Copyright

by

Christopher Tong Sheng

2011

The Thesis Committee for Christopher Tong Sheng Certifies that this is the approved version of the following thesis:

Avery Drive Area Drainage Improvement

APPROVED BY SUPERVISING COMMITTEE:

Supervisor:

Uttarayan Bagchi

Bruce McCann

Avery Drive Area Drainage Improvement

by

Christopher Tong Sheng, B.A.

Thesis

Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Engineering

The University of Texas at Austin August 2011

Abstract

Avery Drive Area Drainage Improvement

Christopher Tong Sheng, M.S.E. The University of Texas at Austin, 2011

Supervisor: Uttarayan Bagchi

The area of study is the Avery Drive drainage area. The objective of these projects is to alleviate frequent flooding at the Avery Drive neighborhoods. RC&A designed two options for improving the Avery Drive drainage area. Option one increases the capacity of the existing sewer system, and option two constructs a new storm drain system along Simon Street while keeping the existing system in place. Although both options offer preliminary solutions for alleviating flooding, the designs are unviable due to the lack of data that was available for the study. The following research will prove that RC&A fulfilled its contractual obligation of practicing due diligence by recommending further investigation to obtain valuable data for a complete and successful final design, rather than providing a solid recommendation based on existing data.

Table of Contents

List of Tables	vi
List of Figures	vii
Chapter 1 Introduction	1
Chapter 2 Existing Conditions at Avery Drive	2
Chapter 3 Hydrology	5
Chapter 4 Hydraulics, Storm Sewer Capacities	9
Chapter 5 Option One	12
Chapter 6 Option Two	16
Chapter 7 RC&A's Due Diligence	19
Chapter 8 Conclusion	31
Bibliography	

List of Tables

Table 2.0:	Existing Drainage Area Peak Flow Calculations
Table 2.1:	Existing Conditions: Storm Sewer Capacities10,11
Table 2.2:	Option One, Proposed Storm Sewer Capacities14,15
Table 2.3:	Option Two Drainage Area Peak Flow Calculations21,22,23,24
Table 2.4:	Option Two, Proposed Storm Sewer Capacities

List of Figures

Figure 1:	Existing Drainage Area Map	3
Figure 2:	Existing Storm Sewer System.	4
Figure 3:	Option One, Proposed Storm Sewer System.	13
Figure 4:	Option Two Drainage Area Map	17
Figure 5:	Option Two, Proposed Storm Sewer System.	18

Chapter 1 Introduction

In 1996, a devastating storm hit the small town of Taylor, Texas, causing massive flooding that resulted in damages estimated in the millions. Ruth Mantor described to the Taylor Statesman the harrowing effect fast-rising water can have. "Another normally quiet stream, Mustang Creek, rose with such force that several steel rails of the International and Great Northern Railroad (I&GN) were curled around a large cottonwood tree. The force of the water was unbelievable. Every bridge coming into Taylor was washed away" (Komandosky, 2008). Even more than two decades later, the area surrounding Mustang Creek, the Avery Drive neighborhood, is still inundated with flooding during powerful storms. Of course, there's no way to prevent inclement weather, however there is one simple, proactive improvement that can be taken to address this issue. The Raymond Chan & Associates (RC&A) has undertaken a preliminary evaluation and investigation of a drainage improvement project that is part of the Taylor General Obligation Bond Project. The area of study is the Avery Drive drainage area. The objective of these projects is to alleviate frequent flooding at the Avery Drive neighborhoods. RC&A designed two options for improving the Avery Drive drainage area. Option one increases the capacity of the existing sewer system, and option two constructs a new storm drain system along Simon Street while keeping the existing system in place. Although both options offer preliminary solutions for alleviating flooding, the designs are unviable due to the lack of data that was available for the study. The following research will prove that RC&A fulfilled its contractual obligation of practicing due diligence by recommending further investigation to obtain valuable data for a complete and successful final design, rather than providing a solid recommendation based on existing data.

1

Chapter 2 Existing Conditions at Avery Drive

In the Avery Drive area, a neighborhood has a history of localized flooding because of its construction along an old tributary of Mustang Creek. From Raymond Chan & Associates (RC&A) analysis, the Avery Drive neighborhood's existing drainage system is extremely undersized, and cannot capture runoff of water collecting near the depressed areas of the old tributary of Mustang Creek. The existing drainage system consists of three 5' curb inlets, three 5' X 5' grate inlets, and 32" diameter storm drain pipe line. The surface runoff of water not captured by the existing drainage system, flows overland southward toward Avery Drive through low lying areas (Chan & Partners Engineering, LLC. 2000). Thus, the Avery Drive neighborhood experiences frequent and extensive flooding because it is located at the downstream end of the area.

From field investigation and topography from USGS mapping, the Avery Drive drainage area for surface runoff is generally bounded by Highway 95 on the west, the railroad tracks to the north and east, and Mustang street on the South.

As indicated by the elevation lines on Figure 1, the majority of the Avery drive neighborhood was constructed along an old tributary of Mustang Creek. In general, surface storm-water runoff draining from the east and west sides of East Walnut street, East Pecan Street, Rio Grande Street, Avery Drive and Mustang Street collects at the depressed areas of the streets. Although there are grate and curb inlets located near the depressed areas, hydraulic calculations indicate that the storm drain systems along these streets are significantly under-sized (Chan & Partners Engineering, LLC. 2000).

2

Due to the lack of record information, field investigation was performed to attempt to locate the alignments and sizes of existing storm sewer pipe lines. A storm sewer system that is believed to drain the downtown business district appears to run roughly east and west, crossing Highway 95 near Dickey Street, running east and crossing Rio Grande Street, and then turning south in the center of the Avery Drive Housing Project and out-falling south of Mustang Street. At the outfall of this 60" line, extensive scouring and erosion are occurring. Another existing storm sewer system in the area appears to run roughly north and south from East Oak Street to Rio Grande Street and is believed to tie into the downtown business district line near the Avery Drive Housing Project (Chan & Partners Engineering, LLC. 2000). The estimated existing storm sewer systems, as determined by field investigation, are shown in Figure 2.

Chapter 3 Hydrology

The peak flow calculations of the existing drainage area was based on the following assumptions: the drainage boundary for surface water runoff presented by RC&A in figure 1 is correct; the project area drainage system begins on East Oak Street, and it does not extend beyond the drainage boundaries, and east-west streets Walnut, Pecan, Rio Grande, and Mustang intercept flows and divert them to the local drainage system (Chan & Partners Engineering, LLC. 2000).

With the above assumptions, the drainage area was broken into four sub-areas, with divisions at the east-west streets listed above. The Rational Method was used to calculate peak flow rates from the sub-areas, using "C" runoff coefficients from the City of Austin Drainage Criteria Manual [10], and intensity, duration, frequency coefficients for Williamson County from the TxDOT Hydraulic Manual. Land uses were taken from the City's comprehensive plan and were determined to be approximately 30% impervious cover and 70% fair grass cover for each sub-area (City of Austin, Drainage Criteria Manual 1996). Times of concentration were calculated with TR-55 methodology (Chan & Partners Engineering, LLC. 2000). A summary of the hydrologic results are presented in Tables 2-0.

