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We present a generic proof methodology to automatically prove correctness of

design transformations introduced at the Register-Transfer Level (RTL) to achieve

lower power dissipation in hardware systems. We also introduce a new algorithm to

reduce switching activity power dissipation in microprocessors. We further apply

our technique in a completely different domain of dynamic power management of

Systems-on-Chip (SoCs). We demonstrate our methodology on real-life circuits.

In this thesis, we address the dual problem of transforming hardware systems at

higher levels of abstraction to achieve lower power dissipation, and a reliable way to

verify the correctness of the afore-mentioned transformations. The thesis is in three

parts. The first part introduces Instruction-driven Slicing, a new algorithm to au-

tomatically introduce RTL/System level annotations in microprocessors to achieve

lower switching power dissipation. The second part introduces Dedicated Rewrit-

ing, a rewriting based generic proof methodology to automatically prove correct-

ness of such high-level transformations for lowering power dissipation. The third
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part implements dedicated rewriting in the context of dynamically managing power

dissipation of mobile and hand-held devices.

We first present instruction-driven slicing, a new technique for annotating mi-

croprocessor descriptions at the Register Transfer Level in order to achieve lower

power dissipation. Our technique automatically annotates existing RTL code to

optimize the circuit for lowering power dissipated by switching activity. Our tech-

nique can be applied at the architectural level as well, achieving similar power gains.

We first demonstrate our technique on architectural and RTL models of a 32-bit

OpenRISC pipelined processor (OR1200), showing power gains for the SPEC2000

benchmarks. These annotations achieve reduction in power dissipation by chang-

ing the logic of the design. We further extend our technique to an out-of-order

superscalar core and demonstrate power gains for the same SPEC2000 benchmarks

on architectural and RTL models of PUMA, a fixed point out-of-order PowerPC

microprocessor.

We next present dedicated rewriting, a novel technique to automatically prove

the correctness of low power transformations in hardware systems described at the

Register Transfer Level. We guarantee the correctness of any low power transfor-

mation by providing a functional equivalence proof of the hardware design before

and after the transformation. Dedicated rewriting is a highly automated deductive

verification technique specially honed for proving correctness of low power trans-

formations. We provide a notion of equivalence and establish the equivalence proof

within our dedicated rewriting system. We demonstrate our technique on a non-

trivial case study. We show equivalence of a Verilog RTL implementation of a
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Viterbi decoder, a component of the DRM System-On-Chip (SoC), before and after

the application of multiple low power transformations.

We next apply dedicated rewriting to the broader context of holistic power man-

agement of SoCs. This in turn creates a self-checking system and will automatically

flag conflicting constraints or rules. Our system will manage power constraint rules

using dedicated rewriting specially honed for dynamic power management of SoC

designs. Together, this provides a common platform and representation to seam-

lessly cooperate between hardware and software constraints to achieve maximum

platform power optimization dynamically during execution. We demonstrate our

technique in multiple contexts on an SoC design of the state-of-the-art next gener-

ation Intel smartphone platform.

Finally, we give a proof of instruction-driven slicing. We first prove that the

annotations automatically introduced in the OR1200 processor preserve the original

functionality of the machine using the ACL2 theorem prover. Then we establish the

same proof within our dedicated rewriting system, and discuss the merits of such a

technique and a framework.

In the context of today’s shrinking hardware and mobile internet devices, low-

ering power dissipation is a key problem. Verifying the correctness of transforma-

tions which achieve that is usually a time-consuming affair. Automatic and reliable

methods of verification that are easy to use are extremely important. In this thesis

we have presented one such transformation, and a generic framework to prove cor-

rectness of that and similar transformations. Our methodology is constructed in a

manner that easily and seamlessly fits into the design cycle of creating complicated
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hardware systems. Our technique is also general enough to be applied in a com-

pletely different context of dynamic power management of mobile and hand-held

devices.

x



Table of Contents

Acknowledgments v

Abstract vii

Table of Contents xi

List of Figures xiv

Chapter 1. Introduction 1

Chapter 2. Low Power Techniques, Transformations and Verification 11
2.1 Low Power Transformations and Techniques . . . . . . . . . . . . . 17

2.1.1 Circuit and Design Optimizations and Considerations for Power 17
2.1.1.1 Transistor Level Optimizations . . . . . . . . . . . . 17
2.1.1.2 Combinational Logic Optimizations . . . . . . . . . 19
2.1.1.3 Sequential Logic Optimization . . . . . . . . . . . . 20
2.1.1.4 Survey of Gate Level Optimizations . . . . . . . . . 21

2.1.2 Behavioral Level (RTL) Optimizations . . . . . . . . . . . . 22
2.1.3 Micro Architectural Techniques for Low Power . . . . . . . . 23
2.1.4 Dynamic Voltage and Frequency Scaling . . . . . . . . . . . 24
2.1.5 Operating System Power Management . . . . . . . . . . . . 27
2.1.6 Memory Power Management . . . . . . . . . . . . . . . . . 29
2.1.7 Compiler Techniques for Low Power . . . . . . . . . . . . . 30
2.1.8 Surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Low Power Verification . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.1 Pre-Silicon Verification . . . . . . . . . . . . . . . . . . . . 34
2.2.2 Platform Verification . . . . . . . . . . . . . . . . . . . . . . 40

2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

xi



Chapter 3. Instruction-driven Slicing: Automatic Insertion of Low Power
RTL Annotations 43

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.1 Contributions of this work . . . . . . . . . . . . . . . . . . . 44

3.2 Instruction-Driven Slicing . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Our Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.1 Instruction-Driven Slicing Algorithm . . . . . . . . . . . . . 50
3.3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 OR1200 - a Pipelined OpenRISC Implementation . . . . . . . . . . 54
3.4.1 OR1200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4.2 Results for OR1200-RTL . . . . . . . . . . . . . . . . . . . 55
3.4.3 Results for OR1200-Arch . . . . . . . . . . . . . . . . . . . 63

3.5 Instruction-Driven Slicing in the PowerPC Microprocessor . . . . . 64
3.5.1 PUMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.5.2 Results for PUMA-RTL . . . . . . . . . . . . . . . . . . . . 71
3.5.3 Results for PUMA-ARCH . . . . . . . . . . . . . . . . . . . 73

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Chapter 4. Dedicated Rewriting: Correctness of Low Power Transforma-
tions in RTL 77

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.1 Structural Rules . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2.2 Logical Rules . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3 Dedicated Rewriting . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3.1 derive (): Verilog RTL to TRS rules . . . . . . . . . . . . . . 90
4.3.2 execute (): TRS rules to expressions . . . . . . . . . . . . . . 91

4.3.2.1 Reassignments . . . . . . . . . . . . . . . . . . . . 92
4.3.3 prove (): Equivalence of expressions . . . . . . . . . . . . . . 96
4.3.4 Our notion of equivalence . . . . . . . . . . . . . . . . . . . 97
4.3.5 Error Detection . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 Dedicated Rewriting for Combinational Equivalence Checking: Mul-
tiplier Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xii



4.5 Case Study: Viterbi Decoder . . . . . . . . . . . . . . . . . . . . . 104
4.5.1 Combinational low power transformations . . . . . . . . . . 107
4.5.2 Sequential low-power optimizations . . . . . . . . . . . . . . 108
4.5.3 Optimizations for power and timing . . . . . . . . . . . . . . 109
4.5.4 Correctness of low power transformations on the Viterbi de-

coder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.6 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . 113

Chapter 5. Holistic Power Management of SoCs using Dedicated Rewrit-
ing 115

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.3 Power Constraints Consistency Checker . . . . . . . . . . . . . . . 121
5.4 Dedicated Rewriting as a Dynamic Power Management Rule Engine 123
5.5 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.5.1 Audio Playback . . . . . . . . . . . . . . . . . . . . . . . . 126
5.5.2 Panel Self Refresh . . . . . . . . . . . . . . . . . . . . . . . 127
5.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Chapter 6. Correctness of Instruction-driven Slicing 130
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.2 Automatic Proof Technique . . . . . . . . . . . . . . . . . . . . . . 131
6.3 Interactive Proof by Deductive Verification . . . . . . . . . . . . . . 135

6.3.1 Proof using the ACL2 theorem prover . . . . . . . . . . . . . 135
6.3.2 Comparing a dedicated rewrite system versus a generic the-

orem prover . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.4 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . 141

Chapter 7. Discussion and Conclusions 142

Bibliography 146

Vita 166

xiii



List of Figures

1.1 Power consumption trend in Servers and Data Centers (courtesy,
Intel). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Power consumption trend in Embedded and Handheld Devices (cour-
tesy, Nokia). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Energy efficient design . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Power dissipation in CMOS devices. . . . . . . . . . . . . . . . . . 14
2.3 Designing for Low Power . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Body Bias vs. Internal Vdd On/Off [17]. . . . . . . . . . . . . . . . 18
2.5 New type of bugs introduced in a low power methodology [153]. . . 33
2.6 New verification tasks introduced in a low power methodology [153]. 34
2.7 Verification cost of low power transformations. . . . . . . . . . . . 36

3.1 Overview of the Instruction-driven Slicing Algorithm for RTL. . . . 48
3.2 Incorporating Instruction-driven slicing into the design flow. . . . . 52
3.3 OR1200 Processor Block Diagram. . . . . . . . . . . . . . . . . . . 54
3.4 Instruction-driven slicing example. . . . . . . . . . . . . . . . . . . 56
3.5 OR1200-RTL Power dissipation results after slicing on 1, 4 and 10

instructions. These results are for SPECINT2000 benchmarkswith
Synopsys clock gating . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6 OR1200-RTL Power dissipation results after slicing on 1, 4 and 10
instructions. These results are for SPECINT2000 benchmarkswithout
Synopsys clock gating . . . . . . . . . . . . . . . . . . . . . . . . 58

3.7 OR1200 reduction in power dissipation for SPECINT2000 bench-
marks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.8 OR1200-RTL Power reduction compared to increase in area and
delay due to slicing. The first set of comparisons depicts the nor-
malized Energy − Area product. The second set depicts the nor-
malized Energy −Delay2 product. . . . . . . . . . . . . . . . . . 60

3.9 Flop distribution effect of instruction-driven slicing on l.add and
l.lw in the OR1200 RTL. . . . . . . . . . . . . . . . . . . . . . . 61

xiv



3.10 OR1200-Arch Power dissipation results for SPECINT2000 bench-
marks after slicing on 1, 4 and 10 instructions. . . . . . . . . . . . . 63

3.11 PUMA Fixed Point Unit Processor Block Diagram. . . . . . . . . . 65
3.12 PUMA-RTL Power dissipation results after slicing on 1, 4 and 10

instructions. These results are for SPECINT2000 benchmarkswith
Synopsys clock gating . . . . . . . . . . . . . . . . . . . . . . . . 66

3.13 PUMA-RTL Power dissipation results after slicing on 1, 4 and 10
instructions. These results are for SPECINT2000 benchmarkswithout
Synopsys clock gating . . . . . . . . . . . . . . . . . . . . . . . . 67

3.14 PUMA-RTL Power gains for SPECINT2000 benchmarks. . . . . . 68
3.15 Flop distribution effect of instruction-driven slicing on l.add and

l.lw in the PUMA RTL. . . . . . . . . . . . . . . . . . . . . . . . 69
3.16 Time delay and Area estimate for the PUMA RTL. . . . . . . . . . 70
3.17 Power vs. Delay for the PUMA-RTL. . . . . . . . . . . . . . . . . 70
3.18 Power vs. Area for the PUMA-RTL. . . . . . . . . . . . . . . . . . 71
3.19 PUMA-Arch Power dissipation results for SPECINT2000 bench-

marks after slicing on 1, 4 and 10 instructions. . . . . . . . . . . . . 74
3.20 PUMA-Arch Power gains for SPECINT2000 benchmarks. . . . . . 75

4.1 Term Rewriting Systems: Definitions and concept . . . . . . . . . . 81
4.2 Term Rewriting Systems: Definitions and concept (continued) . . . 82
4.3 Sample Verilog RTL and the TRS Rules derived from it. . . . . . . 83
4.4 Clock gating for lower switching activity power dissipation (Verilog

RTL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.5 Clock gating for lower switching activity power dissipation (after

translation to TRS). . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.6 Sample logical rules in the dedicated rule database. . . . . . . . . . 87
4.7 Dedicated rewriting proof system flow chart. . . . . . . . . . . . . . 90
4.8 Dedicated rewriting algorithm . . . . . . . . . . . . . . . . . . . . 95
4.9 Comparison of execution times of Dedicated Rewriting against

two commercial equivalence checkers for Booth, Wallace Tree and
Dadda Tree multipliers of varying sizes. In each case the golden
model was a shift and add multiplier of the corresponding size. . . . 102

4.10 Number of proof iterations done by reduce() to prove equivalence
at the given compare points. The numbers correspond to the 64×64
Booth, Wallace Tree, and Dadda Tree multiplier designs. . . . . . . 103

4.11 Basic Viterbi design. . . . . . . . . . . . . . . . . . . . . . . . . . 105

xv



4.12 Viterbi design optimized for low power. . . . . . . . . . . . . . . . 106
4.13 Viterbi design optimized for power and delay. . . . . . . . . . . . . 106
4.14 Results of power estimation due to combinational logic low power

transformations in the Viterbi decoder. These estimates were based
on the macro-modeling technique employed by Gupta et al [50].
These estimates are only over the trellis computation calculation
function of the Viterbi decoder. . . . . . . . . . . . . . . . . . . . . 108

4.15 Results of power estimation after sequential low power transforma-
tions in the Viterbi decoder. . . . . . . . . . . . . . . . . . . . . . . 108

4.16 Results of power estimation after sequential optimization for low
power and timing in the Viterbi decoder. . . . . . . . . . . . . . . . 109

4.17 Picturization of sequential equivalence checking of transformed TRSp
against the original TRSo of the Viterbi design. The first row is the
proof of the FF buffer (over 8 time cycles). The center row shows
the proof of the Trellis Computation and the bottom row shows the
proof of the MatDec Decision Table. . . . . . . . . . . . . . . . . 111

5.1 Rule-based formal Power Specification and Management . . . . . . 116
5.2 Audio player structural and logical rules . . . . . . . . . . . . . . . 118
5.3 Low power audio playback policy . . . . . . . . . . . . . . . . . . 125
5.4 Panel self refresh policy for video playback and web browsing ap-

plications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.5 Summary of results without and with dynamic power management

by the rewriting rule engine . . . . . . . . . . . . . . . . . . . . . . 129

6.1 Instruction-driven slicing example from Figure 3.4 reproduced here
for the reader’s convenience. . . . . . . . . . . . . . . . . . . . . . 132

6.2 Rules derived before instruction-driven slicing transformation. . . . 133
6.3 Rules derived after instruction-driven slicing transformation. . . . . 134
6.4 Proof methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.5 Verilog2ACL2 example. . . . . . . . . . . . . . . . . . . . . . . . . 138
6.6 Instruction-driven slicing example after Verilog2ACL2 (pre-transformation).139
6.7 Instruction-driven slicing example after Verilog2ACL2 (post-transformation).140

xvi



Chapter 1

Introduction

The importance of power management research has increased tremendously in

the last decade with increasing maturity of low power design techniques in the con-

text of micro architecture for small devices and embedded systems. Unprecedented

growth in the proliferation of handheld mobile devices has been one of the catalysts

for this research, even as power efficient computing remains the holy grail of almost

all aspects of computing systems today. There are several trends here that are worth

noting.

The last few years have seen the emergence of highly integrated embedded

System-on-a-chip (SoC) architectures for several usages and platforms such as high

end mobile devices and smartphones. While each SoC component or accelerator

can be optimized in various ways, overall platform integration and platform power

optimization is a growing challenge since it is not clear how to quantify the impact

of applications and workloads on individual platform components. Another trend

has been the emergence of multi-core and multi-threaded architectures for all kinds

of computing devices, ranging from cell phones to tablets, laptops, and netbooks,

to high end computing systems, servers, etc. As the number of cores and threads-

per-core increases, such systems present unique challenges in terms of scheduling,
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energy efficiency, temperature, heterogeneity, etc.

On such increasingly large and complex digital IC and SoC designs, design

power closure and circuit power integrity are starting to become the key engineering

challenges, thereby impacting the device’s total time-to-market. Power dissipation

has emerged as an important design parameter in the design of microelectronic cir-

cuits, especially in portable computing and personal communication applications

where usage models are becoming increasingly important to the consumer with

more and more usages of small devices demanding the performance and connectiv-

ity of traditional larger computing systems.

The amount of power consumed by some devices can cause significant design

problems. Even in the case of devices intended for use in non-portable equipment

where ample power is readily available, power-aware designs can offer competitive

advantages with respect to such considerations as size and cost of the power sup-

ply and cooling systems. These trends have forced platform designers to abandon

traditional performance metrics in favor of performance-per-watt. additionally, as-

pects like overall platform security, application quality of service, critical thermal

conditions, etc. are considered highly critical in the usability of a device.

One of the biggest challenges for data-center operators today is the increasing

cost of power and cooling as a portion of the total cost of operations. As shown in

Figure 1.1, the cost of power and cooling has increased 400%, and these costs are

only on the rise. In some cases, power costs account for 40-50% of the total data-

center operation budget. The need to deploy more servers to support new business

solutions is only increasing. Data centers are therefore faced with the twin problem

2



Figure 1.1: Power consumption trend in Servers and Data Centers (courtesy, Intel).

of how to deploy new services in the face of rising power and cooling costs.

On the other end of the spectrum, power consumption of handheld devices are

also on the rise with increasing demands being placed on such devices. Figure 1.2

from Nokia shows the trend of power consumption in the last few years in hand-

helds. As can be seen, the last few years since 2003 has seen a dramatic increase

in the power consumption as well as the usages. Increasingly devices are using up

more bandwidth with higher power radios with the emergence of 3G, LTE, etc. and

users are expecting the same power of computing from handhelds as was previously

being accomplished on larger laptops, desktops, etc.

Power management and optimization research in the last couple of decades has

spanned multiple areas - at circuit/design level, hardware and micro-architectural

3



Figure 1.2: Power consumption trend in Embedded and Handheld Devices (cour-
tesy, Nokia).

level for processors, caches, memories, power management of individual compo-

nents such as hard drives, external memories, network interfaces. In addition, there

has also been research in power-aware compiler optimizations, operating system

optimizations for energy efficiency, etc. While power management has tradition-

ally been thought to be for smaller/embedded devices, recently there has been a

lot of work on power management in large systems like servers, data centers, etc.

There has also been an increased focus toward platform-wide power management

that aims to unite different power management techniques and capabilities.

Currently, platform power management broadly falls under two categories. At

the one end are low power optimizations implemented by hardware designers like

gate level and RTL optimizations, clock and power gating, low power microarchi-

4



tectural innovations, etc. Power-related constraints are now being imposed through-

out the entire design flow in order to maximize the performance and reliability of

devices. In the case of today’s extremely large and complex designs, implement-

ing a reliable power network and minimizing power dissipation have become major

challenges for design teams. Creating optimal low-power designs also involves

making trade-offs such as timing-versus-power and area-versus-power at different

stages of the design flow. These optimizations are based on generic techniques in

the sense that they are done quite independent of the rest of the platform compo-

nents, and in most cases, with the assumption that hardware is the best judge of

what power optimizations to use.

On the other end are the power management techniques that are available for

the OS and devices to control. This includes OS control of processor C-states and

P-states and device power states, with standardized interfaces like Advanced Con-

figuration and Power Interface (ACPI) that regulate such state control based on

the workload and configured policies. In recent years, the focus of power man-

agement has moved to more areas than the CPU alone given the trend of increasing

power densities of all computing components on the platform. This includes caches,

memory modules, buses, storage devices, etc. DRAMs, for instance, have multiple

power states (deep and shallow self refresh, support for partial array self refresh,

etc.). Both CPU and bus frequencies can be dynamically voltage- and frequency-

scaled. In addition, embedded/handheld mobile devices also employ thermal throt-

tling to maintain the entire platform and/or individual component under a thermal

envelope.
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To effectively reduce dynamic power, hardware designers must understand a

multitude of low-power transformations and have the practical experience to know

when they should be applied. The trade-off between power reduction and verifica-

tion cost is not always clear which leads the architects and designers to be cautious

and conservative in their implementation. Often aggressive low power transfor-

mations are not implemented in the design because the verification cost (typically

more than 70% of the total time cost) is high enough to adversely impact the total

time-to-market. The primary reason for prohibitive verification cost is the hard-

ness of the verification problem. If the low power transformations are at the gate

level, then equivalence checking methods can be used to automatically prove the

correctness of the transformations. Although there are a few sequential equivalence

checking algorithms, they are not widespread in the hardware industry due to their

intractable, or hard-to-use nature.

With the emerging mobile internet devices market, the need for quick verifi-

cation turn-around times on efficient and effective low power transformations is

extremely important. The hitherto unexplored (in large measures) area of optimiza-

tions is RT-level low power transformations which can utilize the program design

information of the RTL in its computation of where to lower dynamic power dis-

sipation. These transformations definitely introduce new variables and state, and

change the timing information of the design. Therefore verifying the correctness of

these transformations becomes the problem of verifying the equivalence of two se-

quential circuits. Verifying the equivalence of two sequential circuits is an NP-hard

problem. Rather than go after the holy grail, it might be more prudent to focus the
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verification problem to equivalence of two sequential circuits that differ only be-

cause of the application of a low power transformation. By restricting the domain

of difference, one can focus on algorithms that will work well with the domain in

context. Therefore, what is of essence, ideally, is effective and efficient RT-level low

power transformations, which can be, to the extent possible, automatically proved

correct when applied to a particular hardware design.

Platform level optimizations are very coarse-grained and verification of any change

in method essentially means a complete re-verification of the system. The optimiza-

tions at the platform level include the knowledge of the application and user-intent,

and therefore are optimized for exact use-cases of the device. This knowledge is an

extremely fine-grained information to achieve a fairly coarse-grained power opti-

mization and has been the way the industry has been trending lately, particularly in

the handheld device market.

Given the above challenges, it is very clear that neither hardware nor software

in isolation can make the best decision about power and performance management,

and neither can these be done for CPU alone, but must now be done at the entire

platform level, in a holistic way. Such a holistic power management solution can-

not ignore any of the platform components from a power and thermal perspective,

neither can it be done in hardware or software alone. We need a synergistic bot-

tom line across RTL, system level, OS level, compiler level, and application level

specification of power intent. The kind of information available at a higher level of

abstraction at the OS level or even at the application level, is just not visible to the

RTL. We need all levels of abstraction of the design to be able to communicate their
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power intent to get the most optimized solution. IEEE standard specification format

UPF (Unified Power Format [60]) allows us to represent power intent at the RTL and

lower levels. We require a method to represent power intent specifications at higher

levels of abstraction as well, and a mechanism that can coordinate all such power

management capabilities dynamically at runtime with constant feedback from the

system about platform conditions (overall power consumption, thermal conditions,

etc.).

