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Land subsidence due to the exploitation of groundwater and hydro-

carbon fluids has triggered extensive studies in coupled fluid flow and ge-

omechanics simulations. However, numerical modeling of coupled processes

imposes great computational challenges. Coupled analysis for large scale full-

field applications with millions of unknowns has been, historically, considered

extremely complex and unfeasible. The purpose of this dissertation is to in-

vestigate accurate and efficient numerical techniques for coupled multiphase

flow and geomechanics simulations on parallel computers.

We emphasize the iterative coupling approach in extending conven-

tional fluid-flow modeling to coupled fluid-flow and geomechanics modeling.

To overcome the slow convergence—a major drawback of this method—we

propose new preconditioning schemes to achieve a faster convergence rate.

Efficient and parallel scalable linear solvers are developed to reduce the com-

putational overhead induced by the solution of discrete elasticity equations.

vii



Special communications techniques are implemented to optimize parallel effi-

ciency.

In this dissertation we first derive the mathematical model for multi-

phase flowin a deformable porous medium. We then present a new formulation

of the iterative coupling scheme and prove the optimality of two physics-based

preconditioners that are traditionally used in the petroleum industry. Practi-

cal strategies and new preconditioners are proposed to improve the numerical

performance of the iteratively coupled approach. In addition, we develop two

types of preconditioners for solving the linear elasticity system, namely, multi-

level domain decomposition preconditioners using a super-coarsening multigrid

algorithm and displacement decomposition preconditioners. Parallel imple-

mentation issues are also addressed. Numerical examples are presented to

demonstrate the robustness, efficiency and parallel scalability of the proposed

linear solution techniques.
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Chapter 1

Introduction

1.1 Motivation

Land subsidence due to the exploitation of subsurface resources, its

damage to surface infrastructures, and its impact on our environment have

triggered extensive studies in the subsurface modeling of fluid flow and ge-

omechanics.

1.1.1 Problem Statement

Major problems caused by excessive withdrawal of underground fluids

may be summarized as follows:

Land Subsidence

Compaction of unconsolidated aquifer systems that accompanies exces-

sive groundwater pumping is by far the single largest cause of subsidence in

the United States, and the increasing development of land and water resources

threatens to exacerbate the existing subsidence problem while initiating new

ones.

Surface subsidence may also be induced by hydrocarbon withdrawal

1



from weak formations and chalk reservoirs. While reservoir compaction itself

has been widely recognized as an additional driving mechanism for increasing

oil & gas recovery, its side effects are undesirable. The most obvious one is

surface or seafloor settlement, which may create environmental problems and

cause damage to oilfield structure and seabed pipelines. Some well-known

fields which have experienced severe subsidence include the Wilmington field

in California (Allen 1968 & 1972), the Ekofisk field in the North sea (Sulak

& Danielsen 1989 and Hermansen et al. 1997), the South Belridge field in

California (Hansen et al. 1993), and the westland loss in Gulf of Mexico

region (White & Morton 1997), though this is by no means an exclusive list

of fields that have experienced severe subsidence.

Wellbore Stability

Loss of wells and/or production due to severe casing damage caused

by formation subsidence can be very costly, particularly in shallow reservoirs

with high porosity. For example, in the Lost Hills and Belridge fields (Califor-

nia) the major oil reservoir consists of diatomite sandstone with high porosity

(0.45-0.7) and low permeability (Fredrich et al. 1998 and 2000). Extraction of

large volumes of fluid, aided by hydro-fracturing in the low-strength diatomite

formations at a shallow depth (about 700 m below the surface), have caused

large pressure depletion that have resulted in significant reservoir compaction

under the weight of overburden (Fielding 1998). The subsequent field-wide

wellbore failures and casing damage have been expensive due to loss of pro-
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duction and well replacements. By 1987, 10 to 15 ft of cumulative surface

subsidence was estimated in some portions of the field, and more than 100

wells were being abandoned annually due to severe casing damage. While a

water injection program started in the late 1980’s somewhat alleviated the

subsidence, the well failure rate is still economically significant at 2-6% of ac-

tive wells per year (Fredrich et al. 1998 and 2000). Nearly 1000 wells have

experienced severe casing damage during the past 20 years. The cost of well

replacements still amounts to millions of dollars per year.

