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Spintronics is the study of mutual dependence of magnetization and elec-

tron transport, which forms a complementary picture in ferromagnetic (FM)

materials. Recently, spintronics based on antiferromagnetic (AF) materials

has been suggested. However, a systematic study is not yet available, and a

complementary picture of the AF dynamics with electron transport is high-

ly desired. By developing a microscopic theory, we predict the occurrence of

spintronic phenomena both in bulk AF texture and on the interface of AF with

normal metals. For the bulk, we find that the electron dynamics becomes adi-

abatic when the local staggered field is varying slowly over space and time, by

which the spin-motive force and the reactive spin-transfer torque (STT) are

derived as reciprocal effects. While the former generates a pure spin voltage

across the texture, the latter can be used to drive AF domain wall and trigger

spin wave excitation with lower current densities compared to FM material-

s. For the interface, by calculating how electrons scatter off a normal metal

-antiferromagnet heterostructure, we derive the pumped spin and staggered
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spin currents in terms of the staggered order parameter, the magnetization,

and their rates of change; the reactions of an incident spin current on the

antiferromagnet is derived as STTs. These effects are applicable to both com-

pensated and uncompensated interfaces with a similar order of magnitude. In

contrast to FM materials, the direction of spin pumping is controlled by the

circular polarization of driving microwave; and conversely, the chirality of AF

spin wave is tunable by the direction of spin accumulation.
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Chapter 1

Introduction

1.1 Motivation and Outline

Spintronics is the study of mutual dependence of electron transport and

magnetization dynamics, which initially stemmed from the field of magnetism

and has evolved into a large area in condensed matter physics today. Stud-

ies on spintronics has stimulated numerous possibilities in device design and

engineering, information science, nano-technology, and more importantly, the

fundamental physics. Despite that conduction electrons and local magneti-

zation are coupled through an exchange interaction, phenomena arising from

this simple physics are yet manifold.

Nowadays, people have paid substantial amount of efforts on improv-

ing the functioning of magnetic materials targeting at a strong and robust

control by electrical means. However, main stream studies all focus on ferro-

magnetic materials with non-zero macroscopic magnetization. Few attentions

have been paid to its intimate counterpart – antiferromagnet, which admits

vanishing magnetization where the magnetic ordering is characterized by the

staggered field. For a long time, antiferromagnet plays merely a subsidiary role

in magnetic materials, while its potential application has been overlooked. For

1



example, an antiferromagnetic layer is used to pin the ferromagnetic layer in

a spin-valve unit, where it provides auxiliary support to the device but has no

active role in information storage.

However, by a series of fundamental explorations, we claim that an-

tiferromagnetic materials are not only useful in processing information (such

as spin current generation), but also exhibit relatively easier control under

current-induced torques compared to ferromagnet. At the very beginning, the

story started from an effort to generalize the Berry phase physics that are

well established in ferromagnetic metals to a more fancy version incorporating

degenerate bands, namely, the non-Abelian Berry phase. While the initial mo-

tivation is pretty mathematical, successive discoveries with specific predictions

have becoming the principle impetus for later investigations.

In this dissertation, I present a full story of the arduous yet rewarding

ways towards antiferromagnetic spintronics. The dissertation naturally breaks

up into two categories, the bulk spintronics and the interface spintronics. I am

aiming at a complementary picture between electron transport (spin current)

and the dynamics of the background staggered field. Chapter two and three

are devoted to the two complementary aspects in the bulk, with the implicit

assumption that the system is infinite. Chapter four and five, on the other

hand, explore the two reciprocal processes on a normal metal/antiferromagnet

heterostructure where only interfacial physics is considered. The entire topic of

antiferromagnetic spintronics is concluded in Chapter six. A common thread

of our discussion is the Berry phase formalism within linear response.
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The following sections of the present chapter introduce some basic no-

tions and necessary background required to understand the topics of the dis-

sertation. Without sacrificing rigorousness, I will try to emphasis the physical

picture and motivations more than mathematical tricks.

1.2 Magnetization Dynamics

The journey of spintronics starts from the magnetization dynamics.

The ferromagnetic ordering is characterized by the magnetization M , which

consists of both local magnetic moments and itinerant electron spins. Well

below the Curie temperature, fluctuations of M is negligible and we are able

to describe its dynamics by a classical equation known as the Landau-Lifshitz

Equation [60] that can be written simply as

∂M

∂t
= γH

eff
×M , (1.1)

where γ is the gyro-magnetic ratio, and H
eff

is the effective magnetic field

including the external magnetic field, the exchange field, the anisotropy, and

the demagnetization. Eq. (1.1) is just the macroscopic version of the Bloch

equation for a single spin. Besides a precession about the effective field, it can

hardly provide much further information.

Interesting physics steps in when the damping effect is taken into ac-

count. Regardless of the microscopic mechanism, the damping effect always

drag the precessing magnetization towards its equilibrium position, i.e., the

direction of the effective field. So in a phenomenological manner, we can write

3



down the modified version of Eq. (1.1) as

∂M

∂t
= γH

eff
×M +

α

Ms

M × ∂M

∂t
, (1.2)

where α is a dimensionless constant that determines the strength of damping,

and Ms is the saturation magnetization. At low temperatures, Ms is nearly

constant thus only the orientation ofM can change. Eq. (1.2) is usually known

as the Landau-Lifshitz-Gilbert equation (LLG).

As most keen learners may quest, is it able to combine the ∂M
∂t

terms on

both sides of Eq. (1.2) into a single term? Of course yes. By a straightforward

manipulation, the LLG is recast into a more suggestive form

(1 +
α2

M2
s

)
∂M

∂t
= γH

eff
×M + γ

α

Ms

M × (H
eff
×M ). (1.3)

It is clear from the right hand side of Eq. (1.3) that the precessional torque

and the damping torque are perpendicular to each other. Meanwhile, they are

both linear in the effective field. When written in this way, the damping is

known as the Landau-Lifshitz damping. Eq. (1.3) is particularly important in

studying the linear response property of the magnetic system.

1.3 Path Integral and Spin Berry phase

Semi-classical dynamics is suffice to describe the itinerant and the lo-

calized electrons in a unified fashion, which will be characterized by a universal

Lagrangian in the following sections. To this end, a crucial ingredient known

as the Berry’s phase is introduced in the path integral formalism.

4



1.3.1 Single Spin

As is well-known in ordinary quantum mechanics, the path integral

is a weighted sum of all possible routes of quantum evolution in terms of

the exponential of action. For spin dynamics, however, we need to define an

unambiguous “path” before constructing path integral. Following references [3,

30,91], let us consider a spin-S representation of the SU(2) group. Denote |0〉 =

|S, S〉 as the state of highest possible spin projection along the quantization

axis. Now define the state |n〉 labeled by the unit vector n upon a unitary

transformation from |S, S〉,

|n〉 = eiθ(n0×n)·S|S, S〉, (1.4)

where n0 is a unit vector along the quantization axis, θ is the co-latitude of

n, namely n0 · n = cos θ. And Si (i=1,2,3) are the three generators of SU(2)

in the spin-S representation; for S = 1/2, they are just Pauli matrices.

The state |n〉 can be expanded in a complete basis of the spin-S irre-

ducible representation {|S,M〉}, where M is an integer that −S ≤ M ≤ S

and labels the eigenvalue of S3,

S3|S,M〉 = M |S,M〉, (1.5a)

S2|S,M〉 = S(S + 1)|S,M〉. (1.5b)

The expansion coefficients are the matrices D(s)(n)MS defined by

|n〉 =
S∑

M=−S

D(s)(n)MS|S,M〉, (1.6)
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Figure 1.1: Left: the spherical triangle is constructed by connecting vertices
at n1, n2, and n3 by great arcs. Right: a closed path is divided by N steps,
with each single time slice defining a spherical triangle.

which do NOT form a group but respect the algebra

D(S)(n1)D(S)(n2) = D(S)(n3)eiΦ(n1,n2,n3)S3 , (1.7)

where n1, n2, and n3 are three arbitrary unit vectors on the unit sphere. And

Φ(n1,n2,n3) is the area of the spherical triangle subtended by n1, n2, and

n3, as shown in Fig. 1.1.

Since there is no distinction between interior and exterior of a closed

path on the sphere (or closed manifold in general), the area of a spherical

triangle is only determined up to a 4π ambiguity. Since the eigenvalues of S3

equals M , which is either an integer or a half-integer, this phase ambiguity

has no physical consequence since

ei4πM = 1, regardless of M. (1.8)
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The inner product of two spin coherent states |n1〉 and |n2〉 is

〈n1|n2〉 = 〈0|D(S)†(n1)D(S)(n2)|0〉

= eiΦ(n1,n2,n0)S

[
1 + n1 · n2

2

]S
, (1.9)

and the diagonal elements of the SU(2) generators S is 〈n|S|n〉 = Sn. Now

we resort to the path integral in the imaginary time; the evolution operator

is denoted by Z = treiHT = tre−βH , where T is the period of evolution. We

split the imaginary time by N slices that β = Nδt. As N →∞ (δt→ 0), the

exponentiated operators at adjacent times become commutative, so

Z = tre−βH = lim
N→∞

[e−δtH ]N . (1.10)

Now insert a bunch of resolution of identity

Î =

∫
dµ(n)|n〉〈n|, (1.11)

dµ(n) =

(
2S + 1

4π

)
d3nδ(n2 − 1), (1.12)

between each adjacent time step, we obtain

Z = lim
N→∞

(
N∏

j=1

∫
dµ(nj)

)(
N∏

j=1

〈n(tj)|e−δtH |n(tj+1)〉
)

= lim
N→∞

(
N∏

j=1

∫
dµ(nj)

)(
N∏

j=1

[〈n(tj)|n(tj+1)〉 − δt〈n(tj)|H|n(tj+1)〉]
)
,

(1.13)

and n(t0) = n(tN+1) is assumed to close the path on the sphere. By virtue of

Eq. (1.9), we know

〈n(tj)|n(tj+1)〉 = eiΦ(n(tj),n(tj+1),n0)S

[
1 + n(tj) · n(tj+1)

2

]S
, (1.14)
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and to the lowest order in δt, we have

〈n(tj)|H|n(tj+1)〉
〈n(tj)|n(tj+1)〉 = 〈n(tj)|H|n(tj)〉+ O(δt). (1.15)

By inserting Eq. (1.14) and (1.15) into Eq. (1.13), we obtain the path

integral formally as

Z = lim
N→∞

∫
Dne−SE [n], (1.16)

where Dn =
∏N

j=1 dµ(n(tj)) and the effective action is

SE[n] = −iS
N∑

j=1

Φ(n(tj),n(tj+1),n0)− S
N∑

j=1

ln

[
1 + n(tj) · n(tj+1)

2

]

+
N∑

j=1

〈n(tj)|H|n(tj)〉. (1.17)

The first term of Eq. (1.17) leads to a sum over possible trajectories

weighted by the phase factor eiSA[n], where

A[n] = lim
N→∞

N∑

j=1

Φ(n(tj),n(tj+1),n0) (1.18)

is the area of the spherical triangle depicted in the right panel of Fig. 1.1. A

way to express the area in terms of n requires a special mathematical trick

where the path n(t) is continuously but arbitrarily mapped to a series of paths

by n(t) 7→ n(t, τ). As illustrated by Fig. 1.2, when the parameter τ varies

from 0 to 1, the path deforms continuously from the real path to the north

pole, i.e., n(t, 0) = n(t) and n(t, 1) = n0. For any 0 < τ < 1, the deformed

path satisfies the closed path condition that n(0, τ) = n(β, τ). Due to the
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Figure 1.2: n(t) with t ∈ [0, β] defines a closed path (blue curve) on the sphere.
τ ∈ [0, 1] maps the path continuous towards the north pole (red curves) with
n(t, 0) = n(t) and n(t, 1) = n0. For ∀τ , n(0, τ) = n(β, τ). Grids are formed
by varying both t and τ , which defines the differential area ds.

arbitrariness of the mapping, curves of equal-t and equal-τ are not orthogonal,

thus the differential area is expressed by the mixed product

ds = n · (∂tn× ∂τn)dtdτ, (1.19)

which is pictures in Fig. 1.2. Consequently, the area on the sphere enclosed

by the path becomes

A[n] =

∫ 1

0

dτ

∫ β

0

dtn(t, τ) · [∂tn(t, τ)× ∂τn(t, τ)] ≡ SWZ [n], (1.20)

which is known as the Wess-Zumino term or spin Berry phase. It worths

emphasizing that the area is subject to a 4π ambiguity, which has no physical

consequence. Specifically, if we choose the lower cap of the path with the south

pole, it works as well in defining the effective action.
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By taking the continuum limit N → ∞, the final form of the effective

action in the imaginary time representation is written as

SE[n] = −iSSWZ [n] +
Sδt

4

∫ β

0

dt|∂tn(t)|2 +

∫ β

0

H(t), (1.21)

where H(t) = 〈n(t)|H|n(t)〉. The second term of Eq. (1.21) amounts to a

small mass of a particle moving on a sphere. However, it vanishes as δt → 0,

and we will ignore it in the following discussions.

1.3.2 Many Spin Systems

It is a simple but non-trivial generalization of the spin path integral

from single spin to multiple spin systems. Assume that spins are interacting

through the Heisenberg Hamiltonian

H = J
∑

<r,r′>

S(r) · S(r′), (1.22)

where < ... > implies summation over nearest neighboring sites. Now turn

back to the real time representation with t → it and β → iT , we obtain the

path integral Z =
∫
DneiSM [n] with the action

SM [n] = S
∑

r

SWZ [n(r)]− JS2

∫ T

0

dt
∑

<r,r′>

n(r, t) · n(r′, t). (1.23)

This action can describe both ferromagnetic and antiferromagnetic systems

according to the sign of J . Setting the variational derivative of the action to

zero, i.e., δnSM [n] = 0, gives the local dynamics of the system, which is the

basic tool we will adopt in the next two chapters. Especially, the variation of

10



the Wess-Zumino (or Berry phase) term can be extracted out from Eq. (1.20),

δSWZ [n] = δn · (n× ∂tn), (1.24)

where the functional variation is fulfilled by the deformation along τ in the

neighborhood of the given path n(t).

1.4 Effective Lagrangian

In the preceding section we have formulated the magnetization dy-

namics in terms of the path integral, at the heart of which is the effective

Lagrangian as a functional of the order parameter. To describe the magneti-

zation dynamics and the electron dynamics in a uniform fashion, we also need

to characterize the conduction electrons by a proper Lagrangian. We first for-

mulate in a purely general context the dynamics of a quantum system subjects

to a time-dependent Hamiltonian that varies adiabatically. In the next sec-

tion, the formalism is applied to obtain the semi-classical electron dynamics

and is generalized to incorporate degenerate bands.

Consider a quantum Hamiltonian that depends on time through some

parameter H = H(r(t)). At each instant of time, the Hamiltonian fosters a

complete set of eigenstates {|ψj(r(t))〉} that is also parametrically depends on

r(t). Now the wave vector of the system is expanded by the eigenstates

|Ψ〉 =
∑

j

cj|ψj(r(t))〉, (1.25)

where cj = |cj|eiθj is complex and respects the normalization
∑

j |cj|2 = 1. The

Schrödinger equation is equivalent to the variation over |Ψ〉 from the universal

11



Lagrangian L = 〈Ψ|(i∂t − H)|Ψ〉 (~ = 1). Insert Eq. (1.25) into the La-

grangian, and consider the orthogonal-normalization condition of eigenstates

〈ψi(r(t))|ψj(r(t))〉 = δij (for ∀ t), we obtain

L =
1

2
i∂t

(∑

j

|cj|2
)
−
∑

i

|cj|2θ̇j

+ i
∑

ij

|ci||cj|ei(θj−θi)ṙ · 〈ψi(r)|∇ψj(r)〉 −
∑

j

|cj|2Ej(r), (1.26)

where ∇ is the gradient over r, and Ei(r) is defined by the eigen-equation

H(r)|ψj(r)〉 = Ej(r)|ψj(r)〉. (1.27)

The first term of Eq. (1.26) vanishes due to normalization. The third term is

a little bit tricky. Assume that the eigenvalues {Ei} are all non-degenerate,

and r(t) changes with time sufficiently slowly, then the phase factor ei(θj−θi)

for i 6= j rotates on the complex plane by a large number of circles while

〈ψi(r)|∇ψj(r)〉 has only undergone a slight change. When we take a time

average over one period of phase oscillation, all terms are nearly zero except

the diagonal terms with i = j. Therefore, to the lowest order in the deviation

due to the weak time dependence of r(t), we can keep only i = j terms in the

summation. This is known as the adiabatic approximation. Denote Ij = |cj|2,

and define the Berry’s connection on the j-th level as

Aj(r) ≡ i〈ψj(r)|∇ψj(r)〉, (1.28)

the adiabatic Lagrangian is written as

L =
∑

j

Ij[−θ̇j + ṙ ·Aj(r)− Ej(r)]. (1.29)

12



Since the system is labeled by three set of parameters {Ij}, {θj} and r =

{R1, R2, · · · }, the quantum evolution is described by the Euler-Lagrangian

equations in terms of the three set of parameters, which can be directly ob-

tained from Eq. (1.29). These equations of motion should be equivalent to the

Schrödinger equation in the adiabatic limit.

(1) ∂L
∂θj
− ∂

∂t

(
∂L
∂θ̇j

)
= 0 gives İj = 0 or Ij =constant, which means that the

probability of the system to be in any eigenstate remains invariant. This is

consistent with the adiabatic assumption.

(2) ∂L
∂Ij
− ∂

∂t

(
∂L
∂İj

)
= 0 gives the dynamics of the phase angle

θ̇j = ṙ ·Aj(r)− Ej(r). (1.30)

After integrated over time, Eq. (1.30) becomes

θj(t) =

∫
dr ·Aj(r)−

∫
dtEj(r), (1.31)

where we should note that dt has been canceled in the first term. Thus it only

depends on the geometry of the path of r in the parameter space, but does

not depend on the rate of change of r(t) at any instant of time. For a closed

path C in the parameter space, this geometric term becomes
∮

C

dr ·Aj(r) =

∫∫

enclosure C

ds ·∇×Aj(r) (1.32)

by the Stokes’ theorem. The curl Bj(r) = ∇×Aj(r) is known as the Berry

curvature, which amounts to a fictitious magnetic field in the parameter space.

By straightforward algebra, it can be expressed as

Bj = Im
∑

i 6=j

〈ψj|∇H|ψi〉 × 〈ψi|∇H|ψj〉
(Ei − Ej)2

. (1.33)
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The flux of the magnetic field determines the geometric phase (or Berry’s

phase) of the system. Although the derivation up to now requires that the

eigenstates are non-degenerate, a non-zero geometric phase usually originates

from the magnetic flux of a fictitious monopole that locates at the degener-

ate point. What should be bear in mind is that the actual evolution of the

system can never touch the degenerate point in order to respect the adiabatic

approximation, but the degenerate point itself must exist somewhere in the

parameter space.

(3) Before varying with respect to r, the physical origin of r has to be re-

solved. This is often realized by the quantum-classical hybrid system [143]

where r plays the role of classical position. For example, in the prototype

Born-Oppenheimer problem, the mass of the nuclei far exceeds that of the

electron, thus it is a good approximation to treat the nuclei motion as classi-

cal while keeping the quantum description of the electron dynamics. So the

entire atom is regarded as a quantum-classical hybrid system, and r is the

position of the nuclei. To this end, we need to add the kinetic term of the

classical part to the Lagrangian: Ltot = L + 1
2
M ṙ2, where M represents the

mass of the classical particle. Then ∂Ltot
∂r
− ∂

∂t

(
∂Ltot
∂ṙ

)
= 0 gives

M r̈ = ṙ ×B(r)−∇E(r), (1.34)

where B(r) =
∑

j IjBj(r) is the total (fictitious) magnetic field and E(r) =
∑

j IjEj(r) is the average energy of the system. The first term of Eq. (1.34)

is a Lorentz force due to the magnetic field, which is known as the geometric
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force. The second term of Eq. (1.34) is known as the Born-Oppenheimer force.

They represent two different back-actions that the quantum subsystem exerts

on the classical subsystem. Typically the former is much smaller than the

latter and is often neglected. However, in the following discussions, the Born-

Oppenheimer force is zero, thus the geometric force is crucial and is used to

interpret the spin-transfer torques.

What has been demonstrated above is the simplest case of the adia-

batic dynamics. If the Hamiltonian depends on time both through r(t) and

explicitly, H = H(t, r(t)), the eigenstate and eigenvalues are |ψj(t, r(t))〉 and

Ej(t, r(t)), respectively. In this case, besides the vector potential defined in

Eq. (1.28), we can also define a scalar potential

φj(t, r) ≡ i〈ψj(t, r)|∂tψj(t, r)〉, (1.35)

which gives rise to an electric component to the Berry curvature

E(t, r) = ∂tA(t, r)−∇φ(t, r), (1.36)

where φ(t, r) =
∑

j Ijφj(t, r) and A(t, r) =
∑

j IjAj(t, r). As a result, The

dynamics of slow variables Eq. (1.34) becomes

M r̈ = E(t, r) + ṙ ×B(t, r)−∇E(t, r). (1.37)

As a matter of fact, the electric and magnetic fields can be recast in a unified

description by virtue of the joint space-time coordinate rµ ≡ (t, r) with µ =

0, 1, 2, 3, · · · . Regarding the effective speed of light as 1, the scalar and vector
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potentials can be written in a single gauge potential Aµ ≡ (φ,A), upon which

we are able to define the electromagnetic field

Fµν = ∂µAν − ∂νAµ, (1.38)

which is an antisymmetric tensor that Fµν = −Fνµ.

The appearance of the artificial electromagnetic field in the parameter

space can be easily understood in the language of gauge invariance. In the adi-

abatic approximation, the system does not make transitions between different

energy levels, thus the dynamics refers only to the phase evolution of each in-

dividual eigenstates. As a result, an arbitrary phase change |ψj〉 → eiχj(rµ)|ψj〉

yields the effective Lagrangian

L = Ij[−θ̇j + ṙµAµ − Ej] (1.39)

invariant, where summation over repeated indexes is implied from now on un-

less otherwise stated. This is known as the emergent U(1) gauge invariance

under the adiabatic approximation, which guarantees the appearance of the

artificial electromagnetic field Fµν in the dynamics of slow variables, in exactly

the same sense as how a charged particle is coupled to the real electromag-

netic field. The Bianchi identity of the antisymmetric tensor Fµν requires

εαλµν∂λFµν = 0 for ∀α. This leads to the Faraday’s law

∇× E + ∂tB = 0, (1.40)

which has important consequences on the electron transport in ferromagnets.
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A prototype example is an electron moving in a magnetization tex-

ture that varies slowly in space and time. With a sufficiently strong exchange

coupling, the electron spin will be locked into the direction of the local mag-

netization m(t, r). The precession of the electron spin then gives rise to a

geometric phase in space time, producing an effective electromagnetic field

depending on the gradient and time derivative of the magnetization

E =
1

2
m · (∂tm×∇m) =

1

2
sinα(∂tα∇β −∇α∂tβ), (1.41)

B = −1

4
εijkmi∇mj ×∇mk = −1

2
sinα∇α×∇β, (1.42)

where α(r, t) and β(r, t) are spherical angles specifying the direction of m,

m = {sinα cos β, sinα sin β, cosα}. (1.43)

Eq. (1.41) and (1.42) are not restricted to magnetic systems, they are appli-

cable to the general case whenever the spin of a particle follows adiabatically

the background order parameter.

1.5 Semi-classical Dynamics of Electrons

Due to the spin degree of freedom, electron transport in magnetic ma-

terials is affected significantly by the dynamically coupled bands. The main

stream approach towards a general description of electrons in such context

involves the non-equilibrium Green’s function, the linear response theory, and

the effective gauge theory. While the first two are more rigorous and depend

only on minimal assumptions, the effective gauge theory, on the other hand,
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provides prevailing physical insights and mathematical clarity. More impor-

tantly, it unveils the hidden structure of geometry and topology that would

otherwise be elusive.

Construction of an effective gauge theory on an arbitrary magnetic

material is difficult. Nevertheless, by generalizing the effective Lagrangian

introduced in the previous section, a theory can well be formulated in two lim-

iting cases: degenerate bands and well-separated bands. In the vast majority

of magnetic materials, the situation falls in either of the two categories. By

adding the electron Lagrangian to the (magnetic) background Lagrangian, we

are able to describe their dynamics in a unified way.

1.5.1 Case I: Degenerate Bands

We adopt the semi-classical description of a single conduction electron,

where it is described by a wave packet that compromises the quantum uncer-

tainty in real and momentum spaces. This is done in order to take advantage

of classical concepts such as position, momentum, velocity, etc.

The wave packet formalism becomes a good approximation when one

band (or a group of degenerate sub-bands) is separated from other bands by

large energy gaps and the external fields are weak [16,17,101,133]. The wave

packet is a coherent sum of all Bloch states of that particular band in the first

Brillouin zone (BZ) through a weighting function w(k):

|W 〉 =

∫

BZ

dkw(k)|un(k)〉, (1.44)
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where |un(k)〉 is the periodic part of the Bloch wave in the n-th band. The

weighting function w(k) is chosen in a way that the wave function exhibits

Gaussian profile in both the real and the momentum spaces
∫

d3rr|〈r|W 〉|2 = rc,

∫
d3kk|w(k)|2 = kc, (1.45)

rc and kc are the center-of-mass position and center-of-mass momentum, re-

spectively. According to the adiabatic theorem, if the background order pa-

rameter varies slowly in time and smoothly in space, the electron bands are

adjusted to the local environment and transitions out of the degenerate group

only contribute fast rotating factors that are averaged to zero (c.f. Eq. (1.29)).

Therefore, the wave vector can be expanded within the degenerate group. De-

note the joint space-time coordinate as rµ ≡ (t, rc), so that the local Bloch

Hamiltonian is H = H(rµ), and the periodic parts of Bloch wave vectors

are labeled by |un(rµ,k)〉. Without loss of generality, we focus on a doubly

degenerate band where the two sub-bands are represented by a and b,

|W 〉 =

∫
d3kw(k)[ca|ua(rµ,k)〉+ cb|ub(rµ,k)〉], (1.46)

where ca and cb reflect relative contributions from the two sub-bands. We

group the two coefficients into a column vector c̃ = [ca, cb]
T , known as the

isospinor. The normalization condition |ca|2 + |cb|2 = 1 becomes c̃†c̃ = 1.

Similar to the derivation of Eq. (1.29), the effective Lagrangian of the wave

packet on the doubly degenerate band is obtained [22]

L = L(rµ, kµ, c̃; ṙµ, k̇µ, ˙̃c) = 〈W |(i ∂
∂t
−H)|W 〉

= ε+ kc · ṙc + ic̃† ˙̃c+ c̃†(Arµṙµ + Akµk̇µ)c̃, (1.47)
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where kµ = (0,kc) has no temporal component in contrast to rµ = (t, rc), but

it is still written this way just to simplify symbols. Different from the non-

degenerate case in Eq. (1.28), the Berry connections here are 2 × 2 matrices

and are functions of both rµ and kµ. The real space components are

Arµ = i

[
〈ua|∂rµ|ua〉, 〈ua|∂rµ|ub〉
〈ub|∂rµ|ua〉, 〈ub|∂rµ|ub〉

]

= τ1(Ar
µ)1 + τ2(Ar

µ)2 + τ3(Ar
µ)3, (1.48)

where in the second equality the 2 × 2 has been decomposed by three Pauli

matrices representing the isospin. The isospin vector τ ≡ {τ1, τ2, τ3} should

not be confused with the real spin vector σ = {σx, σy, σz}. Similarly, the

momentum space components are

Akµ = i

[
〈ua|∂kµ|ua〉, 〈ua|∂kµ|ub〉
〈ub|∂kµ|ua〉, 〈ub|∂kµ|ub〉

]
, (1.49)

which in general should not vanish if spin-orbit coupling terms are added to

the original Hamiltonian. In existing literatures [22, 23, 69, 72, 149], the Berry

connections on degenerate energy levels are introduced in the Hamiltonian

form, but here the Lagrangian form is used to search for a unified description

for both the electron transport and the magnetization dynamics.

To avoid cumbersome matrix products in the the following discussions,

we now define the isospin vector

C = {c1, c2, c3} = c̃†τ c̃

= {2Re(cac
∗
b),−2Im(cac

∗
b), |ca|2 − |cb|2}, (1.50)

20



with which the Berry connection Arµ can be expressed as a vector in the isospin

vector space (the adjoint representation),

Ar
µ =

1

2
Tr[τArµ] = {(Ar

µ)1, (Ar
µ)2, (Ar

µ)3}, (1.51)

where we have used 1
2
Tr[τiτj] = δij. In a similar way, Ak

µ = 1
2
Tr[τAkµ] =

{(Ak
µ)1, (Ak

µ)2, (Ak
µ)3}. Eq. (1.47) becomes

L = ε+ kµṙµ + ic̃† ˙̃c+ C · [Ar
µṙµ + Ak

µk̇µ], (1.52)

where the ic̃† ˙̃c term cannot be expressed in terms of C and Ċ, but this poses

no problem in the following. Both Eqs. (1.47) and (1.52) are useful forms of

the effective Lagrangian, they are sometimes known as the fundamental and

adjoint representations, respectively.

