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Abstract 

 

Abundance, biomass and caloric content of Chukchi Sea bivalves and 

influence on Pacific walrus (Odobenus rosmarus divergens) abundance 

and distribution in the northeastern Chukchi Sea 

 

Jordann Kailey Young, M.S. Marine Sci. 

The University of Texas at Austin, 2015 

 

Co-Supervisors:  Kenneth H. Dunton, Bryan A. Black 

 

The northeastern Chukchi Sea is a shallow subarctic shelf ecosystem that supports a 

significant benthic infaunal community. Bivalves are one of the dominant benthic taxa in 

this region, and represent a vital food resource for consumers such as Pacific walrus 

(Odobenus rosmarus divergens). The biomass, abundance and species composition of 

these bivalve communities not only reflect local patterns of productivity, but have the 

potential to affect upper trophic level consumers through bottom-up processes. Ten 

dominant bivalve taxa were collected over four cruises in the northeastern Chukchi Sea 

from 2009-2013 to establish baseline parameters in size frequency distributions, 

abundance, biomass and caloric content and to quantify their influence on the distribution 

of Pacific walrus. Pooled size-frequency distributions across all years showed strongly 

right-skewed distributions for most taxa, with a few showing evidence of a bimodal 

distribution. Calorimetric measurements revealed significant differences in caloric 
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density between taxa (p-value < 0.001), and whole animal wet weight was a reliable 

predictor of caloric content. Abundance and biomass were largely dominated by calorie-

dense, deposit-feeding species, including Macoma spp., Ennucula tenuis, Nuculana spp. 

and Yoldia spp.. Hotspot analysis revealed areas of high abundance, biomass and calories 

centered on and to the southeast of Hanna Shoal. Pacific walrus abundance from June 

through October was generally greatest in areas of high bivalve abundance and biomass. 

ANOVA analysis showed significant differences in mean caloric values between areas 

with and without walrus present (student’s t-test, p-value < 0.001), as well as between 

areas with low and high densities of walrus in the pooled annual dataset and in each 

individual month except October. The dominant bivalve taxa in this study were high-

calorie deposit feeders which preferentially consume food sources that are likely to be 

affected by shifting sea ice dynamics, such as benthic microalgae and sea ice algae. As 

such, shifting sea ice dynamics have the potential to dramatically alter bivalve 

communities in the northeastern Chukchi Sea that may have profound implications for 

upper trophic levels. 
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INTRODUCTION 

The Chukchi Sea, a gateway to the Arctic Ocean, supports some of the highest 

levels of primary production in the world (Grebmeier et al. 2006a). Primary production in 

the Chukchi is supported by the delivery of heat, nutrients and carbon from the Pacific 

Ocean by three major water masses, Anadyr Water (AW), Bering Shelf Water (BSW), 

and Alaskan Coastal Water (ACW, Weingartner et al. 2005, 2013). Much of this 

production is transferred to the benthos as a consequence of low zooplankton grazing 

pressure and the shallow depth of the Chukchi shelf, which limits bacterial 

remineralization of fixed carbon during sinking (Walsh et al. 1989, Sakshaug 2004). 

Thus, large amounts of organic carbon settle to the seafloor and support high levels of 

benthic faunal biomass, particularly in areas of the northeastern Chukchi Sea such as 

Hanna Shoal (Grebmeier et al. 1989, 2006a, Cooper et al. 2002, Dunton et al. 2005, 

Ambrose et al. 2005).  

The highly productive benthic communities of Hanna Shoal are dominated by 

polychaetes, mollusks and crustaceans (Schonberg et al. 2014), and attract considerable 

numbers of benthic-feeding apex consumers to the region, including gray whales 

(Eschrichtus robustus), bearded seals (Erignathus barbatu), and Pacific walrus 

(Odobenus rosmarus divergens) (Feder et al. 1994, 2007, Sheffield et al. 2001, Richman 

and Lovvorn 2003, Lovvorn et al. 2003, Simpkins et al. 2003, Grebmeier et al. 2013). 

Hanna Shoal is a particularly important summer feeding ground for female and juvenile 

Pacific walrus, which migrate from their wintering grounds in the Bering Sea each 

summer to forage in the Chukchi Sea (Fay 1982, Jay et al. 2012, Schonberg et al. 2014). 

Though walrus feed on a wide variety of benthic organisms, analyses of stomach contents 
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suggest that the most frequently consumed prey items in this area are gastropods, 

bivalves and polychaetes (Sheffield and Grebmeier 2009).  

Bivalves are one of the dominant benthic taxa in the northeastern Chukchi Sea, 

particularly in terms of biomass (Stoker 1978, Grebmeier et al. 1989, Feder et al. 1994, 

Blanchard et al. 2013, Dunton et al. 2014, Schonberg et al. 2014), and possess one of the 

highest caloric densities of walrus prey taxa (Wilt et al. 2013). Bivalves represent an 

important food resource for walrus, and walrus habitat selection in wintering grounds of 

the Bering Sea has been shown to be strongly influenced by the distribution of bivalve 

caloric biomass (Jay et al. 2014). In addition to being a direct food resource, bivalves 

likely support other benthic organisms that are consumed by walrus, particularly 

gastropods. Members of the common Neptunea genus are known bivalve predators 

(Shimek 1984), as are many congenerics of Chukchi gastropods in other geographic areas 

(Himmelman and Hamel 1993, Scolding et al. 2007, Sato et al. 2012, Clements et al. 

2013, Clements and Rawlings 2014). In addition, stable isotopes analyses and 

measurements of bioaccumulated mercury corroborate that Chukchi gastropods occupy a 

high trophic level (Fox et al. 2014, McTigue and Dunton 2014) consistent with that of a 

predator. As such, it is reasonable to conclude that bivalves play direct and indirect roles 

in walrus food webs, though these dynamics remain poorly described. In addition to their 

role as a food resource, bivalves play an important role in benthic communities by acting 

as ecosystem engineers, producing hard substrate in the form of shells that provides 

refuges from predation, promotes settlement of epibionts, and facilitates recruitment of 

their own juveniles as well as those of other species (Gutiérrez et al. 2003, Skazina et al. 

2013).  

Of particular concern to the Arctic Ocean and associated subarctic seas are recent 

warming trends and associated changes in sea ice extent and phenology of formation and 
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retreat, as have been documented in the northern Bering and Chukchi Seas (Meier and 

Stroeve 2007, Steele et al. 2008, Luchin and Panteleev 2014). These changes are 

projected to continue (Overland and Wang 2007, Wang and Overland 2012) and are 

likely to affect the magnitude, timing and location of both ice algae and phytoplankton 

blooms with implications for the export of energy to the benthos (Grebmeier et al. 2006b, 

Bluhm and Gradinger 2008) as indicated by biological responses to interannual climate 

variability. Overall, primary production in this region is divided between early sea-ice 

algae blooms and subsequent open-water pelagic productivity in the form of 

phytoplankton blooms (Horner and Schrader 1982, Wheeler et al. 1996, McMinn and 

Hegseth 2004). During cold years, a larger proportion of primary productivity occurs in 

the form of algae blooms along the receding sea-ice edge.  During these years, low water 

temperatures inhibit zooplankton grazing activity (Coyle and Pinchuk 2002, Sakshaug 

2004) and bacterial remineralization of primary productivity, resulting in a large portion 

of this fixed carbon settling to the ocean floor.  During warm years, a larger proportion of 

primary production occurs as phytoplankton blooms in thermally stratified open waters, 

and the relatively warm water temperatures stimulate zooplankton grazing activity and 

facilitate the transfer of energy to the pelagic community at the expense of the benthic 

community. Studies from this region estimate that grazing can reduce exports of organic 

matter to the benthos by as much as 50% (Macklin et al. 2002). As such, increasing 

temperatures due to climate change could substantially impact benthic bivalve 

populations by diverting energy from benthic communities into pelagic food webs. 

Climate change in the Arctic is also expected to increase anthropogenic impacts from 

shipping, fishing and offshore oil and gas activities in the region (Huntington 2009, 

Harsem et al. 2011), which could increase disturbance rates for benthic communities in 

high-traffic shelf areas.  
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One of the greatest challenges facing researchers documenting the impacts of 

climate change on Arctic ecosystems is the lack of reliable baseline data, particularly for 

benthic communities (Wassmann et al. 2011). Despite the dominant role bivalves play in 

the benthic communities and food webs of the northeastern Chukchi Sea, these animals 

are poorly studied due to a lack of commercial exploitation and the logistical difficulties 

of conducting research in the High Arctic. To address this issue, I assessed the size 

frequency distribution, abundance, biomass, and caloric content of ten dominant bivalve 

taxa (Astarte spp., Clinocardium ciliatum, Cyclocardia crebricostata, Ennucula tenuis, 

Liocyma fluctuosa, Macoma spp., Musculus spp., Nuculana spp., Serripes groenlandicus, 

and Yoldia spp.) collected from the northeastern Chukchi Sea in 2009, 2010, 2012 and 

2013. Size-frequency distributions were measured as a rough proxy of recruitment 

history, and size-calorie relationships were developed for each taxon and applied to 

produce maps of abundance, biomass, and caloric content in the Hanna Shoal region with 

the goal of quantifying the spatial heterogeneity of bivalve community structure. Finally, 

I combined maps of bivalve caloric distribution with data on the abundance and 

distribution of Pacific walrus in the northeastern Chukchi Sea to examine the association 

between walrus abundance and distribution and bivalve caloric distribution. I predicted 

that walrus abundance and distribution are influenced by the distribution of bivalve 

calories in this summer feeding area, as others have shown for Pacific walrus in Bering 

Sea wintering grounds (Jay et al. 2014).
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METHODS 

Study Area and Sampling Methods 

Sampling took place in the northeastern Chukchi Sea in the area described by 

Chukchi Sea Oil and Gas Lease Sale 193 (Figure 1A). Quantitative samples were 

collected on research cruises in this region between 24 July and 12 August 2009 and 

2010 aboard the research vessels Alpha Helix (2009) and Moana Wave (2010), and on 

Hanna Shoal between 9 August and 25 August 2012, and between 29 July and 15 August 

2013 aboard the USCGC Healy. Stations were chosen using randomized or hexagonal 

tessellation techniques, and additional stations were added to fill spatial gaps, to sample 

areas known for historical significance or to revisit stations that had been previously 

sampled (see Dunton et al. 2014 for more detail). In total, bivalves were collected for 

abundance and biomass measurements at 90 stations across four years of sampling using 

a double van Veen grab (area 0.1 m-2). Benthic grab samples were sieved through a 1 

mm mesh screen, identified to lowest taxonomic level (genus or species) aboard ship, and 

preserved in 80% ethanol. In 2013, bivalves were opportunistically collected for use in 

bomb calorimetry from additional grabs and benthic trawls. These specimens were 

identified to lowest taxonomic level aboard ship and were frozen to avoid potential issues 

with chemical preservation altering caloric content (Benedito-Cecilio and Morimoto 

2002, Hondolero et al. 2012).  