Sand Production

For many decades, sand production from unconsolidated formations has

been a worldwide challenge for the petroleum industry. The challenge is not

merely to avoid or stop sand production but to be able to maintain commercial

well productivity after efforts to control sand have been implemented. The

selected control measure must be justified by a reasonable investment payback

time.

Every year, the industry spends millions of dollars on cleaning out sand

from wells and repairing damage associated with sand production. As a re-

sult, tremendous production quantities are lost or deferred. Sand production

with its associated erosion and effects on equipment also represents a potential

safety hazard. Consequently, huge investments have been made in many oil

and gas fields worldwide to prevent sand from being produced to the surface.

Also, there is an ever-growing demand for both analytical and numerical tools
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to be able to monitor, analyze, and predict sand production, as well as eval-

uate different sand control methods and predict well performance under sand

control. However, there is a common belief that the methods available to the

industry today are, in spite of rigorous research, inadequate.

According to an estimate by the National Research Council in 1991

(National Research Council 1991), the annual cost in the United States from

flooding and structural damage alone caused by land subsidence was more

than $125 million, not including the amounts spent to control and mitigate

damage from subsidence. Due to difficulties in identifying and mapping the

affected areas, establishing cause-and-effect relations, assigning economic value

to environmental resources, and inherent conflicts in the legal system regarding

these damages, the total costs of subsidence may be significantly larger than

the current best estimates. More and more, some environmental agencies, the

petroleum industry and the mining industry demand analytical and numerical

tools for fundamental insights and a better understanding of the interactions

between fluid flow, heat transfer and stress-strain behavior in porous media.

There is a growing trend for so called “integrated technologies for ge-

omechanical modeling” that incorporates geological, porous flow and heat

transfer modeling with or without chemical reactions, 4D time-lapse seismic

analysis together with poromechanics modeling (see Figure 1.1). Objectives

for such complex multi-field simulations are:

1. Better understanding of the dynamic fluid-structure interaction;
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2. Accurately predicting underground deformation and surface subsidence

due to the over-exploitation of underground natural resources and/or

underground storage of energy residues;

3. Effectively monitoring small changes in land surface elevation with an

unprecedented level of spatial detail;

4. Providing cost effective damage prevention or control.

In this thesis, investigations are focused on the coupling of subsurface flow

(single phase and multiphase) with poroelasticity. We emphasize seeking the

accurate numerical schemes for efficiently solving the coupled system on paral-

lel computers. Complete integration of different numerical models as described

in Figure 1.1 is a direction of our future research.

1.1.2 Challenges in Coupled Simulations

While integrated geomechanical modeling has extensive energy and en-

vironmental applications, numerical modeling of such coupled physical pro-

cesses has been, historically, considered extremely complex and unfeasible

due to limited computing resources. In actual practice, either assumptions

about part of the interaction process, which are not of primary interest, must

be made, or a 3D coupled problem has to be approximated by a 1D or 2D

model. For example, in conventional reservoir simulation the effects of rock

compaction and porosity change are only partially accounted for by adding a

rock compressibility term to the pressure equation. By doing so the porous
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flow modeling is completely decoupled from solid mechanics calculations. An-

other example is groundwater modeling in which porous flow is modeled in

3D but compaction is typically simulated as a 1D process. While the poroe-

lastic theory developed by Biot in 1941 provides the fundamental basis for

3D consolidation analysis, scientists and engineers commonly invoke the one-

dimensional theory of hydrodynamic consolidation by Terzaghi in 1925.