		TABI	JE 2-0			
	Existi	ng Drainage Area	Peak Flow C	alculations	·	
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				
		Summa	ry I able			
	2 year Peak	5 year Peak Flow	10 year Peak	25 year Peak Flow	50 year Peak	100 year Peak Flow
Drainage Area	Flow (cfs)	(cfs)	Flow (cfs)	(cfs)	Flow (cfs)	(cfs)
1	42	55.8	72.1	90.5	106.4	130.9
2	20.8	27.4	35.3	44.3	51.9	64.1
3	20.4	27	34.8	43.7	51.2	63.2
4	23.6	31.2	40.2	50.4	59.2	73
		Combin	ed Flows		<u> </u>	
1.2	58.1	77.2	99.9	125.3	147.5	181.4
1.2.3	73.7	97.9	126.8	159.1	187.3	230.2
1.2.3.4	91	121	156.8	196.8	231.8	284.8
-, -, -, -, -				100.0	201.0	20110
Composite C Va	lues for all subare	as (City of Austin Dr	ainage Criteria N	(Ianual 1996)		
Approximately 30	0% impervious cove	er. 70% fair grass on f	lat slope (0-2%))		
·····	2 vear	5 vear	10 year	25 vear	50 vear	100 vear
Impervious	0.74	0.785	0.82	0.87	0.91	0.96
Pervious	0.25	0.28	0.3	0.34	0.37	0.41
Composite C	0.397	0.4315	0.456	0.499	0.532	0.575
Dainfall Interest	. (Castiniants for	Williamson Country	(T-DOT 1095)			
Kamian Intensi	y (Coefficients for	williamson County	Potum Porio	1		
	2	5	10 ruper	25	50 more	100
h	2 year 56		10 year 77	2.5 year 00	00 year	100 year
d	9	85	9.5	95	92	105
<u>u</u>	0.708	0.702	0.769	0.768	0.752	0.751
c	0.756	0.192	0.703	0.708	0.752	0.751
		2 Year Peak Flow	Rates			
		Time of				
		Concentration	Intensity		Peak Flow	
Drainage Area	Acreage (Ac.)	(min)	(in/hr)	C Value	(cfs)	
1	27	20	3.92	0.397	42	
2	11.4	15	4.59	0.397	20.8	
3	11.6	16	4.43	0.397	20.4	
4	13.4	16	4.43	0.397	23.6	

(Chan & Partners Engineering, LLC. 2000)

	Existing	TABLI g Drainage Area l	E 2-0 Peak Flow Ca	lculations	
		5 Year Peak	Flow Rates		1
Drainage Area	Acreage (Ac.)	Time of Concentration (min)	Intensity (in/hr)	C Value	Peak Flow (cfs)
1	27	20	4.79	0.4315	55.8
2	11.4	15	5.58	0.4315	27.4
3	11.6	16	5.4	0.4315	27
4	13.4	16	5.4	0.4315	31.2
		10 Year Peak	Flow Rates		
Drainage Area	Acreage (Ac.)	Time of Concentration (min)	Intensity (in/hr)	C Value	Peak Flow (cfs)
1	27	20	5.86	0.456	72.1
2	11.4	15	6.79	0.456	35.3
3	11.6	16	6.58	0.456	34.8
4	13.4	16	6.58	0.456	40.2
		25 Year Peak	Flow Rates		
Drainage Area	Acreage (Ac.)	Time of Concentration (min)	Intensity (in/hr)	C Value	Peak Flow (cfs)
1	27	20	6.72	0.499	90.5
2	11.4	15	7.79	0.499	44.3
3	11.6	16	7.54	0.499	43.7
4	13.4	16	7.54	0.499	50.4
		50 Year Peak	Flow Rates		
Drainage Area	Acreage (Ac.)	Time of Concentration (min) 20	Intensity (in/hr)	C Value	Peak Flow (cfs)
2	11.4	15	8.57	0.532	51.9
3	11.6	16	83	0.532	51.2
4	13.4	16	83	0.532	59.2
-	12.4	100 Vear Peak	Flow Rates	0.552	57.2
		Time of			
Drainage Area	Acreage (Ac.)	Concentration (min)	Intensity (in/hr)	C Value	Peak Flow (cfs)
1	27	20	8.43	0.575	130.9
2	11.4	15	9.78	0.575	64.1
3	11.6	16	9.47	0.575	63.2
4	13.4	16	9.47	0.575	73
		L			
		(Chan & P	artners Engi	neering, LL	C. 2000)

		Table	2.0		
	Existing	Drainage Area P	eakFlow Ca	lculations	
	2	year Combined A	rea Peak Flow	i 'S	I
		Time of			
Drainage	Acreage	Concentration	Intensity		Peak Flow
Area	(Ac.)	(min)	(in/hr)	C Value	(cfs)
1, 2	38.4	21	3.81	0.397	58.1
1, 2, 3	50	22	3.71	0.397	73.7
1, 2, 3, 4	63.4	23	3.61	0.397	91
	5	year Combined A	rea Peak Flow	s	
		Time of			
Drainage	Acreage	Concentration	Intensity		Peak Flow
Area	(Ac.)	(min)	(in/hr)	C Value	(cfs)
1, 2	38.4	21	4.66	0.4315	77.2
1, 2, 3	50	22	4.54	0.4315	97.9
1, 2, 3, 4	63.4	23	4.42	0.4315	121
	10) year Combined A	rea Peak Flov	vs	
		Time of			
Drainage	Acreage	Concentration	Intensity		Peak Flow
Area	(Ac.)	(min)	(in/hr)	C Value	(cfs)
1, 2	38.4	21	5.7	0.456	99.9
1, 2, 3	50	22	5.56	0.456	126.8
1, 2, 3, 4	63.4	23	5.42	0.456	156.8
	25	5 year Combined A	rea Peak Flov	vs	
		Time of			
Drainage	Acreage	Concentration	Intensity		Peak Flow
Area	(Ac.)	(min)	(in/hr)	C Value	(cfs)
1, 2	38.4	21	6.54	0.499	125.3
1, 2, 3	50	22	6.38	0.499	159.1
1, 2, 3, 4	63.4	23	6.22	0.499	196.8
	5() year Combined A	rea Peak Flov	vs	
		Time of			
Drainage	Acreage	Concentration	Intensity		Peak Flow
Area	(Ac.)	(min)	(in/hr)	C Value	(cfs)
1, 2	38.4	21	7.22	0.532	147.5
1, 2, 3	50	22	7.04	0.532	187.3
1, 2, 3, 4	63.4	23	6.87	0.532	231.8
	10	0 year Combined A	Area Peak Flo	ws	
		Time of			
Drainage	Acreage	Concentration	Intensity		Peak Flow
Area	(Ac.)	(min)	(in/hr)	C Value	(cfs)
1, 2	38.4	21	8.21	0.575	181.4
1, 2, 3	50	22	8.01	0.575	230.2
1, 2, 3, 4	63.4	23	7.81	0.575	284.8
		(Chan & Part	ners Engine	ering, LLO	C. 2000)

Chapter 4 Hydraulics, Storm Sewer Capacities

The estimated existing storm sewer systems in the project area are shown in Figure 2. No inlets were found on the central business district line between Highway 95 and Rio Grande Street. The major storm sewer for the project area is the system starting at East Oak Street and running south to Rio Grande Street. Below Rio Grande, it is believed that the systems converge, and capture runoff from inlets on Avery Drive and Mustang Street (Chan & Partners Engineering, LLC. 2000). Table 2-1 presents calculations used to determine the capacity of the existing system from Oak Street to Rio Grande Street.

