 parts 
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of ethanol [157]. Amongst estrogens, EE was selected as the model drug because it has 

better alcohol solubility, which facilitated drug loading.  

Apart from their contraceptive action, estrogens are also known as augmenters of 

vascular endothelial growth factor (VEGF), which in turn promotes VEGF dependent 

angiogenesis [176]. Angiogenesis is a natural process which involves growth of new 

blood vessels and aids in natural growth and development, as well as in wound healing 

[177]. In contrast, angiogenesis is also involved in the proliferation of tumors [178]. 

However, current investigations have focused on therapeutic angiogenesis to manage 

ischemic heart diseases and peripheral artery diseases [179-182]. These studies are 

focusing on the creation of new blood vessels to bypass the blocked arterial sites. A local 

delivery of EE to the blocked site hence, might serve as another potential and novel use. 

Estradiol eluting stents have also shown promising long-term results due to their 

ability to promote endothelial cell growth at the stenting site [183]. As previously 

discussed, endothelialization is important for the stent to become part of the vasculature 

and prevent future complications, in form of restenosis and late stent thrombosis.  

 

Figure 4.2: Molecular structure of ethinyl estradiol [175]. 
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4.1.3 Crystal Violet 

Crystal violet (CV or gentian violet) is an antifungal agent which is also 

commonly used in cell culture techniques as a staining agent [184, 185]. Crystal violet 

was chosen as the model drug because it gives a prominent color in the solution due to its 

high molar extinction coefficient [186]. Figure 4.3 illustrates the molecular structure of 

crystal violet (N-(4-(Bis(4-(dimethylamino)phenyl)methylene)-2,5-cyclohexadien-1-

yliden)-N-methylmethanaminium chloride) [187]. The solubility of crystal violet is 0.2% 

in water and 14% in ethanol [157]. An aqueous solution of crystal violet shows maximum 

absorption at 590 nm. 

 

Figure 4.3: Molecular structure of crystal violet [187]. 
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4.2 MATERIALS AND METHODS 

 

4.2.1 Materials 

Prednisolone, ethinyl estradiol, crystal violet, and phosphate buffered saline 

(PBS) were obtained from Sigma-Aldrich (St. Louis, MO, USA). Different size 

polyimide tubes were obtained from Microlumen Inc. (Tampa, FL, USA). Touhy Borst 

adapters were obtained from Qosina (Edgewood, NY, USA). N-butyl cyanoacrylate 

(referred in text as superglue) was obtained from a local convenient store. BioglueTM was 

obtained from Cryolife Inc. (Kennesaw, GA, USA). Medical grade steel wires were 

obtained from Small Parts Inc. (Miramar, FL, USA). Heat shrink polyolefin tubings (3.0 

mm diameter) were obtained from Altex (San Antonio, TX, USA). 

 

4.2.2 Polymorphism Characterization of Prednisolone and Ethinyl Estradiol 

As ethanolic drug solutions were used for drug loading, there was a possibility of 

formation of solvates and other polymorphs of the compounds. Accordingly, 

polymorphic studies were performed. Briefly, excess amount of anhydrous prednisolone 

and ethinyl estradiol were dissolved in ethanol, by heating to 80°C. The solutions were 

allowed to stand overnight to evaporate the alcohol. Following day, alcohol treated 

prednisolone and ethinyl estradiol were analyzed using a Digital Microscope KH-7700 

(Hirox Inc., River Edge, New Jersey). Afterwards, 5 - 10 mg of original anhydrous 

samples and alcohol treated samples were weighed into aluminum pans and sealed. A 

modulated differential scanning calorimetry (MDSC) (TA Instruments, New Castle, DE, 
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USA) was use to analyze the samples. A nitrogen atmosphere with a heating rate of 

3°C/min over a temperature range of -20–110°C and a modulation rate of 1°C/min was 

used. The glass transition temperature was determined as the midpoint of the transition 

using Universal V3.0G software. 

 

4.2.3 Fabrication of holes and drug loading  

A standard procedure was developed to load the polyimide tubes. The tubes were 

cut manually into desired length. The exact length of the tubes was measured using a 

digital caliper (Ted Pella Inc., Redding, CA, USA). The weight of the empty tube before 

and after drug loading was measured using Thermo-Gravimetric Analyzer (TGA-7, 

Perkin Elmer Inc., Waltham, MA, USA). The tubes were loaded with a suspension, 

solution, or powder.  

 

4.2.3.1 Drug loading with Prednisolone 

Twelve polyimide micro tubes (length = 15 mm; I.D. = 125 μm) were loaded with 

ethanolic suspension of prednisolone using touhy borst adapters attached to a syringe 

(Figure 4.4). This was the first attempt to test drug loading on microtubes and hence these 

tubes did not have any holes on the surface. Briefly, an ethanolic suspension of 

prednisolone was prepared by adding 200 mg of prednisolone to 0.5 ml ethanol. A 1 ml 

syringe, which was attached to the touhy borst adapter, was filled with the high density 

suspension. The polyimide tube was screwed tightly to the other end of the adapter, and 
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the prednisolone suspension was injected into the tube. Afterwards, the ethanol was 

evaporated by allowing the tubes to stand overnight. The final weight was analyzed using 

TGA-7 and pictures were taken using Hirox Digital Microscope KH-7700.  

 

 

Figure 4.4: Drug loading using touhy borst adapter.   

 

4.2.3.2 Drug loading with Crystal Violet 

4.2.3.2.1 Small tubes  

Polyimide tubes (I.D.= 125 μm, referred to in text as small tubes) were cut to 20 

mm in length. Three subsets of perforated polyimide tubes having a one hole, two holes, 

or three holes through the tube’s surface were prepared (Figure 4.5). The holes can be 

produced by either laser drilling or photolithography techniques. The holes were placed 

at even distances on the tubes with respect to each other and also with respect to the tube 

ends. The average hole size of all the three groups was 32.9 ± 1.7 μm (n = 45). 
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Loading of these microtubes was achieved using a highly concentrated solution of 

CV in ethanol (400 mg/ml), prepared by heating to 80 °C. Drug loading of the solution 

inside the perforated tubes was achieved using capillary action. The tubes were allowed 

to stand overnight at room temperature to evaporate the alcohol. The ends of the tubes 

were plugged with a stainless steel wire (120 μm diameter) (Small Parts Inc., Miramar, 

FL, USA) and sealed with biocompatible glue. The tubes were prepared for the drug 

release studies as described in Chapter 5. 

 

 

 

Figure 4.5: Polyimide tubes with different number of holes on the surface. The holes are 
equidistant from each other and also from the ends of the tube. 
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4.2.3.2.2 Large tubes 

A larger polyimide tubes (I.D. = 1000 microns, referred to in text as large tubes) 

for releasing larger amounts of CV were used. The holes were manually drilled using 

drill bits. Three subsets were prepared differing from each other in either number of holes 

or size of the holes. For the first subset, 10 mm tubes were cut in length and a single hole 

was fabricated at the center using a 300 micron drill bit; the second subset had two holes 

on 15 mm tubes; and the third subset consisted of one bigger size hole drilled using a 450 

micron size drill bit on 10 mm tubes.  

The large perforated tubes were tightly packed with CV powder and placed on a 

glass slide with a piece of polyolefin tubes on its ends. A propane lighter was used to 

apply heat from the other side of the glass slide. The polyolefin tubes shrank due to heat 

and were immediately crimped to ensure proper sealing of the CV loaded tubes. The 

tubes were prepared for the drug release studies described in Chapter 5. 
 

4.2.3.2.3 Large tubes without holes 

Another set of polyimide tubes (length = 10 mm) without any holes but with 

different diameters, ranging from 200 to 600 microns (referred to in text as ‘large tubes 

without holes’) were used (Figure 4.6). The tubes were used to study the release rates as a 

function of hole size. The tubes were loaded with concentrated solution of CV as 

previously discussed. One end of the tubes was sealed with biocompatible glue after drug 

loading. The tubes were prepared for the drug release studies as described in Chapter 5. 
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Figure 4.6: Large tubes without holes. Crystal violet was loaded into the tubes and one 
end was sealed using biocompatible glue and other end was left open for 
drug release.  

4.2.3.3 Drug Loading with Ethinyl Estradiol 

Two groups of tubes (I.D. = 125 μm), with three holes on the surface were used. 

The two groups differed in the size of the holes, 20.1 ± 1.1 μm (n = 27) and 33.3 ± 1.7 

μm (n = 21), respectively. The two groups have been referred to in text as 20 micron and 

30 micron groups. The tubes were loaded with ethinyl estradiol using the drug loading 

method similar to CV. Briefly; a 160 mg/ml ethanolic solution of EE was prepared by 

heating to 80°C. Drug loading was achieved using capillary method. Alcohol was 

evaporated and ends sealed using stainless steel wire and biocompatible glue. For 

estimation of homogeneity of distribution inside the tubes, an uncoated tube was loaded 

with ethinyl estradiol and observed using Nikon TE2000-E confocal microscope and 
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Metamorph 7.6 software (Molecular Devices, Sunnyvale, CA). The tubes were prepared 

to study the biological response from the device as described in Chapter 8. 

 

4.2.4 Statistical Analysis 

Levene’s test was used to access the homogeneity of variance in various groups. 

One way ANOVA with post hoc analysis using Tukey-HSD test (equal variance 

assumed) or Games Howell test (equal variances not assumed) through SPSS statistical 

software was used to analyze difference within the groups with respect to hole size and 

drug loading. 
 

4.3 RESULTS AND DISCUSSION 

4.3.1 Differential Scanning Calorimetry 

Differential Scanning Calorimetry (DSC) is a common analytical technique which 

is used to detect the presence of different polymorphs in a sample. Polymorphism is the 

ability of a drug to exist in more than one crystalline forms [188]. Polymorphs have their 

own distinct melting points and hence different glass transition temperatures will indicate 

respective polymorphs. In pseudo-polymorphism, the different crystal types are formed 

as a result of hydration or solvation from a particular solvent [189]. Different 

polymorphic forms of a particular drug may differ in solubility and potency and hence 

may also vary in dissolution rates, safety, and efficacy. However, similar phenomenon 

may or may not be observed with pseudo polymorphs [190].  
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During drug loading, a suspension or a solution of the drug was prepared in 

ethanol and the alcohol was evaporated after the tubes were loaded with the drug. This 

may have lead to formation of different polymorphs such as desolvates, hydrates or even 

polymorphic inter conversions such as from crystalline to amorphous or vice versa. [190]. 

Additionally, there is evidence in literature that suggests that pseudo-polymorphism can 

be induced by solvents such as water, ethanol, and methanol [191, 192] and solvates of 

both prednisolone and ethinyl estradiol have been observed in different solvents [189, 

190]. Figure 4.7 illustrates an example of prednisolone crystal structure which was 

obtained while evaporation of alcohol. 

The aim of this study was to investigate whether any solvates formed by 

dissolution of drug in ethanol exhibited any polymorphic properties. Figure 4.8 and 4.9 

illustrate the thermograms of anhydrous prednisolone and alcohol treated prednisolone, 

respectively. Figure 4.10 illustrates the combined thermograms of treated and untreated 

samples of EE. There was no significant difference found between the treated and 

untreated groups with respect to the glass transition temperature, in both prednisolone 

(untreated = 240.34 °C; alcohol treated = 238.88 °C) and EE (untreated = 185.35 °C; 

alcohol treated = 185.56 °C) suggesting that no true polymorphs were formed with 

alcohol treatment.  
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Figure 4.7:  Prednisolone crystals after evaporation of alcohol 

 

 

Figure 4.8: Modulated differential scanning calorimetric (MDSC) thermogram of 
anhydrous prednisolone.  
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Figure 4.9: Modulated differential scanning calorimetric (MDSC) thermogram of 
alcohol treated (ethanolates) prednisolone. 
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Figure 4.10: Comparison of modulated differential scanning calorimetric (MDSC) 
thermograms of untreated and alcohol treated anhydrous ethinyl estradiol. 

 

4.3.2 Drug Loading Studies 

4.3.2.1 Drug loading with Prednisolone 

The drug loading data of prednisolone for twelve polyimide tubes is illustrated in 

Table 4.1. As shown in the table, a net amount of 87.6 ±  11.7 μg of prednisolone was 

loaded into the tubes. The amount of drug loaded per unit length of the tube was 5.7 ±  

0.7 μg/mm. The net amount of drug loaded indicated content uniformity amongst all the 
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tubes whereas, amount of drug loaded per unit length indicates the homogeneity of drug 

distribution inside the tube. The low coefficient of variance (%CV) suggested that all the 

tubes were loaded uniformly. However, micrographs of prednisolone loaded tubes 

(Figure 4.11) showed void spaces suggesting an uneven distribution of drug inside the 

tube.  

 

 Table 4.1:  Drug loading data of polyimide tubes loaded with prednisolone. 

Tube 

Length 
(mm) 
(A) 

 

Initial 
Weight 

(μg) 
(B) 

 

Weight 
after 24 
hrs (μg) 

( C ) 
 

Net amount 
of drug 

loaded (μg) 
(C-B) 

 

Amount of drug 
loaded per unit 
length (μg/mm) 

(C-B)/A 
 

1 15.5 210.0 293.0 83.0 5.4 
2 14.7 200.0 279.0 79.0 5.4 
3 15.5 212.0 316.0 104.0 6.7 
4 14.6 197.0 284.0 87.0 5.9 
5 15.2 210.0 277.0 67.0 4.4 
6 15.6 214.0 291.0 77.0 4.9 
7 15.2 209.0 290.0 81.0 5.3 
8 15.3 214.0 305.0 91.0 5.9 
9 15.9 217.0 310.0 93.0 5.8 

10 16.6 224.0 333.0 109.0 6.6 
11 15.0 208.0 293.0 85.0 5.7 
12 15.6 214.0 309.0 95.0 6.1 

 
Average 87.6 5.7 

S.D. 11.7 0.7 
% C.V. 13.4 11.4 
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Figure 4.11: The circle region shows void spaces inside the polyimide tube loaded with 
prednisolone. The void spaces are indicated by black arrows and the drug 
filled regions are indicated by blue arrows. The white line at the centre is the 
reflection of the light. 

 

4.3.2.2 Drug loading with Crystal Violet 

4.3.2.2.1 Small tubes 

The average diameter of one hole, two holes, and three holes group was measured 

as 32.5 ± 1.5, 32.3 ± 1.0, and 33.3 ± 1.7 μm, respectively.  Each group consisted of seven 

tubes and therefore n = 7, 14, and 21 for the three groups. The combined average 

diameter of the holes was measured as 32.9 ± 1.7 μm for the three groups (n = 45) .An 

average of 127.1 ± 11.9 μg of CV was loaded in all the three groups. The drug loading 

data is illustrated in Figure 4.12. Statistical significant difference were not observed 

amongst the three groups with respect to hole size or drug loading, p > 0.05.  
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Figure 4.12: Three group of polyimide tubes with one hole, two holes, and three holes 
respectively were loaded with crystal violet. Statistical significant difference 
was not observed between the groups. Results are reported as mean with 
standard deviation, p > 0.05 (n=7). 

4.3.2.2.2 Large tubes 

Three subsets of large holes were prepared - The first subset consisted of one hole 

(365.3 ± 16.7 μm); the second subset consisted of two holes (362.4 ± 23.1 μm); and the 

third subset consisted of one bigger size hole (542.6 ± 26.3 μm). The average amount of 

CV loaded per unit length in the groups was 5.3 ± 0.3, 5.2 ± 0.3, and 5.4 ± 0.3 mg/cm, 

respectively. The drug loading data is illustrated in Figure 4.13. Statistical analysis for 

drug loading did not yield any significant difference amongst the groups, p > 0.05. 
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Figure 4.13: Drug loading in ‘large tubes’ was found to be uniform per unit length and 
statistical difference was not observed amongst the groups. Results are 
reported as mean with standard deviation, p > 0.05 (n=12). 

4.3.2.2.3 Large tubes without holes 

Polyimide tubes with different sizes (I.D. = 200, 400, and 600 μm) were loaded 

with crystal violet. The length of all the tubes was 10 mm. The drug loading data was 

standardized by calculating the average amount of crystal violet loaded in each group per 

unit volume. The drug loading data is illustrated in Figure 4.14. Drug loading in 600 

micron group was significantly different than the other two groups, p < 0.05.  
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Figure 4.14: Drug loading in subsets belonging to ‘large tubes without holes’. Polyimide 
tubes with different diameters, 200 microns, 400 microns, and 600 microns 
respectively were loaded with crystal violet. The drug loading in 600 micron 
group was found to be significantly different than the other two groups. 
Results are reported as mean with standard deviation, *: p < 0.05 (n=4). 

4.3.2.3 Drug loading with Ethinyl Estradiol 

Two groups of polyimide microtubes (I.D. = 125 μm; length = 20 mm) with three 

equidistant holes on the surface were prepared. The hole diameter in the two groups were 

20.0 ±  1.1 (n = 27) and 33.3 ± 1.7 μm (n = 21), respectively. The two groups have been 

referred to in text as 20 micron and 30 micron groups. The average amount of EE loaded 

in the 20 and 30 micron groups were 51.7 ±  4.8 and 57.9 ±  9.9 μg, respectively. The drug 

loading data is illustrated in Figure 4.15. Statistical difference in drug loading was not 

observed between the two groups, p > 0.05. Figure 4.16 shows a polyimide tube before 

and after loading with EE. The empty spaces within the drug loaded tube suggest that 
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although the drug loaded tubes are equivalent in weight but they may have uneven 

distribution.  

 

Figure 4.15: Drug (EE) loading in 20 and 30 micron tubes was found to be uniform with 
no statistical significant difference amongst the tubes with respect to each 
other. Results are reported as mean with standard deviation, p > 0.05 (n=7). 

 

       

Figure 4.16: Ethinyl estradiol loaded polyimide tube (bottom) in contrast to an empty 
tube (top). The region circled in red shows empty spaces left inside the tube 
after alcohol was evaporated indicating uneven distribution of drug. 
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4.3.3 Capping and Sealing of the Tubes 

Superglue - Higher alkyl group cyanoacrylates, such as n-butyl cyanoacrylate and 

n-octyl cyanoacrylate, are used as tissue adhesives and form a tough bond with the 

surface of contact [193]. During initial studies, superglue was evaluated as one of the 

sealants. The glue was found to degrade slowly in the aqueous environment. In addition, 

removal of glue at the end of the experiment was tedious.  

BioglueTM - Bioglue is composed of albumin and glutaraldehyde. Once in contact, 

the two components completely polymerize within two minutes [194]. Since its launch in 

1998, bioglue has been widely used in various medical procedures such as cardiovascular 

surgery, thoracic surgery, and as a spinal dural sealant [195-198]. Bioglue was used to 

seal the ends of ‘large tube without holes’. For ‘small tubes’ and tubes loaded with 

ethinyl estradiol a cap was made to seal the ends. A size bigger polyimide tube (ID = 170 

μm) was taken and cut into 5 mm pieces. One end of this cap was blocked using a 

stainless steel wire (ID = 125 μm) and a bioglue. The cap was placed over the end of the 

drug loaded tubes and sealed using a bioglue. The caps were dipped in ethanol in order to 

clean them and to ensure that there is no drug leakage. The ethanol also served as a 

dehydrating agent for the albumin-glutaraldehyde complex which further enhanced the 

bonding strength.  

Heat Shrink Tubes – Heat shrink tubes were used to cap the ‘large tubes’. On 

application of heat the tubes shrank and formed a leak proof cap over the drug loaded 

tubes. 
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4.4 CONCLUSION 

The three model drugs with variable solubilities in alcohol and water were 

successfully loaded into the tubes. Prednisolone and ethinyl estradiol did not form any 

true polymorphs and are suitable for drug loading and drug release studies. Content 

uniformity was achieved across various groups but homogenous drug distribution within 

the micro device is still desired. The variation in drug distribution might affect drug 

release and be a probable contributor to the variability in results. The tubes with diameter 

greater than 400 microns can be manually packed with drug powder. The capillary force 

is the simplest and most feasible drug loading method for microtubes in a laboratory 

setting. However, other techniques such as the ones used for filling HPLC columns with 

solids might also be used to fill the microtubes. Lastly, the methods developed to cap and 

seal the ends of the tubes were successful in preventing any leakage of the drug.  
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Chapter 5: In Vitro Drug Release Studies to Evaluate the Micro 
Scalable Perforated Device Capable of Long-Term Zero Order Drug 

Release 

 

5.1 INTRODUCTION 

After the successful fabrication of holes on the tube’s surface and drug loading of 

the tubes, the next step in the development process was to evaluate the perforated tubes 

for their capability to produce zero order release rates. In this chapter, the in vitro drug 

release studies using the drug loaded tubes from Chapter 4 have been summarized. The 

perforated drug delivery system was also tested for its scalability by using different sized 

tubes varying in hole numbers and hole size. Additionally, the perforated system was also 

tested in a different dissolution medium, rabbit’s vitreous humor (Chapter 6). The drug 

release data in all the studies indicated that a perforated microtube is capable of 

producing zero order drug release for prolonged periods ranging from months to years. 

Concentration gradient of the drug was observed to be the main driving force for drugs 

diffusion. After chance discovery of these results, it became evident that the perforated 

tubes are not limited for use in just drug eluting stents (DES) and can be applied to other 

applications as well. Hence, current efforts are now dedicated to develop a general 

purpose drug delivery device, where DES can be one of its several applications.  

The perforated tube also offers several advantages over other diffusion controlled 

reservoir type devices. In general, such devices are known to yield zero order release 

rates due to the concentration gradient maintained across the membrane [199]. However, 
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membrane effects such as ‘boundary layer problem’, ‘burst effect’, and ‘membrane 

rupture’ have been described, which may become rate controlling steps [200]. A 

boundary layer problem arises when drug release is stalled due to drug saturation at the 

membrane [201]. A burst effect may be observed when a device, which is stored for a 

long time, exhibits rapid release due to prior accumulation of drug at the membrane 

[200], and similar occurrence is also seen with polymer controlled drug delivery systems 

[202]. Membrane rupture may result in drug dumping causing toxicity concerns [203]. 

The present investigation presents a potential solution to these problems because the 

perforated tubes do not require membrane to control drug release and hence are 

potentially free from membrane related effects.  

In this chapter, the in vitro drug release is presented demonstrating long-term zero 

order drug release from the perforated tubes. It was observed that the drug release from 

the device is dependent on the solubility of the drug, the distance between the holes, and 

the area available for drug diffusion. The diffusion area in turn is dependent on the 

number of holes and the size of the holes. Since, the size of the holes is very small as 

compared to the total device size and the distance between the holes, the release rate from 

each hole is independent from each other as long as the basic conditions of solubility and 

sink conditions are met.  

A series of experiments were designed to determine the release rates from the 

perforated microtubes. Different sized microtubes were used to study the effect of device 

size. The number of holes, size of the holes, and the distance between holes were varied 

to study their effect on drug release. The triphenylmethane dye, crystal violet (CV) was 

selected as the model drug. It is a commonly used biological staining agent with anti-



 96

fungal properties [204] and high molar extinction coefficient, making it easily detectable 

spectrophotometrically even at very low concentrations [205, 206]. Polyimide was used 

because it is biocompatible, chemically inert, and widely used in fabrication of 

implantable micro electrodes [207-209].  

5.2 MATERIALS AND METHODS 

 

5.2.1 Materials 

Polyimide tubes were obtained from Microlumen Inc. (Tampa, FL, USA). Crystal 

violet was obtained from Sigma-Aldrich (St. Louis, MO, USA). BioglueTM, a 

biocompatible glue, was obtained from Cryolife (Kennesaw, GA, USA). Microvials (0.3 

ml) were obtained from Perkin-Elmer (Waltham, MA, USA). Glass vials (2.0 ml) were 

obtained from Agilent (Santa Clara, CA, USA). Borosilicate Glass tubes (10.0 ml) were 

obtained from Fisher Scientific (Pittsburgh, PA, USA). Drill bits of different sizes 

(Dremel®, Racine, WI, USA) were obtained from HobbyTown (San Antonio, TX, USA). 

 

5.2.2 In vitro drug release studies 

The three groups of crystal violet loaded tubes (small tubes, large tubes, and large 

tubes without holes) as described in Chapter 4 were evaluated for their capability of long-

term and zero order release in vitro.  
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5.2.2.1 Small Tubes 

The CV loaded tubes were placed in microvials containing 0.3 ml of phosphate 

buffered saline (PBS, 0.01 M phosphate, pH 7.4). A blank polyimide tube was used as an 

experimental control. The vials were placed on a drug dissolution apparatus having a dip 

rate of 30-32 dips per minute. The apparatus was connected to a water bath maintained at 

37.0 ± 1.0°C, for the duration of study. The method was developed in accordance to the 

method proposed by Varian Inc for in vitro testing of drug delivery devices [210]. 

Aliquots were withdrawn every two days and replenished with fresh buffer. The collected 

samples were analyzed spectrophotometrically at 590 nm to estimate the amount of CV 

released. A standard curve was prepared from standard solutions of crystal violet in PBS 

at concentrations of 0.05, 0.08, 0.16, 0.24, 0.28, and 0.30 μg /ml, respectively.  

5.2.2.2 Large Tubes 

A similar but simpler dissolution method was developed for the larger tubes. 

Briefly, the CV loaded tubes were transferred to glass vials containing 1.5 ml of PBS 

(0.01 M phosphate, pH 7.1). The glass vials were put on a rocker with a rocking rate of 

46-48 oscillations per minute and maintained inside an incubator (37.0 ± 1.0 °C) for the 

entire duration of study. Empty polyimide tubes and CV loaded non-perforated polyimide 

tubes with heat shrink caps were used as experimental controls. Samples were withdrawn 

at regular intervals and assayed as for small tubes. A standard curve was prepared from 

standard solutions of crystal violet in PBS at concentrations of 0.1, 0.2, 1.0, 5.0, 10.0, 

15.0 and 20.0  μg/ml, respectively.  
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5.2.2.3 Large Tubes without Holes 

Crystal violet loaded tubes were placed in borosilicate glass tubes containing 3.0 

ml of PBS (0.01 M phosphate, pH 7.4). A blank polyimide tube and a crystal violet 

loaded polyimide tubes with both ends sealed were used as experimental controls. The 

glass tubes were sealed and placed inside the incubator maintained at 37.0±1.0°C in a 

static environment (non-moving) to see if any drug is released in absence of any 

agitation. The solution was changed at regular intervals, sampled, and assayed as for 

‘small tubes’ and ‘large tubes’. A standard curve was prepared from standard solutions of 

crystal violet in PBS at concentrations of 0.2, 0.5, 1.0, 5.0, 10.0, and 15.0 μg /ml, 

respectively. 

 

5.2.3 Statistical Analysis 

Levene’s test was used to access the homogeneity of variance in various groups. 

One way ANOVA with post hoc analysis using Tukey-HSD test (equal variance 

assumed) or Games Howell test (equal variances not assumed) through SPSS statistical 

software was previously used to analyze difference amongst the subsets with respect to 

hole size and drug loading. Linear regression analysis was performed on the cumulative 

release data and F-statistics was used to estimate the association between the amount of 

release and time points. A difference of p value < 0.05 was considered significant.  
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5.3 RESULTS AND DISCUSSION 

5.3.1 Small Tubes 

5.3.1.1 Method Validation 

The analytical methods were developed and validated as per the FDA Guidelines 

for Bioanalytical Method Validation [211]. The absorbance data used for constructing the 

standard curve for the ‘small tubes’ is illustrated in Table 5.1. The data was collected for 

three days 3 times a day to estimate interday and intraday precision. The limit of 

detection (LOD) was found to be 0.05 μg/ml. The LOD for crystal violet was tested at 0.02, 

0.03, and 0.04μg/ml. The analyte peak obtained at all the three concentrations was debatable 

and without any visual precision. On the contrary, at 0.05 μg/ml the peak for crystal violet 

could be detected and quantified. Thus, a limit of quantification (LOQ) of 0.05 μg/ml, for 

crystal violet was assigned. The mean absorbance value for LOQ did not exceed 20% of the 

coefficient of variation (CV). For remaining concentrations, %CV did not exceed 15% over 

the entire data range suggesting good precision. As illustrated in Figure 5.1, a linear 

relationship (R2 = 0.9996; y = 0.0984x + 0.0001) was observed over the selected 

concentration range.  
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Table 5.1: The table illustrates the absorbance readings (A) used for the construction of standard curve. Intraday and interday precision 
was calculated by analyzing standard solutions at predetermined intervals. 