Within the semi-classical description, the state of a conduction electron

is completely determined by three parameters (C, rµ, kµ). Thus the electron

dynamics is represented by the equations of motion of (C, rµ, kµ), which can

be obtained from the Euler-Lagrange equations:

(1) δL/δc̃ = 0 on Eq. (1.47) gives

˙̃c = i[Arµṙµ + Akµk̇µ]c̃ (1.53a)

˙̃c† = −ic̃†[Arµṙµ + Akµk̇µ] (1.53b)

then from C = c̃†τ c̃ we have,

Ċ = ˙̃c†τ c̃+ c̃†τ ˙̃c

= iṙµc̃
†[τArµ − Arµτ ]c̃+ ik̇µc̃

†[τAkµ − Akµτ ]c̃ (1.54)
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where τAµ terms are matrix products. In view of the decomposition Eq. (1.51),

we take a specified component of Eq. (1.54),

Ċα = iṙµ(Ar
µ)β c̃†(τατβ − τβτα)c̃+ ik̇µ(Ak

µ)β c̃†(τατβ − τβτα)c̃

= −2εαβγ[(A
r
µ)β ṙµ + (Ak

µ)βk̇µ](c̃†τγ c̃). (1.55)

When written in the iso-spin vector form, the above equation becomes

Ċ = 2C× (Ar
µṙµ + Ak

µk̇µ), (1.56)

which can be regarded as the Bloch equation in the iso-spin space.

(2) δL/δrµ = 0 on Eq. (1.52) requires some care. We note that

∂L

∂rµ
= ∂rµε+ C · [(∂rµAr

ν)ṙν + (∂rµA
k
ν)k̇ν ] (1.57a)

d

dt

∂L

∂ṙµ
= k̇µ + (Ċ ·Ar

µ + C · d

dt
Ar
µ)

= k̇µ + 2[ṙνC · (Ar
ν ×Ar

µ) + k̇νC · (Ak
ν ×Ar

µ)]

+ C · [(∂rνAr
µ)ṙν + (∂kνA

r
µ)k̇ν ] (1.57b)

where in the last line Eq. (1.56) has been used. Therefore, from

δL

δrµ
=
∂L

∂rµ
− d

dt

∂L

∂ṙµ
= 0, (1.58)

we obtain the equation of motion

k̇µ = ∂rµε+ C · [Ωrr
µν ṙν + Ωrk

µν k̇ν ], (1.59)

where the Berry curvatures are defined as

Ωrr
µν ≡ ∂rµA

r
ν − ∂rνAr

µ + 2Ar
µ ×Ar

ν , (1.60a)

Ωrk
µν ≡ ∂rµA

k
ν − ∂kνAr

µ + 2Ar
µ ×Ak

ν , (1.60b)
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they are antisymmetric tensors with permutations of rµ and kµ, and at the

same time they are vectors in the isospin vector space – the internal space

unique to non-Abelian gauge theory.

(3) δL/δkµ = 0 on Eq. (1.52) follows quite similar procedures as above, and

the equation of motion is

ṙµ = −∂kµε− C · [Ωkr
µν ṙν + Ωkk

µν k̇ν ], (1.61)

where the Berry curvatures are

Ωkk
µν ≡ ∂kµA

k
ν − ∂kνAk

µ + 2Ar
µ ×Ar

ν , (1.62a)

Ωkr
µν ≡ ∂kµA

r
ν − ∂rνAk

µ + 2Ak
µ ×Ar

ν , (1.62b)

which, together with Eqs. (1.60), form a generalized matrix of Berry curvature

jointing real space and BZ into a unified parameter space,

Ω̃µν =

[
Ωrr
µν Ωrk

µν

Ωkr
µν Ωkk

µν

]
. (1.63)

Eqs. (1.59), (1.61), and Eq. (1.56) constitute the essential formula for the

non-Abelian adiabatic dynamics:

Ċ = 2C× (Ar
µṙµ + Ak

µk̇µ), (1.64a)

k̇µ = ∂rµε+ C · [Ωrr
µν ṙν + Ωrk

µν k̇ν ], (1.64b)

ṙµ = −∂kµε− C · [Ωkr
µν ṙν + Ωkk

µν k̇ν ]. (1.64c)

These equations will be frequently used in the following chapter to study the

electron transport in an antiferromagnetic texture.
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1.5.2 Case II: Well Separated Bands

In a ferromagnetic metal, the two spin eigenstates are well separated

due to the large exchange coupling (typically s-d mixing) between conduction

electron spins and local magnetization. The non-Abelian gauge theory devel-

oped previously is not applicable. Interestingly, when we regard the separation

of spin eigenstates as much larger than the typical frequency of magnetization

dynamics, the theory recovers in the opposite limit of adiabaticity (but a the-

ory interpolating the two limits are not possible).

Set the wave vector as |u〉 = ca| ↑ (rc, t)〉 + cb| ↓ (rc, t)〉, where the rc

dependence originates from the local Hamiltonian. Similar to the previous

case, the effective Lagrangian is

L = i~〈u|du
dt
〉+ ~kc · ṙc − 〈u|Hex|u〉. (1.65)

Due to the orthogonality 〈↑ | ↓〉 = 0, the energy term becomes 〈u|Hex|u〉 =

|ca|2E↑ + |cb|2E↓. The physical spin is defined as s = 〈u|σ|u〉, we known that

s3 = |ca|2 − |cb|2 and |ca|2 + |cb|2 = 1, thus we have the following:

〈u|Hex|u〉 =
1 + s3

2
E↑ +

1− s3

2
E↓

=
E↑ + E↓

2
+ s3

E↑ − E↓

2
= E0 +

1

2
s3∆. (1.66)

To compute the Berry connection term, we notice that

|du
dt
〉 =ċa| ↑〉+ ċb| ↓〉+

[ca(ṙc ·∇+ ∂t)| ↑〉+ cb(ṙc ·∇+ ∂t)| ↓〉 , (1.67)
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where ∇ = ∂
∂rc

. Multiply by 〈u| we have

〈u|du
dt
〉 =(c∗aċa + c∗b ċb)

+ |ca|2〈↑ |ṙc ·∇+ ∂t| ↑〉+ c∗acb〈↑ |ṙc ·∇+ ∂t| ↓〉

+ |cb|2〈↓ |ṙc ·∇+ ∂t| ↓〉+ cac
∗
b〈↓ |ṙc ·∇+ ∂t| ↑〉. (1.68)

Now define the Berry connection (2× 2) matrices

A(rc, t) = i~
[
〈 ↑ |∇| ↑ 〉 〈 ↑ |∇| ↓ 〉
〈 ↓ |∇| ↑ 〉 〈 ↓ |∇| ↓ 〉

]
, (1.69)

Φ(rc, t) = i~
[
〈 ↑ |∂t| ↑ 〉 〈 ↑ |∂t| ↓ 〉
〈 ↓ |∂t| ↑ 〉 〈 ↓ |∂t| ↓ 〉

]
, (1.70)

which play the roles of a vector potential and a scalar potential, respectively.

From Eqs. (1.66), (1.68), (1.69), and (1.70) we obtain the effective Lagrangian,

L = i~η†η̇ + η†[ṙc ·A+ Φ]η + ~kc ·ṙc −
1

2
s3∆− E0, (1.71)

where η = [ca, cb]
T is the pseudo-spinor. Here we adopt a different notation

to distinguished from the degenerate case, because the pseudo-spin here is

identical to the physical spin, whereas the two may not be identical in the

degenerate case.

The local spin wave functions are chosen to be

| ↑ 〉 =

[
e−i

φ
2 cos θ

2

ei
φ
2 sin θ

2

]
, | ↓ 〉 =

[
−e−iφ2 sin θ

2

ei
φ
2 cos θ

2

]
, (1.72)

where θ and φ are spherical angles specifying the direction of local magnetiza-

tionM(r, t), hence they are functions of space and time. Using Eq. (1.72), the
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Berry connections (1.69) and (1.70) can be written in a unified 2× 2 matrix,

A (rc, t) ≡ ṙc ·A(rc, t) + Φ(rc, t)

=
~
2

[
cos θφ̇ − sin θφ̇− iθ̇

− sin θφ̇+ iθ̇ − cos θφ̇

]
, (1.73)

where θ̇ = ṙc · ∇θ + ∂tθ and φ̇ = ṙc · ∇φ + ∂tφ are total time derivatives. It

should be noted that the choice of Eq. (1.72) is not unique, which gives rise

to the gauge freedom of the Berry potential.

1.6 Spin-transfer Torques

1 When a current flows through a ferromagnetic metal, it becomes

spin-polarized due to local exchange coupling between conduction electron

spins and local magnetic moments. In turn, spin angular momentum is trans-

ferred to magnetization through the mechanism known as spin-transfer torque

(STT) [8, 99, 148], which is a consequence of spin conservation. STT provides

key mechanisms for numerous intriguing phenomena in ferromagnets, such as

current-driven domain wall motion [7,112], spin wave excitations [45,59], etc.,

which paves the way towards electrical writing in, e.g., STT-MRAM devices.

In both fundamental studies and applications, STT-driven magnetization dy-

namics has aroused enormous attention in the past two decades [12, 88], and

it is becoming the core issue of spintronics.

While STT has been widely studied in numerous publications, here

1The contents of this section are based on the article: R. Cheng and Q. Niu, Microscopic
derivation of spin-transfer torque in ferromagnets, Phys. Rev. B 88, 024422 (2013).
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we present our own derivation using the Berry phase and effect Lagrangian

formalism developed in the previous section. At present, STT is believed

to be divided into adiabatic (reactive) and non-adiabatic (dissipative) con-

tributions. While the former has been derived microscopically via different

approaches [6,8,99], the latter has only been justified macroscopically through

spin conservation [108,132,144] and Galilean invariance [4], whose microscopic

origin is under intense debates. In many recent efforts, microscopic theories

have been developed in generic ways [27, 31, 85, 106, 114] and in specific con-

texts [105, 107, 123, 125], but their coefficients do not lead to a consensus.

Meanwhile, some others even cast doubt on the existence of the non-adiabatic

STT [134]. From an experimental point of view, measurements of this torque

are not in agreement [15, 42, 70], and the magnitude is sensitive to spin-orbit

interaction [71] and impurity doping [58].

We adopt the s-d model where electron transport is mainly attributed

to the itinerant s-band. It will be treated separately from the magnetization,

which mostly originates from the localized d -band. The conduction electrons

interact with the magnetization through the exchange coupling described by

Hex =
SJex
Ms

s ·M(r, t), (1.74)

where s is the (dimensionless) spin of a conduction electron, |M(r, t)| = Ms

is the saturation magnetization, and S denotes the magnitude of background

spins. The coupling strength Jex can be as large as an eV in transition metals

and their alloys, so that if M (r, t) varies slowly in space and time, conduction
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electron spins will follow the background profile when the system is in thermal

equilibrium, known as the adiabatic limit. However, when an external cur-

rent is applied to the system, a small non-equilibrium spin accumulation δm

transverse to local M (r, t) is induced. It is this δm that exerts STT on the

background magnetization.

To compute δm, we first study the spin response of an individual con-

duction electron to the background M (r, t) when current is applied. From

Eq. (1.74), we know that local spin-up (majority) and spin-down (minority)

bands are separated by a large gap ∆ ≡ SJex = E↓ − E↑, and the associated

spin wave functions are denoted by | ↑ (r, t)〉 and | ↓ (r, t)〉, respectively. As

stated in the previous section, the electron is described by a coherent wave

packet centered at (rc,kc) [19, 133]

|W 〉 =

∫
d3k w(k)eik·r|k〉[ca|↑(rc, t)〉+ cb|↓(rc, t)〉], (1.75)

where w(k) is a profile function that satisfies
∫

dkk|w(k)|2 = kc; |k〉 is the

periodic part of the local Bloch function; and ca, cb are superposition coef-

ficients. Since | ↑ (rc, t)〉 and | ↓ (rc, t)〉 form a set of local spin bases with

the quantization axis being n(rc, t) = M (rc, t)/Ms, we can construct a local

frame moving with M(rc, t), where the coordinates are labeled by n, êθ, and

êφ in Fig. 1.3. The electron spin expressed in this local frame reads

s = {s1, s2, s3} = η†ση

= {2Re(cac
∗
b), −2Im(cac

∗
b), |ca|2 − |cb|2}, (1.76)
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Figure 1.3: The eigenstates of Eq. (1.74) form a set of local spin bases, and
define a local frame that moves with n = M/Ms. Components of the con-
duction electron spin s (red) in the local frame are denoted by s1, s2, and s3.
In the tangential plane with normal n, we make a coordinate transformation
from êθ and êφ to ṅ and n× ṅ so that everything expressed in the new basis
is physical.

where σ is a vector of Pauli matrices, and η = [ca, cb]
T is regarded as the spin

wave function in the local basis.

The equations of motion are obtained from the universal Lagrangian

L = 〈W |i~∂t − H|W 〉 through the variational principle, which involves not

only the dynamics of rc and kc, but also the dynamics between the two (well

separated) spin bands. The latter represents spin evolution with respect to

the local magnetization M (r, t) and exhibits fast rotating character due to

the large gap ∆. As derived in Eq. (1.71), the effective Lagrangian is,

L = i~η†η̇ + η†[ṙc ·A+ Φ]η + ~kc ·ṙc −
1

2
s3∆− E0, (1.77)
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where E0 = 1
2
(E↑(kc) + E↓(kc)), and the Berry connections are defined in E-

q. (1.73). It is worth mentioning that freedom exists in the choice of local

spin wave functions, which leads to free gauge choices of the Berry gauge con-

nection. More graphically, a specified set of spin wave functions corresponds

to a particular choice of local frame in Fig. 1.3, and the relative orientation

of the local frame can be rotated about n by gauge transformations, thus is

not physical. But everything will be expressed in terms of gauge invariant

quantities in the end.

Decomposing the Berry potential A (Eq. (1.73)) in terms of Pauli

matrices A = σiAi (adjoint representation), we have

{A1,A2,A3} =
1

2
Tr[σA ] =

1

2
{− sin θφ̇, θ̇, cos θφ̇}, (1.78)

where Tr[σiσj] = 2δij has been used. By taking the variational derivative of

the Lagrangian with respect to η, we obtain the evolution of the spin wave

function in the local frame,

i~η̇ = i~
d

dt

[
ca
cb

]
= −A

[
ca
cb

]
+

∆

2

[
ca
−cb

]
. (1.79)

From Eq. (1.79) and its complex conjugate, we derive the spin dynamics in

the local frame

i~
d

dt
s = i~

d

dt
(η†ση) = i~(η̇†ση + η†ση̇)

= (η†A ση − η†σA η)

+
∆

2

(
[−c∗a, c∗b ]ση + η†σ

[
ca
−cb

])
. (1.80)
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To transform Eq. (1.80) into a simple and elegant form, we should write it

down component by component. The third component of Eq. (1.80) is

i~ṡ3 = η†Ai[σi, σ3]η +
∆

2
(−|ca|2 − |cb|2 + |ca|2 + |cb|2)

= −2i~ηε3ijAiσjη + 0 = 2i~ε3ijsiAj, (1.81)

where εijk is the total antisymmetric tensor. The first component reads

i~ṡ1 = η†Ai[σi, σ1]η + ∆(cac
∗
b − c∗acb)

= −2i~ηε1ijAiσjη + 2i∆Im[cac
∗
b ]

= 2i~ε1ijsiAj − i∆s2, (1.82)

and the second component reads

i~ṡ2 = η†Ai[σi, σ2]η + i∆(cac
∗
b + c∗acb)

= −2i~ηε2ijAiσjη + 2i∆Re[cac
∗
b ]

= 2i~ε2ijsiAj + i∆s1. (1.83)

Now we are able to combine Eqs. (1.81), (1.82), (1.83) in a matrix form:



ṡ1

ṡ2

ṡ3


=




0 cos θφ̇− 1

τex
−θ̇

− cos θφ̇+
1

τex
0 − sin θφ̇

θ̇ sin θφ̇ 0






s1

s2

s3


 , (1.84)

where τex = ~/∆ is defined as the exchange time.

Eq. (1.84) describes the coherent spin dynamics in the local frame mov-

ing with M (rc, t). However, spin relaxation as a non-coherent process should
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also be taken into account. In real materials spin relaxation is very case depen-

dent, but regardless of the underlying mechanism, it adds a term − 1
τsf

(s−seq)

to Eq. (1.84), where τsf is the mean spin-flip time and seq = {0, 0, 1(−1)} is the

local equilibrium spin configuration for the majority (minority) band E↑(E↓).

Eq. (1.84) should be solved numerically in general, but an approximation can

be made based upon the following considerations: the large gap ∆ results in

an extremely small τex (typically of the order of 10−14 ∼ 10−15s). Thus on

the time scale marked by τex , the change of magnetization is negligible, i.e.,

magnitudes of ∂tM and (ṙc·∇)M are much smaller than Ms/τex. To this end,

we define two small parameters ε1 = τex sin θφ̇ and ε2 = τexθ̇ which satisfy
√
ε2

1 + ε2
2 = ~|Ṁ |/(Ms∆) � 1. On the same time scale, variations of ε1 and

ε2 are even higher order small quantities, thus it is a good approximation to

treat ε1 and ε2 as constants, by which Eq. (1.84) becomes a set of first order

differential equations with a constant coefficient matrix. As a result, it can

be solved analytically. Given the initial condition s = seq, the solution of

Eq. (1.84) for the majority band is obtained, which, when maintaining up to

the lowest order in ε1,2, becomes the following:

s1(t) =
ε1 − ξε2

1 + ξ2
− e−ξt̃

1 + ξ2
[ε1(cos t̃+ ξ sin t̃) + ε2(sin t̃− ξ cos t̃)], (1.85a)

s2(t) = −ξε1 + ε2

1 + ξ2
− e−ξt̃

1 + ξ2
[ε1(sin t̃− ξ cos t̃)− ε2(cos t̃+ ξ sin t̃)], (1.85b)

s3(t) = 1 +
e−ξt̃

1 + ξ2
(ε2

1 + ε2
2)[cos t̃+ ξ sin t̃], (1.85c)

where t̃ = t/τex is the scaled time, and ξ = τex/τsf (this is usually known as

the β parameter in the literature).
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As stated above, magnetization dynamics occurs on a time scale T

much larger than τex, thus the number N = T/τex � 1. This allows us to

take a time average of the electron spin by defining 〈si〉 = 1
T

∫ T
0
si(t)dt. Then

all time dependent terms in Eq. (1.85) will be negligible, because according to

the following expressions

1

T

∫ T

0

dt e−ξt̃ cos t̃ =
ξ + e−Nξ(sinN − ξ cosN)

N(1 + ξ2)

<
1

N

[
ξ +

√
1 + ξ2

1 + ξ2

]
≤ 1

N

3
√

3

4
, (1.86a)

1

T

∫ T

0

dt e−ξt̃ sin t̃ =
1− e−Nξ(ξ sinN + cosN)

N(1 + ξ2)

<
1

N

[
1 +

√
1 + ξ2

1 + ξ2

]
≤ 2

N
, (1.86b)

no matter how large ξ is, their upper bounds are suppressed 1/N as N � 1.

As a result, only the time-independent terms of Eq. (1.85) will survive after

the time averaging,

〈s1〉 =
ε1 − ξε2

1 + ξ2
, 〈s2〉 = −ξε1 + ε2

1 + ξ2
, 〈s3〉 = 1. (1.87a)

If we write the spin as s = seq + δs, then δs = 〈s1〉êθ + 〈s2〉êφ. For the

minority band, Eq. (1.87) only differs by an overall minus sign. To express δs

in terms of gauge invariant quantities, we need to make a coordinate transfor-

mation that amounts to a rotation of basis in the tangential plane depicted in

Fig. 1.3. In matrix form, it is

[
ṅ

n× ṅ

]
=

Ω

τex

[
ε2 ε1

−ε1 ε2

] [
êθ
êφ

]
, (1.88)
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where Ω = |ṅ|. Then we obtain

δs↑,↓ = ∓ τex
1 + ξ2

[n× ṅ+ ξṅ]

= ∓ τex
1 + ξ2

[n× ∂n

∂t
+ ξ

∂n

∂t
+ n× (ṙc ·∇)n+ ξ(ṙc ·∇)n], (1.89)

where ṅ = ∂tn+ (ṙc·∇)n has been used and ṙc = −∂E↑,↓
~∂kc is the center of mass

velocity. The local non-equilibrium spin accumulation is obtained

δm = µB

∫
dE[D↑(E)g↑(E)δs↑ + D↓(E)g↓(E)δs↓], (1.90)

where µB is the Bohr magneton, D↑,↓(E) is the density of states, and g↑,↓(E)

represents the distribution function. In a weak electric field E and zero tem-

perature, we have g↑,↓(E) = f0↑,↓(E) + eτ0↑,↓E · ∂E↑,↓~∂kc
∂f0↑,↓
∂E

where f0↑,↓(E) is the

Fermi distribution function without electric field and τ0↑,↓ is the relaxation

time. It should be noted that when the mean spin-flip time τsf is assumed to

be independent of energy, it is equivalent to introducing it either in solving

the Boltzmann equation or in Eq. (1.84), and we have chosen the latter. Our

target now is to relate δm to the charge current

je = − e
~

∫
δE

[
D↑(E)g↑(E)

∂E↑
∂kc

+ D↓(E)g↓(E)
∂E↓
∂kc

]
.

Regarding Eq. (1.89) and Eq. (1.90), terms involving electric field E and τ0↑,↓

can be expressed in terms of je. After some simple algebra, we obtain

δm =
τex

1 + ξ2

[
− n0

M2
s

M × ∂M

∂t
− ξn0

Ms

∂M

∂t

+
µBP

eM2
s

M × (je · ∇)M +
ξµBP

eMs

(je · ∇)M

]
, (1.91)
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where P = (nF↑ −n↓F )/(nF↑ +n↓
F ) is the spin polarization with nF↑(↓) being the

electron density of the two bands at the Fermi level, and

n0 = µB

∫
dE[D↑(E)f0↑(E)−D↓(E)f0↓(E)]

is the local equilibrium spin density of conduction electrons, which represents

the s-band contribution to the total magnetization. For the s-d model, the

magnetization is mainly attributed to the d -band electrons, thus the ratio

n0/Ms should be very small. For example, in typical ferromagnetic metals

(Fe, Co, Ni and their alloys), n0/Ms ∼ 10−2. Eq. (1.91) reproduces Eq. (8) in

Ref. [144], but the above derivation is purely microscopic, and the four terms

of Eq. (1.91) can be traced back to the four terms in Eq. (1.89), respectively.

From Eq. (1.74), the STT exerted on the background magnetization

M (r, t) is T = (1/τexMs)δm×M , which should be added to the LLG derived

in Eq. (1.2). The final form of magnetization dynamics becomes

∂M

∂t
= γ̃H

eff
×M +

α̃

Ms

M × ∂M

∂t

+
1

1 + η

[
(u · ∇)M − ξM

Ms

× (u · ∇)M

]
, (1.92)

where u = PjeµB/eMs(1 + ξ2) is the effective electron velocity, and η =

(n0/Ms)/(1 + ξ2) is a dimensionless factor. The renormalized gyro-magnetic

ratio and Gilbert damping parameter are

γ̃ =
γ

1 + η
, α̃ =

1

1 + η
[α + ηξ], (1.93)

where the renormalization originates from the first two terms of Eq. (1.89) (or

Eq. (1.91)), and they are determined by the local equilibrium spin density n0
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which exists even in the absence of current. Eqs. (1.92) and (1.93) confirm the

results macroscopic theory derived from spin conservation [144].

Our microscopic derivation relies on two assumptions: local equilibrium

can be defined, andM is nearly constant on the time scale marked by τex. The

former requires diffusive transport which is usually the case in transition metals

and their alloys; the latter, however, is only true when the characteristic length

of the texture l (e.g., the domain wall width) satisfies l � vF τex where vF is

the Fermi velocity, otherwise the solution Eqs. (1.85) and (1.87) are invalid.

In a recent experiment [15], people measured the non-adiabatic torque on very

narrow domain walls (1 ∼ 10nm) and found disagreement with Eq. (1.92). A

rough estimate using vF ∼ 3 × 105m/s and ∆ ∼ 1eV tells us that vF τex is of

the order of many angstroms, thus a domain wall of a few nm wide cannot

be considered as l � vF τex. In that case, our local solution is no longer a

good approximation, because the time-dependent terms in Eq. (1.85) become

important and the averaging in Eq. (1.87) is no longer good. As a result, STT

may exhibit non-local behavior and also oscillatory patterns in space.

The parameter ξ determines the relative strength of the non-adiabatic

torque with respect to the adiabatic torque. It is very material dependent

and tunable in many different ways [58, 71]. But according to Eq. (1.86) and

Eq. (1.87), the result is valid regardless of the value of ξ; only N = T/τex � 1 is

sufficient to guarantee the negligence of the time dependent terms of Eq. (1.85).

This can be used to explain a recent experiment in which ξ is as large as

1 [71], while the observed domain wall velocity is still fitted using the form of
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Eq. (1.92). However, we should mention that large ξ is usually accompanied

by large spin-orbit coupling, which brings about spin-orbit torque in addition

to the non-adiabatic torque [66, 77]. This is an important issue that draws

people’s attention very recently, but goes beyond the scope of our discussion.

In another experiment, ξ is enhanced by increasing impurity doping

(which decreases τsf ), but the damping is basically not affected [58]. This can

be easily understood through Eq. (1.93): since n0/Ms ∼ 10−2 is very small

within the s-d model description, η is a small quantity, hence α̃ could only be

slightly renormalized even if ξ has a sizable change.

A final remark concerns the spin motive force [138,139] ESMF = ~
2e
n ·

(∂tn×∇n), which is small but should be taken into consideration in a strict

sense. As a result, the electric field should be replaced by the effective field

Eeff = E+ESMF in deriving Eq. (1.91) from Eqs. (1.89) and (1.90). This cre-

ates an additional contribution to the renormalized α̃, which has been studied

recently via a quite different route [145].
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Chapter 2

Electron Transport in Antiferromagnets

1 Interplay between current and magnetization is an essential issue un-

derpinning the field of spintronics [148], which consists of two reciprocal prob-

lems: control of current through magnetization with a known configuration,

and its converse, i.e., control of magnetization dynamics via applied curren-

t. In ferromagnetic (FM) materials with slowly varying spin texture m(r, t)

over space and time, these issues can be solved by assuming that conduc-

tion electron spins always follow the background texture profile, known as the

adiabatic approximation [9, 16, 17, 101, 133]. The microscopic basis underly-

ing adiabaticity is the strong exchange coupling H = −Jσ ·m(r, t) between

conduction electron spins and local magnetic moments, through which spin

mistracking with the background causes large energy penalty and becomes

highly unfavorable [138,139].

Under the adiabatic approximation, the current – magnetization in-

teraction is recast into an emergent electrodynamics, in which its reciprocal

influence boils down to a simple electromagnetic problem. Specifically, by di-

agonalizing the local exchange Hamiltonian via local unitary transformation,

1The contents of this chapter are based on the article: R. Cheng and Q. Niu, Electron
dynamics in slowly varying antiferromagnetic texture, Phys. Rev. B 86, 245118 (2012).
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fictitious electric and magnetic fields are generated that significantly affect the

orbital dynamics of the electron [5, 124,138,139]

Ei =
1

2
m · (∂tm× ∂im) =

1

2
sin θ(∂tθ∂iφ− ∂iθ∂tφ), (2.1)

Bi = −1

4
εijkm · (∂jm× ∂km) = −1

2
εijk sin θ∂jθ∂kφ, (2.2)

where θ(r, t) and φ(r, t) are spherical angles specifying the direction of m.

As a consequence, the influence of background texture is represented by an

effective Lorentz force F = s~(E + ṙ × B) exerted on the conduction elec-

trons, where s = +1(−1) denotes the spin-up (-down) bands. The electric

and magnetic components of the Lorentz force are responsible for the spin

motive force [1, 5, 28, 41, 96, 124, 136, 138, 139] and the topological Hall ef-

fect [14, 57, 74, 140], respectively. In turn, the back-reaction of the Lorentz

force provides an interpretation to the current-induced spin torque exerted on

magnetic texture [6, 48, 115, 132, 141]. In a formal language, the adiabatici-

ty induces an effective gauge interaction Lint = jµAµ as introduced by the

previous chapter, where jµ acquires a gauge charge according to s = ±1,

and Aµ = Aµ(m, ∂m) is the effective electromagnetic potential represent-

ing the space-time dependence of the texture. Variation over the current

δLint/δjµ = 0 yields the effective Lorentz force; and variation over the mag-

netization δLint/δm = 0 produces the spin-transfer torque. In this way, the

reciprocal relation of the current-magnetization interaction is manifested.