The existing storm sewer capacity calculations was based on the following assumptions: the system was in average working condition; grate inlets and curb inlets are acting as sum inlets and have a clogging factor of 20% and 10% respectively; and the maximum depth of water at inlet locations was one foot. With these assumptions, the analysis shows that the existing system is severely undersized. As indicated in Table 2-1, substantial water bypasses the system at the two-year frequency storm (Chan & Partners Engineering, LLC. 2000). When the system capacity is exceeded, surface runoff begins to flow overland, which creates localized surface flooding in low-lying areas.

]	TABLE 2-	1				
			Exist	ting Condi	itions				
			Storm	Sewer Caj	pacities				
Assumption	s:								
D	rainage l	boundary fo	or area is r	oughly bou	inded by H	wy 95 on	west, along	g railroad	
		tracks on	north and e	east, and al	ong Musta	ng Street o	on south.		
Ν	o other	flows enter	this area e	ither as ov	erland, cha	nnel, or sto	orm sewer	(with the	
		exception	of the busi	ness distric	t storm sev	wer.			
Ea	ast / wes	st streets (V	Valnut, Peo	an, Rio Gi	rande, and	Mustang)	intercept ru	unoff moving	
		south and	divert then	n to the sys	tem inlets.				
Sy	ystem is	in average	working co	ondition.					
St	orm sev	ver line grad	des are rou	ighly those	of existing	ground slo	pe above.		
Grate Inlet	Capaci	ty							
Assumption	s:								
A	ll grates	are similar	in size, app	proximately	/ 2 ft x 2 ft.				
0	pen area	a available f	for flow is	1.8 ft^2					
C	- logging f	factor of 20	% applied						
М	laximum	depth of w	ater over	the grate in	let is 1 ft.				
G	rate Inle	ts are actin	g in sump l	ocations.					
Grate Inlet	sump E	Equation:							
Q	= 4.82	* A * H^0	.5 * F						
W	here Q i	s the flow r	ate in cfs.						
A	is open	area in ft^2	2.						
Н	is the he	eight of wat	er above i	the inlet op	ening.				
F	is the co	befficent for	clogging.						
Using above	e assun	nptions,							
		• <i>i</i>							
0	= 4.82	* 1.80 * 1	^0.5 * 0.8	$= 6.9 \mathrm{cfs}$	/ inlet				
`				_	(Ch	an & Da	rtners En	gineering II	

		Table 2-1	
Curb Inlet Ca	pacity		
Assumptions:			
All c	urb inlets are acting in sump locations	S.	
Max	imum height of water above throat op	pening is 1 ft.	
Clog	ging factor of 10% applied.		
Cumb Inlat Sum	n Equation:		
Curb met Sum	p Equation:		
0 =	30*H^15*L*F		
×			
when	e L is the length of the curb inlet ope	ning	
Using above as	sumptions,		
Q =	3.0 * 1^1.5 * L * 0.9 = 2.7 * L		
	Existing Syste	em Capacity Calculations	
Drainage Area	One at Walnut Street (Refer to Figur	re 1)	
		20.7.6	
	3 - Grate mets at 6.9 cis	20.7 CIS	
Mar	2 - 5 CUrb miets at 15.5 Cls	<u>27.0 CIS</u>	
Iviax	inum inet capacity for Area One	47.7 CIS	
cana	city of 30" CMP line at 1.4%	26.3 cfs	
Capa		20.5 CIS	
May	ximum flow in system at Walnut S	t 26.3 cfs	
	(lesser of inlet capacity and pir	be capacity)	
Drainage Area	Two at Pecan Street		
	1 - Grate inlet at 6.9 cfs	<u>6.9 cfs</u>	
Max	imum inlet capacity for Area Two	6.9 cfs	
capa	city of 30" line at 2.8%	37.2 cfs	
May	kimum flow in system at Pecan St.	$26.3 + 6.9 \mathrm{cfs} = 33.2$	2 cfs
	(lesser of Walnut St. flows and	l inlet capacity for Area Two or p	pipe capacity for Area Two)
		(Chan & Partners Engin	eering, LLC. 2000)

Chapter 5 Option One

Option one proposes to replace the majority of the existing north-south storm sewer system pipes, maintaining to a large extent the current alignment. The drainage areas for Option One are also the same as for existing conditions. To facilitate the capturing of surface runoff, new curb inlets are also proposed at the low points of East Walnut Street, East Pecan Street, Rio Grande Street, and Avery Drive. The new storm sewer system will parallel the existing line though the Avery Drive Projects, out-falling to Mustang Creek adjacent to the existing 60" CMP. Erosion Protection and energy dissipaters will be constructed at the outfall of the two (one existing and one proposed) storm sewer pipes (Chan & Partners Engineering, LLC. 2000). The proposed storm drain sewer system should have adequate conveyance for the 25 -year frequency storm, which is the city's minimum requirement. Option One's storm sewer system layout is in Figure 3, and its capacity analysis is in Table 2-2.