The key contributions of this thesis are the following:

• We have introduced Instruction-driven slicing an effective and efficient RT-

level low power transformation in microprocessors and microcontrollers. Instruction-

driven slicing automatically introduces RTL annotations to achieve lower

switching power dissipation.

• We have demonstrated the effectiveness of instruction-driven slicing on OR1200

an in-order RISC pipelined microprocessor and on PUMA, a more compli-

cated out-of-order PowerPC core.

• We have proposed Dedicated Rewriting, a proof framework and a method-

ology to automatically (after some initial training) prove the correctness of

RTL low power transformations.

• We have demonstrated the proof methodology on complicated arithmetic cir-

cuits, proving correctness of 128-bit Booth multipliers.
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• We have demonstrated dedicated rewriting on a non-trivial System-on-Chip,

the Viterbi decoder that is part of the Digital Radio Mondiale.

• We have given a correctness proof of the instruction-driven slicing algorithm

as applied to a sample microprocessor. Given that the algorithm is correct by

construction, this is sufficient for all microprocessors.

• We have applied dedicated rewriting in the context of dynamic power man-

agement of SoCs for mobile and hand-held devices in order to achieve com-

munication between power constraints across different levels of design ab-

straction and to verify consistency of those constraints.

• The dynamic power manager is also a runtime engine which can on-the-fly

drive the device to certain power states, based on the rule engine outcome to

manage user-specified power intent for each workload.

• We demonstrate the holistic dynamic power constraint checker and manager

on SoCs built on state-of-the-art Intel smartphone platforms.

The thesis is organized as follows. Chapter 2 gives a survey of low power trans-

formations. We describe our instruction-driven slicing algorithm, and its effective-

ness in full detail in Chapter 3. We then describe our dedicated rewriting system

and its application to arithmetic circuits and an SoC in Chapter 4. We further ap-

ply our dedicated rewriting system in the context of holistic power management of

SoCs, in Chapter 5. In Chapter 6 we give a proof of instruction-driven slicing in our

dedicated rewriting system as well as in a general purpose theorem prover, ACL2.
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Finally, we discuss some of the relevance and merits of this thesis, and potential

future work and conclude in Chapter 7.
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Chapter 2

Low Power Techniques, Transformations and
Verification

Power Management Methodology as an architectural paradigm is still in its in-

fancy. Most techniques in today’s designs still follow ad-hoc methodologies. How-

ever, most systems are typically amenable to energy efficient design. Figure 2.1

addresses in detail the principles behind energy efficient design. The two key prin-

ciples are that: (a) apply the lowest voltage to each block at any given time; and (b)

keep a block on only when required. There is also a tradeoff between performance

and power. In a race to idle strategy, the functional block tries to complete its task

as fast as possible (high performance) and then shuts off. In a crawl to idle strategy,

the functional block tries to delay the task as long as possible, while consuming as

little power as possible during that process. The power-delay product in any system

is conserved. An intelligent management system will choose correctly when to race

or crawl to idle [73].

Sources of power dissipation in CMOS devices are summarized by the following

expression:

P =

Switching︷ ︸︸ ︷
1

2
· C · V 2

DD · f ·N +

Short Circuit︷ ︸︸ ︷
QSC · VDD · f ·N +

Leakage Current︷ ︸︸ ︷
Ileak · VDD (2.1)
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Most today’s systems are amenable to energy efficient design:

• Systems do not have the same performance needs at all times,
and operating at worst case design corner all the time is wasting
power.
• The principle of Lowest Active Power is to apply the lowest

possible Vdd to each functional block at each instant of time.
• Systems also do not need all functions to be running at the same

time.
• The principle of Zero Idle Power is to turn on a block only when

necessary; turn it off once it is no longer needed.

• What consumers want in today’s complex designs are:
1. High Performance
2. Multi-media experience,
3. Lowest Active Power
4. Zero Idle Power.

Figure 2.1: Energy efficient design

where P denotes the total power, VDD is the supply voltage, and f is the frequency

of operation [47], [27].

The first term represents the power required to charge and discharge circuit

nodes. Node capacitances are represented by C. The factor N is the switching

activity, i.e., the number of gate output transitions per clock cycle. Figure 2.2(a)

shows the dynamic power dissipation at a switching gate.

Node capacitance C, depends largely on wire lengths of on-chip structures, and

is therefore an architectural metric for determining the trade-offs - for example, be-

tween single monolithic large processor cores or smaller processor cores since the

latter option is likely to reduce average wire lengths. Similarly, smaller cache mem-
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ories or independent banks of cache are likely to reduce wire lengths since many

address and data lines will only need to span across each bank array individually.

Supply voltage VDD is one of the most important aspects of power-aware de-

sign given its quadratic influence on dynamic power. We will talk more about this

subsequently.

Switching Activity factor N , refers to how often wires actually transition from 0

to 1, or 1 to 0. Techniques such as clock gating are used to save energy by reducing

activity factors during a hardware units idle periods.

The clock frequency f , in addition to influencing power dissipation, also influ-

ences the supply voltage. Typically, higher clock frequencies will mean maintain-

ing a higher supply voltage. Thus, the combined V 2f portion of the dynamic power

equation has a cubic impact on power dissipation.

Strategies such as dynamic voltage and frequency scaling (DVFS) try to exploit

this relationship to reduce (V , f ) accordingly.

The second term in (Equation 2.1) represents power dissipation during output

transitions due to current flowing from the supply to ground. This current is often

called short-circuit current. The factorQSC represents the quantity of charge carried

by the short-circuit current per transition. Figure 2.2(b) shows the power dissipation

due to short circuit current. As the output load capacitance increases, the voltage

transition time also increases.

The third term in (Equation 2.1) represents static power dissipation due to leak-

age current Ileak. Devices source and drain diffusions from parasitic diodes with
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(a) Dynamic Power Dissipation due to switching activity.

(b) Power Dissipation due to Short-Circuit current.

(c) Static Power Dissipation due to leakage current.

Figure 2.2: Power dissipation in CMOS devices.
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How do we design for Lowest Active Power and Zero Idle Power?

• Lowest Active Power
1. Clock Gating, Device sizing (old methods)
2. Multi-Vdd (spatial voltage control)
3. DVFS (temporal voltage control)

• Zero Idle Power
1. Multi-Vt (old method))

2. Power-gating/retention
3. Low Vdd standby, back bias

Figure 2.3: Designing for Low Power

bulk regions. Reverse bias currents in these diodes dissipate power; sub-threshold

transistor currents also dissipate power. Figure 2.2(c) shows the leakage power

dissipation even when devices are not switching.

Sub-threshold leakage power represents the power dissipated by a transistor

whose gate is intended to be off. The main reason behind this leakage is that transis-

tors do not have ideal switching characteristics, and thereby leak a non-zero amount

of current even for voltages lower than the threshold voltage.

Figure 2.3 details a list of techniques on how to design based on the principles

identified in Figure 2.1. With process technologies below 100 nm, static power con-

sumption has become a prominent and, in many cases, dominant design constraint.

Due to the physics of the smaller process nodes, power is leaked from transistors

even when the circuitry is quiescent∗. New design techniques have been developed

∗No toggling of nodes from 0 to 1 or vice versa
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to manage static power consumption. Power gating [151], [154] or power shut-off

turns off power for a set of logic elements; back bias techniques [31] are used to

raise the voltage threshold at which a transistor can change its state. While back

bias slows the performance of the transistor, it greatly reduces leakage. These tech-

niques are often combined with multi-voltages [108] and require additional func-

tionality: power management controllers [33], isolation cells [116] that logically

and/or electrically isolate a shutdown power domain from powered-up domains,

level-shifters [116], [32] that translate signal voltages from one domain to another,

and retention registers [116] to facilitate fast transition from a power-off state to a

power-on state for a domain.

In the rest of this thesis, we will refer to the three terms above as switching activ-

ity power, short-circuit power and leakage current power. A detailed survey of many

of these optimization methods is given in [41]. Most of the optimizations described

in this survey concentrate on minimizing switching activity power at various levels

of abstraction.

One obvious way to reduce switching activity power is to reduce VDD (because

it appears as a squared term in (Equation 2.1)), and to reduce C, amount of capaci-

tance we have to switch. Reduced VDD implies reduced threshold voltage, which in

turn implies increased leakage current Ileak. Static power dissipation due to leakage

current increases exponentially as voltages are scaled down. Since scaling down of

voltages is a natural by-product of scaling down the dimensions (width and length

of transistors), static power dissipation is a huge problem in nano-scaled CMOS cir-

cuits. However, it is not clear how to model or reason about static power dissipation
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due to leakage current at the RT-level.

In this survey, we first survey state-of-the-art optimization methods that target

low power dissipation in VLSI circuits. Design optimizations for low power at the

circuit, logic, architectural and system level are considered in Section 2.1. Sec-

tion 2.2 details various state-of-the-art attempts at verification of low power trans-

formations, techniques and optimizations. [147] carries more details.

2.1 Low Power Transformations and Techniques
2.1.1 Circuit and Design Optimizations and Considerations for Power

2.1.1.1 Transistor Level Optimizations

Complex gates are designed such that the late-arriving signals are placed closer

to the output to minimize gate propagation delay. However, the average power dissi-

pation is dependent on the transition probabilities of the gate inputs and the internal

node capacitances (parasitic drain and source, as well as interconnect capacitance).

Therefore, ordering of gate inputs will affect both power and delay. Methods to

optimize the power and/or delay of logic gates by transistor re-ordering is given

in [104], [125].

Transistor size of any given gate is inversely proportional to the delay of the gate,

and directly proportional to the power dissipated in the gate. An increase in tran-

sistor size will also increase the delay of the fan-in gates feeding this gate because

of increased load capacitance for the fan-in gates. The problem to be tackled here

is that given a delay constraint, we have to size the transistor to minimize power

dissipation. There are some approaches which treat this problem as a combinato-
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rial problem and try to solve it using genetic algorithms, or simulated annealing.

Another approach is to compute the slack at each gate of the circuit (how much the

gate can be slowed down without affecting the critical delay) [125], [11], [37]. An

approach using nonlinear optimization formulation, by introducing a notion of tran-

sition density is expostulated by [112]. In particular, [112] also does a good survey

of other approaches which have taken power into consideration during transistor

sizing.

Figure 2.4: Body Bias vs. Internal Vdd On/Off [17].

Figure 2.4 contrasts two key transistor level changes to accommodate power

management. Described on the left hand side is body bias. Adaptive Body Bias-

ing (ABB) [45] is a popularly used technique to mitigate the increasing impact of

manufacturing process variations on leakage power dissipation. The efficacy of the
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ABB technique can be improved by partitioning a design into a number of body-

bias islands, each with its individual body-bias voltage.

On the right hand side of Figure 2.4 is described a multi-threshold CMOS tech-

nology (MTCMOS) [49] which allows for easy switching between ON and OFF

states. Such transistors are very useful to build retention registers [10], etc.

2.1.1.2 Combinational Logic Optimizations

A comprehensive treatment of combinational logic optimization for area and

delay is given in [40]. In this subsection we focus on power related optimizations.

Methods to reduce circuit switching activity (and hence, power dissipation),

by using controllability-don’t-care-set† and observability-don’t-care-set‡ was pre-

sented in [61] and further improved in [12].

Delays of paths converging at any gate are typically balanced to avoid spurious

transitions. Path balancing is done by adding unit-delay buffers on the faster paths,

without affecting the timing. However, adding buffers can affect the reduction in

switching activity. [74] discuss how to balance paths by reducing instead of com-

pletely eliminating spurious switching activity, by adding a minimum number of

unit-delay buffers.

Factorization involves finding common sub-expressions and reusing them to re-

duce transistor count. In kernel extraction algorithms for factorization (discussed

†The controllability don’t-care set corresponds to collections of input combinations that never
occur at the gate inputs.
‡The observability don’t-care set corresponds to collections of input combinations which produce

the same values at the circuit outputs.
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in [110]), the kernels of given expressions are generated and kernels that maximally

reduce switching activity are selected.

2.1.1.3 Sequential Logic Optimization

Methods to encode state transition graphs to produce two-level and multi-level

implementations with minimal power are described in [110] and [130]. An algo-

rithm to re-encode logic level sequential circuits to minimize power dissipation is

presented in [52].

Encoding to reduce switching activity in datapath logic has also been a subject

of attention. A method to minimize switching on buses is proposed in [123]. In

this method, and extra line is added which indicates whether the value on the bus

is true or complemented. For example, if the previous value on the bus is 0000

and the value to be transmitted is 1101, then we can reduce switching activity by

transmitting 0010 and setting the extra line to denote the complement.

Retiming is a well-researched optimization technique to reposition flip-flops in

a synchronous sequential circuit to minimize the clock period. There isn’t much

work done in terms of reducing power dissipation using retiming. Although [89]

exploit the fact that that due to spurious transitions switching activity at the inputs

of flops are substantially more than at the outputs, in order to retime for low power.

Gated Clocks is the most used power optimization technique. This involves

”turning off” parts of the circuit governed by a clock which are not used on any

given cycle. The cost is some additional circuitry which will decide whether to

clock some flops on certain clock cycles or not.
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Precomputation [4] builds on gated clocks. Idling sub-circuits are detected and

”turned off”. In sequential circuits, the output logic values are selectively precom-

puted one cycle before they are needed, and these precomputed values are used to

reduce internal switching activity in the succeeding cycle.

[90] and [129] give algorithms to determine the sub-circuits to be turned off,

and the logic required to perform the disabling.

2.1.1.4 Survey of Gate Level Optimizations

[76] presents a very good estimation of the power consumption in CMOS VLSI

chips. It presents different ways of estimating power consumption in logic, mem-

ories, interconnects, clock distribution, and off chip components. This work also

presents a method to estimate the power consumption of a chip based on gate count,

memory size, logic, layout styles, etc. [94] presents a power optimization and syn-

thesis system that can optimize power at the gate level and also perform area and

timing optimizations. [107] presents a model that predicts not only the cycle-by-

cycle power consumption of a module, but also the moving average of power con-

sumption and the power profile of the module over time. [119] gives an excellent

perspective on power-aware CAD tools and methodologies. [99] presents a very

detailed survey of the important areas of hardware power optimizations. Some of

the broad power-aware design methodologies described here include power-aware

algorithm and system design (for example - a given task may be partitioned be-

tween various hardware modules or programmable processors or both to reduce

the system-level power consumption), clock gating, memory power reduction by
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segmenting/partitioning, power-aware behavioral and logic synthesis, etc.

2.1.2 Behavioral Level (RTL) Optimizations

An important aspect of optimizing power at the RTL level is to first develop a

framework for analyzing the power dissipation at an architectural level. The tradi-

tional method has been to translate the given high level architecture description to

gates (netlists) and then use reasonably accurate low-level power analysis engines.

This method is infeasible if we want to evaluate a large number of design choices.

Most initial work in this area is focused on power analysis and reduction in

caches. This is chiefly because embedded microprocessors, historically the reason

for low power design, devote nearly 40% of their power budget to caches. Besides,

caches are regular structures and are more easily modeled than other circuits. [29]

discuss power reduction by reducing unnecessary speculation in branch predic-

tors. [19] discusses gated clocks in integer ALUs. More recently, [20] presents

a framework for analyzing power dissipation at the architecture level and [55] dis-

cusses optimizations at the microarchitectural level.

[97] propose a multiple clocking scheme for low power RTL design. The basis

of this technique is: (a) to use a multiple clocking scheme of n non-overlapping

clocks, by dividing the frequency of a single clock into n cycles; (b) to partition

the circuit into n disjoint modules and assign each module to a distinct clock; and

(c) to operate each module only during its corresponding duty cycle. The overall

frequency remains the same, and at best 1
n

of the original power is dissipated.

Sequential optimization seeks to replace a given sequential circuit with another
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one optimized for some criterion – area, power, or performance, in a way such that

the environment of the circuit cannot detect the replacement.

[86] computes logical redundancies in the circuit by a method of recursive learn-

ing [72] and eliminates the redundant gates. Identifying and eliminating redundant

latches was first studied in [106] and was further explored in [121]. [120] explores

safe replacement of sequential circuits. Sequential logic transformation integrating

retiming with logic transformations at the technology-independent level is explored

in [16].

2.1.3 Micro Architectural Techniques for Low Power

Power management for microprocessors can be done over the whole processor,

or in specific areas. CPUs, for example, may have their execution suspended sim-

ply by stopping the issuance of instructions or by turning off their clock circuitry.

Deeper power states however, might successively remove power from the proces-

sor’s caches, translation lookaside buffers (TLBs), memory controllers, and so on.

There is a corresponding latency of deeper power states, and therefore extra energy

is required to save and restore the hardware contents, or restart it, or both. Most

modern processors support multiple low power states that can be exploited either

independently by hardware (hardware idle detection) or through hints from the Op-

erating system. Some examples are Intel’s SpeedStep [93], AMD’s Cool’n’Quiet,

Transmeta’s LongRun technologies [44].

Utilizing the program structure or the data flow information available at the

architectural and RTL levels can lead to many interesting and complicated low
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power transformations [97], [20], [29], [145]; yet most power transformations in

today’s designs are at the gate-level [104], [4], [129], [90]. The primary reason for

this is the hardness of the verification problem. If the low power transformations

are at the gate level, then equivalence checking methods [85] can be used to au-

tomatically prove the correctness of the transformation. Although there are a few

sequential equivalence checking algorithms [138], [59], [148], [149], they are not

widespread in the hardware industry. In a typical industry scenario, an RTL or

architectural low power transformation implies a full cost of dynamic validation,

which can extend to many months, and require a lot of resources. Standardizing

power intent specification will largely aid in reducing design and verification cost.

Another aspect of optimization for low power at the microarchitectural level is

focused on power analysis and reduction in caches [111],[157]. Current implemen-

tations are limited only to smart sizing caches, which is done by the micro code in

the core. [137] defines application specific cache partitions, called cache molecules,

and resizing them to address performance targets for applications. None of these

are visible or controllable from software/OS.

2.1.4 Dynamic Voltage and Frequency Scaling

The main premise in Dynamic Voltage and Frequency Scaling (DVFS) is that a

system, a task, or a program can be slowed down with a small impact on its perfor-

mance (presumably under acceptable limits), while at the same time obtaining sig-

nificant savings in power consumption by voltage scaling. Power consumption has

a linear dependence on frequency and a quadratic dependence on voltage (Equation
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2.1). Power savings can therefore be achieved by intelligently reducing frequency

while concurrently reducing the supply voltage. Reducing the frequency reduces

the idle time in the system (slack in CPU execution, or instruction slack due to

memory accesses in memory-bound program phases, etc). Many commercial im-

plementations are now available for DVFS - Intel’s SpeedStep, AMD’s PowerNow,

for example.

DVFS has been applied at both hardware and operating system/platform level.

The main idea is to scale the supply voltage as low as possible for a given frequency

while still maintaining correct operation. The voltage can be dropped only up to

a certain critical level, beyond which timing faults occur. Some of the hardware

mechanisms for DVFS [152], [43] implemented timing fault detection in hardware

itself using special, “safe” flip flops that detect timing violations. While DVFS

methods are effective in addressing the dynamic power consumption, they are sig-

nificantly less effective in reducing the leakage power. As minimum feature sizes

shrink, supply voltage scaling requires a reduction in the threshold voltage which

results in an exponential increase in leakage current with each new technology gen-

eration. In [83], the authors show how the simultaneous use of adaptive body bias-

ing (ABB) and DVFS can be used to reduce power in high-performance processors.

ABB was previously used to control leakage during standby mode, and has the

advantage that it reduces the leakage current exponentially, whereas dynamic volt-

age scaling reduces leakage current linearly. [132] and [156] look at similar other

aspects of DVFS.

At the operating system level, several OSes now deploy some form of DVFS.
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For example, Linux uses a very standard infrastructure called cpufreq to imple-

ment DVFS. cpufreq is the subsystem of the Linux kernel that allows frequency to

be explicitly set on processors. cpufreq provides a modularized set of interfaces

to manage the CPU frequency changes - it exposes common interface to the var-

ious low-level, CPU-specific frequency control technologies and high level CPU

frequency controlling policies. cpufreq decouples the CPU frequency controlling

mechanisms and policies and helps in independent development of the two. The ac-

tual policies are implemented as “governors”, the most popular one being the onde-

mand governor. There have been many variations of these governors that have been

proposed for different kinds of systems, that have varying requirements/constraints

with respect to power and performance [96].

Gurun et al [51] and Simunic et al [118] look specifically at handheld, portable,

and embedded systems and propose different techniques for implementing DVFS

in such battery constrained devices. For example, in [51], the authors present Au-

toDVS, a dynamic voltage scaling (DVS) system for handheld computers. Au-

toDVS distinguishes common, coarse-grained, program behavior and couples fore-

casting techniques to make accurate predictions of future behavior. AutoDVS es-

timates periods of user interactivity, user non-interactivity (think time), and com-

putation, per-program and system wide to ensure quality of service while reducing

energy consumption.

Pouwelse et al [102] look at application-directed DVFS with the observation

that it is difficult to achieve good results using only statistics from the OS level

when applications show bursty (unpredictable) behavior. The authors here take
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the approach that such applications must be made power-aware and specify their

Average Execution Time (AET) and the deadline to the scheduler controlling the

clock speed and processor voltage. They implement an Energy Priority Scheduling

(EPS) algorithm supporting power aware applications - EPS orders tasks according

to how tight their deadlines are and how often tasks overlap.

DVFS for Multi-core Processors is another interesting and challenging area [42].

One major design decision concerns whether to apply DVFS at the chip level or at

the per-core level. Per-core DVFS is considered more expensive since it requires

more than one power/clock domain per chip, and other circuitry to synchronize

between the chips. Several researchers have explored the benefits of per-core ver-

sus per-chip DVFS for CMPs - one research reports that a per-core approach had

2.5 times better throughput than a per-chip approach. This is because the per-chip

approach must scale down the entire chips (V , f ) when even a single core is near-

ing overheating. With per-core control, only the core with a hot spot must scale

(V , f ) downward; other cores can maintain high speed unless they themselves en-

counter thermal problems. Managing power when running parallel/multi-threaded

programs especially with the onset of heterogeneous many core architectures is

yet another active area of research. [7] considers independent DVFS for each core,

while a mixture of chip-wide DVFS and core allocation is considered in [75].

2.1.5 Operating System Power Management

The most widely implemented architecture for power management is the Ad-

vanced Configuration and Power Interface (ACPI) [62]. It has evolved together
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with Intel R©architecture, the hardware platforms based on the most widely avail-

able commodity CPUs and related components. ACPI defines the following power

states: seven S-states (S0-S6) at the whole-system; and four D-states (D0-D3) at

the per-device level. The zero-numbered state (S0 for the system, or D0 for each

device) indicates the running (or active) state, while the higher-numbered ones are

non-running (inactive) states with successively lower power and correspondingly

decreasing levels of availability (run-readiness), and increasing latency for entry

and exit. ACPI also defines performance states, called P-states (P0-P15, allowing a

maximum of 16 per device), which affect the component’s operational performance

while running. Both power states and performance states affect power consumption.