However, the above picture apparently fails in antiferromagnetic (AF)

materials where neighboring magnetic moments are antiparallel. Conduction
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electrons are not able to adjust their spins with the local moments that al-

ter orientation on atomic scale. Nevertheless, the staggered order parameter

n = (MA −MB)/2Ms can be slowly varying over space-time, where MA and

MB are the alternating local moments and Ms denotes their magnitudes. A

natural question is whether a slowly varying staggered order still renders adi-

abatic dynamics of conduction electrons in some other sense. This is desired

knowledge for studying spin transport in AF materials, especially the quest

for current-magnetization interaction as that for FM materials.

In spite of recent theoretical [39, 40, 76, 102, 103, 131, 135] and experi-

mental [44, 122, 128] progress, this problem has never been addressed micro-

scopically. But at the same time, AF materials are believed to be promising

candidates for new thrusts of spintronics [64], partly due to their enhanced

anisotropy, robustness against external magnetic perturbations, and vanishing-

ly small demagnetization, which bring prevailing advantages for device design

and engineering control.

In this chapter, we develop the effective electron dynamics in a bulk AF

texture with slowly-varying time dependence and smooth spatial modulation

by applying the non-Abelian Berry phase theory [22,23,69,72,149] on energy

bands that are doubly degenerate. The physics of adiabaticity in AF materials

is found to be an internal dynamics between degenerate bands which can be

attributed to a SU(2) Berry curvature. When translating into spin dynamics,

the adiabaticity no more indicates spin alignment with the background, but

a totally new evolution principle [Eq. (2.19)]. Aside from spin dynamics, the
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orbital motion of conduction electrons is coupled to two different gauge fields:

one leads to the non-Abelian generalization of the effective Lorentz force; the

other results in an anomalous velocity that is truly new and unique to AF

systems. With comparisons to FM materials, this chapter provides a general

framework on how a given textured AF background affects the dynamics of

conduction electrons [18]. The other side of the story, i.e., back-reaction of

current on the AF background, will be discussed in the next chapter.

2.1 Band Structure

Consider an AF system on a bipartite lattice with local magnetic mo-

ments labeled by alternating MA and MB. The spin of a conduction electron

couples to the local moments by the exchange interaction J(M/Ms) ·σ, where

σ denotes the spin operator of the conduction electron, and M flips sign on

neighboring A and B sublattice sites. In spite of antiparallel of neighboring

moments, the staggered order parameter n = (MA−MB)/2Ms usually varies

slowly over space and time, and we can treat it as a continuous function n(r, t).

Accordingly, the conduction electron is described by a nearest-neighbor tight-

binding Hamiltonian locally defined around n(r, t):

H(n(r, t)) =

[
−Jn · σ γ(k)
γ∗(k) Jn · σ

]
(2.3)

where γ(k) = −t∑δ e
ik·δ is the hopping term with δ connecting nearest neigh-

boring A− B sites (we set ~ = 1). The exchange J can have multiple origins

such as Hund’s coupling or s-d mixing, but it does not matter too much in
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the exchange limit. In general J can be negative, but we assume a positive J

throughout this paper.

The local band structure can be easily solved as ±ε(k) with ε(k) =
√
J2 + |γ(k)|2, and in the adiabatic limit we neglect transitions between ε

and −ε. Each of the two bands are doubly degenerate, and without loss of

generality we will focus on the lower band −ε with the two sub-bands labeled

by A and B, whose wave functions are |ψa〉 = eik·r|ua〉 and |ψb〉 = eik·r|ub〉.

The Bloch waves consist of the spatial part and the spin part

|ua〉 = |A(k)〉|↑ (r, t)〉; |ub〉 = |B(k)〉|↓ (r, t)〉 (2.4)

where k is understood as the local lattice momentum as the Hamiltonian

maintains local periodicity around (r, t). The position dependence all come

from the local spin eigenstates

|↑(r, t)〉 =

[
e−i

φ
2 cos θ

2

ei
φ
2 sin θ

2

]
; |↓(r, t)〉 =

[
−e−iφ2 sin θ

2

ei
φ
2 cos θ

2

]
(2.5)

where θ = θ(r, t) and φ = φ(r, t) are the spherical angles specifying the

orientation of n(r, t). The choice of phase factors in Eq. (2.5) is not unique,

but this freedom does not alter our final results.

The periodic parts are spinors in the pseudo-spin space furnished by

the A−B sublattices. They are

|A(k)〉 =
1√

(ε(k) + J)2 + |γ(k)|2

[
−(ε(k) + J)

γ(k)∗

]
, (2.6a)

|B(k)〉 =
1√

(ε(k)− J)2 + |γ(k)|2

[
J − ε(k)
γ(k)∗

]
, (2.6b)
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Figure 2.1: A schematic view of Bloch waves in the lower band. Sub-band
A means a local spin up electron has a larger probability on the A sites and
a smaller probability on the B sites; sub-band B means the opposite case.
They are degenerate in energy and their wave functions have a finite overlap
depending on the ratio of J/ε.

which exhibit opposite spatial patterns schematically illustrated in Fig. 2.1.

While 〈ψa|ψb〉 = 0 due to the orthogonality of local spin eigenstates, 〈A(k)|B(k)〉

does not vanish, and we define this overlap as

ξ(k)=〈A(k)|B(k)〉= |γ(k)|√
J2 + |γ(k)|2

=

√
ε2 − J2

ε
, (2.7)

which is a key parameter in our theory and ξ < 1. It reaches maximum at the

Brillouin zone (BZ) center and vanishes at the BZ boundary. From Eq. (2.7)

we know ξ(k) is a system parameter determined by the band structure, and

it is constant since the energy conservation ε̇ = 0 requires ξ̇ = 0. If J tends to

infinity, the overlap ξ(k) will vanish and the two subbands will be effectively

decoupled, by which the system will become a simple combination of two

independent FM subsystems.
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2.2 Equations of Motion

With the wave functions derived in the previous section, we are able to

construct the effective gauge theory to study the electron dynamics. Since the

band is degenerate, the non-Abelian formalism must be invoked. The electron

wave packet introduced in Section 1.5.1 is

|W (rµ)〉 =

∫
d3kw(k)[ca|A(k)〉|↑(rµ)〉+ cb|B(k)〉|↓(rµ)〉], (2.8)

which defines the center-of-mass position by rc = 〈W |r|W 〉, the center-of-mass

momentum by kc =
∫

dkk|w(k)|2, and the isospin vector C by Eq. (1.50). The

electron dynamics is characterized by the equations of motion of the three

parameters kc, rc, and C, i.e., which have been derived as Eq. (1.64).

By substituting the wave functions into Eq. (1.48) and Eq. (1.49), we

obtain the Berry connections in terms of θ, φ, and ξ

Arµ =
1

2

[
cos θ∂µφ ξ(−i∂µθ − sin θ∂µφ)

ξ(i∂µθ − sin θ∂µφ) − cos θ∂µφ

]

=
1

2
[−τ1ξ sin θ∂µφ+ τ2ξ∂µθ + τ3 cos θ∂µφ], (2.9)

and Akµ = 0. The vanishing of Akµ can be attributed to the omission of spin-

orbit coupling in the Hamiltonian.

The evolution of the iso-spin C represents dynamics between the A and

B sub-bands, which defines an internal degree of freedom unique to antiferro-

magnets. As explained in section 1.5.1, C itself is not gauge invariant and is

unmeasurable. However, it is ultimately related to the physical spin s which

has unambiguous observable effect.
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2.2.1 Spin and Iso-spin

With the wave-packet |W (rµ)〉 (we have omitted the subscript c for

simplicity), the physical spin is defined as

s = 〈W (rµ)|σ|W (rµ)〉, (2.10)

which respects gauge invariance. From Eqs. (1.50), (2.5), (2.8), and (2.10), we

know the components of s in the lab frame after some tedious algebra,

sx = c3 sin θ cosφ+ ξ[c1 cos θ cosφ− c2 sinφ], (2.11a)

sy = c3 sin θ sinφ+ ξ[c1 cos θ sinφ+ c2 cosφ], (2.11b)

sz = c3 cos θ − ξc1 sin θ. (2.11c)

where ξ is defined in Eq. (2.7).

On the other hand, the iso-spin C is defined by (1.50). Throughout the

dissertation, the gauge resides in the choice of local spin eigenstates, which

are obtained by acting U(r, t) = e−iσzφ/2e−iσyθ/2e−iσzχ/2 on the eigenstates

of σz. While θ(r, t) and φ(r, t) are physical, χ(r, t) is not and can be chosen

arbitrarily; the gauge is fixed by setting χ = 0. With this special gauge choice,

C can be pictured as a vector in the local frame extended by θ, φ, and n, as

depicted Fig. 2.2: C = c1θ + c2φ+ c3n, and components of the real spin s in

this local frame are

s1 = sx cos θ cosφ+ sy cos θ sinφ− sz sin θ = ξc1 (2.12a)

s2 = −sx sinφ+ sy cosφ = ξc2 (2.12b)

s3 = sx sin θ cosφ+ sy sin θ sinφ+ sz cos θ = c3 (2.12c)
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where Eqs. (2.11) have been used, and we obtain the important relation,

s = ξ(c1θ + c2φ) + c3n. (2.13)

Equation (2.13) indicates two important properties: (i) C is coplanar with n

and s, which is specific to the particular gauge χ = 0; (ii) while the isospin

vector is constrained on the unit sphere c2
1 + c2

2 + c2
3 = 1, the physical spin

satisfies
s21+s22
ξ2 + s2

3 = 1, which constrains the tip of s on an prolate spheroid

with semi-major axis being n(r, t) and semi-minor axis on its equator having

length ξ (Fig. 2.2, right panel).

For arbitrary gauge with χ 6= 0, it is easy to show that we always have

s3 = c3 and s2
1 + s2

2 = ξ2(c2
1 + c2

2), but the angles between s1,2 and c1,2 will be

different, i.e., C will not be coplanar with n and s.

We mention that the iso-spin is different from the pseudo-spin furnished

by the A − B sublattices. Iso-spin refers to the superposition coefficients ca

and cb. Only in the limit ξ → 0 where |A〉 and |B〉 are orthogonal, iso-spin

and pseudo-spin become equivalent. But in such a limit, the two are also

equivalent to the physical spin.

2.2.2 Geometric Evolution of Spin

We know that in ferromagnet, electron spin is locked to the orienta-

tion of the local magnetization, thus s is actually a slaved variable. As a

consequence, the spin evolution is a geometric map from space-time to the

Bloch sphere. In the AF texture, however, iso-spin dynamics results in spin

46



 

x

 
y

z

 

Figure 2.2: Left panel: the isospin vector C (blue arrow) in the local frame:
C = c1θ + c2φ + c3n, where θ and φ are spherical unit vectors. Right panel:
In our particular gauge, C (blue) is coplanar with n and s (red). The tip of C
moves on a unit sphere, whereas tip of s is constrained on the ellipsoid whose
semi-major axis is n and semi-minor axis having length ξ.

mistracking with the background, is the spin evolution still geometrical?

To derive the spin dynamics, we first substitute Eq. (1.51) into E-

q. (1.56) with the Berry connection given by Eq. (2.9), and note that

θ̇ = ṙµ∂µθ = ∂tθ + ṙc · ∇θ, (same for φ) (2.14)

we obtain the iso-spin dynamics

d

dt



c1

c2

c3


 =




0 cos θφ̇ −ξθ̇
− cos θφ̇ 0 −ξ sin θφ̇

ξθ̇ ξ sin θφ̇ 0





c1

c2

c3


 . (2.15)

Then, we notice that in the laboratory frame, the spin components are re-

lated to the iso-spin by Eq. (2.11). Take the total time derivative over each
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component of s, for example,

ṡx = ċ3 sin θ cosφ+ c3(cos θ cosφθ̇ − sin θ sinφφ̇)

+ ξ[ċ1 cos θ cosφ− c1(sin θ cosφθ̇ + cos θ sinφφ̇)]

− ξ[ċ2 sinφ+ c2 cosφφ̇]

= c3(1− ξ2)(cos θ cosφθ̇ − sin θ sinφφ̇)

= c3(1− ξ2)ṅx (2.16)

where in deriving the second equality Eq. (2.15) has been used. In a similar

manner, we obtain the other two components

ṡy = c3(1− ξ2)ṅy, ṡz = c3(1− ξ2)ṅz. (2.17)

To eliminate c3 in the above equations, we reverse Eqs. (2.11) and obtain,

c3 = sx sin θ cosφ+ sy sin θ sinφ+ sz cos θ = s · n (2.18)

then from Eqs. (2.16) and (2.17), we obtain a simple and elegant equation of

motion for the physical spin,

ṡ = (1− ξ2)(s · n)ṅ, (2.19)

where the s dependence on the right hand side is important.

As dt can be eliminated from Eq. (2.19), we claim that the spin evolu-

tion is geometrical given that n(r, t) is a function of space-time. The motion

of s can be decomposed into a superposition of two motions: one strictly fol-

lows n (for stationary C) and the other represents mistracking with n (for
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dynamical C), where the latter originates from dynamics between the A and

B sub-bands and is unique to AF materials. It is worth emphasizing that

the mistracking between s and n has nothing to do with any non-adiabatic

process, but is entirely due to the non-Abelian nature of the problem.

From Eq. (2.19), we can generalize Eq. (2.13) to a gauge-invariant form,

which will be useful in the following discussions. Since

ds = (1− ξ2)(s · n)dn, (2.20)

the dot product with n on both sides yields

n · ds = (1− ξ2)(s · n)
1

2
d(n2) = 0, (2.21)

where n2 = 1 has been considered. Eq. (2.21) gives us the relation

d(n · s) = s · dn. (2.22)

On the other hand, dot product with s on both sides of Eq. (2.20) gives,

d(s2) = 2(1− ξ2)(s · n)(s · dn) = (1− ξ2)d(s · n)2 (2.23)

From Pythagorean theorem we know that s2 = (s · n)2 + (s× n)2, then take

derivative on both sides, regarding Eq. (2.23), we arrive at

ξ2d(s · n)2 = −d(s× n)2. (2.24)

Assume the initial condition to be (s · n)|0 = 1, the above equation can be

integrated into

(s · n)2 +
(s× n)2

ξ2
= s2

3 +
s2

1 + s2
2

ξ2
= 1, (2.25)
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which describes a three dimensional prolate spheroid. While Eq. (2.13) applies

only the our special gauge χ = 0, Eq. (2.25) is valid in arbitrary gauge.

To appreciate the geometric property of the spin evolution and to bet-

ter compare it with the ferromagnetic case, let us consider a simple example

illustrated by Fig. 2.3: n(t) is varying round a cone of constant semiangle θ

in the laboratory frame, which can be realized in a spin wave. According to

Eq. (2.19), we know that dsz = 0 due to dnz = 0, thus, the tip of s should stay

in the bottom plane of the cone. On the other hand, we learn from Eq. (2.25)

that the tip is constrained on the spheroid that moves with the instantaneous

n(t). Therefore, the actual orbit traversed by the tip is contained in the in-

tersection of the two constraints. Through some straightforward geometric

analysis, we know that s is bounded between the n cone and an inner cone

whose semiangle depends on ξ. Figure 2.3 depicts the actual orbits of s for

three different ξ’s: they all exhibit precession and nutation, which can be eas-

ily read out from the bird’s eye view. Remarkably, the motion of s falls into

two topologically distinct classes separated by the critical condition

ξ2
c =

cos2 θ

(1 + cos2 θ)
, (2.26)

which corresponds to the case where the inner cone angle shrunk to zero (the

middle panel of Fig. 2.3). In a real spin wave, θ is nearly zero, thus ξc ≈ 1/
√

2.

For real materials, we expect t ≤ J , thus from Eq. (2.7) we know that for a

partially filled band, ξ is always smaller than 1/
√

2. Therefore, the ξ < ξc

phase is more realistic. In section 2.3, we will provide further physical insights

on how the value of ξ affects the topology of spin evolution.
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Figure 2.3: Spin evolutions for three different ξ’s when n(t) is moving round
a cone with constant angle θ from the z axis. Upper panels: the tip of s
respects two constraints: it stays both on the cone’s bottom (small gray slab)
and on the spheroid described by Eq. (2.25) (blue ellipsoid), thus the vector
s is confined in between two cones with different semiangles. Lower panels:
orbits of the tip from bird’s eye view. The topology of the orbits is separated
into two classes (left and right) by the critical case (middle) where the inner
cone’s semiangle shrunk to zero. Orbits may not commensurate with n.
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Now, the physical picture of adiabatic spin evolution is clear: as the

background order parameter n(r, t) moves slowly in space-time, the prolate

spheroid moves with it. The motion of physical spin s is a superposition of

the relative motion on the spheroid and the motion of the spheroid itself. The

overall motion of s described by Eq. (2.19) is purely geometrical as dt can be

eliminated on both sides, as a result, a given path of n uniquely determines a

path of s on the spheroid which is independent of the Hamiltonian.

A further remark: it seems surprising that the magnitude of s varies on

the spheroid since ξ ≤ 1, but how can the physical spin have a non-constant

magnitude? We answer this question by studying the reduced density ma-

trix for the spin degree of freedom. It is a 2× 2 matrix and can be written as

ρs = 1
2
(1+a·σ), thus the expectation value of physical spin is s = Tr[ρsσ] = a.

Now since s2 ≤ 1, thus a2 ≤ 1, and what follows is Trρ2
s ≤ Trρs, which suggests

that the electron is effectively in a mixed spin state. This can be attributed

to the entanglement of spin and sublattice degrees of freedom, specifically, be-

cause s3 = c3, we are able to infer the spin projection along n by measuring

the probability difference on neighboring A − B sites (vice versa). The en-

tanglement provides us with partial information of spin orientation from the

knowledge of sublattice, this destroys full coherence of the spin states.

2.2.3 Dynamics in Momentum Space

In correspondence with the novel spin dynamics, the orbital dynamics

of an individual electron also becomes nontrivial, which is attributed to the
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non-Abelian Berry curvatures. In this section and the following section, we

derive the orbital dynamics of a single conduction electron in momentum space

(BZ) and real space, respectively.

From Eq. (1.51) the real-space curvature becomes

Ωrr
µν ≡ ∂rµA

r
ν − ∂rνAr

µ + 2Ar
µ ×Ar

ν

= {0, 0, (ξ2 − 1)
1

2
sin θ(∂rµθ∂

r
νφ− ∂rνθ∂rµφ)}

= {0, 0, (ξ2 − 1)
1

2
n · (∂rµn× ∂rνn)}, (2.27)

where n = {sin θ cosφ, sin θ sinφ, cos θ} is the local order parameter. We see

that only the third component is non-zero in our particular gauge marked

by χ = 0. But one can check that in any gauge with χ 6= 0, the first two

components do not vanish. However, the third component is actually gauge

invariant and it has the form of Skyrmion density.

The cross components can be obtained in a similar way,

Ωrk
µν = −Ωkr

νµ = ∂rµA
k
ν − ∂kνAr

µ + 2Ar
µ ×Ak

ν

=
1

2
{∂kν ξ sin θ∂rµφ, −∂kν ξ∂rµθ, 0}, (2.28)

where again the first two components are changeable subject to gauge trans-

formations, whereas the third is gauge invariant. Moreover, due to Ak
µ = 0,

the BZ space Berry curvature Ωkk
µν vanishes and it will be no more mentioned

in the following.

Before deriving the equations of motion, special attention should be

paid on the fact that gauge fields (Berry curvatures) in non-Abelian theory
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are not gauge invariant, but gauge covariant. It is the isospin scalars C ·Ωµν

that respect gauge invariance. Specifically, as we make a gauge transformation

on the wave functions |ψa〉 and |ψb〉, change of Ω just compensates that of C.

By substituting Eqs. (2.27) and (2.28) into Eq. (1.59), regarding that

kµ has only spatial but no temporal components, we arrive at,

k̇c =
1

2
c3(ξ2 − 1)n · (∇n× ṅ) +

1

2
ξ̇[c1 sin θ∇φ− c2∇θ]

=
1

2
n · {∇n× [(ξ2 − 1)(s · n)ṅ]}

= −1

2
n · (∇n× ṡ) (2.29)

where ξ̇ = 0 and Eq. (2.19) have been used. We also have ignored ∂rµε term in

Eq. (2.29) since the band structure is only a function of k and is independent of

space-time in the adiabatic approximation. To make better comparisons with

the spin motive force [5, 41, 124, 136, 138] and the topological Hall effect [14,

57, 74, 140] widely studied in FM materials, we also derive another suggestive

form of Eq. (2.29). Take an arbitrary component i of Eq. (2.29),

k̇i =
1

2
c3(ξ2 − 1) sin θ(∂iθφ̇− θ̇∂iφ)

=
1

2
c3(ξ2 − 1) sin θ{[∂iθ∂tφ− ∂tθ∂iφ] + [∂iθ(ṙj∂jφ)− (ṙj∂jθ)∂iφ]}

=
1

2
c3(ξ2 − 1){sin θ[∂iθ∂tφ− ∂tθ∂iφ] + sin θεijkεklmṙj∂lθ∂mφ}, (2.30)

where θ̇ = ∂tθ+ ṙi∂iθ (the same for φ̇) and the identity εijkεklm = δilδjm−δimδjl
have been used. Eq. (2.30) can be written in a concise way as,

k̇ = (1− ξ2)(s · n)(E + ṙ ×B), (2.31)
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where the gauge fields are defined as

E =
1

2
sin θ(∂tθ∇φ−∇θ∂tφ), (2.32)

B = −1

2
sin θ(∇θ ×∇φ), (2.33)

which are exactly the same as their counterparts in ferromagnets. Also as

in ferromagnets, it is easy to check that Eqs. (2.32) and (2.33) satisfy the

Faraday’s relation ∇×E + ∂B
∂t

= 0.

However, quite different from the ferromagnetic case, the gauge charge

s·n in Eq. (2.31) is not just a constant, but involves internal dynamics. In oth-

er words, the orbital motion is accompanied by a time-dependent gauge charge

which should be determined by solving the coupled dynamics of spin and orbit

all together. Moreover, the factor ξ2 results from the non-commutative term

2Ar
µ×Ar

ν in Eq. (1.60a); it also reflects the coupling between spin and orbital

dynamics.

The parameter ξ ∈ (0, 1) plays a key role here: in the ξ → 1 limit, 1−ξ2

vanishes thus from Eqs. (2.19) and (2.31) we get null results ṡ = 0 and k̇ = 0.

In the other limit where ξ → 0, the solution of Eq. (2.19) reduces to s = ±n if

initial condition is s(0) = ±n(0), and Eq. (2.31) reduces to the conventional

Lorentz force equation, by which the system loses the non-Abelian feature and

behaves as two decoupled ferromagnetic sub-systems. It deserves attention

that in real AF materials, both A and B sub-bands host majority carriers, but

they are subject to effective Lorentz forces of opposite directions, which may

lead to non-trivial spin transport via Mott scattering.
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2.2.4 Dynamics in Real Space

From Eq. (1.61) and Eq. (2.28), we have

ṙ = −∂kε+
1

2
∂kξ(c1 sin θφ̇− c2θ̇). (2.34)

To get a gauge-independent equation, we need to eliminate c1,2 in terms of the

physical spin. Regarding Eq. (2.13) and ṅ = θ̇θ + sin θφ̇φ, we have

n · (s× ṅ) = ξ(c1 sin θφ̇− c2θ̇), (2.35)

thus Eq. (2.34) becomes

ṙ = −∂kε−
1

2
(s× n) · ṅ∂k ln ξ, (2.36)

where the last term on the right hand side represents a spin-dependent anoma-

lous velocity. Moreover, from Eq. (2.7) we know

∂k ln ξ =
1− ξ2

ξ2

∂kε

ε
, (2.37)

thus the direction of the anomalous velocity 1
2
(s×n) · ṅ∂k ln ξ is the same as

the group velocity: it simply represents the modification of the group velocity

due to presence of background AF texture.

With the anomalous velocity, the orbital dynamics exhibits effective

spin-orbit coupling. We stress that this is unique to bulk AF textures and

has nothing to do with the anomalous velocity widely studied in ferromagnets

or quantum Hall systems. Mathematically, the anomalous velocity originates

from the Ωkr
µν curvature that joints real space with BZ, the importance of
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Ferromagnetic texture Antiferromagnetic texture
s = n ṡ = (1− ξ2)(s · n)ṅ

k̇ = E + ṙ ×B k̇ = (1− ξ2)(s · n)(E + ṙ ×B)
ṙ = −∂kε ṙ = −∂kε− 1

2
(s× n) · ṅ ∂k ln ξ

Table 2.1: Comparison of effective electron dynamics in ferromagnetic and
antiferromagnetic textures. In the former, spin dynamics is trivial, and a
Lorentz force is induced in the orbital motion. In the latter, spin dynamics
is non-trivial due to the mixture of degenerate sub-bands, and the orbital
dynamics is subject to a Lorentz force as well as an anomalous velocity that
are spin-dependent.

which has been overlooked before. For better comparison, we summarize the

fundamental electron dynamics of FM and AFM textures in Table 2.1.

A further point should be added is that in the most general case, the

effective Lagrangian Eq. (1.47) should also contain a term representing self-

rotation of the wave packet −Im[c̃i〈∂rµui|(ε −H)|∂rµuj〉c̃j], but after some so-

phisticated manipulations one can show that this term vanishes for quit similar

reasons as the vanishing of Ωkk
µν .

2.3 ‘t Hooft-Polyakov Monopole

In section 2.2.2, we have shown that the spin evolution is geometrical

even though there is no exact tracking of electron spin and the background.

Associated with this geometric motion, a SU(2) Berry phase P exp[−i
∫
Ar
µ ·

τdrµ] is accumulated along the electron trajectory [69, 72, 149], which can be

regarded as the (non-Abelian) gauge flux of a ‘t Hooft-Polyakov monopole [43,

97] at the center of the unit sphere spanned by n. This is in analogy to the
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U(1) Dirac monopole associated the Abelian Berry phase of the electron wave

function in ferromagnets.

To study the monopole, we turn to a different coordinate system. By

assigning a variable magnitude to n, we define the dimensionless order param-

eter R ≡ Rn = J
t
n. Then the Berry connection can be equivalently defined

in the R space, which relates to the original one by Aµdrµ = AidRi with

Ai = i

[
〈↑ |∂i| ↑〉 ξ〈↑ |∂i| ↓〉
ξ〈↓ |∂i| ↑〉 〈↓ |∂i| ↓〉

]
, (2.38)

where ξ = |γ̃|/
√
R2 + |γ̃|2 is also a function of R, and |γ̃| =

∑
δ e

ik·δ de-

pends on the position in BZ. Written in spherical coordinates, components of

Eq. (2.38) are AR = 0,

Aθ =
ξ

2R

[
0 −i
i 0

]
, and Aφ =

1

2R

[
cot θ −ξ
−ξ − cot θ

]
(2.39)

To see the monopole, we should further make a singular gauge transformation

on the potential,

A′θ = SAθS
† + i

1

R
S∂θS

†

= i
(1− ξ(R))

2R

[
0 e−iφ

−eiφ 0

]
(2.40a)

A′φ = SAφS
† + i

1

R sin θ
S∂φS

†

=
(1− ξ(R))

2R

[
− sin θ e−iφ cos θ
eiφ cos θ sin θ

]
(2.40b)

with the unitary matrix being

S =

[
e−iφ/2 cos θ

2
−e−iφ/2 sin θ

2

eiφ/2 sin θ
2

eiφ/2 cos θ
2

]
. (2.41)
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Finally, expressing the gauge potential in Cartesian coordinates, we obtain

Ax = A′θ cos θ cosφ− A′φ sinφ =
(1− ξ)

2R2

[
y iz
−iz −y

]
, (2.42a)

Ay = A′θ sinφ+ A′φ cosφ =
(1− ξ)

2R2

[
−x z
z x

]
, (2.42b)

Az = A′θ sin θ =
(1− ξ)

2R2

[
0 −y − ix

−y + ix 0

]
, (2.42c)

they are nothing but the “hedgehog” gauge potential of a ‘t Hooft -Polyakov

monopole at R = 0,

A′i =
1− ξ(R)

2R2
εijkRjσk, (2.43)

whereRi = {x, y, z} and σi’s are Pauli matrices. The radial profile of Eq. (2.43)

is determined by the factor 1 − ξ(R). For fixed nonzero γ̃, 1 − ξ(R) tends to

1 as R → ∞, and 1 − ξ(R) ∼ R2 as R → 0, which cancels the R2 in the

denominator thus the gauge potential is regular at origin. The form and

behaviors of Eq. (2.43) are all the same as the gauge potential proposed by

Sonner and Tong for realizing artificial ‘t Hooft-Polyakov monopole [100]. In

fact, our parameter ξ can be understood as the f(B) factor in Ref. [100], they

both reflect the overlap of (partial) wave functions from doubly degenerate

bands. However, at BZ boundary γ̃ is zero, thus ξ = 0 regardless of R. In this

case, Eq. (2.43) becomes the gauge potential of a Wu-Yang monopole and the

origin R = 0 becomes singular.