The above simplified models, either through decoupling or one dimen-

sional approximation, are only appropriate and reasonably accurate under

certain circumstances such as competent rocks. They are unacceptable, how-

ever, in the case that the underlying physics involves a strong coupling of fluid

flow and solid deformation. In stress-sensitive reservoirs, rock deformation,

porosity and permeability changes as well as rock failures can not be fully

represented by the rock compressibility term alone. Moreover, the common

assumption of 1D consolidation in groundwater modeling is motivated by an

obvious truism, i.e., most aquifer-system compaction or reservoir compaction

takes place in the vertical dimension. Nevertheless, the widespread occur-

rence of earth fissures indicates that horizontal deformation may be locally

significant.

Since the advent of inexpensive high-speed digital computers, scientists

and engineers have had the ability to simultaneously solve multiple field equa-

tions, such as thermoporoelastoplasticity, single phase or multiphase flow and

heat transfer problems. The integrated analysis can be carried out in a loosely

coupled fashion or with a tightly coupled scheme. However, challenges still ex-
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ist in large scale, full-field 3D applications with a spatial resolution similar to

the one in 3D seismic modelings. These challenges lie in the intensive demands

for computational time and memory storage, which are attributed to:

1. Large coupled systems which include mass conservation equations for

flow and force balance equations for elasticity. In the case of the black-oil

model coupled with 3D poroelasticity, there are six primary unknowns.

Thus, effective linear solvers need to be applied for solving the system

efficiently and robustly.

2. The complex nonlinear behaviors of coupling multiphase flow and solid

mechanics can result in slow nonlinear convergence.

3. Several coupling techniques have been proposed and widely used for solv-

ing multi-field equations with different time scales for each model. How-

ever, judging the trade-offs between accuracy and efficiency is difficult.

4. A practical and reliable scheme for applying adaptivity in time and space

is still not available due to a lack of detailed theoretical analysis.

5. Field observations suggest that, while pressure depletion is a local pro-

cess that only occurs inside aquifers or reservoirs, it triggers a redis-

tribution of effective stress in a more extensive domain. In order for

numerical solutions to be accurate, the computational domain needs to

be as large as possible. Gutierrez and Lewis (1998), and Osorio (1997a
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and 1997b) suggest that the domain should include overburdens, side-

burdens and underburdens for a better representation of the changing

reservoir boundary conditions.

In summary, we are solving a coupled system in the large physical domain that

is preferred on a full-field scale with great vertical depth. Such a coupled anal-

ysis involves a large linear system with millions of unknowns, whose solution

needs to be computed iteratively on parallel machines.

1.2 Objectives of This Work

In this work, we will adopt an iterative coupling technique to solve the

single phase and the multiphase (water, oil and gas) flow equations in de-

formable porous media. The attraction of this method lies in that it is more

stable and accurate as compared to a loosely coupled approach. Another at-

tractive feature, which is favored by reservoir engineers, is the computational

ease in coupling an existing porous flow simulator with an existing geome-

chanics simulator. However, a primary drawback to the iterative scheme is its

slow convergence rate that may result in a large number of nonlinear itera-

tions for difficult problems. Therefore, the first objective of this research is to

examine the method that was originally proposed based on physical intuition.

Using the similarity of the coupled system to the Stokes or generalized Stokes

equations, an iterative scheme can be formulated as the Uzawa method. The

reformulation sheds light on convergence analysis of the conventional iterative
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approach, which uses rock compressibility to approximate volumetric strains.

In doing so, new preconditioners may also be derived to improve the nonlinear

convergence rate.

However, the convergence behavior of an iterative scheme depends cru-

cially on the accuracy of the displacement solutions. Solving the discrete elas-

ticity system by Galerkin finite element (FE) discretization uses more CPU

time and memory than solving the flow system generated by an expanded

mixed finite element (MFE) scheme. Thus, another major effort put forth

in this work is the investigation of fast, efficient, and parallel scalable linear

solvers and preconditioners for the solution of displacement.