ACPI is a specification and therefore different systems can implement different

aspects of the specification in varying degrees of granularity.

Almost all processors in the marketplace today support the concept of multi-

ple processor idle states with varying amounts of power consumed in those idle

states. Each such state will have an entry-exit latency associated with it. [133] in-

troduced the now highly popular cpu-idle framework, an effort toward a generic

processor idle management framework in Linux kernel. The framework introduced

idle drivers, which implement processor specific mechanisms to enter/exit sleep

states, and idle governors, which decide which sleep state a processor should en-

ter based on different criteria (current CPU activity, next expected interrupt time,

etc.). The goal of these frameworks was to have a clean interface for any processor

hardware to make use of different processor idle levels and also provide abstrac-

tion between idle-drivers and idle-governors allowing independent development of
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drivers and governors.

Polling within the operating system drivers or applications) is one of the biggest

source of wakeups, but the use of high-frequency clock-tick interrupts as the basis

for timer events, time-keeping, and thread-scheduling became noticeably problem-

atic from a power consumption point of view. The tickless kernel project [127]

in Linux introduced the notion of dynamic ticks - by reprogramming the per-CPU

periodic timer interrupt to eliminate clock ticks during idle, the average amount of

time that a CPU stays in its idle state after each idle state entry can be improved by

a factor of 10 or more.

2.1.6 Memory Power Management

Memory power management is another area of active research, both from hard-

ware and software points of view. Memory technology itself has been evolving

with the recent emergence of triple-channel DIMMs/DDR3 SDRAMs, which have

enabled different levels of power management (increasing/decreasing clock fre-

quency, varying degrees of shallow/deep self refresh, etc. One technology which

is finding its way into some systems is called “partial array self refresh” or PASR

[98], [88]. On a PASR-enabled system, memory is divided into banks, each of

which can be powered down independently. If any of those banks of memory is not

needed, that memory (and its self-refresh mechanism) can be turned off; the result

is a reduction in power use, but also the loss of any data stored in the affected banks.

The amount of power actually saved is a bit unclear; estimates fall in the range of

5-15% of the total power used by the memory subsystem. Correspondingly, there is
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work going on to enable support for PASR and related memory power management

technologies from a operating system point of view.

Main memory, because of its relatively low power requirement (say, 2 watts per

DIMM), seems at first glance to be of even less concern than disks. Its average

size on contemporary hardware platforms, however, may be poised to grow more

rapidly. With hardware system manufacturers’ focus primarily on performance lev-

els (to keep up with the corresponding performance demands of multicore CPUs),

maintaining full CPU-to-memory bandwidth is critical. The consequence has been

an evolution from single to dual-channel and now triple-channel DIMMs along with

the corresponding DDR, DDR2, and DDR3 SDRAM technologies. Although re-

ductions in the process feature size (DDR3 is now on 50-nanometer technology)

have enabled clock frequency to go up and power per DIMM to go down some-

what, the desire for even greater performance via an increase in DIMMs per mem-

ory channel is still increasing the total power consumed by the memory system.

2.1.7 Compiler Techniques for Low Power

While hardware and operating system work to provide power management, ap-

plications could do their bit to aiding the runtime system by providing hints about

their behavior allowing the runtime system to identify application behavior and idle

times. Other mechanisms include power aware code transformations and optimiza-

tions which can provide reduction in power consumption. Compiler techniques for

low power have been explored in different domains. [155] discusses some memory

and compiler techniques for low power. Memory compaction to allow contiguous
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access (and corresponding powering off memory) is discussed. The authors also

propose the use of DVFS during phases of program when the compiler can pre-

dict non-CPU bound phases; a similar approach is proposed in [58]. [56] propose

interesting code transformations specifically directed toward devices by looking at

the effect of transforming explicit I/O-based applications to increase their device

idle times. A solution is implemented by having applications specifically indicate

their “run-length” which is a hint to the runtime system as to when the application

expects to be idle. With this information, the operating system can apply more

effective device control policies.

[69] discusses Dynamic Voltage and Frequency Scaling, Resource Hibernation

and Remote Task Mapping optimization mechanisms. [87] proposes to use regis-

ter labeling techniques during compilation to reduce energy consumption. Power

aware instruction scheduling has been largely targeted to VLIW and Super Scalar

processors. [134] develops a technique to combine static and dynamic scheduling

to reduce power in super scalar processors. Here the authors propose a technique

that uniquely combines the advantages of static scheduling and dynamic scheduling

to reduce the energy consumed in modern superscalar processors with out-of-order

issue logic. In this Hybrid-Scheduling paradigm, regions of the application con-

taining large amounts of parallelism visible at compile-time completely bypass the

dynamic scheduling logic and execute in a low power static mode.

Power-aware compilation and code-generation are recent topics of research. Some

of these possibilities are explored in [78]. Automating power optimizations is a very

hard problem in this domain.
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2.1.8 Surveys

There are several exhaustive survey papers that provide in-depth analysis of dif-

ferent areas power management techniques. [109] specifically looks at survey of

techniques for energy-efficient on-chip communication. [77] surveys power man-

agement only in high-performance systems. An exhaustive survey of dynamic

power management techniques is provided in [14] and [15]. Power modeling, es-

timation and optimizations are covered in [81]. An overall survey of power man-

agement techniques is presented in [25]. Most of these papers are focused on spe-

cific domains, while we are trying to unify the overall space of power management

across four related yet orthogonal axes of specification, modeling, techniques, and

verification.

2.2 Low Power Verification

With extensive power management comes the problem of extremely complicated

verification. It is essentially required that low power specific design elements be

implemented correctly. Power management brings a host of new types of bugs

which are not in the class of traditional functional bugs. Figure 2.5 gives a list of

such newly introduced types of bugs in the system. Figure 2.6 gives a good list

of the additional tasks on the Verification teams in such a low power methodology.

It is quite clear that without a carefully planned rigorous methodology in place,

verification teams will be hard-pressed to provide correctness guarantees.

In this section we survey some verification methods at different levels of de-
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Power Management introduces new bug types which are not like the
traditional functional bugs:

• Isolation and Level Shifting Bugs
• Control Sequencing bugs
• Retention scheme and control errors
• Retention selection errors
• Electrical Problems like memory corruption
• Power Sequencing and Voltage Scheduling errors
• Hardware-Software deadlock
• Power Gating collapse or dysfunction
• Power On Reset and bring up problems
• Thermal runaway or Overheating
• Cooling inefficiencies because of thermal hotspots
• Sub-optimal workload placement, resulting in thermal hotspots
• Repeated shutdown/power-on of servers
• Failures due to concurrent access from different IPs when full

end-to-end power use cases are enabled
• Failures to meet the Quality of Services in terms of interrupt ser-

vice time & device access time

Figure 2.5: New type of bugs introduced in a low power methodology [153].

sign abstraction. We do not survey assertion based methodologies in detail here,

although given the kind of changes in the design due to power management tech-

niques, assertion based verification is expected to play a very large role in any

generic or unified methodology.
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Power Management requires Verification teams to perform new functions:

• Verify connection, placement, type of isolation/level shifting
• Include new power intent files such as UPF
• Formulate test plan for architecture correctly
• Reach good power state coverage
• Verify design works in all states, transitions and sequences
• Address firmware control of power management
• Address power-on reset issues
• Address verification at each stage of design, not just RTL

– Verify netlist at each handoff
– Verify Power Switch and rail connectivity

• Migrate existing testbenches, assertions, monitors to be low power aware
• Think about exhaustive constrained random and asynchronous logic

testing
• Verify Quality of Service (QoS) when servers are turned off
• Verify thermal conditions that can lead to thermal hotspots, which in turn

can result in processor throttling
• Complete end to end verification of each power use cases of the de-

vice/server to uncover any potential concurrency issues in real time
• Verify multiple power use case scenarios, to uncover any limiting factors

to peak current or thermal related factors

Figure 2.6: New verification tasks introduced in a low power methodology [153].

2.2.1 Pre-Silicon Verification

Low Power Transformations historically reside at gate-level (for eg., clock-gating)

for multiple reasons. Chief among them is the fact that verification of the low power

transformation at higher levels of design hierarchy is very expensive. At the gate-

level, low power transformations usually do not introduce new state. Hence formal
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combinational equivalence checking between the design before the transformation

and after will ensure the functionality preserving property of the transformation.

However, high-level (RTL or architectural or system level) low power transforma-

tions will change the gate level design substantially more than low-level transfor-

mations. Figure 2.7 details this phenomenon.

Let oRTL be the original RTL design and oGates the gate-level design of the

original RTL (obtained by synthesis). Assume the functionality of oRTL is checked

by traditional validation methods. Now, we contrast the following two scenarios:

[1] Suppose we have a low-level (gate-level) low power transformation on oGates

to give us a new gate-level design llpGates. Since this transformation at the

gate-level typically does not introduce new state, we can use formal Boolean

combinational equivalence checking to ensure that the functionality of the de-

sign is not altered by the transformation. The cost of this equivalence check-

ing is minimal, since the same methodology and tool-flow is used to verify

other gate-level transformations for circuit optimization, reducing timing, re-

ducing area, etc.

[2] Suppose we have a high-level (RTL) low power transformation on oRTL to

give us a new RTL design hlpRTL. Let the gate-level design (after synthe-

sis) of this new RTL be hlpGates. Since the transformation is at a higher

level of design hierarchy, it can potentially introduce extra state into the de-

sign. Therefore, using formal Boolean combinational equivalence checking

to show equivalence between oGates and hlpGates is not an option. The
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only verification option in this scenario is using traditional validation meth-

ods on the post-transformation RTL design hlpRTL.

Figure 2.7: Verification cost of low power transformations.

In the second scenario above, the tradeoff between power reduction and ver-

ification cost is not always clear which leads the architects and designers being

cautious and conservative in their implementation. Often aggressive high-level low

power transformations are not implemented in the design because the verification

cost (typically 70%+ of the total time cost) is too high. An automatic proof of the

correctness of the high-level transformations would be extremely desirable in order

to implement aggressive power reduction schemas.

Formal verification, especially equivalence checking, has achieved considerable

success in the context of low power verification. These techniques are generic tech-

niques which can also be effectively used for low power design verification.
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Combinational equivalence checking checks two acyclic, gate-level circuits. Com-

binational equivalence checkers can also be used to check equivalence of two se-

quential designs, provided the state encodings of the two designs are the same.

Although this technique has widespread use in many commercial tools, the real

challenge of sequential verification is in verifying two designs with different state

encodings. Sequential satisfiability engines [79], [103] and sequential ATPG en-

gines [59], [3] solve this problem to a large extent by unrolling the circuit until

a given time frame. Considerable research has been done to find compare points

for latch mapping [23], [5], [135]. However, these techniques operate at the gate

level, where they reason in the Boolean domain. More sequential simplification

and equivalence algorithms can be found in [86], [64], [92], [136]. An overview of

various methods are given in [71].

Fewer attempts have been made to apply sequential equivalence checking to the

behavioral RTL descriptions of designs. In [122] a methodology for checking the

combinational equivalence between C and RTL is described. The C source code is

converted to a Hardware Description Language (HDL) and commercial RTL to RTL

equivalence checkers are used thereafter. The C code is very similar to the RTL, in

order for the translation to be achieved, which might not be a scalable solution.

Clarke and Kroenig [34],[70] proposed a solution with CBMC, a C-based bounded

model checking engine that takes a C program and a Verilog implementation. The

two programs are unwound together, and converted into a Boolean satisfiability

checking problem. The Verilog code is converted to Boolean formulas by a synthesis-

like procedure, and an innovative technique is described to convert the C-code into
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Boolean formulas, including pointers and nested loops. However, the capacity of

CBMC is limited by space and time considerations. This is because the reason-

ing done by this tool is entirely in the Boolean domain. On the other hand, our

technique reasons at the system and register transfer level, splitting the equivalence

checking problem into smaller problems that can be handled by the lower level en-

gines. This static analysis of the source code, before running the problem through

Boolean level engines, is the principal contribution of our technique.

Another approach to equivalence checking between C descriptions, that could be

extensible to C vs RTL descriptions, is described in [84]. This approach detects and

extracts the textual differences in the two target programs, and then performs a de-

pendence analysis using program slicing, to check for the actual differences in the

two programs. It then symbolically simulates this difference and reports the equiv-

alence checking results. This technique, however, is most effective when the two

target programs being compared are very similar to each other, in function as well

as structure. Since this process uses syntactic information entirely, the similarity

of the target descriptions is very essential to its application. Our technique does a

semantic comparison of the two target programs, with respect to their functionality,

and is therefore wider in its scope.

A few commercial tool vendors [1] also aim at solving the sequential equivalence

checking problem between system level model (SLM) and RTL. However, this area

still presents a major opportunity for further research.

In [142] we present a technique for RTL to RTL equivalence checking of com-

plex combinational circuits including multipliers. We have extended the same tech-
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nique to sequential equivalence checking, and addressed the problem in the realm

of SLM vs RTL in [138], [141].

The technique involves the efficient decomposition of the equivalence check-

ing problem, in order to make it more tractable. The authors present an automatic

technique to compute high level sequential compare points, to compare variables

of interest (observables) in the candidate design descriptions. The compare points

are defined as co-ordinates on the space-time axis of the design, denoted by their

relative position with respect to the time domain (clock cycles), and their position

in the space domain (data variables). This aligns with the sequential behavior of the

designs being compared, and provides an easy, intuitive abstraction of the equiva-

lence checking problem space. The proof starts with the two design state machines

at the same initial (or reset) state, and steps the machines through every cycle, until

you reach a sequential compare point.

At the sequential compare points, one constructs symbolic expressions for the

observables that encapsulate the sequential behavior of the designs, until the cycle

of comparison. At each sequential compare point, the equivalence of the two state

machines is proved using a lower (Boolean) level engine, which in this work, is a

Boolean satisfiability (SAT) solver. The principal gain of this technique is that it

leverages the expressiveness and information available at the register transfer and

system levels. Although significant amount of research has been done on compare

points for gate level equivalence checkers, these algorithms and heuristics are lim-

ited by their domain. On the other hand, since we operate at the higher, source

code level, the sequential compare points are more intuitive and easier to detect.
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Also, they capture the notion of design progression through time, which is useful in

meaningful decomposition of the equivalence checking state space.

Most of the equivalence checking methods described so far in this section are

generic methods, which can also be applied to the context of low power design.

We next look at a methodology that has been carefully fine-tuned explicitly for the

context of low power design.

Given the nature of power management, more verification will be focused on

RTL and higher levels of abstraction. [117] describe methods to verify RTL power

gating through transaction level models. The rest of this section will explore verifi-

cation strategies at the Platform level and for servers and data centers.

2.2.2 Platform Verification

Platform level validation of power and/or thermals is a very hard and complex

problem. Given the complexity of today’s systems - whether they are many core

systems, or SoCs for phones/tablets, validating all aspects of power management

and thermals is very hard. While this is interesting (and hard) from a purely aca-

demic point of view, industrial designs rely very heavily toward ensuring that once

the silicon arrives, power management can be validated as soon as possible, and

thermal solutions can be built accurately for the specific form factor(s) in consider-

ation.

In order to accomplish this, typically companies use complex and costly FPGAs

to emulate the entire chip/SoC RTL, and build platform level validation/verification

tools that can include the ability to boot entire operating system on such FPGA
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complexes. SoftSDV from Intel [131] is a pre silicon functional verification tool.

However, this does not allow for detailed power estimation/modeling/verification.

Several such internal, proprietary (and costly) validation systems are used typically

for validation power management features.

Thermal validation at platform level is an equally hard problem. Typically form

factor devices are built early on in the platform bring up stage, and these form

factors are analyzed for heat flows in heat chambers. Based on the thermal hot

spots, appropriate thermal control algorithms are fine tuned. This is a costly, but

accurate way of ensuring that thermal management on the devices are validated

effectively.

2.3 Conclusions

We have surveyed many optimizations for lower power dissipation at various

levels of hardware circuit abstractions. Most of the power optimizations are at

the gate and transistor level. Techniques which try to analyze and optimize power

consumption at a higher level of abstraction, viz. architecture or RTL level, translate

the given high level architecture/RTL description to gates (netlists) and then use

reasonably accurate low-level power analysis engines. This method is infeasible if

we want to evaluate a large number of design choices.

Most initial work in the area of power optimizations at the RTL and architecture

levels suffer from modeling power dissipation for very specific hardware structures

(eg., caches, branch predictors, etc.). It would be useful to be able to introduce

optimizations for lower power dissipation for any arbitrary hardware circuit. In this
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context, one might consider making use of the program structure or the dataflow

information (statically or dynamically) available at the architecture and RTL levels.

There have been a variety of techniques proposed and implemented for hardware

level power management. However, the same cannot be said of software; software

is limited to use the ACPI interfaces exposed by hardware. Further, many hardware

techniques are not even visible to the OS.

The techniques used at each level of design abstraction and hierarchy are quite

different from each other. There is also no single scalable power management spec-

ification mechanism which is applicable from RTL to operating systems. What we

need is a generalizable specification that encompasses silicon and software allowing

standard interfaces to be exposed at each level, while simultaneously providing for

esoteric techniques and abstracting such techniques from those used at other layers.

In such a generalized power management methodology, there will be an intelli-

gent optimal way to choose between techniques at different levels of abstraction, to

maximize the global power intent.
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Chapter 3

Instruction-driven Slicing: Automatic Insertion of
Low Power RTL Annotations

3.1 Introduction

The tradeoff between power reduction transformation and its verification cost is

not always clear which leads the architects and designers to be cautious and conser-

vative in their implementation of such design transformations. Often aggressive low

power transformations are not implemented in the design because the verification

cost (typically more than 70% of the total time cost) is high enough to adversely

impact the total time-to-market.

Utilizing the program structure or the dataflow information available at the archi-

tectural and RTL levels can lead to many interesting and complicated low power

transformations [97], [20], [29], [145], [144]. Yet most power transformations in to-

day’s designs are at the gate-level [104], [4], [129], [90]. The primary reason for

this is the hardness of the verification problem. If the low power transformations

are at the gate level, then equivalence checking methods [85] can be used to au-

tomatically prove the correctness of the transformation. Although there are a few

sequential equivalence checking algorithms [138], [59], they are not widespread in

the hardware industry. In a typical industry scenario, an RTL or architectural low
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power transformation implies a full cost of dynamic validation, which can extend

to many months, and require a lot of resources.

In this chapter, we propose a new technique for low power microprocessor de-

sign. Our technique can be thought of as a fine-grained clock gating scheme im-

plemented at the RTL or the architectural level which utilizes the program structure

of the model. Our algorithm automatically identifies fine-grained blocks of cir-

cuit which are not used on any given cycle during the execution of a particular

instruction, and shuts them down. This scheme of slicing the circuit based on the

instruction being executed is termed instruction-driven slicing. The algorithm au-

tomatically inserts annotations in the RTL to implement the shut-down circuitry

for the unused blocks during the execution of any instruction. We also propose

a methodology to prove that these automatically inserted annotations preserve the

functionality of the original processor RTL.

All prior approaches toward analyzing and optimizing RTL and architectural

models for lower power dissipation suffer from modeling the power dissipation for

very specific hardware structures. Besides, they do not make use of the program

structure or the dataflow information (statically or dynamically) available at the

architecture and RT-levels.

3.1.1 Contributions of this work

We propose a new technique for low power microprocessor design. For any

given instruction, when it is decoded, we have sufficient information to recognize

what resources are required to execute that instruction. We introduce the concept of
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an instruction-driven slice. An instruction-driven slice of a microprocessor design,

is all the relevant circuitry of the design (a slice of the RTL program) required to

take the life cycle of the instruction to completion (execute, writeback etc.).

The primary idea is: given a microprocessor design, depending on the instruc-

tion, we identify the instruction-driven slice, and shut off the rest of the circuitry.

This might include gating out fine-grained parts of various processor blocks de-

pending on the instruction, or gating out the floating point execution units during

integer ALU execution, or gating out the memory units during ALU operation, or

turning off certain FSMs in various control blocks because the instruction-driven

slice provides exact value constraints on their inputs, and so on.

One way of implementing this idea is to add to the RTL code, the instruction-

driven slice identification and turning off operations as annotations. At the netlist

level, we do not have sufficient information to identify an instruction-driven slice.

The advantage of annotating the RTL is that the circuitry relevant to perform these

tasks is automatically generated by the synthesis tool along with the rest of the

netlist.

We have implemented this on OR1200, a Verilog implementation of the Open-

RISC [38] architecture. This technique and the same annotations can also be in-

serted at the architectural level. We have implemented an architectural model of

the same OR1200 processor and simulated it with and without the annotations in

the SimpleScalar tool set [24] and estimated the power dissipation using SimWattch

[30].
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We have proved the correctness of these annotations on the OR1200 proces-

sor. We use the ACL2 [67] theorem prover to show that the RTL model before

instruction-driven slicing and the RTL model after instruction-driven slicing are

precisely equivalent in terms of their functionality.

We have also implemented instruction-driven slicing in PUMA [105], a Pow-

erPC fixpoint core. As with the in-order OR1200 case, the technique and the same

annotations have been applied at the architectural and RT levels. We have also im-

plemented an architectural model of the same PUMA processor and as with the

OR1200 model, simulated it with and without the annotations and estimated the

power consumption.

An important aspect of optimizing power at the RT-level is to first develop a

framework for analyzing the power dissipation at an architectural level. The tra-

ditional way has been to translate the given high level architecture description to

gates (netlists) and then use reasonably accurate low-level power analysis engines.

This method is infeasible if we want to evaluate a large number of design choices.

Brooks et. al in [20] present a framework for analyzing power dissipation at the ar-

chitecture level. We use this framework to estimate the efficacy of our optimizations

at the architectural level.

Most initial work in optimization for low power at the RT-level is focused on

power analysis and reduction in caches [111],[157]. This is chiefly because embed-

ded microprocessors, historically the reason for low power design, used to devote

nearly 40% of their power budget to caches. Besides caches are regular structures

and are more easily modeled than other circuits. Other attempts include power re-
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duction by reducing needless speculation in branch predictors [29], gated clocks in

integer ALUs [19], etc.

Inserting annotations using instruction-driven slicing is explained in detail with

examples in Section 3.2. Our overall methodology and integrated tool flow is de-

tailed in Section 3.3. We also give an algorithm for adding the annotations au-

tomatically. Section 3.4 explains instruction-driven slicing in the RTL as well as

the architectural models of OR1200, a pipelined implementation of OpenRISC.

Results from running SPECINT2000 benchmarks on these models and some com-

parison metrics are also presented. Section 3.5 explains instruction-driven slicing

in the RTL as well as the architectural models of PUMA, a PowerPC fixpoint core.

Again, results from running SPECINT2000 benchmarks on these models and the

same comparison metrics as for the in-order pipelined machine are presented. Some

conclusions and future directions are discussed in Section 3.6.