We can also define the associated Higgs field as

φH ≡
[
〈A|σ3|A〉 〈A|σ3|B〉
〈B|σ3|A〉 〈B|σ3|B〉

]
=
√

1− ξ2 σ3, (2.44)
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which is the pseudo-spin polarization of the AF systems. It describes the extent

to which the conduction electrons with opposite spins are spatially separated

on alternating A and B sites. In other words, it represents how much those

electrons respect the staggered order. Upon the same gauge transformation

with matrix (2.41), we have

φH → φ′H = SφHS
† =

R · σ√
|γ̃|2 + r2

= ΦH · σ. (2.45)

The SU(2) gauge field associated with Eq. (2.38) is broken into an Abelian

magnetic field due to the effective Higgs mechanism,

Fij = ∂i(Φ·Aj)− ∂j(Φ·Ai) + 2Φ · (∂iΦ× ∂jΦ), (2.46)

Bi =
1

2
εijkFjk =

Ri

2R3
, (2.47)

where Φ = ΦH/|ΦH |. Eq. (2.47) is the magnetic field of a Dirac monopole.

An unsolved issue is the Bogomol’nyi relation [43, 97]. For the non-

Abelian gauge field Ωij = ∂iAj − ∂jAi− i[Ai, Aj], and the covariant derivative

Di = ∂i − i[Ai, ], it is straightforward to derive

Ωij =
1

2
εijk[DkφH −

|γ̃|+
√
|γ̃|2 +R2

(|γ̃|+R2)3/2
σk]. (2.48)

If not were the last term, Eq. (2.48) reproduces the Bogomol’nyi relation. One

can show that only for a profile function ξ(R) = 2R/ sinh(R) (the case of a

true ‘t Hooft-Polyakov monopole) that the last term vanishes. While our ξ(R)

asymptotically resembles 2R/ sinh(R), it gives a different profile for finite R.

As a result, the last term in Eq. (2.48) vanishes only when R→∞.
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To close the argument of the above two sections, we summarize the

coupled dynamics of spin and orbit as follows:

ṡ = (1− ξ2)(s · n)ṅ, (2.49a)

k̇ = −1

2
n · (∇n× ṡ), (2.49b)

ṙ = −∂kε−
1

2
(s× n) · ṅ ∂k ln ξ, (2.49c)

where ṅ = ∂tn + (ṙ · ∇)n, and we have omitted subscript c of rc and kc for

convenience of following discussions. Equations. (2.49) are the fundamental

equations of motion of a conduction electron in a slowly-varying AF texture,

which are represented by joint evolutions of three variables (s,k, r).

In real materials with impurities, equations (2.49) are valid so long as

spin coherence length is as large as, if not more than, the typical width of

the texture. While this is quite true in ferromagnetic materials, its validity

in AF materials awaits experimental verification. At extremely low tempera-

tures, spin-flip scattering is dominated by magnetic impurities which can be

made negligibly small in clean samples. Besides, spin-independent scatter-

ing processes (e.g., electron-phonon scattering) do not destroy our essential

conclusions if ṙ is understood as the drift velocity of carriers. We mention

that AF spintronics is an emerging field where very little is known. While it

shares some similarities with the established ferromagnetic spintronics, it is

not always correct to copy ideas from ferromagnetic systems.
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2.4 Domain Wall Magnetoresistance

Consider a spiraling AF texture sandwiched by two ferromagnetic lay-

ers, see Fig. 2.4. This magnetic structure has been realized in Co/FeMn/Py

trilayers in a recent experiment [137], where the ferromagnetic order of Co

layer is nearly fixed but that of Py can be rotated by external magnetic field.

The AF order is dragged into a spiral due to the exchange bias effect on the

AF/F interfaces. The layer thickness of FeMn is roughly 10 ∼ 20 nm and

can be made even larger, which far exceeds the lattice constant thus adiabatic

approximation is valid; Meanwhile, typical spin coherence length is larger than

the layer thickness at low temperatures so that spin evolution is governed by

Eq. (2.19).

When an electron flows from top to bottom with applied current, the

top ferromagnetic layer polarizes its spin so that it enters the A sub-band

across the interface. According to Eq. (2.19), the physical spin orientation

of the electron after passing through the AF layer is rotated by Π = π −

arctan[ξ tan ξπ] if ξ < 1
2
, and Π = − arctan[ξ tan ξπ] is ξ > 1

2
. This is a

topological result that only depends on the initial and final directions of n,

but is independent of the texture’s profile detail. When ξ → 0, Π reduces to π,

which means the electron spin follows n and remains in the A sub-band, thus

it flows into the bottom ferromagnetic layer with a lower resistance; in the

ξ → 1 limit, Π vanishes and the electron completely evolves into the B sub-

band thus experiencing a higher resistance. For an arbitrary ξ and an arbitrary

total rotation of the spiral denoted by Φ, the electron will partially evolve into
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Figure 2.4: Left: F/AF/F trilayer with opposite ferromagnetic orientations on
two sides. The black double arrows represent the A-B sublattices of the AF
layer, which is dragged into a spiraling texture due to exchange bias on the
interfaces. Right: incoming electrons only enter the A sub-band due to the
upper ferromagnetic polarizer, the out-going electrons partially occupy the B
sub-band depending on the value of ξ.
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the B sub-band with the wave function cos(ξΦ/2)|ψa〉+ i sin(ξΦ/2)|ψb〉, thus

the total resistance is

ρ = ρ0 +
1

2
∆ρ[1− cos(ξΦ)], (2.50)

where ρ0 is the intrinsic resistance of the AF texture itself, which depends

monotonously but not too much on Φ. ∆ρ represents the magnetoresistance

of the spin valve which is determined by material details of the two ferro-

magnetic layers and is independent of Φ. If Φ is increased beyond π, ρ will

reach a maximum at Φm = π/ξ and then reduces. The resistance maximum, if

observed, serves as an experimental verification of Eq. (2.19). Moreover, mea-

suring Φm also enables us to find ξ without calculating the band structure.

We remark that the above results survive in the presence of diffusive

processes so long as spin-flip scattering is ignored. The reason is that spin-

independent scattering only deflects k-space orbit, whereas the s dynamics

is determined by the variation of n that is blind to k in one dimension. In

addition, FeMn is a non-collinear antiferromagnet that has more than two

sub-lattices. To test our theory unambiguously, we can replace FeMn by the

collinear IrMn which is feasible for current technique. Moreover, we are aware

of the experiment [10, 11] where the spiraling AF texture exhibits spatial pe-

riodic patterns, it provides a better way of realizing large Φ′s.

An experimental complication may arise from irregularities on the in-

terface. Small grains are hard to avoid, which may reduce the effect predicted

under a perfect assumption.
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2.5 Proposed Experiment

The induced gauge fields Eq. (2.32) can be detected via similar tech-

nique as the spin-motive force experiment based on ferromagnetic materials.

We learn from previous discussions a key property that the electron transport

of an AF metal resembles that of a ferromagnet when ξ is small. In other word-

s, when the spatial overlap of the two degenerate subbands is small, the AF

can indeed be regarded as two ferromagnetic subsystems. The parameter ξ is

a measure of how well the independence of the two subsystems is kept. From

Eqs. (2.49), we see that the electron transport in AF just respects the rule

1 + 1 = 2(1− ξ2). The reduction by ξ2 originates from the non-commutative

or the non-Abelian feature of inter-sub-band dynamics.

In a recent experiment [136], a comb shaped permalloy is fabricated,

where the shape anisotropy breaks the resonance condition of the material into

two well-separated frequencies. When one of the two eigen-frequencies is being

excited by external microwaves, the material exhibits both spatial texture and

time variation. A careful look at the resonance geometry tells us that the

spin-motive force is generated across the two leads, which results in a voltage

drop that can be detected easily, see Fig. 2.5 (upper panel).

We propose a similar experiment to measure the effective electrical

component of the non-Abelian Berry curvature in Eq. (2.32). As illustrated

in the lower panel of Fig. 2.5, we replace the normal metal leads made up of

AuPd in Ref. [136] by heavy metals with strong spin-orbit coupling, such as

Pt or Au. When the left part of the antiferromagnet (e.g., FeF2 [79]) is driven
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V2 = ‐Vsmf

Figure 2.5: Schematics of spin-motive force experiments based on ferromagnet
(upper panel) and antiferromagnet (lower panel).
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into resonance (see details in the next chapter), electrons of opposite spins

drift to different leads. Consequently, no charge voltage is generated between

the two leads. Nevertheless, the spin-motive force in the antiferromagnet leads

to a pure spin voltage between the two sides. When the spin accumulation is

injected into the Pt leads on both sides, it generates two opposite transverse

charge voltages as indicated by the black arrows in Fig. 2.5. This is due to the

inverse spin Hall effect – a frequently used technique to measure spin injection.

In this geometry, we can monitor either V1 or V2.

However, when the left part of the antiferromagnet is resonating with

the microwave, the measured voltage V1 also includes the contribution from

spin-pumping. The spin-pumping effect on the N/AF interface is studied in

great detail in the next chapter; here we only need to note that it is an interface

effect independent of the bulk. So the difference between the magnitudes of

V1 and V2 gives the contribution of spin-pumping. If the antiferromagnet is

insulating, V1 = Vpump and V2 ≈ 0 since the spin-motive force only exists in

metals and is a pure bulk effect.

Closing remarks. In this chapter, we find that a slowly varying

AF texture renders adiabatic dynamics of conduction electrons, which are de-

scribed by three coupled equations of motion [Eqs. (2.49)]. Quite different

from the ferromagnetic case, the adiabaticity in AF materials does not imply

strict alignment between conduction electron spins and the profile of back-

ground texture. Instead, the adiabatic spin evolution is a superposition of a

motion following the background order plus a motion on a prolate spheroid
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attached to the local order, where the latter originates from internal dynamics

between degenerate bands. The overall motion of the spin is still geometric;

it can be attributed to the accumulation of a SU(2) non-Abelian Berry phase

originating from the gauge flux of an effective ’t Hooft-Polyakov monopole in

the parameter space.

The corresponding orbital dynamics shares some similarities with fer-

romagnetic materials in that the k-space dynamics can be described by an

effective Lorentz force equation. However, two prominent differences in the

orbital dynamics distinguish an AF system from its ferromagnetic counter-

part: first, the gauge charge is dynamical rather than constant, by which spin

and orbital motions no longer separate; second, the group velocity is renor-

malized by a spin-dependent anomalous velocity, which is quite different from

what has been studied before.

Theory developed in this chapter lays the foundation for charge and spin

transports in textured AF systems, which will be applied to real materials in

the future. The validity of the theory needs to be tested experimentally since

available data on AF spintronic materials are very rare. This chapter solves

only the first half of the whole story; the other half, i.e., the converse effect

regarding the back-reaction of current on background AFM order, is discussed

in the following chapter.
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Chapter 3

Staggered Field Dynamics

1This chapter solves the reciprocal phenomenon of the electron trans-

port studied in the previous chapter. By varying the effective system La-

grangian that incorporates the conduction electrons and the background an-

tiferromagnet, we derive the current-induced dynamics of the staggered field

from a microscopic point of view. The formalism in this chapter is valid in the

long wave length limit, i.e., the pitch of spatial modulation of the background

texture far exceeds the lattice spacing.

3.1 Nonlinear Sigma Model

The dynamics of an AF system can be described, in principle, by the

Heisenberg Hamiltonian. However, solving the AF Heisenberg model is usually

elusive and requires special computational technique. This motivates people to

search for effective models that captures the essential physics while providing

mathematical clarity.

In the continuum limit, the long wave-length (low energy) dynamics of

1The contents of this chapter are partly based on the article: R. Cheng and Q. Niu,
Dynamics of antiferromagnets driven by spin current, Phys. Rev. B, 89, 081105(R) (2014).
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an AF system is effectively characterized by the nonlinear sigma model [3,30,

37,38,91,119], which was initially proposed to interpret the alternating gapped

and gapless behavior of one dimensional quantum Heisenberg AF chain with

respect to the spin magnitude of local moments. Here, we will not digress too

much into this picture, but instead introduce necessary mathematical tools

that are used in the following sections.

As shown in Section 1.3, the action of a local magnetic moment includes

an exchange term and a WZ term. Consider a one dimensional AF chain with

J > 0 and a total number of N atoms,

S = s
N∑

j=1

SWZ [m(j)]− Js2

∫ T

0

dt
N∑

j=1

m(j, t) ·m(j + 1, t), (3.1)

where s denotes the magnitude of local spins. The staggered AF chain requires

that m(j) = (−1)jn(j), by which the exchange term becomes ferromagnetic.

However, the WZ term distinguishes it from a true ferromagnet. The action

written in terms of the staggered order parameter is

S[n] = s
N∑

j=1

(−1)jSWZ [n(j)]− Js2

2

∫ T

0

dt
N∑

j=1

[n(j, t)− n(j + 1, t)]2, (3.2)

and the WZ term can be further expressed as

s

N∑

j=1

(−1)jSWZ [n(j)] = s

N/2∑

r=1

(SWZ [n(2r)]− SWZ [n(2r − 1)]) . (3.3)

In view of n ·m = 0 and n2 +m2 = 1, we decompose the staggered field n in

terms of its unit normal N and a small oscillatory part:

n(j) = N (j)
√

1− |m(j)|2 + (−1)ja0m(j), (3.4)
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where a0 is the lattice constant. To the lowest order,

n(2r)− n(2r − 1) = N (2r)−N (2r − 1) + a0[m(2r) +m(2r − 1)]

= a0[∂xN (2r) + 2m(2r)] + h.o., (3.5)

so that the WZ term Eq. (3.3) becomes

s

N∑

j=1

(−1)jSWZ [n(j)] = s

N/2∑

r=1

∫ T

0

dtδn(2r, t) · [n(2r, t)× ∂tn(2r, t)]

≈ sa0

N/2∑

r=1

∫ T

0

dt[∂xN (2r) + 2m(2r)] · [N (2r, t)× ∂tN (2r, t)], (3.6)

where δSWZ =
∫

dtδn · (n × ∂tn) has been used. In the continuum limit

(a0 → 0), we can further simplify the WZ term as

s
N∑

j=1

(−1)jSWZ [n(j)]

≈ s

2

∫
dtdx[N · (∂tN × ∂xN ) + 2m · (N × ∂tN )]. (3.7)

Similarly, the exchange term becomes Js2a0

2

∫
dtdx[(∂xN )2 + 4m2]. Thus the

effective Lagrangian density consists of four terms

L(N ,m) = sm · (N × ∂tN )− 2a0Js
2m2

−a0Js
2

2
(∂xN )2 +

s

2
N · (∂tN × ∂xN ), (3.8)

and the action is understood as S[N ,m] =
∫

dtdxL(N ,m). To obtain the

effective dynamics in terms of N alone, we integrate out the small canting

field m(x, t), and define the effective action by

∫
DNDme−S[N ,m] =

∫
DNδ(N2 − 1)e−Seff [N ], (3.9)
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where the integration overm is a Gaussian integral and can be performed ana-

lytically. In the new action Seff [N ] =
∫

dtdxLeff(N ), the effective Lagrangian

density reads

Leff(N ) =
1

2g

[
1

c
(∂tN )2 − c(∂xN )2

]
+
s

4
εµνN · (∂µN × ∂νN ), (3.10)

where c = 2a0sJ/~ is the spin wave velocity, and g = 2
√
d/~s. The last term

is a topological term in the sense that it does NOT depend on the metric

of space-time, but is only determined by the total antisymmetric tensor εµν .

Eq. (3.10) can be easily generalized into higher dimensions, where (∂xN )2 is

replaced by |∇N |2 [38, 91,119,129,142].

The subtle physics underlying Eq. (3.10) is: the staggered field renders

the canceling of Berry phase of neighboring spins ifN is homogeneous in space.

However, when N has smooth spatial modulation, a term ∂xN is induced

by the Berry phase which does not cancel. In other word, the cancellation

of WZ term m · (∂µm × ∂νm) of individual moments is accompanied by the

introduction of the termN ·(∂µN×∂νN ) that governs the large scale variation

of the texture. The nonlinear sigma model (NLSM) described by Eq. (3.10) has

many equivalent forms, such as the CP 1 model that has been widely studied

in high energy physics [3, 91, 119]. A strict proof of the equivalence between

NLSM and the CP 1 model is provided in Appendix A.

While the topological term substantially changes the low energy exci-

tations through global effect, it does not affect local dynamics of the staggered

field, thus in the following sections we will not discuss it any more.
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3.2 Staggered Field Dynamics

Many recent experiments [84, 122, 128] and numerical simulations [49,

131,135] indicate that AF materials exhibit current-induced effects with simi-

lar orders of magnitude, if not stronger than, as those in ferromagnets. Those

pioneering investigations ushered the field of AF spintronics [64] and propelled

AF materials as promising candidates for real applications. From a theoret-

ical point of view, AF dynamics driven by charge current has been studied

both phenomenologically [39, 120] and microscopically [40, 76, 102, 103]. In

the former, both adiabatic torque by ac current and non-adiabatic torque by

dc current are predicted, but an adiabatic effect in the dc limit is absent;

in the latter, adiabatic torque is generated by dc current, but the result in-

cludes only second-order derivatives in space and time. Case becomes rather

unclear when turning to spin current, which can be realized by attaching a

ferromagnetic polarizer to the system. This problem has only been explored

phenomenologically [32–34] and no microscopic study is yet available. Even

in the phenomenological model, it is the induced ferromagnetic moments on

top of the AF background that respond to the spin current, which is a higher

order effect that drives the AF staggered order indirectly. Is a spin current

able to drive the staggered order directly without the participation of induced

ferromagnetic moments?

Equipped with the effective gauge theory on the adiabatic electron dy-

namics studied in the preceding chapters, we answer this question in a recip-

rocal sense of the electron dynamics.
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3.2.1 Reaction of A Single Electron

The interaction term Lint is constructed by summing over contributions

from individual electrons: Lint =
∑

λ

∫
ddkLλ(k)fλ(k), where Lλ(k) is the

Lagrangian of an electron with momentum k in band λ, and fλ(k) is the

distribution function. As was shown in the Chapter one and Ref. [18, 20], a

slowly-varying n(r, t) in space-time admits an effective gauge theory, which is

described by the single electron Lagrangian

Le =
~
2
ṙµ[−c1ξ sin θ∂µϕ+ c2ξ∂µθ + c3 cos θ∂µϕ], (3.11)

where ci = c̃†τic̃ is the iso-spin component, and µ = {t, r} = {t, x, y, z} labels

the spacetime. The 4-velocity ṙµ ≡ {0, ṙ} = {0,ve}, where ve = ve(k) =

1
~
∂ε
∂k

is the electron group velocity. Now, the reaction of the electron on the

background is calculated through the variational derivative

δLe
δn

=
δLe
δθ

θ̂ +
1

sin θ

δLe
δϕ

ϕ̂, (3.12)

where the components in spherical coordinates are

δLe
δθ

=
∂Le
∂θ
− ∂µ

[
∂Le
∂(∂µθ)

]

= −~
2
ṙµ[ξc1 cos θ∂µϕ+ c3 sin θ∂µϕ]− ~

2
ξṙµ

[
∂c2

∂θ
∂µθ +

∂c2

∂ϕ
∂µϕ

]
,

(3.13a)

δLe
δϕ

=
∂Le
∂ϕ
− ∂µ

[
∂Le

∂(∂µϕ)

]

=
~
2
ξṙµ

[(
∂c1

∂θ
∂µθ +

∂c1

∂ϕ
∂µϕ

)
+ c1 cos θ∂µθ

]

− ~
2
ṙµ

[(
∂c3

∂θ
∂µθ +

∂c3

∂ϕ
∂µϕ

)
cos θ − c3 sin θ∂µθ

]
. (3.13b)
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To proceed, we need to relate ci to θ and ϕ. Resorting to the dynamics between

a and b sub-bands, which is obtained by varying the system Lagrangian with

respect to c1,2,3 in Chapter One, we have the following relations:

dc1 = c2 cos θdϕ− ξc3dθ (3.14a)

dc2 = −c1 cos θdϕ− ξc3 sin θdϕ (3.14b)

dc3 = ξ(c1dθ + c2 sin θϕ) (3.14c)

these equations enable us to take partial derivatives of c1,2,3 with respect to

the two spherical angles θ and ϕ,

∂c1

∂θ
= −ξc3,

∂c1

∂ϕ
= c2 cos θ, (3.15)

∂c2

∂θ
= 0,

∂c2

∂ϕ
= −c1 cos θ − ξc3 sin θ, (3.16)

∂c3

∂θ
= ξc1,

∂c3

∂ϕ
= ξc2 sin θ. (3.17)

Substituting them into Eq. (3.13a) and Eq. (3.13b) ends up with two simple

and elegant expressions,

δLe
δθ

= −~
2

(1− ξ3)c3 sin θ∂µϕ,
δLe
δϕ

=
~
2

(1− ξ3)c3 sin θ∂µθ, (3.18)

hence the variational derivative Eq. (3.12) finally becomes

δLe
δn

=
~
2

(1− ξ2)c3ṙµ[− sin θ∂µϕθ̂ + ∂µθϕ̂] =
~
2

(1− ξ2)(s · n)ṙµ(n× ∂µn),

= ±~
2

(1− ξ2)n× [∂tn+ (ve · ∇)n] , (3.19)

where +(−) is for the a (b) sub-band. In deriving the second step, we have

used c3 = s3 = s · n (see Eq. (2.12c)).
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3.2.2 Spin Diffusion

To derive the reaction of a spin current, we need to sum up all individual

electrons. However, when an ensemble of electrons are injected into the AF

texture, a serious problem arises: spin polarization of the current will relax due

to spin-flip scattering. Recall the spatial overlap between the two degenerate

bands Eq.(2.7)

ξ(k)=〈A(k)|B(k)〉= |γ(k)|√
J2 + |γ(k)|2

=

√
ε2 − J2

ε
, (3.20)

which is determined by the ratio of t/J and the position of Fermi level. In

AF metals, the exchange coupling is as large as that in ferromagnetic metals,

J ∼ 1eV, which is supposed to be larger than t. If the Fermi level lies in the

middle of either the upper band or the lower band: ξ2
F ∼ 20% for J = 2t, and

ξ2
F < 1% for J = 10t, thus ξ2 ∈ (0, ξ2

F ) is restricted to a small range close to

zero. The smallness of ξ2 leads to two important consequences:

(1) Coherent dynamics between a and b sub-bands is suppressed. The semi-

classical evolution of the physical spin of an electron wave packet respects

ds = (1− ξ2)(s ·n)dn. When ξ2 � 1, we have demonstrated in Section 2.2.2

that s tends to following n, thus s · n ≈ constant in the absence of spin

relaxation. In other word, if an electron initially belongs to one of the two

sub-bands, it will stay there forever and will not hop to the other unless spin-

flip scattering is introduced.

(2) Spin-flip scattering due to impurities is also highly suppressed. An at-

tached ferromagnetic polarizer injects spin imbalance into a metal with no
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spin imbalance
⇠2 ⌧ 1 ⇠2 = 1

AFM metal Normal metal

1

⌧sf
⇠ ⇠2

spin relaxation

Thursday, May 16, 13

Figure 3.1: While opposite (local) spin orientations are locked with different
spatial patterns in an AF metal, no such difference is present in a normal metal.
As a result, normal metals have effectively ξ2 = 1. Since spin relaxation rate
is proportional to ξ2, AF metals have relatively longer spin diffusion lengths.

macroscopic magnetization when current is applied. This spin imbalance will

relax through many different mechanisms, for example, spin-orbital coupling,

spin-dependent impurity scattering, etc. In normal metals, spin relaxation

rate is proportional to |〈↑ |Hsf |↓〉|2 where Hsf is the spin-flip Hamiltonian. In

AF metals, however, opposite spin orientations are associated with different

spatial wave functions, thus the spin relaxation rate should be

1

τsf
∼ |〈ua|Hsf |ub〉|2 = |〈A| ⊗ 〈↑|Hsf |↓〉 ⊗ |B〉|2

= ξ2|〈↑ |Hsf |↓〉|2. (3.21)

Given the same Hsf and the same density of states around the Fermi ener-

gy, spin relaxation rate in an AF metal will be much smaller than that in a

normal metal, because it is suppressed by the smallness of ξ2, see Fig. 3.1 for
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an illustration. As a result, AF metals are good spin-preservers, which

seems to be counter-intuitive without solving the band structure.

In fact, we can regard the normal metal as a special case of AF metal

with ξ = 1. This is because ξ → 1 only when J → 0; without J , conduction

electrons are not able to distinguish A and B sub-lattices thus they cannot see

the AF background. Based on the above analysis, we assume the spin diffusion

length to be sufficiently large that exceeds the system size.

Similar to the treatment of a F/N interface, we solve the spin diffusion

equation [65, 104] for a F/AF interface assuming perfect alignment between

the ferromagnetic polarizer and the staggered order parameter (can be realized

by exchange bias effect)

∇2(µ↑ − µ↓) =
1

λ2
(µ↑ − µ↓). (3.22)

Here, λ denotes the spin diffusion length, µ↑ and µ↓ are the electrochemical

potentials of local spin up and spin down bands.

We should note that for the left (right) case of Fig. 3.2, µ↑ (µ↓) is

identified with µa on the AF side. Let us focus on the left case, the associated

current is j↑,↓ =
σ↑,↓
e

∂
∂z
µ↑,↓, where σ↑,↓ represents the conductivity. By taking

the continuity and boundary conditions

µF↑,↓(0) = µAF↑,↓ (0), (3.23)

jF↑,↓(0) = jAF↑,↓ (0), (3.24)

µ↑(±∞) = µ↓(±∞), (3.25)
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we obtain the spin current and the potential drop on the interface

js = j↑(0)− j↓(0) = Pjc
1

1 + β(1− P2)
, (3.26)

∆µ =
1

2

[
µF↑ (0) + µF↓ (0)− (µAF↑ (0) + µAF↓ (0))

]

= P2jc
eλAF

σAF [1 + β(1− P2)]
, (3.27)

where P =
σF↑ −σ

F
↓

σF↑ +σF↓
is the conductivity polarization of the polarizer. The param-

eter β = λAF
λF

σF
σAF

, where σF = σF↑ + σF↓ and σAF = σAF↑ + σAF↓ , is a factor that

limits the injection efficiency of spin current. If the ferromagnetic polarizer is

half metallic (P ∼ 1), β will not be a problem. However, there is no direct

experimental evidence on λAF , but as explained just now, the AF background

enforces a strong coupling between conduction electron spin and sublattice,

thus spin-flip must be accompanied by sub-lattice transition (in fact, sub-

band transition), the probability of which is quadratic in ξ (see Eq. (3.21)).

As a result, λAF is substantially enlarged.

For current purpose, we just estimate λAF by typical spin diffusion

length of normal metals, and assume σAF ∼ σF . As a result, β ∼ 100 and

P2

1+β(1−P2)
∼ 0.01 for P ∼ 0.7. The accumulation of spin density on the interface

is ρs = N(εF )∆µ, where N(εF ) is the density of states at the Fermi energy. For

system size much smaller than λAF , ρs preserves through the entire system, so

does js. We define the effective electron velocity as

vs =
js
eρs

=
σAF

e2N(εF )λAFP
, (3.28)
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time
reversal

A          B A          B A          B A          B A          B A          B

a band

b band

a band

b band

Polarizer flip
always

Figure 3.2: Magnetic moment of A sublattice is pinned along the polarizer.
Under time reversal operation, not only AF moments flip sign, but the ori-
entation of the polarizer switches also. Therefore, ρs defined in Eq. (3.29) is
kept the same, i.e., the polarizer always populate the a-subband. For specific
wave functions of a and b subbands, see Section 2.1.

which is a system parameter independent of jc. In typical AF metals with

collinear order [52,121], N(εF ) is roughly 0.2 ∼ 0.5 states/(eV · atom), σAF ∼

2.5×104 S/cm at room temperature, thus vs is of order 105 cm/s. As σAF ∼ T ,

and λAF increases with decreasing temperature, vs can reach 106 ∼ 107 cm/s

around 10K. The above results can be easily generalized to d dimensions.