1.3 Literature Review

1.3.1 Theory and Governing Equations

The first attempt to describe fluid-solid coupling in a deformable porous

medium is attributed to the work of Terzaghi in 1925 (Terzaghi 1925). He in-

troduces the concept of effective stress for incompressible solid grains. Until

now his one-dimensional consolidation theory has been used extensively in sub-

sidence studies and basin modelings. Based on Terzaghi’s work, Biot (1941a,

1941b) establishes the general theory of three-dimensional consolidation in a

framework consistent with the basic principles of continuum mechanics. In

his subsequent works (Biot 1955, 1956a, 1956b, 1956c, 1957, 1962, 1973), Biot

extends the poroelastic theory to anisotropic and nonlinear materials. While

Biot’s original theory assumes linear behavior for the solid matrix, it may
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easily be generalized to complex models dealing with nonlinear problems and

thermal effect (Small et al. 1976, Coussy 1989, Lewis and Schrefler 1998).

Several excellent reviews or re-interpretations of Biot’s consolidation

equations have been presented by Geertsma (1957), Verruijt (1969), Ghaboussi

& Wilson (1973), Rice and Cleary (1976), Jaeger and Cook (1979), Lewis

& Schrefler (1987), Detournay and Cheng (1993), Bear and Bachmat (1990),

Chen (1995), and Zienkiewicz et al. (1999). In particular, Ghaboussi & Wilson

(1973) introduce fluid compressibility to the consolidation theory, and Rice &

Cleary (1976) define several material coefficients for an undrained system that

have been widely used in practice.

Several authors have presented the mathematical formulation for mod-

eling poroelastic multiphase flow (Tortike & Farouq Ali 1987, Lewis & Sukir-

man 1993, Lewis & Schrefler 1998 and Li & Zienkiewicz 1992). It is worth

mentioning that the re-interpretations of Biot’s poroelasticity theory by Ver-

ruijt (1969) and Bear & Bachmat (1990) are most pertinent to porous flow

modeling coupled with geomechanical features. Both works, however, assume

incompressible solid constituents. Adopting the same methodology, Chen et

al. (1995) presents a mathematical model that takes into account the solid

grain’s compressibility. In their formulation geomechanics is included in a con-

ventional reservoir flow model as an additional module. They describe how

conventional fluid-flow modeling can be extended to coupled fluid-flow and

geomechanics modeling. Identification of the linkages and consistent interpre-

tations between the flow and deformation fields are emphasized. While the
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governing equations are based on single phase flow, they can be extended to

the case of multiphase flow with consistency.

1.3.2 Coupled Geomechanics and Reservoir Flow Modeling

Settari & Waters (1999) discuss different methods that have been used

to combine poroelastic and multiphase flow calculations. Based on the degree

of coupling, they categorize these methods into decoupled, explicitly coupled,

iteratively coupled and fully coupled.

Early works in coupled analysis are primarily in a decoupled fashion

(Chin & Boade 1990, Sulak et al. 1991 and Fredrich et al. 1996). Chin

& Boade (1990) use an essentially decoupled reservoir simulator and a com-

paction model to study sea floor subsidence in the Ekofisk oil field. Sulak et

al. (1991) compute a transient stress solution based on pressure histories from

reservoir simulations. Their stress solution is then used to update porosity

and permeability manually.

Minkoff et al. (1999) and Koutsabeloulis & Hope (1998) present a

partially or explicitly coupled scheme for the multiphase flow with/without

thermal effect. In Minkoff et al. (1999) a cell-centered finite difference scheme

is used to discretize the reservoir flow equations while a finite element formu-

lation is applied for the stress model. In the case that different grids are used

for each model, projection algorithms are required for mapping the primary

variables from one field to the other.

Representative works of iterative coupling can be found in Settari &
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Mourtis (1994 and 1998), Tortike & Farouq Ali (1992), and Fung et al. (1994).