Nominal 
Conc. (μg/ml) DAY 1 DAY 2 DAY 3 

Average 
Absorbance 

(A) 
SD %CV 

0.000 0.000 0.000    
0.000 0.000 0.000 0.000 0.000 n.a 0.0 
0.000 0.000 0.000    
0.005 0.006 0.004    
0.004 0.006 0.005 0.005 0.001 15.99 0.05 
0.005 0.004 0.005    
0.008 0.009 0.007    
0.006 0.009 0.009 0.008 0.001 12.50 0.08 
0.008 0.008 0.008    
0.017 0.015 0.014    
0.015 0.015 0.017 0.016 0.001 8.47 0.16 
0.017 0.017 0.018    
0.021 0.018 0.019    
0.017 0.022 0.023 0.020 0.002 11.46 0.20 
0.023 0.019 0.018    
0.026 0.024 0.024    
0.022 0.024 0.023 0.024 0.002 6.90 0.24 
0.024 0.026 0.021    
0.030 0.032 0.030    
0.028 0.029 0.028 0.029 0.002 6.15 

0.30 
 
 
 0.031 0.030 0.026    



 101

 

Figure 5.1: Standard curve for crystal violet solutions (y = 0.0984x + 0.0001; R2 = 0.9996) 
used for drug release studies of ‘Small Tubes’. Data is presented as mean with 
standard deviation. 

 

5.3.1.2 In vitro Drug Release Studies 

Crystal violet in vitro release from the microtubes was monitored for 28 days 

(Figure 5.2). The three subsets differed only in the number of holes on the surface, namely 

one hole, two holes, and three holes. The release of CV was linear with R2 values of 0.9945, 

0.9998, and 0.9998 for the three subsets. The F-statistics, F(1,28), p < 0.05, revealed a close 

association between the amount of drug released and time, confirming the linearity in 

release. The average amount of CV released was 7.8 ± 2.5, 16.2 ± 5.5, and 22.5 ± 6.0 

ng/day for one hole, two holes, and three holes, respectively. The data suggests a linear 
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relationship between drug release and number of holes. As illustrated in Figure 5.3, the 

release rate increased linearly with increasing numbers of holes. These results suggest that 

in a multiple hole setting the release of drug from one hole is independent of the other. 

Assuming a constant rate of release from each hole, the amount of drug released when 

correlated to the total amount of drug loaded, suggests a total duration of release of more 

than 5 years. Figure 5.4 illustrates the cumulative % of CV released in 28 days and can be 

used as a reference for extrapolation of duration of drug release.  

 

 

Figure 5.2:  Cumulative amount of drug released as a function of time. A constant amount 
of drug was released from the three subsets exhibiting zero-order rate. Each 
curve represents seven tubes. Data is presented as mean with standard 
deviation. 
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Figure 5.3: Comparison of cumulative amount of CV released from the three groups after 
28 days. A linear relationship between release rate and number of holes was 
observed. The release is 220.1±25.0, 455.7±95.6, and 628.9±128.2 ng for one 
hole, two holes, and three holes group. Data is presented as mean with 
standard deviation. 
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Figure 5.4: Cumulative % of crystal violet released from the three subsets. Assuming zero 
order release, the total duration of drug release from one hole, two holes, and 
three holes subsets correspond to drug release of more than five years Data is 
presented as mean with standard deviation. 

5.3.2 Large Tubes 

5.3.2.1 Method Validation 

The standard curve data for the ‘large tubes’ is illustrated in Table 5.2. Interday and 

intraday precisions were calculated as for the ‘small tubes’. As illustrated in Figure 5.5, a 

linear relationship (R2 = 0.9982; y = 0.1051x - 0.0262) was observed over the selected 

concentration range indicating accurate results. However, the %CV value for the three 

lowest concentrations was well above 15% as specified by the FDA. The poor precision of 

the instrument in measuring the absorbance may have contributed to some variation in the 

drug release results.  



 105

Table 5.2: The table illustrates the absorbance readings (A) used for the construction of standard curve. Intraday and interday precision 
were calculated by analyzing standard solutions at predetermined intervals. 

Nominal 
Conc. 

(μg/ml) 
Day 1 Day 2 Day 3 Average 

Absorbance (A) SD % CV 

0.000 0.000 0.000 
0.000 0.000 0.000 0.00 
0.000 0.000 0.000 

0.000 0.000 n/a 

0.007 0.003 0.003 
0.005 0.003 0.005 0.10 
0.004 0.003 0.005 

0.004 0.001 30.06 

0.022 0.009 0.008 
0.015 0.009 0.009 0.20 
0.011 0.008 0.010 

0.011 0.005 41.85 

0.074 0.047 0.046 
0.051 0.047 0.047 1.00 
0.048 0.048 0.047 

0.051 0.009 17.86 

0.497 0.455 0.444 
0.464 0.451 0.443 5.00 
0.459 0.448 0.442 

0.456 0.017 3.73 

1.052 0.992 0.972 
1.015 0.981 0.969 10.00 
1.003 0.975 0.961 

0.991 0.029 2.89 

1.701 1.607 1.579 
1.642 1.592 1.568 15.00 
1.619 1.581 1.561 

1.606 0.044 2.75 

2.196 2.063 2.022 
2.121 2.042 2.003 20.00 
2.088 2.030 1.999 

2.063 0.064 3.10 
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Figure 5.5: Standard curve for crystal violet solutions (R2 = 0.9982; y = 0.1051x - 0.0262) which 
was used in the drug release studies with ‘Large Tubes’. Data is presented as mean 
with standard deviation.  

 

5.3.2.2 In vitro Drug Release Studies 

Three subsets of large holes were prepared:  The first subset consisted of one hole (365.3 

± 16.7 μm); the second subset consisted of two holes (362.4 ± 23.1 μm); and the third subset 

consisted of one bigger size hole (542.6 ± 26.3 μm). The coefficient of variation for hole size 

measurement for each of the three groups was less than five percent. The gravimetric analysis 

yielded the average amount of CV loaded per unit length in the groups as 5.3 ± 0.3, 5.2 ± 0.3, 
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and 5.4 ± 0.2 mg/cm, respectively. Statistical analysis for drug loading did not yield any 

significant difference amongst the groups, p > 0.05. 

The rate of CV release from loaded tubes was obtained as previously described (Figure 

5.6). The kinetics of crystal violet was found to be linear. The R2
 was found to be 0.9958, 0.9947, 

and 0.9979 for the 365.3, 362.1, and 542.6 μm holes respectively. The linearity of the release 

was further confirmed by F test, F (1, 56), p < 0.05. The average amount of 10.8 ± 4.1, 15.8 ± 4.8 

and 22.1 ± 6.7 μg /day of CV were released from the three sets. The release data yet again 

suggest a linear relationship between number of holes and drug release. The release data suggests 

the total duration of release of approximately one year or longer from the three groups.  

 

Figure 5.6: The release profile of CV from the three subsets. Each curve represents twelve 
tubes. Data is presented as mean with standard deviation. 
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5.3.3 Large Tubes without Holes 

5.3.3.1 Method Validation 

Table 5.3 illustrates the absorbance data which was used to construct the standard curve for 

‘Large Tubes without Holes’. The interday and intraday precision was calculated as described 

previously. A linear relationship (R2 = 0.9999; y = 0.046x - 0.0026) was observed over the 

selected concentration range indicating accurate results. (Figure 5.7)  

 

5.3.3.2 In vitro Drug Release Studies 

The cumulative amount of crystal violet released from the three groups (n=4 in each set) 

is illustrated in Figure 5.8. A near zero-order release kinetics was observed as indicated by the R2 

value of 0.9667, 0.9695, and 0.9355 for 200, 400, and 600 microns group respectively. The 

linearity of the release was further confirmed by F test, F (1, 14), p < 0.05. The drug release 

studies were successfully conducted in the static environment confirming that the concentration 

gradient is the single main driving force for the drug release.  
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Table 5.3: The table illustrates the absorbance readings (A) used for the construction of standard curve. Intraday and interday precision were 
calculated by analyzing standard solutions at predetermined intervals. 

Nominal 
Conc. (μg/ml) DAY 1 DAY 2 DAY 3 Average SD %CV 

0.000 0.000 0.000       

0.000 0.000 0.000 0.000 0.000 0.00 0.0 

0.000 0.000 0.000       

0.009 0.009 0.008       

0.006 0.010 0.007 0.008 0.002 22.06 0.20 

0.005 0.008 0.006       

0.022 0.019 0.019       

0.018 0.020 0.018 0.018 0.002 12.50 0.50 

0.014 0.019 0.016       

0.042 0.051 0.038       

0.038 0.038 0.038 0.041 0.007 16.85 1.00 

0.032 0.053 0.037       

0.235 0.266 0.223       

0.224 0.212 0.224 0.227 0.017 7.36 5.00 

0.217 0.233 0.211       

0.434 0.465 0.485       

0.456 0.442 0.486 0.461 0.022 4.77 10.00 

0.429 0.475 0.479       

0.699 0.699 0.694       

0.691 0.691 0.699 0.686 0.034 4.90 15.00 

0.632 0.632 0.737       
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Figure 5.7: Standard curve for crystal violet solutions (y = 0.046x - 0.0026; R2 = 
0.9999) used for drug release studies with ‘Large Tubes without Holes’. 
Data is presented as mean with standard deviation. 

 

 

Figure 5.8: Cumulative amount of crystal violet released from three groups with 
different hole sizes, 200, 400, and 600 microns. Each curve represents four 
tubes. Data is presented as mean with standard deviation. 
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5.3.4 Mechanism of Release Kinetics 

The release of crystal violet through a hole on a polyimide tube is illustrated in Figure 

5.9. The drug release from the device can be explained by drug dissolution due to surface 

erosion of the drug at the hole/drug solvent interface. The impermeable tube protects the 

enclosed drug and the hole allows for exposure of small amounts of drug inside the tube. The 

exposed drug layer is solubilised by the solvent and the solution diffuses out. Drug release is 

controlled by various factors such as, surface area of the drug that is exposed, solubility of the 

drug, drug loading, and drug packing. The exposed surface area is dependent on the number of 

holes and size of the holes on the surface.  

 

 

Figure 5.9: The release of crystal violet from two holes is depicted. Release of drug from 
each hole is independent of the other. The regions where holes are present on the 
tube have been circled in red. The dimension of the tube is 1000 microns and the 
holes size is approximately 400 microns. 
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Mathematical Model -The Noyes Whitney’s equation for dissolution is given by: 

ACCs
L
D

dT
dM

•−•= )(      (1) 

 where, 
dT
dM , D, L, Cs, C, and A are rate of drug dissolution, diffusion coefficient of 

the drug, diffusion layer thickness, solubility of the drug, concentration of the drug in 

dissolution medium, and area available for dissolution.  

For a perforated device, with ‘n” number of microholes; A will be the area of each 

hole. In addition, the concentration of the drug inside the device is greater than in the medium 

rendering sink conditions, C<<Cs. Thus, for a perforated device loaded with drug, equation (1) 

is reduced to  

nACs
L
D

dT
dM

•••=       (2) 

 

Apparent Permeability Coefficient - The apparent permeability coefficients (D/L), can be 

calculated from equation (2). For one hole (365.3±16.7μm) and one bigger sized hole 

(542.6±26.3 μm) subsets in large tubes, D/L were calculated as 6.08 x 10-5 cm/sec and 4.01 x 

10-5 cm/sec, respectively. For the one hole group in small tubes (32.9±1.7 μm), the D/L was 

calculated as 5.7 x 10-6 cm/sec. The difference in D/L values obtained from large tubes and 

small tubes may be attributed to the difference in ratio of hole size with respect to the device 

size in two groups. A greater ratio will lead to faster diffusion and vice versa as also suggested 

by the D/L values. For a multi-hole setting, it is my observation that the hole diameter should 

be comparatively smaller than the device diameter and also to the distance between the 

adjacent holes. 
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Influence of number of holes (n) and size of the holes (r) on release rates - For a particular 

drug, D, L, and Cs are constant. Hence, A
dT
dM

∝       (3) 

The area available for dissolution depends on number of holes (n) and size of the holes 

(r), in which case, 

2rn
dT
dM

••∝ π        (4) 

Equation (4) shows influence of the two parameters ‘n’ and ‘r’ on release rate. The in vitro 

studies with different size perforated polyimide tubes (Figures 5.3 and 5.6) have established a 

linear relationship between drugs release rates and number of holes, 

α
dT
dM n        (5) 

According to equation (4), release rate also follow a quadratic relationship as a function of 

hole size,  

α
dT
dM r2 

For the perforated system to obey this rule, the amount of drug released from ‘one big 

hole’ subset should be twice than that released from the ‘one small hole’ subset in the large 

tubes. On comparison of the release rates, we obtain a ratio of 1.46, which is close to the ideal 

value. In addition, the ‘Large Tubes without Holes’ were also employed to study the effect of 

hole size on release rates. Hence, three groups with one open end and differing only in the 

diameter of the tubes (200, 400, and 600 microns) were used. On plotting the cumulative 

amount of drug released from the three groups every day, we observed that the amount of drug 

released, increased as a factor of (r)2  (Figure 5.10). Hence, the groups follow a quadratic 
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relationship as is evident by the equations of line for each day, which are in the form: y = a.x2 

+ bx + c, and their corresponding R2 values which are close to 1.000.  

 

5.4 CONCLUSION 

The drug release data indicated that microperforated microtubes are capable of long-

term zero order drug release. Hence, the development process of the device is not limited to 

DES and is being developed for other applications as well. The microperforated microtube 

delivery system is scalable and produces long-term zero order kinetics without the use of a 

polymer or a membrane. While polyimide tubing was used in this study, any impermeable and 

biocompatible material of any shape can be used. The in vitro release rates were found to be 

proportional to the exposed surface area of the drug. They were linear as a function of number 

of holes and proportional to the square of radii of holes. Drug release from the device depends 

on the drug’s solubility, drug loading, drug packing, number of holes, and hole size. The 

concentration gradient across the hole is the main driving force for release of drug from the 

perforated device. The rate and extent of drug release may be tailored by manipulating the size 

of the reservoir, number of holes, hole size, and drug solubility. The equidistant holes acted 

independently and the drug release from each hole was distinctive. It should be possible to use 

such a device for local and controlled delivery of drugs; as a protective carrier to transport 

labile drugs; and as an implant for treatment of various chronic conditions.  
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Figure 5.10: The cumulative amount of CV released from the three groups (200 microns, 400 microns, and 600 microns) is plotted 
for each day for seven days. As indicated by the equation of line, the drug release rates from the three groups obey a 
perfect quadratic relationship. Data is presented as mean with standard deviation.
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Chapter 6:  Ex vivo Drug Release Studies in Vitreous Humor from a 
Rabbit’s Eye. 

 

6.1 INTRODUCTION 

 

6.1.1 Intravitreal Drug Delivery 

The in vitro drug release data from the perforated tubes in phosphate buffered 

saline (PBS) suggested that the perforated microtubes re capable of long-term zero order 

release and can be used for management of diverse diseased states. One such possible 

application of the device is to treat diseases related to posterior segment of the eye. This 

is the area behind the lens and consists of vitreous humor, retina, choroid, sclera, and the 

optic nerve [212]. While treating a posterior disorder of the eye, vitreous humor becomes 

the desired location for drug delivery due to its contact with other parts. Drug delivery to 

the posterior chamber by non-invasive method is difficult because of blood-eye barrier 

and hence invasive methods such as intravitreal injections are commonly employed 

[213]. However, management of an ophthalmic disorder using invasive methods cause 

patient distress and may also lead to injuries due to frequent penetration into the eye.  

To overcome this problem, implantable drug delivery systems have been 

developed, which are capable of long-term delivery of constant amounts of drug in 

vitreous [52, 56]. These devices have proved to be beneficial in the treatment of chronic 

conditions such as uveitis and cytomegalovirus retinitis, minus the drawbacks associated 

with tradional drug delivery methods.  

The drug delivery device described here provides another option for long term 

drug delivery. The aim of the following study was to evaluate the long-term and zero  
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order drug release capability of the device in vitreous, which has been previously tested 

in the phosphate buffer.  

 

6.2 METHODS 

 

6.2.1 Materials 

Rabbit’s vitreous humor was obtained from Pel-Freez Biologicals (Rogers, AR, 

USA). Sodium azide was obtained from Mallinckrodt (Hazelwood, MO, USA). 

Polyimide tubes were obtained from Microlumen Inc. (Tampa, FL, USA). Crystal violet 

was obtained from Sigma-Aldrich (St. Louis, MO, USA). Heat shrink polyolefin tubing 

(3.0 mm diameter) was obtained from Altex (San Antonio, TX, USA). 

 

6.2.2 In vitro Drug Release Studies 

The study was undertaken to investigate the influence of a biological fluid on the 

rate of drug release from the perforated microtubes. Rabbit’s vitreous humor was 

centrifuged at 1900 rpm for 2 min and the supernatant was collected and diluted with 

PBS (0.01M, pH 7.1) to provide a 1:1 v/v dilution. Sodium azide (0.05% w/v) was added 

to inhibit microbial growth. Crystal violet loaded polyimide tubes with ‘One Small Hole’ 

belonging to ‘Large Tubes’ groups were preserved after the drug release studies of 

Chapter 5. The twelve tubes were divided into two groups. One group was transferred to 

glass vials containing 1.0 ml of PBS (0.01 M phosphate, pH 7.1) and the other to glass 

vials containing 1.0 ml of diluted vitreous humor. The glass vials were put on a rocker 

with a rocking rate of 46-48 oscillations/min and maintained inside an incubator (37.0 ± 
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1.0°C) for the entire duration of study. Empty polyimide tubes and CV loaded non-

perforated polyimide tubes with heat shrink caps were used as experimental controls. 

Samples were withdrawn at regular intervals and assayed spectrophotometrically at 590 

nm.  

A standard curve was constructed from standard solutions of crystal violet in 

vitreous humor at concentrations of 1.0, 2.0, 3.0, 5.0, 6.0, 8.0, and 10.0, μg/ml, 

respectively. A standard curve of Figure 5.5 was used for the PBS group.  

 

6.3 RESULTS AND DISCUSSION 

The drug release data from previously conducted drug release studies (Chapter 5) 

indicated that the variation in the release data during the first few days was higher than 

the following days. This was attributed to the differences in surface erosion of the drug 

through the holes in different tubes. However, after several days its release was 

standardized and all the tubes started behaving in a similar fashion leading to reduction in 

standard deviation. It is due to this reason that the once yearly histrelin implant Vantas, is 

stored in saline and hence primed and standardized before its use [214]. Hence, CV 

loaded perforated tubes belonging to ‘Large Tubes’, which have been previously used, 

were reused in this study. A standard curve was constructed in vitreous humor. The interday 

and intraday precision was calculated as described previously. As illustrated in Figure 6.1, a 

linear relationship (R2 = 0.9974, y = 0.0291x + 0.0005) was observed over the selected 

concentration range indicating accurate results.  
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The release kinetics of crystal violet was found to be linear in both PBS and 

vitreous humor (Figure 6.2). The R2
 was found to be 0.9986 and 0.9909 for the phosphate 

buffered and vitreous humor groups, respectively. The linearity of the release was further 

confirmed by F test, F (1, 14), p < 0.05. The average amount of 8.5 ± 2.2 and 5.8 ± 1.8 

μg/day of CV was released from the two groups, respectively. The greater viscosity of 

vitreous humor due to presence of hyaluronic acid and collagen may have resulted in 

slower release [215]. Other factors such as molecular weight of the drug and drug-protein 

binding may also influence the rate of drug release [216]. 

 

 

Figure 6.1: Standard curve for crystal violet in vitreous humor (R2 = 0.9974, y = 
0.0291x + 0.0005). Data is presented as mean with standard deviation. 
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Figure 6.2: Comparison of crystal violet release in PBS (circles) and vitreous humor 
(squares). Each curve represents six tubes. A linear release was observed in 
both the mediums. Data is presented as mean with standard deviation. 

 

 

6.4 CONCLUSION 

The perforated drug delivery system was successfully tested ex vivo in vitreous 

humor obtained from the rabbit’s eyes. The drug release data supported the previous data 

obtained in PBS. The device was yet again found capable of delivering drugs at zero 

order for prolonged periods and hence can be potentially used as an ophthalmic implant. 

As the device would be implanted inside the body lumen, the next step in the 

development process was to test its biocompatibility and make sure that the device does 

not incite any inflammatory responses. 
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Chapter 7: In Vitro Biocompatibility Evaluation of Cobalt-Chromium 
Alloy Coated and Uncoated Polyimide Matrices  

 

7.1 INTRODUCTION 

 

7.1.1 Biocompatibility  
 

7.1.1.1 Cell Adhesion and Cell Attachment 

Biocompatibility of an implanted drug delivery device refers to acceptability of 

the device by the surrounding tissues. The body has a tendency to attack anything it 

considers ‘non-self’. Therefore, it is important that the biomaterial promotes cell 

adhesion on its surface, which is the first sign of body’s acceptability to the implant. Poor 

adhesion may lead to loss of contact between the implant and tissue, often followed by 

complications that may cause implant failure. In a previously published study, a 

hydrophilic surface was shown to facilitate cell attachment and adhesion as compared to 

a hydrophobic surface [217]. The wettability of a poor hydrophilic material can be 

improved by reducing the surface roughness, altering the surface charge, or by other 

surface treatment methods such as, oxygen plasma treatment of a polymeric surface and 

application of CO2 laser [218-223]. Fluorinated polyimides, which are an example of 

chemically modified polyimide, are known to promote cell adhesion on their surface and 

possess excellent biomedical properties [224, 225].  
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In biocompatibility studies, the wettability of the coated and uncoated polyimide 

surfaces was evaluated using the contact angle measurement and by incubating the 

devices with mammalian cells to observe the extent of cell attachment and/ or 

cytotoxicity.  

 

7.1.1.2 Inflammatory Studies 

Implantable medical devices may remain inside the body for a long time ranging 

from weeks to years and as such they are always in contact with bodily fluids. Chemical 

or mechanical nature of the device may irritate the surrounding tissues resulting in 

unwanted inflammation, platelet activation and clotting at the implant site [226]. 

Although inflammation initiates the healing process in tissues, chronic inflammation due 

to a non-compliant material may result in poor wound healing, and may trigger 

immunogenic responses [227-229]. When macrophages encounter a foreign object too 

large to be phagocytosed, such as an implant, the macrophages experience ‘frustrated 

phagocytosis’ [230]. They fuse to form larger foreign body giant cells composed of 

individual macrophages. Macrophages and foreign body giant cells adhere to the surface 

of an implant and remain for the duration of its presence. The foreign body reaction can 

lead to chronic pain and device rejection and failure. Since blood and its components are 

also involved in the early inflammation process, thrombosis may also occur [231, 232].  

Chronic inflammation is characterized by the infiltration of mononuclear immune 

cells (monocytes, macrophages, lymphocytes, and plasma cells), tissue destruction, and 

attempts at healing, which include angiogenesis and fibrosis [233-237]. Macrophages 
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play a key role in inflammation by releasing pro-inflammatory cytokines and forming 

foam cells in sub-endothelial lesions [238-240]. The cytokines serve as biochemical clues 

or biomarkers [241, 242]. Of these, tumor necrosis factor-alpha (TNF-α), interleukins 

(IL-1, IL-6), monocyte chemoattractant protein-1 (MCP-1), and macrophage inhibitory 

protein (MIP-1), serve as key inflammatory regulators [243-247]. Interleukin-1β (IL-1β) 

and TNF-α are two major cytokines that rise to relatively high levels during systemic 

inflammation [248]. 

As initial screening of biomaterials in animal models can be expensive and 

impractical, in vitro assays in suitable cell lines are developed as they can hasten the 

material development, increase the economic efficiency, and decrease the number of 

animals required for the biocompatibility assessment [249]. Recent studies have proposed 

various in vitro screening methods to assess the cytotoxicity and the pro-inflammatory 

potential of a biomedical materials in RAW 264.7 (mouse leukemic monocyte 

macrophage cell line) [250-252]. In the studies, the Co-Cr L605 alloy coated and 

uncoated polyimide tubes were co-cultured with RAW 264.7 cells. The release of 

inflammatory markers, TNF-α and IL-1β, was used as an indicator of the material's 

potential to elicit a pro-inflammatory response. 
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7.2 MATERIALS AND METHODS 

 

7.2.1 Materials 

Uncoated polyimide tubes were obtained from Microlumen Inc. (Tampa, FL, 

USA). Coated tubes were prepared in collaboration with Dr. Paul Ho’s group using 

sputtering method as previously described in Chapter 3. 

 

7.2.2 Contact Angle Measurement 

Contact Angle was measured using the FTA 200 Automated Goniometer (First 

Ten Angstroms, Portsmouth, VA, USA) that had preinstalled FTA 32 Video 2.0 software. 

The instrument was coupled to a CCD camera (Sanyo, Model VCB-3512T) .A 3 ml 

syringe was used for the study and the pump out speed was set at 1.5 μl/sec. For, 

untreated group, a polyimide film was cut and a drop of water was placed automatically 

using the Goniometer and the contact angle reading was taken. The process was repeated 

5 times. For alcohol treated group, the polyimide film was first washed with acetone and 

then thoroughly with ethanol. After drying, the contact angle measurements were taken as 

with untreated tubes. 
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7.2.3 Cell Culture 

The mouse macrophage cell line RAW 264.7 cells were cultivated in 10% bovine 

calf serum in α -MEM medium. Coated and uncoated polyimide matrices were placed on 

a 48 well plate and 5 X 105 dissociated RAW 267.4 cells were seeded to each well. Cells 

grown on plastic were treated with 10 μg/ml lipopolysaccharide (LPS) for 3 hrs and few 

wells were left untreated. The LPS treated and the untreated cells served as positive and 

negative controls respectively, for production of inflammatory mediators [252]. After 72 

hrs of incubation, the tubes and associated cells were removed from the well and rinsed 

thoroughly with phosphate buffered saline (PBS).  

7.2.4 Inflammatory Studies 

7.2.4.1 Extraction of RNA by Cell Lysis- 

The samples were lysed using the Cell to cDNA II Kit™ (Ambion®) solution 

prior to reverse transcription of RNA. The procedure was followed as described in the 

manufacturer’s protocol. 

 

7.2.4.2 Two Step RT-PCR: Reverse Transcription of RNA to cDNA 

The RT-PCR steps were processed as per the manufacturer’s protocol using 18S 

as an endogenous normalizer and TNF-α and IL-1β as inflammatory markers. One 

microgram of total RNA from lysed cells was converted to cDNA using random primers 

and Superscript III reverse transcriptase according to the manufacture’s instruction 
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(InvitrogenTM
 Life Technologies, Carlsbad, CA, USA). Real-time PCR was performed on 

a LightCycler® System (Roche Diagnostics, Indianapolis, IN, USA) with 18S, TNF-α 

and IL-1β primer sets, which were from TaqMan® Gene Expression Assays (Applied 

Biosystems, Foster City, CA, USA). Relative quantification was acquired by comparative 

CT method. 

Inflammatory markers, TNF-α and IL-1β primers, were normalized to the 

expression level of 18S for each sample. A normalizer corrects the gene expression data 

for differences in cellular input, RNA quality, and RT efficiency between samples [253]. 

Hence, 18 S was used as an internal control to normalize the signal value of each sample.  

 

7.3 RESULT AND DISCUSSION 

 

7.3.1 Hydrophilicity Studies 

If a surface is strongly hydrophilic, water will completely spread on its surface 

and contact angle will be between 0-30 degrees. Less strongly hydrophilic solids will 

have a contact angle up to 90°. If the solid surface is hydrophobic, the contact angle will 

be larger than 90°. On highly hydrophobic surfaces, such as Teflon, the surfaces have 

water contact angles as high as 150° or even nearly 180°. As seen in Figure 7.1, the 

contact angles for both the alcohol treated and untreated groups, were close to each other 

and remained under 90° in both the cases. Hence, polyimide is a hydrophilic and possibly 

a biocompatible material.  



 127

7.3.2 Biocompatibility Studies 

Optical images of coated and uncoated polyimide tubes were recorded, before 

treating them with cells, using a phase inverted microscope which was coupled to a 

MetaMorph Imaging Software (Molecular Devices, Sunnyvale, CA, USA). After 72 

hours of incubation with RAW cells, polyimide matrices were analyzed again using the 

phase inverted microscope. Figures 7.2 and 7.3 illustrate polyimide tubes before and after 

the incubation period. A high growth of RAW cells was seen in coated and uncoated 

surfaces confirming biocompatibility of alloy coated or uncoated polyimide tubes. The 

results from the biocompatibility testing of polyimide tubes were in accordance to the 

cytotoxicity testing guidelines as provided by the ISO-10993 international standards and 

FDA Guidance for toxicological evaluation of medical devices [254-256].   