					Table 2-2	2			
		Option (One, P	ropc	osed Storr	n Sewer C	Capacities		
Assumptio	ons:			(C	Chan & I	Partners I	Engineerii	ng, LLC.	2000)
	Drainage	ooundary f	or area	is r	oughly bo	unded by I	Hwy. 95 on	west, alon	g railroad
		tracks on	north a	nd e	east, and a	long Must	ang Street o	on south.	
	No other	flows enter	this ar	ea e	ither as ov	verland, ch	annel, or sto	orm sewer	(with the
		exception	of the	busi	ness distri	ct storm se	ewer).		
	East / wes	t (Walnut,	Pecan	, rio	Grande, a	and Mustar	ng) intercep	t runoff mo	ving south
	~	and divert	them t	o th	e system i	nlets.			
	Clogging f	actor of 20)% app	blied	to all grat	e inlets in s	sump location	ons.	
	Clogging f	actor of 1()% app	blied	to all curb	o inlets in s	ump locatio	ns.	
	Maximum	depth of v	vater a	bove	e opening	of inlets is	10 inches (.	.833 ft).	
a									
Grate Inle	t Sump Eq	uation:							
		0 4 00							
		Q = 4.82	* A * .	H^0).5 * F				
C					•••••				
for existing	g grate inle	ts with abo	ve assi	Jumpi	tions:				
		0 4 92	* 1 0 5	k 07	2005*	90 62	. C .		
		Q = 4.82	* 1.8 *	* .82	5540.5 * .	80 = 0.3 C			
Curb Inlat	Sump Equ	ation							
Curb Intel	Sump Equ	lation:							
		0 - 2.0 *		: * T	* E				
		$Q = 5.0^{-1}$	п~1) · I	7 . L				
		0 - 2.0 *	8330	15	*1 * 0 0	- 2 0 * I			
		$Q = 3.0^{-1}$.035	1.5	· L · 0.9	– 2.0 · L			
Proposed	system car	nacity com	nared ($to 2^4$	5 _{- Vear ne}	ak flows			
Tioposed	systemea	Jacity com	parcu	10 2.	J-year pe	ak nows			
At Walnut	Street (re	fer to Figur	ъ 3)						
3 - existin	o orate inle	ts at 6 3 cf	è			18.9 cfs			
$\frac{3}{2}$ - existing	$\sigma 5$ foot cu	rh inlets at	3 10 cfs			$20.0 \mathrm{cfs}$			
1 - 15 foo	t curb inlet	on north s	ide of	Wah	nut	$30.0 \mathrm{cfs}$			
1 - 15 foo	t curb inlet	on south s	ide of	Wal	nut	30.0 cfs			
10100		Sir Souri B		,, ul		2010 015			
Intercepte	d flow					98.9 cfs			
25 -year r	beak flow					90.5 cfs			

(Option One, Proposed Storm Sewer Capacities)

From Walnut to Pecan	
Capacity of 36" RCP @ 2.5%	105 cfs
25 -year peak flow	90.5 cfs
At Pecan Street	
1 - 15 foot curb inlet on north side of Pecan	30.0 cfs
1 - 10 foot curb inlet on south side of Pecan	20.0 cfs
Intercepted Flow	50.0 cfs
25 -year peak flow from area Two	44.3 cfs
From Pecan to Rio Grande	
Capacity of 48" RCP @ 1.0%	143.0 cfs
Combined Areas One and Two 25 -year peak flow	125.0 cfs
At Rio Grande Street	
1 - 10 foot curb inlet on north side of Rio Grande	20.0 cfs
1 - 10 foot curb inlet on south side of Rio Grande	20.0 cfs
1 - 10 foot curb inlet on grade east of Booth Street	8.0 cfs (drains to existing 60")
Intercepted Flow	48.0 cfs
25 -year peak flow from Area Three	43.7 cfs
In Avery Drive Projects	
1 - 10 foot curb inlet on Avery Drive in east parking lot	20.0 cfs
2 - 5 foot existing curb inlets on Mustang St. at 10.0 cfs	20.0 cfs
2 - 10 foot existing curb inlets on Avery Drive	20.0 cfs (drains to existing 60")
Intercepted Flow	60.0 cfs
25 -year peak flow from Area Four	50.4 cfs
From Rio Grande to outfall	
Capacity of 54" RCP @ 1.0%	196.0 cfs
Combined Areas One through Four 25 -year peak flow	168.8 cfs (28.0 cfs drains to CBD line)
(Chan &	Partners Engineering IIC 2000)

(Chan & Partners Engineering, LLC. 2000)

Chapter 6 Option Two

Option Two proposes a new storm sewer system to be installed in Simon Street from East Walnut Street to Rio Grande Street, and from Rio Grande Street to Mustang Creek though the Avery Drive Projects. This option creates east (existing) and west (proposed) storm sewer systems that join together below Rio Grande Street. The new storm sewer line (west) will tie into the existing storm sewer line at East Walnut Street and divert all upstream flows into the new system. New storm sewer pipes will be added in Simon Street and curb inlets will be installed at East Walnut Street, East Pecan Street, and Rio Grande Street. With the new storm sewer line intercepting the runoff from Drainage Areas 1W and 2W, the existing storm sewer line (east) can maintain the current storm sewer pipes. Additional curb inlets at East Walnut Street and East Pecan Street are needed to capture the 25 -year storm runoff from the remaining drainage areas. Below the confluence of the two storm sewer systems, the Option Two storm sewer is identical to Option One (Chan & Partners Engineering, LLC. 2000). The new storm sewer line creates additional drainage areas, and the drainage area map for this option is shown in Figure 4. A conceptual layout of the Option Two storm sewer systems is shown in Figure 5.

Chapter 7 RC&A's Due Diligence

With current information available, RC&A has provided accurate calculations of the current drainage system. They determined that the current drainage system is extremely undersized, and it cannot handle the existing peak flows in Table 2-0. To solve this issue, RC&A has developed two new drainage system options in Tables 2-3 and Tables 2-4. Not only do the proposed drainage systems solve the flooding issues, but options were given to the client, which are to avoid: excavations on private property, conflicts with existing lines, and roadway closure that are a major inconvenience for public drivers. This section will discuss how RC&A has used due diligence in their drainage design for the client and their recommendations to make their proposed options more accurate.

RC&A's Option One design replaces an existing storm sewer line, and it keeps the current alignment of the drainage system. This will reduce possible conflicts with existing underground utilities and overhead utilities. Also, no new storm sewer pipe lines are added to the drainage areas. With Option One's drainage system, trenching within roadways is reduced; however, road crossings and associated repairs will be needed. Most of the construction would be across private properties, and this will create an inconvenience for residents. Also, the existence of drainage easements for the existing storm sewer system has not all been confirmed. To maximize water runoff capture, new inlets can be positioned at the low points within the drainage areas.

The alternative to construction across private properties would be Option Two for design. The majority of work of Option Two's drainage system would be in Simon Street and Rio Grande Street. However, there may be possible conflicts with existing underground utilities and overhead utilities within Simon Street and Rio Grande Street. Also, periodic closure of the roadways may occur because of construction. Some of Option Two's central business district (CBD) storm sewer line may cross private property at the northeast corner of Simon Street and Rio Grande Street without any public easements. Without public easements, the new 36" line (indicated on Figure 5) would not be able to parallel the CBD storm line. Thus, this option is totally dependent on the location of the CBD storm line. Additionally, Simon and Rio Grande Street are in deteriorated condition, so patching of these streets are not recommended. Therefore, the only alternative is to re-pave the construction parts of Simon and Rio Grande Street. The re-paving of these streets will also improve the capture of water runoff within the construction area. Current inlets on Simon Street would not be able to capture a 25 –year storm water runoff, so additional inlets are required to prevent flooding (Chan & Partners Engineering, LLC. 2000).