Two stations were excluded from all analyses due to their remote southern 

location (DBO-UNT5 and Detritus), while three deep water stations from the Barrow 

Canyon area (BarC5, CBL16, and H111) were excluded from the abundance, biomass 

and caloric analyses due to their depth (>100 meters), which exceeds the generally 

accepted maximum foraging depth for Pacific walrus (Fay 1982, Fay and Burns 1988).  
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Figure 1. A. Study area in the northeastern Chukchi Sea with Hanna Shoal outlined in 

black. Stations are shown in red. B. ASAMM survey transects (light blue) 

and grid of cells (gray) overlaid across area of ASAMM transects that 

intersected with the study area. Note the slightly different scales for Figures 

1A and 1B. 
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After excluding these stations, 85 stations were analyzed for abundance, biomass and 

caloric content, and 88 stations were analyzed for size-frequency distributions. Stations 

were pooled across all years to ensure adequate sample sizes for spatial analysis. 

Length-Weight Relationships  

Samples were transported to the University of Texas Marine Science Institute in  

Port Aransas, Texas, where shell lengths of frozen specimens (n = 369) were measured 

along the anterior-posterior axis to the nearest 0.1 mm, and wet weights were measured to 

the nearest 0.1 mg after thawing and blotting. The relationship between the length and 

wet weight of the frozen bivalves was determined through regression analysis. All 

statistics were computed using R 3.1.0 (R Core Team 2014).  

Calorimetric Analysis 

Frozen specimens from the 2013 Hanna Shoal cruise were analyzed for caloric 

content via bomb calorimetry, and length of the anterior-posterior axis and whole animal 

wet weight were evaluated as potential indicators of caloric content. Because feeding 

walruses do not consume the shells of bivalves, shells were not included in calorimetric 

analysis (Fay 1982). Frozen specimens were thawed and soft tissues were removed from 

the shells and weighed before being placed in pre-weighed tins and oven-dried at 60°C 

until a constant weight was achieved. After drying, the samples were re-weighed to 

obtain dry tissue weights for each specimen, and were homogenized and stored in a 

desiccator. A pellet press (Parr Instruments, Moline IL) was used to create pellets of 

0.05-0.2 g, depending on the amount of homogenized tissue available from each 

specimen. In cases where the dry tissue weight of a specimen was of insufficient mass to 

be run individually, combined pellets were created by pooling similarly sized specimens 

that originated from the same station. In these cases, the proportional contribution of each 
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specimen to the combined pellet was used to determine the length and wet weight of the 

hypothetical combined specimen. After pooling, 308 samples were produced from the 

369 specimens that were processed for bomb calorimetry. Pellet weights were recorded 

for each sample prior to calorimetry.  

Pellets were combusted using a Model 6200 Oxygen Bomb Calorimeter (Parr 

Instruments, Moline IL) at the Texas Parks and Wildlife Coastal Conservation 

Association Marine Development Center (TPWD-CCA) in Corpus Christi, Texas. Prior 

to sample analysis, bombs were calibrated using a benzoic acid (C6H5COOH) pellet of 

approximately 0.2 grams. Caloric density was measured as gross heat of combustion, 

reported in international calories per gram (cal g
-1

), and were corrected for the amount of 

fuse wire consumed in the combustion reaction, as well as the remaining sample weight. 

For some samples, a small amount of sample material remained after combustion, and the 

remaining sample weight was determined to be inorganic when a second round of 

combustion with a benzoic acid pellet failed to combust the remaining sample. The 

remaining sample weight was hypothesized to consist of inorganic stomach contents of 

bivalves (i.e. sand), as several of the bivalves in this study are classified as deposit 

feeders and ingest sediments during feeding (Macdonald et al. 2010).  

An ANOVA was performed to test for differences in gross heat (cal g
-1

) among 

taxa after log-transforming the data to meet the assumptions of homogeneity of variance 

(Bartlett’s test p < 0.05). Regression analysis of wet weight and length vs. whole animal 

caloric content determined that weight was a better predictor of whole animal caloric 

content for most taxa, and thus weight was selected as the measured parameter for both 

size-frequency distributions and prediction of caloric content of preserved specimens.  
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Size-Frequency Distributions and Abundance, Biomass and Predicted Caloric 

Content of Preserved Specimens 

Bivalves were quantitatively collected at 90 stations across all four years of 

sampling, and were preserved in ethanol at the time of collection. These ethanol-

preserved quantitative specimens were the basis for measurements of size-frequency 

distributions, abundance, biomass, and caloric distribution, and specimens from all years 

were pooled to ensure adequate spatial coverage and sample size. Specimens were blotted 

and wet weight was measured to the nearest 0.1 mg for the determination of size 

frequency distributions, biomass and caloric content prediction. The caloric content of 

preserved specimens was predicted using the relationship between wet weight and whole 

animal caloric content obtained from bomb calorimetry for each taxon. For some 

preserved specimens, inadequate preservation techniques resulted in evaporation of 

ethanol from preservation containers, leaving the specimens desiccated. In these cases, 

the taxon-specific length-weight relationships developed from the frozen specimens were 

used to predict the wet weight of desiccated specimens, and caloric prediction was based 

on the predicted wet weight.  

Effects of Ethanol Preservation on Length-Weight Ratio  

Chemical preservation of specimens may alter specimen wet weight (Mills et al. 

1982, Shields and Carlson 1996, Qureshi et al. 2008, Melo et al. 2010). Therefore, a 

subset of specimens from each taxon and preservation year was analyzed to determine 

whether preservation affected length-weight ratios. A subset of individuals that spanned 

the full size range for each taxon in each collection year (174-221 specimens) was 

analyzed for relatively abundant taxa (E. tenuis, Macoma spp., Nuculana spp., and Yoldia 

spp.). All available samples were analyzed for uncommon taxa (Astarte spp., C. ciliatum, 

C. crebricostata, L. fluctuosa, Musculus spp., and S. groenlandicus). Specimens were 
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measured for length along the anterior-posterior axis to the nearest 0.1 mm, and after 

blotting, wet weight was measured to the nearest 0.1 mg. Subsequently, a taxon-specific 

length-weight ratio for each preservation year was generated for comparison to the 

length-weight ratio generated for the frozen bivalves utilized in bomb calorimetry. The 

residuals did not meet the assumptions of homoscedasticity and normality, so the data 

were transformed using natural logarithms, which also corrected for the non-linear 

relationship between length and weight. After transformation, a one-way analysis of 

covariance (ANCOVA) was conducted with weight as the dependent variable, length as 

the covariate and years of preservation as the factor. Any taxon which returned at least 

one significantly different year was further investigated using multiple regressions to 

identify which year or years generated a length-weight ratio that was significantly 

different from the length-weight ratio of frozen specimens. In addition, for these taxa, the 

regressions of length vs. weight for each preserved year were used to predict the weights 

of standard lengths in order to determine whether the preserved specimens were predicted 

to be heavier or lighter at a given weight than frozen specimens (see Appendix A for 

additional details).  

Spatial Analysis of Bivalve Abundance, Biomass and Caloric Distribution 

The number of double van Veen grabs taken at each bivalve collection station was 

variable, so calculations of abundance, biomass and caloric values for each station were 

normalized to the number of grabs collected at each station. The mean abundance, 

biomass and caloric values of each taxon and for all taxa combined at each station were 

mapped using ArcGIS Version 10.1 (ESRI, Redlands, CA). Several interpolation 

techniques were considered for generating continuous surfaces: inverse distance 

weighting (IDW), completely regularized spline (CRS), spline with tension (SWT), 



 11 

ordinary kriging (OK) and empirical Bayesian kriging (EBK). A cross-validation 

technique was used to compare the accuracy of the interpolated surface generated by each 

technique against the actual measured value for each station, and results were evaluated 

based on minimum root mean squared error (RMSE) and normalized RMSE (Tomczak 

1998, Dolan et al. 2000, ESRI 2013a). In general, spline techniques outperformed the 

other interpolation methods in cross validation tests for the majority of taxa, but predicted 

negative caloric values in many areas that were considered unrealistic. Kriging 

techniques produced the next lowest RMSE and normalized RMSE values, but produced 

interpolated surfaces that typically utilized less than half of the entire range of the 

measured data. For these reasons, IDW was chosen as the interpolation technique for all 

spatial analyses. Cross-validation was also used to determine optimum neighborhood size 

(See Appendix B for results of cross-validation tests).  

In addition to interpolation, Getis-Ord Gi* hotspot analysis was conducted in 

ArcGIS for mean abundance, biomass and caloric value. Z-scores are generated for each 

station based on the Getis-Ord local statistic, which compares the sum of all the stations 

in a neighborhood to the expected neighborhood sum (ESRI 2013b, 2013c). When 

neighborhood sums are significantly different (p-value < 0.1) from the expected sum, the 

stations in the neighborhood are assigned statistically significant Z-scores. Significant Z-

scores can negative (indicating cold spots) or positive (indicating hotspots) (ESRI 2013b, 

2013c). 