 

 

Figure 7.1: Contact angle measurements of untreated and alcohol treated polyimide 
film. Results are shown as mean with standard deviations (n= 5). 
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Figure 7.2: Uncoated (top) and coated (bottom) polyimide matrices. 
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Figure 7.3: RAW cells adhered well to both the uncoated (top) and alloy coated 
(bottom) polyimide tubes 

 

7.3.3 Inflammatory Studies 

Although polyimide tubes were found to be biocompatible, it was necessary to 

ascertain that the polyimide would also not incite any inflammatory response when it 

would be implanted inside the body lumen. To evaluate possible inflammatory 

stimulation by coated and uncoated polyimide, the induction of the inflammatory 

mediators TNF α and IL-1β were investigated. The gene expression levels of these 
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inflammatory biomarkers were measured using the RT-PCR technique which can amplify 

the amount of gene (protein) expressed so that the levels can be quantitatively measured. 

To standardize the amount of gene expressed, an endogenous biomarker (18 S) was used 

as an internal standard. The comparative CT method or the ΔΔ CT method has been 

employed to determine the expression levels of TNF-α and IL-1 β. This involves 

calculating the ratio (CT values) of the sample of interest (TNF, IL) with the internal 

standard (18S).  

As illustrated in Figures 7.4 and 7.5, the gene expression levels of TNF-α and IL-

1β respectively was lower for coated and uncoated polyimide matrices in comparison to 

LPS treated cells (positive control) and similar to growth on plastic surfaces that are non-

inflammatory. The expression efficiency in the figures is represented as fold induction. In 

addition, the level of expression of both TNF-α and IL-1β in coated was lower than in the 

uncoated matrices, which suggests that the Co-Cr alloy coating can be further useful in 

reducing the inflammatory response of the polyimide matrices.  
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Figure 7.4: Four different groups: Coated and uncoated polyimide, control and LPS 
treated cells were analyzed for expression of TNF-α using Real Time RT-
PCR. Polyimide tubes showed significantly lesser expression of the 
inflammatory marker. Data is represented as mean with standard deviation.  
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Figure 7.5: Four different groups: Coated and uncoated polyimide, control and LPS 
treated cells were analyzed for expression of IL-1β using Real Time RT-
PCR. Polyimide tubes showed significantly lesser expression of the 
inflammatory marker. Data is represented as mean with standard deviation. 

7.4 CONCLUSION 

Cobalt-chromium alloy coated and uncoated polyimide matrices showed no signs 

of cytotoxicity or stimulation of inflammatory mediators in vitro. A contact angle study 

of alcohol treated and untreated polyimide films indicated the hydrophilicity and hence 

the biocompatibility of polyimide material. The biocompatibility was confirmed after the 

observation that RAW 267.4 cells adhered well to both the coated and uncoated 

polyimide matrices. Even after incubation for 72 h, no significant levels of  either TNF-α 

or IL-1 β were detected in coated and uncoated tubes while very large amounts were 

stimulated by LPS in 3 h at the mRNA level. The results indicate that coated or uncoated 

polyimide tubes do not produce an inflammatory response. 
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Chapter 8:  In Vitro Dose Response Studies  

 

8.1 INTRODUCTION 

 

8.1.1 Luciferase 

The purpose of this study was to determine if a newly developed perforated drug 

delivery system could deliver a biologically significant dose of a drug. The device was loaded 

with ethinyl estradiol (EE) and release from the device was confirmed using cells stably 

transfected with an estrogen receptor/luciferase construct (T47D-KBluc cells). A 

luminescence signal from the device in proportion to the drug released was considered as a 

biologically significant response. The amount of EE present in the drug release samples was 

also quantitatively measured using ELISA.  

Luciferase is a general name of enzymes found in the insect firefly, Photinus pyralis 

that helps it to produce luminescence [257]. It’s official name is Photinus-luciferin 4-

monooxygenase and is also known as firefly luciferase and Photinus pyralis luciferase [258]. 

The production of luminescence, in the form of yellow-green light, involves oxidation of the 

pigment, luciferin, in presence of magnesium and adenosine tri phosphate (ATP) [259]. This 

reaction, which is catalyzed by luciferase, would otherwise be very slow. The luminescent 

reaction consists of two steps [260]: 

 

Luciferin + ATP →Luciferyl Adenylate + PPi 

Luciferyl Adenylate + O2 → Oxyluciferin + AMP + Light 
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The luminescence product, oxyluciferin is supplied as the substrate luciferin for next 

light emission [261]. The oxyluciferin is transformed to 2-cyano-6-hydroxybenzothiazole, 

which is later condensed to luciferin [261, 262]. Luciferase genes can be transfected into cells 

or living organisms and used as a reporter gene to access their transcriptional activity [263].  

 

8.1.2 Reporter Gene Assay 

Reporter genes utilizing luciferase have become very popular in molecular biology and 

in biomedical and pharmaceutical research to study gene expression. In a reporter gene assay, 

regulatory sequence of interest is combined with a reporter gene and subsequently assayed via 

modulation of suitable transcription factors [264]. The reporter gene is further linked to a 

promoter, which activates or suppresses its expression [265]. As mammalian cells have no 

endogenous luciferases, their use in reporter systems produce very sensitive signals with very 

little noise. 

A recently published paper by Wilson et al proposed a sensitive and specific method to 

detect estrogenic activity using a luciferase gene reporter system [266]. The method lead to the 

development of the T47D-KBluc cell line, which naturally express estrogen receptor (ER) 

alpha and beta, and are stably transfected with a triplet ERE (estrogen-responsive elements)–

promoter–luciferase reporter gene construct. These cells are very sensitive to minute amounts 

of estrogenic compounds. In the present study, the method proposed by Wilson et al [266] was 

adopted to determine if a newly developed perforated drug delivery system could deliver a 

biologically significant dose of a drug. The different steps involved in the study are illustrated 

in Figure 8.1. Briefly, ethinyl estradiol is released from the device to the saline solution. The 
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T47D-KBluc cells are dosed with the estrogenic solution. As the compounds enter the cell, it 

binds to estrogen receptor. The drug-receptor complex binds to the ERE on the reporter gene 

construct and activates the luciferase reporter gene. The luciferase activity is assayed by 

measuring the light produced using a illuminometer.  

 

                

Figure 8.1 Mechanism of luciferase gene reporter system employed in the dose response 
study. (A) Ethinyl estradiol is released from the tubes into the PBS solution. (B) 
The cells are dosed with the drug solution. (C) The drug binds to the EE 
receptors. (D)The drug-receptor complex binds to the ERE and activates the 
luciferase reporter gene. Luminescence is produced on addition of luciferin. The 
luminescence (response) is produced in vitro as a function of amount of ethinyl 
estradiol released from the drug delivery device (dose).  
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8.2 MATERIALS AND METHODS 

 

8.2.1 Materials 

17β-Estradiol (E2, 99%), 17α-ethynylestradiol (EE,>98%), and the anti-estrogen, ICI 

182780 (fulvestrant), were purchased from Sigma-Aldrich (St. Louis, MO, USA). Polyimide 

tubes were purchased from Microlumen Inc. (Tampa, FL, USA). The T47D-KBluc cell line 

was obtained from ATCC (Manassa, VA, USA). Ethynylestradiol ELISA kit was purchased 

from Abraxis Kits (Warminster, PA, USA). 
 

8.2.2 Drug Release Studies 

The two groups of polyimide tubes, namely the 20 and 30 micron groups were loaded 

with ethinyl estradiol as previously discussed in Chapter 4. EE loaded tubes were placed in 

micro vials containing 0.3 ml of PBS (0.01 M phosphate, pH 7.4). A blank polyimide tube was 

used as an experimental control. The glass vials were put on a rocker with a rocking rate of 

46-48 oscillations/min and maintained inside an incubator (37.0 ± 1.0°C) for the entire 

duration of study. Samples were withdrawn every 5 days and replenished with fresh buffer for 

30 days. The aliquots were stored at -20 °C.  
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8.2.3 Dose Response Studies using Luciferase Gene Reporter Assay System 

 

8.2.3.1 Method Validation 

Dosing media was prepared using 5% dextran-charcoal treated FBS. Standard 

solutions of EE were prepared using Dimethyl sulfoxide (DMSO) and dosing media at 

concentrations of 10-7, 10-8, 10-9, 10-10, 10-11, 10-12, 10-13, 10-14, and 10-15 M. Cells were 

screened by running following controls on each plate - agonist positive (0.1nM E2), negative 

(vehicle that is dosing media only), antagonist (0.1nM E2 plus 1.0 μM fulvestrant), and 

background (vehicle plus 1.0 μM fulvestrant). The DMSO concentration did not exceed 0.1%. 

The standard solutions and controls were tested in triplicate. 
 

8.2.3.2 Dose Response Studies 

T47D-KBluc cells (ATCC, Manassa, VA, USA) were grown in 10% DMEM and 104 cells 

per well were seeded into 96-well multiplate and allowed to attach overnight. They were shifted to 

5% dextran-charcoal treated fetal bovine serum (Hyclone, Logan, UT, USA) without antibiotic 

supplement one week prior to assay. The cells were then dosed with standard solutions and diluted 

aliquots (1:100 dilutions in PBS) from drug release study for 24 h. Following dosing and 

incubation, the cells were lysed and luciferase activity quantified using a luminometer (Turner 

Biosystems, Sunnyvale, CA, USA).  
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8.2.4 Quantitative Estimation of Ethinyl Estradiol in Drug Release Samples using 
ELISA 

The drug release samples from 20 and 30 micron group were quantitatively estimated 

for EE using the ethinyl estradiol ELISA Kit, according to the protocol suggested by the 

manufacturer. Briefly, samples were diluted using 10% (v/v) methanol of the highest purity. 

The antigen-enzyme conjugate powder was reconstituted with 7 ml of buffer solution. A 100 

μl of EE standards (or sample) was mixed with a 100 μl of conjugate solution and 100 μl of 

the mixture was added to the coated microplate included in the kit. After sufficient incubation 

time, a 100 μl of color solution was added followed by addition of 100 μl of stop solution after 

30 minutes. The standard and sample absorbance was measured using a spectrophotometer at 

450 nm. The standard curve for a competitive binding assay has a negative slope. The standard 

curve data was fitted to the non linear regression logistic model using XLSTAT software 

version 2009.5.01 and the concentration of EE in the unknowns was determined by 

interpolation. Duplicate assays were performed for each standard and sample. 

 

8.3 RESULTS AND DISCUSSION  

8.3.1 Dose Response Study 

 
The purpose of this study was to determine if a newly developed perforated drug 

delivery system could deliver a biologically significant dose of a drug. The device was loaded 

with ethinyl estradiol (EE) and release from the device was confirmed using cells stably 

transfected with an estrogen receptor/luciferase construct (T47D-KBluc cells).  
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The T47 D-KBluc cells provided a sensitive and specific dose response method for 

evaluation of the drug delivery device. During the study, it was essential to run controls on 

every plate because various factors may contribute to high background activation levels in 

cells dosed only with the vehicle [266, 267]. For example presence of steroids or antibiotics in 

the media may contribute to high levels of background estrogenicity. The background levels 

were significantly brought down by growing the cells in charcoal stripped and antibiotic free 

medium (Figure 8.3).  

A plot of standard solution of ethinyl estradiol revealed that the maximum estrogenic 

activity was seen at 10-10 M (Figure 8.4). This is in agreement with the previously published 

work using similar dose response methods [266, 267]. The portion of the standard curve 

ranging from 10-10 M to 10-6 M is mostly linear and can be used for estimation of EE 

concentrations in the sample.  

The in vitro release of EE in PBS quantified by biological stimulation of luciferase 

activity exhibited a linear relationship between luminescence and the amount of EE released 

into PBS (Figure 8.5). The average luminescence produced from 20 and 30 micron groups was 

measured in relative luminescence units (RLU) as 5724 ± 701.89 and 6099 ± 590.92 RLU 

every five days or 1144.8±153.8 and 1219.9±127.7 RLU/day, corresponding to 10-6 – 10-7 M 

EE/day. The statistical analysis using one way anova did not yield any significant difference 

between the release rates of two groups, p>0.005. The linear rate observed for cumulative 

luminescence as illustrated in Figure 8.6 indicated zero order release of EE.  
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Figure 8.3: Assessment of T47D-KBluc cells in presence of various controls. Vehicle = 
Negative Control with Dosing Media only; Background = Vehicle plus 1.0 μM 
fulvestrant; Agonist is Positive Control (0.1nM E2); Antagonist is 0.1nM E2 plus 
1.0 μM fulvestrant. Data is presented as mean with standard deviation (n=3)  
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Figure 8.4: Dose response of the T47D-KBluc cells with increasing concentrations of ethinyl 
estradiol (n=3).  Data is presented as mean with standard deviation. 
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Figure 8.5: Dose-Response Data with 30 micron and 20 micron group. The cumulative 
luminescence response from cells was linear to the dosing samples from the two 
groups (30 microns: R2 = 0.9965 and 20 microns: R2 = 0.9955). Data is presented 
as mean with standard deviation ( n = 6 for 20 micron group; n = 7 for 30 micron 
group).  
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8.3.2 Quantitative Analysis of Drug Release Samples 

Another assay, ELISA, was employed for the quantitative determination of EE in the 

drug release samples. The ELISA test is based on the competitive reaction where EE competes 

with the antigen-enzyme conjugate for a limited number of binding sites of specific antibodies 

immobilized on the surface of the wells [268]. The reaction is concentration dependent, 

wherein, a higher concentration of EE relative to the antigen-enzyme conjugate leads to a 

predominant binding of EE to the antibody and vice versa. The antigen-enzyme-antibody 

complex catalyzes the conversion of the substrate (color solution) to a colored product. After a 

sufficient incubation period, the reaction is stopped by addition of sulphuric acid (stop 

solution). Hence, a sample with higher concentration of EE than the antigen-enzyme conjugate 

will bound more to the antibody producing a less intense color and a lower absorbance. 

Selection of the analytical model -  

Non-linear regression logistic models are often recommended for fitting ELISA 

calibration curves due to their sigmoidal shape [269, 270]. The three parameter logistic 

equation is given by: 

 

        ))(1(
)(

bcX
aY

+
=

                                                                (1) 

Where, X and Y are the concentration and absorbance of analyte, respectively, and the 

three parameters a, b, and c are defined as the absorbance at zero concentration, slope factor, 

and the midrange concentration. Figure 8.6 illustrates the three parameters which are obtained 

using the logistic model. The linear portion of the curve is the most reliable part for analyzing 

experimental data. The family of curves as illustrated in the figure represents the effect of the 
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slope factor ‘b’ on the linear portion. A greater value of ‘b’ leads to a steeper curve resulting 

in a narrow concentration range available for sample analysis, and vice versa.  

 

 

 

 

Figure 8.6: A model standard curve for a typical competitive ELISA assay (solid line). The 
parameters a, b, and c are obtained using the logistic model. The dotted lines 
represent the family of curves illustrating the effect of the slope factor, b, on the 
linear portion of the curve. As ‘b’ increases the curve would become steeper and 
vice versa. The raw data are fitted to the logistic model. 
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Tables 8.1 and 8.2 represent the absorbance data for standards for the two groups. 

When this data is fitted to a non linear logistic model using the XLSTAT software (version 

2009.5.01), the three parameters a, b, and c are obtained as 1.757 absorbance units, 1.153, and 

0.140 ng/ml for the 20 micron group and 1.400 absorbance units, 1.103, and 0.164 ng/ml for 

the 30 micron group. The logistic model also yields the standard curves which are illustrated 

in Figures 8.7 and 8.8. 

 

Table 8.1: The table illustrates the standard absorbances (A) that were used to estimate the 
parameters a, b, and c for 20 micron group. 

Concentration (ng/ml) Average Absorbance (A) SD %CV 

0.00 1.752 0.074 4.22 

0.05 1.374 0.014 1.02 

0.15 0.918 0.008 0.88 

0.50 0.435 0.004 0.94 

3.00 0.176 0.005 3.01 

 

Table 8.2:  The table illustrates the standard absorbances (A) that were used to estimate the 
parameters a, b, and c for 30 micron group. 

Concentration (ng/ml) Average Absorbance (A) SD %CV 

0.00 1.400 0.050 3.57 

0.05 1.088 0.000 0.00 

0.15 0.739 0.021 2.84 

0.50 0.353 0.013 3.68 

3.00 0.083 0.008 9.63 
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Figure 8.7: The standard curve for the 20 micron group was constructed and fitted using non 
linear regression logistic model. The solid line represents the curve fitting 
regression line. Blue squares represent the absorbance readings of the standard 
solutions, n=2. 

 

Figure 8.8: The standard curve for the 30 micron group was constructed and fitted using non 
linear regression logistic model. The solid line represents the curve fitting 
regression line. Blue squares represent the absorbance readings of the standard 
solutions, n=2. 
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The drug release data from 20 micron and 30 micron groups (Figures 8.9 and 8.10) 

indicates a greater release of EE from 20 micron group (32.7 ± 7.3 ng/day) as compared to the 

30 micron group (30.1±5.8 ng/day) . These results were not expected. It has been reported that 

while running multiple kits to analyse large number of samples, small errors introduced during 

analysis of each kit may result in % CV of 20-60% amongst the kits [271-273]. These errors 

may be due to pipetting volumes of analyte, antigen, antibody and substrate solutions, and 

incubation time for color development [271]. Accordingly, only a rough concentration 

estimate has been possible using ELISA. Although the results obtained from each analysis 

show intra-kit precision, the kits may lack in inter-kit precision. However, there may be other 

factors such as effects of drug loading and hydrodynamic changes occurring during drug 

release that we are not aware of and which may affect the drug release.  

Nevertheless, zero order drug release profiles with R2 values of 0.9997 and 0.9999 

were obtained for both the groups, respectively, and are illustrated in Figs 8.9 and 8.10. The 

linearity of the release was further confirmed by F test, F (1, 12), p < 0.05. The release data 

suggests the total duration of release of approximately three years or longer from the two 

groups. 
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Figure 8.9: Cumulative Amount of EE released from 20 micron group over 30 days. The 
release profile exhibits a zero order kinetics with R2 = 0.9990. The slope of the 
line suggests the rate of EE release of 32.7 ± 7.3 ng/day. Data is presented as 
mean with standard deviation, n=6. 
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Figure 8.10: Cumulative amount of EE released from 30 micron group over 30 days. The 
release profile exhibits a zero order kinetics with R2 = 0.9996. The slope of 
the line suggests the rate of EE release of 30.1±5.8 ng/day. Data is presented 
as mean with standard deviation, n=7. 

 

8.4 CONCLUSION 

T47D-KBluc cells provided a sensitive and specific estrogen-responsive 

luciferase reporter system to quantify a biologically relevant amount of EE released into 

saline. The cells produced a luminescent signal in proportion to drug exposure. ELISA 

was used to estimate the amount of EE in the samples. ELISA is a popular analytical 

technique that is used in various fields such as pharmacy, biotechnology, and 

environmental science. Previous reports in literature suggest that errors introduced during 
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the analytical procedure may compound the error while analyzing unknown samples. The 

% difference between the two groups with respect to the amount of EE released is less 

than 10% and can be attributed to experimental error with ELISA as also described by 

previously published reports. This may explain the greater release of EE from 20 micron 

groups as compared to the 30 micron group. Nevertheless, the goal of the study was 

achieved as the delivery system yet again exhibited a zero order release over the 30 day 

period. Assuming a constant rate of release, the delivery system was found to be capable 

of releasing EE for more than three years. 
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Chapter 9: Pharmaceutical Applications of the Scalable 
Microperforated Drug Delivery Device 

 

The drug delivery system can be used for treatment of diverse chronic diseased states. 

9.1 OCULAR IMPLANT 

The drug delivery system can be used as an ophthalmic implant or as an insert for 

treatment of ophthalmic diseases. Patients suffering from retinopathy, glaucoma, and age 

related macular degeneration (the three leading causes of blindness) [274-276] may 

benefit from delivery of drug by such a device. 

Retinopathy refers to damage to the retina of the eye caused by non-ocular 

complications such as diabetes and hypertension [277, 278]. Diabetes leads to build up of 

plaque, hard exudates, edema, and hemorrhage of the retinal blood vessels resulting in 

their occlusion and leakage [279]. When left unchecked, the proliferating retinopathy 

may cause complete blindness. Glaucoma is a group of diseases that damage optic nerve 

and cause blindness [280]. An increasing intraocular pressure is a significant risk factor 

in progression of glaucoma. Age related macular degeneration (AMD) is a disease 

associated with aging that steadily diminishes central vision [281-283]. As illustrated in 

Figure 9.1, macula is the central area of the retina that processes fine details such as while 

reading or driving. AMD can be classified into two types. An abnormal growth of retinal 

blood vessels around the macula causes Wet AMD. The neovessels are unstable and may 

leak, raising the macula from its normal position [283].  In another type of AMD, which 
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is known as dry AMD, light sensitive cells in macula gradually breakdown, blurring the 

central vision [283]. 

Other major causes of blindness are cytomegalovirus (CMV) retinitis and 

endophthalmitis. CMV retinitis is a viral inflammation of the retina of the eye. It is a 

sight-threatening disease associated with late-stage AIDS (Acquired Immuno Deficiency 

Syndrome) [284]. Endophthalmitis involves inflammation of the intraocular cavities (i.e., 

the aqueous or vitreous humor) usually caused by infection [285]. 

All the aforementioned diseases relate to the posterior segment of the eye. 

Ophthalmic diseases associated with the posterior section present treatment challenges 

due to its inaccessible location [286]. Currently, approximately 90% of all ophthalmic 

drugs are delivered using eye drops. Although convenient and easy to use, eye drops are 

very inefficient, as 95% of the drug go waste to pre-corneal loss [213]. Figure 9.2 

illustrates the flexibility of the drug delivery system developed. The device is capable of 

conforming to any shape and curvature and hence can be readily placed in the eye and 

used for long-term delivery of drugs.  
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Figure 9.1: Anatomy of the Eye [287] 

 

 

Figure 9.2: The figure demonstrates the flexibility of the drug delivery which is capable 
of conforming to any shape and curvature and hence can be successfully 
used as an ophthalmic implant  
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9.2 DRUG ELUTING STENT 

The drug delivery system can also be built in as part of a drug eluting stent (DES) 

for treatment of renal, coronary, or intracranial atherosclerosis. Atherosclerosis is the 

narrowing of an artery due to build up of plaque [288]. Stents are mesh like cylindrical 

structures which are inserted into the affected artery to unclog it. However, injury to the 

implanted site at the time of placement triggers cellular mechanisms causing re-blockage 

[289]. This process of reoccurrence of stenosis or occlusion is known as restenosis. At 

present, a drug-polymer system, which is coated on the stent surface, is used to prevent 

restenosis. The polymer controls the drug release and the drug itself inhibits the 

restenosis causing cellular mechanisms. However, initial burst effect of drug, uneven 

coating of drug-polymer system, allergic reaction to polymer, and breakage of polymer 

while implantation leads to subsequent complications known as late stent thrombosis 

[111, 290]. 

The novel drug delivery system can be either mounted on the stent skeleton or 

built in along with the stent (Figure 9.3). The device offers several advantages over 

current DES because it is free from polymer and capable of zero order release of drugs. 

Hence cytotoxic dose dumping and complications due to polymer can be avoided.  
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Figure 9.3: (Left) A bare metal stent. (Right) Drug delivery system (shown also in inset) 
can be mounted on top of the stent. The stent will open the clogged artery 
and the controlled release of drug from the device will prevent restenosis 

9.3 MANAGEMENT OF PAIN, CANCER AND OTHER CHRONIC DISEASES 

Management of several diseases such as chronic pain, cancer, diabetes, 

hypertension, require long-term drug therapy which may sometime last life-long. Many 

such diseases require repeated dosing to the patient. Chronic pain can be any or 

combination of the following - burn pain, dental/facial pain, migraine headache pain, 

musculoskeletal pain, neuropathic pain, obstetrical pain, surgical and trauma pain [291-

294]. Additionally, there’s pain associated with progressing diseases such as cancer, HIV, 

and arthritis, where the severity of pain increases with the proliferation of the disease.  

Current drug delivery regimens revolve around oral administration of analgesics, 

drug infusion at the site, or intrathecal pumps and intraspinal catheters. Intrathecal is an 
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adjective which is used to describe devices or treatments related to spinal cord [295]. As 

previously discussed, oral drugs may have poor bioavailability and require multiple 

dosing. A need for frequent injections such as to control muscular or dental pain can also 

be distressful and costly to patients. Intrathecal injections, pumps, and catheters have 

been used in past for spinal anesthesia and analgesic delivery [296, 297]. Here, drugs are 

delivered directly to the cerebrospinal fluid that surrounds the spinal cord. The intrathecal 

methods have improved the quality of life of people by significantly reducing disability 

related to pain [298]. However, large amount of systemic narcotic exposure introduces 

several complications and may also lead to drug addiction [299]. Recent literature 

suggests implantable drug delivery systems as ideal candidates for pain management as 

they decrease the side effects and increase the treatment efficacy [300].  

Cancer treatment usually involves systemic or oral administration of 

chemotherapeutic drugs. Although these drugs are beneficial in controlling the tumor 

spread, they are also associated with severe side effects such as hair los, nausea, bone 

marrow depression, and memory changes [301]. A valid approach to decrease these side 

effects would be to deliver constant amount of drugs locally. 

The novel drug delivery system offers one such solution for replacement of 

present chronic pain management methods and cancer treatment. The device can be 

implanted at the desired site or used transdermally. Figure 9.4 demonstrates one such 

scenario where multiple devices loaded with different drugs are placed on a transdermal 

patch. Each device on the patch acts independently, delivering different drugs. The said 

example also illustrates the possibility of combination therapy with the device.  
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Figure 9.4: A transdermal patch containing multiple drug delivery devices 

 

9.4 NEURAL OR BRAIN IMPLANT 

The novel drug delivery system can also be used as a brain or neural implant for 

the treatment of diseases of the central nervous system such as Parkinsonism and brain 

tumor. A similar example of an implantable system used for managing brain tumor is 

Gliadel® (Eisai Inc.). It is a biodegradable wafer, which is implanted at the tumor site 

after the tumor has been surgically removed [302]. The wafer, which is loaded with the 

drug carmustine, kills the surrounding tumor cells and prevent their re-occurrence [303].  

The drug delivery system developed may also enable drug-gene combination 

therapy, wherein, anti-cancer drugs can be combined with small interfering RNA’s 

(siRNA) and delivered to the tumor site. RNA interference technology can be used to 

silence a specific oncogene in tumor cells bringing about cell death [304]. The tumor 



 158

targeted delivery of siRNA presents a safer and more effective method for cancer 

therapies [305].  

The drug delivery system can also be used for treatment of Parkinsonism and 

related disorders. Parkinson's disease is a degenerative disorder of the central nervous 

system that is caused by low levels of dopamine and characterized by impaired speech, 

and motor skills such as poor posture, tremors, and slowness in movement [306]. The 

treatment usually involves systemic administration of the dopamine precursor, Levo-dopa 

(L-dopa), because dopamine itself cannot cross the blood brain barrier. [307]. L-dopa is 

converted into dopamine in the dopaminergic neurons by L-aromatic amino acid 

decarboxylase [308]. However, the high systemic concentration of levodopa triggers the 

feedback inhibition mechanism by L-dopa decarboxylase and only 1-5% of L-dopa enters 

the dopaminergic neurons. Although L-Dopa is administered in combination with 

decarboxylase inhibitors, such as Carbodopa [309] but the problem of low bioavailability 

still remains. In such a scenario, the novel drug delivery system offers suitable 

replacement for existing therapies as significant amounts of L-dopa or dopamine can be 

delivered directly at the desired site.  
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Chapter 10: Conclusions 

 
The work of this dissertation has led us to following conclusions: 

1. Aluminum was found to be unsuitable for making implants as it degraded in the 

physiological environment. After immersing in phosphate buffer saline for seven days, 

the aluminum coating appeared to be fractured and corroded. A high percentage of both 

aluminum (13.63%) and oxygen (57.83%) were obtained using EDS. However, 

nanopores were successfully made on gold layer which is chemically inert. Poly (2- octyl 

cyanoacrylate) was successfully evaluated as an extended release polymer. The length, 

width, depth, diameter, and area of the nanopores were found to be 60.0 ± 10.9 nm, 14.9 

± 2.3 nm, 26.9 ± 3.8 nm, 27.3 ± 4.9 nm, and 1317.4 ± 219.9 nm², respectively. A 1 μm² 

of wafer surface was estimated to hold 3.55 x 104 nm³ of pore volume. A bare metal stent 

was analyzed using SEM and it was estimated that a total pore volume of 4.0 x 109 nm³ 

would be available for drug loading if the stent is made using the nanoporous surface. In 

vitro drug release study using 2 - octyl cyanoacrylate and methyl orange as the drug-

polymer matrix was conducted and after 7 days 88.1 ± 5.0 % drug was released. The rate 

and extent of the drug release can be altered by using varying amounts of drug and 

varying the polymer layer. The initial work with nanodepots led to the current concept 

that instead of loading drug into the pores, we can load the drug inside a matrix with 

pores (or holes) on its surface.  
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2. The polyimide tubes were successfully coated with a biocompatible cobalt-

chromium L605 alloy using sputtering method. The alloy coating was tested using EDS 

and was found to contain 52.7 ± 3.6 % of cobalt, 19.3 ± 2.2 % of chromium, 17.9 ± 1.5 % 

of tungsten, nickel 5.7 ± 1.1 %, 2.3 ± 0.5 % of iron, and 1.9 ± 0.5 % of manganese, which 

conformed to the commercial standards. The coating was found durable to mechanical 

stress and it helped to reduce the surface roughness. An investigation of 1.0 μm2 area, of 

polyimide surface before and after coating revealed a reduction in root square mean 

surface roughness of 0.97 to 0.62 nm. Micro fabrication of polyimide matrices with 

photolithography yielded perforations between 25 – 40 micron size ranges. 