3.2.3 Equations of Motion

Assume the polarizer pins the magnetic moment of A-sublattice through

the exchange bias effect. Microscopically, the spin and the spin current den-

sities with respect to the local staggered order (or equivalently, the po-

larizer direction, see Fig. 3.2) are defined as

ρs =

∫
ddk[fa(k)− fb(k)], js =

∫
ddk[fa(k)− fb(k)]ve(k), (3.29)
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where fa and fb are distribution functions of the two sub-bands. The Lint

we seek is constructed by summing over each individual electron: Lint =
∑
λ=a,b

∫
ddkLλ(k)fλ(k). Regarding Eq. (3.19) and (3.29), and approximate ξ

by its value at Fermi energy ξF (at low temperatures), we obtain

δLint

δn
=
∑

λ=a,b

∫
ddk

δLλ
δn

fλ(k)

=
~
2

(1− ξ2
F )n× [ρs

∂n

∂t
+ (js · ∇)n], (3.30)

where attention should be paid that the sign of ρs and js is determined with

respect to n, not a global axis.

We are ready to derive the current-induced staggered field dynamics.

The total Lagrangian for the system is

L =

∫
ddrL =

∫
ddr(Ln + Lint), (3.31)

with d being the dimensionality. Ln describes the AF background, which is

derived as the NLSM in the Section 3.1. In the exchange limit, n ≈ 1 thus we

replace the unit vector N by the staggered field n in Eq. (3.10). As we only

care about the local dynamics, the topological term is ignored,

Ln =
1

2g
[
1

c
(∂tn)2 − c|∇n|2 − ω2

0

c
n2
⊥], (3.32)

where the coupling constant g = 2
√
dad−1

0 /~s; how it scales with the lattice

constant a0 depends sensitively on the dimensionality d. The last term in

Eq. (3.32) describes the uniaxial anisotropy, where n⊥ includes components of
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n perpendicular to the easy axis. Variation over the total Lagrangian density

L = Ln + Lint with respect to n is

δL

δn
=
∂L

∂n
− d

dt

∂L

∂ṅ
−∇ · ∂L

∂(∇n)

=
−~s

2
√
dad−1

0 c
(∂2
tn− c2∇2n+ ω2

0n⊥)

+
2

~
(1− ξ2

F )n× (ρs∂t + js · ∇)n. (3.33)

To account for the Gilbert damping, the Rayleigh’s dissipation function R =
∫

ddrR = α
∫

ddr ṅ2 should be added; to enforce the constraint n2 = 1, the

full variational equation should satisfy

∫
ddrδn · n×

[
∂R

∂ṅ
+
∂

∂t

∂L

∂ṅ
+∇ · ∂L

∂(∇n)
− ∂L

∂n

]
= 0. (3.34)

With these considerations, we finally obtain

n× [∂2
tn− c2∇2n+ ω2

0n⊥] + α̃n× ∂tn+ G(ρs∂t + js · ∇)n = 0, (3.35)

where G = cad−1
0

√
d(1−ξ2

F )/s and α̃ = 2αc
√
dad−1

s /~s. Eq. (3.35) is the central

result of this section. Though similar to the adiabatic torque in ferromagnets,

the term js · ∇n does not behave as a torque, it is a driving force since the

AF dynamics is second order in time derivative. Therefore, we interpret the

last two terms as spin forcing terms.

It worths special attention that ρs defined in Eq. (3.29) is even under

time reversal operation, it represents spin imbalance (in number density) with

respect to the staggered field (or the polarizer), which is illustrated in Fig. 3.2.

Under time reversal operation, n flips, but the polarizer is also reversed, thus
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ρs is kept the same. In contrast, js is odd under time reversal operation. As a

consequence, all terms in Eq. (3.35) respect the same time reversal symmetry

except the Gilbert damping term. This is consistent with our starting point –

electron dynamics is restricted to the adiabatic limit. All effects derived from

it should be adiabatic and non-dissipative.

3.2.4 Charge Current v.s. Spin Current

We learn from previous discussions that only spin current produces a-

diabatic effect in the dc limit within first order space-time derivative, the three

properties have been taken advantages of all together. In contrast, although

a pure charge current is able to drive the staggered field dynamics of an an-

tiferromagnet, either one of the three properties must be lost. Specifically,

a pure charge current can generate: (i) non-adiabatic effect in the dc limit

within first order [39, 120]; (ii) adiabatic effect via high frequency ac current

within first order [39,120]; (iii) adiabatic effect in the dc limit at second order

space-time derivative [102,103]. As a consequence, a charge current is usually

less powerful in driving an AF system compared to a spin current.

In ferromagnets, the non-adiabatic torque is typically two orders of

magnitude smaller than the adiabatic torque, but it is yet more important

because of the inability of driving a domain wall by the adiabatic torque [7,

12, 108, 112, 144]. In antiferromagnet, however, the situation is completely

different thanks to the second order time derivative of Eq. (3.35). As will

become clear in the next section, we are able to harness the adiabatic torque
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Reference Approach Driving Result
[40,76] Green’s function charge current numerical
[102,103] linear response charge current ∂t[n× (jc · ∇)n], ∇2n

n · [∂tn× (jc · ∇)n]n

[39, 120] phenomenology charge current adiabatic n× (djc
dt
· ∇)n

non-adiabatic n× (jc ·∇)n
[33, 34] phenomenology spin current (no texture) n× (n× p)
[18,20] Gauge theory spin current adiabatic (ρs∂t + js · ∇)n

Table 3.1: Comparison of current-induced forcing terms studied in different
publications. All deal with AF metals with spatial texture except Ref. [33,34].

and exert substantial control of an AF system by spin currents.

Nevertheless, it is quite useful to clarify the effects of charge current

studied in various publications. We compare results from existing literatures

in Tab. 3.1, where the vector direction has been manipulated to be addable to

the right-hand side of Eq. (3.35).

3.3 Domain Wall Dynamics

Due to the absence of dipolar interaction, formation of an AF domain

wall (DW) requires two pinning ferromagnets (along the easy axis) at the ends.

The pinning originates from exchange bias effect on the interface between the

ferromagnetic polarizer and the AF material [53, 68, 75]. Consider the DW of

180 degree depicted in Fig. 3.3. Such a configuration can be achieved by first

growing two pinning ferromagnetic layers on a homogeneous AF metal, then

rotating one of them to the opposite direction. Though not in exact agreement

with theoretical prediction [82,83], it has been realized experimentally in many
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Figure 3.3: Schematic view of a setup of AF DW between two pinning ferro-
magnets at its ends. DW dynamics is described by two collective coordinates,
the center position zc and the canting angle ϕ. The DW width W is approxi-
mately invariant during the motion.

different contexts [10,11,137].

As a compromise between exchange interaction and anisotropy, the DW

assumes a soliton profile [82, 83]. When the DW is moving, we describe it by

the Walker’s ansatz [95]:

ϕ(z, t) = ϕ(t); tan
θ(z, t)

2
= exp

[
z − zc(t)
W (t)

]
, (3.36)

where ϕ and θ are spherical angles specifying the local orientation of n(r, t).

The first equation states that n-vectors at different positions are kept coplanar

and have a common canting angle. The second equation implies that the

DW remains a soliton shape except that its width W (t) varies with time and

that the DW moves as a whole with an instantaneous center position zc(t).

Eq. (3.36) enables us to compute the total Lagrangian as a function of three

parameters zc, ϕ, and W , known as the collective coordinates [109].
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3.3.1 Collective Coordinates

Ignore an overall constant −~S
2
√
dad−1

0 c
(as it does not affect the equation

of motion), the effective Lagrangian density reads

L = (∂tn)2 − c2(∂zn)2 − ω2
0n

2
⊥ + 2G cos θ(ρs∂tϕ+ js∂zϕ). (3.37)

Regarding n(r, t) = {sin θ cosϕ, sin θ sinϕ, cos θ}, we have

(∂tn)2 = (∂tθ)
2 + sin2 θ(∂tθ)

2, (3.38)

(∂zn)2 = (∂zθ)
2 + sin2 θ(∂zθ)

2, (3.39)

and n2
⊥ = sin2 θ. From the Walker’s ansatz

ϕ(z, t) = ϕ(t); θ(z, t) = 2 arctan

{
exp

[
z − zc(t)
W (t)

]}
, (3.40)

we are able to derive the following expressions,

∂zθ =
1

W
cosh−1(

z − zc
W

), (3.41)

∂tθ =

[
− żc
W
− z − zc

W 2
Ẇ

]
cosh−1(

z − zc
W

), (3.42)

sin θ = cosh−1(
z − zc
W

), (3.43)

cos θ = − tanh(
z − zc
W

), (3.44)

thus the total Lagrangian L =
∫

ddrL becomes

L =

(
ż2
c

W 2
+ ϕ̇2 − c2

W 2
− ω2

0 +
2G

W
jsϕ

) ∞∫

−∞

dz

cosh2[ z−zc
W

]

− 2Gρsϕ̇

∞∫

−∞

dz tanh[
z − zc
W

] +
Ẇ 2

W 4

∞∫

−∞

dz (z − zc)2

cosh2[ z−zc
W

]
, (3.45)
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where we have performed an integration by part in deriving the term containing

js. This mathematical trick is the same as that in tackling with a ferromagnetic

domain wall. To evaluate Eq. (3.45), we notice that

∞∫

−∞

dz tanh[
z − zc
W

] = lim
N→∞

N∫

−N

dz tanh[
z − zc
W

]

= W lim
N→∞

ln
e(N−zc)/W + e(zc−N)/W

e(N+zc)/W + e−(N+zc)/W
= −2zc, (3.46)

and similarly, we also have

∫ ∞

−∞

dz

cosh2[ z−zc
W

]
= 2W, and

∫ ∞

−∞

dz (z − zc)2

cosh2[ z−zc
W

]
=

1

6
π2W 3. (3.47)

Not bothering with an overall factor of 2, we obtain

L =
ż2
c

W
+Wϕ̇2 + 2G(ρszcϕ̇+ jsϕ)− c2

W
− ω2

0W +
π2

12

Ẇ 2

W
, (3.48)

which is a functional of three collective coordinates zc, ϕ, and W . It worths

noting that the last three terms of Eq. (3.48) only depend on the variable

W (t), they determine the change of the domain wall width along its motion.

The Rayleigh’s dissipation function can be evaluated in a similar way,

R =
α̃

2

∫ ∞

−∞
dz[θ̇2 + sin2 θϕ̇2] = α̃

(
ż2
c

W
+Wϕ̇2

)
, (3.49)

which has the same form as the first two terms in Eq. (3.48).

Before calculating the DW velocity, we first explore the dynamics of

W (t), which is obtained by ∂L
∂W
− d

dt

(
∂L
∂Ẇ

)
− ∂R

∂Ẇ
= 0:

c2 − ż2
c

W 2
− (ω2

0 − ϕ̇2) +
π2

12

(
Ẇ 2

W 2
− 2Ẅ

W

)
= 0. (3.50)
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In the absence of spin current, all time derivatives in the above equation vanish,

which gives us an initial conditionW (0) = c/ω0. Considering what will become

clear at the end of this section that the domain wall motion respects żc � c

and ϕ̇� ω0, Eq. (3.50) becomes

c2

W 2
− ω2

0 +
π2

12

(
Ẇ 2

W 2
− 2Ẅ

W

)
= 0. (3.51)

We scale W by its initial value W (0) and time by ω−1
0 . Define dimensionless

variables t̃ ≡ ω0t and x(t̃) ≡ W (t̃)/W (0), we obtain

ẍ− ẋ2

2x
+

6

π2
(x− 1

x
) = 0, with x(0) = 1. (3.52)

For arbitrary initial value of ẋ(0), Eq. (3.52) can be solved as

x(t̃) = 2X0

√
1 + X2

0 sin

(
2
√

3

π
t̃+ arccos

√
1

1 + X2
0

)
+ (1 + 2X2

0), (3.53)

where X0 = πẋ(0)

4
√

3
. Since t̃ registers the passage of time on an extremely small

scale (ω0 ∼ 100 GHz, it amounts to only 10 ps), during which the variation

of the width is negligible, so we know ẋ(t̃) → 0. If we take ẋ(0) = 0, then

X0 = 0 and the solution becomes x(t̃) = 1, which means the domain wall width

W (t) = W (0) = c/ω0 is a constant of motion. Even for a small nonzero

ẋ(0), the solution x(t̃) only slightly oscillates around 1. As a matter of fact,

if we regard Ẇ and Ẅ in Eq. (3.50) as higher order terms and omit them, we

immediately arrive at

W 2 =
c2 − ż2

c

ω2
0 − ϕ̇2

≈ c2

ω2
0

, for żc � c and ϕ̇� ω0. (3.54)
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That W is nearly constant allows us to disregard the last three terms in E-

q. (3.48), by which we are left with only two dynamical variables zc and ϕ,

and the effective Lagrangian now reads

L =
ż2
c

W
+Wϕ̇2 + 2G(ρszcϕ̇+ jsϕ). (3.55)

Eq. (3.55) is the first central result of this section.

3.3.2 Domain Wall Velocity

When the domain wall is regarded as a particle, its velocity stands for

the rate of change of its center. By taking variational derivatives with respect

to zc and ϕ, i.e.,

∂L

∂zc
− d

dt

(
∂L

∂żc

)
− ∂R

∂żc
= 0, (3.56a)

∂L

∂ϕ
− d

dt

(
∂L

∂ϕ̇

)
− ∂R

∂ϕ̇
= 0, (3.56b)

we obtain the equations of motion of the DW:

z̈c + α̃żc = ρsGWϕ̇, (3.57a)

ϕ̈+ α̃ϕ̇ =
ρsG

W
(vs − żc), (3.57b)

which can be solved analytically. We scale the parameters as

V
DW
≡ żc
vs
, V =

vs
α̃W

, Ω ≡ ϕ̇

α
, G =

ρsG

α̃
, and t̃ ≡ α̃t, (3.58)

(note: t̃ here is different as that in demonstrating W (t) dynamics just now)

by which Eqs. (3.57a) and (3.57b) become

V̇
DW

+ V
DW

=
G

V
Ω, (3.59)

Ω̇ + Ω = GV (1− V
DW

), (3.60)
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where dot indicates derivative with respect to t̃. The above two equations are

coupled dynamics of the dimensionless variables V
DW

and Ω. We can decouple

them by eliminating either Ω or V
DW

,

V̈
DW

+ 2V̇
DW

+ (G2 + 1)V
DW

= G2, (3.61)

Ω̈ + 2Ω̇ + (G2 + 1)Ω = GV, (3.62)

they are equivalent to underdamped harmonic oscillators driven by constant

forces. For the initial condition V
DW

(0) = 0, the solution of Eq. (3.61) is

V
DW

=
G2 −Ge−t̃[G cosGt̃+ sinGt̃]

1 +G2
, (3.63)

which is plotted in Fig. 3.4 for two different G’s. As t̃ → ∞, V
DW

terminates

at V
DW

(∞) = G2/(1 + G2). As mentioned before, ρs is proportional to the

current density jc, and so is G. Therefore, V
DW

(∞) is quadratic in jc for small

current and approaches vs as a limit at extremely large current. However, the

DW velocity may not saturate at vs when effects due to pure charge current

are considered [39,120].

Regarding pure spin current effect alone, we estimate for typical collinear

AF metals, such as IrMn and PdMn [52,121]. The core spin is 2 ∼ 4 µB; c is of

order 105 cm/s; a is 3.6 ∼ 3.8 Å; the damping rate is similar to ferromagnetic

metals thus α̃ ∼ 109 s−1. For a current density of 105 A/cm2, G is somewhere

between 0.1 and 1, thus the DW is driven up to 104 cm/s. As a comparison,

the same DW velocity in ferromagnets requires 108 A/cm2, which means that

an AF DW is easier to drive. However, if the polarizer is not half metallic, for
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Figure 3.4: Scaled DW velocity plotted as a function of time, for G = 0.1
and G = 10, respectively. V

DW
exhibits damped oscillations with the terminal

value V
DW

(∞) = G2/(1 +G2).

example, with a polarization of 0.7, the required current density will be raised

up to roughly 107 A/cm2.

To close the argument, three remarks are in order. (i) The solution of

Eq. (3.62) gives similar result as Eq. (3.63), which indicates that no matter

how slow the DW center moves, it is always accompanied by the precession of

ϕ. This is in sharp contrast to the DW dynamics in ferromagnets, where pre-

cession only occurs after the Walker’s break-down. What removes the Walker’s

break-down here is the absence of demagnetization due to vanishing net mag-

netization. (ii) Our theory is based on the adiabatic electron dynamics, thus

G(ρs∂t + js ·∇)n only includes the adiabatic effect of spin current. While only

non-adiabatic torque determines the terminal velocity of a ferromagnetic D-
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W [7,12,108,112,144], the AF DW here is driven to a steady motion by purely

adiabatic forcing, the transfer efficiency of which is usually much higher than

that of non-adiabatic effects. This is responsible for why an AF DW is more

movable. (iii) When a DW is passing by, local moments will be dragged away

from the easy axis, which result in a change of anisotropic magnetoresistance

along the transverse direction; this effect is found to be sufficiently large to

observe in recent experiments [67, 84, 126]. Thus we have a feasible way to

monitor the AF DW motion.

We provide a final remark on the DW behavior at t → ∞, where the

terminal velocity and the terminal rotation rate are

żc(∞) = vs

(
G2

1 +G2

)
, ϕ̇(∞) =

vs
GW

(
G2

1 +G2

)
, (3.64)

respectively. We make a rough estimate on the change of DW width at t→∞:

for jc ∼ 105 A/cm2, G2/(1 +G2) ∼ 0.1, thus (vs/c)
2 ∼ 1% and (ϕ̇/ω0)2 ∼ 1%.

Regarding Eq. (3.54), we know W (∞) only differs from W (0) by roughly 1%.

A careful calculation shows that

W (∞)

W (0)
=

√
1 +

(vs
c

)2

· G
2(1−G2)

(1 +G2)2
. (3.65)

If G < 1, the DW width expands; If G > 1, the DW width shrinks. We know

that vs/c ∼ 1, thus for the case G � 1 (extremely large current density), W

cannot be considered as nearly constant! But for our estimations just now, the

system is within G < 1 region, where G2(1−G2)
(1+G2)2 ≤ 1

8
, thus W (∞) differs from

W (0) at most by 10%. It can also be shown in a straightforward manner that

charge current does not significantly alter W either.
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3.4 Spin Wave Instability

Injection of spin current significantly modifies spin wave excitations in

antiferromagnets. We take the ansatz n = ê+n⊥e
i(k·r−ωt), where n⊥ is a small

deviation (|n⊥| � 1) perpendicular to the easy axis ê. It is worth mentioning

that the relative motion between mA and mB within a unit cell [the dynamics

of m = (mA + mB)/2 with the constraint m · n = 0] seems to have been

ignored, but in fact it has been resolved into the dynamics of n described by

Eq. (3.32). Substituting the above ansatz into Eq. (3.35),

(−ω2 + c2k2 + ω2
0)n× n⊥ − iωα̃n× n⊥ + ρsG(−iω + ivs · k)n⊥ = 0, (3.66)

write it in matrix form and set its determinant zero

∣∣∣∣
ω2 − c2k2 − ω2

0 + iα̃ω iρsG(ω − vs · k)
−iρsG(ω − vs · k) ω2 − c2k2 − ω2

0 + iα̃ω

∣∣∣∣ = 0, (3.67)

we obtain the eigen-equation

(ω2 − ω2
0 − c2k2) + iα̃ω ± ρsG(ω − vs · k) = 0. (3.68)

where + (−) refers to the case where the direction of the A (B) sublattice is

pinned along the ferromagnetic polarizer. The solution of Eq. (3.68) is

ω =
1

2
[−iα̃± ρsG

[±]
√
−α̃2 + (ρsG)2 + 4(ω2

0 + c2k2)∓ 4(ρsG)vs · k ∓ i2α̃ρsG
]
, (3.69)

where [±] is independent and has no connection to other ± and ∓. Eq. (3.69)

is elusive and sophisticated, so we discuss separately the case of uniform pre-

cession and spin waves with finite wave length.
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3.4.1 Mode of Uniform Precession

First consider the macrospin model that the system precesses as a whole

(k = 0). In this case, we solve ω as a function of ρs. In expanding Eq. (3.69),

we notice that ω0 � α̃. Keeping up to the lowest order in α̃,

ω =
1

2

[
−iα̃± ρsG[±]

(√
(ρsG)2 + 4ω2

0 + iα̃
ρsG√

(ρsG)2 + 4ω2
0

)
+ h.o.

]
.

(3.70)

Its real part reads

Re[ω] =
1

2

[
±ρsG[±]

√
(ρsG)2 + 4ω2

0

]
, (3.71)

where the two ± are independent. The first +(−) sign represents that the

polarizer pins the A (B) sublattice. Eq. (3.71) is plotted in Fig. 3.5; we see that

the frequency difference ∆ω for opposite polarizer orientations is proportional

to the spin density ρs. An estimation for IrMn and PdMn [52,121] is as follows:

with jc ∼ 107 A/cm2, ∆ω = ρsG reaches 100 GHz, which is comparable to the

anisotropy gap ω0. Such an appreciable difference can be easily measured by

AF resonance (see Section 4.1).

We should note that in the presence of a spin current, the two branch-

es with Re[ω] < 0 experience enhanced damping, whereas branches with

Re[ω] > 0 exhibits reduced damping. Since for finite ω0, we always have

ρsG√
(ρsG)2+4ω2

0

< 1, the current-induced anti-damping will never be able to over-

come the intrinsic Gilbert damping. Thus spin wave instability driven by spin

current is impossible for the uniform precession mode.

94



0.2 0.4 0.6 0.8 1.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

⇢sG
!0

!

!0

�!

!0

Figure 3.5: Spin wave spectrum (at zero k) as a function of spin injection.
As to whether the A or B sublattice is pinned along the polarizer, there is a
sizable difference in the AF resonance frequency represented by ∆ω.

3.4.2 Mode of Finite Wave Length

As the current density is increased, the imaginary part of ω(k) changes

sign at a threshold, where the instability occurs. As a result, spin waves at

certain frequencies become unstable, i.e., magnons are emitted by the fast

moving electrons.

In this section, we only consider spin wave excitations in the longitu-

dinal direction of the electron flow, thus vs · k = ±vsk. To guarantee that

the instability occurs for vs > 0, we must take vs · k = −vsk (see Eq. (3.75)

below). Namely, vs should be (anti-)parallel to k for the −(+) sign. Denote

y ≡ −α̃2 + (ρsG)2 + 4(ω2
0 + c2k2)− 4(ρsG)vsk, (3.72)
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the solution Eq. (3.69) then becomes

ω =
1

2

[
−iα̃± ρsG[±]

√
y ∓ i2α̃ρsG

]
. (3.73)

As we vary the current density, y may flip sign, so we split the cases into y > 0

and y < 0 and discuss separately.

(1) If y > 0, [±]
√
y − i2α̃ρsG is plotted by the red and blue points in Fig. 3.6–

panel (a); [±]
√
y + i2α̃ρsG is plotted in Fig. 3.6–panel (b). Only red points

correspond to positive imaginary values, which are able to compete with the

damping −iα̃, and lead to the instability. The blue points, on the other

hand, correspond to the modes experiencing enhanced damping, which do not

concern us here. The critical condition is marked by
∣∣Im

[√
y ∓ i2α̃ρsG

]∣∣ = α̃,

which gives the same result for both (a) and (b):

[y2 + 4α̃2(ρsG)2]
1
4 sin

[
1

2
arctan

(
2α̃ρsG

y

)]
= α̃. (3.74)

Using sin θ
2

=
√

1−cos θ
2

, the above equation gives
√
y2 + 4α̃2(ρsG)2 = y + 2α̃2,

which simplifies to y + α̃2 = (ρsG)2. In view of Eq. (3.72), we have

(ρsG)vsk = c2k2 + ω2
0, (3.75)

define k0 ≡ ω0/c, the threshold spin current density is thus obtained,

js = ρsvs =
ω0c

G

[
k

k0

+
k0

k

]
. (3.76)

(2) If y < 0, it is just a similar job as above. [±]
√
y ∓ i2α̃ρsG are plotted in

panels (c) and (d) of Fig. 3.6. Again, the [±] sign is marked by red and blue
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points. The critical condition in this case becomes

[y2 + 4α̃2(ρsG)2]
1
4 sin

[
π

2
− 1

2
arctan

(
2α̃ρsG

|y|

)]
= α̃, (3.77)

which leads to
√
y2 + 4α̃2(ρsG)2 + |y| = 2α̃2. Since |y| = −y, it gives the same

result (Eq. (3.76)) as case (1).

The threshold condition Eq. (3.76) is associated with a specified wave

number k. At k = k0, the threshold reaches a minimum jmins = 2ω0

G
c, which

marks the most unstable mode. For this particular mode, the wave length is

estimated to be λ0 ∼ 102 nm for IrMn and PdMn [52, 121]. Since λ0 is much

larger than the lattice spacing of the two materials, the adiabatic assumption

at the beginning is guaranteed.

For IrMn and PdMn, we also estimate that the threshold current densi-

ty is of order 107 A/cm2. Again, this value will be much higher if the polarizer

is not half metallic. But we stress that the instability solved above is a phe-

nomenon peculiar to spin current injection. If the polarizer is completely

removed, G will vanish and jcrit.
s will go to infinity, by which the instability

will disappear. In fact, pure charge current leads to a Doppler shift of the

spin wave velocity [40, 76, 102, 103]; it is not able to trigger an instability of

the same sense. Furthermore, it is pretty remarkable that α̃ does not appear

in Eq. (3.76), though the instability is physically due to the overcoming of

damping by the spin current.

To better understand the physical picture of the instability, especially

how the excited spin wave propagate, we are also in need of the real part of
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Figure 3.6: In all four panels, red points have positive imaginary parts that
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ω(k) at the threshold point:

Re[ω] =
1

2

{
±ρsG∓ cos

[
1

2
arctan

(
2α̃ρsG

y

)]}

=
1

2



±ρsG∓ [y2 + 4α̃2(ρsG)2]

1
4

√
1 + y/

√
y2 + 4α̃2(ρsG)2

2





=
1

2

{
±ρsG∓

√
y + α̃2

}

=
1

2
{±ρsG∓ ρsG} = 0, (3.78)

where cos θ
2

=
√

1+cos θ
2

has been used. Re[ω] = 0 is true for any k at their

corresponding critical points, which means the spin wave instability is not

associated with propagating modes, but is in fact an instability towards the

formation of stationary a spatial pattern with period 2π/k0. When an inhomo-

geneous spatial configuration is developed, exchange energy of the AF back-

ground is increased. Therefore, to sustain such a texture, energy of conduction

electrons must be transferred continuously to the background moments. This

may cause a sudden rise of the differential resistance dV/dI at the threshold,

which could be detected with high accuracy [45, 116–118]. We emphasis in

passing that only the existence of the instability is predictable, the dynamics

beyond the threshold point requires a separate treatment.

The critical condition Eq. (3.76) can be obtained by an alternative strat-

egy. If the system develops a stationary spatial pattern at the threshold (see

Eq. (3.78)), the background profile must be a solution of the time-independent

version of Eq. (3.35), viz.,

c2n×∇2n = ω2
0n⊥ + G(js · ∇)n. (3.79)
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By substituting the spin wave ansatz, we obtain the eigenvalues of the solution

λ =
1

2


±iGjs

c2
[±]

√
4
(ω0

c

)2

−
(
Gjs
c2

)2

 . (3.80)

The eigenvalues are purely imaginary if and only if Eq. (3.76) is satisfied,

which characterizes the stationary spatial waves with wave number ±ω0

c
.

Closing remark : In the previous and present chapters, the reciprocal

picture of the coupled dynamics of conduction electrons and bulk AF textures

is developed in great detail. The theory is purely general and applies to a broad

class of AF metals. In the real world, however, AF materials are typically

insulators, thus spintronic phenomena can hardly occur in the bulk. This

motives us to generalize our investigation to AF insulators and turn to the

interfacial phenomena, which will be presented in the next two chapters.
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Chapter 4

Spin Pumping in Antiferromagnets

1A major task of spintronics is understanding the mutual control of

spin transport and magnetic properties. This inspires intense studies in funda-

mental physics which opens new avenues in magnetic recording technologies.