3.2 Instruction-Driven Slicing

Program slicing has been well studied in the context of software engineering

[80], programming languages [128], and more recently, in the context of slicing

hardware description languages [35],[36],[143]. We define a new notion of program

slicing for microprocessor descriptions, viz., slicing based on the instruction which

is being executed. Given a microprocessor design and an instruction, instruction-

driven slicing identifies a slice of the abstract program graph of the microprocessor

design corresponding to all the relevant circuitry needed to execute that instruction.

The cone of influence of a variable in a program is the set of all program state-
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Algorithm instruction-driven-slicing (input: vRTL, insts; output: aRTL).
[1] Parse vRTL to obtain the ASPG (Abstract Syntax Program Graph).
[2] For each instruction i in insts repeat

Begin loop
[3] Slice the ASPG for instruction i
[4] Traverse the ASPG (finish when done traversing all nodes)
[5] Add annotation variables if such a block is found
[6] If a particular flop is already gated by a previous annotation, then

add the current annotation as an additional signal
[7] Return the annotated ASPG

End loop
[8] Generate Verilog code for the annotated ASPG (aRTL).
End.

Figure 3.1: Overview of the Instruction-driven Slicing Algorithm for RTL.

ments which depend on the variable. Any hardware design written in Verilog (at

the RT-level) can be thought of as a control flow graph, henceforth referred to as

program graph. Traditional program slicing on a variable can be thought of as re-

ducing the program to retain only the slice of the program graph which is within

the cone of influence of the variable. Instruction-driven slicing on the other hand,

identifies the slice of the program graph which is within the cone of influence of an

instruction. The cone of influence of an instruction is the slice of the microproces-

sor circuitry required to execute that instruction from start to finish. In terms of the

RTL program graph, it is a slice of the program which is in the cone of influence of

the semantics of an instruction. More specifically, it is the the union of the cone of

influence of each of the variables affected by the instruction.
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There are two parts to instruction-driven slicing. First, we need to identify the

instruction-driven slice. Next, we need to isolate the rest of the circuit by identifying

the flops governing the rest of the circuit and gating them out. Since we are slicing

based on an instruction or a type of instruction (for example, an ALU instruction, or

an LSU instruction, etc.), we can obtain a slice both at the RTL and the architectural

level models.

Turning off sub-circuits is a well-researched topic [90], [129], and in addition

to instruction-driven slicing, we can implement more sophisticated algorithms to

determine the sub-circuits to be turned off and the logic required to perform the dis-

abling. The innovation is to automatically identify the sub-circuits in the context of

the execution of a particular instruction by leveraging available high level informa-

tion about instructions and functional units at the RT-level, which is not available

to the traditional transistor level optimizing tools. In fact, it turns out that our al-

gorithm to automatically identify an instruction-driven slice introduces much more

fine grained gated clocks than prior art automatic methods. We report these findings

in Section 3.4.

Instruction-driven slicing at the architectural level is carried out exactly the same

way as at the RT-level. The overall structure available at the architectural level is

the same as the RTL model. The key difference is that the architectural model is

more abstract than the RTL model. This in turn means that the clock gating due to

instruction-driven slicing is more coarse-grained in the architectural model than in

the RTL model.
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3.3 Our Technique
3.3.1 Instruction-Driven Slicing Algorithm

We give an algorithm for automatically identifying instruction-driven slices,

given a set of instructions and a microprocessor design. The instruction-driven

slicing algorithm for RTL models is given in Figure 3.1.

The inputs to the algorithm are an RTL model (vRTL) of the microprocessor, and

a set of instructions insts which will be executed on that model (given by the ISA of

the microprocessor). First, we parse the vRTL model to generate an abstract graph

of the program, called the Abstract Syntax Program Graph (ASPG). The nodes

of an ASPG are the data computing/modifying statements of the design, whereas the

edges of the ASPG define the control flow of the RTL program. We have modified

the Verilog parser from vl2mv code distributed with VIS-2.0 [126] to generate our

ASPGs.

Now, we traverse the ASPG for each instruction and slice the ASPG. The graph

traversal algorithm is a two-pass algorithm. In the first pass we identify variables

affected by the instruction driving the slicing and the cone of influence of those

variables. Along with this, we compute the condition predicates that are true for

every pipeline stage. In the second pass, we identify parts of the ASPG governed

by flops∗ which are outside the identified cone of the first pass. These parts of the

ASPG are gated out†. If there is already gating logic on any of these flops, then the

∗We use the term flop loosely to mean a single-bit storage element with an enable signal.
†We implement the gating out, not by preventing clock from switching, but setting and unsetting

the enable on every flop. We assume that all flops have an enable signal. Also, because of such
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algorithm adds to the existing logic in an optimized fashion.

Lastly, we reverse the process of the parser, and generate Verilog code for this

annotated ASPG (aRTL).

The time complexity of our algorithm is linear in the size of the program graph.

A point of note is that the algorithm may not be able to identify every flop outside

the slice. The computing the cone of influence part of our algorithm is based on

prior algorithms with guaranteed correctness [143]. The correctness result guaran-

tees that the generated slice is always an over-approximation, i.e., the annotation

insertion is guaranteed to be a functionality preserving transformation.

We have implemented our instruction-driven slicing algorithm on the ASPGs.

The advantage of this is that without any loss of generality, we can apply the algo-

rithm on any ASPG, irrespective of whether the ASPG was generated from Verilog

RTL or from SimpleScalar architectural C models. The algorithm for instruction-

driven slicing on the architectural model remains the same, except for parsing the

model into ASPGs and generating annotated models from ASPGs. We have imple-

mented our instruction-driven slicing algorithm in C.

The advantage of decoupling the algorithm from the model is that the algorithm

can now be treated as a transform engine, which is a part of the tool chain.
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Figure 3.2: Incorporating Instruction-driven slicing into the design flow.

3.3.2 Methodology

We have implemented a methodology to incorporate instruction-driven slicing

into the design flow. Figure 3.2 describes the overall implementation strategy of

our technique. We have designed the tool-flow in order to incorporate instruction-

driven slicing as a part of the traditional design flow.

In order to demonstrate our technique we have built the following tool-chain.

We start with the Verilog RTL (vRTL) and the architectural models. The RTL code

a gating out mechanism, there is no added clock skew, and at the same time, there is no dynamic
power saved in the clock distribution network. The extra power consumed by this is accounted in
the experiments
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is annotated with instruction-driven slicing annotations to obtain the aRTL, by the

previously described algorithm (Figure 3.1). The aRTL code, process parameters

for power estimation, as well as the benchmark SPECINT2000 files are fed to the

Synopsys Design Compiler Environment. There is a lot of work done on what

regions of the SPEC benchmarks are to be used for simulation [100], [53]. The

SPEC benchmarks we run are forwarded to 80 Million instructions, before we col-

lect power dissipation numbers. We have modified and setup the Synopsys Design

Compiler Environment as an integrated tool which can take SPEC benchmarks and

RTL code, synthesize the RTL code and determine the power consumption due to

switching activity.

Along a parallel path, we start with the architectural model of the design. Our

model is written compatible with the SimpleScalar Tool Set [24]. The model is

annotated with instruction-driven slicing annotations and fed as input to the Sim-

pleScalar with Wattch environment. Wattch is an architecture level power estima-

tor [20], [30]. We also modified the power.h file in this environment to reflect the

same process parameters as used for the RTL power estimation.

Our aim in building this parallel power estimating setup at two levels of design

hierarchy is two-fold. First, we wish to show that the dataflow and structure infor-

mation available at these levels can be usefully exploited to optimize the design for

lower power consumption. Second, our technique of automatically adding annota-

tions is scalable to many levels of design hierarchy. The only caveat is that since the

architecture model is more abstract than the RTL model, the slicing induced clock

gating is coarser for the architecture model than the RTL model.
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We have used this tool-chain to test our technique on OR1200, an in-order

pipelined OpenRISC processor and PUMA, a Power PC fixed point unit out-of-

order super-scalar core.

3.4 OR1200 - a Pipelined OpenRISC Implementation

Integer EX
Pipeline

GPRs

System

Unit
MAC

Unit
Load/Store

Exceptions

Unit
Instruction

DMMU
&Cache

IMMU
&Cache

System

Figure 3.3: OR1200 Processor Block Diagram.

In order to demonstrate the efficacy of our technique, we have chosen a state-

of-the-art in-order microprocessor as our example. OR1200 is a pipelined mi-

croprocessor implementing the OpenRISC instruction set architecture. We have

implemented the architectural model of OR1200 compatible with SimpleScalar

(sim-or1200). In the rest of this section, we first give a description of the pro-

cessor itself, and then give our results from running our technique on these models.
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3.4.1 OR1200

We use the OR1200, a publicly available processor for our experiments. The

specification manual of the OR1200 is at [38] and the source code of its imple-

mentation in Verilog RTL can be obtained from [95]. The OR1200 is a 32-bit

scalar RISC with Harvard microarchitecture, 4 stage integer pipeline, virtual mem-

ory support (MMU) and basic DSP capabilities. OR1200 is intended for embedded,

portable and networking applications.

Figure 3.3 shows the block diagram of the CPU of the OR1200 processor. The

instruction unit implements the basic instruction pipeline, fetches instructions from

the memory subsystem, dispatches them to available execution units, and maintains

a state history to ensure a precise exception model and that operations finish in

order. The execution unit must discern whether source data is available and has to

ensure that no other instruction is targeting the same destination register. OpenRISC

1200 implements 32 general-purpose 32-bit registers. The load/store unit (LSU)

transfers all data between the general purpose registers and the CPU’s internal bus.

We have implemented all single-bit storage elements with an enable signal.

In this experiment we use TSMC CLO18G [91], a 0.18µm generic process tech-

nology to estimate the power dissipation.

3.4.2 Results for OR1200-RTL

The RTL annotations were automatically generated and inserted in the OR1200

RTL in this experiment. An example of this is shown in Figure 3.4. The results

are shown in Figure 3.5. It is important to note that these numbers are on models
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// Instruction selection in load/store unit

always @(posedge clk or posedge rst) begin
case (id insn[31:26])

‘OR1200 OR32 SB: lsu op <= #1 ‘OR1200LSUOP SB;
‘OR1200 OR32 SW: lsu op <= #1 ‘OR1200LSUOP SW;
‘OR1200 OR32 LBZ: lsu op <= #1 ‘OR1200LSUOP LBZ;
‘OR1200 OR32 LWZ: lsu op <= #1 ‘OR1200LSUOP LWZ;
default: begin lsu op <= #1 ‘OR1200LSUOP NOP;

endcase
end

(a) Verilog RTL code for the always block assigning the lsu op
before instruction-driven slicing transformation.

// Instruction selection in load/store unit sliced on
// instruction l.addc

always @(posedge clk or posedge rst) begin
if (iADDC id)

lsu op <= #1 ‘OR1200LSUOP NOP;
else

case (id insn[31:26])
‘OR1200 OR32 SB: lsu op <= #1 ‘OR1200LSUOP SB;
‘OR1200 OR32 SW: lsu op <= #1 ‘OR1200LSUOP SW;
‘OR1200 OR32 LBZ: lsu op <= #1 ‘OR1200LSUOP LBZ;
‘OR1200 OR32 LWZ: lsu op <= #1 ‘OR1200LSUOP LWZ;
default: begin lsu op <= #1 ‘OR1200LSUOP NOP;

endcase
end

(b) Transformed Verilog RTL code after applying instruction-driven slicing
on instruction l.addc.

Figure 3.4: Instruction-driven slicing example.
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SPECINT2000 Unsliced 1-Sliced %-age
Benchmarks Power Power Gain

Dissipation Dissipation
gcc 1.89 mW 1.72 mW 8.99%
gzip 1.44 mW 1.38 mW 4.17%
parser 2.12 mW 1.84 mW 13.21%
vortex 2.33 mW 2.02 mW 13.30%
Average 1.95 mW 1.74 mW 10.54%

SPECINT2000 Unsliced 4-Sliced %-age
Benchmarks Power Power Gain

Dissipation Dissipation
gcc 1.89 mW 1.69 mW 10.58%
gzip 1.44 mW 1.31 mW 9.03%
parser 2.12 mW 1.82 mW 14.15%
vortex 2.33 mW 1.98 mW 15.02%
Average 1.95 mW 1.70 mW 12.60%

SPECINT2000 Unsliced 10-Sliced %-age
Benchmarks Power Power Gain

Dissipation Dissipation
gcc 1.89 mW 1.53 mW 19.05%
gzip 1.44 mW 1.27 mW 11.81%
parser 2.12 mW 1.63 mW 23.11%
vortex 2.33 mW 1.81 mW 22.32%
Average 1.95 mW 1.56 mW 19.79%

Figure 3.5: OR1200-RTL Power dissipation results after slicing on 1, 4 and 10
instructions. These results are for SPECINT2000 benchmarkswith Synopsys clock
gating

of the processor, and were not originally designed to be power-efficient. The key

result therefore, is the percentage reduction in power dissipation. The results are

summarized in Figure 3.7(a). In the best case, we see a 25% reduction of dynamic
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SPECINT2000 Unsliced 1-Sliced %-age
Benchmarks No Synopsys No Synopsys Gain

clockgating clockgating
gcc 1.94 mW 1.83 mW 5.67%
gzip 1.73 mW 1.57 mW 9.25%
parser 2.47 mW 2.17 mW 12.15%
vortex 2.51 mW 2.14 mW 14.74%
Average 2.16 mW 1.93 mW 10.87%

SPECINT2000 Unsliced 4-Sliced %-age
Benchmarks No Synopsys No Synopsys Gain

clockgating clockgating
gcc 1.94 mW 1.72 mW 11.34%
gzip 1.73 mW 1.51 mW 12.72%
parser 2.47 mW 2.14 mW 13.36%
vortex 2.51 mW 2.18 mW 13.15%
Average 2.16 mW 1.89 mW 12.72%

SPECINT2000 Unsliced 10-Sliced %-age
Benchmarks No Synopsys No Synopsys Gain

clockgating clockgating
gcc 1.94 mW 1.65 mW 14.95%
gzip 1.73 mW 1.51 mW 12.72%
parser 2.47 mW 1.89 mW 23.48%
vortex 2.51 mW 1.88 mW 25.10%
Average 2.16 mW 1.73 mW 19.88%

Figure 3.6: OR1200-RTL Power dissipation results after slicing on 1, 4 and 10
instructions. These results are for SPECINT2000 benchmarkswithout Synopsys
clock gating

power dissipation and 20% on an average.

Our power estimation tool (Synopsys power compiler) also automatically gates
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(a) OR1200-RTL

(b) OR1200-Arch

Figure 3.7: OR1200 reduction in power dissipation for SPECINT2000 benchmarks.

the clock. We also show results of turning off the default clock-gating provided

by Synopsys Power Compiler in Figure 3.6. Instruction-driven slicing power gains

are very similar even when the auto-power reduction mechanism of the measuring

tool is turned off. Primarily, we have less or no overlapping gating because our flop
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Figure 3.8: OR1200-RTL Power reduction compared to increase in area and delay
due to slicing. The first set of comparisons depicts the normalized Energy−Area
product. The second set depicts the normalized Energy −Delay2 product.

disable logic is extremely fine grained and is not on the clock distribution network.

In our experiment, both the unsliced and the sliced RTL go through the same addi-

tional clock gating and hence the percentage reduction we obtain is in addition to

what was automatically added by the synthesis tool.

Figure 3.8 depicts the power-vs-timing and power-vs-area tradeoff. The normal-

ized Energy − Area product decreases consistently with increased slicing. This

means that as far as increase in area is considered because of additional logic, it is

not a problem since we are gaining substantially in terms of reduced power. The

same result shows up from the Energy −Delay2 product as well. [82] introduced

Energy−Delay2 product as an efficient measure of energy-vs-delay tradeoff since

it represents a voltage independent metric. Therefore, independent of device supply

voltage, gains because of lower power dissipation consistently offset the increased
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area and delay. Also, in certain timing critical blocks, our algorithm can be tuned

to slice more coarsely to meet the timing requirements of that block.

(a) Unsliced flop distribution (b) After slicing on l.add
(3287 flops enabled) (1874 flops enabled)

(c) Unsliced flop distribution (d) After slicing on l.lw
(3287 flops enabled) (2456 flops enabled)

Figure 3.9: Flop distribution effect of instruction-driven slicing on l.add and
l.lw in the OR1200 RTL.

We also synthesized our design and ran it through a place-and-route tool [26],
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both before and after the slicing. The design contained 3287 flops before slicing. In

the unsliced version, all 3287 enables are treated as on as shown in Figure 3.9(a).

This is a visualization of flop positions after place-and-route. After instruction-

driven slicing on l.add, 1413 flops are disabled during the course of execution of

the l.add. Figure 3.9(b) shows the flop distribution after slicing on the l.add

instruction. The parts of the chip that are lit are all the enables on the flops which

are on during the execution of the l.add. In the unsliced layout, the entire chip is

on, as opposed to the sliced layout where we can clearly see the fine-grained clock

gating induced by our algorithm. Figure 3.9(d) shows the same comparison for a

load (l.lw) instruction (831 flops are disabled in this case). The flop distribution

in figures Figure 3.9(c), Figure 3.9(b), and Figure 3.9(d) is based on preliminary

floor plan estimate, whereas, the number of enables in each case is accurate.

The inserted annotations introduce additional flops into the design. For the

OR1200 RTL we found that the number of additional flops was less than 1% of

the total number of flops. On the same count, the additional switching power due to

the additional logic is also less than 1% of the total power dissipated. The additional

logic will also cause increased leakage power. Since we have no model to measure

the static power dissipation, we do not have a measure of this. However, since the

percentage of additional logic is so low compared to the overall power reduction,

we do not expect this to be a problem.
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SPECINT2000 Unsliced 1-Sliced %-age
Benchmarks Power Power Gain

Dissipation Dissipation
gcc 2.04 mW 1.90 mW 6.86%
gzip 1.67 mW 1.62 mW 2.99%
parser 2.32 mW 2.08 mW 10.34%
vortex 2.51 mW 2.28 mW 9.16%
Average 2.14 mW 1.97 mW 7.73%

SPECINT2000 Unsliced 4-Sliced %-age
Benchmarks Power Power Gain

Dissipation Dissipation
gcc 2.04 mW 1.87 mW 8.33%
gzip 1.67 mW 1.55 mW 7.19%
parser 2.32 mW 2.03 mW 12.50%
vortex 2.51 mW 2.14 mW 14.74%
Average 2.14 mW 1.90 mW 11.12%

SPECINT2000 Unsliced 10-Sliced %-age
Benchmarks Power Power Gain

Dissipation Dissipation
gcc 2.04 mW 1.72 mW 15.69%
gzip 1.67 mW 1.43 mW 14.37%
parser 2.32 mW 1.84 mW 20.69%
vortex 2.51 mW 1.94 mW 22.71%
Average 2.14 mW 1.73 mW 18.85%

Figure 3.10: OR1200-Arch Power dissipation results for SPECINT2000 bench-
marks after slicing on 1, 4 and 10 instructions.

3.4.3 Results for OR1200-Arch

We ran the same benchmarks on our architectural model sim-or1200. The

results are shown in Figure 3.10. sim-or1200 absolute power dissipation estima-
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tions were more than the RTL estimations. The percentage improvement observed

was also less than in the RTL model. We believe this behavior is a direct correlation

of how fine-grained the clock gating is. Also, since the architectural model is more

abstract than the RTL model, it is natural to expect lesser gains on the architectural

model. The results are summarized in Figure 3.7(b).

Although our technique is automatic, it is key to note the importance of the initial

setup before the technique can be implemented. The instruction set architecture of

the target microprocessor is the input to our technique. This needs to be described

in complete detail if fine order differences between opcodes should be picked up by

the technique. On the other hand, if the input opcode description can abstract (and

therefore combine) certain opcodes, then the technique will give you a transforma-

tion that includes that abstraction.

Instruction-driven slicing is unique because it tries to enforce a semantics (the

semantics of the instruction being executed, as given by the program graph) on the

flops one is trying to shut-off. This does not preclude the use of netlist level power

optimization techniques. To what extent a netlist level optimization is anticipated

by our method is not clear. On the contrary, it is clear that our algorithm by virtue

of operating at the RTL and architectural levels employs a host of optimizations

which are not visible at the netlist level.

3.5 Instruction-Driven Slicing in the PowerPC Microprocessor

In order to demonstrate the versatility of our technique, we have chosen a very

complicated, multiple instruction in flight, out-of-order super-scalar microprocessor
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Figure 3.11: PUMA Fixed Point Unit Processor Block Diagram.

as our next example. PUMA is a fixed point unit PowerPC microprocessor. We

have implemented the architectural model of PUMA compatible with SimpleScalar

(sim-puma). In the rest of this section as before, we first give a description of

the processor itself, and then give our results from running our technique on these

models.

3.5.1 PUMA

PUMA [105] is a dual-issue, out-of-order super scalar fixed-point unit (FXU)

based on the PowerPC instruction set. The processor implements a majority of the
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SPECINT2000 Unsliced 1-Sliced %-age
Benchmarks Power Power Gain

Dissipation Dissipation
gcc 382.00 mW 365.00 mW 4.45%
gzip 370.00 mW 362.00 mW 2.16%
parser 412.00 mW 384.00 mW 6.80%
vortex 420.00 mW 392.00 mW 6.67%
Average 396.00 mW 375.75 mW 5.11%

SPECINT2000 Unsliced 4-Sliced %-age
Benchmarks Power Power Gain

Dissipation Dissipation
gcc 382.00 mW 361.00 mW 5.50%
gzip 370.00 mW 353.00 mW 4.59%
parser 412.00 mW 380.00 mW 7.77%
vortex 420.00 mW 384.00 mW 8.57%
Average 396.00 mW 369.50 mW 6.69%

SPECINT2000 Unsliced 10-Sliced %-age
Benchmarks Power Power Gain

Dissipation Dissipation
gcc 382.00 mW 347.00 mW 9.16%
gzip 370.00 mW 339.00 mW 8.38%
parser 412.00 mW 356.00 mW 13.59%
vortex 420.00 mW 363.00 mW 13.57%
Average 396.00 mW 351.25 mW 11.30%

Figure 3.12: PUMA-RTL Power dissipation results after slicing on 1, 4 and 10
instructions. These results are for SPECINT2000 benchmarkswith Synopsys clock
gating
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SPECINT2000 Unsliced 1-Sliced %-age
Benchmarks No Synopsys No Synopsys Gain

clockgating clockgating
gcc 398.00 mW 375.00 mW 5.78%
gzip 389.00 mW 379.00 mW 2.57%
parser 441.00 mW 413.00 mW 6.35%
vortex 447.00 mW 417.00 mW 6.71%
Average 418.75 mW 396.00 mW 5.43%

SPECINT2000 Unsliced 4-Sliced %-age
Benchmarks No Synopsys No Synopsys Gain

clockgating clockgating
gcc 398.00 mW 371.00 mW 6.78%
gzip 389.00 mW 368.00 mW 5.40%
parser 441.00 mW 410.00 mW 7.03%
vortex 447.00 mW 413.00 mW 7.61%
Average 418.75 mW 390.50 mW 6.75%

SPECINT2000 Unsliced 10-Sliced %-age
Benchmarks No Synopsys No Synopsys Gain

clockgating clockgating
gcc 398.00 mW 357.00 mW 10.30%
gzip 389.00 mW 353.00 mW 9.25%
parser 441.00 mW 384.00 mW 12.93%
vortex 447.00 mW 389.00 mW 12.98%
Average 418.75 mW 370.75 mW 11.46%

Figure 3.13: PUMA-RTL Power dissipation results after slicing on 1, 4 and 10
instructions. These results are for SPECINT2000 benchmarkswithout Synopsys
clock gating

integer instructions of the PowerPC ISA. The FXU was originally designed to find

the optimal number of execution units, issue-width, branch prediction, etc. while

reducing the total transistor count.
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Figure 3.14: PUMA-RTL Power gains for SPECINT2000 benchmarks.