 

3. Even though the perforated microdevice was essentially developed as part of a 

drug eluting stent, it can also be applied to other therapeutic and prophylactic treatments. 

The Finite Element Analysis revealed feasibility of the stent design. The development of 

the device as a drug eluting stent was not continued due to time constraint and 

manufacturing limitations. The perforated device was hence developed as a general drug 

delivery housing matrix. 

 

4. Prednisolone, ethinyl estradiol and crystal violet were successfully loaded inside 

the tubes using different drug loading techniques. DSC analysis was used to investigate 

formation of any pseudo-polymorphs or true polymorphs for prednisolone and ethinyl 

estradiol in presence of alcohol. There was no significant difference found between the 

treated and untreated groups with respect to the glass transition temperature, in both 

prednisolone (untreated = 240.3 °C; alcohol treated = 238.9 °C) and EE (untreated = 
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185.4 °C; alcohol treated = 185.6 °C) suggesting that no true polymorphs were formed 

with alcohol treatment. 

Drug loading using concentrated solutions ensured content uniformity across 

various groups. An average of 127.1 ± 11.9 μg of CV was loaded in all the small tubes 

with one, two, and three holes. For large tubes with one hole (365.3 ± 16.7 μm); two 

holes (362.4 ± 23.1 μm); and one bigger size hole (542.6 ± 26.3 μm) the average amount 

of CV loaded per unit length in the groups was 5.3 ± 0.3, 5.2 ± 0.3, and 5.4 ± 0.2 mg/cm, 

respectively. The average amount of EE loaded in small tubes with 20 and 30 micron 

holes, the drug loading was measured as 51.7 ±  4.8 and 57.9 ±  9.9 μg, respectively. 

However, in tubes where alcohol was used as drug loading solvent, homogenous 

distribution of the drug was not achieved. This is due to the fact that as the alcohol 

evaporates, it leaves void spaces, which cause erratic distribution of drug inside the 

device. An ideal drug loaded tube would have tightly packed drug powder in it. The 

variation in drug distribution was found to effect drug release study in the 600 micron 

group (large tubes with holes). We envision the limitations in drug loading procedure to 

be more of a simple engineering problem rather than a pharmaceutical problem. Several 

technologies such as those used for filling micro capillary columns in HPLC can be used 

to fill microtubes. 

 

5. A series of drug release studies revealed that the perforated microtubes are 

scalable and can be successfully used for long-term zero order drug release. Polymers or 

membrane are not required to control release rates. Linear release rates with R2>0.9900 
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were obtained for all groups with CV and EE. For small tubes (30μm hole diameter; 

125μm tube diameter) release rate of 30.1±5.8 ng/day was obtained for EE loaded tubes. 

and release rates of 7.8 ± 2.5, 16.2 ± 5.5, and 22.5 ± 6.0 ng/day were obtained for CV 

loaded tubes with one hole, two holes, and three holes respectively. The drug release was 

found to increase additively with increase in the number of holes. For large tubes (1000 

μm tube diameter) with holes, a release rate of 10.8 ± 4.1, 15.8 ± 4.8 and 22.1 ± 6.7 

μg/day was observed in vitro in PBS and a release rate of 5.8 ± 1.8 μg/day was observed 

ex vivo in vitreous humor. The release rates were linear as a function of number of holes 

and proportional to the area of diffusion. Drug release from the device also depends on 

the drug’s solubility, drug loading, and drug packing. The drug release in static 

environment does not differ greatly from the dynamic environment suggesting that the 

concentration gradient is the main driving force that causes the drug to move out of the 

device. Hence, a sink condition is always desired.  

 

6. Cobalt-chromium L605 alloy coated and uncoated polyimide tubes, which were 

found to be non-inflammatory, non-cytotoxic, and biocompatible. A contact angle of 63.7 

± 3.7 degrees was obtained for the device indicating that it is hydrophilic and favors cell 

attachment. After 72 h incubation with RAW 267.4 mouse cells, uniform cell distribution 

was observed on the polyimide surface. The polyimide matrices also did not induce 

significant expression of inflammatory markers such as TNF-α and IL-1β proving that it 

is biocompatible and non cytotoxic.  
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7. T47D-KBluc cells provided a sensitive and specific estrogen-responsive 

luciferase reporter system to quantify a biologically relevant amount of EE released into 

saline. The cells produced a luminescent signal in proportion to drug exposure. The 

average luminescence produced from 20 and 30 micron groups was 1144.8 ± 153.8 and 

1219.9 ± 127.7 RLU/day. With ELISA, the amount of EE in the samples was 

quantitatively determined. It was estimated that with 20 micron and 30 micron groups 

32.7 ± 7.3 and 30.1 ± 5.8 ng/day of EE was released, respectively. The discrepancy in the 

amount of EE released from the two groups was attributed to the lack of inter kit 

precision.  

 

8. In conclusion, a novel drug delivery device has been devised and evaluated. The 

micro perforated micro delivery system can be used for long-term treatment of 

debilitating and chronic diseased states such as ocular diseases, cerebral diseases, and 

cancer or pain management. The simplicity of device’s design and mechanism of 

function makes it economically viable. The low cost can be transferred to patients which 

can make otherwise expensive treatments affordable. Other advantages offered by the 

device would be: overcoming repeated dosing, improved patient compliance, improved 

health care, reduce hospital visits, reduced health care cost, and better quality of life for 

the patients. 
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Appendix I – Drug Release Study Data (Tables and Calculations for Chapters 2, 5, and 6) 

Table 2.3: Standard curve measurements for estimation of drug release data from the nanoporous wafers. 

Concentration 
(μg/ml Absorbance (A) 

0.0 0.000 
4.0 0.286 
8.0 0.573 

12.0 0.860 
16.0 1.150 
20.0 1.429 

Standard Curve Equation => Absorbance (A) = 0.0716 * Concentration (μg/ml) + 0.0003; R2 = 1.000 

 

Table 2.4: Drug release data from nanoporous wafer-1 loaded with methyl orange and 2-octyl cyanoacrylate as the drug polymer matrix. 

Time 
(days) 

Dilution 
(X)  

Absorbance 
(A) 

Conc 
(μg/ml) 

Amount 
(μg) 

Cumulative 
Amount (μg) 

Cumulative % of 
drug released 

0 0 0 0 0 0 0 
1 4x 1.503 21.0 840.8 840.8 33.6 
2 3x 1.371 19.2 575.2 1416.1 56.6 
3 2x 1.694 23.7 473.8 1889.9 75.6 
4 1x 1.879 26.3 262.8 2152.7 86.1 
5 1x 0.736 10.3 102.9 2255.7 90.2 
6 1x 0.354 5.0 49.5 2305.2 92.2 
7 1x 0.128 1.8 17.9 2323.1 92.9 
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Table 2.5: Drug release data from nanoporous wafer-2 loaded with methyl orange and 2-octyl cyanoacrylate as the drug polymer matrix. 

Time 
(days) 

Dilution 
(X) 

Absorbance 
(A) 

Conc 
(μg/ml) 

Amount 
(μg) 

Cumulative 
Amount (μg) 

Cumulative % of 
drug released 

0 0 0 0 0 0 0 
1 4x 1.131 15.8 632.7 632.7 42.2 
2 3x 0.921 12.9 386.4 1019.2 67.9 
3 2x 0.376 5.3 105.2 1124.3 75.0 
4 1x 0.360 5.0 50.3 1174.7 78.3 
5 1x 0.130 1.8 18.2 1192.9 79.5 
6 1x 0.204 2.9 28.5 1221.4 81.4 
7 1x 0.147 2.1 20.6 1242.0 82.8 

 

Table 2.6: Drug release data from nanoporous wafer-3 loaded with methyl orange and 2-octyl cyanoacrylate as the drug polymer matrix. 

Time 
(days) 

Dilution 
(X) 

Absorbance 
(A) 

Conc 
(μg/ml) 

Amount 
(μg) 

Cumulative 
Amount 

(μg) 
Cumulative % of drug 

released 
0 0 0 0 0 0 0 
1 4x 0.785 11.0 439.2 439.2 36.6 
2 3x 0.560 7.8 235.0 674.1 56.2 
3 2x 0.585 8.2 163.6 837.8 69.8 
4 1x 0.787 11.0 110.1 947.8 79.0 
5 1x 0.371 5.2 51.9 999.7 83.3 
6 1x 0.308 4.3 43.1 1042.8 86.9 
7 1x 0.135 1.9 18.9 1061.7 88.5 
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Table 2.7: Cumulative percentage of drug release data from the three nanoporous wafers. 

 

Time (days) 

Cumulative % of 
methyl orange from 

wafer 1 

Cumulative % of 
methyl orange from 

wafer 2 

Cumulative % of 
methyl orange from 

wafer 3 
Average 

cumulative % S.D. 
0 0.0 0.0 0.0 0.0 0.0 
1 33.6 42.2 36.6 37.5 4.4 
2 56.6 68.0 56.2 60.3 6.7 
3 75.6 75.0 69.8 73.5 3.2 
4 86.1 78.4 79.0 81.2 4.3 
5 90.2 79.6 83.3 84.4 5.4 
6 92.2 81.5 86.9 86.9 5.4 
7 92.9 82.9 88.5 88.1 5.0 
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Table 5.4: Absorbance readings for ‘one hole’ group belonging to ‘small tubes’ 

 Days    
Tube 
No. 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 Average SD %CV
1 0.000 0.004 0.004 0.004 0.005 0.007 0.011 0.009 0.006 0.008 0.009 0.008 0.007 0.008 0.008 0.007 0.002 30.69 
2 0.000 0.003 0.006 0.003 0.003 0.004 0.005 0.006 0.007 0.007 0.007 0.007 0.008 0.008 0.008 0.006 0.002 32.71 
3 0.000 0.002 0.002 0.004 0.004 0.002 0.004 0.006 0.005 0.005 0.007 0.006 0.006 0.008 0.008 0.005 0.002 41.71 
4 0.000 0.003 0.007 0.007 0.009 0.003 0.005 0.006 0.007 0.007 0.005 0.007 0.007 0.006 0.009 0.006 0.002 28.89 
5 0.000 0.009 0.004 0.003 0.004 0.007 0.005 0.005 0.006 0.005 0.006 0.007 0.006 0.006 0.007 0.006 0.002 26.96 
6 0.000 0.004 0.008 0.006 0.007 0.004 0.004 0.007 0.006 0.005 0.008 0.006 0.007 0.005 0.006 0.006 0.001 23.36 
7 0.000 0.003 0.003 0.008 0.010 0.008 0.004 0.004 0.008 0.006 0.010 0.007 0.006 0.007 0.009 0.007 0.002 36.21 

Avg. 0.000 0.004 0.005 0.005 0.006 0.005 0.005 0.006 0.006 0.006 0.007 0.007 0.007 0.007 0.008    
SD 0.000 0.002 0.002 0.002 0.003 0.002 0.003 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.001    

%CV 0.00 57.74 45.15 40.00 45.13 46.19 46.18 25.62 15.18 19.78 23.13 10.06 11.26 17.72 13.61    
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Table 5.5: Absorbance readings for ‘two hole’ group belonging to ‘small tubes’ 

 Days    
Tube 
No. 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 Average SD %CV
1 0.000 0.011 0.014 0.021 0.012 0.015 0.019 0.020 0.020 0.016 0.015 0.012 0.015 0.014 0.014 0.015 0.003 22.21 
2 0.000 0.015 0.015 0.010 0.010 0.015 0.016 0.013 0.015 0.014 0.014 0.013 0.013 0.013 0.015 0.013 0.002 14.32 
3 0.000 0.006 0.008 0.007 0.013 0.014 0.014 0.013 0.013 0.015 0.013 0.014 0.013 0.014 0.014 0.011 0.003 25.56 
4 0.000 0.004 0.017 0.020 0.018 0.013 0.014 0.015 0.009 0.009 0.013 0.010 0.011 0.011 0.013 0.012 0.004 35.12 
5 0.000 0.013 0.012 0.005 0.009 0.005 0.005 0.006 0.006 0.008 0.009 0.010 0.010 0.011 0.009 0.008 0.003 34.08 
6 0.000 0.011 0.005 0.008 0.008 0.007 0.007 0.008 0.009 0.011 0.013 0.013 0.011 0.014 0.011 0.009 0.003 29.48 
7 0.000 0.011 0.013 0.026 0.021 0.026 0.011 0.008 0.013 0.011 0.012 0.015 0.013 0.013 0.013 0.014 0.006 40.53 

Avg. 0.000 0.010 0.012 0.014 0.013 0.014 0.012 0.012 0.012 0.012 0.013 0.012 0.012 0.013 0.013    
SD 0.000 0.004 0.004 0.008 0.005 0.007 0.005 0.005 0.005 0.003 0.002 0.002 0.002 0.001 0.002    

%CV 0.00 37.94 34.69 59.72 37.16 49.95 40.35 41.15 38.16 25.46 14.86 15.31 13.87 10.46 16.19    
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Table 5.6: Absorbance readings for ‘three hole’ group belonging to ‘small tubes’ 

 Days    
Tube 
No. 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 Average SD %CV 
1 0.000 0.024 0.018 0.025 0.021 0.016 0.024 0.020 0.017 0.019 0.017 0.019 0.018 0.017 0.020 0.020 0.003 14.76 
2 0.000 0.004 0.009 0.009 0.009 0.009 0.007 0.007 0.011 0.013 0.011 0.013 0.013 0.015 0.012 0.010 0.003 29.41 
3 0.000 0.026 0.015 0.018 0.018 0.021 0.017 0.017 0.017 0.018 0.018 0.018 0.019 0.020 0.021 0.019 0.003 14.03 
4 0.000 0.016 0.016 0.017 0.012 0.016 0.011 0.016 0.019 0.017 0.018 0.019 0.018 0.021 0.017 0.017 0.003 15.74 
5 0.000 0.016 0.016 0.020 0.019 0.013 0.019 0.019 0.015 0.014 0.014 0.016 0.014 0.016 0.019 0.016 0.002 14.27 
6 0.000 0.008 0.022 0.013 0.018 0.019 0.018 0.021 0.015 0.017 0.019 0.021 0.017 0.021 0.020 0.018 0.004 21.17 
7 0.000 0.009 0.019 0.029 0.024 0.025 0.022 0.018 0.019 0.021 0.022 0.022 0.018 0.021 0.017 0.020 0.005 22.45 

Avg. 0.000 0.015 0.016 0.019 0.017 0.017 0.017 0.017 0.016 0.017 0.017 0.018 0.017 0.019 0.018    
SD 0.000 0.008 0.004 0.007 0.005 0.005 0.006 0.005 0.003 0.003 0.004 0.003 0.002 0.003 0.003    

%CV 0.00 56.14 24.56 36.34 29.82 30.94 35.50 27.70 17.31 16.29 20.94 16.62 13.69 14.04 16.97    

 
 



 170

Table 5.7: Cumulative amount of crystal violet released from ‘one hole’ group. The amount and cumulative amount values are in microgram 
units of weight.  

 Tube1 Tube2 Tube3 Tube4 Tube5 Tube6 Tube7 Average SD %CV 

Days Amt 
Cum. 
Amt. Amt 

Cum. 
Amt. Amt 

Cum. 
Amt. Amt 

Cum. 
Amt. Amt 

Cum. 
Amt. Amt 

Cum. 
Amt. Amt 

Cum. 
Amt. 

Cum. 
Amt   

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 n.a 
2 0.010 0.010 0.008 0.008 0.005 0.005 0.008 0.008 0.024 0.024 0.010 0.010 0.008 0.008 0.010 0.006 59.215 
4 0.010 0.021 0.016 0.023 0.005 0.010 0.018 0.026 0.010 0.034 0.021 0.031 0.008 0.015 0.023 0.008 36.788 
6 0.010 0.031 0.008 0.031 0.010 0.020 0.018 0.044 0.008 0.041 0.016 0.047 0.021 0.036 0.036 0.009 25.704 
8 0.013 0.044 0.008 0.039 0.010 0.031 0.024 0.068 0.010 0.052 0.018 0.065 0.026 0.062 0.051 0.014 27.745 

10 0.018 0.062 0.010 0.049 0.005 0.036 0.008 0.075 0.018 0.070 0.010 0.075 0.021 0.083 0.064 0.017 26.120 
12 0.029 0.091 0.013 0.062 0.010 0.046 0.013 0.088 0.013 0.083 0.010 0.086 0.010 0.094 0.078 0.018 22.573 
14 0.024 0.114 0.016 0.077 0.016 0.062 0.016 0.104 0.013 0.096 0.018 0.104 0.010 0.104 0.094 0.018 19.516 
16 0.016 0.130 0.018 0.096 0.013 0.075 0.018 0.122 0.016 0.112 0.016 0.119 0.021 0.125 0.111 0.020 17.657 
18 0.021 0.151 0.018 0.114 0.013 0.087 0.018 0.140 0.013 0.124 0.013 0.132 0.016 0.140 0.127 0.021 16.675 
20 0.024 0.174 0.018 0.132 0.018 0.106 0.013 0.153 0.016 0.140 0.021 0.153 0.026 0.166 0.146 0.023 15.723 
22 0.021 0.195 0.018 0.150 0.016 0.121 0.018 0.171 0.018 0.158 0.016 0.169 0.018 0.185 0.164 0.024 14.759 
24 0.018 0.213 0.021 0.171 0.016 0.137 0.018 0.190 0.016 0.174 0.018 0.187 0.016 0.200 0.182 0.025 13.531 
26 0.021 0.234 0.021 0.192 0.021 0.158 0.016 0.205 0.016 0.189 0.013 0.200 0.018 0.219 0.200 0.024 12.116 
28 0.021 0.255 0.021 0.213 0.021 0.179 0.024 0.229 0.018 0.208 0.016 0.216 0.024 0.242 0.220 0.025 11.339 

Standard Curve Equation: Absorbance (A) = 0.0984 (Conc in μg/ml) + 0.0001 was used in the calculations. 
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Table 5.8: Cumulative amount of crystal violet released from ‘two holes’ group. The amount and cumulative amount values are in 
microgram units of weight.  

 Tube1 Tube2 Tube3 Tube4 Tube5 Tube6 Tube7 Average SD %CV 

Days Amt 
Cum. 
Amt. Amt 

Cum. 
Amt. Amt 

Cum. 
Amt. Amt 

Cum. 
Amt. Amt 

Cum. 
Amt. Amt 

Cum. 
Amt. Amt 

Cum. 
Amt. 

Cum. 
Amt   

0 0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 n.a 
2 0.029 0.029 0.039 0.039 0.016 0.016 0.010 0.010 0.034 0.034 0.029 0.029 0.029 0.029 0.027 0.010 38.319 
4 0.037 0.066 0.039 0.079 0.021 0.036 0.045 0.055 0.031 0.066 0.013 0.042 0.034 0.063 0.058 0.015 25.432 
6 0.055 0.121 0.026 0.105 0.018 0.055 0.053 0.108 0.013 0.078 0.021 0.063 0.068 0.131 0.094 0.029 31.150 
8 0.031 0.152 0.026 0.131 0.034 0.089 0.047 0.155 0.024 0.102 0.021 0.083 0.055 0.187 0.128 0.039 30.053 

10 0.039 0.192 0.039 0.170 0.037 0.126 0.034 0.189 0.013 0.115 0.018 0.102 0.068 0.255 0.164 0.054 32.897 
12 0.050 0.242 0.042 0.212 0.037 0.162 0.037 0.226 0.013 0.128 0.018 0.120 0.029 0.284 0.196 0.061 31.201 
14 0.053 0.294 0.034 0.247 0.034 0.196 0.039 0.265 0.016 0.143 0.021 0.141 0.021 0.305 0.227 0.068 29.896 
16 0.053 0.347 0.039 0.286 0.034 0.230 0.024 0.289 0.016 0.159 0.024 0.164 0.034 0.339 0.259 0.077 29.647 
18 0.042 0.389 0.037 0.323 0.039 0.270 0.024 0.312 0.021 0.180 0.029 0.193 0.029 0.368 0.291 0.081 27.821 
20 0.039 0.428 0.037 0.359 0.034 0.304 0.034 0.346 0.024 0.203 0.034 0.227 0.031 0.399 0.324 0.084 25.983 
22 0.031 0.459 0.034 0.393 0.037 0.341 0.026 0.372 0.026 0.230 0.034 0.261 0.039 0.438 0.356 0.086 24.116 
24 0.039 0.499 0.034 0.428 0.034 0.375 0.029 0.401 0.026 0.256 0.029 0.290 0.034 0.472 0.389 0.090 23.108 
26 0.037 0.536 0.034 0.462 0.037 0.411 0.029 0.430 0.029 0.285 0.037 0.327 0.034 0.507 0.422 0.091 21.556 
28 0.037 0.572 0.039 0.501 0.037 0.448 0.034 0.464 0.024 0.308 0.029 0.356 0.034 0.541 0.456 0.096 20.970 

Standard Curve Equation: Absorbance (A) = 0.0984 (Conc in μg /ml) + 0.0001 was used in the calculations. 
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Table 5.9: Cumulative amount of crystal violet released from ‘three holes’ group. The amount and cumulative amount values are in 
microgram units of weight.  

 Tube1 Tube2 Tube3 Tube4 Tube5 Tube6 Tube7 Average SD %CV 

Days Amt 
Cum. 
Amt. Amt 

Cum. 
Amt. Amt 

Cum. 
Amt. Amt 

Cum. 
Amt. Amt 

Cum. 
Amt. Amt 

Cum. 
Amt. Amt 

Cum. 
Amt. 

Cum. 
Amt   

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 n.a 
2 0.063 0.063 0.010 0.010 0.068 0.068 0.042 0.042 0.042 0.042 0.021 0.021 0.024 0.024 0.039 0.022 56.524 
4 0.047 0.110 0.024 0.034 0.039 0.108 0.042 0.084 0.042 0.084 0.058 0.079 0.050 0.073 0.082 0.025 31.134 
6 0.066 0.176 0.024 0.057 0.047 0.155 0.045 0.129 0.053 0.137 0.034 0.113 0.076 0.150 0.131 0.038 29.205 
8 0.053 0.229 0.018 0.076 0.045 0.200 0.042 0.171 0.050 0.187 0.055 0.168 0.047 0.197 0.175 0.048 27.651 

10 0.042 0.271 0.024 0.099 0.055 0.255 0.042 0.213 0.034 0.221 0.050 0.218 0.066 0.263 0.220 0.058 26.472 
12 0.063 0.334 0.018 0.117 0.045 0.300 0.029 0.242 0.050 0.271 0.047 0.265 0.058 0.321 0.264 0.072 27.411 
14 0.063 0.397 0.018 0.136 0.045 0.344 0.029 0.270 0.050 0.321 0.050 0.315 0.058 0.379 0.309 0.087 28.236 
16 0.045 0.442 0.029 0.164 0.045 0.389 0.050 0.320 0.039 0.360 0.039 0.355 0.050 0.429 0.351 0.093 26.400 
18 0.050 0.492 0.034 0.198 0.047 0.436 0.045 0.365 0.037 0.397 0.045 0.399 0.055 0.484 0.396 0.099 24.945 
20 0.045 0.536 0.029 0.227 0.047 0.484 0.047 0.412 0.037 0.433 0.050 0.449 0.058 0.542 0.441 0.106 24.112 
22 0.050 0.586 0.034 0.261 0.047 0.531 0.050 0.462 0.042 0.475 0.055 0.504 0.058 0.600 0.489 0.113 23.100 
24 0.047 0.634 0.034 0.295 0.050 0.581 0.047 0.509 0.037 0.512 0.045 0.549 0.047 0.647 0.532 0.118 22.098 
26 0.045 0.678 0.039 0.335 0.053 0.633 0.055 0.565 0.042 0.554 0.055 0.604 0.055 0.702 0.582 0.122 20.941 
28 0.053 0.731 0.031 0.366 0.055 0.689 0.045 0.609 0.050 0.604 0.053 0.657 0.045 0.747 0.629 0.128 20.385 

Standard curve equation: Absorbance (A) = 0.0984 (Conc in μg /ml) + 0.0001 was used in the calculations. 
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Table 5.10: Drug loading in ‘one hole’ group 

Tubes 

Drug 
loaded 

(μg) 
T1 115.0 
T2 134.0 
T3 117.0 
T4 126.0 
T5 125.0 
T6 113.0 
T7 138.0 

Average 124.0 
SD 9.6 

% CV 7.7 

Table 5.11: Drug loading in ‘two holes’ group 

Tubes 
Drug 

loaded (μg) 
T1 117.0 
T2 116.0 
T3 120.0 
T4 144.0 
T5 131.0 
T6 132.0 
T7 160.0 

Average  131.4 
SD 16.1 

% CV 12.2 

Table 5.12: Drug loading in ‘three holes’ group 

Tubes 
Drug 

loaded (μg) 
T1 110.0 
T2 123.0 
T3 126.0 
T4 121.0 
T5 119.0 
T6 122.0 
T7 139.0 

Average 122.6 
SD 8.7 

% CV 7.1 
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Table 5.13: Percentage cumulative drug released for ‘one hole’ group  

  Tube1 Tube2 Tube3 Tube4 Tube5 Tube6 Tube7 Average SD %CV 

Days 
Cum. 
Amt. 

% 
Cum 
Rel 

Cum. 
Amt. 

% 
Cum 
Rel 

Cum. 
Amt. 

% 
Cum 
Rel 

Cum. 
Amt. 

% 
Cum 
Rel 

Cum. 
Amt. 

% 
Cum 
Rel 

Cum. 
Amt. 

% 
Cum 
Rel 

Cum. 
Amt. 

% 
Cum 
Rel 

% 
Cum. 
Rel     

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  n.a 
2 0.010 0.009 0.008 0.006 0.005 0.004 0.008 0.006 0.024 0.019 0.010 0.009 0.008 0.006 0.008 0.005 59.153 
4 0.021 0.018 0.023 0.017 0.010 0.009 0.026 0.021 0.034 0.027 0.031 0.028 0.015 0.011 0.019 0.007 38.951 
6 0.031 0.027 0.031 0.023 0.020 0.017 0.044 0.035 0.041 0.033 0.047 0.041 0.036 0.026 0.029 0.008 27.755 
8 0.044 0.038 0.039 0.029 0.031 0.026 0.068 0.054 0.052 0.041 0.065 0.058 0.062 0.045 0.042 0.012 28.225 

10 0.062 0.054 0.049 0.036 0.036 0.030 0.075 0.060 0.070 0.056 0.075 0.067 0.083 0.060 0.052 0.013 25.673 
12 0.091 0.079 0.062 0.046 0.046 0.039 0.088 0.070 0.083 0.066 0.086 0.076 0.094 0.068 0.063 0.015 23.611 
14 0.114 0.099 0.077 0.058 0.062 0.053 0.104 0.082 0.096 0.077 0.104 0.092 0.104 0.075 0.077 0.017 22.123 
16 0.130 0.113 0.096 0.071 0.075 0.064 0.122 0.097 0.112 0.089 0.119 0.106 0.125 0.090 0.090 0.018 19.579 
18 0.151 0.131 0.114 0.085 0.087 0.075 0.140 0.111 0.124 0.100 0.132 0.117 0.140 0.102 0.103 0.019 18.603 
20 0.174 0.152 0.132 0.099 0.106 0.090 0.153 0.122 0.140 0.112 0.153 0.136 0.166 0.121 0.119 0.021 17.671 
22 0.195 0.170 0.150 0.112 0.121 0.104 0.171 0.136 0.158 0.127 0.169 0.149 0.185 0.134 0.133 0.022 16.711 
24 0.213 0.186 0.171 0.128 0.137 0.117 0.190 0.151 0.174 0.139 0.187 0.166 0.200 0.145 0.147 0.023 15.651 
26 0.234 0.204 0.192 0.143 0.158 0.135 0.205 0.163 0.189 0.152 0.200 0.177 0.219 0.158 0.162 0.023 14.241 
28 0.255 0.222 0.213 0.159 0.179 0.153 0.229 0.182 0.208 0.166 0.216 0.191 0.242 0.175 0.178 0.023 13.082 

Calculations were performed using values from Table 5.7 and the drug loading data in Table 5.10 
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Table 5.14: Percentage cumulative drug released for ‘two holes’ group  

  Tube1 Tube2 Tube3 Tube4 Tube5 Tube6 Tube7 Average SD %CV 

Days 
Cum. 
Amt. 