A new direction in this field aims at harnessing spin dynamics in materials

with vanishing magnetization, such as antiferromagnets (AFs) with compen-

sated magnetic moments on an atomic scale. As compared to ferromagnet-

s (Fs), AFs operate at a much higher frequency in the Tera Hertz (THz)

ranges [54, 55, 94, 130], which makes it possible to perform ultra fast informa-

tion processing and communication. At the same time, since there are no stray

fields in AFs, they are more robust against magnetic perturbations, an attrac-

tive feature of AFs for use in next-generation data storage material. However,

to build a viable magnetic device using AF, it is vital to find observable ef-

fects induced by the rotation of the order parameter. The recent discovery

of tunneling anisotropic magnetoresistance in AF may potentially fulfill this

demand [67, 84, 126]. Nevertheless, in such experiments, the AF is dragged

1The contents of this chapter are based on the article: R. Cheng, J. Xiao, Q. Niu, and A.
Brataas, Spin Pumping and Spin-Transfer Torques in Antiferromagnets, Phys. Rev. Lett.
113, 057601 (2014).
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passively by an adjacent F, which is rotated by a magnetic field. This moti-

vates us to ask: will an AF interact directly with (spin) currents without the

inclusion of F or magnetic field?

Partial answers are available from recent investigations. While the

observation of current-induced change of the exchange bias on a F/AF interface

indicates spin-transfer torques (STTs) in AFs [122, 128], theoretical models

of STT have been developed in a variety of contexts [20, 32–34, 39, 40, 61,

76, 92, 102, 103, 120, 135]. To achieve a general understanding of spintronics

based on AFs, we recall a crucial insight from well-established ferromagnetic

spintronics: STT and spin pumping are two reciprocal processes intrinsically

connected [12, 88]; they are derivable from each other [65]. To the best our

knowledge, all existing studies on AF have focused on STT, whereas spin

pumping has received no attention because it seems to be naively believed

that the vanishing magnetization spoils any spin pumping in AF.

Spin pumping is the generation of spin currents by the a precessing

magnetization [65,111,113]. When the magnetization m of a F varies in time,

a spin current proportional to m× ṁ is pumped into an adjacent normal (N)

metal. In contrast,m vanishes in equilibrium in homogeneous AFs and is small

even when the system is driven out-of-equilibrium. Instead, the staggered field

(or Néel order) n characterizes the system. A natural question arises: does

the motion of n lead to any pumping effect?

In the following sections, we first argue heuristically that spin pumping

from the compensated magnetization of the two sublattices constructively add
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up rather than cancel. We confirm this anticipation by exploring electron

scattering across a N/AF interface, and derive analytically the pumped spin

and staggered spin currents [21]. To complete the reciprocal picture, we finally

derive the STT due to an applied spin voltage.

4.1 Antiferromagnetic Resonance

We consider an AF with two sublattices and an easy axis along ẑ [51,56].

The directions of the magnetic moments are denoted by two unit vectors m1

and m2. The precession of m1 and m2 are driven by the exchange interaction,

the anisotropy, and a magnetic field assumed to be in the ẑ-direction. In units

of frequency, they are represented by ωE, ωA, and ωH = γH0 (γ is the gyro-

magnetic ratio), respectively.

The three ingredients determine the eigen-frequency of the AF pre-

cession. When the frequency of a driving electromagnetic wave matches the

eigen-frequency, antiferromagnetic resonance (AFMR) occurs. We start with

the equations of motion

ṁ1 = m1 × [ωEm2 − (ωA + ωH)ẑ], (4.1a)

ṁ2 = m2 × [ωEm1 + (ωA − ωH)ẑ], (4.1b)

where additional damping terms will be discussed later when necessary. We

add up the above two equations

ṁ = ωAẑ × n+ ẑ × (ωAn+ ωHm), (4.2)
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and subtract them to obtain

ṅ = 2ωEn×m+ ẑ × (ωAm+ ωHn). (4.3)

Take the time derivative of Eq. (4.3), we have

n̈ = 2ωE(ṅ×m+ n× ṁ) + ẑ × (ωAṁ+ ωHṅ). (4.4)

Plugging Eq. (4.2) into Eq. (4.4) yields

n̈ =2ωE[ṅ×m+ ωA(n2ẑ − nzn)− ωH(ẑ · n)m]

+ ω2
A(nzẑ − n) + ωHωAẑ × (ẑ ×m) + ωH ẑ × ṅ. (4.5)

In AFMR, the deviation of n from ẑ-axis is small, so nz ≈ 1; the amplitudes

of the two sublattices are nearly the same, thus the canting is small |m| � 1,

and n2 ≈ 1. Apply the vector product of n on both sides of Eq. (4.5), taking

into account that m · n = 0, we have

n× n̈ = (2ωEωA + ω2
A)n× ẑ − ωH [(ωA + 2ωE)n×m− ṅ]. (4.6)

To eliminate m, we resort to Eq. (4.3) and apply the vector product of n on

both sides, and obtain the expression

m =
1

ωA + 2ωE
[ωHn× (ẑ × n)− n× ṅ], (4.7)

from which we read of: (i) precessions of m and n have a π phase difference;

(ii) the magnitude of m is smaller than that of n by a factor ω
ωA+2ωE

θ where

θ is the cone angle of n. Substitute Eq. (4.7) into Eq. (4.6), we obtain

n× n̈ = (2ωEωA + ω2
A)n× ẑ − ωH [ṅ+ ωH(n× ẑ)]. (4.8)
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If we decompose n by the ansatz

n = ẑ + eiωt
(
nx
ny

)
with nx, ny � 1, (4.9)

it is straightforward to compute the resonance frequency

ω = ±γH0 ±
√
ωA(ωA + 2ωE), (4.10)

where the two ± are independent, so it seems that there are four different

eigenmodes. However, we will show that the number of distinguishable modes

is two. Practically, ωE overwhelms ωA by orders of magnitude, thus we could

take ω ≈ ±ωH ±
√

2ωAωE.

4.1.1 Eigenmodes

In linear response regime, we decompose m1 and m2 into equilibrium

and oscillating parts

m1 = ẑ + eiωt
(
m1x

m1y

)
, m2 = −ẑ + eiωt

(
m2x

m2y

)
, (4.11)

and assume |m⊥| � 1. In the base (m1x, m2x, m1y, m2y), the resonance

frequencies are the eigenvalues of the matrix

M =




0 0 −iα iβ
0 0 −iβ −iλ
iα −iβ 0 0
iβ iλ 0 0


 , (4.12)

where α = ωH− (ωA+ωE), β = ωE, and λ = ωH +(ωA+ωE). The eigenvalues

of M can be easily derived as

ωa = −ω′a = ωH +
√
ωA(ωA + 2ωE), (4.13a)

ωb = −ω′b = ωH −
√
ωA(ωA + 2ωE), (4.13b)
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which reproduces Eq. (4.10) that are obtained in a non-rigorous way. In the

order of ωa, ωa, ωb, ω
′
b, the eigenvectors of M are collected in a matrix

N =




1 1 1 1
−1/η −1/η −η −η
i −i i −i
−i/η i/η −iη iη


 (4.14)

as its four columns, respectively, where the coefficient

η = 1 +
ωA
ωE

+

√
ωA(ωA + 2ωE)

ω2
E

≈
[
1 +

√
ωA
ωE

]2

(4.15)

determines the ratio between the amplitudes of m1 and m2, and it is inde-

pendent of ωH . From Eq. (4.13) and (4.14), we know that ωa and ω′a are NOT

different modes but are redundant representation of the same mode; so are ωb

and ω′b. The two distinguishable modes are

ω = ωH ± ωR = ωH ±
√
ωA(ωA + 2ωE), (4.16)

which are characterized by different chiralities and are depicted in Fig. 4.1.

From a bird’s eye view along −ẑ of the left-handed (right-handed) mode, both

m1 and m2 undergo a circular clockwise (counterclockwise) precession with

π phase difference. In the absence of magnetic field, viz. ωH = 0, the two

modes are degenerate. In contrast to ferromagnetic resonance, AFMR does

not require the magnetic field.

4.1.2 Susceptibility and Damping

AFMR is marked by the peak of susceptibility in response to an external

electromagnetic wave with matching frequencies. To derive the susceptibility,
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Figure 4.1: The two eigenmodes of Eq. (4.16) have opposite chiralities and
opposite ratios between the cone angles of m1 and m2. A magnetic field
along the easy axis breaks the degeneracy of the two modes.
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we add a small oscillating part to the external magnetic field so that H =

H0ẑ+h⊥, and Gilbert damping terms to Eq. (4.1) (it is easy to show that the

Landau-Lifshitz damping will do the same job), which yield

ṁ1 = m1 × [ωEm2 − (ωH + ωA)ẑ − γh⊥] + α1m1 × ṁ1, (4.17a)

ṁ2 = m2 × [ωEm1 − (ωH − ωA)ẑ − γh⊥] + α2m2 × ṁ2, (4.17b)

where α1 and α2 can be different in general. Define complex vectors h̃± =

hx ± ihy and m̃± = mx ± imy, where +(−) stands for the right-handed (left-

handed) polarization [35]. Some straightforward algebra lead us to

[ω(1− iα1)− (ωH + ωE + ωA)]m̃1± − ωEm̃2± = −γh̃±, (4.18)

ωEm̃1± + [ω(1 + iα2)− (ωH − ωE − ωA)m̃2± = γh̃±, (4.19)

from which we solve the transverse magnetic components in terms of the os-

cillating magnetic field

[
m̃1±
m̃2±

]
=
γh̃±
D

[
ωH − ω − ωA − iα2ω
−ωH + ω − ωA − iα1ω

]
, (4.20)

where the denominator reads

D =(ω − ωH)2 + α1α2ω
2 − ωA(ωA + 2ωE)

− iω[(α1 − α2)(ω − ωH) + (α1 + α2)(ωA + ωE)]. (4.21)

If α1 = α2 = 0, D = (ω − ωH)2 − ωA(ωA + 2ωE) diverges at both ωa and ωb,

which has been expected ny the previous analysis. Sincem1 andm2 come from

identical magnetic atoms and the system anisotropy is uniaxial, α1 and α2 have
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essentially the same magnitude. If α1 = −α2, the two moments are damped

towards ẑ and −ẑ, respectively, in mode ωa; in mode ωb, however, they will

experience anti-damping and slip towards the equator, which is unphysical.

So we must have α1 = α2, where the two moments are damped towards their

effective magnetic fields rather than the easy axis. We illustrate this in Fig. 4.2,

the damping torque on the moment with larger cone angle tends to diminish

its amplitude, while the damping torque on the moment with smaller cone

angle drives it to be antiparallel with the other moment. With α1 = α2 = α,

and recall ωR =
√
ωA(ωA + 2ωE), Eq. (4.21) becomes

D = [(ω − ωH)2 + α2ω2 − ω2
R]− 2iαω(ωA + ωE). (4.22)

In the calculation of spin pumping below, we need the susceptibilities

of m and n fields, which are defined as

χ± =
m̃1± + m̃2±

2h̃±
=
−γ(ωA + iαω)

D
, (4.23a)

X± =
m̃1± − m̃2±

2h̃±
=
−γ(ω − ωH)

D
, (4.23b)

for α � 1 and ωA � ωE, the magnitude of χ± at resonance is much smaller

than that of X± (|m±| � |n±|), which are approximately

|X R
± | ≈

γ

α(ωR ± ωH)

√
ωA
ωE

. (4.24)

Comparing with the FMR susceptibility |χ
F
| ≈ γ

α|ωH |
[35], we see that X R

±

is suppressed by a factor of
√

ωA
ωE

. However, in some AF such as FeF2, ωA ≈

0.36ωE, thus the factor is roughly 0.6, not small in any sense [78, 79]. If the
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Figure 4.2: In both mode ωa (left) and ωb (right), the damping torque pushes
the moment with the larger amplitude towards the easy axis because the ef-
fective field (dotted arrows) it feels resides inside its precessing cone, whereas
the moment with the smaller amplitude is dragged by the damping torque
towards the antiparallel direction of the other moment since the effective field
is located outside its precessing cone.
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static magnetic field H0 is applied along +ẑ (−ẑ) direction, i.e., ωH is positive

(negative), X R
− (X R

+ ) will be enhanced. In fact, the resonance susceptibility

is inversely proportional to the resonance frequency, what the magnetic field

does is bringing down the resonance frequency ωb (ωa) thus enhancing the

absorption rate of the left-handed (right-handed) mode.

For very strong magnetic field, the system experiences spin-flop tran-

sition at ωH ∼ ωR [50], where the sublattice magnetic moments suddenly

become perpendicular to the easy-axis. The resonance susceptibility diverges

at this critical point, but in real experiment, an infinitesimal deviation of the

magnetic field from the easy axis direction cures the divergence [90]; a finite

temperature causes nonzero χ// which renders the AFMR to be Ferrimagnet-

ic resonance [127] and the divergence is circumvented. Therefore, while the

resonance susceptibility peaks in the neighborhood of spin-flop transition, the

absorption rate of microwave in a real system may not be large if ωA � ωE.

Using materials with large ωA/ωE ratio should be a thumb rule.

Having sufficient knowledge of AFMR, we are able to anticipate the

spin pumping by AFMR. A heuristic way to grasp the essential feature of this

issue is to consider m1 and m2 as two independent F subsystems. Then spin

currents pumped from them will be proportional to m1 × ṁ1 and m2 × ṁ2,

respectively. From Fig. 4.1 we see that m1 ≈ −m2 and ṁ1 ≈ −ṁ2, thus the

contributions from the two are basically the same and add up constructively.

As a result, the total spin current is roughly proportional to n × ṅ where

n = (m1 −m2)/2 denotes the staggered field. In a strict sense, however, due
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to the difference of the cone angles of m1 and m2, a small magnetization m

will always be induced, as is shown in Fig. 4.1.

Furthermore, scattering channels associated with different sublattices

on a N/AF interface will mix, thus an AF is not equivalent to two Fs. To

what extent the above naive picture survives is ultimately determined by the

interface scattering of electrons.

4.2 Interface Scattering

Typical AF materials are insulators [36, 47, 78, 79] and incident elec-

trons from the normal metal cannot penetrate far. Consequently, only a single

atomic layer of AF directly connected to N suffices to describe the dominant

contribution to interface scattering. Therefore, the essential physics is cap-

tured by modeling the N/AF interface as being semi-infinite system in the

transport direction and infinite in the transverse direction. As illustrated in

Fig. 4.10, the interface is compensated, where neighboring magnetic moments

are located at different sublattices. The case of an uncompensated interface is

analogous to N/F(insulator) interface.

This section involves substantial amount of tedious mathematical ma-

nipulations. To make it more understandable, we start from a simple one

dimensional chain, and use two standard approaches to solve the scattering

matrix: the wave function matching method, and the Fisher-Lee formalism

based on the interface Green’s function [24, 25]. From the latter, we prove

quantitatively that a normal metal—magnetic insulator interface can well be

112



modeled as being semi-infinite system in the transport direction. Base on this

fact, we are able to perform the cumbersome calculation of spin-dependent

electron scattering problems in higher dimensions.

4.2.1 One Dimension

(1) Single semi-infinite 1-d chain:

In case (I) of Fig. 4.3, the end atomic site has a magnetic moment m.

For current normalization, the incident and reflected plane waves are

ψin =

√
~

t sin ka




...
e−2ika

e−ika

1


 |s〉, ψre = rs′s

√
~

t sin ka




...
e+2ika

e+ika

1


 |s

′〉, (4.25)

where s denotes the spin index. The wave function should satisfy

−tψ−1 + [(U − E)− Jm · σ]ψ0 = 0, (4.26)

where U = 2t and E = 2t(1 − cos ka), and t and J represent the hopping

integral and the exchange coupling strength, respectively. From Eq. (4.25),

ψ−1 =

√
~

t sin ka

[
e−ika|s〉+ eikars′s|s′〉

]
, (4.27a)

ψ0 =

√
~

t sin ka
[|s〉+ rs′s|s′〉] , (4.27b)

substitute them into Eq. (4.26), and project the equation onto 〈s′′|, we obtain

te−ikaδs′′s + teikars′′s + Jm · σs′′s′ [δs′s + rs′s] = 2t cos ka[δs′′s + rs′′s]. (4.28)
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Figure 4.3: Case (II) differs from case (I) in that the magnetic atom is distinct.

Define λ = J/t, Eq. (4.28) in matrix form is (e−ikaI−λm·σ)r = λm·σ−eikaI.

Decompose the reflection matrix r by the Pauli matrices, it is solved as

r =
1− λ2

λ2 − e−2ika
I +

2iλ sin ka

λ2 − e−2ika
m · σ. (4.29)

When λ → 0, the second term vanishes, and r → −e2ikaI. Denote r ≡

r0I + ∆Sm · σ where ∆S determines spin-pumping, it can be expressed as

∆S =
2iλ sin ka

λ2 − e−2ika
=

2λ sin ka[sin 2ka+ i(λ2 − cos 2ka)]

(λ2 − cos 2ka)2 + sin2 ka
, (4.30)

where k is determined by the Fermi energy: ka = arccos(1− Ef/2t).

If the magnetic atom is different from the rest, as depicted by case (II)

of Fig. 4.3, hopping to that atom is t′. We define ξ = t′/t, then

−tψ−1 + (U − E)ψ0 − t′ψM = 0, (4.31a)

−t′ψ0 + [(U − E)− Jm · σ]ψM = 0, (4.31b)

where ψM is the wave function of the magnetic atom. Denote Cs′s as the

probability of an electron being in spin state |s′〉 on the magnetic atom when
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the incident wave is in state |s〉. Then ψM can be decomposed by

ψM =

√
~

t sin ka
Cs′s|s′〉. (4.32)

Similar to (I), Eq. (4.31) yield two matrix equations

eikaI + e−ikar − ξC = 0, (4.33)

ξ(I + r) = [−λm · σ + 2 cos ka]C, (4.34)

where the s′′s element of the product m · σC is m · [σ]s′′s′ [C]s′s. Eliminate

matrix C and decompose r by Pauli matrices, we obtain the solution

r = AI +Bm · σ, (4.35)

A =
(ξ4 − λ2) + 4(1− ξ2) cos2 ka

λ2e−2ika − (2e−ika cos ka− ξ2)2
, (4.36)

B =
2iλξ2 sin ka

λ2e−2ika − (2e−ika cos ka− ξ2)2
, (4.37)

where A can be written in a more suggestive form

A = −e2ika + eika
2iξ2 sin ka(2e−ika cos ka− ξ2)

λ2e−2ika − (2e−ika cos ka− ξ2)2
. (4.38)

If ξ → 0, A→ −e2ika and B → 0, as expected. If ξ = 1, we have

r = e2ika

[
1− λ2

λ2 − e−2ika
I +

2iλ sin ka

λ2 − e−2ika
m · σ

]
, (4.39)

which differs from Eq. (4.29) only by a phase factor e2ika. This is because the

plane wave basis incorporate the magnetic atom if t′ = t. If ξ � 1 but λ� 1,

A ≈ e2ika[−1 + i
2ξ2

λ2
sin 2ka], B ≈ i

2ξ2

λ
e2ika sin ka, (4.40)
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Figure 4.4: Left: all connections between the two chains are tm; Right: only
the magnetic atoms are connected via tm while all other links are t.

where the factor ξ2/λ can be regraded as coming from a second order hopping

process between the chain and the magnetic atom. For ξ of order one, however,

the two cases above are NOT qualitatively different. Thus in the following

discussions, without jeopardizing the essential physics, we assume ξ = 1 to

simplify the calculation unless otherwise stated.

(2) Double semi-infinite 1-d chain:

We extend the 1-d model to a double chain where the magnetic atoms

are aligned anti-parallel in Fig. 4.4. In the left panel, all connections joining

the two chains are tm, denote α = tm/t; in the right panel, only the magnetic

atoms are joined by tm whereas all other links are t. For the former, the wave

function satisfies

−t(φn−1 + φn+1)− tmτ̂1φn = (E − U)φn, (4.41)

where τ̂1 acts on the sublattice space, and U = 2(t+tm). Define ε = (E−U)/t

and λ = J/t, the band structure is easily obtained

ε = −2 cos ka− τα, with |τ〉 ≡ φτ =
1√
2

[
1
τ

]
, τ = ±. (4.42)
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Let Rτ ′τ
s′s denote the amplitude for an incident state |τ〉|s〉 to be reflected into

|τ ′〉|s′〉, by which the wave function (of the n-th atom pair) becomes

ψn =

√
~

t sin kτa
e−ink

τa|τ〉|s〉+Rτ ′τ
s′s

√
~

t sin kτ ′a
eink

τ ′a|τ ′〉|s′〉, (4.43)

where kτ satisfies ε = −2 cos kτa− τα. One the boundary,

−tψ−1 + [−Jτ3 ⊗ (n · σ)− tmτ̂1]ψ0 = (E − U)ψ0. (4.44)

Similar to the 1-d case, we project the whole equation onto the 〈τ ′′|〈s′′| state.

Notice that in the |τ〉 ⊗ |s〉 representation,

τ τ
′′τ

1 =
1

2
(1, τ ′′)

(
0 1
1 0

)(
1
τ

)
=

(
1 0
0 −1

)
= τ ′′δτ

′′τ , (4.45a)

τ τ
′′τ

3 =
1

2
(1, τ ′′)

(
1 0
0 −1

)(
1
τ

)
=

(
0 1
1 0

)
= δτ

′′,−τ , (4.45b)

from which we obtain

e−ik
τaδτ

′′τ
s′′s +Rτ ′′τ

s′′s

√
sin kτa

sin kτ ′′a
eik

τ ′′a

+ λδτ
′′,−τ (n · σ)s′′s + λ(n · σ)s′′s′R

−τ ′′,τ
s′s

√
sin kτa

sin k−τ ′′a

= [2 cos kτa+ α(τ − τ ′′)]
[
δτ
′′τ
s′′s +Rτ ′′τ

s′′s

√
sin kτa

sin kτ ′′a

]
. (4.46)

Scattering at a N/AF interface has four channels: (τ, s) where τ = +,− and

s =↑, ↓. Haney and MacDonald [40] have argued that spin-flip scattering

occurs if and only if the sublattice state is also flipped between |+〉 and |−〉,

which follows from the invariance of the AF Hamiltonian under the combined

operations of sublattice interchange and time reversal. Therefore, the spin
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dependence of the reflection coefficients are

R±,±s′,s = r±,±δs′,s, R±,∓s′,s = r±,∓(n · σs′,s). (4.47)

For fixed energy ε+ = ε− = εf , Eq. (4.42) requires

2α = eik
−
x a + e−ik

−
x a − (eik

+
x a + e−ik

+
x a), (4.48)

which can be used to eliminate α. After some tedious calculation, we finally

obtain the reflection coefficients

r+,+ =
ei(k

+−k−)a − λ2

λ2 − e−i(k++k−)a
, (4.49)

r−,− =
ei(k

−−k+)a − λ2

λ2 − e−i(k++k−)a
, (4.50)

r+,− = r−,+ =
2iλ
√

sin k+a sin k−a

λ2 − e−i(k++k−)a
. (4.51)

When α → 0, the chains become decoupled and k+ = k− = k, so r+,+ =

r−,− = 1−λ2

λ2−e−2ika , and r+,− = r−,+ = 2iλ sin ka
λ2−e−2ika . This is consistent with the 1-d

result Eq. (4.29). The entire reflection matrix can be written as

R =

[
r++σ0 r+−(n · σ)

r−+(n · σ) r−−σ0

]
, (4.52)

which will be used frequently in the following sections.

If only the magnetic atoms are communicated through tm as illustrated

by the right panel of Fig. 4.4, it renders the magnetic atoms different from

others, thus the plane wave retains only to non-magnetic sites. The wave

function of the magnetic atoms is

ψM = Cτ ′τ
s′s

√
~

t sin kτ ′a
|τ ′〉|s′〉, (4.53)
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and this time we need to solve two equations

−t[ψ−1 + Q̂ψ0 + ψM ] = (E − U)ψ0, (4.54a)

−tψ0 + [−Jσ3 ⊗ (n · σ)− tmQ̂]ψM = (E − U)ψM , (4.54b)

where ψn is defined in Eq. (4.43). Again, set λ = J/t and α = tm/t, we obtain

e−ik
τaδτ

′′τ
s′′s +

√
sin kτa

sin kτ ′′a
[Rτ ′′τ

s′′s e
ikτ
′′
a + Cτ ′′τ

s′′s ]

= [2 cos kτa+ (τ − τ ′′)]
[
δτ
′′τ
s′′s +Rτ ′′τ

s′′s

√
sin kτa

sin kτ ′′a

]
, (4.55a)

δτ
′′τ
s′′s +Rτ ′′τ

s′′s

√
sin kτa

sin kτ ′′a
+ λ(n · σ)s′′s′C

−τ ′′,τ
s′s

√
sin kτa

sin k−τ ′′a

= [2 cos kτa+ (τ − ατ ′′)]Cτ ′′τ
s′s

√
sin kτa

sin kτ ′′a
. (4.55b)

Adopt Eq. (4.52) for the R matrix, we obtain after a lengthy algebra:

r++ = e2ik+a [eik
+a + (1− α)][e−ik

−a − (1− α)]− λ2

λ2 − [e−ik+a + (1− α)][e−ik−a − (1− α)]
, (4.56)

r−− = e2ik−a [e−ik
+a + (1− α)][eik

−a − (1− α)]− λ2

λ2 − [e−ik+a + (1− α)][e−ik−a − (1− α)]
, (4.57)

r+− = r−+ =
2iλei(k

++k−)a
√

sin k+a sin k−a

λ2 − [e−ik+a + (1− α)][e−ik−a − (1− α)]
. (4.58)

If α→ 1, these results reduce to the previous result up to a phase factor.

4.2.2 Fisher-Lee Solutions

In Fig. 4.5, a normal metal chain is connected to an ferromagnetic chain

through t′, the lattice spacing of the two sides are not necessarily identical.

We can use similar wave function matching techniques to handle this problem,
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Figure 4.5: A 1-d normal metal chain with hopping t0 and lattice spacing a is
connected via t′ to a 1-d AF chain with hopping tm and lattice spacing b.

but it becomes extremely complicated when generalizing into 3-d. So in the

following, we adopt the Green’s function approach (Fisher-Lee formalism) to

solve the metallic case. The central issue of this approach is the derivation of

self-energy ΣN and ΣF for the normal metal and ferromagnet, respectively.

(1) Green’s function of the normal metal:

The Green’s function G = [ωI−H0]−1 of the semi-infinite normal metal

is defined as

G =




E t0 0 · · · · · ·
t0 E t0 · · · · · ·
0 t0 E t0
... 0 t0 E

. . .
...

...
. . . . . .




−1

, (4.59)

where E = ω−2t0 = 2t0 cos ka is the shifted energy. This is an infinite matrix,

we set its dimensionality to be N and take the N → ∞ limit at the end.

However, only the first element G00 is relevant to the interface scattering [24,

25], thus what we actually need is

G00 = lim
N→∞

DN−1

DN

, (4.60)

where DN is the determinant of the N×N dimensional matrix. By a straight-
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forward manipulation, we obtain the recursion relation

DN = EDN−1 − t20DN−2. (4.61)

We can solve it by solving its characteristic equation

r2 − Er + t20 = 0, (4.62)

when −2t0 ≤ E ≤ 2t0, it has two complex roots:

r1 =
1

2
[E + i

√
4t20 − E2], r2 =

1

2
[E − i

√
4t20 − E2], (4.63a)

when E < −2t0 or E > 2t0, it has two real roots:

r1 =
1

2
[E +

√
4t20 − E2], r2 =

1

2
[E −

√
4t20 − E2]. (4.64a)

The general expression for DN is

DN = arN1 + brN2 , (4.65)

where the coefficients a and b can be fixed by the initial condition D1 = E

and D2 = E2 − t20.

(i) For −2t0 ≤ E ≤ 2t0, we obtain

a =
1

2

[
1− i E√

4t20 − E2

]
, b =

1

2

[
1 + i

E√
4t20 − E2

]
. (4.66)

Define R = 2t0√
4t20−E2

and ϕ = arccos E
2t0

, DN can be expressed as

DN =
1

2N+1

{[
1− i E√

4t20 − E2

] [
E + i

√
4t20 − E2

]N

+

[
1 + i

E√
4t20 − E2

][
E − i

√
4t20 − E2

]N}

=±R tN0 sin(N + 1)ϕ, (4.67)
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with +(−) for E > 0(E < 0). The Green’s function we are looking for is

G00 =
1

t0
lim
N→∞

sin[Nϕ]

sin[(N + 1)ϕ]
. (4.68)

To get an unambiguous limit, we need to add an infinitesimal imaginary part

to the energy: E → E + iη+ (we only consider the retarded Green’s function;

the advanced solution refers to η−). Then

ϕ = arccos
E

2t0
− i η+

√
1− ( E

2t0
)2

+ O(η+2), (4.69)

in the N →∞ limit, the factor e−iNϕ dies out, thus we have

G00 =
1

t0
lim
N→∞

eiNϕ − e−iNϕ
ei(N+1)ϕ − e−i(N+1)ϕ

=
1

t0
e−iϕ =

1

t0
e
−i arccos E

2t0 . (4.70)

In view of the band structure, we have ka = arccos(1− ε
2t0

), the final form of

the retarded Green’s function reads

G00 = − 1

t0
eika, with k = k(ε). (4.71)

(ii) For E < −2t0 or E > 2t0, we obtain

a =
1

2

[
1 +

E√
4t20 − E2

]
, b =

1

2

[
1− E√

4t20 − E2

]
, (4.72)

thus the Green’s function becomes

G00 =
1

t0
lim
N→∞

DN−1

DN

= 2
(E +

√
E2 − 4t20)N − (E −

√
E2 − 4t20)N

(E +
√
E2 − 4t20)N+1 − (E −

√
E2 − 4t20)N+1

, (4.73)
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if E < −2t0, we have

G00 =
1

2t20

[
E +

√
E2 − 4t20

]
; (4.74)

if E > 2t0, we have

G00 =
1

2t20

[
E −

√
E2 − 4t20

]
. (4.75)

When E 6= 0 is fixed, and let t0 → 0, G00 → 1/E.