The processor block diagram is shown in Figure 3.11. The processor has a split

level-1 cache and unified off-chip level-2 cache. The chip interfaces the level-2

cache through a 128-bit data bus and a 32-bit address bus. The address bus sends

the requested load or store address to the second level memory management unit.

Data is written on the 32-bit bus and read across the 128-bit bus. The cache line is

128-bits, so a full line is read for each second-level access. The data memory access

queue (DMAQ) is the portal for the 128-bit bus and routes data and instructions

to the respective on-chip cache. The instruction/control portion of the machine is

composed of an instruction cache, fetch unit, decoder, and branch predictor. The

decoded instructions are issued to the execution core through the dispatch unit and

written back to the register file or re-order buffer. Four functional units have been

implemented in the processor: one branch unit, two ALUs, and one load-store unit.

In this experiment (as with OR1200), we continue to use the same TSMC CLO18G
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(a) Unsliced flop distribution (b) After slicing on l.add
(6244 flops enabled) (3431 flops enabled)

(c) Unsliced flop distribution (d) After slicing on l.lw
(6244 flops enabled) (4077 flops enabled)

Figure 3.15: Flop distribution effect of instruction-driven slicing on l.add and
l.lw in the PUMA RTL.

[91] process, a 0.18µm generic process technology, to estimate the power dissipa-

tion.
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Component Unsliced 1-sliced 4-sliced 10-sliced
Power (mW) 396 375.75 369.5 351.25
Delay (ns) 2.47 2.51 2.63 2.87

Area (mm2) 15.26 15.37 15.59 15.93

Figure 3.16: Time delay and Area estimate for the PUMA RTL.

(a) Power gain vs. Increased delay

(b) Power-Delay product

Figure 3.17: Power vs. Delay for the PUMA-RTL.
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(a) Power gain vs. Increased area

(b) Power-Area product

Figure 3.18: Power vs. Area for the PUMA-RTL.

3.5.2 Results for PUMA-RTL

We used our tool-chain to test our methodology on this processor. The RTL

annotations were automatically generated and added to the PUMA RTL in this ex-

periment. The results are shown in Figure 3.12. It is important to note that these

numbers are on models of the processor, and were not originally designed to be
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power-efficient. The key result therefore, is the percentage improvement in power

dissipation. The results are summarized in Figure 3.14. As with the OR1200 case,

we also show results of turning off the default clock-gating provided by Synopsys

Power Compiler in Figure 3.13. Instruction-driven slicing power gains are very

similar even when the auto-power reduction mechanism of the measuring tool is

turned off.

We also synthesized our design and ran it through a place-and-route tool [26],

both before and after the slicing. The design contained 6244 flops before slicing. In

the unsliced version, all 6244 enables are treated as ON, as shown in Figure 3.15(a).

After instruction-driven slicing on add, 2813 flops are disabled during the course

of execution of the add. Figure 3.15(b) shows the flop distribution after slicing on

the add instruction. The parts of the chip that are lit are all the enables on the flops

which are on during the execution of the add. In the unsliced layout, the entire

chip is on, as opposed to the sliced layout where we can clearly see the fine-grained

clock gating induced by our algorithm. Figure 3.15(d) shows the same comparison

for a load instruction (2167 flops are disabled in this case). The flop distribution

in Figure 3.15 is based on preliminary floor plan estimate, whereas, the number of

enables in each case is accurate.

We measured the change in timing and area induced by instruction-driven slic-

ing. Figure 3.16 tabulates the results. As expected, there is an increased cost of

area and delay (max delay along the critical path reported) because of the slicing.

Figure 3.17(a) shows the increase in delay with respect to decrease in power dissi-

pation, and Figure 3.17(b) shows the power-delay product. Based on these graphs
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we can make an informed decision on the extent of instruction-driven slicing to em-

ploy, depending on the extent of slack available in the timing and area constraints.

Similar results for area are shown in Figure 3.18.

Instruction-driven slicing has a larger detrimental effect on the timing rather than

the area. As we increase the number of instructions we are slicing on, the normal-

ized power-delay product initially decreases (for 1 and 4 instructions), but increases

for the 10-sliced case. The point of inflection indicates the limit at which the power

gains from slicing are overridden by the timing loss. However, the increase in area

is marginal and as shown in Figure 3.18, the power-area product just keeps decreas-

ing with more instructions. The over-approximation built into our slicing algorithm

is revealed in the non-monotonicity of these graphs.

3.5.3 Results for PUMA-ARCH

We ran the same benchmarks on our architectural model sim-puma. The re-

sults are shown in Figure 3.19. sim-puma absolute power dissipation estimations

were more than the RTL estimations. The percentage improvement observed was

also lesser than in the RTL model. We believe this behavior is a direct correlation

of how fine-grained the clock gating is. Also, since the architectural model is more

abstract than the RTL model, it is natural to expect lesser gains on the architectural

model. The results are summarized in Figure 3.20.

We have obtained positive results on the PUMA which is strictly a fixed point

unit. The gains would be predictably much larger in a processor which has two

floating point units, an on chip L2, etc. Also, PUMA, unlike OR1200, having
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SPECINT2000 Unsliced 1-Sliced %-age
Benchmarks Power Power Gain

Dissipation Dissipation
gcc 412.00 mW 396.00 mW 3.88%
gzip 411.00 mW 403.00 mW 1.95%
parser 443.00 mW 429.00 mW 3.16%
vortex 477.00 mW 456.00 mW 4.40%
Average 435.75 mW 421.00 mW 3.38%

SPECINT2000 Unsliced 4-Sliced %-age
Benchmarks Power Power Gain

Dissipation Dissipation
gcc 412.00 mW 396.00 mW 3.88%
gzip 411.00 mW 391.00 mW 4.87%
parser 443.00 mW 416.00 mW 6.09%
vortex 477.00 mW 447.00 mW 6.29%
Average 435.75 mW 412.50 mW 5.34%

SPECINT2000 Unsliced 10-Sliced %-age
Benchmarks Power Power Gain

Dissipation Dissipation
gcc 412.00 mW 379.00 mW 8.01%
gzip 411.00 mW 381.00 mW 7.30%
parser 443.00 mW 397.00 mW 10.38%
vortex 477.00 mW 429.00 mW 10.06%
Average 435.75 mW 396.50 mW 9.01%

Figure 3.19: PUMA-Arch Power dissipation results for SPECINT2000 benchmarks
after slicing on 1, 4 and 10 instructions.

multiple instructions in-flight on any given clock cycle also has less opportunity to

fully utilize our technique.
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Figure 3.20: PUMA-Arch Power gains for SPECINT2000 benchmarks.

3.6 Conclusions

In this chapter, we have proposed instruction-driven slicing, a new technique to

automatically annotate RTL for reducing power dissipation by switching activity.

We have implemented the instruction-driven slicing algorithm and have incorpo-

rated it into the design flow tool-chain. We have automatically sliced the RTL and

architectural models for OR1200, a pipelined implementation of the OpenRISC

instruction set architecture and for PUMA, a PowerPC dual-issue, out-of-order, su-

perscalar fixed point unit. We have used our tool-chain to test our methodology on

this processor and have obtained encouraging results.

Our algorithm is particularly suited for in-order pipelined processor designs. It

can be applied to out-of-order superscalar processors too. However the reduction in

power in the case of PUMA was expectedly substantially lesser than the OR1200

case since there might be multiple instructions in flight in any pipeline stage of the
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PUMA, thereby reducing the amount of logic we can actually shut off.

Although our algorithm is conservative, it automatically identifies a close-to op-

timal set of flops. Our instruction-driven slicing algorithm can be thought of as a

wrapper to implement more sophisticated methods of identifying flops which con-

trol the circuitry outside the slice.

All previous program slicing algorithms slice the program graph syntactically.

The key innovative idea in this technique which separates it from its priors is that it

computes a cone of semantic influence of an instruction. It is noteworthy that this

information is available only at the RTL and architectural level of description, but

is lost at the netlist level where most prior power optimization techniques reside.
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Chapter 4

Dedicated Rewriting: Correctness of Low Power
Transformations in RTL

4.1 Introduction

In this chapter we introduce a methodology for proving correctness of low power

transformations in RTL. Formal verification of digital hardware can be classified

broadly into two categories – state-space based techniques and deductive tech-

niques. State-space based techniques like model checking [64], BDD-based verifi-

cation [21], [22] etc., reason with the state space of the entire system at the Boolean

level. Although there have been dramatic improvements in model checking in re-

cent years with bounded model checking, Satisfiability-based techniques, design

space partitioning, hierarchical verification etc., the methods still remain intractable

to be applied to increasingly growing large low power designs of today’s SoCs. In

contrast, deductive verification techniques like theorem proving [67], [113], rewrit-

ing [65] etc., try to solve the verification problem by equational reasoning. Due to

the high computational complexity of the verification problem, computer aided ver-

ification methods are all partial or incomplete. In the case of automatic state-space

based methods, this incompleteness manifests as state-space explosion, leading to

practical time and space limitations. In the case of deductive methods that circum-

vent state space explosion and are size independent, the incompleteness manifests
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itself as a lower degree of automation, requiring manual intervention during the

verification process. Therefore, while state-space based approaches cannot handle

circuits of even reasonable sizes, deductive verification approaches involve a signif-

icant manual component. Despite their incompleteness, theorem provers are used

for verification of complex hardware systems due to their efficiency in handling real

designs, and the high degree of confidence they provide.

We present dedicated rewriting, a rewriting methodology to automatically prove

the correctness of low power transformations at the RT-level. We propose a highly

automated deductive verification technique which is fine-tuned for low power trans-

formations. We first describe our work in the context of arithmetic circuits [142]

and then extend it into time-domain and sequential circuits. We present a dedicated

low-power transformation prover, as opposed to a generic rewriting engine which

would involve considerable user interaction. We prove the equivalence of two Ver-

ilog RTL designs, one derived from the other after the application of a low power

transformation. Our notion of equivalence is defined with respect to an observable.

An observable is a variable in the Verilog RTL at a particular time, that, by speci-

fication, is expected to have the same function in both RTLs, at possibly different

times. The inputs to our system are the two RTLs and a set of observables.

The computation model in our technique involves Term Rewriting Systems (TRSs)

[68]. A TRS is defined as a tuple of terms and rules. Our technique starts by au-

tomatically deriving a TRS from a given Verilog RTL. The variables in the Verilog

RTL form the terms of the TRS. The rules of the TRS represent the hardware de-

sign and are both time-preserving and atomic. The time-preserving nature of the
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rules guarantees that both explicit and implicit timing dependencies in Verilog RTL

are captured in the rules. Essentially, this means that a given variable at different

times is treated as separate terms, with the corresponding time annotation. Atomic

transactions ensure that a given rule is executed in its entirety without interruption

or conflict with rest of the system. We derive TRSs from both Verilog RTLs, be-

fore and after applying the low power transformation. We have defined a notion

of equivalence of two TRSs with respect to an observable (a term in both TRSs).

We now proceed to prove the equivalence of the two TRSs with respect to the ob-

servable. In the process we create a dedicated database of low power transformation

rules. If a proof cannot be established, then we either add a new rule to the database,

or we have found a bug. This process is repeated for all observables.

We present the result of our technique on different low power transformations

applied to a Verilog RTL implementation of Viterbi decoder [150] module that is a

part of the Digital Radio Mondiale (DRM) SoC [2]. The main contributions of this

work are the following.

• We present a methodology to automatically verify correctness of applying a

low power transformation on existing hardware, thereby drastically reducing

design cycle time.

• We present dedicated rewriting, an automatic and dedicated prover for low

power transformations in RTL. There is minimum overhead of providing en-

vironment and additional lemmas as opposed to a general purpose rewriting

engine.
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• We present a novel notion of capturing the functional and timing description

of RTL in the form of atomic transactions called rules.

• We define and use a novel notion of decomposed TRS equivalence.

• We have created a dedicated database of low power transformation rules.

• We leverage the expressive power and relative simplicity of high-level designs

by reasoning entirely at that level.

• We demonstrate our technique by proving the correctness of multiple low

power transformations on a real life SoC RTL.

Term Rewriting Systems have been used in the past for program verification

[8], [9], [46]. In the context of hardware, rewriting strategies have been used in the

past to design correct circuits [57],[115],[114],[13]. Term Rewriting Systems were

first proposed for hardware verification in [28]. Subsequently, they have been used

for checking functional correctness of hardware [158], [92]. More recently, a Sys-

tem Verilog based rewriting system for RTL abstractions was introduced by [54]

in the context of Pentium processor. We presented a previous version of dedicated

rewriting, in the context of automatic verification of combinational arithmetic cir-

cuits [142]. This work is a more generalized version in a completely different hard-

ware context of low power transformations at the RT-level.

We explain our notion of rules in full detail in Section 4.2. Section 4.3 describes

our dedicated rewriting methodology. In Section 4.4 we present dedicated rewriting

as applied to multiplier verification. In Section 4.5 we present a case study of using
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our technique on multiple low power transformations on the Viterbi decoder. We

discuss the merits of our technique and conclude in Section 4.6.

4.2 Rules

We briefly review several definitions and concepts about term rewriting in Fig-

ure 4.1 and Figure 4.2. See [68], [39] for a detailed treatment of Term Rewriting

Systems.

1. A Term Rewriting System (TRS) is defined as a tuple 〈S,R, S0〉,
where S is a set of terms, R is a set of rewriting rules, and S0 is the
set of initial terms (S0 ∈ S).

2. The state of a system is represented as a TRS term, while the state
transitions are represented as TRS rules.

3. The general structure of rewriting rules as an ordered pair of terms
is as follows:

Rule: s1 −→ s2 if p(s1)

where s1 and s2 are terms and p is a predicate.

4. If s1, s2 ∈ S, and α ∈ R, then s1
α−→ s2 denotes that the term s1

can be rewritten to term s2 by the rule α.

5. If the left-hand-side pattern of a rule matches a term or one of its
sub-terms, and the corresponding predicate of the rule is true, then
the rule can be used to rewrite the term. The new term is generated
in accordance with the rule’s right-hand side. If several rules apply,
then any one of them can be applied. If no rule applies, the term
cannot be rewritten any further and is said to be in normal form.

Figure 4.1: Term Rewriting Systems: Definitions and concept
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6. We say term s1 can be rewritten to s2 in zero or more rewriting
steps (s1−→−→ s2), if s1 = s2, or there exists a term s3 such that, s1
−→ s3 and s3−→−→ s2.

7. A term s is legal if there exists s0 ∈ S0 such that s0−→−→ s.

8. A TRS is terminating if there are no infinite rewrite sequences
s1 → s2 → . . ..

9. A TRS is confluent if, for any term s1, if s1−→−→ s2 and s1−→−→ s3,
then there exists a term s4 such that s2−→−→ s4 and s3−→−→ s4, i.e.,
any divergence in rewriting is eventually joined.

10. A normal form is a term which cannot be rewritten any further.

11. A TRS is strongly terminating if, for any term, it can always be
rewritten to a normal form using any rewriting strategy.

12. Termination ensures the existence of normal forms, while conflu-
ence ensures their uniqueness.

Figure 4.2: Term Rewriting Systems: Definitions and concept (continued)

Applying a rule is also called executing or firing. When a rule is applied, the state

on the left-hand-side is read at the beginning of the clock cycle and updated at the

end of the clock cycle. This single cycle notion automatically enforces the atomicity

constraint of each rule. All enabled rules fire in parallel (or in no particular order).

If two rules modify the same state element, then we have a race condition. We

expect the Verilog RTL to be race-free and combinational-loop-free at the input.

This is an easy constraint to impose on the input Verilog, since it can checked by

standard Verilog linting tools.

We have two kinds of rules within our system, structural rules and logical rules.
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// Instruction selection in load/store unit
assign lsu op next = lsu op;

always @(posedge clk or posedge rst) begin
case (id insn[31:26])

‘OR1200 OR32 SB: lsu op <= lsu preop SB;
‘OR1200 OR32 SW: lsu op <= lsu preop SW;
‘OR1200 OR32 LBZ: lsu op <= lsu preop LBZ;
‘OR1200 OR32 LWZ: lsu op <= lsu preop LWZ;
default: begin lsu op <= ‘OR1200 LSUOP NOP;

endcase
end
(a) Example Verilog RTL code assigning lsu op.

// Instruction selection in load/store unit
Rule1: lsu op next(t) −→ lsu op(t)

if (T)
Rule2: lsu op(t) −→ lsu preop SB(t-1)

if ( (id insn[31:26](t) == ‘OR1200 OR32 SB)
and (posedge clk or posedge rst) )

Rule3: lsu op(t) −→ lsu preop SW(t-1)
if ( (id insn[31:26](t) == ‘OR1200 OR32 SB)

and (posedge clk or posedge rst) )
Rule4: lsu op(t) −→ lsu preop LBZ(t-1)

if ( (id insn[31:26](t) == ‘OR1200 OR32 SB)
and (posedge clk or posedge rst) )

Rule5: lsu op(t) −→ lsu preop LWZ(t-1)
if ( (id insn[31:26](t) == ‘OR1200 OR32 SB)

and (posedge clk or posedge rst) )
Rule6: lsu op(t) −→ ‘OR1200 LSUOP NOP

if ( (id insn[31:26](t) != (‘OR1200 OR32 SB
or ‘OR1200 OR32 SW or ‘OR1200 OR32 LBZ
or ‘OR1200 OR32 LWZ))

and (posedge clk or posedge rst) )
(b) Rules derived from the Verilog RTL code.

Figure 4.3: Sample Verilog RTL and the TRS Rules derived from it.
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input clk;
input pgate signal;

always @(posedge clk) begin
case (sw)
0: butterfly 1 = fifo[11:8] + gsm[23:20];
1: butterfly 1 = fifo[7:4] + gsm[19:16];
default: butterfly 1 = fifo[3:0] + gsm[15:12];

endcase
end

(a) Pre-transformation Verilog RTL.

input clk;
input pgate signal;
assign gated clk = clk & ∼pgate signal;
always @(posedge gated clk) begin
if (c3 state) butterfly 1 = fifo[3:0] + gsm[15:12];
else
case (sw)
0: butterfly 1 = fifo[11:8] + gsm[23:20];
1: butterfly 1 = fifo[7:4] + gsm[19:16];
default: butterfly 1 = fifo[3:0] + gsm[15:12];

endcase
end

(b) Post-transformation Verilog RTL.

Figure 4.4: Clock gating for lower switching activity power dissipation (Verilog
RTL).

Structural rules are timing preserving atomic transactions representing a state up-

date in hardware. These are derived directly from the Verilog RTL. Logical rules

represent identities about the RTL operators and carry information about the low
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power transformations. We explain these further in the next two subsections.

4.2.1 Structural Rules

Consider the example in Figure 4.3. Verilog RTL for a module that is selecting

an instruction in the load/store unit of a microprocessor is shown in Figure 4.3(a).

When we derive the TRS from the Verilog RTL, we arrive at the structural rules as

shown in Figure 4.3(b). The structural rules are a syntactic translation with timing

information at the same level of abstraction as the Verilog RTL. The resulting set

of rules can now be used to compute the symbolic term of any signal at a particular

time t in terms of other signals at different times k, k < t and/or primary inputs.

Each hierarchical signal in Verilog is represented by a new function symbol (sig-

nal function), thereby creating a “flattened” TRS. Structural rewrite rules rewrite

each signal function into an expression consisting of RTL operators and other sig-

nal functions. The cycle-accuracy of the RTL semantics is maintained in the TRS

by each signal function being a function of time t. The notion of time is relative. A

combinational logic assignment in the Verilog is a rewrite rule with all terms being

a function of the same time t (the rule Rule1 in Figure 4.3(b)). Whereas, a sequen-

tial logic assignment in the Verilog is a rewrite rule with the assigned term being a

function of time t and all other terms relatively 1 cycle before the assigned term, as

a function of time (t− 1) (rules Rule2 through Rule5 in Figure 4.3(b)).
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Rule: butterfly 1(t) −→
fifo[11:8](t-1) + gsm[23:20](t-1)

if (sw(t-1) == 0) and (posedge clk(t-1))
Rule: butterfly 1(t) −→

fifo[7:4](t-1) + gsm[19:16](t-1)
if (sw(t-1) == 1) and (posedge clk(t-1))

Rule: butterfly 1(t) −→
fifo[3:0](t-1) + gsm[15:12](t-1)

if ((sw(t-1)!=0) and (sw(t-1)!=1))
and (posedge clk(t-1))

(a) Pre-transformation TRS Rules.

Rule: gated clk(t) −→
(clk(t) & ∼pgate signal(t))

if (T)
Rule: butterfly 1(t) −→

fifo[3:0](t-1) + gsm[15:12](t-1)
if (c3 state(t-1)==T)

Rule: butterfly 1(t) −→
fifo[11:8](t-1) + gsm[23:20](t-1)

if (sw(t-1)==0) and (c3 state(t-1)!=T)
and (posedge gated clk(t-1))

Rule: butterfly 1(t) −→
fifo[7:4](t-1) + gsm[19:16](t-1)

if (sw(t-1)==1) and (c3 state(t-1)!=T)
and (posedge gated clk(t-1))

Rule: butterfly 1(t) −→
fifo[3:0](t-1) + gsm[15:12](t-1)

if ((sw(t-1)!=0) and (sw(t-1)!=1))
and (c3 state(t-1)!=T)
and (posedge gated clk(t-1))

(b) Post-transformation TRS Rules.

Figure 4.5: Clock gating for lower switching activity power dissipation (after trans-
lation to TRS).
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Rule: ( x & x ) −→ ( x ) if (T)
Rule: ( x & (y & z) ) −→ ( ( x & y) & z) if (T)
Rule: ( (x << 1) - x ) −→ ( x ) if (T)
Rule: ( x + y ) −→ ( y + x ) if (T)
Rule: ( x << 1 ) −→ ( x * 2 ) if (T)
Rule: ( x | T ) −→ ( T ) if (T)
Rule: ( (x << 2) - x ) −→ ( x * 3 ) if (T)

Figure 4.6: Sample logical rules in the dedicated rule database.