Pacific Walrus Abundance and Distribution 

Data on Pacific walrus distribution and abundance over the 2009-2013 study 

period were obtained from the annual National Oceanic and Atmospheric Administration 

(NOAA) Aerial Surveys of Arctic Marine Mammals (ASAMM) program. For this 
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program, NOAA Fisheries conducts aerial transect surveys of walrus and other marine 

mammals in areas of potential or current oil and natural gas development and extraction 

in the Chukchi and Beaufort Seas. For this study, I utilized data from survey transects in 

the northeastern Chukchi Sea for 2009, 2010, 2012 and 2013, and the data were pooled 

across years to ensure maximum spatial coverage (Figure 1B). Aerial surveys were based 

in Barrow and Deadhorse, AK and were conducted along offshore transects arranged 

perpendicular to the coast between 68°-72° N and 157°-169° W. Survey transects were 

offset in each year by generating a new random origin point to ensure maximum spatial 

coverage for multiyear datasets. Additional details on survey procedure can be found in 

Clarke et al. (2014), and survey data are available from the National Marine Fisheries 

Service National Marine Mammal Laboratory website 

(http://www.afsc.noaa.gov/nmml/software/bwasp-comida.php). Walrus data in the form 

of number of walrus per sighting was mapped as point data using ArcGIS (Version 10.1), 

and no interpolation was applied.  

Influence of Bivalve Caloric Distribution on Pacific Walrus Abundance and 

Distribution in Offshore Feeding Areas 

In order to measure the influence of bivalve caloric distribution on walrus 

abundance and distribution in the offshore regions of the northeastern Chukchi Sea, a grid 

of 238 19 km2 square cells was overlaid across the region of the Lease Sale 193 area that 

overlapped with the ASAMM Chukchi Sea survey transects (Figure 1B). The grid was 

limited to offshore feeding areas and excluded coastal haulout sites that were heavily 

utilized by walrus in years with low sea ice (Jay et al. 2012). The size of grid cells (19 

km
2
) was determined based on the 19 km maximum spacing between ASAMM transects. 

In each grid cell, the average interpolated caloric value and total walrus abundance was 

determined, and cells were divided into two bins based on presence or absence of walrus. 
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Due to the non-normal distribution of the data, the mean caloric value of cells was log-

transformed prior to a pair-wise comparison of caloric values of cells in each bin using a 

student’s t-test. Subsequently, the cells were subdivided into bins based on the total 

number of walrus observed in each cell (0, 1-10, 11-100, 101-1000, and 1001+ walrus per 

cell), and ANOVA analysis was conducted to examine the relationship between log-

transformed mean bivalve calories and total walrus sightings. This analysis was 

conducted for the full dataset and separately for the months of June, July, August, 

September, and October.
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RESULTS 

Length-Weight Relationships  

Length was an accurate predictor of weight for all taxa, returning R
2
 values 

ranging from 0.921 (C. crebricostata) to 0.998 (Yoldia spp.), with nine out of ten taxa 

having R
2
 values greater than 0.96 (Figure 2). The species with the weakest relationship, 

C. crebricostata, was noted to have a relatively thick periostracum with variable levels of 

erosion, and we hypothesized that this unaccounted-for variable might have contributed 

to the slightly lower R
2
 value for this species. 

Calorimetric Analysis 

Gross heats differed significantly among taxa (ANOVA F = 32.37, p-value < 0.001), as 

separated by a post-hoc Tukey’s Honestly Significant Difference (HSD) (Appendix, 

Table C1). The taxa with the highest mean gross heats were the deposit feeders Yoldia 

spp. (5661.9 ± 397.6 cal g-1), Macoma spp. (5333.6 ± 282.9 cal g-1), Nuculana spp. 

(5267.0 ± 217.7 cal g-1), and E. tenuis (5194.1 ± 295.4 cal g-1), while those with the 

lowest were S. groenlandicus and C. crebricostata (4715.3 ± 213.9 and 4847.8 ± 265.2 

cal g-1, respectively) (Table 1, Figure 3). Whole animal wet weight was found to be a 

robust predictor of whole animal caloric content, with R
2
 values ranging from 0.76 to 

0.99 (Table 2).   
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Figure 2: Length-weight relationship of each taxon, used to extrapolate predicted 

weight in cases of inadequate preservation. Best-fit regression lines of 

length vs. weight are shown as solid lines, and R
2
 values for the equations 

are shown on the graph. Equations of best-fit regression lines can be found 

in Table 2
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Taxon Mean international  

calories / gram ± SD 

Astarte spp. 4929.0 ± 264.8 

C. ciliatum 5079.6 ± 321.99 

C. crebricostata 4847.8 ± 265.2 

E. tenuis 5194.0 ± 295.4 

L. fluctuosa 4971.6 ± 229.5 

Macoma spp. 5333.6 ± 283.0 

Musculus spp. 5055.5 ± 229.6 

Nuculana spp. 5267.1 ± 217.7 

S. groenlandicus 4715.3 ± 214.0 

Yoldia spp. 5662.0 ± 397.6 

Table 1: Mean gross heat (average international calories / gram) by taxa 

Figure 3: Gross heats of combustion (international calories per gram) by taxa with 

Tukey’s HSD letter groupings. Note that Yoldia spp. has no grouping, as the 

mean gross heat of this taxon was significantly higher than any other taxon 

and consequently had no similar pairings.  
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Taxon 

 

Sample 

Size 

 

Length-Weight 

Relationship 

 

 

Length v. Total 

Calories  

 

R
2
 

 

Weight v. Total 

Calories  

 

R
2 
 

 

Adjusted Calorie 

Equation   

 

R
2
 

 

Astarte spp. 

 
29 

 
W = 

0.0002(L3.1221) 

 
C = 4.0918L2 - 

102.68L + 949.31 

 
0.9585 

 
C = 161.78W + 

213.04 

 
0.9462 

  

C. ciliatum 34 W = 

0.0006(L2.769) 

C = 15.35L2 - 

438.95L + 3484.7 

0.9898 C = 556.98W 0.949   

C. crebricostata 35 W = 

0.0012(L2.5366) 

C = 1.4548L2.0817 0.8188 C = 277.39W + 

86.118 

0.8754   

E. tenuis 31 W = 
0.0003(L3.0275) 

C = 0.4334L2.5958 0.6601 C = 509.36W + 
24.223 

0.7067   

L. fluctuosa 15 W = 

0.001(L2.3947) 

C = 0.2038L2.6671 0.8765 C = 396.62W - 13.67 0.7145 C = 390.96W 0.7144 

Macoma spp. 9 W = 

0.0003(L2.7313) 

C = 10.51L2 - 

640.35L + 10493 

0.9465 C = 468.67W + 

219.9 

0.9469   

Musculus spp. 37 W = 

0.0004(L2.6147) 

C = 2.878L2 - 

22.319L + 8.0881 

0.9555 C = 591.89W - 

56.789 

0.9625 C = 582W 0.962 

Nuculana spp. 47 W = 

0.0004(L2.5441) 

C = 0.1692L2.5708 0.9068 C = 389.26W + 

84.289 

0.9003   

 

Table 2: Length, weight and relationship to whole animal caloric content. Based on comparison of R
2
 values, weight was 

chosen as the parameter on which caloric predictions were based. When necessary, weight equations were fitted 

to the origin to avoid negative caloric predictions in small size classes; these fitted equations are noted as 

Adjusted Calorie Equation and Adjusted Equation R
2
. 
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Table 2 (continued) 

 
S. groenlandicus 34 W = 

0.0007(L
2.5864

) 

C = 5.3564L
2
 - 

108.86L + 716.06 

0.9966 C = 355.36W+ 99.361 0.9928   

Yoldia spp. 38 W = 
0.0002(L2.7816) 

C = 2.1251L2 + 
17.266L - 745.93 

0.8162 C = 836.79W 0.866   
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Size-Frequency Distributions and Abundance, Biomass and Caloric Content of 

Preserved Specimens 

Size-frequency distributions of the pooled datasets for each taxon tended to show 

a peaked right-skewed distribution with positive kurtosis (Figure 4; Appendix, Table B2). 

In addition, several taxa showed evidence of a bimodal distribution, with peaks at small 

and intermediate size classes. This distribution was most pronounced in Nuculana spp., 

but was also evident to a lesser degree in Astarte spp., C. crebricostata, and Musculus 

spp. (Figure 4).  

The most numerically dominant taxa in the study area were E. tenuis (37.9%) and 

Macoma spp. (25.5%), followed by Nuculana spp. (13.7%) and Yoldia spp. (10.6%, 

Table 3). In terms of biomass, Macoma spp. (36.9%) was the dominant taxon, followed 

by Nuculana spp. (16.8%), E. tenuis (14.4%), and Astarte spp. (9.1%, Table 3). Caloric 

content was calculated using taxon-specific weight-calorie relationships (Figure 5), and 

Macoma spp. (45.8%), E. tenuis (14.8%), Nuculana spp. (13.9%), and Yoldia spp. (9.8%) 

dominated the caloric distribution (Table 3). 

Effects of Ethanol Preservation on Length-Weight Ratio  

ANCOVA analysis resulted in four taxa (C. ciliatum, Macoma spp., S. 

groenlandicus and Yoldia spp.) showing no significant differences in length-weight ratios 

between preserved specimens and frozen specimens, while the remaining six (Astarte 

spp., C. crebricostata, E. tenuis, L. fluctuosa, Musculus spp. and Nuculana spp.) returned 

at least one preserved year with a significantly different length-weight ratio from that of 

frozen specimens (Table 4). Due to a lack of clear patterns of weight gain or loss in these 

taxa, the application of a correction factor was not considered justified (see Appendix A 

for more details).  
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Figure 4: Size-frequency distributions by year for all taxa
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Taxa % Total Mean 

Abundance 

% Total Mean 

Biomass 

% Total Mean 

Calories 

Astarte spp. 1.6 9.1 3.5 

C. ciliatum 0.1 0.3 0.3 

C. crebricostata 0.8 1.7 1.0 

E. tenuis 37.9 14.4 14.8 

L. fluctuosa 1.2 1.8 1.1 

Macoma spp. 25.5 36.9 45.8 

Musculus spp. 4.1 8.4 7.9 

Nuculana spp. 13.7 16.3 13.9 

S. groenlandicus 0.5 3.3 2.1 

Yoldia spp. 10.6 7.3 9.8 

Other 4.1 0.5 0 

Table 3: Percent contribution of each taxon to abundance, biomass and caloric 

distribution. Taxa which were not examined in this study are denoted as 

“Other” and make no contribution to caloric distribution due to insufficient 

specimens for calorimetric analysis. 
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Figure 5: Weight-calorie relationships used to predict caloric content of preserved 

specimens. Actual measurements from bomb calorimetry specimens are 

shown here plotted against linear regression equations, which can be found 

in Table 2.  
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Taxon F p-value 