			Tab	le 2-3			
			Optic	on Two			
		Drainage A	rea Pea	ık Flov	v Calculation	5	
				VTA	RIF		
					DLL		
Drainage Area	2 year Peak Flow (cfs)	5 year Peak Flow (cfs)	10 yo Peak I (cfs	ear Flow s)	25 year Peak Flow (cfs)	50 year Peak Flow (cfs)	100 year Peak Flow (cfs)
1W	20.5	27.3	35.	3	44.2	52.0	64.0
1E	21.5	28.5	36.	9	46.3	54.4	66.9
2W	12.6	16.6	21.	4	26.8	31.4	38.8
2 E	8.2	10.8	13.	9	17.5	20.5	25.3
3	20.4	27.0	34.	8	43.7	51.2	63.2
4	23.6	31.2	40.	2	50.4	59.2	73.0
		CO) MBIN	ED FL	OWS		
1W,2W	30.4	40.4	52.	3	65.6	77.2	94.9
1E,2E	27.7	36.8	47.	6	59.7	70.3	86.4
1,2,3	73.7	97.9	126	.8	159.1	187.3	230.2
1,2,3,4	91.0	121.0	156	.8	196.8	231.8	284.8
Composite C	values for a	ll subareas (COAD	rainao	e Criteria Ma	amual)	
Approximatel	v 30% imper	vious cover.	70% fai	r grass	on flat slope	(0-2%)	
-pp.o	2vear	5vear	10ve	ear	25vear	50vear	100vear
Impervious	0.74	0.785	0.8	2	0.87	0.91	0.96
Pervious	0.25	0.28	0.3	3	0.34	0.37	0.41
Composite C	0.397	0.4315	0.45	56	0.499	0.532	0.575
Rainfall Inter	nsity (TxDO	T idf coeffic	ients fo	r Willia	amson Count	y)	
				Retur	n Period		
	2 year	5 year	10 ye	ear	25 year	50 year	100 year
b	56.0	68.0	77.	0	88.0	92.0	103.0
d	8.0	8.5	8.5	5	8.5	8.5	8.0
е	0.798	0.792	0.76	59	0.768	0.752	0.751
			((Chan &	& Partners E	ngineering, l	LLC. 2000)

(Option Two, Drainage Area Peak Flow Calculations)