% 
Cum 
Rel 

Cum. 
Amt. 

% 
Cum 
Rel 

Cum. 
Amt. 

% 
Cum 
Rel 

Cum. 
Amt. 

% 
Cum 
Rel 

Cum. 
Amt. 

% 
Cum 
Rel 

Cum. 
Amt. 

% 
Cum 
Rel 

Cum. 
Amt. 

% 
Cum 
Rel 

% 
Cum. 
Rel     

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  n.a. 
2 0.029 0.025 0.039 0.034 0.016 0.013 0.010 0.007 0.034 0.026 0.029 0.022 0.029 0.018 0.021 0.009 42.876 
4 0.066 0.056 0.079 0.068 0.036 0.030 0.055 0.038 0.066 0.050 0.042 0.032 0.063 0.039 0.045 0.014 30.802 
6 0.121 0.103 0.105 0.090 0.055 0.046 0.108 0.075 0.078 0.060 0.063 0.047 0.131 0.082 0.072 0.022 30.415 
8 0.152 0.130 0.131 0.113 0.089 0.074 0.155 0.108 0.102 0.078 0.083 0.063 0.187 0.117 0.097 0.025 26.083 

10 0.192 0.164 0.170 0.147 0.126 0.105 0.189 0.131 0.115 0.088 0.102 0.077 0.255 0.159 0.124 0.035 28.044 
12 0.242 0.206 0.212 0.183 0.162 0.135 0.226 0.157 0.128 0.098 0.120 0.091 0.284 0.177 0.150 0.044 29.301 
14 0.294 0.251 0.247 0.213 0.196 0.164 0.265 0.184 0.143 0.110 0.141 0.107 0.305 0.190 0.174 0.053 30.256 
16 0.347 0.296 0.286 0.246 0.230 0.192 0.289 0.200 0.159 0.121 0.164 0.125 0.339 0.212 0.199 0.063 31.453 
18 0.389 0.332 0.323 0.278 0.270 0.225 0.312 0.217 0.180 0.137 0.193 0.146 0.368 0.230 0.224 0.069 30.694 
20 0.428 0.366 0.359 0.310 0.304 0.253 0.346 0.240 0.203 0.155 0.227 0.172 0.399 0.249 0.249 0.073 29.335 
22 0.459 0.393 0.393 0.339 0.341 0.284 0.372 0.259 0.230 0.175 0.261 0.198 0.438 0.274 0.274 0.076 27.506 
24 0.499 0.426 0.428 0.369 0.375 0.312 0.401 0.279 0.256 0.195 0.290 0.220 0.472 0.295 0.299 0.080 26.824 
26 0.536 0.458 0.462 0.398 0.411 0.343 0.430 0.299 0.285 0.217 0.327 0.248 0.507 0.317 0.326 0.083 25.593 
28 0.572 0.489 0.501 0.432 0.448 0.373 0.464 0.322 0.308 0.235 0.356 0.269 0.541 0.338 0.351 0.089 25.247 

Calculations were performed using values from Table 5.8 and the drug loading data in Table 5.11 



 176

Table 5.15: Percentage cumulative drug released for ‘three holes’ group  

  Tube1 Tube2 Tube3 Tube4 Tube5 Tube6 Tube7 Average SD %CV 

Days 
Cum. 
Amt. 

% 
Cum 
Rel 

Cum. 
Amt. 

% 
Cum 
Rel 

Cum. 
Amt. 

% 
Cum 
Rel 

Cum. 
Amt. 

% Cum 
Rel 

Cum. 
Amt. 

% 
Cum 
Rel 

Cum. 
Amt. 

% 
Cum 
Rel 

Cum. 
Amt. 

% 
Cum 
Rel 

% 
Cum. 
Rel     

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  n.a 
2 0.063 0.057 0.010 0.008 0.068 0.054 0.042 0.035 0.042 0.035 0.021 0.017 0.024 0.017 0.032 0.019 59.376 
4 0.110 0.100 0.034 0.027 0.108 0.086 0.084 0.069 0.084 0.071 0.079 0.065 0.073 0.053 0.067 0.023 34.574 
6 0.176 0.160 0.057 0.047 0.155 0.123 0.129 0.106 0.137 0.115 0.113 0.092 0.150 0.108 0.107 0.034 31.844 
8 0.229 0.208 0.076 0.061 0.200 0.159 0.171 0.141 0.187 0.157 0.168 0.138 0.197 0.142 0.144 0.043 30.270 

10 0.271 0.246 0.099 0.081 0.255 0.202 0.213 0.176 0.221 0.185 0.218 0.179 0.263 0.189 0.180 0.050 27.730 
12 0.334 0.304 0.117 0.095 0.300 0.238 0.242 0.200 0.271 0.227 0.265 0.217 0.321 0.231 0.216 0.062 28.864 
14 0.397 0.361 0.136 0.110 0.344 0.273 0.270 0.223 0.321 0.269 0.315 0.258 0.379 0.272 0.253 0.075 29.813 
16 0.442 0.402 0.164 0.134 0.389 0.309 0.320 0.265 0.360 0.302 0.355 0.291 0.429 0.308 0.287 0.080 27.839 
18 0.492 0.447 0.198 0.161 0.436 0.346 0.365 0.302 0.397 0.333 0.399 0.327 0.484 0.348 0.324 0.085 26.247 
20 0.536 0.488 0.227 0.185 0.484 0.384 0.412 0.341 0.433 0.364 0.449 0.368 0.542 0.390 0.360 0.090 25.090 
22 0.586 0.533 0.261 0.212 0.531 0.421 0.462 0.382 0.475 0.399 0.504 0.413 0.600 0.431 0.399 0.096 23.953 
24 0.634 0.576 0.295 0.240 0.581 0.461 0.509 0.421 0.512 0.430 0.549 0.450 0.647 0.465 0.435 0.100 22.975 
26 0.678 0.617 0.335 0.272 0.633 0.503 0.565 0.467 0.554 0.466 0.604 0.495 0.702 0.505 0.475 0.103 21.652 
28 0.731 0.664 0.366 0.298 0.689 0.546 0.609 0.504 0.604 0.508 0.657 0.538 0.747 0.537 0.514 0.109 21.288 

      Calculations were performed using values from Table 5.9 and the drug loading data in Table 5.12 
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Table 5.16: Absorbance readings for ‘one small hole’ group belonging to ‘large tubes’ 

 Days 
Tubes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

T1 2.001 1.839 1.233 2.021 1.138 1.005 1.392 1.282 1.189 0.986 0.799 0.923 0.875 0.747 0.690 0.817 0.872 
T2 0.429 0.457 0.485 0.731 0.440 0.444 0.614 0.452 0.531 0.569 0.557 0.605 0.750 0.643 0.621 0.925 0.661 
T3 0.475 0.530 0.648 1.307 0.846 1.012 1.368 0.921 1.177 1.141 0.976 1.045 1.078 1.088 0.980 0.831 1.028 
T4 0.604 0.646 0.829 1.314 0.921 0.981 1.229 0.935 1.094 0.877 0.788 0.838 0.755 0.780 0.819 0.918 0.812 
T5 0.452 0.632 0.802 0.996 0.821 1.059 1.160 0.860 1.043 0.965 1.001 1.011 0.918 0.865 0.920 0.800 0.800 
T6 0.570 0.760 0.849 1.210 0.820 1.064 1.130 0.822 0.940 0.835 0.740 0.791 0.767 0.760 0.674 0.768 0.724 
T7 0.056 0.158 0.625 1.323 0.941 1.118 1.366 0.985 1.073 0.910 0.847 1.017 0.885 0.766 0.652 0.693 0.738 
T8 0.064 0.138 0.117 1.092 0.790 1.116 0.918 0.700 0.860 0.777 0.523 0.589 0.521 0.501 0.752 0.793 0.745 
T9 0.256 0.277 0.263 0.352 0.258 0.327 0.375 0.275 0.306 0.297 0.229 0.288 0.307 0.301 0.814 0.768 0.742 

T10 0.597 0.954 1.153 1.493 1.023 1.135 1.179 0.930 0.998 0.826 0.683 0.858 0.799 0.671 0.781 0.892 0.789 
T11 0.059 1.287 1.242 1.705 1.048 1.331 1.513 0.986 1.058 0.903 0.702 0.752 0.800 0.738 0.624 0.828 0.678 
T12 0.253 0.257 0.294 0.390 0.300 0.355 0.400 0.293 0.316 0.389 0.346 0.389 0.409 0.391 0.723 0.758 0.738 

Average 0.485 0.661 0.712 1.161 0.779 0.912 1.054 0.787 0.882 0.790 0.683 0.759 0.739 0.688 0.754 0.816 0.777 
SD 0.521 0.502 0.379 0.494 0.291 0.337 0.391 0.304 0.318 0.249 0.234 0.246 0.221 0.212 0.114 0.069 0.098 

%CV 107.49 75.92 53.27 42.55 37.35 36.94 37.14 38.64 36.05 31.56 34.30 32.46 29.95 30.77 15.15 8.45 12.59 
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 Days    

Tubes 18 19 20 21 22 23 24 25 26 27 28 Average SD 
% 
CV 

T1 0.387 0.414 0.522 0.560 0.409 0.427 0.605 0.622 0.594 0.525 0.588 1.165 0.426 36.53 
T2 0.485 0.787 0.737 0.534 0.648 0.466 0.486 0.474 0.479 0.629 0.475 0.583 0.134 23.05 
T3 0.750 0.809 0.792 0.766 0.673 0.764 0.822 0.898 0.804 0.885 0.797 0.968 0.245 25.31 
T4 0.799 0.862 0.904 0.839 0.714 0.731 0.767 0.757 0.810 0.786 0.819 0.891 0.185 20.78 
T5 0.698 0.618 0.806 0.885 0.701 0.550 0.687 0.793 0.845 0.802 0.832 0.889 0.169 19.06 
T6 0.622 0.651 0.653 0.661 0.567 0.568 0.591 0.599 0.591 0.571 0.585 0.837 0.164 19.63 
T7 0.611 0.718 0.654 0.711 0.733 0.625 0.679 0.718 0.765 0.762 0.745 0.833 0.345 41.49 
T8 0.568 0.597 0.570 0.588 0.555 0.550 0.615 0.563 0.713 0.706 0.648 0.647 0.312 48.19 
T9 0.363 0.361 0.385 0.364 0.313 0.302 0.349 0.319 0.344 0.316 0.320 0.379 0.193 50.92 

T10 0.752 0.764 0.724 0.699 0.670 0.644 0.721 0.700 0.767 0.750 0.698 0.927 0.224 24.12 
T11 0.504 0.533 0.615 0.644 0.699 0.645 0.765 0.698 0.817 0.640 0.768 0.956 0.388 40.61 
T12 0.590 0.547 0.535 0.626 0.519 0.496 0.526 0.523 0.579 0.539 0.536 0.412 0.164 39.88 

Average 0.594 0.638 0.658 0.656 0.600 0.564 0.634 0.639 0.676 0.659 0.651 0.790 0.153 19.36 
SD 0.141 0.157 0.144 0.141 0.132 0.130 0.135 0.156 0.157 0.156 0.156 0.293 0.136 46.38 

%CV 23.81 24.65 21.91 21.44 22.00 23.09 21.28 24.48 23.30 23.67 24.03 38.858 23.397 60.21 
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Table 5.17: Absorbance readings for ‘one big hole’ group belonging to ‘large tubes’ 

 
 Days 

Tubes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
T1 0.235 0.645 0.606 0.643 0.630 0.628 0.640 0.677 0.727 0.678 0.662 0.661 0.623 0.529 0.529 0.435 0.557 
T2 0.417 0.493 0.510 0.536 0.526 0.659 0.604 0.532 0.541 0.510 0.518 0.545 0.495 0.528 0.528 0.431 0.460 
T3 0.132 0.305 0.309 0.328 0.368 0.411 0.401 0.423 0.417 0.376 0.395 0.423 0.356 0.470 0.470 0.376 0.341 
T4 0.563 0.612 0.632 0.659 0.850 0.862 0.791 0.706 0.593 0.619 0.629 0.621 0.737 0.671 0.671 0.555 0.713 
T5 0.508 0.619 0.628 0.659 0.721 1.011 0.905 0.838 0.982 0.981 0.830 0.899 0.866 0.910 0.910 0.732 0.548 
T6 0.876 0.370 0.384 0.400 0.893 0.527 0.880 0.662 0.794 0.786 0.674 0.783 0.637 0.792 0.792 0.648 0.745 
T7 0.545 0.427 0.435 0.456 0.579 0.589 0.589 0.507 0.550 0.538 0.544 0.532 0.567 0.588 0.588 0.531 0.512 
T8 0.526 0.330 0.347 0.361 0.444 0.379 0.372 0.327 0.339 0.335 0.329 0.369 0.367 0.427 0.427 0.414 0.451 
T9 0.319 0.735 0.735 0.760 0.502 0.767 0.610 0.724 0.761 0.665 0.650 0.632 0.766 0.761 0.761 0.666 0.746 

T10 0.621 0.548 0.572 0.598 0.541 0.553 0.683 0.662 0.671 0.550 0.539 0.624 0.577 0.521 0.521 0.535 0.471 
T11 0.748 0.509 0.533 0.555 0.541 0.746 0.752 0.633 0.642 0.622 0.679 0.749 0.581 0.761 0.761 0.663 0.636 
T12 0.419 0.311 0.330 0.344 0.386 0.399 0.381 0.381 0.399 0.470 0.482 0.495 0.496 0.467 0.467 0.457 0.465 

Average 0.492 0.492 0.502 0.525 0.582 0.628 0.634 0.589 0.618 0.594 0.578 0.611 0.589 0.619 0.619 0.537 0.554 
SD 0.208 0.144 0.139 0.145 0.167 0.194 0.182 0.155 0.185 0.176 0.138 0.152 0.152 0.156 0.156 0.118 0.130 

%CV 42.22 29.36 27.74 27.56 28.69 30.93 28.75 26.27 29.94 29.69 23.85 24.81 25.86 25.17 25.17 21.92 23.53 
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 Days    

Tubes 18 19 20 21 22 23 24 25 26 27 28 Average SD 
% 
CV 

T1 0.401 0.635 0.598 0.617 0.492 0.344 0.472 0.416 0.507 0.403 0.546 0.594 0.116 19.51 
T2 0.452 0.521 0.470 0.491 0.414 0.416 0.468 0.503 0.488 0.523 0.555 0.520 0.057 10.94 
T3 0.321 0.528 0.374 0.329 0.293 0.320 0.321 0.337 0.318 0.296 0.316 0.371 0.078 21.17 
T4 0.703 0.692 0.666 0.616 0.622 0.508 0.557 0.539 0.586 0.647 0.481 0.676 0.091 13.51 
T5 0.810 0.847 0.542 0.809 0.738 0.533 0.550 0.790 0.756 0.824 0.765 0.797 0.159 19.94 
T6 0.640 0.590 0.695 0.597 0.714 0.445 0.658 0.559 0.534 0.599 0.559 0.685 0.173 25.19 
T7 0.484 0.499 0.484 0.530 0.438 0.482 0.483 0.437 0.452 0.476 0.470 0.534 0.052 9.83 
T8 0.440 0.524 0.508 0.407 0.741 0.605 0.637 0.628 0.445 0.475 0.455 0.385 0.055 14.38 
T9 0.537 0.760 0.585 0.424 0.676 0.718 0.685 0.641 0.384 0.406 0.411 0.680 0.118 17.40 

T10 0.469 0.464 0.434 0.349 0.302 0.298 0.297 0.378 0.267 0.385 0.425 0.576 0.059 10.28 
T11 0.521 0.551 0.497 0.462 0.526 0.652 0.650 0.675 0.619 0.692 0.573 0.654 0.088 13.53 
T12 0.425 0.425 0.381 0.395 0.390 0.407 0.377 0.447 0.420 0.470 0.473 0.421 0.059 14.12 

Average 0.517 0.586 0.520 0.502 0.529 0.477 0.513 0.529 0.481 0.516 0.502    
SD 0.138 0.125 0.102 0.139 0.166 0.133 0.133 0.135 0.134 0.149 0.111    

%CV 26.72 21.39 19.70 27.64 31.36 27.77 25.94 25.55 27.79 28.95 22.09    



 181

Table 5.18: Absorbance readings for ‘two holes’ group belonging to ‘large tubes’ 

 Days 
Tubes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

T1 0.728 1.044 1.176 1.256 0.887 0.787 0.673 0.763 0.802 0.743 0.585 0.564 0.595 0.604 0.461 0.514 0.509 
T2 0.660 0.861 0.985 1.035 1.003 1.070 1.064 0.917 1.013 0.916 0.937 0.888 0.871 0.917 0.789 0.857 0.807 
T3 0.748 0.804 0.738 0.762 1.108 1.052 1.115 0.867 1.006 0.858 0.960 0.951 1.039 0.717 0.574 0.619 0.572 
T4 0.684 0.895 0.642 0.681 0.730 1.099 0.830 0.942 0.939 0.902 0.771 0.809 0.905 0.586 0.504 0.779 0.740 
T5 0.720 0.988 1.108 1.275 1.091 1.146 1.087 1.086 0.988 1.126 0.957 0.891 0.928 0.962 0.582 0.557 0.789 
T6 0.677 0.814 0.986 1.047 1.502 1.153 1.254 1.056 1.275 0.943 0.951 1.216 1.219 1.223 0.877 1.077 1.073 
T7 0.544 0.852 1.049 1.126 0.881 0.741 0.810 0.916 0.925 0.857 0.866 0.862 0.767 0.595 0.442 0.458 0.454 
T8 0.815 0.723 0.638 0.567 0.774 0.631 0.653 0.725 0.633 0.631 0.682 0.556 0.451 0.645 0.574 0.608 0.582 
T9 0.633 0.796 0.673 0.707 0.559 0.642 0.701 0.710 0.716 0.686 0.567 0.702 0.705 0.325 0.263 0.331 0.264 

T10 0.937 0.872 0.998 1.052 0.968 1.041 1.400 1.173 1.118 1.189 0.900 1.043 1.110 0.699 0.637 0.658 0.646 
T11 0.515 0.695 0.802 0.840 0.722 0.679 0.709 0.736 0.590 0.544 0.574 0.690 0.539 0.702 0.477 0.463 0.505 
T12 0.648 0.742 0.848 0.862 0.832 0.763 1.139 0.907 0.883 0.868 0.893 0.829 0.883 0.633 0.759 0.787 0.795 

Average 0.716 0.930 1.049 1.170 1.235 1.293 1.418 1.446 1.530 1.559 1.588 1.692 1.770 1.739 1.688 1.824 1.903 
SD 0.113 0.103 0.188 0.231 0.243 0.209 0.254 0.151 0.198 0.188 0.160 0.191 0.233 0.227 0.170 0.205 0.211 

%CV 15.77 11.06 17.92 19.75 19.68 16.17 17.90 10.41 12.96 12.03 10.07 11.26 13.15 13.06 10.06 11.25 11.10 
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 Days    

Tubes 18 19 20 21 22 23 24 25 26 27 28 Average SD 
% 
CV 

T1 0.547 0.565 0.545 0.542 0.484 0.52 0.501 0.486 0.514 0.532 0.483 0.747 0.232 31.01
T2 0.773 0.827 0.921 0.809 0.738 0.838 0.761 0.866 0.762 0.857 0.797 0.917 0.107 11.72
T3 0.621 0.676 1.004 0.883 0.855 0.855 0.592 0.555 0.852 0.89 0.849 0.852 0.18 21.1 
T4 0.744 0.778 0.536 0.469 0.449 0.475 0.725 0.482 0.483 0.487 0.475 0.79 0.149 18.83
T5 0.559 0.603 0.817 0.534 0.726 0.786 0.778 0.764 0.537 0.778 0.781 0.958 0.199 20.75
T6 1.095 1.264 1.159 1.057 0.777 1.032 1.039 0.814 1.006 1.078 1.049 1.079 0.198 18.39
T7 0.43 0.706 0.553 0.443 0.582 0.605 0.646 0.435 0.589 0.735 0.43 0.773 0.207 26.72
T8 0.591 0.656 0.485 0.589 0.564 0.578 0.584 0.454 0.586 0.487 0.59 0.64 0.087 13.62
T9 0.251 0.279 0.326 0.26 0.304 0.306 0.261 0.259 0.247 0.277 0.343 0.587 0.176 30.02

T10 0.7 0.76 0.995 0.998 0.994 0.935 0.961 0.942 0.921 0.705 0.945 0.967 0.214 22.17
T11 0.562 0.504 0.541 0.387 0.482 0.568 0.502 0.587 0.507 0.494 0.481 0.634 0.116 18.29
T12 0.575 0.836 0.605 0.751 0.51 0.521 0.733 0.541 0.52 0.785 0.77 0.828 0.113 13.71

Average 1.958 2.112 2.191 2.209 2.267 2.386 2.468 2.476 2.579 2.7 2.769    
SD 0.204 0.235 0.26 0.253 0.197 0.216 0.21 0.204 0.216 0.224 0.227    

%CV 10.43 11.13 11.88 11.43 8.7 9.07 8.51 8.24 8.38 8.29 8.22    
 
 



 183

Table 5.19: Cumulative amount of crystal violet released from ‘one small hole’ group 
belonging to ‘large tubes’. The amount and cumulative amount values are in 
microgram units of weight.  

  Tube1 Tube2 Tube3 Tube4 

Days Amt 
Cum. 
Amt. Amt 

Cum. 
Amt. Amt 

Cum. 
Amt. Amt 

Cum. 
Amt. 

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
1 28.932 28.932 6.497 6.497 7.153 7.153 8.994 8.994 
2 26.620 55.553 6.896 13.393 7.938 15.091 9.594 18.588 
3 17.971 73.524 7.296 20.689 9.622 24.714 12.206 30.794 
4 29.218 102.742 10.807 31.496 19.028 43.741 19.127 49.921 
5 16.616 119.358 6.654 38.149 12.448 56.189 13.519 63.440 
6 14.717 134.075 6.711 44.860 14.817 71.007 14.375 77.814 
7 20.241 154.316 9.137 53.997 19.898 90.905 17.914 95.729 
8 18.671 172.987 6.825 60.822 13.519 104.423 13.718 109.447 
9 17.343 190.330 7.952 68.775 17.172 121.596 15.988 125.435 

10 14.446 204.776 8.495 77.269 16.658 138.254 12.891 138.325 
11 11.777 216.554 8.324 85.593 14.304 152.558 11.620 149.946 
12 13.547 230.101 9.009 94.601 15.288 167.846 12.334 162.280 
13 12.862 242.963 11.078 105.679 15.759 183.605 11.149 173.429 
14 11.035 253.998 9.551 115.230 15.902 199.507 11.506 184.935 
15 10.222 264.220 9.237 124.467 14.361 213.868 12.063 196.998 
16 12.034 276.254 13.576 138.043 12.234 226.102 13.476 210.474 
17 12.819 289.073 9.808 147.851 15.046 241.147 11.963 222.437 
18 5.897 294.971 7.296 155.147 11.078 252.225 11.777 234.214 
19 6.283 301.253 11.606 166.753 11.920 264.146 12.676 246.891 
20 7.824 309.077 10.892 177.645 11.677 275.823 13.276 260.167 
21 8.366 317.443 7.995 185.640 11.306 287.129 12.348 272.515 
22 6.211 323.655 9.622 195.263 9.979 297.108 10.564 283.079 
23 6.468 330.123 7.025 202.287 11.278 308.386 10.807 293.886 
24 9.009 339.131 7.310 209.598 12.106 320.492 11.321 305.206 
25 9.251 348.382 7.139 216.736 13.190 333.682 11.178 316.384 
26 8.852 357.234 7.210 223.947 11.849 345.531 11.934 328.319 
27 7.867 365.101 9.351 233.298 13.005 358.536 11.592 339.911 
28 8.766 373.867 7.153 240.451 11.749 370.284 12.063 351.973 

Standard curve equation: Absorbance (A) = 0.1051 (Conc in μg /ml) -0.0262 was used in the calculations 
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  Tube5 Tube6 Tube7 Tube8 

Days Amt 
Cum. 
Amt. Amt 

Cum. 
Amt. Amt 

Cum. 
Amt. Amt 

Cum. 
Amt. 

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
1 6.825 6.825 8.509 8.509 1.173 1.173 1.287 1.287 
2 9.394 16.219 11.221 19.730 2.629 3.802 2.343 3.631 
3 11.820 28.039 12.491 32.221 9.294 13.096 2.044 5.675 
4 14.589 42.628 17.643 49.864 19.256 32.352 15.959 21.634 
5 12.091 54.719 12.077 61.941 13.804 46.156 11.649 33.283 
6 15.488 70.207 15.559 77.500 16.330 62.486 16.302 49.584 
7 16.930 87.137 16.501 94.002 19.870 82.356 13.476 63.060 
8 12.648 99.785 12.106 106.108 14.432 96.788 10.364 73.424 
9 15.260 115.045 13.790 119.897 15.688 112.476 12.648 86.072 

10 14.147 129.191 12.291 132.188 13.362 125.837 11.463 97.536 
11 14.660 143.852 10.935 143.124 12.462 138.300 7.838 105.374 
12 14.803 158.655 11.663 154.787 14.889 153.188 8.780 114.154 
13 13.476 172.130 11.321 166.108 13.005 166.193 7.810 121.964 
14 12.719 184.850 11.221 177.328 11.306 177.500 7.524 129.488 
15 13.504 198.354 9.993 187.322 9.679 187.179 11.107 140.595 
16 11.792 210.146 11.335 198.657 10.265 197.443 11.692 152.286 
17 11.792 221.937 10.707 209.363 10.907 208.350 11.007 163.293 
18 10.336 232.273 9.251 218.615 9.094 217.444 8.480 171.774 
19 9.194 241.467 9.665 228.280 10.621 228.066 8.894 180.668 
20 11.877 253.344 9.694 237.973 9.708 237.774 8.509 189.177 
21 13.005 266.349 9.808 247.781 10.521 248.295 8.766 197.943 
22 10.379 276.728 8.466 256.247 10.835 259.130 8.295 206.238 
23 8.224 284.951 8.480 264.728 9.294 268.424 8.224 214.461 
24 10.179 295.130 8.809 273.537 10.065 278.489 9.151 223.613 
25 11.692 306.822 8.923 282.460 10.621 289.110 8.409 232.022 
26 12.434 319.256 8.809 291.268 11.292 300.402 10.550 242.572 
27 11.820 331.076 8.523 299.792 11.249 311.652 10.450 253.022 
28 12.248 343.324 8.723 308.515 11.007 322.658 9.622 262.644 
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  Tube9 Tube10 Tube11 Tube12 Average SD %CV 
Days Amt Cum. Amt. Amt Cum. Amt. Amt Cum. Amt. Amt Cum. Amt. Cum. Amt     

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  n.a 
1 4.028 4.028 8.894 8.894 1.216 1.216 3.985 3.985 7.291 7.435 101.978
2 4.327 8.355 13.990 22.884 18.742 19.958 4.042 8.027 17.103 13.701 80.113 
3 4.127 12.482 16.830 39.714 18.100 38.058 4.570 12.597 27.633 18.085 65.446 
4 5.398 17.880 21.682 61.396 24.708 62.766 5.940 18.537 44.580 23.924 53.665 
5 4.056 21.936 14.974 76.370 15.331 78.097 4.656 23.192 56.069 27.266 48.630 
6 5.041 26.977 16.573 92.943 19.370 97.467 5.441 28.633 69.463 30.405 43.771 
7 5.726 32.703 17.201 110.144 21.968 119.435 6.083 34.716 84.875 35.125 41.384 
8 4.299 37.002 13.647 123.791 14.446 133.881 4.556 39.271 96.477 39.250 40.683 
9 4.741 41.743 14.618 138.408 15.474 149.355 4.884 44.155 109.441 43.248 39.517 

10 4.613 46.356 12.163 150.571 13.262 162.617 5.926 50.081 121.083 46.223 38.175 
11 3.642 49.998 10.122 160.693 10.393 173.010 5.312 55.393 131.199 48.758 37.163 
12 4.484 54.482 12.619 173.312 11.107 184.116 5.926 61.319 142.403 51.655 36.273 
13 4.755 59.238 11.777 185.089 11.792 195.908 6.211 67.530 153.320 54.211 35.358 
14 4.670 63.908 9.951 195.040 10.907 206.814 5.954 73.484 163.507 56.543 34.581 
15 11.991 75.899 11.520 206.560 9.280 216.094 10.693 84.177 174.644 56.641 32.432 
16 11.335 87.234 13.105 219.665 12.191 228.285 11.192 95.369 186.663 56.848 30.455 
17 10.964 98.198 11.635 231.300 10.050 238.336 10.907 106.276 198.130 57.518 29.030 
18 5.555 103.753 11.107 242.406 7.567 245.903 8.794 115.070 206.983 58.165 28.102 
19 5.526 109.279 11.278 253.684 7.981 253.884 8.181 123.251 216.468 58.778 27.153 
20 5.869 115.147 10.707 264.391 9.151 263.035 8.010 131.261 226.235 59.836 26.449 
21 5.569 120.716 10.350 274.741 9.565 272.600 9.308 140.569 235.977 61.062 25.876 
22 4.841 125.558 9.936 284.677 10.350 282.951 7.781 148.350 244.915 61.999 25.315 
23 4.684 130.242 9.565 294.243 9.579 292.530 7.453 155.803 253.339 63.188 24.942 
24 5.355 135.597 10.664 304.907 11.292 303.822 7.881 163.684 262.767 64.798 24.660 
25 4.927 140.523 10.364 315.271 10.336 314.158 7.838 171.522 272.256 66.679 24.491 
26 5.284 145.807 11.321 326.592 12.034 326.192 8.637 180.160 282.273 68.384 24.226 
27 4.884 150.691 11.078 337.670 9.508 335.700 8.067 188.226 292.056 69.895 23.932 
28 4.941 155.632 10.336 348.006 11.335 347.035 8.024 196.250 301.720 71.725 23.772 
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Table 5.20: Cumulative amount of crystal violet released from ‘one big hole’ group 
belonging to ‘large tubes’. The amount and cumulative amount values are in 
microgram units of weight.  