(2) Green’s function of the ferromagnet:

To compute the Green’s function for the ferromagnet, spin degree of

freedom has to be considered, which renders the Green’s function matrix

GN =




ωI−H0 −T 0 · · ·
−T † ωI−H0 −T · · ·

0 −T † ωI−H0 · · ·
...

...
...

. . .




−1

N×N

, (4.76)

where H0 = −Jm ·σ+2tmσ0 and T = −tmσ0, where τ0 is the identity matrix.

From linear algebra, the inversion of a blocked matrix is
[
Rn×n Pn×m
Qm×n Sm×m

]−1

=

[
(R− PS−1Q)−1 −(R− PS−1Q)−1PS−1

−S−1Q(R− PS−1Q)−1 S−1 + S−1Q(R− PS−1Q)−1PS−1

]
. (4.77)

If we identify R = ωI − H0 and P = Q† = [T 0 0 · · · 0], then S is nothing

but GN−1 that represents the Green’s function for a ferromagnetic chain with

the leftmost atom removed. The upper left block of the right hand side of

Eq. (4.77) tells us that

(ωI−H0)GN
00 − TGN−1

00 T †GN
00 = I, (4.78a)

GN
00(ωI−H0)−GN

00TG
N−1
00 T † = I, (4.78b)
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which indicates [H0, G
N
00] = 0 since T = T †. This commutation relation will

play a crucial rule in the following calculations. As N → ∞, we must have

GN
00 ≈ GN−1

00 , for simplicity we denote g = lim
N→∞

GN
00. Then Eq. (4.78) provides

us with a matrix equation of g

(ωI−H0)g − t2mg2 = I. (4.79)

To solve Eq. (4.79), we take the z-axis in the spin space to be m, thus H0 =

−Jσ3 + 2tmσ0. Decompose g by the Pauli matrices

g = Aσ0 +Bσ1 + Cσ2 +Dσ3, (4.80)

the commutation relation [H0, G
N
00] = 0 requires B = C = 0, and coefficients

A and D can be solved by Eq. (4.79). This will be our standard procedure

of solving Green’s functions throughout this section. Define α = A + D and

β = A−D, and set the Fermi energy EF = ω − 2tm = 0:

(i) If J < 2tm, the ferromagnet is metallic, and the retarded solution is

α =
1

2t2m

[
−J − i

√
4t2m − J2

]
, β =

1

2t2m

[
J − i

√
4t2m − J2

]
. (4.81)

(ii) If J > 2tm, the ferromagnet is insulating, and the retarded solution is

α =
1

2t2m

[
−J +

√
J2 − 4t2m

]
, β =

1

2t2m

[
J −

√
J2 − 4t2m

]
. (4.82)

Finally, the self-energy of the ferromagnet is

ΣF =
t′2

2
[(α + β)σ0 + (α− β)σ3], (4.83)
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where σ3 will be replaced by m · σ at the end to dismiss the influence of

the special gauge chosen to simplify our calculations (similar trick has been

adopted in Chapter two).

(3) Electron reflection:

According to the Fisher-Lee equation, the reflection coefficient is

r = −1 + (2it0 sin ka)G, (4.84)

where G is the Green’s function for the “system”, which is taken to be the

last atom on the normal metal side. When the Fermi energy is set to be zero,

ka = π/2, and the Green’s function is

G = [0− ΣN − ΣF ]−1, (4.85)

where ΣN = −it0 is the self-energy of the normal metal. Scale λ = J/t0, ξ =

t′/t0, and α = tm/t0 as what has been done before; consider Eq. (4.83), (4.84),

and (4.85), we solve the reflection coefficient

r =

[
4α4 − ξ4(λ−

√
λ2 − 4α2)2

]
σ0 + 4iα2ξ2(λ−

√
λ2 − 4α2)σ3

4α4 + ξ4(λ−
√
λ2 − 4α2)2

for α <
λ

2
,

(4.86)

r =
(α2 − ξ4)σ0 + iλξ2σ3

α2 + ξ4 + ξ2
√

4α2 − λ2
for α >

λ

2
. (4.87)

We notice that Eq. (4.86) satisfies |r|2 = 1. If α→ 0, Eq. (4.86) becomes

r =
λ2 − ξ4

λ2 + ξ4
σ +

2iλξ2

λ2 + ξ4
m · σ, (4.88)

which reproduces Eq. (4.35), (4.36) and (4.37) for ka = π/2. We plot E-

q. (4.86) and (4.87) as functions of α and ξ in Fig. 4.6, where we find that

125
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Figure 4.6: Density plot of the real and imaginary parts of r versus α and ξ,
where λ = 1. For α < λ/2, the α dependence of r is weak.

for the insulating case (α < λ/2), the α dependence is quite weak. In other

word, the increasing penetration depth of the evanescent wave does NOT alter

r significantly. This fact justifies the validity of the semi-infinite mode we

adopted in the previous section where only one magnetic atom is considered.

(4) 1-d infinite normal metal—antiferromagnet chain:

With the Fisher-Lee solution above, we take one step further towards

the spin-dependent scattering of an antiferromagnetic interface. Consider a

1-d N/AF chain as illustrated in Fig. 4.7. The magnetic atoms (red and blue)

are described by the Hamiltonians

H1 = 2tmσ0 − Jσ3, H2 = 2tmσ0 + Jσ3, (4.89)

in an alternating pattern. However, since H1 6= H2, the iteration scheme of

solving the Green’s function previously developed has to be generalized. The
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Figure 4.7: Replace the ferromagnet in Fig. 4.5 with antiferromagnet, all pa-
rameters are the same.

Green’s function matrix is now

G =




E −H1 tmσ0 0 · · · · · ·
tmσ0 E −H2 tmσ0 · · · · · ·

0 tmσ0 E −H1 tmσ0
... 0 tmσ0 E −H2

. . .
...

...
. . . . . .




−1

. (4.90)

Since GN
00 ≈ GN−2

00 when N → ∞, we have to do the matrix reduction twice

in order to eliminate GN−1
00 . After some algebra, we obtain

h2h1g − t2mgh1g = h2, (4.91a)

gh1h2 − t2mgh1g = h2, (4.91b)

where g = lim
N→∞

GN
00 = lim

N→∞
GN−2

00 , and h1(2) = E −H1(2).

Different from that of a ferromagnet, we obtain a generalized commu-

tation relation h2h1g = gh1h2. Decompose the Green’s function as

g = Aσ0 + Bσ1 + Cσ2 + Dσ3, (4.92)

it automatically satisfies the generalized commutation relation. Substitute

Eq. (4.92) into Eq. (4.91), we obtain B = C = 0; denote Ω = E − 2tm, then A

and D satisfy either JA + ΩD = 0, or (J2 − Ω2) + 2t2m(AΩ + DJ) = 0. If the
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former is true, the solution is

A =
Ω

2t2m

[
1±

√
1− 4t2m

Ω2 − J2

]
, (4.93a)

D =
J

2t2m

[
−1∓

√
1− 4t2m

Ω2 − J2

]
. (4.93b)

If the latter is true, the solution is

A =
Ω

2t2m

[
1± J

Ω

√
1− 4t2m

Ω2 − J2

]
, (4.94a)

D =
J

2t2m

[
−1∓ Ω

J

√
1− 4t2m

Ω2 − J2

]
. (4.94b)

But we know that the physical solution should reduce to the normal metal

case (D→ 0) when J → 0, thus only the former survives. If we set the Fermi

energy to be zero (Ω = 0), the system is always insulating for arbitrary finite

J . So the solution becomes

A = 0, D =
1

2t2m

[
−J +

√
J2 + 4t2m

]
. (4.95)

Substitute them into the Green’s function:

G = [0− ΣN − ΣF ]−1 = [it0σ0 − t′2Dσ3]−1 =
−it0σ0 − t′2Dσ3

t20 + t′4D2
, (4.96)

scale α = tm/t0, λ = J/t0, and ξ = t′/t0, and identify σ3 by n · σ as what it

would be in a general frame, the reflection coefficient is obtained

r = r0σ0 + ∆r(n · σ) = −1 + 2it0G

=

[
4α4 − ξ4(λ−

√
λ2 + 4α2)2

]
σ0 + 4iα2ξ2(λ−

√
λ2 + 4α2)n · σ

4α4 + ξ4(λ−
√
λ2 + 4α2)2

. (4.97)
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Figure 4.8: Density plot of the r0 and ∆r in Eq. (4.97) as functions of α and
ξ with λ = 1.

When α→ 0, Eq. (4.97) reduces to

r =
λ2 − ξ4

λ2 + ξ4
σ − 2iλξ2

λ2 + ξ4
n · σ, (4.98)

which is the same as Eq. (4.35)-(4.37) for ka = π/2 (EF = 0). The only

difference is that m is replaced by the staggered order n = (m1 −m2)/2.

From Eq. (4.97), we see that ∆r has a maximum value 1 regardless of

α and ξ. We plot r0 and ∆r in Fig. 4.8, which shows that as α increases, the

maximum ∆r occurs at increasing ξ. We read off an important information

from this fact: for 1-d insulating AF chain, spin-pumping into the normal met-

al is determined by the end magnetic moment as if the system is a N/F chain;

tunneling into the bulk AF (evanescent waves) only modifies the optimal value

of ξ. As will become clear later, this justifies that for an uncompensated N/AF

interface in higher dimensions, spin-pumping has no qualitative difference from

that in ferromagnetic systems.

129



4.2.3 Higher Dimensions

Comparing to the Fisher-Lee formalism, wave function matching is

more transparent and straightforward, thus we will adopt the latter in this

section and generalize the 1-d result into higher dimensions.

– Two dimension:

We consider two cases for two dimensions in analogy to the 1-d double

chain. Depicted in the left panel of Fig. 4.9, we simply stack 1-d chains of

Fig. 4.3 in staggered order, and assume the hopping along y direction is tm for

all sites. While translational symmetry is preserved along y, the coupling to

the magnetic atoms yields the folding of BZ. So the wave function is

ψ(r) = eikyyφ(x) = eikyyφn = eiky(2ma)

[
φAn
φBn

]
, (4.99)

where n and m are integers labeling the atomic sites. The eigen-equation reads

Eφn = Uφn − t(φn−1 + φn+1)− tmQ̂φn, (4.100)

where the operator Q̂ acts on the pseudo-spin space, it takes the form

Q̂ =

[
0 2 cos kya

2 cos kya 0

]
= 2 cos kyaτ1. (4.101)

One should note that valid choices of Q̂ are not restricted to Eq. (4.101), thanks

to the gauge freedom of the Bloch wave. For bulk normal metal, Eq. (4.100)

can be easily solved. Define ε = (E − U)/t and α = tm/t, we obtain

ε = −2[cos kxa+ ατ cos kya], with |τ〉 ≡ φτ =
1√
2

[
1
τ

]
, (4.102)
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Figure 4.9: Left: a simple stack of 1-d chains, hopping along y is assumed
to be tm for all sites. Right: tm refers only to the hopping between magnetic
atoms, all other hoppings are t.

where τ = ± represent the two bands in the shrunk BZ. We notice that the

case of double chain amounts to set 2 cos kya = 1.

Again assume R±,±s′,s = r±,±δs′,s and R±,∓s′,s = r±,∓(n · σs′,s); the band

structure also provides a relation 4 cos kya = eik
−
x a + e−ik

−
x a − (eik

+
x a + e−ik

+
x a).

Following a similar procedure as the double-chain case, we obtain

r+,+ =
ei(k

+
x −k−x )a − λ2

λ2 − e−i(k+
x +k−x )a

, r+,− =
2iλ
√

sin k+
x a sin k−x a

λ2 − e−i(k+
x +k−x )a

, (4.103)

r−,+ =
2iλ
√

sin k−x a sin k+
x a

λ2 − e−i(k+
x +k−x )a

, r−,− =
ei(k

−
x −k+

x )a − λ2

λ2 − e−i(k+
x +k−x )a

, (4.104)

which is exactly the same form as the double chain case. However, k+
x and k−x

are now dependent on ky: for εf = 0 we have k±x a = arccos[∓α cos kya], which

gives (k+
x + k−x )a = π and sin k+

x a = sin k−x a =
√

1− α2 cos2 kya.

Now we turn to the right panel of Fig. 4.9 where only magnetic atoms
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are connected via tm. Following a similar procedure as the double chain case,

we finally obtain

r++ = e2ik+
x a

[eik
+
x a + 2(1− α) cos kya][e−ik

−
x a − 2(1− α) cos kya]− λ2

λ2 − [e−ik
+
x a + 2(1− α) cos kya][e−ik

−
x a − 2(1− α) cos kya]

,

(4.105)

r−− = e2ik−x a
[e−ik

+
x a + 2(1− α) cos kya][eik

−
x a − 2(1− α) cos kya]− λ2

λ2 − [e−ik
+
x a + 2(1− α) cos kya][e−ik

−
x a − 2(1− α) cos kya]

,

(4.106)

r+− = r−+ =
2iλei(k

+
x +k−x )a

√
sin k+

x a sin k−x a

λ2 − [e−ik
+
x a + 2(1− α) cos kya][e−ik

−
x a − 2(1− α) cos kya]

,

(4.107)

If α → 1, these results reduce to the previous case where hopping along y is

the same for all sites.

– Three dimension

Depicted in Fig. 4.10, situation in 3-d is similar to the latter case of

2-d, where only magnetic atoms are connected via −tm while all other links

have the same hopping −t. This simple model represents a real interface of

normal metal/AF insulator.

We choose [0, 1, 1] and [0, 1̄, 1] as our y and z directions, the merit of

which is that only two atoms are grouped into a unit cell, thus we are able to

take advantage of the 2-d approach. What we need to modify are: U = 6t,

Q̂ = 4 cos
kya√

2
cos

kza√
2
τ̂1, (4.108)

and the band structure ε± = −2 cos k±x ∓ 4 cos kya√
2

cos kza√
2
. For linear response,

only electrons on the Fermi surface contribute, thus in the following calculation
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Figure 4.10: A compensated N/AF interface with cubic lattice. The interface
normal is along x̂. Unit cells (dotted Green circles) are periodic in the [0, 1, 1]
and [0, 1̄, 1] directions, which are labeled by ŷ and ẑ, respectively.

we assume ε+ = ε− = εf . The result should be of the same form as Eq. (4.105)–

Eq. (4.107) except that cos kya is replaced by 2 cos kya√
2

cos kza√
2
, especially,

r+,− =
2iλei(k

+
x +k−x )a

√
sin k+

x a sin k−x a

λ2 − [e−ik
+
x a + 4(1− α) cos kya√

2
cos kza√

2
][e−ik

−
x a − 4(1− α) cos kya√

2
cos kza√

2
]
.

(4.109)

When εf = 0, we have k+
x + k−x = π/a. As only kx > 0 states will be

considered (kx < 0 states will never reach the interface), we know

k+
x a = π − arccos[2 cos

kya√
2

cos
kza√

2
], k−x a = arccos[2 cos

kya√
2

cos
kza√

2
],

so that the module square of ∆S can be simplified as

|r+,−|2 =
4λ2[1− 4 cos2 kya√

2
cos2 kza√

2
]

[
λ2 + 1 + 16α(α− 1) cos2 kya√

2
cos2 kza√

2

]2 . (4.110)
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Eq. (4.110) is what we are going to use in calculating the spin-mixing conduc-

tance in the following section.

4.2.4 Spin-mixing Conductance

As discussed in previous chapters, in the exchange limit we have |m| �

1 and |n| ≈ 1. It can be shown that to linear order in the small m, Eq. (4.52)

is only slightly modified by adding a term proportional to m. The coefficient

of the added term is approximately r+,−. For the sake of mathematical clarity,

we turn back to the A-B sublattice representation (τ̂1 and τ̂3 interchange),

where the scattering matrix is

S = S0 + Swτ̂1σ̂0 + ∆S[τ̂3(n · σ̂) + τ̂0(m · σ̂)], (4.111)

where σ̂ and τ̂1,2,3 are spin and pseudo-spin Pauli matrices, and τ̂0 and σ̂0 are

identity matrices. The last two terms of Eq. (4.111) with a common coefficient

∆S are spin-dependent and represent the Umklapp and normal scatterings,

respectively. In the Umklapp process, an electron acquires π/a momentum

in the transverse direction during the scattering. The coefficient ∆S, in our

insulating AF case, is just r+,− obtained in Eq. (4.109).

The term τ̂2[(n×m)·σ] is also allowed by symmetry. But its coefficient

is much smaller than ∆S. Meanwhile, it does not contribute to the mixing

conductance upon integration over the Fermi surface.

As will become clear in the following, pumping effects are related to

the coefficients in Eq. (4.111) through the spin-mixing conductance Gmix =
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Figure 4.11: The left panel depicts the Fermi surface εf = 0. Integration over

ky and kz is restricted to the region where 0 < 2 cos kya√
2

cos kza√
2
< 1 is satisfied.

From a bird’s eye view, it is just the shaded area of the right panel.

Gr + iGi, where

Gr =
e2A

hπ2

∫∫
|∆S|2dkydkz, (4.112)

Gi =
e2A

hπ2

∫∫
Im[S∗0∆S]dkydkz, (4.113)

where ky and kz are the transverse momenta and A the interface cross section.

Similar to their counterparts in F, Gr typically overwhelms Gi by orders of

magnitude within practical parameter ranges, thus Gr is more pertinent to our

discussions.

The integrations of Eq. (4.112) and (4.113) are performed over the

Fermi surface. As shown in Fig. 4.11, the shrunk BZ is marked by ky ∈

(− π√
2a
, π√

2a
)∩kz ∈ (− π√

2a
, π√

2a
), within which 2 cos kya√

2
cos kza√

2
is always positive.
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Figure 4.12: (Color online) Spin mixing conductance Gr as a function of λ
and δ in units of e2/h per a2 (a is lattice constant) for compensated and
uncompensated N/AF interfaces.

But the integration over (ky, kz)-plane should be restricted to the region where

0 < 2 cos kya√
2

cos kza√
2
< 1, which corresponds to the shaded area in the right

panel of Fig. 4.11. An analytical result is not available due to the complicated

shape of the Fermi surface, so we numerically perform the integration.

We define the dimensionless energies λ = J/t and δ = tm/t. The result

Gr = Gr(λ, δ) is plotted in the upper panel of Fig. 4.12, where Gr reaches the

maximum at λ = 0.86 and δ = 0.5. To elucidate how spin scattering is affected
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by the staggered field, we also calculate Gr for an uncompensated interface as

a representative for N/F and plot the result in the lower panel of Fig. 4.12.

Clearly, the two cases are similar in magnitude 2, implying that spin transfer

on a compensated N/AF interface is as efficient as that on N/F for the case

of insulating magnets. With the current insight of AF dynamics, this feature

is consistent with the expectations in Ref. [46] of “no difference for the spin

absorbed by a fully ordered interface with a large net magnetic moment or a

compensated one.”

4.3 Spin Pumping

Although the AF resonance frequency reaches the THz region (1 ∼ 10

meV), the motion of the staggered field remains adiabatic as evidenced by

comparing (~ times) the resonance frequency with two characteristic energy

scales: (i) the Fermi energy in N is a few eV; (ii) the exchange coupling between

conduction electron spins and magnetic moments can be as large as eV. As a

result, the spin eigenstates and the scattering matrix Eq. (4.111) adiabatically

adapt to the instantaneous configuration of AF.

Consequently, spin-pumping can be studied from the perspective of

adiabatic pumping, which was first introduced in a closed system by Thou-

less [110] and was later generalized to open systems [146]. The seminal work

2Within tight-binding model, a bipartite AF is always insulating at half filling for finite
J , regardless of tm. But comparing to t in N, tm is in general much smaller, thus δ = tm/t
is customarily taken to be close to zero. For δ → 0, the maxima of Gr appear at λ = 1 for
both compensated and uncompensated interfaces.
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by Brouwer [13] has developed the idea of adiabatic pumping to a general e-

quation applicable to any type of pumping due to slowly changing parameters.

The Brouwer’s equation was later identified as the non-Abelian Berry phase

for open systems [147], which has upgraded the pumping problem on an equal

footing as the effective gauge coupling discussed in Chapter two.

4.3.1 Brouwer’s Equation

When a system Hamiltonian depends on a set of parameters {Xi}, the

total time derivative is expressed by d
dt

=
∑

i
dXi
dt

∂
∂Xi

. As a result, a geometric

phase is accumulated by the wave function after a closed path of traveling in

the parameter space,

γ = 2i

∫∫
ds · Im〈∇ψ| × |∇ψ〉, (4.114)

known as the Berry’s phase [9], where ds is the differential area along surface

normal in the region subtended by the closed path.

When generalized to open systems [146,147], it is the scattering matrix

that replaces the wave function. Denote the probability amplitude of scattering

from m to n channels by Snm, then the Berry phase of the n-th channel upon

one period of parameter change is

γn = 2i
∑

m

∫∫
ds · Im∇S†nm ×∇Smn, (4.115)

where ∇ represents gradient in the parameter space. In the electron scattering

problem, the Berry phase associated with the n-th channel determines the
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emissivity of that channel. Specifically, the net charge flowing into the channel

is Qn = e
2π
γn. As a result, the average current is In = Qn/T where T is

the period of parameter change. Due to charge conservation, the current is

subject to the constraint
∑

n In = 0, which is the open-system counterpart of

the constraint on the Berry phase.

If the scattering channels are spin-dependent, we will also get pumped

spin currents. As mentioned just now, the magnetic resonance frequency is

much smaller than the exchange interaction, thus the magnetic precession

naturally serves as the parametric adiabatic motion, and the spin current

pumped into channel α can be formally expressed as [13,65,111,113]

I(s)
α (t) = e

∑

i

∂R

∂Xi

dXi

dt
, (4.116)

∂R

∂Xi

=
1

2π

∑

β

∑

mn

∑

ss′

∑

σ

∂S
(ms,nσ),∗
αβ

∂Xi

σ̂ss
′
S

(ms′,nσ)
βα , (4.117)

where
∑

mn stands for summations over channels of transverse momenta. The

above equations are purely general and does not distinguish AF from ferro-

magnet in priori. In fact, if the summation incorporates sub-lattice channels

(or pseudo-spin), the AF spin pumping will be put on an equal footing with

ferromagnetic spin pumping.

The Brower’s equation is purely general and applies to other pumped

currents as well. According to what appears in the position of σ̂, corresponding

pumped current is obtained.
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4.3.2 Pumped Spin and Staggered Spin Currents

Regarding the staggered field n and magnetization m as two indepen-

dent adiabatic parameters, and taking into account the following identities

Tr[τiτj] = Tr[σiσj] = 2δij, (4.118)

Tr[τiτjτk] = Tr[σiσjσk] = 2iεijk, (4.119)

εijkεkmn = δimδjn − δinδjm, (4.120)

εijkεjabεkmn = δimεnab − δinεmab, (4.121)

we obtain the pumped spin current by substituting the scattering matrix S in

Eq. (4.111) into Eq. (4.116). The result is [21]

e

~
Is = Gr(n× ṅ+m× ṁ)−Giṁ, (4.122)

where Is is measured in units of an electrical current. Since n = (m1−m2)/2

and m = (m1 +m2)/2, Eq. (4.122) can indeed be interpreted as arising from

a coherent sum of two independent F spin pumping contributions by m1 and

m2, which justifies the naive result envisioned at the beginning. However,

the spin-mixing conductance Gr and Gi are different from those of F due to

the mixing of scattering channels from different sublattices. Moreover, AF

dynamics is much faster than ferromagnets thus a stronger spin pumping is

expected from AF.

By taking a time average of Eq. (4.122) over one period of oscillation,

only the first two terms survive and contribute to the dc component of spin

current Idcs . Despite that |m| � |n|, the contribution of m× ṁ to Idcs can be
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comparable to that of n× ṅ. This is because Idcs is proportional to θ2 (θ labels

the cone angle of precession) and the cone angle associated with the staggered

field is much smaller than the one associated with the magnetization, θn ≈ 0

but θm ≈ π/2, as shown in Fig. 4.1.

Consider now the AF motion is generated by a microwave with oscil-

lating magnetic field h⊥ perpendicular to the easy axis, then

Idcs ≈Gr|h̃+|2ω
[
|χ+(ω)|2 + |X+(ω)|2

]

=
Grγ

2|h̃+|2ω [(ω2
A + α2ω2) + (ω − ωH)2]

[(ω − ωH)2 + α2ω2 − ω2
R]

2
+ 4α2ω2(ωA + ωE)2

, (4.123)

where χ+ and X+ are susceptibilities defined in Eq. (4.23a) and Eq. (4.23b),

respectively. Here, we stick to the + convention, while allow ω to be both

positive and negative in order to represent the right-handed mode and the

left-handed mode, respectively.

If the microwave is circularly polarized, only the mode with matching

polarization depicted in Fig. 4.1 is driven into resonance at certain frequency.

When the magnetic field vanishes, Idcs is an odd function of ω and is plotted

in the upper panel of Fig. 4.13, where the peak (dip) for positive (negative) ω

corresponds to the resonance of right-handed (left-handed) mode. Hence an

important consequence is implied: the direction of dc spin current is linked to

the circular polarization of the driving microwave.

Since the sublattice degree of freedom is involved in the AF dynamics,

we can also derive a staggered spin pumping. A staggered spin current repre-

sents the imbalance between the spin current carried by the two sublattices. It
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Figure 4.13: (Color online) Upper panel: dc components of spin and staggered
spin currents as functions of ω in units of ~

e
Gr(γh⊥)2·ns. Parameters: ωH =0,

ωR = 1THz,
√
ωA/ωE = 0.4, and Gilbert damping α = 0.01. Lower panel:

for fixed microwave power, the resonance value of Idcs (in the same unit as
above) increases with increasing

√
ωA/ωE; it is also improvable by increasing

ωH (−ωH) when the right-handed (left-handed) mode is excited.
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has three components I
(1)
ss , I

(2)
ss , I

(3)
ss associated with three pseudo-spin Pauli

matrices. In a similar manner as spin pumping,

e

~
I(3)
ss = Gr(n× ṁ+m× ṅ)−Giṅ, (4.124)

and e
~I

(1)
ss = −Im[Gw]ṁ and e

~I
(2)
ss = −Re[Gw]ṅ, where

Gw =
e2A

hπ2

∫∫
S∗w∆Sdkydkz, (4.125)

results from spin-dependent Umklapp scattering that is unique to AF. When

we take the time average, I
(1)
ss and I

(2)
ss drop out, only I

(3)
ss survives. The dc

component Idcss is

Idcss ≈ 2Grω |χ+(ω)X+(ω)∗| |h̃+|2

≈ 2Grγ
2|h̃+|2ω(ω − ωH)

√
ω2
A + α2ω2

[(ω − ωH)2 + α2ω2 − ω2
R]

2
+ 4α2ω2(ωA + ωE)2

, (4.126)

whih is an even function of ω in the absence of static magnetic field, and is

plotted in Fig. 4.13 (upper panel).

We emphasis that elastic spin scattering in the normal metal will de-

stroy any staggered spin accumulation, which decays on the time scale of ~/t.

Therefore, the staggered spin current can only be defined within a distance of

the mean free path away from the interface.

As a matter of fact, four possible combinations can be studied in the

adiabatic regime: charge pumping, spin pumping, pseudo-spin pumping, and

staggered spin pumping. However, one can easily shown that the charge pump-

ing and the pseudo-spin pumping all vanish because of symmetry. While a
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collinear AF breaks time reversal symmetry, the combined symmetry of time

reversal with sublattice interchange is preserved [89].