Thomas et al. (2002) and Gai et al. (2003) describe an iteratively coupled

model that employs parallel computing.

Lewis & Sukirman (1993) demonstrate their numerical studies of three-

dimensional three-phase flow in a deforming hydrocarbon reservoir. A finite

element method is applied to obtain simultaneous solutions of displacement

and fluid pressure. Based on Lewis & Sukirman’s formulation, Gutierrez &

Lewis (1998) describe a fully coupled scheme to examine the role of geome-

chanics in reservoir simulations. They point out that one attractive feature

of the fully coupled scheme lies in its ability to use the same discretization

for both flow and mechanics calculations. Based on Chen et al.’s formulation

for coupled single phase flow, Osorio et al. (1997 and 1999) develop a 3D

finite difference, fully implicit model to study the effect of rock compaction

on reservoir productivity. The numerical procedure used in their program is

a Picard-like block Gauss-Seidel method. Therefore, the fully coupled scheme

is essentially an iterative method incorporated with outer loops. Stone et al.

(2003) integrate a 3D elastoplastic model into a commercial reservoir simu-

lator. They apply a finite difference discretization to the stress equations on

staggered grids. Chin et al. (1998) develop a fully coupled model (single

phase flow with FE approximation) for pressure transient analysis in stress-

sensitive reservoirs. Prevost (1997) presents a partitioned solution procedure

for simultaneous integration of coupled-field problems. The decoupling of the

multi-field equations is achieved in the linear solution phase. Previous efforts
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to seek simultaneous solutions of pressure and displacement may also be found

in Li & Zienkiewicz (1992) and Tortike & Farouq Ali (1992).

Dean et al. (2003) incorporate the three coupling techniques—explicitly

coupled, iteratively coupled and fully coupled—into the same program and

compare the performance of each method in terms of stability, accuracy and

computational efficiency.

Wan (2002) addresses stability issues in the case that unstable finite

element spaces are used for pressure and displacement fields. A stabilized

Galerkin finite element method is used to alleviate pressure oscillations. For

the same purpose, Liu (2004) adopts a discontinuous Galerkin (DG) FE scheme

to discretize the equilibrium equations. One attractive feature of Liu’s scheme

is that it allows local mass conservation for flow.

1.3.3 Linear Solvers for the Coupled System

Due to the complexities involved in solving two-field equations, extend-

ing a conventional reservoir model to a coupled fluid-flow and geomechanics

model is not trivial, even though considerable success has been achieved in

recent years. As mentioned above, mathematical and numerical formulations

have been developed; different coupling techniques have been investigated;

and there is a considerable quantity of literature covering field applications of

coupled geomechanics and reservoir flow modeling. Recently, stability issues

have received more attention with regard to non-physical pressure oscillations

in low permeability zones (Wan 2002 and Liu 2004). Coupled simulations are
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employing increasingly sophisticated individual models and more accurate and

stable numerical schemes. However, the computational bottleneck of solving

a large coupled system still remains. Few works mentioned above investigate

the linear solution techniques in coupled analysis. Frequently, a direct method

is applied, but the solution cost and storage requirements increase dramati-

cally for three-dimensional problems. Thus, the total number of DOF is highly

limited in practice.

Dean (2000) describes a three-step GCR (generalized conjugate resid-

uals) scheme for solving a linear system involving pressure and displacements.

The pressure block is solved by a PCG-like iterative solver while the displace-

ment block is computed by a direct or ICCG (incomplete Choleski conjugate

gradient) method. Prevost (1997) proposes a partitioned solution procedure

for the simultaneous integration of transient coupled field problems. An it-

erative partitioned conjugate gradient method is used. It allows the use of

existing single-field analysis software modules as preconditioners. But the

success of the iterative scheme requires that both the flow and displacement

matrices be symmetric and positive definite. Thus, it is not feasible to apply

the method directly to fully implicit multiphase flows. In Lipnikov (2002),

the Lanczos method is used to solve a linear system arising from the dis-

cretization of Biot’s poroelasticity equations. As with Prevost’s scheme, his

block diagonal preconditioners involve the solution of two totally decoupled

systems, namely, the discrete Lamé and diffusion operators. Problems arise

in the case of incompressible flow with pure Neumann boundary conditions
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since the pressure solution is only unique up to a constant. Thus special treat-