 
  Tube1 Tube2 Tube3 Tube4 

Days Amt 
Cum. 
Amt. Amt 

Cum. 
Amt. Amt 

Cum. 
Amt. Amt 

Cum. 
Amt. 

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
1 7.456 7.456 12.651 12.651 4.516 4.516 16.818 16.818 
2 19.159 26.615 14.820 27.471 9.454 13.970 18.217 35.035 
3 18.046 44.660 15.305 42.776 9.568 23.538 18.788 53.823 
4 19.102 63.762 16.048 58.824 10.110 33.648 19.559 73.382 
5 18.731 82.493 15.762 74.586 11.252 44.900 25.010 98.392 
6 18.674 101.167 19.559 94.145 12.480 57.380 25.353 123.745 
7 19.016 120.183 17.989 112.133 12.194 69.574 23.326 147.071 
8 20.072 140.255 15.933 128.067 12.822 82.396 20.900 167.971 
9 21.500 161.755 16.190 144.257 12.651 95.047 17.675 185.646 

10 20.101 181.855 15.305 159.562 11.480 106.527 18.417 204.063 
11 19.644 201.500 15.534 175.096 12.023 118.550 18.702 222.765 
12 19.616 221.115 16.304 191.401 12.822 131.372 18.474 241.239 
13 18.531 239.646 14.877 206.278 10.910 142.282 21.785 263.024 
14 15.848 255.494 15.819 222.097 14.164 156.445 19.901 282.925 
15 13.165 268.658 13.050 235.147 11.480 167.926 16.590 299.515 
16 16.647 285.305 13.878 249.026 10.481 178.407 21.100 320.615 
17 12.194 297.500 13.650 262.676 9.911 188.318 20.814 341.429 
18 16.219 313.718 13.479 276.154 9.968 198.285 16.647 358.076 
19 18.873 332.592 15.619 291.774 15.819 214.105 20.500 378.577 
20 17.817 350.409 14.164 305.937 11.423 225.528 19.758 398.335 
21 18.360 368.769 14.763 320.700 10.139 235.667 18.331 416.666 
22 14.792 383.560 12.565 333.265 9.111 244.778 18.502 435.168 
23 10.567 394.127 12.622 345.888 9.882 254.660 15.248 450.417 
24 14.221 408.348 14.107 359.994 9.911 264.571 16.647 467.064 
25 12.622 420.971 15.106 375.100 10.367 274.938 16.133 483.197 
26 15.220 436.190 14.677 389.777 9.825 284.763 17.475 500.672 
27 6.126 442.316 7.838 397.616 4.598 289.362 9.608 510.280 
28 8.167 450.482 7.125 404.740 4.884 294.245 7.239 517.519 

Standard curve equation: Absorbance (A) = 0.1051 (Conc in μg /ml) -0.0262 was used in the calculations 
 

Table 5.20 continues on next page – 
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  Tube5 Tube6 Tube7 Tube8 

Days Amt 
Cum. 
Amt. Amt 

Cum. 
Amt. Amt 

Cum. 
Amt. Amt 

Cum. 
Amt. 

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
1 15.248 15.248 25.753 25.753 16.304 16.304 15.762 15.762 
2 18.417 33.665 11.309 37.062 12.936 29.241 10.167 25.930 
3 18.674 52.339 11.709 48.771 13.165 42.405 10.653 36.582 
4 19.559 71.897 12.166 60.936 13.764 56.169 11.052 47.635 
5 21.328 93.225 26.238 87.174 17.275 73.444 13.422 61.056 
6 29.606 122.832 15.791 102.965 17.560 91.005 11.566 72.622 
7 26.580 149.412 25.867 128.832 17.560 108.565 11.366 83.989 
8 24.668 174.080 19.644 148.476 15.220 123.785 10.082 94.070 
9 28.778 202.858 23.412 171.888 16.447 140.232 10.424 104.495 

10 28.750 231.608 23.184 195.071 16.105 156.337 10.310 114.805 
11 24.440 256.048 19.987 215.058 16.276 172.613 10.139 124.944 
12 26.409 282.457 23.098 238.156 15.933 188.546 11.281 136.225 
13 25.467 307.924 18.931 257.087 16.932 205.479 11.224 147.448 
14 26.723 334.647 23.355 280.441 17.532 223.010 12.936 160.384 
15 21.642 356.289 19.245 299.686 15.905 238.915 12.565 172.950 
16 16.390 372.679 22.013 321.699 15.363 254.278 13.621 186.571 
17 23.869 396.548 19.016 340.716 14.563 268.841 13.307 199.878 
18 18.188 414.736 16.647 357.363 14.392 283.233 13.907 213.785 
19 24.925 439.661 17.589 374.951 14.991 298.225 15.705 229.490 
20 16.219 455.880 20.586 395.538 14.563 312.788 15.248 244.738 
21 23.840 479.720 17.789 413.326 15.876 328.664 12.365 257.104 
22 21.814 501.534 21.128 434.455 13.250 341.914 21.899 279.003 
23 15.962 517.496 13.450 447.905 14.506 356.421 18.017 297.020 
24 16.447 533.943 19.530 467.435 14.535 370.955 18.931 315.951 
25 23.298 557.241 16.704 484.139 13.222 384.177 18.674 334.624 
26 22.327 579.568 15.990 500.129 13.650 397.827 13.450 348.074 
27 12.134 591.702 8.923 509.052 7.167 404.994 7.153 355.227 
28 11.292 602.994 8.352 517.404 7.082 412.076 6.868 362.095 

 
Table 5.20 continues on next page -  
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  Tube9 Tube10 Tube11 Tube12 Average SD %CV 
Days Amt Cum. Amt. Amt Cum. Amt. Amt Cum. Amt. Amt Cum. Amt. Cum. Amt     

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  n.a 
1 9.853 9.853 18.474 18.474 22.099 22.099 12.708 12.708 14.804 5.468 36.936
2 21.728 31.581 16.390 34.864 15.277 37.376 9.625 22.333 29.595 15.661 52.919
3 21.728 53.309 17.075 51.939 15.962 53.338 10.167 32.500 44.665 17.288 38.706
4 22.441 75.751 17.817 69.756 16.590 69.928 10.567 43.068 60.396 19.172 31.744
5 15.077 90.828 16.190 85.947 16.190 86.118 11.766 54.833 77.750 22.272 28.645
6 22.641 113.469 16.533 102.480 22.042 108.160 12.137 66.971 96.412 25.140 26.076
7 18.160 131.629 20.244 122.723 22.213 130.373 11.623 78.594 115.256 25.942 22.508
8 21.414 153.043 19.644 142.367 18.816 149.189 11.623 90.217 132.826 30.106 22.665
9 22.470 175.513 19.901 162.268 19.073 168.263 12.137 102.354 151.215 34.757 22.985

10 19.730 195.243 16.447 178.716 18.502 186.765 14.164 116.518 168.922 39.239 23.229
11 19.302 214.544 16.133 194.849 20.129 206.894 14.506 131.024 186.157 42.927 23.060
12 18.788 233.332 18.559 213.408 22.127 229.022 14.877 145.901 204.348 46.920 22.961
13 22.613 255.945 17.218 230.626 17.332 246.354 14.906 160.807 221.908 50.995 22.980
14 22.470 278.415 15.619 246.245 22.470 268.824 14.078 174.885 240.318 54.929 22.857
15 19.758 298.173 16.019 262.265 19.673 288.497 13.793 188.677 256.392 57.844 22.561
16 22.042 320.215 14.192 276.457 18.902 307.399 14.021 202.698 272.946 60.630 22.213
17 16.076 336.291 14.135 290.592 15.619 323.018 12.879 215.578 288.449 63.978 22.180
18 15.990 352.282 14.592 305.184 15.534 338.552 11.852 227.429 303.233 66.080 21.792
19 22.441 374.723 13.992 319.176 16.476 355.028 12.879 240.308 320.717 68.869 21.473
20 17.446 392.169 13.136 332.312 14.934 369.962 11.623 251.931 336.294 70.950 21.098
21 12.851 405.020 10.710 343.022 13.935 383.897 12.023 263.954 351.376 74.012 21.064
22 20.044 425.064 9.368 352.390 15.762 399.659 11.880 275.834 367.219 76.860 20.930
23 21.243 446.306 9.254 361.644 19.359 419.018 12.365 288.200 381.592 78.418 20.550
24 20.301 466.607 9.225 370.870 19.302 438.320 11.509 299.709 396.980 80.683 20.324
25 19.045 485.652 11.538 382.407 20.015 458.335 13.507 313.216 412.833 83.423 20.208
26 11.709 497.361 8.369 390.776 18.417 476.752 12.736 325.952 427.320 86.225 20.178
27 6.168 503.529 5.869 396.645 10.250 487.002 7.082 333.034 435.063 87.853 20.193
28 6.240 509.769 6.440 403.085 8.552 495.554 7.125 340.159 442.510 89.047 20.123
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Table 5.21: Cumulative amount of crystal violet released from ‘two holes’ group 
belonging to ‘large tubes’. The amount and cumulative amount values are in 
microgram units of weight.  

 
  Tube1 Tube2 Tube3 Tube4 

Days Amt 
Cum. 
Amt. Amt 

Cum. 
Amt. Amt 

Cum. 
Amt. Amt 

Cum. 
Amt. 

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
1 21.528 21.528 19.587 19.587 22.099 22.099 20.272 20.272 
2 30.548 52.076 25.324 44.912 23.697 45.796 26.295 46.567 
3 34.316 86.392 28.864 73.775 21.814 67.610 19.073 65.640 
4 36.599 122.991 30.291 104.067 22.499 90.108 20.186 85.827 
5 26.067 149.058 29.378 133.444 32.375 122.483 21.585 107.412 
6 23.212 172.270 31.290 164.735 30.776 153.260 32.118 139.530 
7 19.958 192.228 31.119 195.853 32.575 185.834 24.440 163.970 
8 22.527 214.755 26.923 222.776 25.496 211.330 27.637 191.606 
9 23.640 238.396 29.663 252.440 29.463 240.794 27.551 219.157 

10 21.956 260.352 26.894 279.334 25.239 266.032 26.495 245.652 
11 17.446 277.798 27.494 306.828 28.150 294.183 22.755 268.407 
12 16.847 294.645 26.095 332.923 27.893 322.076 23.840 292.247 
13 17.732 312.377 25.610 358.533 30.405 352.481 26.580 318.828 
14 17.989 330.365 26.923 385.456 21.214 373.696 17.475 336.303 
15 13.907 344.272 23.269 408.725 17.132 390.828 15.134 351.437 
16 15.420 359.692 25.210 433.935 18.417 409.245 22.984 374.421 
17 15.277 374.969 23.783 457.718 17.075 426.320 21.871 396.291 
18 16.362 391.330 22.813 480.531 18.474 444.794 16.704 412.995 
19 16.875 408.206 24.354 504.885 20.044 464.837 22.955 435.951 
20 16.304 424.510 27.037 531.922 29.406 494.244 16.048 451.998 
21 16.219 440.729 23.840 555.762 25.952 520.196 14.135 466.133 
22 14.563 455.292 21.814 577.576 25.153 545.349 13.564 479.697 
23 15.591 470.883 24.668 602.244 25.153 570.502 14.306 494.004 
24 15.049 485.931 22.470 624.714 17.646 588.148 21.442 515.446 
25 14.620 500.552 25.467 650.181 16.590 604.738 14.506 529.952 
26 15.420 515.971 22.499 672.679 25.068 629.806 14.535 544.487 
27 15.933 531.905 25.210 697.890 26.152 655.958 14.649 559.136 
28 14.535 546.440 23.498 721.387 24.982 680.940 14.306 573.442 

               Standard curve equation: Absorbance (A) = 0.1051 (Conc in μg /ml) -0.0262 was used in the calculations. 
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  Tube5 Tube6 Tube7 Tube8 

Days Amt 
Cum. 
Amt. Amt 

Cum. 
Amt. Amt 

Cum. 
Amt. Amt 

Cum. 
Amt. 

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
1 21.300 21.300 20.072 20.072 16.276 16.276 24.011 24.011 
2 28.950 50.249 23.983 44.055 25.068 41.343 21.385 45.397 
3 32.375 82.624 28.892 72.948 30.691 72.034 18.959 64.356 
4 37.142 119.766 30.634 103.581 32.889 104.923 16.932 81.288 
5 31.890 151.656 43.621 147.203 25.895 130.818 22.841 104.129 
6 33.460 185.115 33.659 180.862 21.899 152.717 18.759 122.889 
7 31.775 216.891 36.542 217.404 23.869 176.586 19.387 142.276 
8 31.747 248.637 30.891 248.295 26.894 203.480 21.442 163.718 
9 28.950 277.587 37.142 285.437 27.151 230.632 18.816 182.535 

10 32.889 310.476 27.665 313.102 25.210 255.842 18.759 201.294 
11 28.065 338.540 27.893 340.995 25.467 281.309 20.215 221.509 
12 26.181 364.721 35.458 376.453 25.353 306.662 16.618 238.127 
13 27.237 391.958 35.543 411.996 22.641 329.304 13.621 251.749 
14 28.207 420.166 35.657 447.654 17.732 347.035 19.159 270.908 
15 17.361 437.526 25.781 473.435 13.364 360.400 17.132 288.040 
16 16.647 454.173 31.490 504.925 13.821 374.221 18.103 306.143 
17 23.269 477.442 31.376 536.301 13.707 387.928 17.361 323.503 
18 32.004 509.446 13.022 549.323 17.618 405.545 7.912 331.416 
19 17.960 527.406 36.828 586.150 20.900 426.445 19.473 350.889 
20 24.069 551.475 33.831 619.981 16.533 442.978 14.592 365.480 
21 15.990 567.465 30.919 650.900 13.393 456.371 17.560 383.041 
22 21.471 588.936 22.927 673.827 17.361 473.732 16.847 399.888 
23 23.184 612.120 30.206 704.032 18.017 491.749 17.246 417.134 
24 22.955 635.075 30.405 734.438 19.187 510.936 17.418 434.552 
25 22.556 657.631 23.983 758.421 13.165 524.101 13.707 448.259 
26 16.076 673.707 29.463 787.884 17.560 541.661 17.475 465.734 
27 22.955 696.662 31.519 819.402 21.728 563.389 14.649 480.382 
28 23.041 719.703 30.691 850.093 13.022 576.411 17.589 497.971 
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  Tube9 Tube10 Tube11 Tube12 Average SD %CV 
Days Amt Cum. Amt. Amt Cum. Amt. Amt Cum. Amt. Amt Cum. Amt. Cum. Amt     

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 n.a  
1 18.816 18.816 27.494 27.494 15.448 15.448 19.245 19.245 20.512 3.208 15.640 
2 23.469 42.285 25.638 53.132 20.586 36.034 21.928 41.172 45.252 6.493 14.350 
3 19.958 62.244 29.235 82.367 23.640 59.675 24.953 66.126 71.316 14.086 19.752 
4 20.929 83.172 30.776 113.144 24.725 84.400 25.353 91.479 98.729 21.656 21.934 
5 16.704 99.876 28.379 141.522 21.357 105.756 24.497 115.975 125.778 29.306 23.300 
6 19.073 118.950 30.462 171.985 20.129 125.886 22.527 138.502 152.225 36.698 24.108 
7 20.757 139.707 40.710 212.695 20.986 146.872 33.260 171.762 180.173 44.258 24.564 
8 21.014 160.721 34.230 246.925 21.756 168.628 26.637 198.400 206.606 52.072 25.204 
9 21.186 181.907 32.660 279.585 17.589 186.217 25.952 224.352 233.253 59.824 25.648 
10 20.329 202.236 34.687 314.272 16.276 202.493 25.524 249.876 258.413 67.455 26.104 
11 16.932 219.168 26.438 340.710 17.132 219.625 26.238 276.114 282.099 74.548 26.426 
12 20.786 239.954 30.520 371.229 20.443 240.069 24.411 300.525 306.636 81.379 26.539 
13 20.872 260.826 32.432 403.661 16.133 256.202 25.952 326.478 331.199 88.562 26.740 
14 10.025 270.851 20.700 424.362 20.786 276.988 18.816 345.294 352.423 95.738 27.166 
15 128.000 398.851 18.931 443.292 14.363 291.351 22.413 367.707 379.655 106.226 27.980 
16 10.196 409.047 19.530 462.822 13.964 305.315 23.212 390.919 398.738 109.651 27.500 
17 8.284 417.330 19.187 482.010 15.163 320.478 23.441 414.360 417.887 115.156 27.557 
18 20.729 438.059 16.790 498.799 17.161 337.638 0.748 415.108 434.582 120.865 27.812 
19 8.712 446.771 22.441 521.241 15.134 352.773 24.611 439.718 455.439 125.522 27.561 
20 10.053 456.824 29.149 550.390 16.190 368.963 18.017 457.735 476.375 131.554 27.616 
21 8.169 464.993 29.235 579.625 11.794 380.757 22.185 479.920 495.491 137.628 27.776 
22 9.425 474.419 29.121 608.746 14.506 395.264 15.305 495.225 513.996 143.038 27.829 
23 9.482 483.901 27.437 636.183 16.961 412.225 15.619 510.845 533.818 148.389 27.798 
24 8.198 492.099 28.179 664.362 15.077 427.302 21.671 532.516 553.793 154.080 27.823 
25 8.141 500.240 27.637 691.998 17.503 444.805 16.190 548.706 571.632 159.885 27.970 
26 7.798 508.038 27.037 719.035 15.220 460.025 15.591 564.297 590.277 165.044 27.960 
27 8.655 516.693 20.872 739.907 14.849 474.873 23.155 587.452 610.304 170.406 27.921 
28 10.539 527.231 27.722 767.629 14.478 489.351 22.727 610.179 630.065 176.155 27.958 
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Table 5.22: Drug loading data for ‘one small hole’ group. 

Tubes 
Amount of 

drug loaded 
(mg/cm) 

T1 5.23 
T2 5.52 
T3 5.31 
T4 5.40 
T5 5.90 
T6 5.23 
T7 4.71 
T8 5.22 
T9 5.39 
T10 5.11 
T11 5.30 
T12 5.42 

Average 5.31 
SD 0.28 

%CV 5.20 

 



 193

Table 5.23: Drug loading data for ‘one big hole’ group. 

Tubes 
Amount of drug 
loaded (mg/cm) 

T1 5.26 
T2 5.76 
T3 5.32 
T4 5.58 
T5 5.17 
T6 5.24 
T7 5.46 
T8 5.17 
T9 5.00 

T10 5.31 
T11 5.39 
T12 5.72 

Average 5.37 
SD 0.23 

%CV 4.28 
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Table 5.24: Drug loading data for ‘two holes’ group. 

Tubes 
Amount of drug 
loaded (mg/cm) 

T1 4.94 
T2 4.74 
T3 5.05 
T4 5.81 
T5 5.21 
T6 5.25 
T7 5.57 
T8 4.87 
T9 5.45 

T10 4.74 
T11 5.26 
T12 5.21 

Average 5.17 
SD 0.33 

%CV 6.38 
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Table 5.25: Percentage cumulative drug released for ‘one small hole’ group  

 
  Tube1 Tube2 Tube3 Tube4 

Days 
Cum. 
Amt. 

% Cum 
Rel 

Cum. 
Amt. 

% Cum 
Rel 

Cum. 
Amt. 

% Cum 
Rel 

Cum. 
Amt. 

% Cum 
Rel 

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
1 28.932 0.553 6.497 0.118 7.153 0.135 8.994 0.167 
2 55.553 1.062 13.393 0.243 15.091 0.284 18.588 0.344 
3 73.524 1.406 20.689 0.375 24.714 0.465 30.794 0.570 
4 102.742 1.964 31.496 0.571 43.741 0.824 49.921 0.924 
5 119.358 2.282 38.149 0.691 56.189 1.058 63.440 1.175 
6 134.075 2.564 44.860 0.813 71.007 1.337 77.814 1.441 
7 154.316 2.951 53.997 0.978 90.905 1.712 95.729 1.773 
8 172.987 3.308 60.822 1.102 104.423 1.967 109.447 2.027 
9 190.330 3.639 68.775 1.246 121.596 2.290 125.435 2.323 

10 204.776 3.915 77.269 1.400 138.254 2.604 138.325 2.562 
11 216.554 4.141 85.593 1.551 152.558 2.873 149.946 2.777 
12 230.101 4.400 94.601 1.714 167.846 3.161 162.280 3.005 
13 242.963 4.646 105.679 1.914 183.605 3.458 173.429 3.212 
14 253.998 4.857 115.230 2.088 199.507 3.757 184.935 3.425 
15 264.220 5.052 124.467 2.255 213.868 4.028 196.998 3.648 
16 276.254 5.282 138.043 2.501 226.102 4.258 210.474 3.898 
17 289.073 5.527 147.851 2.678 241.147 4.541 222.437 4.119 
18 294.971 5.640 155.147 2.811 252.225 4.750 234.214 4.337 
19 301.253 5.760 166.753 3.021 264.146 4.974 246.891 4.572 
20 309.077 5.910 177.645 3.218 275.823 5.194 260.167 4.818 
21 317.443 6.070 185.640 3.363 287.129 5.407 272.515 5.047 
22 323.655 6.188 195.263 3.537 297.108 5.595 283.079 5.242 
23 330.123 6.312 202.287 3.665 308.386 5.808 293.886 5.442 
24 339.131 6.484 209.598 3.797 320.492 6.036 305.206 5.652 
25 348.382 6.661 216.736 3.926 333.682 6.284 316.384 5.859 
26 357.234 6.830 223.947 4.057 345.531 6.507 328.319 6.080 
27 365.101 6.981 233.298 4.226 358.536 6.752 339.911 6.295 
28 373.867 7.149 240.451 4.356 370.284 6.973 351.973 6.518 

Calculations were performed using values from Table 5.19 and the drug loading data in Table 5.22 
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  Tube5 Tube6 Tube7 Tube8 

Days 
Cum. 
Amt. 

% Cum 
Rel 

Cum. 
Amt. 

% Cum 
Rel 

Cum. 
Amt. 

% Cum 
Rel 

Cum. 
Amt. 

% Cum 
Rel 

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
1 6.825 0.116 8.509 0.163 1.173 0.025 1.287 0.025 
2 16.219 0.275 19.730 0.377 3.802 0.081 3.631 0.070 
3 28.039 0.475 32.221 0.616 13.096 0.278 5.675 0.109 
4 42.628 0.723 49.864 0.953 32.352 0.687 21.634 0.414 
5 54.719 0.927 61.941 1.184 46.156 0.980 33.283 0.638 
6 70.207 1.190 77.500 1.482 62.486 1.327 49.584 0.950 
7 87.137 1.477 94.002 1.797 82.356 1.749 63.060 1.208 
8 99.785 1.691 106.108 2.029 96.788 2.055 73.424 1.407 
9 115.045 1.950 119.897 2.292 112.476 2.388 86.072 1.649 

10 129.191 2.190 132.188 2.528 125.837 2.672 97.536 1.868 
11 143.852 2.438 143.124 2.737 138.300 2.936 105.374 2.019 
12 158.655 2.689 154.787 2.960 153.188 3.252 114.154 2.187 
13 172.130 2.917 166.108 3.176 166.193 3.529 121.964 2.336 
14 184.850 3.133 177.328 3.391 177.500 3.769 129.488 2.481 
15 198.354 3.362 187.322 3.582 187.179 3.974 140.595 2.693 
16 210.146 3.562 198.657 3.798 197.443 4.192 152.286 2.917 
17 221.937 3.762 209.363 4.003 208.350 4.424 163.293 3.128 
18 232.273 3.937 218.615 4.180 217.444 4.617 171.774 3.291 
19 241.467 4.093 228.280 4.365 228.066 4.842 180.668 3.461 
20 253.344 4.294 237.973 4.550 237.774 5.048 189.177 3.624 
21 266.349 4.514 247.781 4.738 248.295 5.272 197.943 3.792 
22 276.728 4.690 256.247 4.900 259.130 5.502 206.238 3.951 
23 284.951 4.830 264.728 5.062 268.424 5.699 214.461 4.108 
24 295.130 5.002 273.537 5.230 278.489 5.913 223.613 4.284 
25 306.822 5.200 282.460 5.401 289.110 6.138 232.022 4.445 
26 319.256 5.411 291.268 5.569 300.402 6.378 242.572 4.647 
27 331.076 5.611 299.792 5.732 311.652 6.617 253.022 4.847 
28 343.324 5.819 308.515 5.899 322.658 6.850 262.644 5.031 
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  Tube 9 Tube10 Tube 11 Tube 12 Average SD %CV 
Days Cum. Amt. % Cum Rel Cum. Amt. % Cum Rel Cum. Amt. % Cum Rel Cum. Amt. % Cum Rel Cum. Amt     

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 n.a  
1 4.028 0.075 8.894 0.174 1.216 0.023 3.985 0.074 0.137 0.142 103.858 
2 8.355 0.155 22.884 0.448 19.958 0.377 8.027 0.148 0.322 0.263 81.663 
3 12.482 0.232 39.714 0.777 38.058 0.718 12.597 0.232 0.521 0.347 66.509 
4 17.880 0.332 61.396 1.201 62.766 1.184 18.537 0.342 0.843 0.460 54.586 
5 21.936 0.407 76.370 1.495 78.097 1.474 23.192 0.428 1.062 0.526 49.576 
6 26.977 0.501 92.943 1.819 97.467 1.839 28.633 0.528 1.316 0.589 44.759 
7 32.703 0.607 110.144 2.155 119.435 2.253 34.716 0.641 1.608 0.683 42.438 
8 37.002 0.686 123.791 2.423 133.881 2.526 39.271 0.725 1.829 0.764 41.792 
9 41.743 0.774 138.408 2.709 149.355 2.818 44.155 0.815 2.074 0.843 40.639 
10 46.356 0.860 150.571 2.947 162.617 3.068 50.081 0.924 2.295 0.902 39.294 
11 49.998 0.928 160.693 3.145 173.010 3.264 55.393 1.022 2.486 0.951 38.251 
12 54.482 1.011 173.312 3.392 184.116 3.474 61.319 1.131 2.698 1.009 37.391 
13 59.238 1.099 185.089 3.622 195.908 3.696 67.530 1.246 2.904 1.060 36.484 
14 63.908 1.186 195.040 3.817 206.814 3.902 73.484 1.356 3.097 1.105 35.680 
15 75.899 1.408 206.560 4.042 216.094 4.077 84.177 1.553 3.306 1.108 33.512 
16 87.234 1.618 219.665 4.299 228.285 4.307 95.369 1.760 3.533 1.115 31.550 
17 98.198 1.822 231.300 4.526 238.336 4.497 106.276 1.961 3.749 1.130 30.149 
18 103.753 1.925 242.406 4.744 245.903 4.640 115.070 2.123 3.916 1.144 29.224 
19 109.279 2.027 253.684 4.964 253.884 4.790 123.251 2.274 4.095 1.160 28.314 
20 115.147 2.136 264.391 5.174 263.035 4.963 131.261 2.422 4.279 1.180 27.575 
21 120.716 2.240 274.741 5.377 272.600 5.143 140.569 2.594 4.463 1.204 26.974 
22 125.558 2.329 284.677 5.571 282.951 5.339 148.350 2.737 4.632 1.224 26.434 
23 130.242 2.416 294.243 5.758 292.530 5.519 155.803 2.875 4.791 1.250 26.086 
24 135.597 2.516 304.907 5.967 303.822 5.732 163.684 3.020 4.969 1.283 25.812 
25 140.523 2.607 315.271 6.170 314.158 5.928 171.522 3.165 5.149 1.320 25.634 
26 145.807 2.705 326.592 6.391 326.192 6.155 180.160 3.324 5.338 1.354 25.367 
27 150.691 2.796 337.670 6.608 335.700 6.334 188.226 3.473 5.523 1.385 25.074 
28 155.632 2.887 348.006 6.810 347.035 6.548 196.250 3.621 5.705 1.421 24.903 
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Table 5.26: Percentage cumulative drug released for ‘one big hole’ group  

 
  Tube1 Tube2 Tube3 Tube4 

Days 
Cum. 
Amt. 