Astarte spp. 4.5153 0.001734* 

Clinocardium ciliatum 2.8361 0.068516 

Cyclocardia crebricostata 8.8359 3.986e-06* 

Ennucula tenuis 3.3144 0.01123* 

Liocyma fluctuosa 9.5349 1.027e-06* 

Macoma spp. 0.9611 0.43 

Musculus spp. 10.711 1.688e-06* 

Nuculana spp. 6.340 6.854e-05* 

Table 4: Results of ANCOVA analysis of log-transformed length-weight ratio across 

all preservation years for each taxon. Significant results (p-value < 0.05) are 

denoted with an asterisk* 

Spatial Analysis of Bivalve Abundance, Biomass and Caloric Content 

Bivalves were present throughout the study area and were found at 76 of the 90 

stations sampled, but individual taxon distributions were spatially heterogeneous (Figure 

6-9). Four taxa (C. ciliatum, C. crebricostata, Musculus spp. and S. groenlandicus) were 

relatively rare throughout the study area, and were found at less than a quarter of all 

stations (7, 17, 13 and 16 stations), while Astarte spp. and L. fluctuosa were moderately 

common, occurring at 35 and 40 stations respectively. The remaining taxa (E. tenuis, 

Macoma spp., Nuculana spp. and Yoldia spp.) were extremely common and were found 

at over half of all stations (71, 66, 54 and 52). As a result, clusters of stations with caloric 

compositions that were dominated by a single taxon were common (Figure 9). Stations 

that were calorically dominated by Nuculana spp. were found predominantly in the 

western portion of the study region, while Macoma spp. dominated stations surrounding 

Hanna Shoal, and a few stations with high biomass of Musculus spp. were found in the 

region to the east of the shoal near Barrow Canyon.  

In general, the interpolated maps showed that areas of highest abundance, 

biomass and caloric content occurred on Hanna Shoal and in regions to the south and east 

of the shoal (Figures 6-8), which was confirmed by hotspot analysis (Figure 10). Maps of 
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biomass and caloric distribution also showed an area of high biomass and caloric density 

in the western portion of the study area (Figures 7, 8)., which was due to an unusually 

high biomass of Nuculana spp. collected at one station in one year. However, because 

this high biomass and caloric content was only measured at one station, it was not 

classified as a hotspot and was not reflected in the hotspot analysis maps (Figure 10). 

Pacific Walrus Abundance and Distribution 

Pacific walrus abundance in the study area was highest during July and August, 

with intermediate abundances in June and September, and the lowest abundances in 

October (Table 5, Figure 11). When the annual dataset was examined visually, the largest 

aggregations of walrus in offshore areas were concentrated on Hanna Shoal (Figure 11). 

Large numbers of walrus were also observed along the Alaskan coastline in September 

(Figure 11), which was due to heavy utilization of coastal haulout sites during times of 

low sea ice availability (Jay et al. 2012). However, these coastal haulout areas were 

excluded from the present study, which focuses on walrus distribution in offshore feeding 

areas.  

Influence of Bivalve Caloric Distribution on Pacific Walrus Abundance and 

Distribution in Offshore Feeding Areas 

Significant differences were found in the mean caloric value of cells where walrus 

were present vs. cells where they were absent (student’s t-test, t = -5.7437, df = 235.78, 

p-value < 0.001). ANOVA analysis of total walrus abundance and log-transformed mean 

caloric value per cell returned significant results for the annual dataset as well as all 

individual months except October (Table 5). The strongest correlations between log-

transformed mean caloric values and walrus abundance were observed in July (F = 20.85, 

p-value = 1.03e-14), August (F = 32.85, p-value < 2e-16), and in the annual dataset (F = 
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28.48, p-value < 2e-16). In general, high mean caloric values were correlated with high 

densities of Pacific walrus (Figure 12). 
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Figure 6: Inverse distance weighting interpolation of abundance (n / 0.1 m
2
) for each 

individual taxon and for all taxa combined, clipped to a 60 nautical mile 

buffer zone surrounding the study region. 
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Figure 7: Inverse distance weighting interpolation of biomass (g / 0.1 m
2
) for each 

individual taxon and for all taxa combined, clipped to a 60 nautical mile 

buffer zone surrounding the study region. 
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Figure 8: Inverse distance weighting interpolation of caloric distribution (calories / 0.1 

m
2
) for each individual taxon and for all taxa combined, clipped to a 60 

nautical mile buffer zone surrounding the study region.
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Figure 9: Relative contribution to total caloric content of each station by each taxon. Pie chart size is scaled to log-

transformed total caloric content. 
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Figure 10: 

Getis-Ord-GI* 

hotspot analysis 

of total mean 

abundance, 

biomass and 

calories by 

station. Stations 

with unusually 

high values 

(>2.58 standard 

deviations) are 

shown in red
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Month Walrus Abundance F p-value 

June 924 4.276 0.00581* 

July 12,654 20.85 1.03e-14* 

August 10,280 32.85 <2e-16* 

September 2,585 5.944 0.000143* 

October 24 0.696 0.405 

All Months 26,467 28.48 <2e-16* 

Table 5: Pacific walrus abundance by month and results of ANOVA analysis of log-

transformed mean caloric value in grid cells with different levels of walrus 

abundance (n = 0, 1-10, 11-100, 101-1000, and 1001+ walrus per cell). 

Significant results (p-value < 0.05) are denoted with an asterisk* 
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Figure 11: Walrus abundance and distribution in the study area in June, July, August, 

September, October and all months combined. Data provided by NOAA 

ASAMM program. 
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Figure 12: Log-transformed mean calories per cell across various levels of walrus 

abundance for June, July, August, September, October and all months 

combined. 
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DISCUSSION 

These results depict a bivalve community that is dominated by a relatively small 

number of high-calorie taxa. However, the proximate factors responsible for the high 

caloric density of these taxa are still unknown, as are the environmental factors (such as 

temperature, sediment grain size, etc.) that might support their dominance over other 

taxa. These dominant taxa share a distinctive deposit-feeding mode that may confer a 

competitive advantage over suspension-feeding bivalves in the northeastern Chukchi Sea 

and contribute to their elevated caloric density, perhaps by facilitating the efficient uptake 

of select food sources. The current domination of the Hanna Shoal bivalve communities 

by calorie-dense taxa creates a favorable environment for both vertebrate and invertebrate 

bivalve predators, as the most common bivalves are those that offer the highest return in 

terms of calories per gram of tissue consumed. However, the benthic communities of the 

northeastern Chukchi Sea are likely to be strongly impacted by the effects of climate 

change on primary productivity regimes, and the distinctive deposit feeding mode of 

these high-calorie bivalves may make them more vulnerable than the other taxa in our 

study.  

Increased rates of sea ice retreat, along with a decrease in ice algal contributions 

to the benthos, could enable the replacement of high-calorie bivalve taxa by low-calorie 

taxa, which could impact higher trophic levels (Richman and Lovvorn 2003, Lovvorn et 

al. 2003). It is also possible that shifting primary productivity regimes in the region could 

lead to an overall reduction in export of energy to the benthos, with an associated 

reduction in abundance and biomass of bivalves and other benthic taxa that would also 

affect higher trophic levels (Grebmeier et al. 2006a, 2006b). A better understanding of 

the environmental drivers of these communities and the ways that they respond to 

changing environmental conditions is particularly important, because climate-driven 
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shifts in bivalve community composition and overall abundance have been linked to 

declines in populations of bivalve consumers in other geographic regions. 

Shifting environmental conditions may act on these bivalve communities by 

influencing recruitment rates in the affected populations. Successful recruitment in 

bivalve populations can be driven by a number of biotic and abiotic factors, including 

bottom water temperature (Harding et al. 2008), predation (Beukema and Dekker 2014, 

Dekker and Beukema 2014) and availability of hard substrate for spat recruitment 

(Skazina et al. 2013). The size-frequency distributions for most taxa examined in this 

study showed high abundance of specimens in small size classes and decreased 

abundance at larger size classes. My results are similar to size-frequency distributions 

reported for Chukchi bivalve taxa living in other geographic areas (Zettler 2002), and 

may be driven by successful recruitment of spat and juveniles in recent years and/or 

selective predation pressure on large specimens by bivalve consumers such as Pacific 

walrus and bearded seals. A few taxa also showed slightly bimodal size frequency 

distributions, suggesting that at least some taxa may be experiencing fluctuations in 

recruitment success. However, without annually resolved data and exact specimen ages, it 

is difficult to speculate on the potential environmental drivers of recruitment success for 

these taxa. Furthermore, as these bivalves can potentially live for decades, the time span 

of this study is insufficient to capture long-term variation in recruitment patterns (Strayer 

and Malcom 2006, Beukema et al. 2010, Skazina et al. 2013).  Because instability in 

population age structure caused by fluctuations in recruitment success are common in 

many bivalve populations (Gerasimova and Maximovich 2013, Skazina et al. 2013), 

longer-term studies of population age structure with annual resolution, as well as 

investigation into the potential environmental drivers of recruitment, are needed before 
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any conclusions about the stability of the bivalve community in the Hanna Shoal region 

can be drawn.  

Spatial Analysis of Bivalve Abundance, Biomass and Caloric Distribution  

The taxa with the highest mean gross heats of combustion (Yoldia spp., Macoma 

spp., Nuculana spp. and E. tenuis) were all deposit feeders. The unusually high caloric 

density of these taxa may reflect a selective consumption of certain high value foods such 

as ice algae, which is rich in polyunsaturated fatty acids (PUFAs, Falk-Petersen et al. 