4.2.2 Logical Rules

The logical rules codify identities about RTL operators and various low power

transformations. This is an independent database that is part of our dedicated rewrit-

ing system. These rules can be generic or low power transformation specific. Some

examples of the generic rules in this database are shown in Figure 4.6.

Generic rules define RTL operator identities and are helpful in simplification of

terms during the equivalence proof. We also do not restrict the level of abstraction

of the input RTL. This structure in our system allows us to, for example, use a new

(or non-synthesizable) RTL operator in the input Verilogs, and define the identities

of that operator within this rule database to allow for simplification during the proof

process. Typically, the predicate function of these generic logical rules is always

true (T). This also allows for using abstract (uninterpreted) functions in the RTL,

while the interpretation can be formulated in the form of logical rules within the

database.

The low power transformation specific rules define the identities associated with

the transformation. These will be different for each transformation. However, these
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are independent of the RTL on which the transformation will be applied, and as

such need to be incorporated as part of this database exactly once, for each trans-

formation.

Consider the clock gating example in Figure 4.4 and Figure 4.5. It shows the

Verilog RTL and the derived TRS rules before and after the application of the trans-

formation to achieve lower switching activity power dissipation. In the above ex-

ample, the transformation creates a new clock gated by the signal pgate signal.

As shown in Figure 4.5(b) two new rules corresponding to the creation of the gated

clock are added to the list of rules. In this example, apart from these structural rules,

two transformation specific rules are added to the logical rule database:

• An external assumption when to enable power clock gating decides the value

of the signal pgate signal. The enabling assumption needs to be codified

into the transformation specific rules database as follows:

Rule: ( pgate signal ) −→ T if (T)

If we were to run our proof with power clock gating disabled, then we would

add the corresponding rule.

• The algorithm of power gating has the hardware assume a special state (c3 state)

when the transformation is enabled. This information is captured in a trans-

formation specific rule as follows: corresponding to which is
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Rule: ( c3 state ) −→ T if (pgate signal==T)

Assumptions of this nature which are very specific to the low power trans-

formation need to be specially encoded as rules in order to assist the proof

system.

Rules are powerful representations of always blocks. The active rules, where

the guards are true, can be applied in parallel, but each rule operates as an atomic

transaction, i.e., each rule observes and ensures a consistent state relative to all other

rules in the system.

4.3 Dedicated Rewriting

We propose a refinement based rewriting methodology to automatically generate

proofs for low power transformations in RTL. Figure 4.7 gives a flow chart repre-

sentation of our proof methodology.

The input to the system are two RTLs, an original RTL and a transformed RTL

(after the application of the low power transformation), and a set of observables.

The proof methodology works in three primary steps. First, we derive the structural

rules of the TRS from the Verilog RTL for both models. Next, we execute the

rules to derive expressions for all observables in each model. This is guaranteed

to complete since the terms represent Verilog variables of finite width. Finally, for

each observable, we go through an iterative, mostly automated proof process. These

are labeled as stages 1, 2, and 3 in Figure 4.7. Figure 4.8 gives the algorithm for
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Figure 4.7: Dedicated rewriting proof system flow chart.

the dedicated rewriting procedure. We describe the procedure stage by stage by

elaborating on the functions involved in each stage in the rest of this section.

4.3.1 derive (): Verilog RTL to TRS rules

This function translates Verilog RTL to TRS rules. As we described in Sec-

tion 4.2, rules are atomic transactions carrying timing information. The derive ()

function will generate the structural rules of the TRS. We have fully automated this

translation process. Examples of this automated translation in different contexts are

shown in Figure 4.3 and Figure 4.5. We had described a Verilog RTL to TRS trans-

lation in our previous work on automatic verification of arithmetic circuits [142].

90



This function is an extension of that process, with the primary difference being the

notion of time annotation in the current process. Combinational logic statements in

the RTL get translated to rules with all terms at the same relative time t, whereas,

sequential logic statements get translated to different relative times. We do this

translation on both models.

The fully automatic nature of this translation allows us to use our methodology

on any existing Verilog RTL design. This is particularly useful in the context of

verification of low power transformations since most of these transformations tend

to be RTL changes late in the design stage in order meet the power requirements of

the landing zone.

4.3.2 execute (): TRS rules to expressions

This function computes the expression of a particular observable by rewriting the

structural TRS rules. The process of rewriting is based on firing the rules that are

ready to fire. If more than one rule can fire at any given time (clock cycle), then all

the rules fire in no particular order. Since our rules are strictly atomic transactions

this maintains the correctness of the Verilog semantics. At the end of this process,

we have essentially computed the symbolic expression of the observable. We do

this in tandem on both models for each observable in the input set of observables.

The next subsection explains how the equivalence of the two expressions in the two

models, for each observable is proved. Every such point where the two expressions

are proved equivalent (can be at different times in each model) is called a Compare

point.
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Our compare points are defined as co-ordinates on the space-time axis of the

design, denoted by their relative position with respect to the time domain (clock

cycles), and their position in the space domain (data variables). This aligns with the

sequential behavior of the designs being compared, and provides an easy, intuitive

abstraction of the equivalence checking problem space.

Depending on the design we are working with, these expressions can be arbitrar-

ily large, thereby making the equivalence proof arbitrarily hard. In order to mitigate

that problem, we use some heuristics to reduce the complexity of the expressions.

One heuristic we have successfully used in the context of arithmetic circuits is a

bit-wise partitioning of assignments to a particular RTL signal. If we have match-

ing bit partitions aligned in both models, then the expression corresponding to that

bit partition is treated as the basis for the equivalence proof between the models.

We have employed this heuristic with great success in the context of arithmetic

circuits [142], and we detail the heuristic here.

4.3.2.1 Reassignments

If all the bits of an observable variable are assigned together (in one time step)

in a model, the variable is included in the list of observables as it is. However, if

the bits of the variable are assigned separately (in different time steps), there will

be more than one observable, corresponding to the same variable. We clarify this

with an example.

Consider an example from the universe of arithmetic circuits, a 32-bit multi-

plier that we would like to verify, which has mul result[31:0] as an output,
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and therefore an observable. If the multiplier RTL model has only one assignment

statement assigning the entire value mul result[31:0], then there will be a

single observable, namely, mul result added to the list of observables.

Assume the multiplier’s RTL is modeled such that 8 bits of the output are as-

signed a value together, i.e at the same time. All the 32 bits of the output are,

therefore, assigned values after 4 such assignments. Each assignment generates

an observable for mul result. Hence, there will be 4 observables that cor-

respond to mul result[7:0], mul result[15:8], mul result[23:16],

and mul result[31:24].

Every subset of bits assigned, therefore, has a corresponding observable . We call

such assignments (to different subsets of bits of the same variable), reassignments,

as in [142]. Thus, a reassignment for a variable defines a partition of the bits for

the variable. In our example, the 4 reassignments define the partition {[31:24],

[23:16], [15:8], [7:0]} on the 32 bits of the output signal mul result.

In order to illustrate the reassignment process, let us now assume the specifica-

tion for the multiplier is modeled as a shift-and-add design which has spec mul result

as an output variable . This model assigns a value to the output 1 bit at a time.

Therefore, in the specification model, there will be 32 reassignments defining the

partition {31,30, . . .2,1,0} on the bits of the signal spec mul result.

Observables are computed for every major variable in our design as follows:

1. The reassignment bit partitions in the design are computed. In our exam-

ple, the original design partition is {31,30, . . .2,1,0} and the transformed
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design partition is {[31:24], [23:16], [15:8], [7:0]}.

2. A new variable is defined for every set of bits in the pairwise intersection of

these two partitions. In our example, the pairwise intersection groups entries

of the original partition together. The new observables will be mS1, mS2,

mS3, and mS4 corresponding to the bit sets {7,6,. . .1,0}, {15,14,. . .9,8},

{23,22,. . .17,16}, and {31,30,. . .25,24} respectively. The new vari-

ables in the transformed design will be mV1, mV2, mV3, and mV4 corre-

sponding to the bit sets {[7:0], [15:8], [23:16], [31:24]} respec-

tively.

3. The new observables obtained are mapped to establish their correspondence,

and added to the list of observables. In our example, the variables spec mul result

and mul result are mapped into four pairs of observables, namely, {(mS1,

mV1), (mS2, mV2), (mS3, mV3), (mS4, mV4)}.

We thus compute a partition of the bits for a particular output defined by the re-

assignments in both original and transformed models. This is a simple heuristic that

appears to work well for models with common outputs and possibly some common

internal points.

Our execute() procedure is also completely automated and includes the above

decomposition heuristic. We have structured our methodology such that it can ac-

commodate any decomposition strategy. Our tool is designed such that we can

easily and seamlessly incorporate any library of decomposition heuristics in our

routine that calculates expressions by rewriting structural rules.
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Algorithm Dedicated Rewriting.

main (Vo: Original RTL model, Vp: Transformed RTL model,
O: Set of observables, DRdb: dedicated rule database)

begin
proved = T
To = derive (Vo)
Tp = derive (Vp)
for every observable o ∈ O
begin
{〈expr1, expr2〉} = execute (To, Tp, o)

end
for every pair of expressions 〈expr1, expr2〉
begin

proved = proved && (prove(expr1, expr2, DRdb))
end
return (proved)

end

prove (expr1: Original expression, expr2: Transformed expression,
DRdb: dedicated rule database)

begin
do
begin

out = dedicated rewrite (expr1, expr2, DRdb)
if (out == T) return (T)
else
begin

true error = analyze ()
if (true error == T)

return (counter example)
else

generate and add (DRdb)
end

end
while (out==F && true error==F)

end

Figure 4.8: Dedicated rewriting algorithm
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4.3.3 prove (): Equivalence of expressions

In this function we check the equivalence of two expressions by rewriting based

on simplification using the logical rules from the dedicated rule database. As de-

scribed in Subsection 4.2.2 these logical rules codify various identities about RTL

operators, as well as rules specific to the low power transformation.

These rules can be generic or design specific or transformation specific. While

trying to prove the equivalence of two expressions, we select the set of rules ready

to fire from the rule database and apply them in some arbitrary order. If the result-

ing simplifications fail to establish the equivalence, then the rules are applied in a

different order. These proof iterations continue until equivalence is established or

no more rules can be applied in any order. This step is executed in the function

dedicated rewrite ().

This function is repeated for every compare point, and if the expressions at every

compare point turn out equivalent, then the two designs are declared equal.

When two designs are declared unequal by this technique, the eponymous func-

tion analyze () analyzes the result for each output expression and discovers one of

two possibilities. In the first case, the two designs are truly not equal, in which

case we have caught a “bug” in the transformation. In this case, our technique

provides a detailed proof trace and also picks a counterexample starting from the

inputs at specific times. In the second case, we may not have been able to establish

the equivalence due to insufficient rules in the dedicated rule database. In this case

we allow for user intervention to create and add the required rules to the database
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(this is handled in the function generate and add ()), and the entire process can be

repeated again. One other possibility is that our previously added rule could be

wrong, and this step allows for fixing that as well, although it does not prevent false

positives due to wrong rules. The shaded part of Figure 4.7 describes this process.

This entire process is repeated for every pair of expressions that need to be proved

equivalent.

Figure 4.8 gives the full algorithm for the dedicated rewriting process we de-

scribed in this section. Once we establish the equivalence of two TRSs with respect

to a given set of observables, in effect, we have proved the correctness of the low

power transformation which created the transformed RTL from the original RTL.

In this process, we have established the logical transformation specific rewrite rules

as part of our dedicated rule database. Therefore, all further proofs of application

of the same transformation on any other RTL design should be possible with mini-

mal user intervention or changes to the dedicated database. This is what separates

dedicated rewriting from a general purpose rewriting engine or a theorem prover,

and makes the technique a highly automatable approach.

4.3.4 Our notion of equivalence

Many notions of sequential equivalence have been proposed in the literature.

Most of them adhere to the broad classification of equivalence with respect to a set

of initial states [136],[71] or alignability equivalence that can demonstrate resetabil-

ity across all states [101]. All these notions of sequential equivalence are at the gate

level, and deal with retiming and synthesis based optimizations. They also build the
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state-transition relation in order to reason about sequential equivalence. Although

we are dealing with a different level of abstraction, our notion of equivalence is

more along the lines of [136] than the alignability notion of equivalence. We state

our theories of correctness with respect to a set of initial states. This paradigm has

higher scalability [48], due to the potential leveraging of many existing algorithms.

Since we perceive our technique to act synergistically with the existing Boolean

level algorithms, we prefer to use this notion of equivalence.

4.3.5 Error Detection

An inherent limitation of selecting observables is that the information about the

cycle of comparison is obtained from the RTL implementation model itself. The

state-transition graph or the simulation of the RTL provide accurate information

about the time at which an observable is available for comparison according to

the design. Since our technique attempts to capture the design progression in time

as well as in data space, we present a brief discussion about the functional and

temporal error scenarios in our domain, and how our technique performs in these

scenarios.

There are four possible outcomes of the prove() function in Figure 4.8 when

comparing the two expressions of an observable at any compare point C = (t, v),

such that t is the time at which the observable v is computed in the RTL model.

• Functionally and temporally correct.

In this case, prove() returns true, t is the correct cycle of computation, and t

is the time of comparison. This is the case when the algorithm will return a
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true value. This means that the symbolic function of v in the both the RTLs

is equivalent, as well as compared at the right time.

• Functionally incorrect and temporally correct.

In this case, prove() returns false, t is the correct cycle of computation and

t is the time of comparison. This is the case when the algorithm will return

a false value. This means that the symbolic function of v in the transformed

design does not match with the function in the original design. This scenario

is detected by our technique. An error trace is provided between the past

compare point and the current compare point. This scenario could also be

indicative of inadequate logical rules. That part of the process is taken care

of in the analyze() and generate and add() functions.

• Functionally incorrect and temporally incorrect.

In this case, the prove() procedure returns a false, t is not the correct cycle of

computation, and t is the time of comparison. Incorrect cycle of computation

refers to a time when temporally the data is not yet stable. The algorithm

now provides a functional error trace, but not a temporal error trace. In other

words, there is a possibility of obtaining false negatives in this scenario, since

a mismatch does not indicate if there is an error in the functionality or timing.

Again, the functional incorrectness could be indicative of inadequate logical

rules.

• Functionally correct and temporally incorrect.

In this case, the prove() procedure returns a true, t is not the correct cycle
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of computation, and t is the time of comparison. If the design is flawed

with respect to time of computation, and if the comparison point is not at the

“flawed” cycle, but another cycle, the designs will not match in functionality.

However, in the case where the design itself has a timing bug, and we check

at the (incorrect) cycle that the design computes its (correct) data, we will not

be able to find the bug, and it can result in a false positive. This situation

cannot be avoided, due to the inherent limitation of a sequential equivalence

technique that uses the timing information from the implementation itself.

However, in the case where the specification details the timing, or we have

an external timing specification (supposedly reliable), this rare case of errors

can be avoided.

4.4 Dedicated Rewriting for Combinational Equivalence Check-
ing: Multiplier Verification

We used an earlier version of dedicated rewriting in the context of arithmetic

circuit verification, and proved the correctness of complicated multipliers at the

RT-level. Our technique retains the efficiency and the size independence of de-

ductive verification techniques, while sacrificing automation minimally. Arithmetic

circuits have sufficient structural regularity to afford analysis by functional decom-

position and are, therefore, ideal candidates for our verification by stepwise refine-

ment [142].

We use a simple Shift-and-Add multiplier as the original design for multipliers.

We present the experimental results that we have obtained from our tool. We pro-
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duce three sets of results, on a radix 3 Booth multiplier, on a Wallace Tree multiplier

and on a Dadda Tree multiplier. The Booth multiplier is an array-based multiplier,

whereas the Wallace multiplier has a tree of carry save adders and a single carry

lookahead adder as the last stage. The Dadda Tree multiplier uses the more regular

redundant binary addition trees [124] instead of a tree of CSAs. The comparisons

are made after the computation of 3 output bits at a time. We show the time taken

by the tool for increasing sizes of these multipliers.

We have tried to compare our tool to state-of-the-art equivalence checkers. Since

the equivalence checkers are most efficient when comparing two gate level designs,

we provided gate level implementations of the Booth and Wallace Tree designs as

inputs. Although our tool works at the RT level, we have compared the numbers

obtained from the gate level verification by the equivalence checkers with our tool

output, in order to provide a basis for comparison. It is seen from Figure 4.9(a), Fig-

ure 4.9(b) and Figure 4.9(c) that the verification of 8X8 multipliers are performed

by both Commercial Equivalence Checker 1 and Commercial Equivalence Checker

2 in time comparable to our tool. However, in the case of 16× 16 multipliers, both

the equivalence checkers do not run to completion. Our tool, in comparison, veri-

fies the design in 24 seconds. It can also be seen that as the sizes increase, the time

taken by our tool scales linearly with the size of the design.

We mentioned in Subsection 4.3.3 that the prove() function proves term equiva-

lence using proof iterations. Figure 4.10 shows the number of proof iterations that

the tool required to prove the equivalence of the 64× 64 multipliers at two sample

compare points. The proof iterations for the Booth multiplier at (sample) compare
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Booth Dedicated Commercial Commercial
Multiplier Rewriting Tool 1 Tool 2
4b× 4b 16s 12s 9s
8b× 8b 19s 20s 16s
16b× 16b 24s not completed not completed
32b× 32b 37s not completed not completed
64b× 64b 53s - -
128b× 128b 93s - -

(a) Booth Multiplier

Wallace Dedicated Commercial Commercial
Multiplier Rewriting Tool 1 Tool 2
4b× 4b 14s 10s 9s
8b× 8b 18s 18s 16s
16b× 16b 25s not completed not completed
32b× 32b 40s not completed not completed
64b× 64b 60s - -

(b) Wallace Tree Multiplier

Dadda Tree Dedicated Commercial Commercial
Multiplier Rewriting Tool 1 Tool 2
4b× 4b 13s 11s 8s
8b× 8b 17s 19s 17s
16b× 16b 29s not completed not completed
32b× 32b 51s not completed not completed
64b× 64b 83s - -

(c) Dadda Tree Multiplier

Figure 4.9: Comparison of execution times of Dedicated Rewriting against two
commercial equivalence checkers for Booth, Wallace Tree and Dadda Tree multi-
pliers of varying sizes. In each case the golden model was a shift and add multiplier
of the corresponding size.

points 3 and 21 and the Wallace Tree multiplier at compare points 3 and 7 have

been illustrated. We observe that the proof iterations do not increase significantly

as the proof progresses, i.e with increasing comparison points. We also observe that
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Multiplier Compare point Number Number of
of rules proof iterations

Booth 3 107 192
Booth 21 107 212
Wallace Tree 3 107 347
Wallace Tree 7 107 291
Dadda Tree 3 107 462
Dadda Tree 7 107 341

Figure 4.10: Number of proof iterations done by reduce() to prove equivalence at
the given compare points. The numbers correspond to the 64 × 64 Booth, Wallace
Tree, and Dadda Tree multiplier designs.

the number of compare points for the Wallace Tree are lesser than the Booth. This

is because of the tree of carry save adders in the Wallace Tree design which delays

assignment to the final output bits. Therefore, the terms are larger and the effect of

this is seen in the increased number of proof iterations for the Wallace Tree than for

the Booth multiplier.

Traditional combinational equivalence checkers routinely face the issue of not

being able to reliably conclude that two designs are not equivalent. This is the

problem of false negatives. In order to mitigate the verification complexity, equiva-

lence checkers perform hierarchical verification that comprises isolated verification

of each hierarchical block, under the assumption that exact functional equivalence

at hierarchical boundaries is preserved. False negatives occur in such hierarchical

verification when either (a) functional equivalence at hierarchical boundaries is not

preserved, or (b) when the block of design is functionally equivalent only when is

constrained by the environment, not with unconstrained variables as viewed by the
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hierarchical verification process [6]. These issues are circumvented by our tech-

nique, since we “flatten” the hierarchy during translation of the design from Verilog

to TRS.

Another noteworthy difference between our technique and traditional gate level

equivalence checkers is that we do not view each internal register as a comparison

point. Our comparison points are the assignments or reassignments to the output

signals of the design. Consequently, between arithmetic designs whose (output) size

and number of outputs are equivalent, a correspondence between the comparison

points in the two designs can always be expected.

We have extended this work in the context of sequential circuits and sequential

compare points [138], [140], [139] as described earlier in this chapter. The next

section details a larger case study using the Viterbi decoder which is a part of the

Digital Radio Mondiale SoC.

4.5 Case Study: Viterbi Decoder

We perform our experiments on a Viterbi decoder, that is a part of the Digital

Radio Mondiale (DRM), implemented in Verilog RTL. The initial Viterbi decoder

RTL is a basic model that implements the Viterbi decoding algorithm, but has no

optimizations for power, area, or performance. This is shown in Figure 4.11. On

this model, we perform certain low power transformations aimed at reducing the

switching activity power dissipation. These transformations do not cross register

boundaries. We then use our framework to prove that these transformations do not

affect the functionality of the original design.
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Figure 4.11: Basic Viterbi design.

Next, we use a more complicated Viterbi decoder design, also implemented in

Verilog RTL, but one optimized for lower power dissipation. In contrast to the

earlier transformations, this transformation crosses register boundaries. The new

design is as shown in Figure 4.12. The butterfly network in this design is now

pipelined into two stages. We estimate the power dissipation savings and also prove

the equivalence of the two sequential designs.

Finally, we use a third Viterbi decoder design, also implemented in Verilog RTL,

but optimized for a combination of power and timing. This is more realistic in to-

day’s industry where every functional unit block in the design has specific area,

power, and timing budgets, and all optimizations have to meet an optimal land-

ing zone satisfying all the three requirements. This new design is as shown in

Figure 4.13. Again, we prove the equivalence of the two sequential designs, the

optimized design and the original Viterbi design by dedicated rewriting.
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Figure 4.12: Viterbi design optimized for low power.

Figure 4.13: Viterbi design optimized for power and delay.
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4.5.1 Combinational low power transformations

Figure 4.11 shows the basic block diagram of a Viterbi decoder [150]. There are

two major stages to the functionality of the Viterbi decoder. One is collecting the

inputs depending on the Puncture Pattern and storing them in a buffer (FF Buffer).

The other stage is the Trellis computation. The next state values of the Trellis matrix

are computed by a function (Butterfly network) of current state values of the Trellis

matrix and the inputs stored in the FF Buffer.

We perform combinational low power optimization in the logic computing the

values of the Trellis matrix. The low power transformations performed included

common sub-expression elimination, movement of operations, constant propaga-

tion and commutativity and associativity based optimizations. All these optimiza-

tions were strictly between register boundaries of the design. Hence, the symbolic

terms at every comparison point were at the same relative times in both models. We

used the macro-modeling technique employed in [50] to estimate power at the RTL

level of abstraction. This method involved characterizing the power consumed by

the basic combinational blocks (macros) used in the design. We did the characteri-

zation for the all macros in the GetMatrixSet block of the Viterbi decoder design.