4.4 Materials and Experiments

When a spin current is injected into a heavy metal with strong spin-

orbit coupling, it will be converted into a measurable transverse voltage via

the inverse spin Hall effect [2, 73, 93]. This effect has been widely used in

the detection of spin pumping by F resonance, and we expect to verify our

prediction with the same technique. However, in a recent experiment using

Pt/MnF2 [90], no apparent signal is found at a similar level of microwave pow-

er as in conventional Pt/YIG. To explain this null observation, we resort to

the efficiency of the microwave absorption at resonance point, which is propor-

tional to
√
ωA/ωE in AF, whereas no such factor exists in F. To see it more

explicitly, we plot in Fig. 4.13 (lower panel) the resonance value of Idcs versus
√
ωA/ωE. In MnF2 [36, 47],

√
ωA/ωE is only few percent, which we believe

is responsible for the suppression of the signals. Fortunately, there are better

candidates, e.g., FeF2 has the same crystal and magnetic structures as MnF2,

but the ratio
√
ωA/ωE ≈ 0.6 is extraordinarily large [78,79]. Thus, we expect

a sizable microwave-driven spin pumping using Pt/FeF2 heterostructure.

In addition, the microwave absorption can also be enhanced by reducing

the resonance frequency with a strong magnetic field, as illustrated by the lower

panel of Fig. 4.13. But this brings about a dilemma that it is hard to take

full advantage of the high frequency (THz) and the high microwave absorption
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efficiency simultaneously. One way out of this dilemma is to detect the spin

pumping by observing the enhancement of Gilbert damping. An alternative

cure is to drive the AF dynamics by spin-transfer torques via spin Hall effect

instead of microwaves.

Small grains are unavoidable in large area N/AF interfaces since the

typical grain size is below µm. As the optimal microwave absorption occurs

only when the local easy axis is perpendicular to the oscillating magnetic field,

the non-collinearity of the anisotropy fields of individual grains will somewhat

reduce the net spin pumping upon averaging over the entire interface. Howev-

er, progress in fabrication of N/AF heterostructure and reduced cross sections

should lead to improved surface quality with less disorder in the form of grains.

We note that the majority of transition metal oxides, such as NiO

and MnO [98], belong to the class of easy-plane AF. The resonance mode of

such materials, however, does not have definite chirality. The two sublattice

moments rotate the opposite way, and spin pumping is essentially canceled

out. Another possible candidate Cr2O3 [26, 29, 87] has very high TN ≈ 308 K

above room temperature, it exhibits corundum structure and is an easy-axis

AF. However, experimental data indicates that the anisotropy energy of Cr2O3

is quite small, which reduces the susceptibility at resonance.
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Chapter 5

Spin-transfer Torques in Antiferromagnets

1In this chapter, we derive the reciprocal effect of spin pumping on a

N/AF heterostructure, which consists of the back-action of an incident spin

current from the normal metal that exerts on the interfacial AF magnetic

moments. It is expressed as spin-transfer torques (STT). In principle, we

should also include the torque arising from staggered spin current. However,

as stated in the previous chapter, staggered spin accumulation decays very

fast and is extremely difficult to generate. Therefore, for practical purposes,

we only study spin current induced torques in the following.

5.1 Onsager Reciprocity Relations

In linear response regime, the microscopic reversibility of thermody-

namic processes sets important constraints on macroscopic transport coeffi-

cients, which results in equalities of certain ratios between flows and thermo-

dynamic forces, known as the Onsager reciprocity relations [60, 80, 81]. Con-

sider multiple pairs of current (flow) Ẋi and driving force Yi that are related by

1The contents of this chapter are based on the article: R. Cheng, J. Xiao, Q. Niu, and A.
Brataas, Spin Pumping and Spin-Transfer Torques in Antiferromagnets, Phys. Rev. Lett.
113, 057601 (2014).
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linear response: Ẋi = LijYj, where summation over repeated index is implied.

The rate of change of the free energy, or the entropy production rate, is

Ḟ = LijẊiYj, (5.1)

the Onsager reciprocity relation requires that Lij(H ,m) = εiεjLji(−H ,−m),

where εi = 1 (εi = −1) if Xi is even (odd) under time reversal.

For example, if a magnetic system is subject to both an electric field

and a magnetic field, the two driving forces lead to electric current and mag-

netization dynamics. The linear response relation is expressed as

[
MsVṁ
Is

]
=

[
Lmm Lms

Lsm Lss

] [
H
V s

]
, (5.2)

where Is is the spin current, H is the effective magnetic field, and V s is

the vector of spin voltage. The coefficient Lms represents the spin-transfer

torque induced by the current flow, while Lsm represents spin pumping from

magnetization precession. The Onsager relation Lsmij (m,H) = Lmsji (−m,−H)

enables us to derive either one of the two effects by the other.

The dimension of the driving forces are usually different under differ-

ent conventions. However, the dimensionality of the off-diagonal transport

coefficients are always equal. Specifically, if only the β-th driving force is

present, the α-th current is Ẋα = LαβYβ (no summation over β); similarly,

Ẋβ = LβαYα if only the α-th driving force exists. The dimension of Lαβ and

Lβα are [Lαβ] = [Xα]/([Yβ][T ]) and [Lβα] = [Xβ]/([Yα][T ]), respectively. Since

[Xα][Yα] = [Xβ][Yβ] = [F ], hence [Yβ]/[Xα] = [Yα]/[Xβ], and we immediately
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have [Lαβ] = [Lβα]. Therefore, we are free to choose the dimension of currents

and driving forces arbitrarily (in order to simplify calculation), and the dimen-

sion of off-diagonal transport coefficients will be compatible automatically.

If the system is antiferromagnetic, however, Eq. (5.2) must be general-

ized to incorporate both spin and staggered spin currents



ṁ
ṅ
Is

Ia


 =




Lmm Lmn Lms Lma

Lnm Lnn Lns Lna

Lsm Lsn Lss Lsa

Lam Lan Las Laa







fm
fn
Vs
Va


 , (5.3)

where Ia and Va are staggered spin current and voltage, respectively. The

effective magnetic field in Eq. (5.2) is generalized into two thermodynamic

forces fm and fn acting on the magnetization and the staggered field. The

Onsager relation is now

Lij(H ,m,n) = εiεjLji(−H ,−m,−n), (5.4)

where n is odd under time reversal.

5.2 Current-induced Torques

The symmetry allowed free energy of an AF material can be con-

structed by symmetry considerations [39, 60]. In the exchange limit, the

free energy is invariant under the interchange of the two sublattices, i.e.,

F [m,n] = F [m,−n]. The leading order free energy that respects the symme-

try requirements is F =
∫

dr[Am2/2 +B
∑

i=x,y,z(∂n)2/2−H ·m], where A

and B are the homogeneous and inhomogeneous exchange constants, respec-

tively [39,120]. To simply the following calculations and to be consistent with
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our conventions in the previous chapter, we scale every term by frequency, and

the free energy becomes

F =

∫
dV[

~ω0

2a3
m2 +

~ωn
2a

∑

i=x,y,z

(∂in)2 − ~ωH
a3
m · Ĥ], (5.5)

where a is the lattice constant; m, n, and Ĥ are all dimensionless unit vec-

tors that can be spatially inhomogeneous. The corresponding thermodynamic

forces acting on m and n are

fm = − δF
δm

, fn = −δF
δn

, (5.6)

they are extensive variables and assumes the energy dimension. Regarding

the invariance under sublattice interchange, and m · n = 0 and |n|2 ≈ 1, the

symmetry allowed Landau-Lifshitz equations are [39]

~ṁ =
a3

V
[fn × n+ fm ×m], (5.7a)

~ṅ =
a3

V
fm × n, (5.7b)

where the gyro-magnetic ratio has been absorbed by the thermodynamic forces

upon scaling, and the damping terms are ignored.

From Eq. (5.5) and Eq. (5.6), we know fm = −~ω0m
V
a3 for ωH = 0,

thus a simple manipulation of Eq. (5.7b) reveals that

m = − 1

ω0

n× ṅ. (5.8)

Comparing Eq. (5.8) with Eq. (4.7) for ωH = 0, we have

ω0 = ωA + 2ωE. (5.9)
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Inserting Eq. (5.7a) and Eq. (5.7b) into Eq. (4.122) gives the response of the

spin current to fm and fn. By invoking the Onsager relation Eq. (5.4), we

derive the response of m and n to a given spin voltage Vs in the normal metal,

which is identified as two STT terms τm and τm. To linear order in m, the

two torques are expressed in frequency dimensions as [21]

τm = − a
3

eV
Grn× (n× Vs), (5.10a)

τn = − a
3

eV
[Grn× (m× Vs)−Gin× Vs], (5.10b)

which are consistent with the proposed phenomenological model [32–34]. They

are supposed to be added back to Eq. (5.7a) and Eq. (5.7b).

In solving the AF dynamics, it is instructive to eliminate m and derive

a closed equation of motion in terms of n alone [20, 39, 103]. To linear order

in the small m, the second term of Eq. (5.7a) can be neglected. And the

dynamics of the system is now expressed by

ṁ =
1

~
a3

V
fn × n+ τm, (5.11a)

ṅ =
1

~
a3

V
fm × n+ τn, (5.11b)

from Eq. (5.11b) we know ω0m = n× τn − n× ṅ, which gives

ṁ =
1

ω0

[
d

dt
(n× τn)− n× n̈]. (5.12)

Substitute Eq. (5.12) into Eq. (5.11a) we obtain

n× n̈+ ω0ωna
2∇2n+ ω0τm =

d

dt
(n× τn), (5.13)
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which is purely general. The right hand side of Eq. (5.13) involves time deriva-

tive on τn, it is regarded as a higher order term. To prove rigorously that τn

is indeed a higher order torque, we eliminate m by virtue of Eq. (5.10b) and

Eq. (5.11b), which yields

τn × n+
Gr

eω0

(n · Vs)τn =
Gr

eω0

ṅ. (5.14)

Eq. (5.14) can be solved exactly, but for simplicity, it suffices to keep the

solution up to linear order in Gr/eω0,

τn =
Gr

eω0

(n · Vs)n× ṅ. (5.15)

Therefore, the effect of d
dt

(n× τn) term in Eq. (5.13) is of order ωA(GrVs/e),

comparing with the ω0τm term that is of order ω0(GrVs/e). In view of Eq. (5.9)

we know ω0 ≈ 2ωE � ωA, thus the τm torque is the dominant term whereas.

In a strict sense, however, their contributions also depend on the relative

orientation between n and Vs.

Finally, we resume the Gilbert damping as well as the easy axis anisotropy,

the effective dynamics to linear order in Vs, m, and ṅ becomes

n× (n̈+ αω0ṅ+ ω2
Rn⊥) =

ω0a
3

eV
Grn× (n× Vs). (5.16)

where n⊥ are perpendicular components of n with respect to the easy axis. As

the STT only acts on the interface and we consider a thin AF and disregard

a possible non-uniform motion, otherwise a term ω0ωna
2n × ∇2n should be

included in Eq. (5.16). For thick metallic AF where electrons propagate into

the bulk, Eq. (5.16) should be replaced by its bulk counterpart [20,39].
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Figure 5.1: Spin-polarized electrons incident on the N/AF interface get re-
flected, by which angular momentum is transfered to the magnetic atoms.

5.3 Spin Wave Excitations

As an example, we consider the uniform AF dynamics driven by STT.

Assume the spin voltage Vs is collinear with the easy axis, the spectrum of

Eq. (5.16) is solved as

ω

ω0

=
1

2

[
−iα±

√
−α2 +

4

ω0

(
ωA + i

a3GrVs
eV

)]
. (5.17)

For small Vs, ω has a negative imaginary part so that any perturbed motion will

decay exponentially in time and the system is stable. However, a sufficiently

large Vs will flip the sign of Im[ω], which yields the system unstable and marks

the onset of uniform AF excitation.

By setting Im[ω] = 0, we obtain the threshold spin voltage

V th
s = ±eV

a3

(
αωR
Gr

)
, (5.18)

where +(−) corresponds to the excitation of right-handed (left-handed) mode.

The chirality selection by the sign of spin voltage is just consistent with the
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Figure 5.2: A spin-Hall nano-oscillator based on a Pt/MnF2 bilayer. The
current flowing in the bottom Pt layer generates a spin voltage vertical to the
plane, which drives the dynamics of /MnF2 through STT.

direction control of spin pumping by the microwave polarization. Since Gr

scales linearly with the interface area, V th
s scales linearly with the thickness of

the AF layer.

In real experiments, a challenge arises from the large ωR, but we can

still get reasonable V th
s by reducing the layer thickness. For MnF2 and FeF2

of few nm thick, the threshold spin voltage is estimated to be 10-100 µV.

The STT-driven AF dynamics suggests the feasibility of building a spin-torque

nano-oscillator (STNO) using AF, which generates THz signal from a dc input

without the need of static magnetic field. However, as typical AF materials

are insulators, a spin-valve like STNO is impossible. We notice that in recent

experiments [62,63], people have successfully excite magnetic resonance by spin

Hall effect, which works for both metallic and insulating magnetic materials.

We expect to build such a spin Hall nano-oscillator based on antiferromagnetic

materials with similar techniques, as schematically depicted in Fig. 5.2.
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Chapter 6

Conclusions

6.1 Summary and Conclusions

We are now in a good position to conclude the long journey of anti-

ferromagnetic spintronics. Motivated by the anticipation that the adiabatic

motion of the staggered field, the order parameter of antiferromagnets, should

lead to non-trivial response of conduction electrons in a similar but not the

same sense as that in ferromagnets, we have solved the coupled dynamics of

the staggered field and conduction electrons in both bulk antiferromagnetic

textures and N/AF heterostructures.

In bulk antiferromagnetic metals where the staggered field exhibits s-

mooth spatial modulation and slow time variation, the behavior of conduction

electrons can well be captured by a non-Abelian gauge theory, which general-

izes the established Abelian gauge theory in ferromagnetic metals. The spin

dependent electron transport is significantly affected by the spin-motive force

originating from the non-Abelian version of the Lorentz force. Different from

its counterpart in ferromagnets, the spin-motive force in antiferromagnets gen-

erates pure spin voltage instead of charge voltage across the sample.

As a reverse effect, the dynamics of the staggered field strongly depends
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on the motion of conduction electrons. Different from the (adiabatic) spin

transfer torque in ferromagnets, a spin current drives the second order time

derivative of the staggered field by spin forcing, which fosters new possibility

to realize high domain wall velocity with low current density. Thanks to the

linear dispersion of spin waves, the spin-current induced magnon emission in

antiferromagnets resembles the Cherenkov radiation of photons in a media

with reduced speed of light.

On the interface of compensated antiferromagnets with normal metals,

spin scattering is found to be not far from the naive picture where the staggered

field is split up into two independent ferromagnetic orders, but the mixing of

scattering channels do renders the naive picture non-strict. For collinear anti-

ferromagnets with easy axis anisotropy, a non-trivial spin pumping has been

derived based on the simple two-sublattice model. Unique to antiferromag-

nets, the pumped staggered spin currents also exist in theory, but it is quite

difficult to detect as the staggered spin accumulation decays very fast away

from the interface.

As a reciprocal effect, the spin-transfer torques are derived from spin

pumping via the Onsager relations. When a spin voltage is applied on the

interface of an antiferromagnet, it drives the coupled dynamics of the staggered

field and the small magnetization. In an effort to eliminate the magnetization,

we found a similar equation of motion in terms of the staggered field alone as

that in bulk antiferromagnets. While the current-induced torques have quite

similar forms as their ferromagnetic counterparts, it is n× ∂2
tn that replaces
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what should otherwise be ∂tm. As typical antiferromagnets are insulators, a

spin-Hall nano-oscillator is proposed to verify the prediction.

All the above conclusions are summarized in Tab. 6.1 in a comparative

manner with their counterparts in ferromagnets.

6.2 Outlook and Perspectives

Investigations throughout the dissertation are based on the single elec-

tron approximation where many body physics has been completely ignored.

In addition, the theory is valid in the adiabatic limit, where non-adiabatic

effects can not be described analytically by the effective theory in principle.

Phenomenological models do captures the non-adiabatic corrections, but a

microscopic derivation is still in need.

The spin-orbit coupling may play an essential role, but we have omitted

it from the very beginning. What can be simply anticipated from spin-orbit

coupling is that the momentum space Berry curvature should be non-zero, and

electron scattering on the interface does not preserve spin. Those features can

lead to significant deviations from current predictions, hence they are good

candidates for future studies.

Besides, recent attentions have been aroused on the magnon-driven dy-

namics of antiferromagnets, which applies to insulating materials in particular.

It is quite important to formulate an effective theory of magnon transport in

antiferromagnets with slowly-varying staggered field.
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Ferromagnets Antiferromagnets

non-degenerate band doubly degenerate band
ξ = 〈A|B〉 = 1 ξ(k) = 〈A|B〉 ∈ (0, 1)

s = n ṡ = (1− ξ2)(s · n)ṅ

U(1) Abelian Berry phase: SU(2) non-Abelian Berry phase:
γ(Γ) =

∮
C
Aµdrµ U(Γ) = P exp[−i

∮
C
Ar
µ · τdrµ]

Dirac monopole ‘t Hooft-Polyakov monopole

k̇ = E + ṙ ×B k̇ = (1− ξ2)(s · n)(E + ṙ ×B)
ṙ = −∂kε ṙ = −∂kε− 1

2
(s× n) · ṅ ∂k ln ξ

∂tm subjects to: n× ∂2
tn subjects to:

adiabatic (js · ∇)m adiabatic (1− ξ2)(js · ∇)n
non-adiabatic βm× (js · ∇)m non-adiabatic β(1− ξ2)n× (jc · ∇)n

Is : Grm× ṁ−Giṁ Is : Gr(n× ṅ+m× ṁ)−Giṁ
Ic : 0 Ic : 0
Iss : not applicable Iss : Gr(n× ṁ+m× ṅ)−Giṅ
Ips : not applicable Ips : 0

Lij(H ,m) = Lji(−H ,−m) Lij(H ,m,n) = Lji(−H ,−m,−n)

τm : Grm× (m× Vs) τm : Grn× (n× Vs)
τn : not applicable τn : Grn× (m× Vs)−Gin× Vs

(∂tm) ∼ τm (n× ∂2
tn) ∼ τm + ∂t(n× τn)

Table 6.1: A full comparison of the major results of ferromagnetic and anti-
ferromagnetic spintronics. Upper panels: bulk magnetic textures with slowly
varying order parameters. Lower panels: heterostructures of magnetic mate-
rials with normal metals. Symbols are chosen in the same convention as those
used in previous chapters.
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As one of the first explorations of antiferromagnetic spintronics in the

community, our study guides through a variety of ways to realize novel func-

tioning of antiferromagnetic materials in different situations. However, to

achieve a similar level of understanding of antiferromagnets as ferromagnets,

there is still a long way to go.
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Appendix 1

Equivalence of O(3) NLSM and CP 1 model

A striking property of the CP 1 model is the gauge field minimally

coupled to the CP 1 field acquires the Maxwell dynamics in the long wave

length limit [86], which mediates attractive interaction between conduction

electrons of opposite spins.

We provide a simple but rigid proof of the equivalence between O(3)

NLSM and the CP 1 model via path integral approach. We write down explic-

itly the amplitude for the O(3) NLSM:

Z1 =

∫
D3n̂δ(n̂2 − 1)e−

1
4g

∫
dx∂µn̂·∂µn̂, (1.1)

and the amplitude for the CP 1 model:

Z2 =

∫
D4zDAµδ(|z|2 − 1)e−

1
g

∫
dx|(∂µ−iAµ)z|2 . (1.2)

Proof of the equivalence is nothing but to show Z1 is proportional to Z2 under

the Hopf map n̂ = z†σ̂z. Express the CP 1 field as z = (z1, z2)T = (reiα, seiβ)T ,

it is easy to check that r2 + s2 = 1 due to n̂2 = |z|2 = |z1|2 + |z2|2 = 1. This

means that the CP 1 field is constrained on a unit complex sphere. In terms

of r, s, α, and β, the action in Z1 can be written as

1

4g

∫
dx∂µn̂ · ∂µn̂ =

1

g

∫
dx[r2s2(∂µα− ∂µβ)2 + (∂µr)

2 + (∂µs)
2]. (1.3)
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Next, we integrate out the gauge field in Z2 which is Gaussian, and then

express the action also in terms of the new variables r, s, α, and β:

Z2 =

∫
D4zDAµδ(|z|2 − 1)e−

1
g

∫
dx|(∂µ−iAµ)z|2

=

∫
D4zDAµδ(|z|2 − 1)e−

1
g

∫
dx∂µz†∂µze−

1
g

∫
dx[A2

µ+iAµ(z†∂µz−z∂µz†)]

=(πg)2

∫
D4zδ(|z|2 − 1)e

1
g

∫
dx(r2∂µα+s2∂µβ)2

e−
1
g

∫
dx[r2(∂µα)2+s2(∂µβ)2+(∂µr)2+(∂µs)2]. (1.4)

Considering r4 = r2(1− s2) and s4 = s2(1− r2), it is straightforward to show

that the action in the above path integral just equals the action obtained in

Eq. (1.3). Put it another way, while the two path integrals have different

variables, their integrands (the actions) are equal:

Z1 =

∫
D3n̂δ(n̂2 − 1)e−S1[n̂] (1.5)

Z2 = (πg)2

∫
D4zδ(|z|2 − 1)e−S2[n̂(z)] (1.6)

with S1[n̂] = S2[n̂(z)] = S[r, s, α, β]

To proceed, we have to show that the entire amplitudes of Eq. (1.5) and

Eq. (1.6) are proportional, i.e., the equality:

∫
D4zδ(|z|2 − 1)e−S[n̂(z)] = c

∫
D3n̂δ(n̂2 − 1)e−S[n̂] (1.7)

where c is an overall constant that can be eliminated by proper normalization.

By virtue of the selection rule of the δ function and the Hopf map

n̂ = z†σ̂z we used above, we are able to rewrite the left hand side of Eq. (1.7)
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in the form:

∫
D4zδ(|z|2 − 1)e−S[n̂(z)] =

∫
D4zδ(|z|2 − 1)

∫
D3n̂δ3(n̂− z†σ̂z)e−S[n̂],

(1.8)

thus the equality of Eq. (1.7) would be proved if we can show

∫
D4zδ3(n̂− z†σ̂z)δ(|z|2 − 1) = c δ(n̂2 − 1). (1.9)

In other words, the proof of the equivalence between the two models is now

a matter of demonstrating Eq. (1.9). To prove Eq. (1.9), we first clarify the

meaning of D4z by

D4z =
∏

xµ,j=1,2

dRezj(xµ)dImzj(xµ), (1.10)

and then carry out the integral in the r, s, α, β coordinates. Since Rez1 =

r cosα, Imz1 = r sinα, Rez2 = s cos β, and Imz2 = s sin β, the Jacobian of the

coordinate transformation reads

J =
∂(Rez1, Imz1,Rez2, Imz2)

∂(r, α, s, β)
= rs. (1.11)

Then the left hand side of Eq. (1.9) becomes:

L.H.S. =

∫ ∞

0

rdr

∫ ∞

0

sds

∫ 2π

0

dα

∫ 2π

0

dβ δ(r2 + s2 − 1)

δ(nx − 2rs cos(α− β))δ(ny + 2rs sin(α− β))δ(nz − (r2 − s2))

=
1

16

∫ ∞

0

dR

∫ ∞

0

dS

∫ 4π

0

dθ

∫ 2π

−2π

dφδ(R + S − 1)

δ(nx − 2
√
RS cos(φ))δ(ny + 2

√
RS sin(φ))δ(nz − (R− S)), (1.12)
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where simple transformation of variables has been used. Integrating in the

order dR, dθ, and dS, we obtain

L.H.S. =
π

4

∫ ∞

0

dS

∫ 2π

−2π

dφδ(nx − 2
√

(1− S)S cos(φ))

δ(ny + 2
√

(1− S)S sin(φ))δ(nz − (1− 2S))

=
π

8

∫ 2π

−2π

dφ δ(nx −
√

1− nz2 cos(φ))δ(ny +
√

1− nz2 sin(φ)). (1.13)

The last integration over dφ is somehow tricky. Define the function f(φ) =
√

1− nz2 cosφ − nx, it has two zero points at φ0 = ± arccos nx√
1−nz2 and the

absolute value of its derivative at these points is

|f ′(φ0)| =
√

1− nz2 sinφ0 =
√

1− n2
x − n2

z, (1.14)

using the properties of the δ function, Eq. (1.13) becomes

L.H.S. =
π

8

∫ 2π

−2π

dφ δ(ny +
√

1− nz2 sin(φ))

δ(φ− arccos nx√
1−nz2 ) + δ(φ+ arccos nx√

1−nz2 )
√

1− n2
x − n2

z

=
π

8
√

1− n2
x − n2

z

[δ(ny −
√

1− n2
x − n2

z) + δ(ny +
√

1− n2
x − n2

z)]

=
π

4
δ(n2

x + n2
y + n2

z − 1) =
π

4
δ(n̂2 − 1). (1.15)

Therefore, Eq. (1.9), hence Eq. (1.7) is proved.

In conclusion, the CP 1 model is equivalent to the NLSM under the

Hubbard-Stratonovich transformation
∫

D4zDAµδ(|z|2 − 1) e−
1
g

∫
dx|(∂µ−iAµ)z|2

=
π3g2

4

∫
D3n̂δ(n̂2 − 1)e−

1
4g

∫
dx∂µn̂·∂µn̂. (1.16)
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Colloquium. Rev. Mod. Phys., 83:1523–1543, Nov 2011.

[24] Supriyo Datta. Electronic transport in mesoscopic systems. Cambridge

university press, 1997.

[25] Supriyo Datta. Quantum transport: atom to transistor. Cambridge

University Press, 2005.

[26] Edward S. Dayhoff. Antiferromagnetic resonance in cr2o3. Phys. Rev.,

107:84–91, Jul 1957.

[27] R. A. Duine. Effects of nonadiabaticity on the voltage generated by a

moving domain wall. Phys. Rev. B, 79:014407, Jan 2009.

[28] Karin Everschor, Markus Garst, R. A. Duine, and Achim Rosch. Current-

induced rotational torques in the skyrmion lattice phase of chiral mag-

nets. Physical Review B, 84(6):064401, 2011.

[29] Simon Foner. High-field antiferromagnetic resonance in cr2o3. Phys.

Rev., 130:183–197, Apr 1963.

167



[30] Eduardo Fradkin. Field theories of condensed matter systems, volume 7.

Addison-Wesley Redwood City, 1991.

[31] Ion Garate, K. Gilmore, M. D. Stiles, and A. H. MacDonald. Nonadi-

abatic spin-transfer torque in real materials. Phys. Rev. B, 79:104416,

Mar 2009.

[32] E. V. Gomonay and V. M. Loktev. Spintronics of antiferromagnetic

systems (review article). Low Temperature Physics, 40(1), 2014.

[33] Helen V. Gomonay, Roman V. Kunitsyn, and Vadim M. Loktev. Sym-

metry and the macroscopic dynamics of antiferromagnetic materials in

the presence of spin-polarized current. Phys. Rev. B, 85:134446, Apr

2012.

[34] Helen V. Gomonay and Vadim M. Loktev. Spin transfer and current-

induced switching in antiferromagnets. Phys. Rev. B, 81:144427, Apr

2010.

[35] Alexander G. Gurevich and Gennadii A. Melkov. Magnetization oscil-

lations and waves. CRC Press, 1996.

[36] M. Hagiwara, K. Katsumata, I. Yamada, and H. Suzuki. Antiferro-

magnetic resonance in over wide ranges of frequency and magnetic field.

Journal of Physics: Condensed Matter, 8(39):7349, 1996.

168



[37] F. D. M. Haldane. Nonlinear field theory of large-spin heisenberg anti-

ferromagnets: Semiclassically quantized solitons of the one-dimensional
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and Z. Tešanović. Berry phase theory of the anomalous hall effect:

application to colossal magnetoresistance manganites. Physical review

letters, 83(18):3737, 1999.

[141] Jiadong Zang, Maxim Mostovoy, Jung Hoon Han, and Naoto Nagaosa.

Dynamics of skyrmion crystals in metallic thin films. Phys. Rev. Lett.,

107:136804, Sep 2011.

[142] Anthony Zee. Quantum field theory in a nutshell. Princeton university

press, 2010.

[143] Qi Zhang and Biao Wu. General approach to quantum-classical hybrid

systems and geometric forces. Phys. Rev. Lett., 97:190401, Nov 2006.

[144] S. Zhang and Z. Li. Roles of nonequilibrium conduction electrons on the

magnetization dynamics of ferromagnets. Phys. Rev. Lett., 93:127204,

Sep 2004.

183



[145] Shufeng Zhang and Steven S.-L. Zhang. Generalization of the landau-

lifshitz-gilbert equation for conducting ferromagnets. Phys. Rev. Lett.,

102:086601, Feb 2009.

[146] F. Zhou, B. Spivak, and B. Altshuler. Mesoscopic mechanism of adia-

batic charge transport. Phys. Rev. Lett., 82:608–611, Jan 1999.

[147] Huan-Qiang Zhou, Sam Young Cho, and Ross H. McKenzie. Gauge

fields, geometric phases, and quantum adiabatic pumps. Phys. Rev.

Lett., 91:186803, Oct 2003.
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