1998) and has been shown to be preferentially consumed by deposit feeders (McMahon 

et al. 2006, Sun et al. 2009). In addition, the reproductive stage of an animal may 

influence whole animal caloric content in bivalves (Rodriguez et al. 2011) as well as 

other marine and aquatic organisms (Neves and Brayton 1982, Montevecchi and Piatt 

1984, Manhas et al. 2013, Penney and Moffitt 2014). As the reproductive status of 

bivalves was not examined in this study, it is possible that at the time of sampling these 

deposit-feeding taxa possessed increased energy reserves as a result of preparation for 

spawning, while the suspension feeding taxa may have already spawned, resulting in 

lower overall caloric content for these taxa. An analysis of proximate composition, as 

well as an in-depth investigation into the reproductive phenology of Chukchi bivalves, 

might shed some light on the factors driving this significant difference in caloric density 

among taxa. 

Bivalve abundance, biomass and caloric distribution were dominated by high-

calorie deposit feeding taxa, and areas of highest bivalve productivity were centered 

directly on Hanna Shoal and in areas to the south and southeast of the shoal. The high 

productivity in this area is likely supported by the efficient delivery of nutrients from 

Pacific-originating waters, particularly BSW, which is thought to play an important role 
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in the deposition of nutrients and carbon on the shoal and in nearby Barrow Canyon 

(Weingartner et al. 2005). Furthermore, it has been proposed that Hanna Shoal is the site 

of convergence of two water masses, as Bering Sea Water (a mixed water mass resulting 

from the convergence of BSW and AW north of the Bering Strait) circulates around the 

shoal in a clockwise pattern and draws cold, dense winter-formed water from the 

northeast into the region. It has been proposed that the clockwise circulation of these 

water masses around Hanna Shoal may enhance carbon deposition rates, particularly in 

the region just south of the shoal (Weingartner et al. 2013). This hypothesis has been 

supported by studies which have measured high salinities and low temperatures typical of 

northern water masses in bottom waters to the south of the shoal, in conjunction with low 

C:N ratios (indicative of recent carbon deposits) and high abundance and biomass of 

benthic infauna (Schonberg et al. 2014).  

With regards to the environmental drivers of species dominance among bivalve 

communities in this region, other studies have examined the influence of environmental 

parameters on the distribution of epibenthic taxa in the Chukchi Sea and found that 

parameters such as latitude, longitude, local water masses, depth, temperature, pH, 

dissolved oxygen, sediment grain size, sediment percent total organic carbon and 

sediment chlorophyll a can all influence the abundance and distribution of species (Konar 

et al. 2014, Ravelo et al. 2014). These factors were not examined in this study, but could 

be a next step in assessing the drivers of the spatially heterogeneous distribution of 

bivalve taxa observed in this study. 

Influence of Bivalve Caloric Distribution on Pacific Walrus Abundance and 

Distribution in Offshore Feeding Areas 

Our findings on the abundance of Pacific walrus in the Hanna Shoal region over 

the course of the year reflect current knowledge of walrus migration patterns, feeding 
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habits and habitat use in the Chukchi Sea. In June, Pacific walrus are still en route to the 

northeastern Chukchi Sea, and I observed correspondingly low walrus abundance in our 

study area during this month (Fay 1982, Fay et al. 1984). I documented the highest 

abundance of walrus in our study area during July and August, when the majority of 

walrus summering on the Alaskan coast are thought to have reached the northeastern 

Chukchi Sea (Fay 1982), and when walrus foraging around Hanna Shoal is thought to be 

most intense (Jay et al. 2012).  

Historically, walrus remain in offshore foraging areas such those around Hanna 

Shoal through the remainder of summer and into the early fall (Fay 1982, Fay et al. 

1984), but recent reductions in sea ice extent and duration have made it more difficult for 

walrus to spend significant amounts of time foraging in offshore areas in September, 

when sea ice reaches its minimum extent (Stroeve et al. 2012). Walrus require sea ice to 

serve as a platform for hauling out and resting between feeding bouts in offshore areas 

(Fay 1982), and because sea ice extent has reached all-time historical lows in recent years 

(Stroeve et al. 2012, Wang and Overland 2012), walrus are increasingly hauling out on 

the Alaskan coast in late summer and early fall (Jay et al. 2012). This may explain the 

reduced abundance of walrus observed in the offshore study area in September. However, 

despite this reduced abundance, I still observed a significant correlation between high 

bivalve caloric density and high densities of walrus, which I believe indicates continued 

foraging around Hanna Shoal in September despite low sea ice extent in these years. 

Others have documented large numbers of radio-tagged walruses traveling from coastal 

haulout locations to the foraging grounds of Hanna Shoal, completing a round trip of over 

200 km (Jay et al. 2012). This massive expenditure of energy highlights the importance 

of the Hanna Shoal region as a high-value foraging ground for Pacific walrus, even in 

low ice years. After September, very few walrus remained in the study area, likely due to 
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the onset of the southern migration with the rapid formation of new sea ice in October 

(Fay 1982). This could also be due to movements of walrus from the coast of Alaska to 

the coast of Chukotka in Russia, where sea ice tends to persist longer and allows walrus 

to remain in offshore foraging locations longer than in the northeastern Chukchi Sea (Jay 

et al. 2012). 

This study focused exclusively on bivalves, as they are a preferred food resource 

for Pacific walrus that are also consumed by other walrus prey items, most notably 

gastropods. However, walrus feeding in the Chukchi also consume prey items that are not 

bivalve consumers, such as polychaete worms (Fay 1982, Sheffield and Grebmeier 2009). 

As such, a truly comprehensive predictive model of walrus abundance and distribution in 

foraging areas should incorporate the distribution of all benthic taxa from walrus prey 

guilds, as well as availability of haulout platforms in the region, whether they be coastal 

or sea ice. However, despite the potential confounding influence of sea ice on walrus 

abundance and distribution in the study area and the exclusion of other prey taxa, I still 

found a significant correlation between bivalve caloric distribution and abundance and 

distribution of Pacific walrus in the study area. 

Implications of Global Change 

The reduction of sea ice extent and duration could have a bottom-up impact on the 

bivalve communities of Hanna Shoal through altering the dynamics of primary 

productivity in the Chukchi Sea. For example, as a result of shifting sea ice dynamics, the 

relative contributions of ice algae and phytoplankton to benthic communities are likely to 

change. Diatom-dominated, PUFA-enriched ice algae represents one of the first sources 

of high quality food available to benthic communities after the winter (Falk-Petersen et 

al. 1998, Arrigo and Thomas 2004, Sun et al. 2009), and is readily assimilated by benthic 
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fauna (Yunker et al. 1995, Macdonald et al. 1998, Mincks et al. 2005, Ratkova and 

Wassmann 2005, McMahon et al. 2006, Sun et al. 2007, Renaud et al. 2007, Boetius et al. 

2013). High quality foods, and particularly foods that are high in PUFAs, have been 

shown to enhance reproductive success, larval survival, recruitment and growth in 

bivalves (Wacker and Elert 2004, Basen et al. 2011), and feeding experiments conducted 

by McMahon et al. (2006) and Sun et al. (2009) have shown that deposit feeding bivalves 

may preferentially consume ice algae over other food sources. In our study, the four 

dominant taxa in terms of abundance, biomass and caloric distribution were all deposit or 

mixed deposit and suspension feeders, while all other taxa examined are classified as 

suspension feeders (Macdonald et al. 2010). It is possible that deposit feeding may confer 

a competitive edge to bivalves in this ecosystem by facilitating the consumption of high-

quality food such as ice algae.  

Ice algae are dependent on sea ice for substrate and cannot form blooms in open 

water, making them vulnerable to reductions in sea ice extent and duration (Hegseth 

1998, Wassmann et al. 2011).  If current trends in reduced sea ice extent and duration 

continue, the associated loss of substrate for ice algae communities is expected to reduce 

their relative contribution of organic matter to the benthos (Horner and Schrader 1982, 

Hsiao 1992, Carroll and Carroll 2003, Arrigo et al. 2008, Arrigo and van Dijken 2011), 

though this effect has not yet been quantitatively confirmed in the field (Wassmann et al. 

2011). If this is the case, it is possible that bivalves from alternative feeding guilds that do 

not preferentially consume ice algae may gain a competitive edge over the currently 

dominant deposit feeders in the Hanna Shoal region. In addition, reductions in sea ice 

algal production could differentially impact members of deposit feeding guilds that 

utilize different deposit-feeding strategies. For example, it has been proposed that under 

conditions of reduced ice algal production, deposit feeders that are able to access food 
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sources buried in the sediment, such as members of the genus Nuculana, may gain a 

competitive advantage over deposit feeders that prefer to feed on surface sediments, such 

as members of the genus Macoma (Weems et al. 2012). The wide variety of feeding 

strategies employed by Chukchi bivalves must be considered when attempting to predict 

the impacts of reduced ice algal production on these organisms. 

Additional challenges for benthic organisms could arise if altered sea ice 

dynamics lead to mismatches in the timing of algal blooms with reproductive cycles for 

benthic organisms. Altered timing of sea ice retreat in recent years has been shown to 

alter open water phytoplankton community structure in the Chukchi (Fujiwara et al. 

2014). In addition, mean snow depth on Chukchi sea ice has declined in recent years 

(Webster et al. 2014), and reduction of the reflective snow cover on sea ice may result in 

earlier sea ice retreat and ice algae blooms (Wassmann and Reigstad 2011). Some studies 

have indicated that the reproductive cycles of arctic grazers such as the copepod Calanus 

glacialis are timed to take advantage of the high quality food available during ice algae 

blooms (Søreide et al. 2010), and that mismatches in the timing of primary production 

and copepod reproduction can severely reduce copepod recruitment and abundance (Leu 

et al. 2011). It is possible that Chukchi bivalves may also time their reproductive events 

to take advantage of exports of high quality ice algae to the benthos. This hypothesis is 

supported by studies that found that reproduction was triggered by inputs of high-quality 

food in the bivalve Yoldia hyperborea in Conception Bay, Newfoundland (Stead and 

Thompson 2003, Jaramillo and Thompson 2008). As such, there could be negative 

repercussions for these bivalve taxa if altered sea ice dynamics leads to altered timing in 

ice algal blooms.  