		2 Year Peak I	low Rates		
Drainage Area	Acreage (Ac.)	Time of Concentration (min)	Intensity (in/hr)	C value	Peak Flow (cfs)
1W	13.2	20	3.92	0.397	20.5
1E	13.8	20	3.92	0.397	21.5
2W	6.9	15	4.59	0.397	12.6
2E	4.5	15	4.59	0.397	8.2
3	11.6	16	4.43	0.397	20.4
4	13.4	16	4.43	0.397	23.6
	-	5 Year Peak l	Flow Rates	-	-
Drainage Area	Acreage (Ac.)	Time of Concentration (min)	Intensity (in/hr)	C value	Peak Flow (cfs)
1W	13.2	20	4.79	0.4315	27.3
1E	13.8	20	4.79	0.4315	28.5
2W	6.9	15	5.58	0.4315	16.6
2E	4.5	15	5.58	0.4315	10.8
3	11.6	16	5.40	0.4315	27.0
4	13.4	16	5.40	0.4315	31.2
		10 Year Peak	Flow Rates		
		Time of			
Ducinogo	1 0000000		Intomater		Dooly Flow
Drainage Area	Acreage (Ac.)	Concentration (min)	Intensity (in/hr)	C value	Peak Flow (cfs)
Drainage Area 1W	Acreage (Ac.) 13.2	Concentration (min) 20	Intensity (in/hr) 5.86	C value 0.456	Peak Flow (cfs) 35.3
Drainage Area 1W 1E	Acreage (Ac.) 13.2 13.8	Concentration (min) 20 20	Intensity (in/hr) 5.86 5.86	C value 0.456 0.456	Peak Flow (cfs) 35.3 36.9
Drainage Area 1W 1E 2W	Acreage (Ac.) 13.2 13.8 6.9	Concentration (min) 20 20 15	Intensity (in/hr) 5.86 5.86 6.79	C value 0.456 0.456 0.456	Peak Flow (cfs) 35.3 36.9 21.4
Drainage Area 1W 1E 2W 2E	Acreage (Ac.) 13.2 13.8 6.9 4.5	Concentration (min) 20 20 15 15	Intensity (in/hr) 5.86 5.86 6.79 6.79	C value 0.456 0.456 0.456 0.456	Peak Flow (cfs) 35.3 36.9 21.4 13.9
Drainage Area 1W 1E 2W 2E 3	Acreage (Ac.) 13.2 13.8 6.9 4.5 11.6	Concentration (min) 20 20 15 15 15	Intensity (in/hr) 5.86 5.86 6.79 6.79 6.58	C value 0.456 0.456 0.456 0.456 0.456	Peak Flow (cfs) 35.3 36.9 21.4 13.9 34.8
Drainage Area 1W 1E 2W 2E 3 4	Acreage (Ac.) 13.2 13.8 6.9 4.5 11.6 13.4	Concentration (min) 20 20 15 15 16 16	Intensity (in/hr) 5.86 5.86 6.79 6.79 6.58 6.58	C value 0.456 0.456 0.456 0.456 0.456 0.456	Peak Flow (cfs) 35.3 36.9 21.4 13.9 34.8 40.2
Drainage Area 1W 1E 2W 2E 3 4	Acreage (Ac.) 13.2 13.8 6.9 4.5 11.6 13.4	Concentration (min) 20 20 15 15 16 16	Intensity (in/hr) 5.86 5.86 6.79 6.79 6.58 6.58	C value 0.456 0.456 0.456 0.456 0.456 0.456	Peak Flow (cfs) 35.3 36.9 21.4 13.9 34.8 40.2
Drainage Area 1W 1E 2W 2E 3 4	Acreage (Ac.) 13.2 13.8 6.9 4.5 11.6 13.4	Concentration (min) 20 20 15 15 16 16 16 25 Year Peak	Intensity (in/hr) 5.86 5.86 6.79 6.79 6.58 6.58 Flow Rates	C value 0.456 0.456 0.456 0.456 0.456 0.456	Peak Flow (cfs) 35.3 36.9 21.4 13.9 34.8 40.2
Drainage Area 1W 1E 2W 2E 3 4 Drainage Area	Acreage (Ac.) 13.2 13.8 6.9 4.5 11.6 13.4 Acreage (Ac.)	Concentration (min) 20 20 15 15 16 16 25 Year Peak Time of Concentration (min)	Intensity (in/hr) 5.86 5.86 6.79 6.79 6.58 6.58 6.58 Flow Rates Intensity (in/hr)	C value 0.456 0.456 0.456 0.456 0.456 0.456 C value	Peak Flow (cfs) 35.3 36.9 21.4 13.9 34.8 40.2 Peak Flow (cfs)
Drainage Area 1W 1E 2W 2E 3 4 4 Drainage Area 1W	Acreage (Ac.) 13.2 13.8 6.9 4.5 11.6 13.4 Acreage (Ac.) 13.2	Concentration (min) 20 20 15 15 16 16 25 Year Peak Time of Concentration (min) 20	Intensity (in/hr) 5.86 5.86 6.79 6.79 6.58 6.58 Flow Rates Intensity (in/hr) 6.72	C value 0.456 0.456 0.456 0.456 0.456 0.456 C value 0.499	Peak Flow (cfs) 35.3 36.9 21.4 13.9 34.8 40.2 Peak Flow (cfs) 44 2
Drainage Area 1W 1E 2W 2E 3 4 4 Drainage Area 1W	Acreage (Ac.) 13.2 13.8 6.9 4.5 11.6 13.4 Acreage (Ac.) 13.2 13.8	Concentration (min) 20 20 15 15 16 16 16 25 Year Peak Time of Concentration (min) 20 20 20	Intensity (in/hr) 5.86 5.86 6.79 6.79 6.58 6.58 Flow Rates Intensity (in/hr) 6.72 6.72	C value 0.456 0.456 0.456 0.456 0.456 0.456 C value 0.499 0.499	Peak Flow (cfs) 35.3 36.9 21.4 13.9 34.8 40.2 Peak Flow (cfs) 44.2 46.3
Drainage Area 1W 1E 2W 2E 3 4 4 Drainage Area 1W 1E 2W	Acreage (Ac.) 13.2 13.8 6.9 4.5 11.6 13.4 Acreage (Ac.) 13.2 13.8 6.9	Concentration (min) 20 20 15 15 16 16 25 Year Peak Time of Concentration (min) 20 20 20	Intensity (in/hr) 5.86 5.86 6.79 6.79 6.58 6.58 Flow Rates Intensity (in/hr) 6.72 6.72 6.72 7.79	C value 0.456 0.456 0.456 0.456 0.456 0.456 C value 0.499 0.499 0.499	Peak Flow (cfs) 35.3 36.9 21.4 13.9 34.8 40.2 Peak Flow (cfs) 44.2 46.3 26.8
Drainage Area 1W 1E 2W 2E 3 4 4 Drainage Area 1W 1E 2W 2E	Acreage (Ac.) 13.2 13.8 6.9 4.5 11.6 13.4 Acreage (Ac.) 13.2 13.8 6.9 4.5	Concentration (min) 20 20 15 15 16 16 25 Year Peak Time of Concentration (min) 20 20 15 15	Intensity (in/hr) 5.86 5.86 6.79 6.79 6.58 6.58 Flow Rates Intensity (in/hr) 6.72 6.72 7.79 7.79	C value 0.456 0.456 0.456 0.456 0.456 0.456 C value 0.499 0.499 0.499 0.499 0.499	Peak Flow (cfs) 35.3 36.9 21.4 13.9 34.8 40.2 Peak Flow (cfs) 44.2 46.3 26.8 17.5
Drainage Area 1W 1E 2W 2E 3 4 4 Drainage Area 1W 1E 2W 2E 3	Acreage (Ac.) 13.2 13.8 6.9 4.5 11.6 13.4 Acreage (Ac.) 13.2 13.8 6.9 4.5 11.6	Concentration (min) 20 20 15 15 16 16 25 Year Peak Time of Concentration (min) 20 20 15 15 15	Intensity (in/hr) 5.86 5.86 6.79 6.79 6.58 6.58 Flow Rates Intensity (in/hr) 6.72 6.72 7.79 7.79 7.54	C value 0.456 0.456 0.456 0.456 0.456 0.456 0.456 0.459 0.499 0.499 0.499 0.499 0.499 0.499	Peak Flow (cfs) 35.3 36.9 21.4 13.9 34.8 40.2 Peak Flow (cfs) 44.2 46.3 26.8 17.5 43.7
Drainage Area 1W 1E 2W 2E 3 4 4 Drainage Area 1W 1E 2W 2E 3 4	Acreage (Ac.) 13.2 13.8 6.9 4.5 11.6 13.4 Acreage (Ac.) 13.2 13.8 6.9 4.5 11.6 13.4	Concentration (min) 20 20 15 15 16 16 25 Year Peak Time of Concentration (min) 20 20 20 15 15 15 15 15	Intensity (in/hr) 5.86 5.86 6.79 6.79 6.58 6.58 Flow Rates Intensity (in/hr) 6.72 6.72 7.79 7.79 7.54 7.54	C value 0.456 0.456 0.456 0.456 0.456 0.456 0.456 0.459 0.491 0.491 0.491 0.491 0.491 0.491 0.491 0.49	Peak Flow (cfs) 35.3 36.9 21.4 13.9 34.8 40.2 Peak Flow (cfs) 44.2 46.3 26.8 17.5 43.7 50.4

50 Year Peak Flow Rates								
Drainage Area	Acreage (Ac.)	Time of Concentration (min)	Intensity (in/hr)	C value	Peak Flow (cfs)			
1W	13.2	20	7.41	0.532	52.0			
1E	13.8	20	7.41	0.532	54.4			
2W	6.9	15	8.57	0.532	31.4			
2E	4.5	15	8.57	0.532	20.5			
3	11.6	16	8.30	0.532	51.2			
4	13.4	16	8.30	0.532	59.2			
		100 Year Peak l	Flow Rates					
Drainage Area	Acreage (Ac.)	Time of Concentration (min)	Intensity (in/hr)	C value	Peak Flow (cfs)			
1W	13.2	20	8.43	0.575	64.0			
1E	13.8	20	8.43	0.575	66.9			
2W	6.9	15	9.78	0.575	38.8			
2E	4.5	15	9.78	0.575	25.3			
3	11.6	16	9.47	0.575	63.2			
4	13.4	16	9.47	0.575	73.0			
	2 ye	ar Combined Ar	ea Peak Flo	ows				
Drainage Area	Acreage (Ac.)	Time of Concentration (min)	Intensity (in/hr)	C value	Peak Flow (cfs)			
1W,2W	20.1	21	3.81	0.397	30.4			
1E,2E	18.3	21	3.81	0.397	27.7			
1,2,3	50.0	22	3.71	0.397	73.7			
1,2,3,4	63.4	23	3.61	0.397	91.0			
5 year Combined Area Peak Flows								
Drainage Area	Acreage (Ac.)	Time of Concentration (min)	Intensity (in/hr)	C value	Peak Flow (cfs)			
1W,2W	20.1	21	4.66	0.4315	40.4			
1E,2E	18.3	21	4.66	0.4315	36.8			
1,2,3	50.0	22	4.54	0.4315	97.9			
1,2,3,4	63.4	23	4.42	0.4315	121.0			
(Chan & Partners Engineering, LLC. 2000)								

(Option Two, Drainage Area Peak Flow Calculations)