% Cum 
Rel 

Cum. 
Amt. 

% Cum 
Rel 

Cum. 
Amt. 

% Cum 
Rel 

Cum. 
Amt. 

% Cum 
Rel 

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
1 7.456 0.142 12.651 0.220 4.516 0.085 16.818 0.301 
2 26.615 0.506 27.471 0.477 13.970 0.263 35.035 0.628 
3 44.660 0.849 42.776 0.743 23.538 0.442 53.823 0.965 
4 63.762 1.212 58.824 1.021 33.648 0.632 73.382 1.315 
5 82.493 1.568 74.586 1.295 44.900 0.844 98.392 1.763 
6 101.167 1.923 94.145 1.634 57.380 1.079 123.745 2.218 
7 120.183 2.285 112.133 1.947 69.574 1.308 147.071 2.636 
8 140.255 2.666 128.067 2.223 82.396 1.549 167.971 3.010 
9 161.755 3.075 144.257 2.504 95.047 1.787 185.646 3.327 

10 181.855 3.457 159.562 2.770 106.527 2.002 204.063 3.657 
11 201.500 3.831 175.096 3.040 118.550 2.228 222.765 3.992 
12 221.115 4.204 191.401 3.323 131.372 2.469 241.239 4.323 
13 239.646 4.556 206.278 3.581 142.282 2.674 263.024 4.714 
14 255.494 4.857 222.097 3.856 156.445 2.941 282.925 5.070 
15 268.658 5.108 235.147 4.082 167.926 3.156 299.515 5.368 
16 285.305 5.424 249.026 4.323 178.407 3.354 320.615 5.746 
17 297.500 5.656 262.676 4.560 188.318 3.540 341.429 6.119 
18 313.718 5.964 276.154 4.794 198.285 3.727 358.076 6.417 
19 332.592 6.323 291.774 5.066 214.105 4.025 378.577 6.785 
20 350.409 6.662 305.937 5.311 225.528 4.239 398.335 7.139 
21 368.769 7.011 320.700 5.568 235.667 4.430 416.666 7.467 
22 383.560 7.292 333.265 5.786 244.778 4.601 435.168 7.799 
23 394.127 7.493 345.888 6.005 254.660 4.787 450.417 8.072 
24 408.348 7.763 359.994 6.250 264.571 4.973 467.064 8.370 
25 420.971 8.003 375.100 6.512 274.938 5.168 483.197 8.659 
26 436.190 8.293 389.777 6.767 284.763 5.353 500.672 8.973 
27 442.316 8.409 397.616 6.903 289.362 5.439 510.280 9.145 
28 450.482 8.564 404.740 7.027 294.245 5.531 517.519 9.275 

Calculations were performed using values from Table 5.20 and the drug loading data in Table 5.23 
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 Tube5 Tube6 Tube7 Tube8 

Days 
Cum. 
Amt. 

% Cum 
Rel 

Cum. 
Amt. 

% Cum 
Rel 

Cum. 
Amt. 

% Cum 
Rel 

Cum. 
Amt. 

% Cum 
Rel 

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
1 15.248 0.295 25.753 0.491 16.304 0.299 15.762 0.305 
2 33.665 0.651 37.062 0.707 29.241 0.536 25.930 0.502 
3 52.339 1.012 48.771 0.931 42.405 0.777 36.582 0.708 
4 71.897 1.391 60.936 1.163 56.169 1.029 47.635 0.921 
5 93.225 1.803 87.174 1.664 73.444 1.345 61.056 1.181 
6 122.832 2.376 102.965 1.965 91.005 1.667 72.622 1.405 
7 149.412 2.890 128.832 2.459 108.565 1.988 83.989 1.625 
8 174.080 3.367 148.476 2.834 123.785 2.267 94.070 1.820 
9 202.858 3.924 171.888 3.280 140.232 2.568 104.495 2.021 

10 231.608 4.480 195.071 3.723 156.337 2.863 114.805 2.221 
11 256.048 4.953 215.058 4.104 172.613 3.161 124.944 2.417 
12 282.457 5.463 238.156 4.545 188.546 3.453 136.225 2.635 
13 307.924 5.956 257.087 4.906 205.479 3.763 147.448 2.852 
14 334.647 6.473 280.441 5.352 223.010 4.084 160.384 3.102 
15 356.289 6.891 299.686 5.719 238.915 4.376 172.950 3.345 
16 372.679 7.208 321.699 6.139 254.278 4.657 186.571 3.609 
17 396.548 7.670 340.716 6.502 268.841 4.924 199.878 3.866 
18 414.736 8.022 357.363 6.820 283.233 5.187 213.785 4.135 
19 439.661 8.504 374.951 7.156 298.225 5.462 229.490 4.439 
20 455.880 8.818 395.538 7.548 312.788 5.729 244.738 4.734 
21 479.720 9.279 413.326 7.888 328.664 6.019 257.104 4.973 
22 501.534 9.701 434.455 8.291 341.914 6.262 279.003 5.397 
23 517.496 10.010 447.905 8.548 356.421 6.528 297.020 5.745 
24 533.943 10.328 467.435 8.921 370.955 6.794 315.951 6.111 
25 557.241 10.778 484.139 9.239 384.177 7.036 334.624 6.472 
26 579.568 11.210 500.129 9.544 397.827 7.286 348.074 6.733 
27 591.702 11.445 509.052 9.715 404.994 7.417 355.227 6.871 
28 602.994 11.663 517.404 9.874 412.076 7.547 362.095 7.004 
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  Tube 9 Tube10 Tube 11 Tube 12 Average SD %CV 
Days Cum. Amt. % Cum Rel Cum. Amt. % Cum Rel Cum. Amt. % Cum Rel Cum. Amt. % Cum Rel Cum. Amt     

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 n.a  
1 9.853 0.183 18.474 0.348 22.099 0.410 12.708 0.222 0.275 0.113 41.194 
2 31.581 0.586 34.864 0.657 37.376 0.693 22.333 0.390 0.550 0.132 24.048 
3 53.309 0.989 51.939 0.978 53.338 0.990 32.500 0.568 0.829 0.186 22.378 
4 75.751 1.405 69.756 1.314 69.928 1.297 43.068 0.753 1.121 0.253 22.532 
5 90.828 1.685 85.947 1.619 86.118 1.598 54.833 0.959 1.444 0.317 21.942 
6 113.469 2.105 102.480 1.930 108.160 2.007 66.971 1.171 1.790 0.407 22.711 
7 131.629 2.442 122.723 2.311 130.373 2.419 78.594 1.374 2.140 0.499 23.295 
8 153.043 2.839 142.367 2.681 149.189 2.768 90.217 1.577 2.467 0.581 23.536 
9 175.513 3.256 162.268 3.056 168.263 3.122 102.354 1.789 2.809 0.675 24.045 
10 195.243 3.622 178.716 3.366 186.765 3.465 116.518 2.037 3.139 0.766 24.419 
11 214.544 3.980 194.849 3.669 206.894 3.838 131.024 2.291 3.459 0.840 24.283 
12 233.332 4.329 213.408 4.019 229.022 4.249 145.901 2.551 3.797 0.921 24.248 
13 255.945 4.749 230.626 4.343 246.354 4.571 160.807 2.811 4.123 1.000 24.261 
14 278.415 5.165 246.245 4.637 268.824 4.987 174.885 3.057 4.465 1.079 24.167 
15 298.173 5.532 262.265 4.939 288.497 5.352 188.677 3.299 4.764 1.138 23.889 
16 320.215 5.941 276.457 5.206 307.399 5.703 202.698 3.544 5.071 1.191 23.495 
17 336.291 6.239 290.592 5.473 323.018 5.993 215.578 3.769 5.359 1.258 23.466 
18 352.282 6.536 305.184 5.747 338.552 6.281 227.429 3.976 5.634 1.301 23.088 
19 374.723 6.952 319.176 6.011 355.028 6.587 240.308 4.201 5.959 1.358 22.794 
20 392.169 7.276 332.312 6.258 369.962 6.864 251.931 4.404 6.249 1.400 22.410 
21 405.020 7.514 343.022 6.460 383.897 7.122 263.954 4.615 6.529 1.462 22.399 
22 425.064 7.886 352.390 6.636 399.659 7.415 275.834 4.822 6.824 1.522 22.307 
23 446.306 8.280 361.644 6.811 419.018 7.774 288.200 5.038 7.091 1.554 21.911 
24 466.607 8.657 370.870 6.984 438.320 8.132 299.709 5.240 7.377 1.600 21.684 
25 485.652 9.010 382.407 7.202 458.335 8.503 313.216 5.476 7.672 1.656 21.589 
26 497.361 9.227 390.776 7.359 476.752 8.845 325.952 5.698 7.941 1.712 21.564 
27 503.529 9.342 396.645 7.470 487.002 9.035 333.034 5.822 8.084 1.744 21.577 
28 509.769 9.458 403.085 7.591 495.554 9.194 340.159 5.947 8.223 1.770 21.523 
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Table 5.27: Percentage cumulative drug released for ‘two holes’ group  

 
  Tube1 Tube2 Tube3 Tube4 

Days 
Cum. 
Amt. 

% Cum 
Rel 

Cum. 
Amt. 

% Cum 
Rel 

Cum. 
Amt. 

% Cum 
Rel 

Cum. 
Amt. 

% Cum 
Rel 

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
1 21.528 0.291 19.587 0.275 22.099 0.292 20.272 0.232 
2 52.076 0.703 44.912 0.632 45.796 0.605 46.567 0.534 
3 86.392 1.166 73.775 1.038 67.610 0.893 65.640 0.753 
4 122.991 1.660 104.067 1.464 90.108 1.190 85.827 0.984 
5 149.058 2.012 133.444 1.877 122.483 1.618 107.412 1.232 
6 172.270 2.325 164.735 2.317 153.260 2.025 139.530 1.600 
7 192.228 2.594 195.853 2.755 185.834 2.455 163.970 1.880 
8 214.755 2.898 222.776 3.133 211.330 2.792 191.606 2.197 
9 238.396 3.217 252.440 3.550 240.794 3.181 219.157 2.513 

10 260.352 3.514 279.334 3.929 266.032 3.514 245.652 2.817 
11 277.798 3.749 306.828 4.315 294.183 3.886 268.407 3.078 
12 294.645 3.976 332.923 4.682 322.076 4.255 292.247 3.351 
13 312.377 4.216 358.533 5.043 352.481 4.656 318.828 3.656 
14 330.365 4.458 385.456 5.421 373.696 4.937 336.303 3.857 
15 344.272 4.646 408.725 5.749 390.828 5.163 351.437 4.030 
16 359.692 4.854 433.935 6.103 409.245 5.406 374.421 4.294 
17 374.969 5.060 457.718 6.438 426.320 5.632 396.291 4.545 
18 391.330 5.281 480.531 6.759 444.794 5.876 412.995 4.736 
19 408.206 5.509 504.885 7.101 464.837 6.141 435.951 4.999 
20 424.510 5.729 531.922 7.481 494.244 6.529 451.998 5.183 
21 440.729 5.948 555.762 7.817 520.196 6.872 466.133 5.346 
22 455.292 6.144 577.576 8.123 545.349 7.204 479.697 5.501 
23 470.883 6.355 602.244 8.470 570.502 7.536 494.004 5.665 
24 485.931 6.558 624.714 8.786 588.148 7.769 515.446 5.911 
25 500.552 6.755 650.181 9.145 604.738 7.989 529.952 6.077 
26 515.971 6.963 672.679 9.461 629.806 8.320 544.487 6.244 
27 531.905 7.178 697.890 9.816 655.958 8.665 559.136 6.412 
28 546.440 7.374 721.387 10.146 680.940 8.995 573.442 6.576 

Calculations were performed using values from Table 5.21 and the drug loading data in Table 5.24 
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  Tube5 Tube6 Tube7 Tube8 

Days 
Cum. 
Amt. 

% Cum 
Rel 

Cum. 
Amt. 

% Cum 
Rel 

Cum. 
Amt. 

% Cum 
Rel 

Cum. 
Amt. 

% Cum 
Rel 

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
1 21.300 0.273 20.072 0.255 16.276 0.195 24.011 0.329 
2 50.249 0.643 44.055 0.560 41.343 0.495 45.397 0.622 
3 82.624 1.058 72.948 0.927 72.034 0.863 64.356 0.882 
4 119.766 1.533 103.581 1.316 104.923 1.257 81.288 1.114 
5 151.656 1.942 147.203 1.870 130.818 1.567 104.129 1.426 
6 185.115 2.370 180.862 2.298 152.717 1.829 122.889 1.683 
7 216.891 2.777 217.404 2.762 176.586 2.115 142.276 1.949 
8 248.637 3.184 248.295 3.155 203.480 2.437 163.718 2.243 
9 277.587 3.554 285.437 3.627 230.632 2.762 182.535 2.500 

10 310.476 3.975 313.102 3.978 255.842 3.064 201.294 2.757 
11 338.540 4.335 340.995 4.333 281.309 3.369 221.509 3.034 
12 364.721 4.670 376.453 4.783 306.662 3.673 238.127 3.262 
13 391.958 5.019 411.996 5.235 329.304 3.944 251.749 3.449 
14 420.166 5.380 447.654 5.688 347.035 4.156 270.908 3.711 
15 437.526 5.602 473.435 6.016 360.400 4.316 288.040 3.946 
16 454.173 5.815 504.925 6.416 374.221 4.482 306.143 4.194 
17 477.442 6.113 536.301 6.814 387.928 4.646 323.503 4.432 
18 509.446 6.523 549.323 6.980 405.545 4.857 331.416 4.540 
19 527.406 6.753 586.150 7.448 426.445 5.107 350.889 4.807 
20 551.475 7.061 619.981 7.878 442.978 5.305 365.480 5.007 
21 567.465 7.266 650.900 8.271 456.371 5.466 383.041 5.247 
22 588.936 7.541 673.827 8.562 473.732 5.673 399.888 5.478 
23 612.120 7.838 704.032 8.946 491.749 5.889 417.134 5.714 
24 635.075 8.132 734.438 9.332 510.936 6.119 434.552 5.953 
25 657.631 8.420 758.421 9.637 524.101 6.277 448.259 6.141 
26 673.707 8.626 787.884 10.011 541.661 6.487 465.734 6.380 
27 696.662 8.920 819.402 10.412 563.389 6.747 480.382 6.581 
28 719.703 9.215 850.093 10.802 576.411 6.903 497.971 6.822 

 
 

Table 5.27 continues on next page -  
 
 



 203

  Tube 9 Tube10 Tube 11 Tube 12 Average SD %CV 
Days Cum. Amt. % Cum Rel Cum. Amt. % Cum Rel Cum. Amt. % Cum Rel Cum. Amt. % Cum Rel Cum. Amt     

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  n.a 
1 18.816 0.230 27.494 0.387 15.448 0.196 19.245 0.246 0.267 0.055 20.487 
2 42.285 0.517 53.132 0.747 36.034 0.457 41.172 0.526 0.587 0.087 14.835 
3 62.244 0.761 82.367 1.158 59.675 0.756 66.126 0.846 0.925 0.148 16.003 
4 83.172 1.017 113.144 1.591 84.400 1.070 91.479 1.170 1.280 0.232 18.085 
5 99.876 1.221 141.522 1.990 105.756 1.340 115.975 1.483 1.632 0.297 18.186 
6 118.950 1.454 171.985 2.419 125.886 1.596 138.502 1.771 1.974 0.357 18.094 
7 139.707 1.708 212.695 2.991 146.872 1.861 171.762 2.196 2.337 0.438 18.729 
8 160.721 1.965 246.925 3.473 168.628 2.137 198.400 2.537 2.679 0.494 18.434 
9 181.907 2.224 279.585 3.932 186.217 2.360 224.352 2.869 3.024 0.565 18.698 
10 202.236 2.472 314.272 4.420 202.493 2.566 249.876 3.195 3.350 0.636 18.974 
11 219.168 2.679 340.710 4.792 219.625 2.784 276.114 3.531 3.657 0.690 18.871 
12 239.954 2.933 371.229 5.221 240.069 3.043 300.525 3.843 3.974 0.752 18.933 
13 260.826 3.189 403.661 5.677 256.202 3.247 326.478 4.175 4.292 0.831 19.364 
14 270.851 3.311 424.362 5.969 276.988 3.511 345.294 4.416 4.568 0.899 19.672 
15 398.851 4.876 443.292 6.235 291.351 3.693 367.707 4.702 4.914 0.846 17.218 
16 409.047 5.001 462.822 6.509 305.315 3.870 390.919 4.999 5.162 0.891 17.260 
17 417.330 5.102 482.010 6.779 320.478 4.062 414.360 5.299 5.410 0.943 17.433 
18 438.059 5.355 498.799 7.015 337.638 4.279 415.108 5.308 5.626 0.981 17.435 
19 446.771 5.462 521.241 7.331 352.773 4.471 439.718 5.623 5.896 1.034 17.545 
20 456.824 5.585 550.390 7.741 368.963 4.676 457.735 5.853 6.169 1.127 18.268 
21 464.993 5.685 579.625 8.152 380.757 4.826 479.920 6.137 6.419 1.211 18.860 
22 474.419 5.800 608.746 8.562 395.264 5.010 495.225 6.333 6.661 1.279 19.204 
23 483.901 5.916 636.183 8.948 412.225 5.225 510.845 6.533 6.919 1.358 19.625 
24 492.099 6.016 664.362 9.344 427.302 5.416 532.516 6.810 7.179 1.426 19.870 
25 500.240 6.115 691.998 9.733 444.805 5.638 548.706 7.017 7.412 1.501 20.255 
26 508.038 6.211 719.035 10.113 460.025 5.830 564.297 7.216 7.655 1.576 20.582 
27 516.693 6.317 739.907 10.407 474.873 8.960 587.452 7.512 8.160 1.557 19.077 
28 527.231 6.445 767.629 10.796 489.351 9.233 610.179 7.803 8.426 1.639 19.453 
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Table 5.28: Absorbance readings (A) for ‘200 micron’ group belonging to ‘large tubes 
without holes’ 

 Days    
Tube 
No. 1 2 3 4 5 6 7 Average SD %CV 
1 0.040 0.029 0.023 0.010 0.016 0.060 0.014 0.027 0.018 64.118 
2 0.080 0.024 0.015 0.011 0.010 0.057 0.015 0.030 0.027 90.179 
3 0.072 0.027 0.023 0.009 0.020 0.062 0.028 0.034 0.023 67.639 
4 0.051 0.032 0.028 0.023 0.013 0.060 0.024 0.033 0.017 50.404 

Average 0.061 0.028 0.022 0.013 0.015 0.060 0.020    
SD 0.018 0.003 0.005 0.007 0.004 0.002 0.007    

%CV 30.393 12.023 24.168 49.442 28.963 3.450 33.825    
 

Table 5.29: Absorbance readings (A) for ‘400 micron’ group belonging to ‘large tubes 
without holes’ 

 Days    
Tube 
No. 1 2 3 4 5 6 7 Average SD %CV 
1 0.095 0.076 0.045 0.047 0.022 0.081 0.046 0.059 0.026 43.576 
2 0.162 0.085 0.052 0.051 0.044 0.095 0.056 0.078 0.042 53.574 
3 0.305 0.072 0.076 0.065 0.081 0.131 0.129 0.123 0.085 69.116 
4 0.110 0.076 0.049 0.049 0.035 0.087 0.041 0.064 0.028 43.402 

Average 0.168 0.077 0.056 0.053 0.046 0.099 0.068    
SD 0.096 0.006 0.014 0.008 0.025 0.022 0.041    

%CV 56.988 7.120 25.161 15.406 55.673 22.754 60.503    
 

Table 5.30: Absorbance readings (A) for ‘600 micron’ group belonging to ‘large tubes 
without holes’ 

 Days    
Tube 
No. 1 2 3 4 5 6 7 Average SD %CV 
1 0.350 0.146 0.105 0.069 0.055 0.177 0.075 0.140 0.103 73.545 
2 0.602 0.280 0.204 0.239 0.097 0.095 0.111 0.233 0.179 76.850 
3 0.342 0.326 0.106 0.075 0.170 0.215 0.240 0.211 0.102 48.447 
4 0.624 0.210 0.169 0.141 0.133 0.142 0.110 0.218 0.182 83.144 

Average 0.480 0.241 0.146 0.131 0.114 0.157 0.134    
SD 0.006 0.127 0.001 0.004 0.081 0.027 0.117    

%CV 1.180 52.923 0.484 3.239 71.488 17.087 87.069    
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Table 5.31: Cumulative amount of crystal violet released from ‘200 microns group. The amount and cumulative amount values are in 
microgram units of weight.  

  Tube1 Tube2 Tube3 Tube4 Average SD %CV 

Days Amt 
Cum. 
Amt. Amt 

Cum. 
Amt. Amt 

Cum. 
Amt. Amt 

Cum. 
Amt. Cum. Amt     

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 n.a 
1 2.778 2.778 5.387 5.387 4.865 4.865 3.496 3.496 4.132 1.204 29.146 
2 2.061 4.839 1.735 7.122 1.930 6.796 2.257 5.752 6.127 1.039 16.950 
3 1.670 6.509 1.148 8.270 1.670 8.465 1.996 7.748 7.748 0.880 11.356 
4 0.822 7.330 0.887 9.157 0.757 9.222 1.670 9.417 8.782 0.974 11.088 
5 1.213 8.543 0.822 9.978 1.474 10.696 1.017 10.435 9.913 0.960 9.684 
6 4.083 12.626 3.887 13.865 4.213 14.909 4.083 14.517 13.979 1.000 7.150 
7 1.083 13.709 1.148 15.013 1.996 16.904 1.735 16.252 15.470 1.412 9.127 

Standard curve equation: Absorbance (A) = 0.046 (Conc in μg /ml) -0.0026 was used in the calculations 
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Table 5.32: Cumulative amount of crystal violet released from ‘400 microns’ group. The amount and cumulative amount values 
are in microgram units of weight.  

  Tube1 Tube2 Tube3 Tube4 Average SD %CV 

Days Amt Cum. Amt. Amt 
Cum. 
Amt. Amt 

Cum. 
Amt. Amt Cum. Amt. 

Cum. 
Amt     

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 
1 6.365 6.365 10.735 10.735 20.061 20.061 7.343 7.343 11.126 6.244 56.119 
2 5.126 11.491 5.713 16.448 4.865 24.926 5.126 12.470 16.334 6.116 37.445 
3 3.104 14.596 3.561 20.009 5.126 30.052 3.365 15.835 20.123 7.013 34.850 
4 3.235 17.830 3.496 23.504 4.409 34.461 3.365 19.200 23.749 7.539 31.746 
5 1.604 19.435 3.039 26.543 5.452 39.913 2.452 21.652 26.886 9.179 34.139 
6 5.452 24.887 6.365 32.909 8.713 48.626 5.843 27.496 33.479 10.636 31.769 
7 3.170 28.057 3.822 36.730 8.583 57.209 2.843 30.339 38.084 13.268 34.839 

Standard curve equation: Absorbance (A) = 0.046 (Conc in μg /ml) -0.0026 was used in the calculations 
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Table 5.33: Cumulative amount of crystal violet released from ‘600 microns’ group. The amount and cumulative amount values are 
in microgram units of weight.  

  Tube1 Tube2 Tube3 Tube4 Average SD %CV 

Days Amt 
Cum. 
Amt. Amt 

Cum. 
Amt. Amt 

Cum. 
Amt. Amt Cum. Amt. 

Cum. 
Amt     

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 
1 22.996 22.996 39.430 39.430 22.474 22.474 40.865 40.865 31.441 10.073 32.037 
2 9.691 32.687 18.430 57.861 21.430 43.904 13.865 54.730 47.296 11.428 24.163 
3 7.017 39.704 13.474 71.335 7.083 50.987 11.191 65.922 56.987 14.380 25.234 
4 4.670 44.374 15.757 87.091 5.061 56.048 9.365 75.287 65.700 19.126 29.112 
5 3.757 48.130 6.496 93.587 11.257 67.304 8.843 84.130 73.288 19.986 27.270 
6 11.713 59.843 6.365 99.952 14.191 81.496 9.430 93.561 83.713 17.658 21.093 
7 5.061 64.904 7.409 107.361 15.822 97.317 7.343 100.904 92.622 18.940 20.449 

Standard curve equation: Absorbance (A) = 0.046 (Conc in μg /ml) -0.0026 was used in the calculations 

 

Table 5.34: Drug loading data for 200, 400, and 600 microns group 

Hole Size (microns) 
Avg. Amount of Drug 

Loaded (mg) SD %CV 
200 0.373 0.022 5.877 
400 1.410 0.018 1.273 
600 2.530 0.113 4.486 
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Table 5.35: Percentage cumulative drug released for ‘200 microns’ group  

  Tube1 Tube2 Tube3 Tube4 Average SD %CV 
Days Cum. Amt. %Cum Cum. Amt. %Cum Cum. Amt. %Cum Cum. Amt. %Cum % Cum.     

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 
1 2.778 0.745 5.387 1.444 4.865 1.304 3.496 0.937 1.108 0.323 29.146 
2 4.839 1.297 7.122 1.909 6.796 1.822 5.752 1.542 1.643 0.278 16.950 
3 6.509 1.745 8.270 2.217 8.465 2.269 7.748 2.077 2.077 0.236 11.356 
4 7.330 1.965 9.157 2.455 9.222 2.472 9.417 2.525 2.354 0.261 11.088 
5 8.543 2.290 9.978 2.675 10.696 2.867 10.435 2.798 2.658 0.257 9.684 
6 12.626 3.385 13.865 3.717 14.909 3.997 14.517 3.892 3.748 0.268 7.150 
7 13.709 3.675 15.013 4.025 16.904 4.532 16.252 4.357 4.147 0.379 9.127 

Calculations were performed using values from Table 5.31 and the drug loading data in Table 5.34 
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Table 5.36: Percentage cumulative drug released for ‘400 microns’ group  

  Tube1 Tube2 Tube3 Tube4 Average SD %CV 
Days Cum. Amt. %Cum Cum. Amt. %Cum Cum. Amt. %Cum Cum. Amt. %Cum % Cum.     

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 
1 6.365 0.452 10.735 0.762 20.061 1.424 7.343 0.521 0.790 0.443 56.119 
2 11.491 0.816 16.448 1.167 24.926 1.769 12.470 0.885 1.159 0.434 37.445 
3 14.596 1.036 20.009 1.420 30.052 2.133 15.835 1.124 1.428 0.498 34.850 
4 17.830 1.265 23.504 1.668 34.461 2.446 19.200 1.363 1.686 0.535 31.746 
5 19.435 1.379 26.543 1.884 39.913 2.833 21.652 1.537 1.908 0.651 34.139 
6 24.887 1.766 32.909 2.336 48.626 3.451 27.496 1.951 2.376 0.755 31.769 
7 28.057 1.991 36.730 2.607 57.209 4.060 30.339 2.153 2.703 0.942 34.839 

Calculations were performed using values from Table 5.32 and the drug loading data in Table 5.34 
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Table 5.37: Percentage cumulative drug released for ‘600 microns’ group  

  Tube1 Tube2 Tube3 Tube4 Average SD %CV 
Days Cum. Amt. %Cum Cum. Amt. %Cum Cum. Amt. %Cum Cum. Amt. %Cum % Cum.     

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 
1 22.996 0.909 39.430 1.559 22.474 0.889 40.865 1.616 1.243 0.398 32.037 
2 32.687 1.292 57.861 2.288 43.904 1.736 54.730 2.164 1.870 0.452 24.163 
3 39.704 1.570 71.335 2.821 50.987 2.016 65.922 2.607 2.253 0.569 25.234 
4 44.374 1.755 87.091 3.444 56.048 2.216 75.287 2.977 2.598 0.756 29.112 
5 48.130 1.903 93.587 3.701 67.304 2.661 84.130 3.327 2.898 0.790 27.270 
6 59.843 2.366 99.952 3.952 81.496 3.222 93.561 3.700 3.310 0.698 21.093 
7 64.904 2.566 107.361 4.245 97.317 3.848 100.904 3.990 3.662 0.749 20.449 

Calculations were performed using values from Table 5.33 and the drug loading data in Table 5.34 
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Table 6.1: The table illustrates the absorbance readings (A) used for the 
construction of standard curve. Intraday and interday precision was 
calculated by analyzing standard solutions at predetermined intervals. 