All our optimizations were also in the same block.

The table in Figure 4.14 shows the power estimation results for these optimiza-

tions. The first column in the table denotes the transformations used to optimize

the design. The entry “Nil” corresponds to the base design before optimization.

The power estimated (not include glitch power) after applying each transformation

sequentially is listed in the second column. This estimated power is only for the
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Optimizations used Estimated
power (mW)

Nil 143
Common sub-expression reduction-1 112
Common sub-expression reduction-2 105

Constant propagation 104
Commutative rearrangement 127
Associative rearrangement 121

Figure 4.14: Results of power estimation due to combinational logic low power
transformations in the Viterbi decoder. These estimates were based on the macro-
modeling technique employed by Gupta et al [50]. These estimates are only over
the trellis computation calculation function of the Viterbi decoder.

Design Configuration Estimated
power (mW)

Original Viterbi, clock delay=10ns 416.37
Transformed Viterbi, clock delay=10ns 354.33

Original Viterbi, clock delay=20ns 208.41
Transformed Viterbi, clock delay=20ns 177.17

Figure 4.15: Results of power estimation after sequential low power transforma-
tions in the Viterbi decoder.

GetMatrixSet block.

4.5.2 Sequential low-power optimizations

The sequential optimizations for low-power included clock-gating, some func-

tional gating, and reorganizing pipeline registers. The optimized design is shown

in Figure 4.12. The table in Figure 4.15 shows the power estimation before and

after the low-power transformation. These numbers were obtained by using the Ar-

tisan TSMC 0.18um library. The Verilog designs were synthesized using Synopsys
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Design Configuration Estimated
power (mW)

Original Viterbi, clock delay=10ns 416.37
Transformed Viterbi, clock delay=10ns 358.06

Original Viterbi, clock delay=20ns 208.41
Transformed Viterbi, clock delay=20ns 179.04

Figure 4.16: Results of power estimation after sequential optimization for low
power and timing in the Viterbi decoder.

Design Compiler and the power estimated using Synopsys Power Compiler. The

activity factors were kept as default, which is 1 per cycle for input signals and 2 per

cycle for clock signal. We show the power estimation numbers for a clock delay of

10ns and 20ns.

4.5.3 Optimizations for power and timing

These optimizations were similar to the sequential lower power optimizations

except that some aggressive power saving was sacrificed to lower the critical path

delay time of the design. The optimized design is shown in Figure 4.13. The power

estimation methodology was the same as in the case of the sequential optimizations

and the estimated dynamic power dissipation is very close to the previous case. The

table in Figure 4.16 shows the results.

4.5.4 Correctness of low power transformations on the Viterbi decoder

We start with the basic Viterbi decoder design, and three transformed designs,

and construct the equivalence proof of each of the three transformed designs against
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the basic design. In this subsection, we outline the proof of equivalence of the

sequential low power transformation using our technique. We have four observables

in this design:

• 8 FIFO entries, each 32-bits wide: FF[7:0][31:0]

• 64 Trellis Matrix entries, each 32-bits wide: TM[63:0][31:0]

• 2 entries in the MatDec, each 32-bits wide: MD[1:0][31:0]

• Decoded output, 32-bits wide: Out[31:0]

A pictorial representation of the proof of the first three observables is shown in

Figure 4.17. For the sake of readability, we denote the observables in the original

Viterbi design with a subscript o and the observables in the transformed design with

a subscript p. The horizontal axis represents the data (observables), and the vertical

axis shows the number of systems being compared (in our case, two). Time is

represented along the axis normal to the plane of the paper.

We outline the proof methodology using our technique. In accordance with our

algorithm in Figure 4.8 we follow the three stages. We first translate both designs

into TRSs. The execute() function is represented by the horizontal arrows in the

proof figure. We identify and obtain the expressions that need to be proved equiv-

alent for each observable. Next, we use the dedicated rule database, and prove the

equivalence of the expressions by rewriting. The vertical equivalence represents the

prove() function. We had to add several rules to the dedicated rule database while
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• • •

◦

•
≡

FFo[7](k+1)

FFp[7](k+8)

◦

•
≡

FFo[1](k+1)

FFp[1](k+8)

◦

•
≡

FFo[6](k+1)

FFp[6](k+8)

TRSo

TRSp

GetMetricSet

GetMetricSet

prove

◦

•
≡

FFo[0](k+1)

FFp[0](k+8)

TRSo

TRSp

GetMetricSet

GetMetricSet

prove

◦

•
≡

bmdo[63:0](k+2)

bmdp[63:0](k+9)

TRSo

TRSp

Butterfly stage1,2

Butterfly stage1,2

check equiv

◦

•
≡

btmo[63:0](k+2)TRSo

TRSp

Butterfly stage1,2

Butterfly stage1,2

check equiv

btmp[63:0](k+9)

◦

•
≡

MDo[1:0][31:0](k+3)

MDp[1:0][31:0](k+10)

◦

•
≡

TMo[63:0](k+3)

TMp[63:0](k+10)

Figure 4.17: Picturization of sequential equivalence checking of transformed TRSp
against the original TRSo of the Viterbi design. The first row is the proof of the FF
buffer (over 8 time cycles). The center row shows the proof of the Trellis Compu-
tation and the bottom row shows the proof of the MatDec Decision Table.

we proved the correctness of this transformation. Similarly, we derive correctness

proofs for the other transformations.

The first set of observables FF[7:0][31:0] is available after 8 cycles, at the output

of the FF Buffer. The first compare point, is therefore C1 = (t = 8, d = FF [7 :

0][31 : 0]).
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For each entry i in the FIFO buffer, the FIFO variables are FFo[i][31:0] and

FFp[i][31:0]. We call the execute() function at the compare point, and obtain the

expressions for the FF variables.

In both the designs, the FF Buffer gets updated by the function GetMetricSet().

Therefore, the symbolic expressions correspond to an expansion using this function.

The two symbolic expressions for FFo[i][31:0] and FFp[i][31:0] are checked by the

prove() function. This procedure is repeated 8 times, for every entry in the FF

Buffer, since each of them has a unique symbolic expression.

The next comparison point is obtained by stepping the two state machines of

the designs after the 8th cycle. The Verilog design assigns to the next observable

at the 10th cycle. The next observable is the Trellis Matrix, TM[63:0][31:0]. All

the entries in this 64 × 32 matrix need to be checked, since the entire table is up-

dated every 10th cycle. The values of the MatDec decision table, MD[1:0][31:0] is

also updated in this cycle, as is the decoded output, Out[31:0]. The intermediate

variable every 9th cycle, btm which is not an observable is shown in lower case in

Figure 4.17.

The second compare point, is therefore, C2 = (t = 10, d = TM [63 : 0][31 :

0],MD[1 : 0][31 : 0], Out[31 : 0]).

The Trellis Matrix table gets its values from the 32 butterfly blocks in the design,

each of which output 2 entries. The symbolic expression from the RTL, therefore,

is a function of the butterfly blocks. For every 2 entries in the Trellis Matrix, the

corresponding symbolic expression can be obtained from the butterfly. For instance,
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TMp[0], TMp[1] = Butterfly(TMp[0], TMp[2], FFp[0][31:0], FFp[7][31:0])

and likewise in the original design,

TMo[0], TMo[1] = Butterfly(TMo[0], TMo[2], FFo[0][31:0], FFo[7][31:0])

Since FFp[0] = FFo[0] from a previous comparison point C1, the symbolic ex-

pression for these signals are not expanded any further. The symbolic expressions

for TMp[0], TMp[1] and TMo[0], TMo[1] are checked for equivalence again with

the prove() function. This procedure is repeated 32 times, for every pair of entries

in the Trellis Metric that need to be checked.

The other observables MD[1:0][31:0] and Out[31:0] are similarly checked for

equivalence. The proof of Out[31:0] is not shown in the figure.

4.6 Discussion and Conclusions

We have presented dedicated rewriting, a novel technique for proving correctness

of low power transformations in RTL. Our technique uses Term Rewriting Systems

and decomposes the problem into smaller and tractable proofs. The deductive na-

ture of the rewriting system ensures that we do not encounter any size or capacity

issues that are common in an algorithmic sequential formal verification engine.

It is key to note that our conversion of RTL to rules is not changing the abstrac-

tion level of the design description, it is merely a sideways representation change.

Therefore the computational complexity of the general algorithm is still the same

as sequential equivalence. However, what makes our technique computationally

tractable is that the complexity of the verification problem which is size of the de-
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sign in model checking methods, in our system is converted into the problem of

incompleteness of the dedicated rule database. While this might lead to a highly

interactive system in the general case, restricting the rule database to low power

transformations, helps us leverage a higher degree of automation. Once the database

captures a transformation (in the form of rules), then those rules work for any RTL

and have high reuse value.

The primary advantage of this technique is that we reason with uninterpreted

operators and bit abstractions at the RT-level, which is decidedly a more abstract

(and therefore smaller) representation than reasoning at the gate-level. We have

previously presented a specialized rewriter for arithmetic circuits, and this work

largely generalizes the previous work in the context of low power transformations.

Given the cost of re-validating hardware systems in a traditional design cycle, an

automated technique of this nature is extremely desirable and can add immense

value to the hardware design cycle.
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Chapter 5

Holistic Power Management of SoCs using Dedicated
Rewriting

5.1 Introduction

In today’s systems, when SoCs are optimized for some applications and the op-

timizations are done in isolation without utilizing the knowledge of the workloads.

Due to lack of hardware/software cooperation in power management, the platform

as a whole cannot anticipate power requirements of the application ahead of time

and instead, has to perform power management reactively.

Currently, platform power management broadly falls under two categories. At

the one end are low power optimizations implemented by hardware designers like

transistor level [31], gate level [94] and RTL optimizations [145], clock and power

gating [151], optimizations to the processor pipeline, etc. These optimizations are

done quite independent of the rest of the platform components, and in most cases,

hardware is the best judge of what optimizations to use.

On the other end are the limited power management techniques that are available

for the operating system (O/S) and devices to control. This includes O/S control

of processor C-states and P-states and device power states [93], with standardized

interfaces like ACPI (Advanced Configuration and Power Interface [62]) that reg-
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Figure 5.1: Rule-based formal Power Specification and Management

ulate such state control based on the workload and configured policies. In recent

years, many platform level techniques for power management have emerged or-

ganically [14]. Both CPU and bus frequencies can be dynamically voltage- and

frequency-scaled [156]. A key component of such a system which makes it most

efficient as well as effective is the ability to control this dynamically, on-the-fly as

it were, during application execution on the device.

It is imperative that a holistic platform level dynamic power management system

be aware of (a) different power states supported by different components, both at

architectural and micro-architectural level; (b) current power consumption of the

platform as a whole, and at individual component level; (c) power requirements

of applications and workloads; and, (d) continuous feedback from the platform on

performance with respect to overall power constraints. The upshot of this is that we

need a system which allows a common way to specify constraints and communicate
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between them at different abstraction levels.

Figure 5.1 describes our system at a high level. We present a formal system to

specify power constraints and power intent at every level of design hierarchy and

abstraction. All specifications within this format are able to communicate with each

other, and our power constraint consistency checker will also flag any conflicting

constraints. Identifying a golden set of consistent power constraints is an iterative

process through the checker. The power constraints at each level of design hierarchy

captures the power intent along with any other constraints relevant at that level of

design. Together the power constraints at each subsystem level capture a holistic

power intent for the SoC.

We present a rewriting strategy and a Term Rewriting Systems based rule engine

for dynamic power management. Given a power intent specification, and a well de-

fined feedback from the system, our rewriting engine provides a way to dynamically

resolve the feedback constraints against the input constraints, and instruct actions

to the system for efficient power management.

The rest of the chapter is organized as follows. In Section 5.2 we define the

notion of rules as relevant to dynamic power management. In Section 5.3 we ex-

plain our power constraints consistency checker which guarantees a golden set of

consistent power rules. We give a detailed algorithm for dynamic power manage-

ment in Section 5.4. In Section 5.5 we explain our experiments of dynamic power

management on the state-of-the-art next generation Intel hand held device platform.
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structural rules [feedback]:
DB Util −→ get system feedback (fabric, Util%) if (∗) (1)
fb mem BW −→ get system feedback (memory, BW% ) if (∗) (2)
fb dev Util −→ get system feedback (soc , Util%) if (∗) (3)
...

structural rules [user specified]:
policy −→ performance if (∗) (4)
audio device state −→ less than (D0, 25%)

if ( policy = performance) (5)
soc device state −→ more than (S0ix, 80%)

if ( policy = performance) (6)
...

structural rules [actions]:
audio device state −→ ON if ( policy = performance) (7)
display device state −→ OFF if ( policy = performance) (8)
cpu device state −→ Pn if ( policy = performance) (9)
...

logical rules:
less than (x,y) −→ > if (xnumeric < ynumeric) (10)
less than (x,y) −→ ⊥ if (xnumeric ≥ ynumeric) (11)
more than (x,y) −→ > if (xnumeric > ynumeric) (12)
more than (x,y) −→ ⊥ if (xnumeric ≤ ynumeric) (13)
...

Figure 5.2: Audio player structural and logical rules

5.2 Rules

We have adapted our rule-based system dedicated rewriting system for specify-

ing and managing power constraints as well as for dynamically managing system

level power consumption (Figure 5.1). Our rules follow the general structure of

rewriting rules in a Term Rewriting System (TRS). This helps us to leverage the

formalism that goes with a TRS to uniformly and uniquely represent power specifi-

cation across all levels of design hierarchy. For RTL-level and hardware constraints,

we allow a way to convert UPF representations into TRS rules. We also capture
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power policies and expected system behavior as rules. This sets up the stage for our

two-stage rewriting process. The first stage checks consistency of the power con-

straints and flags any conflicts. This is an iterative user-driven process and the end

result is a golden set of non-conflicting constraints. The next stage is the dynamic

power manager, which outputs action rules to the system to maintain the system

behavior within the expected power policy behavior. We describe both these stages

of rewriting in subsequent sections. In this section, we take a more detailed look

into the different types of rules within our system.

Applying a rule is also called executing or firing. When a rule is applied, the

state on the left-hand-side is read at the beginning of a power tick and updated at

the end of the power tick. We define a power tick as any power related event. This

could be when an O/S call is triggered because of an interrupt, or a power state

change kicks in, or any event that changes the normal state of the input constraints

or system feedback constraints. A power tick is any change in power state, and the

system run-time semantics will ensure there are no overlapping ticks. This notion

of a single rule execution enforces an atomicity constraint on the system at each

power tick. In the context of rules, this says that during the execution of a rule, no

other events happen in the system, to invalidate the action described in that rule.

All enabled rules fire in parallel (or in no particular order). If two rules modify

the same state or power element, then we have a race condition. We have a notion

of user-specified priority ordering of rules. During a race condition, the rule with a

higher priority is chosen. If no priority is specified, a random choice is made.

We have two kinds of rules within our system, structural rules and logical rules.
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Structural rules are atomic transactions representing a power state update in the

system. These are derived directly from the system architecture, from both hard-

ware as well as software. Logical rules represent identities about the operators used

in the structural rules and carry information about power specific transformations.

Figure 5.2 shows the different kinds of rules in our system.

Structural rules can be feedback rules, user-specified ones, or actions. The user-

specified rules define power management policies (see Rules (4)..(6) in Figure 5.2).

These are static, and are defined prior to running the system. Feedback rules are

what come from the system into the rewriting engine (see Rules (1)..(3) in Fig-

ure 5.2). These rules define the status of various system attributes that govern

power policy management. These rules dynamically fire given system behavior

during run-time. Action rules define outputs from the rule engine back into the sys-

tem (see Rules (7)..(9) in Figure 5.2). These define how the system should behave

based on the conclusions of the power management rule engine. Logical rules cod-

ify identities about operators and low power transformations and policies (see Rules

(10)..(13) in Figure 5.2). These rules are independent of the target system. We can

use logical rules to create abstractions, model existential/universal quantification

and interpret uninterpreted functions, etc.

Rules are powerful representations of power policy and power consumption in-

tent. Precedence/ordering and atomicity of rules together form a provably complete

specification of power intent. The user provides more rules where they are insuf-

ficient, and precedence decides order of application. Once the “training” period is

done, the set of rules forms a provably complete power intent specification. For
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large SoCs, managing power constraints at all levels of design hierarchy can be a

veritable nightmare. The dedicated rewriting system manages power constraints

and does some automatic syntax and semantic consistency check of power con-

straints across all levels of design hierarchy in a user-driven iterative process (Sec-

tion 5.3). Given a precise and conflict-free golden power intent and rules about

power policies, our rewriting engine dynamically fires all triggered rules at each

power tick, and generates actions for the system. We describe the adaptation of the

dedicated rewriting algorithm in Section 5.4.

5.3 Power Constraints Consistency Checker

Managing power constraints is a hard enough problem just at the netlist level. In

order to be able to manage power constraints at all levels of design abstraction and

hierarchy, we need both a uniform representation, as well as an automated checking

mechanism to keep the constraints syntactically correct and semantically consistent.

The left-hand-side of Figure 5.1 gives a flow chart of our constraint checking

process. We bring in the constraints at different levels of hierarchies all within

the same rule formats. In situations where hardware constraints are written in other

representations like UPF, we provide a way to convert them into our rules. The con-

straint checker has a two-fold function. First, it does a power-constraint-lint, check-

ing for syntactic correctness of the constraints. Next, it does a power-constraint-

consistency-check, checking for semantic consistency across constraints, as detailed

in Algorithm 1. The complexity of the power constraint checker lies in understand-

ing the interactions between constraints at different levels of design hierarchy and
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Algorithm 1: Power Constraints Consistency Checker
Input: power constraints at all levels of hierarchy $pcdb,

Rule ordering in case of race condition RO
Output: Database of golden power constraints $pcdbg
lintResult = ∅; consistencyResult = ∅;
for each power constraint pc in $pcdb do

lintResult .= power constraint lint (pc);
for each power constraint pcl in $pcdb do

if (pc != pcl) then
consistencyResult .= power constraint consistency check
(pc, pcl);

end
end

end
if (lintResult==∅ && consistencyResult==∅) then

$pcdbg=$pcdb; return $pcdbg;
end
else

return (lintResult
⋃

consistencyResult);
end

proving that they are consistent with each other.

Checking for power constraint consistency is a user-driven iterative process. The

worst-case runtime of this algorithm is O(n2), which can be prohibitively expen-

sive if n, the number of constraints is very large. In practice, even for a 1 million

gate design, the number of constraints is within manageable numbers, so that the

iterative process of consistency checking has sufficiently small turn-around times.

The end result of this process is a golden set of power constraints which are syn-

tactically correct and semantically consistent with one another. This now forms an

input to our dynamic power management rule engine.
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5.4 Dedicated Rewriting as a Dynamic Power Management Rule
Engine

We propose a refinement based rewriting strategy for dynamic power manage-

ment, a working flow chart of which is show in the right-hand-side of Figure 5.1.

This is a modified implementation of our dedicated rewriting system, applied to

this context of holistic power management.

The database of logical as well pre-existing (from previous runs or projects) rules

is statically available as an input. Dynamic power management is an outcome of

which of these rules fire during run-time, based on system feedback. Also available

as input, is a rule ordering, to decide precedence if more than one rule modifying

the same element is triggered at the same power tick.

The process starts with loading the static list of rules into the rewrite engine.

Each iteration of the flow is defined by a power tick and involves two key phases.

In the first phase, the rule engine resolves the feedback rules and arrives at a set

of action rules. If there are conflicts, then in the second phase, the user has to

resolve them and help the engine move along. This learning process is done once

to train the engine and obtain an exhaustive set of rules required to run the engine

for this particular system architecture. Conflicts are resolved typically by adding

further rules to help move along the rewriting process. The process is described in

Algorithm 2.

Our rule rewriting engine, for the purpose of an automatic, dynamic power man-

ager, is essentially a constraint solver. The dedicated rewriting system is generic
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Algorithm 2: Power Management Rewriting Engine
Input: Database of logical and power rules $db,

Rule ordering in case of race condition RO
Output: Action Rules driving the system Ractions

for each power tick /* change in any power state */ do
execResult = FAIL;
repeat

TU = read from db ($db, user spec);
TF = read from db ($db, system feedback);
TL = read from db ($db, logical);
TP = read from db ($db, power);
〈 execResult, TA 〉 = execute (TU , TF , TL, TP );
if (execResult == FAIL) then

Add rules to {$db:TL, $db:TL, $db:TL, $db:TL}
end
if (execResult == PASS) then

Add TA to Ractions based on order RO

end
until execResult != PASS;

end

enough to accommodate the change of context from low power hardware transfor-

mation rules, to these holistic power constraint rules.

5.5 Case Studies

We will now illustrate how both the constraint checker and the rule rewriting

manager can be applied for a typical hand held mobile device in three distinct con-

texts: audio playback, video playback, and web browsing. We have implemented

the rewriting rule engine on one of the latest Intel smartphone reference platforms.

This smartphone SoC is a fully state of the art platform, built on the latest process
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Figure 5.3: Low power audio playback policy

technology and supports multiple power management hooks in hardware, firmware,

and software.

Typically, in most smartphone and/or tablet platforms there is an application or

host processor that is used for general purpose processing, while functions such as

graphics, video encoding/decoding, audio playback, etc. are offloaded to highly

specialized low power processor cores/accelerators.
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5.5.1 Audio Playback

Figure 5.3 describes the Audio playback low power policy. We have imple-

mented this policy as rules in our rewriting system. A subset of these rules can

be found in the earlier example in Figure 5.2. The key underlying concept in this

policy is that when the user is listening to music, we can buffer the audio data, keep

the audio subsystem on, and put the rest of the SoC to sleep. We started off translat-

ing the policy specification into user-specified constraints, feedback rules from the

system, and action rules to the system.

Constraints for audio playback are to describe the resource we would need to

have this use case running and the quality of service the workload can tolerate.

Given the above data flow, the audio playback use case can be represented in terms

of constraints capturing

• Quality of service that we need to guarantee from the system.

• Host processor and Audio processor utilization time and minimum frequency

they need to run at to meet the minimum quality of service.

• During playback, only the low power audio engine must be kept ON, while

rest of the SoC should be in DEEPSLEEP state.

• Status of various subsystem while audio is playing.

Over a few iterations of the constraint checker we identified a conflict-free golden

set of power constraints. Over a further few iterations of the rewriting engine we

126



figured out the relevant logical and power rules to embed in the database. Once

these iterations are done, the system is ready for mainstream operation.

5.5.2 Panel Self Refresh

Figure 5.4: Panel self refresh policy for video playback and web browsing applica-
tions

Like the audio playback policy, a similar power policy called panel self refresh

(PSR) is employed in the display subsystem. Figure 5.4 shows the low power policy

of a PSR system. PSR is a combination of functionality on the chip, display, and

software, which allows screens to save power by only refreshing the image on the

screen when it changes. If the user is reading an eBook or browsing the web, odds

are that most of the time, the screen is a set of static images for a few seconds

at a time. Basic analysis [63] indicates that for most usages like web browsing,

reading PDFs, document editing, etc., the idle frame percentages are in the range of

85-96%.