10 year Combined Area Peak Flows								
Drainage Area	Acreage (Ac.)	Time of Concentration (min)	Intensity (in/hr)	C value	Peak Flow (cfs)			
1W,2W	20.1	21	5.70	0.456	52.3			
1E,2E	18.3	21	5.70	0.456	47.6			
1,2,3	50.0	22	5.56	0.456	126.8			
1,2,3,4	63.4	23	5.42	0.456	156.8			
	25	year Combined	Area Peak F	lows				
Drainage Area	Acreage (Ac.)	Time of Concentration (min)	Intensity (in/hr)	C value	Peak Flow (cfs)			
1W,2W	20.1	21	6.54	0.499	65.6			
1E,2E	18.3	21	6.54	0.499	59.7			
1,2,3	50.0	22	6.38	0.499	159.1			
1,2,3,4	63.4	23	6.22	0.499	196.8			
50 year Combined Area Peak Flows								
Drainage Area	Acreage (Ac.)	Concentration (min)	Intensity (in/hr)	C value	Peak Flow (cfs)			
1W,2W	20.1	21	7.22	0.532	77.2			
1E,2E	18.3	21	7.22	0.532	70.3			
1,2,3	50.0	22	7.04	0.532	187.3			
1,2,3,4	63.4	23	6.87	0.532	231.8			
	100) year Combined	Area Peak I	Tows				
Drainage Area	Acreage (Ac.)	Time of Concentration (min)	Intensity (in/hr)	C value	Peak Flow (cfs)			
1W,2W	20.1	21	8.21	0.575	94.9			
1E,2E	18.3	21	8.21	0.575	86.4			
1,2,3	50.0	22	8.01	0.575	230.2			
1,2,3,4	63.4	23	7.81	0.575	284.8			
	(Chan & Partners Engineering, LLC. 2000)							

(Option Two, Drainage Area Peak Flow Calculations)

Table 2-4										
Option Two, Proposed Storm Sewer Capacities										
Assumptio	ons:									
	Drainage boundary for area is roughly bounded by Hwy. 95 on west, along railroad									
tracks on north and east, and along Mustang Street on south.										
No other flows enter this area wither as overland, channel, or storm sewer (with the										
exception of the business district storm sewer).										
East / west streets (Walnut, Pecan, rio Grande, and Mustang) intercept runoff moving										
south and divert them to the system inlets.										
Clogging factor of 20% applied to all grate inlets in sump locations.										
	Clogging	factor of 1	0% appl	lied to all	curb inlets in	n sump loc	ations.			
	Maximum	n depth of w	vater ab	ove openii	ng of inlets is	s 10 inche	s (.833 ft).			
Grate Inle	t Sump Ec	uation:								
		Q = 4.82	* A* H^	0.5 * F						
for existin	g grate inl	lets with ab	ove ass	umptions:						
		Q = 4.82	* 1.8 * .	833^0.5 *	$.8 = 6.3 \mathrm{cfs}$					
Curb Inlet	Sump Eq	uation:								
		Q = 3.0 *	H^1.5 *	L*F						
		Q = 3.0 *	.833^1.	5 * L * .9 =	= 2.0 * L					
Curb Inlet	on grade	assumed to	capture	e 1 cfs per	foot of open	ing.				
Proposed	system ca	pacity com	pared to	25 -year	peak flows.					
West Sys	tem									
Area 1W	at Walnut	Street (Ref	fer to Fig	gure 4)						
3 - existing grate inlets at 6.3 cfs				18.9 cfs						
1 - existing 5 foot curb inlets at 10 cfs				10.0 cfs						
1 - 10 foot curb inlet on north side of Walnut				10.0 cfs						
1 - 10 foot curb inlet on south side of Waln				Valnut	10.0 cfs					
Intercepted Flow				48.9 cfs						
25 -year p	eak flow				44.2 cfs					
				(Chan	& Partner	s Engine	ering, LI	.C. 2000)		

From Wal	nut to Peca	an						
Capacity of 30" RCP @ 1.5%						50.2 cfs		
25 -year p	eak flow					44.2 cfs		
East Syst	em							
Area 1E at	: Walnut S	treet (Refe	r to Figure	4)				
1 - existing 5 foot curb inlets at 10 cfs 10.0 cfs								
1 - 10 foot curb inlet on north side of Walnut								
1 - 10 foot	curb inlet	on south s	ide of Wal	nut		20.0 cfs		
Intercepted	1 Flow					50.0 cfs		
25 -year p	eak flow					46.3 cfs		
From Wal	nut to Peca	an						
A	620" DOI					50.0 5		
Capacity o	1 30° RCF	°@ 1.5%				50.2 cis		
25 -year p	eak now					46.3 CIS		
W4 C	4							
west Sys	lem							
A + Da ann (1440 of							
At recall street								
1 - 15 foot	curb inlet	east of Sir	mon north	n side of Pe	con	15.0 cfs		
1 - 13 100		east of Sil	1011 - 11010		call	15.0 018		
Intercenter	1 flow					30.0 cfs		
25 -vear n	eak flow f	rom Area (2W/			$26.3 \mathrm{cfs}$		
25 - year p						20.5 015		
From Pecs	n to Rio (Frande						
$C_{\text{apacity}} \text{ of } 36" \text{ PCP } @ 1.5\% $								
Combined Areas 1W and 2W 25 -vear neak flow					65.6 cfs			
Combined	r neus r v	und 200	25 year p			00.0 015		
East Syst	em							
2								
At Pecan S	Street							
1 - existing	grate inle	t				6.3 cfs		
1 - 10 foot	curb sout	h side of P	ecan			20.0 cfs		
Intercepted	1 Flow					26.3 cfs		
25 -year p	eak flow f	rom Area 2	2E			17.5 cfs		
· •								
From Pecan to Rio Grande								
Capacity of 36" RCP @ 1.5% 81.6					81.6 cfs			
Combined	Areas 1E	and 2E 25	-year pea	k flow		59.7 cfs		
(Chan & Partners Engineering, LLC. 2000)								

(Option Two, Proposed Storm Sewer Capacities)

(Option Two, Proposed Storm Sewer Capacities)