Conc 
(μg/ml) 

Day 1 Day 2 Day 3 Average 
Absorbance (A) SD % CV 

0.000 0.000 0.000
0.000 0.000 0.0000.00 
0.000 0.000 0.000

0.000 0.000 n/a 

0.025 0.022 0.021
0.039 0.043 0.0361.00 
0.027 0.025 0.023

0.029 0.008 28.328 

0.062 0.050 0.046
0.063 0.059 0.0562.00 
0.063 0.056 0.051

0.056 0.006 10.987 

0.101 0.089 0.083
0.099 0.089 0.0863.00 
0.100 0.091 0.083

0.091 0.007 7.892 

0.159 0.145 0.136
0.152 0.131 0.1255.00 
0.176 0.128 0.122

0.142 0.018 12.750 

0.181 0.163 0.152
0.184 0.178 0.1716.00 
0.196 0.195 0.183

0.178 0.014 8.048 

0.255 0.235 0.231
0.254 0.234 0.2278.00 
0.262 0.248 0.239

0.243 0.012 5.089 

0.319 0.274 0.258
0.307 0.279 0.26410.00 
0.320 0.280 0.257

0.284 0.025 8.796 

 
 



 212

Table 6.2: Absorbance readings for drug release study in phosphate buffered saline 

 
 Days    

Tubes 1 2 3 4 5 6 7 Average SD %CV 
1 0.701 0.904 0.795 0.908 0.905 0.744 1.014 0.853 0.110 12.90 
2 0.964 0.681 0.672 1.112 1.114 0.730 0.729 0.857 0.200 23.34 
3 0.917 1.041 1.031 1.009 1.026 1.117 1.090 1.033 0.064 6.18 
4 0.771 0.791 0.817 1.091 1.184 1.232 0.939 0.975 0.194 19.86 
5 0.852 0.892 0.948 1.015 0.969 1.033 1.042 0.964 0.072 7.51 
6 0.432 0.422 0.445 0.484 0.506 0.412 0.623 0.475 0.074 15.49 

Average 0.773 0.789 0.785 0.937 0.951 0.878 0.906    
SD 0.192 0.216 0.208 0.233 0.240 0.304 0.188    

%CV 24.88 27.42 26.52 24.89 25.2 34.68 20.74    
 

Table 6.3: Absorbance readings for drug release study in vitreous humor from the 
rabbit’s eye 

 
 Days    

Tubes 1 2 3 4 5 6 7 Average SD %CV 
1 0.268 0.252 0.183 0.171 0.186 0.172 0.181 0.202 0.040 20.00 
2 0.176 0.220 0.139 0.159 0.113 0.181 0.127 0.159 0.037 22.97 
3 0.157 0.245 0.111 0.115 0.112 0.128 0.175 0.149 0.049 32.84 
4 0.276 0.151 0.281 0.150 0.162 0.119 0.214 0.193 0.065 33.48 
5 0.198 0.251 0.092 0.098 0.168 0.123 0.171 0.157 0.057 36.43 
6 0.257 0.189 0.111 0.094 0.128 0.090 0.187 0.151 0.062 41.11 

Average 0.222 0.218 0.153 0.131 0.145 0.136 0.176    
SD 0.051 0.041 0.070 0.033 0.031 0.035 0.028    

%CV 23.12 18.70 46.01 25.19 21.62 25.47 16.12    
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Table 6.4: Cumulative amount of crystal violet released in phosphate buffered saline. The amount and cumulative amount values 
are in microgram units of weight.  

 
  Tube1 Tube2 Tube3 Tube4 Tube5 Tube6 Average SD %CV 

Days Amt 
Cum. 
Amt. Amt 

Cum. 
Amt. Amt 

Cum. 
Amt. Amt 

Cum. 
Amt. Amt 

Cum. 
Amt. Amt 

Cum. 
Amt. 

Cum. 
Amt     

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 n/a 
1 6.919 6.919 9.422 9.422 8.974 8.974 7.585 7.585 8.356 8.356 4.360 4.360 7.603 1.830 24.069
2 8.851 15.770 6.729 16.150 10.154 19.128 7.775 15.361 8.736 17.092 4.265 8.624 15.354 3.560 23.185
3 7.814 23.583 6.643 22.794 10.059 29.187 8.023 23.383 9.269 26.362 4.483 13.108 23.069 5.440 23.579
4 8.889 32.472 10.830 33.623 9.850 39.037 10.630 34.013 9.907 36.268 4.854 17.962 32.229 7.368 22.860
5 8.860 41.332 10.849 44.472 10.011 49.049 11.515 45.528 9.469 45.737 5.064 23.026 41.524 9.395 22.625
6 7.328 48.660 7.195 51.667 10.877 59.926 11.971 57.500 10.078 55.815 4.169 27.195 50.127 11.943 23.825
7 9.897 58.558 7.186 58.853 10.620 70.546 9.184 66.683 10.164 65.979 6.177 33.372 58.998 13.402 22.716

Standard curve equation: Absorbance (A) = 0.1051 (Conc in micrograms/ml) -0.0262 was used in the calculations 
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Table 6.5: Cumulative amount of crystal violet released in vitreous humor. The amount and cumulative amount values are in 
microgram units of weight.  

 
  Tube1 Tube2 Tube3 Tube4 Tube5 Tube6 Average SD %CV 

Days Amt 
Cum. 
Amt. Amt 

Cum. 
Amt. Amt 

Cum. 
Amt. Amt 

Cum. 
Amt. Amt 

Cum. 
Amt. Amt 

Cum. 
Amt. 

Cum. 
Amt     

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000   
1 9.227 9.227 6.065 6.065 5.412 5.412 9.502 9.502 6.821 6.821 8.849 8.849 7.646 1.764 23.070
2 8.677 17.904 7.577 13.643 8.436 13.849 5.206 14.708 8.643 15.464 6.512 15.361 15.155 1.542 10.174
3 6.306 24.210 4.794 18.436 3.832 17.680 9.674 24.381 3.179 18.643 3.832 19.192 20.424 3.038 14.877
4 5.893 30.103 5.481 23.918 3.969 21.649 5.172 29.553 3.385 22.027 3.247 22.440 24.948 3.861 15.477
5 6.409 36.512 3.900 27.818 3.866 25.515 5.584 35.137 5.790 27.818 4.416 26.856 29.943 4.654 15.543
6 5.928 42.440 6.237 34.055 4.416 29.931 4.107 39.244 4.244 32.062 3.110 29.966 34.616 5.158 14.901
7 6.237 48.677 4.381 38.436 6.031 35.962 7.371 46.615 5.893 37.955 6.443 36.409 40.676 5.516 13.561

Standard curve equation: Absorbance (A) = 0.0291 (Concentration in micrograms/ml) + 0.0005 was used in the calculations. 
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Appendix II – Dose Response Study Data (Tables and Calculations for Chapter 8) 

 

Table 8.3: Luminescence values (in relative luminescence units) from 20 micron group polyimide tubes 

 Day 5 Day 10 Day 15 Day 20 Day 25 Day 30 Average SD %CV 
Tube 1 6796.86 2990.64 6229.40 4784.02 6206.29 6363.78 5561.83 1431.46 25.74 
Tube 2 4651.46 4165.15 6029.58 3461.79 4603.34 6421.32 4888.77 1126.75 23.05 
Tube 3 4163.75 4476.08 6485.36 5448.35 7544.59 6502.17 5770.05 1308.03 22.67 
Tube 4 5091.87 2634.64 8308.88 2711.06 6147.05 4880.17 4962.28 2150.02 43.33 
Tube 5 8536.77 5015.53 5018.73 6482.26 9972.57 6269.23 6882.52 1989.00 28.90 
Tube 6 6173.07 4394.65 5056.45 7589.42 7711.51 6746.23 6278.56 1344.93 21.42 

Average 5902.30 3946.12 6188.07 5079.48 7030.89 6197.15    
SD 1616.04 928.07 1205.07 1828.51 1829.47 665.16    

%CV 27.38 23.52 19.47 36.00 26.02 10.73    

 

 



 216

Table 8.4: Calculation of cumulative luminescence values from values in Table 8.3 

 Tube 1 Tube 2 Tube 3 Tube 4 

Days 
Lum. 
(RLU) 

Cum. 
Lum.(RLU)

Lum. 
(RLU) 

Cum. 
Lum.(RLU)

Lum. 
(RLU) 

Cum. 
Lum.(RLU)

Lum. 
(RLU) 

Cum. Lum. 
(RLU) 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
5 6796.86 6796.86 4651.46 4651.46 4163.75 4163.75 5091.87 5091.87 

10 2990.64 9787.50 4165.15 8816.61 4476.08 8639.83 2634.64 7726.51 
15 6229.40 16016.90 6029.58 14846.19 6485.36 15125.19 8308.88 16035.39 
20 4784.02 20800.92 3461.79 18307.98 5448.35 20573.54 2711.06 18746.45 
25 6206.29 27007.21 4603.34 22911.32 7544.59 28118.13 6147.05 24893.50 
30 6363.78 33370.99 6421.32 29332.64 6502.17 34620.30 4880.17 29773.67 

 

Table continues -  
Tube 5 Tube 6 Average SD %CV 

Lum. 
(RLU) 

Cum. 
Lum.(RLU) 

Lum. 
(RLU) 

Cum. Lum. 
(RLU) 

 Cum. 
Lum. 
(RLU)    

0.00 0.00 0.00 0.00 0.00 0.00 0.00 
8536.77 8536.77 6173.07 6173.07 5848.14 1800.69 30.79 
5015.53 13552.30 4394.65 10567.72 9704.55 2271.94 23.41 
5018.73 18571.03 5056.45 15624.17 16118.94 1469.49 9.12 
6482.26 25053.29 7589.42 23213.59 20696.44 2669.99 12.90 
9972.57 35025.86 7711.51 30925.10 27591.20 4611.72 16.71 
6269.23 41295.09 6746.23 37671.33 33678.54 4825.15 14.33 
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Table 8.5: Luminescence values (in relative luminescence units) from 30 micron group polyimide tubes 

 Day 5 Day 10 Day 15 Day 20 Day 25 Day 30 Average SD %CV 
Tube 1 7694.00 7349.25 5925.02 4475.68 3652.75 5608.04 5784.12 1574.98 27.23 
Tube 2 7048.03 6089.62 5352.40 4247.58 6811.27 4028.70 5596.27 1277.73 22.83 
Tube 3 7452.42 7966.81 11327.50 4755.91 5419.04 6836.19 7292.98 2320.08 31.81 
Tube 4 4078.01 5542.11 8063.28 6757.74 8984.15 3754.59 6196.65 2118.96 34.20 
Tube 5 6404.61 6076.61 5823.16 3899.54 7904.46 4753.81 5810.37 1383.98 23.82 
Tube 6 7650.17 4636.55 4488.89 6968.08 2786.28 6353.68 5480.61 1824.13 33.28 
Tube 7 5597.74 8233.12 12591.20 4263.79 5094.97 3439.38 6536.70 3383.92 51.77 
Average 6560.71 6556.30 7653.06 5052.62 5807.56 4967.77    
SD 1330.37 1328.66 3154.22 1264.73 2233.28 1326.47    
%CV 20.28 20.27 41.22 25.03 38.45 26.70    
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Table 8.6: Calculation of cumulative luminescence values from values in Table 8.5 

 Tube 1 Tube 2 Tube 3 Tube 4 Tube 5 

Days 
Lum. 

(RLU) 

Cum. 
Lum. 

(RLU) 
Lum. 

(RLU) 

Cum. 
Lum. 

(RLU) 
Lum. 

(RLU) 

Cum. 
Lum. 

(RLU) 
Lum. 

(RLU) 

Cum. 
Lum. 

(RLU) 
Lum. 

(RLU) 

Cum. 
Lum. 

(RLU) 
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
5 7694.00 7694.00 7048.03 7048.03 7452.42 7452.42 4078.01 4078.01 6404.61 6404.61 
10 7349.25 15043.25 6089.62 13137.65 7966.81 15419.23 5542.11 9620.12 6076.61 12481.22 
15 5925.02 20968.27 5352.40 18490.05 11327.50 26746.73 8063.28 17683.40 5823.16 18304.38 
20 4475.68 25443.95 4247.58 22737.63 4755.91 31502.64 6757.74 24441.14 3899.54 22203.92 
25 3652.75 29096.70 6811.27 29548.90 5419.04 36921.68 8984.15 33425.29 7904.46 30108.38 
30 5608.04 34704.74 4028.70 33577.60 6836.19 43757.87 3754.59 37179.88 4753.81 34862.19 

Table continues -  
Tube 6 Tube 7 Average SD %CV 

Lum. 
(RLU) 

Cum. 
Lum. 

(RLU) 
Lum. 

(RLU) 

Cum. 
Lum. 

(RLU) 
Cum. Lum. 

(RLU)   
0.00 0.00 0.00 0.00 0.00 0.00 0.00 

7650.17 7650.17 5597.74 5597.74 6535.41 1457.90 22.31 
4636.55 12286.72 8233.12 13830.86 13140.29 2325.98 17.70 
4488.89 16775.61 12591.20 26422.06 20438.57 3742.19 18.31 
6968.08 23743.69 4263.79 30685.85 25265.86 3720.78 14.73 
2786.28 26529.97 5094.97 35780.82 31820.19 3320.69 10.44 
6353.68 32883.65 3439.38 39220.20 36816.46 4095.24 11.12 
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Table 8.7: Absorbance values of the drug release samples belonging to the 20 micron group as obtained using ELISA.  

Samples Wells 
Absorbance 

Values Conc (ng/ml) 
Mean Conc 

(ng/ml) SD CV% 
C2 0.246 0.676 Tube 1 

Day 5 D2 0.249 0.668 0.672 0.006 0.865 
E2 0.298 0.555 Tube 1 

Day 10 F2 0.299 0.553 0.554 0.001 0.248 
G2 0.397 0.407 Tube 1 

Day 15 H2 0.384 0.423 0.415 0.011 2.625 
A3 0.271 0.613 Tube 1 

Day 20 B3 0.276 0.601 0.607 0.008 1.328 
C3 0.404 0.399 Tube 1 

Day 25 D3 0.383 0.424 0.412 0.017 4.217 
E3 0.404 0.399 Tube 1 

Day 30 F3 0.385 0.421 0.410 0.016 3.809 
G3 0.319 0.517 Tube 2 

Day 5 H3 0.344 0.477 0.497 0.028 5.700 
A4 0.318 0.519 Tube 2 

Day 10 B4 0.285 0.582 0.550 0.045 8.101 
C4 0.329 0.500 Tube 2 

Day 15 D4 0.344 0.477 0.488 0.017 3.381 
E4 0.302 0.547 Tube 2 

Day 20 F4 0.297 0.557 0.552 0.007 1.234 
G4 0.320 0.515 Tube 2 

Day 25 H4 0.343 0.478 0.497 0.026 5.244 
A5 0.348 0.471 Tube 2 

Day 30 B5 0.335 0.491 0.481 0.014 2.898 
C5 0.258 0.644 Tube 3 

Day 5 D5 0.255 0.652 0.648 0.005 0.840 
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E5 0.312 0.529 Tube 3 
Day 10 F5 0.295 0.561 0.545 0.023 4.152 

G5 0.260 0.639 Tube 3 
Day 15 H5 0.253 0.657 0.648 0.013 1.960 

A6 0.302 0.547 Tube 3 
Day 20 B6 0.275 0.603 0.575 0.040 6.866 

C6 0.309 0.534 Tube 3 
Day 25 D6 0.294 0.563 0.549 0.020 3.683 

E6 0.382 0.425 Tube 3 
Day 30 F6 0.328 0.502 0.463 0.054 11.682 

G6 0.261 0.636 Tube 4 
Day 5 H6 0.273 0.608 0.622 0.020 3.250 

A7 0.269 0.617 Tube 4 
Day 10 B7 0.261 0.636 0.627 0.014 2.180 

C7 0.236 0.705 Tube 4 
Day 15 D7 0.246 0.676 0.690 0.020 2.949 

E7 0.278 0.597 Tube 4 
Day 20 F7 0.281 0.590 0.593 0.005 0.783 

G7 0.311 0.531 Tube 4 
Day 25 H7 0.335 0.491 0.511 0.029 5.582 

A8 0.285 0.582 Tube 4 
Day 30 B8 0.305 0.542 0.562 0.028 4.996 

C8 0.207 0.803 Tube 5 
Day 5 D8 0.244 0.681 0.742 0.086 11.541 

E8 0.253 0.657 Tube 5 
Day 10 F8 0.259 0.641 0.649 0.011 1.682 

G8 0.278 0.597 Tube 5 
Day 15 H8 0.293 0.565 0.581 0.022 3.847 

A9 0.271 0.613 Tube 5 
Day 20 B9 0.271 0.613 0.613 0.000 0.000 
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C9 0.306 0.540 Tube 5 
Day 25 D9 0.295 0.561 0.551 0.015 2.708 

E9 0.350 0.468 Tube 5 
Day 30 F9 0.348 0.471 0.469 0.002 0.439 

G9 1.379 0.046 Tube 6 
Day 5 H9 1.431 0.039 0.042 0.005 11.322 

A10 0.266 0.624 Tube 6 
Day 10 B10 0.276 0.601 0.613 0.016 2.676 

C10 0.262 0.634 Tube 6 
Day 15 D10 0.269 0.617 0.626 0.012 1.905 

E10 0.282 0.588 Tube 6 
Day 20 F10 0.304 0.544 0.566 0.031 5.526 

G10 0.326 0.505 Tube 6 
Day 25 H10 0.332 0.495 0.500 0.007 1.376 

A11 0.325 0.507 Tube 6 
Day 30 B11 0.299 0.553 0.530 0.033 6.213 

The three parameter logistic equation was used to calculate the concentration values (ng/ml). The mean  
concentration values were used in Table 8.8. 
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Table 8.8: Concentration (ng/ml) of drug release samples belonging to 20 micron group obtained using ELISA. 

Days T1 T2 T3 T4 T5 T6 
0 0.00 0.00 0.00 0.00 0.00 0.00 
5 0.672 0.497 0.648 0.622 0.742 0.042* 

10 0.554 0.550 0.545 0.627 0.649 0.613 
15 0.415 0.488 0.648 0.690 0.581 0.626 
20 0.607 0.552 0.575 0.593 0.613 0.566 
25 0.412 0.497 0.549 0.511 0.551 0.500 
30 0.410 0.481 0.463 0.562 0.469 0.530 

 

Table 8.9: Original concentrations (ng/ml) for 20 micron group  

Days T1 T2 T3 T4 T5 T6 Average SD %CV 
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
5 671.74 496.77 647.88 622.20 741.98 0.00 530.09 271.82 51.28 

10 554.20 550.02 545.06 626.83 649.22 612.70 589.67 45.34 7.69 
15 415.01 488.43 647.97 690.24 580.85 625.60 574.68 104.20 18.13 
20 606.80 552.30 575.42 593.37 612.50 565.82 584.37 23.78 4.07 
25 411.66 496.66 548.76 510.69 550.52 500.15 503.07 50.60 10.06 
30 410.44 480.68 463.45 561.68 469.38 529.95 485.93 53.26 10.96 

Original concentrations are obtained by multiplying values in Table 8.8 with 1000 (Dilution is 1000 times). 

 

* An unexpected low concentration was observed indicating error. 
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Table 8.12: Absorbance values of the drug release samples belonging to the 30 micron group as obtained using ELISA.  

Samples Wells 
Abs. 

Values 
Conc 

(ng/ml) 
Mean Conc 

(ng/ml) SD CV% 
C2 0.342 0.491 Tube 1  

Day 5 D2 0.352 0.473 0.482 0.013 2.63 
E2 0.370 0.443 Tube 2  

Day 5 F2 0.363 0.454 0.449 0.008 1.78 
G2 0.385 0.420 Tube 3  

Day 5 H2 0.423 0.370 0.395 0.036 9.07 
A3 0.408 0.389 Tube 4  

Day 5 B3 0.371 0.442 0.415 0.037 9.03 
C3 0.353 0.471 Tube 5  

Day 5 D3 0.348 0.480 0.476 0.006 1.31 
E3 0.330 0.514 Tube 6  

Day 5 F3 0.361 0.458 0.486 0.040 8.17 
G3 0.267 0.667 Tube 7  

Day 5 H3 0.284 0.619 0.643 0.034 5.27 
A4 0.406 0.391 Tube 1  

Day 10 B4 0.346 0.484 0.437 0.065 14.95 
C4 0.288 0.609 Tube 2  

Day 10 D4 0.282 0.625 0.617 0.011 1.81 
E4 0.289 0.606 Tube 3  

Day 10 F4 0.282 0.625 0.615 0.013 2.11 
G4 0.485 0.304 Tube 4  

Day 10 H4 0.541 0.257 0.280 0.033 11.81 
A5 0.417 0.377 Tube 5  

Day 10 B5 0.335 0.504 0.441 0.090 20.39 
C5 0.298 0.584 Tube 6  

Day 10 D5 0.287 0.611 0.598 0.020 3.26 
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E5 0.357 0.464 
 

Tube 7  
Day 10 F5 0.378 0.431 0.448 0.024 5.32 

G5 0.395 0.406 Tube 1  
Day 15 H5 0.445 0.344 0.375 0.044 11.66 

A6 0.397 0.403 Tube 2  
Day 15 B6 0.353 0.471 0.437 0.048 10.99 

C6 0.225 0.816 Tube 3  
Day 15 D6 0.217 0.851 0.834 0.025 2.95 

E6 0.417 0.377 Tube 4  
Day 15 F6 0.432 0.359 0.368 0.013 3.48 

G6 0.273 0.650 Tube 5  
Day 15 H6 0.316 0.543 0.596 0.076 12.68 

A7 0.436 0.354 Tube 6  
Day 15 B7 0.372 0.440 0.397 0.061 15.25 

C7 0.382 0.425 Tube 7 
Day 15 D7 0.359 0.461 0.443 0.026 5.79 

E7 0.326 0.522 Tube 1  
Day 20 F7 0.325 0.524 0.523 0.001 0.27 

G7 0.340 0.495 Tube 2  
Day 20 H7 0.401 0.398 0.446 0.068 15.34 

A8 0.350 0.477 Tube 3  
Day 20 B8 0.324 0.526 0.501 0.035 6.97 

C8 0.299 0.581 Tube 4  
Day 20 D8 0.321 0.532 0.557 0.035 6.26 

E8 0.305 0.567 Tube 5  
Day 20 F8 0.327 0.520 0.544 0.034 6.17 

G8 0.406 0.391 Tube 6  
Day 20 H8 0.430 0.361 0.376 0.021 5.62 

A9 0.352 0.473 Tube 7  
Day 20 B9 0.304 0.570 0.521 0.068 13.10 
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C9 0.270 0.658 Tube 1  
Day 25 D9 0.273 0.650 0.654 0.006 0.94 

E9 0.282 0.625 Tube 2  
Day 25 F9 0.288 0.609 0.617 0.011 1.81 

G9 0.302 0.574 Tube 3  
Day 25 H9 0.335 0.504 0.539 0.050 9.20 

A10 0.339 0.497 Tube 4  
Day 25 B10 0.317 0.541 0.519 0.031 6.01 

C10 0.327 0.520 Tube 5  
Day 25 D10 0.316 0.543 0.531 0.016 3.05 

E10 0.344 0.487 Tube 6  
Day 25 F10 0.339 0.497 0.492 0.007 1.33 

G10 0.342 0.491 Tube 7  
Day 25 H10 0.357 0.464 0.478 0.019 3.93 

A11 0.350 0.477 Tube 1  
Day 30 B11 0.320 0.534 0.505 0.041 8.08 

C11 0.287 0.611 Tube 2  
Day 30 D11 0.326 0.522 0.567 0.063 11.17 

E11 0.360 0.459 Tube 3  
Day 30 F11 0.344 0.487 0.473 0.020 4.17 

G11 0.340 0.495 Tube 4  
Day 30 H11 0.350 0.477 0.486 0.013 2.64 

A12 0.334 0.506 Tube 5  
Day 30 B12 0.345 0.485 0.496 0.015 2.94 

C12 0.360 0.459 Tube 6  
Day 30 D12 0.344 0.487 0.473 0.020 4.17 

E12 0.324 0.526 Tube 7  
Day 30 F12 0.308 0.560 0.543 0.024 4.49 

The three parameter logistic equation was used to calculate the concentration values (ng/ml). The mean  
concentration values were used in Table 8.13 
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Table 8.13: Concentration (ng/ml) of drug release samples belonging to 30 micron group obtained using ELISA. 

 
Days T1 T2 T3 T4 T5 T6 T7 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
5 0.482 0.449 0.395 0.415 0.476 0.486 0.643 

10 0.437 0.617 0.615 0.280 0.441 0.598 0.448 
15 0.375 0.437 0.834 0.368 0.596 0.397 0.443 
20 0.523 0.446 0.501 0.557 0.544 0.376 0.521 
25 0.654 0.617 0.539 0.519 0.531 0.492 0.478 
30 0.505 0.567 0.473 0.486 0.496 0.473 0.543 

 
 
 

Table 8.14: Original concentrations (ng/ml) for 30 micron group  

Days T1 T2 T3 T4 T5 T6 T7 Average SD %CV 
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
5 481.96 448.76 395.00 415.06 475.66 485.77 643.25 477.92 80.72 16.89 

10 437.41 616.70 615.42 280.33 440.58 597.59 447.58 490.80 125.38 25.55 
15 375.14 437.28 833.58 368.00 596.19 397.15 442.89 492.89 168.80 34.25 
20 522.87 446.24 501.22 556.77 543.55 376.24 521.29 495.45 63.46 12.81 
25 653.99 616.70 539.18 518.55 531.29 491.89 477.67 547.04 64.89 11.86 
30 505.37 566.62 473.31 485.57 495.74 473.31 543.17 506.16 35.86 7.09 

Original concentrations are calculated  by multiplying values of Table 8.13 with 1000 (Dilution is 1000 times). 
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Table 8.15: Amount of ethinyl estradiol released for 30 micron group  

 
Days T1 T2 T3 T4 T5 T6 T7 Average SD %CV 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
5 144.59 134.63 118.50 124.52 142.70 145.73 192.98 143.38 24.22 16.89 

10 131.22 185.01 184.62 84.10 132.17 179.28 134.27 147.24 37.61 25.55 
15 112.54 131.18 250.07 110.40 178.86 119.15 132.87 147.87 50.64 34.25 
20 156.86 133.87 150.37 167.03 163.07 112.87 156.39 148.64 19.04 12.81 
25 196.20 185.01 161.75 155.57 159.39 147.57 143.30 164.11 19.47 11.86 
30 151.61 169.99 141.99 145.67 148.72 141.99 162.95 151.85 10.76 7.09 

Amounts are calculated by multiplying concentrations in Table 8.10 with volume of 0.3 ml. 
 

Table 8.16: Cumulative amount of ethinyl estradiol released (ng) from 30 micron group over 30 days. 

 
Days T1 T2 T3 T4 T5 T6 T7 Average SD %CV 

 
Amt 
(ng) 

Cum. 
Amt. 
(ng) 

Amt 
(ng) 

Cum. 
Amt. 
(ng) 

Amt 
(ng) 

Cum. 
Amt. 
(ng) 

Amt 
(ng) 

Cum. 
Amt. 
(ng) 

Amt 
(ng) 

Cum. 
Amt. 
(ng) 

Amt 
(ng) 

Cum. 
Amt. 
(ng) 

Amt 
(ng) 

Cum. 
Amt. 
(ng)    

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
5 144.59 144.59 134.63 134.63 118.50 118.50 124.52 124.52 142.70 142.70 145.73 145.73 192.98 192.98 143.38 24.22 16.89 

10 131.22 275.81 185.01 319.64 184.62 303.12 84.10 208.61 132.17 274.87 179.28 325.01 134.27 327.25 290.62 42.26 14.54 
15 112.54 388.35 131.18 450.82 250.07 553.20 110.40 319.02 178.86 453.73 119.15 444.16 132.87 460.12 438.48 71.68 16.35 
20 156.86 545.22 133.87 584.70 150.37 703.56 167.03 486.05 163.07 616.79 112.87 557.03 156.39 616.50 587.12 68.54 11.67 
25 196.20 741.41 185.01 769.71 161.75 865.32 155.57 641.61 159.39 776.18 147.57 704.59 143.30 759.80 751.23 68.73 9.15 
30 151.61 893.02 169.99 939.69 141.99 1007.31 145.67 787.28 148.72 924.90 141.99 846.59 162.95 922.76 903.08 70.44 7.80 
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