127



5.5.3 Results

We have implemented our rule rewriting engine in the above three contexts, viz.,

audio playback, PSR for video playback, and PSR for web browsing. The power

gains achieved by the automated dynamic power management of these policies is

shown in Figure 5.5. For the audio playback case, when our rewriting engine is

absent, the measured power is high primarily because the SoC and Display are both

ON even when the only action going on is an audio playback. Our dynamic power

manager generates the necessary actions to reduce that power consumption to attain

a significant gain of ∼ 43%. The panel self refresh gains are somewhat similar in

both the video and browser cases with the power consumption down by over a third.

These measurements are done on the latest generation Intel smartphone platform.

We have also implemented the same rewriting rule engine system on a many-

core platform, modeling the power constraints for an O/S scheduling policy. The

considerations in this context are very different from an SoC context, and with our

dynamic manager we achieve a 10% gain in CPU utilization, which translates to a

linear gain in power consumption [146].

5.5.4 Discussion

The first stage of each experiment is to arrive at a golden set of conflict-free

power constraints. We have used our automated checker to assist in each iteration

of this user-driven process. As power optimizations increase at each level of de-

sign hierarchy, number of constraints dramatically increase, and a robust constraint

manager is key to delivering a conflict-free golden power constraint set.
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Experiment Power
Gain%

Audio Playback (SoC OFF; Display OFF) 43%
Browser Self-Refresh (only Display panel ON) 35%
Video Self-Refresh (only Display panel ON) 39%
O/S Scheduler (cores are shielded when offline) 10%

Figure 5.5: Summary of results without and with dynamic power management by
the rewriting rule engine

In all these experiments, there is an initial cost of having the power management

rewriting engine learn the policies iteratively and refine its rule database for each

policy. However, addressing that incompleteness is a one-time cost, and in our

experience, a small cost, because we are learning the rules for a small specific

policy each time. In all subsequent runs, the dynamic rule execution will execute

automatically and exactly as per the power intent specified in the policy.

These two engines, the checker and the power manager, are completely inde-

pendent of each other, even though the former feeds into the latter. In a different

power management system, one could easily imagine using the checker alone, and

converting its output into constraints as understood by the power manager of that

system. The checking is a static process done before actual execution, while the

power manager is a real-time tool, working during run-time of the SoC.
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Chapter 6

Correctness of Instruction-driven Slicing

6.1 Introduction

In Chapter 3 we introduced Instruction-driven slicing as a low power transfor-

mation at the RT-level to lower dynamic power dissipation in microprocessors. In

Chapter 4 we introduced Dedicated Rewriting as an automatic technique to gen-

erate proofs of correctness of low power transformations in hardware, also at the

RT-level. In this chapter we will discuss the application of dedicated rewriting to

instruction-driven slicing. We will give an automatic proof of instruction-driven

slicing in our framework.

We describe within our rewriting methodology, how we use our dedicated database

of rules to automatically prove the correctness of low power transformations at

the RT-level. We use the example of instruction-driven slicing [144] as applied to

a 32-bit OpenRISC pipelined microprocessor (OR1200) [38] to explain our tech-

nique [149], [148]. We also give a proof for the same problem in a general purpose

theorem prover, ACL2 [67], and contrast our dedicated rewriter against using a

general purpose proof system.

The technique was already described in detail in Chapter 3. We present the

proof of instruction-driven slicing on OR1200 in Section 6.2. Section 6.3 explains
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the proof in the general purpose theorem prover ACL2 and contrasts our technique

against a more generic approach. We discuss the merits of such a framework and

conclude in Section 6.4.

6.2 Automatic Proof Technique

We described dedicated rewriting in Chapter 4. Here we give an instance of its

use to prove the correctness of instruction-driven slicing. This is a one-time activity

since instruction-driven slicing is correct by construction, and does not need to be

repeated for each application of instruction-driven slicing.

Figure 6.1 shows the Verilog RTL before and after applying instruction-driven

slicing∗. Figure 6.2 and Figure 6.3 show the rules derived from the Verilog RTL

code of the OR1200 microprocessor corresponding to Figure 6.1. The block in

Figure 6.2 is the rules defining the original RTL, and the block in Figure 6.3is the

rules of the transformed RTL after automatic insertion of low power annotation by

instruction-driven slicing.

The dedicated rewriter() takes the two expressions and tries to rewrite them to

show they are equal. In order to assist the rewriter, we provide a dedicated set of

low power rules which are generic to all low power transforms. If the rewriter is not

able to prove the equivalence (defined as, rewrite the XNOR of the two expressions

to TRUE), then we analyze the result. The output of the dedicated rewriter could

be one of two choices. If it is a false negative, then our rule database lacked the

∗This figure is the same as Figure 3.4 and has been reproduced here for the convenience of the
reader.
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// Instruction selection in load/store unit

always @(posedge clk or posedge rst) begin
case (id insn[31:26])

‘OR1200 OR32 SB: lsu op <= #1 ‘OR1200LSUOP SB;
‘OR1200 OR32 SW: lsu op <= #1 ‘OR1200LSUOP SW;
‘OR1200 OR32 LBZ: lsu op <= #1 ‘OR1200LSUOP LBZ;
‘OR1200 OR32 LWZ: lsu op <= #1 ‘OR1200LSUOP LWZ;
default: begin lsu op <= #1 ‘OR1200LSUOP NOP;

endcase
end

(a) Verilog RTL code for the always block assigning the lsu op
before instruction-driven slicing transformation.

// Instruction selection in load/store unit sliced on
// instruction l.addc

always @(posedge clk or posedge rst) begin
if (iADDC id)

lsu op <= #1 ‘OR1200LSUOP NOP;
else

case (id insn[31:26])
‘OR1200 OR32 SB: lsu op <= #1 ‘OR1200LSUOP SB;
‘OR1200 OR32 SW: lsu op <= #1 ‘OR1200LSUOP SW;
‘OR1200 OR32 LBZ: lsu op <= #1 ‘OR1200LSUOP LBZ;
‘OR1200 OR32 LWZ: lsu op <= #1 ‘OR1200LSUOP LWZ;
default: begin lsu op <= #1 ‘OR1200LSUOP NOP;

endcase
end

(b) Transformed Verilog RTL code after applying instruction-driven slicing
on instruction l.addc.

Figure 6.1: Instruction-driven slicing example from Figure 3.4 reproduced here for
the reader’s convenience.
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// Instruction selection in load/store unit

Rule: lsu op(t) -> ‘OR1200 LSUOP SB
if (id insn[31:26](t) == ‘OR1200 OR32 SB)

Rule: lsu op(t) -> ‘OR1200 LSUOP SW
if (id insn[31:26](t) == ‘OR1200 OR32 SB)

Rule: lsu op(t) -> ‘OR1200 LSUOP LBZ
if (id insn[31:26](t) == ‘OR1200 OR32 SB)

Rule: lsu op(t) -> ‘OR1200 LSUOP LWZ
if (id insn[31:26](t) == ‘OR1200 OR32 SB)

Rule: lsu op(t) -> ‘OR1200 LSUOP NOP
if (id insn[31:26](t) !=

(‘OR1200 OR32 SB
or ‘OR1200 OR32 SW
or ‘OR1200 OR32 LBZ
or ‘OR1200 OR32 LWZ))

Rules derived from Verilog RTL code for the always block
assigning the lsu op before instruction-driven slicing transformation.

Figure 6.2: Rules derived before instruction-driven slicing transformation.

required rules. In which case, we add that rule to the database, and repeat the

rewriting step. If the output is a true error, then we output a counter example, a

trace to reach the error starting from the inputs over a specific period of time.

In the example of Figure 6.3, one of the rules that is specific to the transforma-

tion, which we have to add to the rule database is

Rule: iADDC_id(t) -> T

if (id_insn[31:26](t) ==

‘OR1200_OR32_ADDC)
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// Instruction selection in load/store unit sliced
on instruction l.addc

Rule: lsu op(t) -> ‘OR1200 LSUOP NOP
if (iADDC id(t) == T)

Rule: lsu op(t) -> ‘OR1200 LSUOP SB
if ((id insn[31:26](t) == ‘OR1200 OR32 SB)

and (iADDC id(t) == F))
Rule: lsu op(t) -> ‘OR1200 LSUOP SW

if ((id insn[31:26](t) == ‘OR1200 OR32 SW)
and (iADDC id(t) == F))

Rule: lsu op(t) -> ‘OR1200 LSUOP LBZ
if ((id insn[31:26](t) == ‘OR1200 OR32 LBZ)

and (iADDC id(t) == F))
Rule: lsu op(t) -> ‘OR1200 LSUOP LWZ

if ((id insn[31:26](t) == ‘OR1200 OR32 LWZ)
and (iADDC id(t) == F))

Rule: lsu op(t) -> ‘OR1200 LSUOP NOP
if ( (iADDC id(t) == F) and

(id insn[31:26](t) != (‘OR1200 OR32 SB
or ‘OR1200 OR32 SW
or ‘OR1200 OR32 LBZ
or ‘OR1200 OR32 LWZ)))

Rules derived from the transformed Verilog RTL code after applying
instruction-driven slicing on instruction l.addc.

Figure 6.3: Rules derived after instruction-driven slicing transformation.

The low power rule database is a continuously growing entity by step-wise re-

finement with every proof attempted in this system.

Even though refining the low power rules database is an iterative process, we

need to do it once for the transformation. Subsequently, any RTL using the same
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transformation can be verified without adding any further rules. A possible design

methodology could be to implement a new transform on a very small example RTL

and obtain the proof of correctness using our technique. This exercise will populate

the low power rule database with any rules that are specific to the current transfor-

mation in question. Subsequently the transform can be applied to the larger designs

and this time around the proof will be automatic without requiring any refinement

steps. Also, the refinement step in the first case is a very powerful way to understand

the logical implications of the transform.

We have proved the correctness of the instruction-driven slicing algorithm on the

OR1200 microprocessor Verilog RTL using our technique. In the next section we

give another proof for the same using a generic theorem prover, and contrast that

with the automatability of our technique.

6.3 Interactive Proof by Deductive Verification

We have proved the correctness of the instruction-driven slicing algorithm on

the OR1200 example using the ACL2 theorem prover. We give a proof that the

functionality of the OR1200 processor before and after the low power annotations

is precisely the same. This guarantees the functionality preserving property of the

low power annotations.

6.3.1 Proof using the ACL2 theorem prover

We use the ACL2 theorem prover to establish our proofs. ACL2 is both a first-

order mathematical logic and a mechanical theorem prover to reason and prove the-
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orems about functions in this logic. The language is based on Applicative Common

Lisp and the theorem prover is an industrial strength version of the Boyer-Moore

theorem prover, Nqthm [18].

The ACL2 theorem prover is a computer program which takes formulas written

in first order logic and tries to find mathematical proofs. It uses rewriting, deci-

sion procedures, mathematical induction, and many other proof techniques to prove

theorems in a first-order mathematical theory of recursively defined functions and

inductively constructed objects [66].

verilog2acl2

verilog2acl2
vRTL

aRTL

vACL2RTL

aACL2RTL

ACL2 Proof

ACL2RTL
Library

Figure 6.4: Proof methodology.

Figure 6.4 explains our proof methodology. We convert the two RTLs into ACL2

functions. We also create a large library of functions which are used to interpret the

RTL functions. You can consider this library as an RTL (in our case, Verilog)

definition library. Creating this library is a high-effort task. Admittedly though,

once we create this library, it should work for any Verilog RTL. After this is an

iterative and interactive procedure of working with the ACL2 prover system, adding

and defining more rules and theorems, until we are able to obtain a proof.
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We have implemented verilog2acl2, a compiler from Verilog RTL to ACL2 func-

tions. The annotations are added to the original RTL (vRTL) as described in Subsec-

tion 3.3.1 to obtain the annotated RTL (aRTL). We then obtain the corresponding

ACL2 models vACL2RTL and aACL2RTL.

Figure 6.5 shows an example function in ACL2 corresponding to an always

block in Verilog. The ACL2 model of the RTL is an executable model with the

following top function signature:

(defun or1200_cpu (n) ...)

Every ACL2 function is modeled with the clock cycle n as the input argument.

We have created a large ACL2RTL library to interpret the automatically generated

ACL2 RTL model. In Figure 6.5(b), the functions bif, bv-and, cw-d etc. are

functions within our ACL2RTL library.

Figure 6.6 and Figure 6.7 show the converted ACL2 function for the same ex-

ample in Figure 6.1.

Once we have our two ACL2 models and a library of functions to interpret these

models, we can use ACL2 to reason about these two models and prove the theorem

that they both are functionally equivalent. We do this by building up the proof block

by block in a bottom-up fashion. The theorem we prove is:

(defthm iADDC_slicing_correct

(equal

(or1200_cpu n)
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//Instruction latch in ex insn
always @(posedge clk or posedge rst) begin

if (rst)
ex insn <= #1 ‘OR1200 OR32 NOP, 26h́041 0000;

else if (!ex freeze & id freeze | flushpipe)
// ex insn[16] must be 1
ex insn <= #1 ‘OR1200 OR32 NOP, 26h́041 0000;

else if (!ex freeze) begin
ex insn <= #1 id insn;

end

(a) Verilog RTL code for latching an instruction in the Execute stage.

(defun or1200 ctrl ex insn (n)
(bif (or1200 ctrl rst n)

(concat (OR1200 OR32 NOP)
(bv-<< (cw-d 26 65) (cw-d 6 16)))

(bif (bv-and
(logical-not (or1200 ctrl ex freeze n))
(bv-or (or1200 ctrl id freeze n)

(or1200 ctrl flushpipe n)))
(concat (OR1200 OR32 NOP)

(bv-<< (cw-d 26 65) (cw-d 6 16)))
(bif (logical-not (or1200 ctrl ex freeze n))

(or1200 ctrl id insn (1- n))
(concat (OR1200 OR32 NOP)

(bv-<< (cw-d 26 65) (cw-d 6 16)))))))

(b) ACL2 RTL function corresponding to the Verilog always
assignment block.

Figure 6.5: Verilog2ACL2 example.
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(defun or1200 lsu dcpu sel o (n)
(cond ((equal (concat (or1200 lsu lsu op n)

(getbits 1 0 (or1200 lsu dcpu adr o n)))
(concat (OR1200 LSUOP SB)

(cw-d 2 0))) (cw-d 4 8))
((equal (concat (or1200 lsu lsu op n)

(getbits 1 0 (or1200 lsu dcpu adr o n)))
(concat (OR1200 LSUOP SW)

(cw-d 2 0))) (cw-d 4 15))
((equal (concat (or1200 lsu lsu op n)

(getbits 1 0 (or1200 lsu dcpu adr o n)))
(concat (OR1200 LSUOP LBZ)

(cw-d 2 0))) (cw-d 4 8))
((equal (concat (or1200 lsu lsu op n)

(getbits 1 0 (or1200 lsu dcpu adr o n)))
(concat (OR1200 LSUOP LWZ)

(cw-d 2 0))) (cw-d 4 15))
(t (cw-d 4 0))))

ACL2RTL code for the always block assigning the lsu op before
instruction-driven slicing transformation.

Figure 6.6: Instruction-driven slicing example after Verilog2ACL2 (pre-
transformation).

(or1200_cpu_sliced_for_iADDC n)))

This theorem guarantees that, for l.addc instruction, the original ACL2 model

is functionally equivalent to the annotated ACL2 model. The variable n above is a

free variable, quantified over all time. The model is combinational and the ACL2

proof is a simple equivalence checking proof and does not require any induction.
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(defun or1200 lsu dcpu sel o (n)
(bif (iADDC id n) (cw-d 4 0)
(cond ((equal (concat (or1200 lsu lsu op n)

(getbits 1 0 (or1200 lsu dcpu adr o n)))
(concat (OR1200 LSUOP SB)

(cw-d 2 0))) (cw-d 4 8))
((equal (concat (or1200 lsu lsu op n)

(getbits 1 0 (or1200 lsu dcpu adr o n)))
(concat (OR1200 LSUOP SW)

(cw-d 2 0))) (cw-d 4 15))
((equal (concat (or1200 lsu lsu op n)

(getbits 1 0 (or1200 lsu dcpu adr o n)))
(concat (OR1200 LSUOP LBZ)

(cw-d 2 0))) (cw-d 4 8))
((equal (concat (or1200 lsu lsu op n)

(getbits 1 0 (or1200 lsu dcpu adr o n)))
(concat (OR1200 LSUOP LWZ)

(cw-d 2 0))) (cw-d 4 15))
(t (cw-d 4 0)))))

Transformed ACL2RTL code after applying instruction-driven slicing
on instruction l.addc.

Figure 6.7: Instruction-driven slicing example after Verilog2ACL2 (post-
transformation).

6.3.2 Comparing a dedicated rewrite system versus a generic theorem prover

A general purpose theorem prover has many uses. However, it requires a highly

trained individual to interact with the program and help the deduction process. In

our dedicated rewrite system, we have managed to focusedgenerate a sufficiently

large database of rules that are on specific transformations. Now, for those trans-

formations, we have an automatic solution. Besides, we also have the methodology
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built into our system to enhance these rules to incorporate new transformations.

The overall ease of having an automatic tool, and the fact that it works with Verilog

and easily and seamlessly fits in with the design tools, makes our technique easy to

incorporate in a hardware design cycle.

6.4 Discussion and Conclusions

We have proposed a step-wise refinement based dedicated rewriting engine to

automatically prove the correctness of low power transformations at the RT-level.

We have also proved the correctness of the instruction-driven slicing transformation

on the OR1200 Verilog RTL. At the gate level, the low power transformations are

not across flop boundaries, and combinational equivalence checking is sufficient to

prove the correctness of the transformations. However, at the RT-level, the trans-

formations are more behavioral and can utilize the semantic information available

to reduce further power dissipation. We provide a way to verify the correctness of

the transformations at higher levels of abstraction. Our rules and rewriting is not

restricted to the RT-level either. Any architectural model can also be used instead

of RTL, as long as a derive() function is also provided to interface the model into

our rules system.
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Chapter 7

Discussion and Conclusions

Designing for low power in the context of today’s devices is a holistic exer-

cise. There are optimizations in the hardware which are software agnostic, and

vice versa, and there are a host of techniques which need the hardware to be ex-

posed to what the software intent is. In order to achieve the most optimal set of

techniques applied dynamically we need an overall power management framework,

with its key components being the four aspects we’ve identified, viz. specification,

modeling, techniques and verification.

The key problem in low power, in today’s shrinking hardware designs, is that of

coming up with effective high level low power transformations, and verifying the

correctness of such transformations, as applied to a specific hardware, in minimal

time. We have addressed this problem in this thesis in two parts.

First, we have proposed instruction-driven slicing, a new technique to automat-

ically annotate RTL for reducing power dissipation by switching activity. We have

implemented the instruction-driven slicing algorithm and have incorporated it into

the design flow tool-chain. We have automatically sliced the RTL and architectural

models for OR1200, a pipelined implementation of the OpenRISC instruction set

architecture and for PUMA, a PowerPC dual-issue, out-of-order, superscalar fixed

142



point unit. We have used our tool-chain to test our methodology on this processor

and have obtained encouraging results.

Second, we have presented dedicated rewriting, a novel technique for proving

correctness of low power transformations in RTL. Our technique uses Term Rewrit-

ing Systems and decomposes the problem into smaller and tractable proofs. The

deductive nature of the rewriting system ensures that we do not encounter any size

or capacity issues that are common in an algorithmic sequential formal verification

engine. However, the complexity of the verification problem in our system is con-

verted into the problem of incompleteness of the dedicated rule database. While

this might lead to a highly interactive system in the general case, restricting the rule

database to low power transformations, helps us leverage a higher degree of au-

tomation. Once the database captures a transformation (in the form of rules), then

those rules work for any RTL and have high reuse value.

Our instruction-driven slicing algorithm is particularly suited for in-order pipelined

processor designs. It can be applied to out-of-order superscalar processors too.

However the reduction in power in the case of PUMA was expectedly substantially

less than the OR1200 case since there might be multiple instructions in flight in any

pipeline stage of the PUMA, thereby reducing the amount of logic we can actually

shut off. Although our algorithm is conservative, it automatically identifies a close-

to optimal set of flops. Our instruction-driven slicing algorithm can be thought of

as a wrapper to implement more sophisticated methods of identifying flops which

control the circuitry outside the slice.

The primary advantage of the dedicated rewriting technique is that we reason
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with uninterpreted operators and bit abstractions at the RT-level, which is decid-

edly a more abstract (and therefore smaller) representation than reasoning at the

gate-level. We have presented a specialized rewriter for arithmetic circuits, and a

more generalized version in the context of low power transformations. Given the

cost of re-validating hardware systems in a traditional design cycle, an automated

technique of this nature is extremely desirable and can add immense value to the

hardware design cycle.

We have presented a logically sound formal engine as a backbone for managing

power constraints at different levels of design hierarchy and abstraction; and for

dynamic system level power management. We have presented our power constraint

consistency checker as a way to holistically deal with constraints at different levels,

and check for syntactic correctness and semantic consistency. Such a uniform and

formalized representation is a big piece of the overall holistic power management

system. As we build smaller and faster hand-held devices, power constraints will

only get more complicated, and a user-driven power constraint manager with built-

in automated checking capability will be central to any low-power SoC design.

We have also presented a rewriting strategy which localizes the problem to the

domain of its action. This is a key insight into the power management technique.

While the general complexity of the problem still remains NP-hard, in the localized

context, the problem of resolving the rules and constraints is tractable in practice.

We have also implemented some power optimization and management policies in

our system on state-of-the-art Intel smartphone platform. We have shown power

gains in the range of 40% for different experiments (policies). These are significant
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gains, and to be able to do them automatically through a dynamic manager is a

significant step further in delivering low power hand-held mobile devices.

Verification is the hardest piece of the power management puzzle. The current

systems are quite ad-hoc and work in very specific contexts, while it is not clear how

to generalize most of them. What we will need is a comprehensive methodology

where we can define verification testplans in the context of power specification of

the system, define coverage metrics and assertions, generate formal and simulation

based guarantees about the asserted properties, etc. Further, a lot of these will need

to be automated, given the extensive use of multiple voltages and multiple domains.

Low power designs are here to stay, and they are making a change to the design

process at a very basic and fundamental level. We have partitioned the unified power

based system design methodology into four key axes – specification, modeling,

techniques, and verification, and have surveyed various state-of-the-art activities

under each. While there may not be a single methodology that can be generalized

across all contexts, for the most energy efficient designs of the future, we do need

a unified methodology across all levels of design hierarchy and abstraction, from

workload/application to transistors, for each context or system under design. An

ideal methodology will include an executable specification, a synthesizable model,

accurate techniques, and automatable verification methods.
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