Benthic microalgae, or microphytobenthos, are an additional food source for 

Chukchi bivalves that may be affected by changing sea ice dynamics. Benthic microalgae 



 42 

are an important component of benthic food webs in shallow marine ecosystems, 

particularly for deposit and suspension feeders (Miller et al. 1996). Early studies of 

benthic microalgae in the Chukchi Sea reported extremely high levels of 

microphytobenthic primary productivity, particularly in August, when rates of carbon 

fixation (approaching 57 mg C m
−2

 h
−1

) were eight times higher than ice algae 

productivity and twice as high as pelagic phytoplankton productivity (Matheke and 

Horner 1974). There is increasing evidence suggesting that the Chukchi could support a 

viable microphytobenthic community, and that such communities may contribute 

substantially to benthic primary production in Arctic ecosystems and may exceed pelagic 

primary productivity by a factor of 1.5, particularly in areas less than 30 m deep such as 

certain parts of Hanna Shoal (Rysgaard and Nielsen 2006, Glud et al. 2009, McTigue et 

al. 2015). However, it is uncertain how climate change and alterations in sea ice 

dynamics might affect microphytobenthic communities in the northeastern Chukchi Sea. 

Though primary production in the Arctic is expected to increase as higher temperatures 

reduce sea ice extent and duration and increase available light for photosynthesis 

(Sakshaug 2004), one study which modeled the effects of a 2 °C temperature increase on 

Arctic microphytobenthic communities predicted only marginal effects on 

microphytobenthic net community production (Woelfel et al. 2014). A decrease in sea ice 

coverage will increase the light available for photosynthesis for benthic microalgae, 

which can fuel their growth by taking up nutrients from bottom waters and sediment 

porewater (Glud et al. 2009). On the other hand, pelagic phytoplankton, which are more 

nutrient-limited than benthic microalgae due to their position in the water column, may 

be better situated to take advantage of the increase in light availability (Glud et al. 2009, 

Woelfel et al. 2014). Nutrient availability has been shown to influence the balance of 
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pelagic and benthic production (Glud et al. 2009), and as such, predicting how climate 

chance will impact Arctic primary production is not always straightforward. 

Shifts in the abundance and distribution of bivalves have the potential to greatly 

impact populations of upper trophic level consumers through bottom-up processes. This 

has been documented in the Wadden Sea, where bivalves are an important source of food 

for eiders (Somateria mollissima), oystercatchers (Haematopus ostralegus), and red knots 

(Calidris canutus). A combination of recruitment failure and increased mortality rates in 

several dominant bivalve species in the Wadden Sea (Cerastoderma edule, Macoma 

balthica, and Mytilus edulis) caused substantial declines in bird-accessible bivalve 

biomass and is believed to have contributed to fluctuations in stocks of shellfish-eating 

birds (Beukema et al. 2010). It is hypothesized that elevated winter temperatures in the 

Wadden Sea was the main factor that contributed to recruitment failure and increased 

bivalve mortality, particularly for M. balthica, which experiences increased predation 

pressure on early life stages from the shrimp Crangon crangon in warmer years 

(Beukema and Dekker 2005, 2014, Beukema et al. 2009, 2010, Dekker and Beukema 

2014). This example illustrates the dramatic impact that shifts in bivalve communities 

can have on upper trophic levels, and underscore the importance of understanding how 

environmental factors drive bivalve population dynamics. In order to predict the effects 

of changing environmental conditions on upper trophic level consumers such as Pacific 

walrus, it is critical to first determine the effects these changing conditions will have on 

the lower trophic levels that support them. 
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CONCLUSION 

Climate change is expected to dramatically alter ecosystem dynamics in the 

Chukchi Sea, but exactly what form these changes will take is difficult to predict. 

However, past variability in climate and associated ecosystem responses may provide 

some insight into how a warming climate will impact this predominantly benthic 

ecosystem. The Bering Sea provides a poignant example of how a warming regime can 

affect an ecosystem where primary productivity is controlled by sea ice duration and 

extent, and how altered sea ice dynamics can impact benthic communities and upper 

trophic level benthic predators. It is widely accepted that the Bering Sea experienced a 

major regime shift to warmer conditions in 1976-77, and again to a lesser degree in 1989 

(Hare and Mantua 2000, Bond and Adams 2002), with widespread effects on Bering Sea 

food web dynamics and significant consequences for many upper trophic level 

consumers, including the threatened spectacled eider (Somateria fischeri), a diving duck 

that winters in an area southwest of St. Lawrence Island where it feeds extensively on 

bivalves.  

The spectacled eider was likely affected by shifts in the bivalve community 

composition of the northern Bering Sea when the comparatively calorie-rich and formerly 

dominant Macoma calcarea was replaced by the comparatively calorie-poor Nuculana 

radiata as the dominant species by the late 1980’s (Sirenko and Koltun 1992, National 

Research Council 1996, Richman and Lovvorn 2003). Combined with a decline in mean 

bivalve size and biomass per unit area (Grebmeier and Dunton 2000), this reduction in 

overall caloric resources may have contributed to declines in the spectacled eider 

(Richman and Lovvorn 2003, Lovvorn et al. 2003). Though the exact mechanism for this 

shift in species dominance is not conclusively known, the Bering Sea regime shift to 
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warmer temperatures is considered likely to have contributed to the shift in bivalve 

species dominance (National Research Council 1996, Richman and Lovvorn 2003). In 

my study, high-calorie deposit-feeding bivalve taxa tended to dominate measures of 

numerical abundance, biomass and caloric distribution. As such, shifts in community 

composition could significantly impact the available caloric resources for bivalve 

predator populations in the Chukchi Sea, especially if these high caloric density taxa were 

to be supplanted by low caloric density taxa. 

The driving mechanism of change in the Bering Sea may have been sea ice, which 

directs the bulk of Bering Sea primary production into either benthic or pelagic pathways 

depending on the timing of sea ice retreat and the spring bloom (Hunt et al. 2002). In 

colder years, sea ice persists late into the year, and early primary productivity occurs as 

an ice-edge associated bloom in cold waters that thermally limit zooplankton grazing, 

resulting in large amounts of carbon sinking to the benthos and promoting benthic-

pelagic coupling. In warmer years, early sea ice recession delays large blooms of primary 

production until cessation of storm activity and thermal stratification stabilizes the water 

column, resulting in an open-water bloom with high levels of zooplankton grazing, and 

diverting large amounts of productivity away from the benthos and into pelagic food 

webs (Hunt et al. 2002). Others have proposed that altered sea ice dynamics could have 

similar repercussions on food webs in the Chukchi Sea, and that reductions in sea ice 

duration and extent may shift the region from a benthic-dominated ecosystem to a 

pelagic-dominated ecosystem (Grebmeier et al. 2006a), affecting recruitment success and 

stability of Chukchi bivalve populations. If altered sea ice dynamics in the Chukchi result 

in the bulk of primary production being shifted into pelagic food webs, this would result 

in dramatic impacts on the benthic communities of the region and the benthic feeding 

apex consumers that depend on them.
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Appendices 

APPENDIX A 

Effects of Preservation on Length-Weight Ratio  

Each taxon that showed a significant difference in log-transformed length-weight 

ratio between years was analyzed with additional ANCOVA comparisons of log-

transformed length-weight ratios of each year of preservation with those of frozen 

specimens. Specimens were assigned a preservation year class based on how many years 

they had been chemically preserved at the time of analysis. Year Zero represented frozen 

specimens, Year One represented specimens collected in 2013, Year Two represented 

specimens collected in 2012, Year Four represented specimens collected in 2010, and 

Year Five represented specimens collected in 2009. 

The results of the pairwise ANCOVA analyses were variable and differed by taxa. 

All year classes of Astarte spp. and L. fluctuosa showed significant differences in length-

weight ratios from Year Zero except Year Five. Years One and Two of C. crebricostata 

showed significant differences from Year Zero, but not Years Four or Five. The 

remaining taxa showed only one significantly different year class, with Year One being 

significantly different for E. tenuis, Year Four being significantly different for Musculus 

spp., and Year Five being significantly different for Nuculana spp. (Table A1). 

To further examine the effects of these differences on the predicted weights of 

specimens of these taxa, weights for standard lengths were predicted for each year class 

and compared to Year Zero. This was done using the slope and y-intercept parameters of 

the regressions of the natural logs of length and weight for each taxon, and weights were 

predicted for lengths of 5-40 mm in increments of 5 mm (Figure A1).  
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Three year classes of Astarte spp. (Years One, Two and Four) showed significant 

differences from Year Zero, and the predicted weights for standard sizes showed that all 

preserved year classes had lower weights than Year Zero specimens of the same size 

(Figure A1). However, there was no clear pattern of weight loss, with Years Four and 

Two having the lightest predicted weights, followed closely by Year One. Year Five 

specimens were predicted to have a significantly heavier weight than all other preserved 

years, and the length-weight ratios from this preservation year were not significantly 

different from Year Zero. If chemical preservation were affecting specimen weights, I 

would expect to see a uniform weight loss across all years, or a loss of weight that 

increased with increasing preservation time, as alcohol-preserved specimens do not 

typically gain weight while preserved (Mills et al. 1982, Shields and Carlson 1996, 

Qureshi et al. 2008, Melo et al. 2010). In addition, any weight fluctuations that occur as a 

result of chemical preservation tend to stabilize within one month to four months of 

preservation (Mills et al. 1982, Shields and Carlson 1996, Qureshi et al. 2008, Melo et al. 

2010). As such, an increase in specimen weight after five years of preservation as seen in 

Astarte spp. is unlikely. 

Two year classes of C. crebricostata (Years One and Two) showed significantly 

different length-weight ratios than Year Zero specimens (Figure A1). However, for these 

years, the projected weights were actually higher than those of frozen specimens. 

Similarly, three year classes of L. fluctuosa (Years One, Two and Four, Figure A1) and 

one year class of Musculus spp. (Year Four, Figure A1) showed significant differences 

from Year Zero, but all significantly different years were projected to have higher 

weights at standard lengths than any frozen specimens. As weight gain is not a typical 

feature of alcohol preservation, I consider this to be weak evidence of a preservation 

effect on weight. 
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One year class of E. tenuis (Year One, Figure A1) and one year class of Nuculana 

spp. (Year Five, Figure A1) showed a significantly different length-weight ratio from 

Year Zero specimens, and the projected weights for these year classes were lighter than 

those of frozen specimens. This could be considered evidence of a potential preservation 

effect, although weight loss due to chemical preservation has typically stabilized before a 

full year of preservation has passed, making changes in length-weight ratios after one or 

five years of preservation somewhat unlikely. In addition, as these are the only taxa 

which show this potential effect, and they display opposite patterns in terms of the timing 

of the effect (changes in length-weight ratios after the first year of preservation vs. after 

the fifth year), it is possible that this could be due to some other source of variation.  