West System									
At Rio Grande Stree	t								
1 - 10 foot curb inlet on grade - north side of Rio Grande					ande	10.0 cfs			
1 - 10 foot curb inlet	on grade -	south side	of R	Rio Gr	ande	10.0 cfs (d	lrains to ex	tisting CBD	line)
From Simon St. to ju	unction of E	East and W	est s	ystem	5				
Capacity of 36" at 1.	5%					81.6 cfs			
Total Flow in West S	System					75.6 cfs			
East System									
at Rio Grande Street									
2 - 2' curb inlets at 2	cfs					4.0 cfs			
From Rio Grande St	. to junctine	o of East a	nd W	est sy	stems				
Capacity of exiting 3	6" RCP @	1.5%				81.6 cfs			
Total Flow in East sy	/stem					63.7 cfs			
Combined Systems	5								
At Rio Grande Stree	t								
1 - 10 foot sump inle	t - north si	de of Rio C	Grand	le		20.0 cfs			
1 - 10 foot sump inle	t - south si	de of Rio (Grand	le		20.0 cfs			
Total Intercepted Flo)W					64.0 cfs			
25 -year peak flow f	rom Area	Three				43.7 cfs			
In Avery Drive Proje	ects								
1 - 10 foot curb inlet on Avery Drive in east parking lot						20.0 cfs			
2 - 5 foot existing curb inlets on Mustang St. at 10.0 cfs					cfs	20.0 cfs			
2 - 5 foot existing curb inlets on Avery Drive at 10.0 cfs				cfs	20.0 cfs (c	lrains to ex	tisting 60")		
Intercepted Flow						60.0 cfs			
25 -year peak flow f	rom Area I	Four				50.4 cfs			
From Rio Grande to	outfall								
Capacity of 54" RCP @ 1.0%						196.0 cfs			
Combined Areas One through Four 25 -year peak flow					ow	166.8 cfs (30.0 cfs to existing CBD line)			
	_		_	(C	han & F	Partners Er	gineerin	g, LLC. 2	.000)

Although the new storm sewer system and local drainage improvements will reduce the localized flooding in the area of Avery Drive, RC&A continues their due diligence by recommending further investigation to obtain certain data for a complete and successful design. The following data is needed:

- Obtain more accurate topographic information for the project area, including a portion of Mustang Creek. This will determine exactly where the water runoff will travel.
- Identify/verify the existing storm sewer systems sizes and locations in the study area, especially the storm sewer system from the Central business district (if not performed by the Public Works Department). Knowing the exact size of the storm sewer system, will also determine exactly how much water is captured.
- Verify that the existing storm sewer line is located within drainage easements. This is crucial in determining if it crosses private property.
- Design / modify the proposed storm sewer system based on new topography. Knowing the exact elevations of the area will determine where the water will flow.
- Determine if additional drainage easement acquisition will be required. This is important because the new drainage system cannot be in private property, so public easements need to be acquired.
- Obtain more accurate information on existing underground utilities and overhead utilities within the project area. During the street excavation, the proposed storm sewer system should not conflict with existing utilities.

• Control erosion problems at the outfall of storm sewer pipes below Mustang Street.

Because of the relatively flat terrain in the Avery Drive drainage area, RC&A's assumptions based on USGS 10 foot contour topography has the potential for serious error. To avoid serious error, two-foot contour topography is needed for the study area, so accurate data of flow paths and drainage areas can be calculated. Also, because of the extent of the project area, RC&A recommends that topography should be created from aerial photos rather than from on-the-ground survey. Additionally, creating aerial photos is also more cost-effective than on-the-ground survey.

Another recommendation from RC&A is the existing storm sewer system needs to be accurately identified to ensure that the system works for the current drainage area calculated. Thus, it does not extend to off-site areas or collect runoff from another drainage system. If offsite flows are currently affecting Avery Drive's drainage system, then Option One and Option Two need to be re-designed to accommodate these additional flows. City of Taylor's surveying crews can locate missing underground storm sewer lines that can contribute to Avery Drive's drainage system.

If existing systems are more accurately identified and new topography is gathered, then the new system layout may need to be modified. When the final layout is determined, further investigation and design will be needed to minimize conflicts with other utility lines.

It may be possible to implement low-cost drainage improvements, consisting primarily of grading, within the Avery Drive projects to protect housing units form nuisance flooding prior to the construction of the proposed storm sewer system. Coordination with the City of Taylor will

be required to determine the extent of improvements that can be performed by the City or contractor outside the street right-of-ways.

Serious erosion and scour is occurring at the existing 60" CMP outfall. This situation should be corrected at the time the proposed storm sewer system is installed.

Field investigation of inlets revealed that trash and litter have effectively stopped many inlets from functioning. A maintenance plan should be created establishing routine cleaning of inlets and surrounding areas to ensure that any improvements function as designed. At a minimum, yearly maintenance of the system should be performed (Chan & Partners Engineering, LLC. 2000).

Chapter 8 Conclusion

The study that RC&A was asked to perform was a preliminary investigation and design for solving the drainage issues along Mustang Creek on Avery Drive. In this area, the existing drainage system is extremely undersized, and cannot capture runoff collecting near the depressed areas of the old tributary of Mustang Creek. Surface runoff not captured by the existing drainage system flows overland southward toward Avery Drive though low lying areas, which causes flooding. The study was based on data that was collected and provided by the City of Taylor. The data provided by the City of Taylor was average rainfall occurrence and outdated underground existing utilities. From this limited pool of data, RC&A drew the conclusion that there were two main options for improving the drainage system: Option one increases the capacity of the existing storm sewer system (Figure 3), and Option two constructs a new storm drain system along Simon Street while keeping the existing system in place (Figure 5). Other considerations beyond drainage issues were taken when presenting the two options, such as excavations on private property, conflicts with existing lines, and roadway closure that are a major inconvenience for public drivers. RC&A practiced due diligence by recommending that further data be collected, such as topographic and utility locations, in order to increase the accuracy of the study and further determine which option is the best suited for the client's needs and existing resource base.

Bibliography

American Concrete Pipe Association, <u>Concrete Pipe Design Manual</u>, Sixth Printing, Vienna, Virginia, February, 1985.

American Iron and Steel Institute, Modern Sewer Design, Washington, D.C., 1980.

Chan & Partners Engineering, LLC. Avery Drive Drainage Improvements. October 1999.

City of Austin, Drainage Criteria Manual. 2010 American Legal Publishing corporation.

Dunkin, Sefko, and Associates, Inc. 1996. City of Taylor Comprehensive Plan Report.

Frederick, R.H. et al. National Weather Service. 1977. NWS Hydro-35.

Hershfield, D.M. U.S. Dept. of Comm., Weather Bureau. 1961. Technical Paper 40.

Kibler, D.F., "Urban Stormwater Hydrology," Water Resources Monograph 7, American Geophysical Union, Washington, D.C., 1982.

Komandosky, Susan. "Taylor Flood of 1921 deadliest in Texas." Community Impact Newspaper. August 2008.

Marek, Mark. Hydraulic Design Manual. Texas Department of Transportation. 2009.

U.S. Army Corps of Engineers, Hydrologic Engineering Center. 1990. HEC-1 Flood Hydrograph Package.

U.S. Army Corps of Engineers, Hydrologic Engineering Center. 1997. HEC-RAS River Analysis System.

U.S. Dept. of Agriculture, Soil Conservation Service. 1977. Flood Hazard Analysis, Mustang Creek, Williamson County, Texas.

U.S. Dept. of Agriculture, Soil Conservation Service. 1974. Soil Survey of Williamson County.

U.S. Dept. of Agriculture, Soil Conservation Service. 1986. Technical Release 55, Urban Hydrology for Small Watersheds.