One possible alternative source of variation in the length-weight ratios of the taxa 

discussed here include random variation in the length-weight ratios of the specimens 

collected within a particular year. Specimens of Astarte spp., Musculus spp. and 

Nuculana spp. were only identified to the genus level, and it is possible that subtle 

differences in shell morphometrics of different species within these taxa could contribute 

to different length-weight ratios, particularly if one species was more abundant in certain 

years than in others. In the case of C. crebricostata, it is possible that varying levels of 

erosion of the unusually thick periostracum of this species could have contributed to 

variation in length-weight ratios between years. In addition, a bivalve’s rates of growth of 

linear shell length and shell thickness can vary depending on environmental cues; for 

example, one species of mussel has been found to increase shell thickness at the expense 

of linear shell growth when raised in the presence of chemical cues from predators such 

as whelks, crabs and sea stars (Smith and Jennings 2000), which would produce variation 

in the length-weight ratio. Furthermore, soft tissue weight can constitute a significant 

portion of the wet weight of an animal, and variations in soft tissue weight could also 
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alter length-weight ratios. For example, Lewis and Cerrato (1997) demonstrated that 

minimal feeding resulted in loss of soft tissue weight in bivalves over a period of just a 

few weeks, so it is possible that variations in food availability could lead to interannual 

variation in length-weight ratio if food resources were scarce in the weeks prior to 

sampling.  

Overall, these results do not show a clear effect of preservation on the weights of the 

specimens in this study. If an effect were present, I would not expect it to affect some 

taxa and not others, as I saw here. In addition, if an effect of preservation were present, I 

would expect to see a consistent pattern across years, rather than the variable differences 

between years that were observed in the six taxa which had at least one significantly 

different year. It should be noted that the specimens included in this study were preserved 

for relatively short periods of time (1-5 years) compared to some historical benthic 

invertebrate collections, so it is possible that longer preservation times could affect 

length-weight ratios. However, for this study, it seems more likely that some other factor 

is responsible for the observed differences in length-weight ratios observed in these taxa, 

and with no clear pattern of weight loss or gain across taxa and preservation years, I feel 

that the application of a correction factor is unjustified. 
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Taxon Year One : 

Year Zero 

Year Two : 

Year Zero 

Year Four : 

Year Zero 

Year Five: 

Year Zero 

Astarte spp. < 0.001* 0.005147* < 0.001* 0.64140 

C. crebricostata < 0.001* 0.001895* 0.3892 0.1427 

E. tenuis 0.01881* 0.465 0.11850 0.1905122 

L. fluctuosa < 0.001* < 0.001* < 0.001* 0.3287 

Musculus spp. 0.6288 0.26808 0.00284* n/a 

Nuculana spp. 0.7987 0.8563053 0.8111586 < 0.001* 

Table A1: Results of multiple regressions of taxa with statistically significant differences in 

log-transformed length-weight ratios between years. Log-transformed length-weight 

ratios of each year of preservation were compared to log-transformed length-weight 

ratio of frozen bivalves (Year Zero) to identify significantly different years. Note 

that no specimens of Musculus spp. were collected in 2009, so no Year Five 

comparison was possible. Significant results (p-value < 0.05) are shown with an 

asterisk*. 
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Figure A1: Projected weights of standard lengths across all years of preservation. 
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APPENDIX B 

 

 Inverse 

Distance 

Weighting 

Completely 

Randomized 

Spline 

Spline with 

Tension 

Ordinary 

Kriging 

Empirical 

Bayesian 

Kriging 

Astarte spp. 1.520692 1.383483 1.382707 1.362111 1.385533 

C. ciliatum 0.19743 0.196905 0.196901 0.208781 0.198715 

C. crebricostata 0.975077 0.930152 0.930165 0.950766 0.923554 

E. tenuis 19.46012 19.31353 19.27312 19.57665 20.23609 

L. fluctuosa 0.707402 0.677717 0.678111 0.713453 0.696617 

Macoma spp. 14.68220563 14.68220563 14.68220563 14.68220563 14.68220563 

Musculus spp. 0.569411 0.555971 0.555975 0.554286 0.563771 

Nuculana spp. 9.527368 9.243455 9.174616 8.476792 8.375378 

S. groenlandicus 0.442509958 0.442509958 0.442509958 0.442509958 0.442509958 

Yoldia spp. 7.735141 7.598938 7.59896 7.632071 7.644552 

All Taxa 36.88717 36.39647 36.34465 36.61316 37.27443 

Table B1: Root mean squared errors of cross-validation comparison of interpolation 

techniques for abundance. 

 Inverse 

Distance 

Weighting 

Completely 

Randomized 

Spline 

Spline with 

Tension 

Ordinary 

Kriging 

Empirical 

Bayesian 

Kriging 

Astarte spp. 0.198351 0.180454 0.180353 0.177667 0.180722 

C. ciliatum 0.118458 0.118143 0.118141 0.125269 0.119229 

C. crebricostata 0.177287 0.169119 0.169121 0.172867 0.167919 

E. tenuis 0.143089 0.142011 0.141714 0.143946 0.148795 

L. fluctuosa 0.163247 0.156396 0.156487 0.164643 0.160758 

Macoma spp. 0.176894 0.172293 0.172291 0.170268 0.174325 

Musculus spp. 0.142353 0.138993 0.138994 0.138571 0.140943 

Nuculana spp. 0.210163 0.2039 0.202381 0.186988 0.184751 

S. groenlandicus 0.147503 0.132712 0.132401 0.13573 0.130519 

Yoldia spp. 0.143243 0.140721 0.140721 0.141335 0.141566 

All Taxa 0.200838 0.198166 0.197884 0.199346 0.202946 

Table B2: Normalized root mean squared errors of cross-validation comparison of 

interpolation techniques for abundance. 
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 Inverse 

Distance 

Weighting 

Completely 

Randomized 

Spline 

Spline with 

Tension 

Ordinary 

Kriging 

Empirical 

Bayesian 

Kriging 

Astarte spp. 4.040851 3.651045 3.6421 3.656957 3.573468 

C. ciliatum 0.196913 0.19583 0.195909 0.189977 0.198025 

C. crebricostata 1.399261 1.36805 1.368106 1.375225 1.361512 

E. tenuis 4.827054 4.787358 4.782248 4.883781 4.976793 

L. fluctuosa 0.819309 0.787634 0.788019 0.818758 0.817154 

Macoma spp. 10.20866 9.740869 9.732128 9.982718 9.614408 

Musculus spp. 2.118915 2.082863 2.082888 2.074331 2.124161 

Nuculana spp. 5.555183 5.588512 5.585813 5.728097 5.537245 

S. groenlandicus 5.390676 4.309129 4.289856 4.189738 4.167541 

Yoldia spp. 3.019905 2.974153 2.970855 3.029861 2.933269 

All Taxa 18.29628 17.33116 17.33133 17.68767 17.18581 

Table B3: Root mean squared errors of cross-validation comparison of interpolation 

techniques for biomass. 

 Inverse 

Distance 

Weighting 

Completely 

Randomized 

Spline 

Spline with 

Tension 

Ordinary 

Kriging 

Empirical 

Bayesian 

Kriging 

Astarte spp. 0.172318 0.155695 0.155314 0.155947 0.152387 

C. ciliatum 0.160287 0.159406 0.15947 0.154641 0.161193 

C. crebricostata 0.127886 0.125034 0.125039 0.125689 0.124436 

E. tenuis 0.140698 0.139541 0.139392 0.142352 0.145063 

L. fluctuosa 0.131773 0.126678 0.12674 0.131684 0.131426 

Macoma spp. 0.202042 0.192784 0.192611 0.19757 0.190281 

Musculus spp. 0.114383 0.112437 0.112439 0.111977 0.114667 

Nuculana spp. 0.177575 0.17864 0.178554 0.183102 0.177001 

S. groenlandicus 0.155793 0.124536 0.123979 0.121085 0.120444 

Yoldia spp. 0.132681 0.130671 0.130526 0.133118 0.128874 

All Taxa 0.231325 0.219122 0.219124 0.22363 0.217285 

Table B4: Normalized root mean squared errors of cross-validation comparison of 

interpolation techniques for biomass. 

 



 54 

 

 Inverse 

Distance 

Weighting 

Completely 

Randomized 

Spline 

Spline with 

Tension 

Ordinary 

Kriging 

Empirical 

Bayesian 

Kriging 

Astarte spp. 732.4595 665.4486 664.0569 665.1807 656.0309 

C. ciliatum 109.6763 109.0734 109.1175 105.8131 110.2961 

C. crebricostata 440.9751 426.6969 426.1488 443.1821 422.9838 

E. tenuis 2457.329 2436.629 2435.177 2475.007 2522.6 

L. fluctuosa 320.529 308.2645 308.4558 320.7862 320.7481 

Macoma spp. 5383.011 5175.758 5171.365 5324.568 5112.9 

Musculus spp. 1233.209 1212.226 1212.241 1207.261 1236.262 

Nuculana spp. 2246.083 2254.118 2253.091 2276.167 2240.893 

S. groenlandicus 1931.633 1544.283 1537.408 1505.691 1492.069 

Yoldia spp. 2531.388 2489.174 2486.217 2540.68 2451.6 

All Taxa 8864 8606.43 8608.282 8733.056 8664.253 

Table B5: Root mean squared errors of cross-validation comparison of interpolation 

techniques for calories. 

 Inverse 

Distance 

Weighting 

Completely 

Randomized 

Spline 

Spline with 

Tension 

Ordinary 

Kriging 

Empirical 

Bayesian 

Kriging 

Astarte spp. 0.182805 0.166081 0.165734 0.166014 0.163731 

C. ciliatum 0.160287 0.159406 0.15947 0.154641 0.161193 

C. crebricostata 0.141285 0.136711 0.136535 0.141992 0.135521 

E. tenuis 0.140425 0.139242 0.139159 0.141435 0.144155 

L. fluctuosa 0.13186 0.126814 0.126893 0.131966 0.13195 

Macoma spp. 0.184428 0.177327 0.177177 0.182425 0.175173 

Musculus spp. 0.114383 0.112437 0.112439 0.111977 0.114667 

Nuculana spp. 0.183178 0.183833 0.183749 0.185631 0.182755 

S. groenlandicus 0.155835 0.124586 0.124031 0.121472 0.120373 

Yoldia spp. 0.13291 0.130693 0.130538 0.133398 0.128721 

All Taxa 0.216935 0.210632 0.210677 0.213731 0.212047 

Table B6: Normalized root mean squared errors of cross-validation comparison of 

interpolation techniques for calories.
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 10 20 30 40 50 

Astarte spp. 1.539156 1.51261 1.491356 1.485809 1.479701 

C. ciliatum 0.197513 0.197 0.19693 0.19682 0.196826 

C. crebricostata 0.981449 0.966216 0.963553 0.962041 0.962807 

E. tenuis 19.68533 19.37945 19.33149 19.25154 19.23096 

L. fluctuosa 0.710726 0.702071 0.698254 0.694929 0.69153 

Macoma spp. 14.71304 14.65464 14.67239 14.66474 14.66005 

Musculus spp. 0.575308 0.565792 0.565792 0.556974 0.555762 

Nuculana spp. 9.479352 9.518914 9.492364 9.489377 9.495768 

S. groenlandicus 0.450951 0.438317 0.435454 0.433683 0.432 

Yoldia spp. 7.741715 7.687068 7.633978 7.620898 7.607702 

All Taxa 37.14309 36.81878 36.78042 36.72004 36.72434 

Table B7: Root mean squared errors of cross-validation comparison of different neighborhood 

sizes for inverse distance weighting interpolation of abundance. 

 10 20 30 40 50 

Astarte spp. 0.20076 0.197297 0.194525 0.193801 0.193005 

C. ciliatum 0.118508 0.1182 0.118158 0.118092 0.118096 

C. crebricostata 0.178445 0.175676 0.175191 0.174917 0.175056 

E. tenuis 0.144745 0.142496 0.142143 0.141555 0.141404 

L. fluctuosa 0.164014 0.162016 0.161136 0.160368 0.159584 

Macoma spp. 0.177266 0.176562 0.176776 0.176684 0.176627 

Musculus spp. 0.143827 0.141448 0.141448 0.139244 0.13894 

Nuculana spp. 0.209103 0.209976 0.20939 0.209324 0.209465 

S. groenlandicus 0.150317 0.146106 0.145151 0.144561 0.144 

Yoldia spp. 0.143365 0.142353 0.14137 0.141128 0.140883 

All Taxa 0.202231 0.200465 0.200256 0.199928 0.199951 

Table B8: Normalized root mean squared errors of cross-validation comparison of different 

neighborhood sizes for inverse distance weighting interpolation of abundance.
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 10 20 30 40 50 

Astarte spp. 4.135643 3.99582 3.952543 3.931221 3.913102 

C. ciliatum 0.197611 0.198393 0.199003 0.199416 0.199604 

C. crebricostata 1.409819 1.387651 1.38495 1.382374 1.382949 

E. tenuis 4.860555 4.835613 4.830615 4.817741 4.814614 

L. fluctuosa 0.823233 0.815807 0.810672 0.805362 0.801647 

Macoma spp. 10.32745 10.21515 10.19067 10.19564 10.17256 

Musculus spp. 2.140223 2.106722 2.093356 2.085733 2.082151 

Nuculana spp. 5.526878 5.537054 5.538053 5.533416 5.537027 

S. groenlandicus 5.443025 5.364335 5.327244 5.303863 5.286878 

Yoldia spp. 3.045388 2.991662 2.955523 2.936017 2.929945 

All Taxa 18.34854 18.31758 18.28891 18.23963 18.19422 

Table B9:  Root mean squared errors of cross-validation comparison of different 

neighborhood sizes for inverse distance weighting interpolation of biomass. 

 10 20 30 40 50 

Astarte spp. 0.176361 0.170398 0.168552 0.167643 0.16687 
C. ciliatum 0.160856 0.161492 0.161989 0.162324 0.162478 
C. crebricostata 0.128851 0.126825 0.126578 0.126343 0.126395 
E. tenuis 0.141675 0.140948 0.140802 0.140427 0.140336 
L. fluctuosa 0.132404 0.131209 0.130383 0.129529 0.128932 
Macoma spp. 0.204393 0.202171 0.201686 0.201784 0.201328 
Musculus spp. 0.115534 0.113725 0.113004 0.112592 0.112399 
Nuculana spp. 0.17667 0.176995 0.177027 0.176879 0.176994 
S. groenlandicus 0.157306 0.155032 0.15396 0.153284 0.152793 
Yoldia spp. 0.1338 0.13144 0.129852 0.128995 0.128728 
All Taxa 0.231985 0.231594 0.231231 0.230608 0.230034 

Table B10:  Normalized root mean squared errors of cross-validation comparison of different 

neighborhood sizes for inverse distance weighting interpolation of biomass.
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 10 20 30 40 50 

Astarte spp. 745.4712 722.7915 714.5806 709.7035 706.307 

C. ciliatum 110.0656 110.5008 110.8407 111.0705 111.1755 

C. crebricostata 446.9003 434.6509 431.2018 429.3826 428.4615 

E. tenuis 2474.21 2466.162 2462.195 2454.771 2452.608 

L. fluctuosa 322.108 319.1968 317.2738 315.1086 313.5589 

Macoma spp. 5451.449 5384.522 5370.908 5364.969 5347.956 

Musculus spp. 1245.61 1226.112 1218.333 1213.896 1211.812 

Nuculana spp. 2242.481 2245.677 2244.572 2236.197 2235.773 

S. groenlandicus 1950.149 1922.284 1909.263 1901.016 1894.931 

Yoldia spp. 2556.478 2510.634 2479.344 2463.131 2457.688 

All Taxa 8861.847 8910.511 8880.693 8856.927 8835.425 

Table B11:  Root mean squared errors of cross-validation comparison of different 

neighborhood sizes for inverse distance weighting interpolation of calories. 

 10 20 30 40 50 

Astarte spp. 0.186053 0.180393 0.178343 0.177126 0.176278 

C. ciliatum 0.160856 0.161492 0.161989 0.162324 0.162478 

C. crebricostata 0.143184 0.139259 0.138154 0.137571 0.137276 

E. tenuis 0.14139 0.14093 0.140703 0.140279 0.140155 

L. fluctuosa 0.132509 0.131312 0.130521 0.12963 0.128992 

Macoma spp. 0.186772 0.18448 0.184013 0.18381 0.183227 

Musculus spp. 0.115534 0.113725 0.113004 0.112592 0.112399 

Nuculana spp. 0.182884 0.183145 0.183055 0.182372 0.182337 

S. groenlandicus 0.157329 0.155081 0.154031 0.153365 0.152874 

Yoldia spp. 0.134227 0.13182 0.130177 0.129326 0.12904 

All Taxa 0.216883 0.218074 0.217344 0.216762 0.216236 

Table B12:  Normalized root mean squared errors of cross-validation comparison of 

different neighborhood sizes for inverse distance weighting interpolation of 

calories. 
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APPENDIX C 

 

 Astarte 

spp.  

C. ciliatum C. 

crebricostata                   

E. tenuis          L. 

fluctuosa             

Macoma 

spp.        

Musculus 

spp.           

Nuculana 

spp. 

S. 

groenlandicus          

C. ciliatum 0.998         

C. crebricostata 0.492 0.026*        

E. tenuis 0.303 0.734 0.000*       

L. fluctuosa 1.000 0.981 0.883 0.254      

Macoma spp. 0.001* 0.005* 0.000* 0.588 0.002*     

Musculus spp. 1.000 1.000 0.542 0.956 0.999 0.215    

Nuculana spp. 0.011* 0.053* 0.000* 0.976 0.014* 0.992 0.548   

S. groenlandicus 0.003* < 0.001* 0.538 < 0.001* 0.058 <0.001* 0.025* < 0.001*  

Yoldia spp. 0.000* < 0.001* < 0.001* < 0.001* <0 .001* < 0.001* < 0.001* < 0.001* < 0.001* 

Table C1: Results of Tukey’s HSD test of gross heats across taxa (p-values). Significant results (p-value < 0.05) are denoted 

with an asterisk* 
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Taxon S 

(2009) 

S  

(2010) 

S  

(2012) 

S  

(2013) 

S  

(All Years)  

K 

(2009) 

K 

(2010) 

K 

(2013) 

K  

(2013) 

K  

(All Years) 

Astarte spp. 0.009 2.620 1.639 1.154 1.821 1.757 8.261 4.532 1.757 8.261 

C. ciliatum n/a n/a 0.635 0.032 0.831 n/a n/a 3.571 n/a n/a 

C. crebricostata 0.057 1.867 1.114 0.363 1.638 1.312 7.357 2.305 1.312 7.357 

E. tenuis 1.569 0.366 0.551 1.284 0.976 6.251 2.558 3.214 6.251 2.558 

L. fluctuosa 0.803 2.227 1.351 0.849 1.317 2.295 8.593 3.681 2.295 8.593 

Macoma spp. 2.631 3.509 1.606 2.912 2.505 10.271 20.348 5.871 10.271 20.348 

Musculus spp. n/a 1.727 1.323 0.406 1.638 n/a 4.675 3.517 n/a 4.675 

Nuculana spp. -0.051 0.324 0.503 0.927 0.299 1.638 2.903 2.474 1.638 2.903 

S. groenlandicus n/a -2.545E-

16 

0.896 2.127 4.336 n/a 1.000 2.902 n/a 1.000 

Yoldia spp. 3.570 1.233 1.363 3.117 2.561 20.432 4.850 5.154 20.432 4.850 

Table C2: Skewness (S) and kurtosis (K) of size frequency-distributions. Taxa with insufficient sample sizes to measure 

skewness and kurtosis in certain years are denoted by “n/a
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