ments are required for the pressure solutions. Phoon et al. (2003) presents

the symmetric quasi-minimal residual method for Biot’s coupled system. A

simple diagonal preconditioner is implemented and investigated. Instead of

completely neglecting the coupling matrix that corresponds to the volumetric

strain, they approximate it and add it to the pressure equations. By doing so,

the convergence rate is improved.

A unique feature of the iteratively coupled scheme is that it obviates

the need for developing special linear solvers for the global system (flow and

displacement). The building blocks are the inversion, or approximate inver-

sion, of the matrices for flow and displacement, respectively. Usually, linear

solvers for multiphase flows are well developed in most commercial reservoir

simulators. Thus, efficient, robust and parallel scalable linear solvers and pre-

conditioners need to be developed for the discrete elasticity system.

There is an abundance of literature dealing with preconditioning iter-

ative solution methods for stress analysis, especially in the context of linear

elasticity. Some work covers specific topics, such as thin domain structure in

3D (plates and shells) and mixed/penalty methods for incompressible prob-

lems. Here we briefly comment on some of the approaches that are well suited

for general 3D pure displacement problems on parallel computers.

Domain decomposition (DD) is well-known as a flexible method for

the solution of linear or nonlinear partial differential equations. In particu-

lar, the multigrid methods offer the prospect of optimal scaling with problem
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size (Stüben 1983), either as stand-alone methods, or as accelerators for the

Krylov subspace methods. Several authors have suggested the use of multigrid

for stress analysis, e.g., Bulgakov & Belyi (1992) and Braess (2001). Success-

ful applications of multigrid methods to linear and nonlinear solid mechanics

problems can be found in Fish et al. (1993), Chan & Smith (1994) and Feng et

al. (1997 and 1998) for single processors, and Kacau & Parsons (1993), Lang

et al. (2000) and Adams (2000) for multiple processors. However, multigrid

methods require a hierarchical grid structure that is not readily available in

unstructured grids. To overcome this problem, algebraic multigrid (AMG) has

been introduced. Recently, great success has been achieved in applying the

AMG algorithm directly to systems of PDEs (Ruge 1986, Vanek et al. 1995,

Bulgakov & Kuhn 1995 and Stüben 2000 on single processors, and Adams

2002 on parallel machines). Note that all the methods mentioned above are

specifically designed for unstructured grids.

FETI (finite element tearing and interconnecting) (Farhat 1991) repre-

sents the class of non-overlapping domain decomposition (DD) approaches that

are introduced for the parallel finite element solution of equilibrium equations.

The idea is to partition the spatial domain into a set of totally disconnected

subdomains, each assigned to an individual processor. Lagrange multipliers

are introduced to enforce compatibility at the interface nodes. A parallel

conjugate projected gradient algorithm is developed for the solution of the

coupled system. Other variants of the FETI algorithm include the two-level

FETI (Farhat & Mandel 1998) and the dual-primal FETI (Farhat et al. 2000
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and 2001).

Another family of preconditioners frequently used in structural mechan-

ics is the so-called displacement decomposition (DiD) method. In DiD precon-

ditioners are constructed by block partitioning of a stiffness matrix based on

a SDC (separate displacement component) ordering of displacement variables.

The decomposed systems have essentially the same properties as scalar PDEs,

for which a variety of efficient preconditioning and solution procedures exist.

Up to now, the DiD method remains as one of the most robust approaches

available.

Axelsson and Gustafsson (1978) implement their preconditioners based

on the point-ILU factorization of the DiD system. Using Korn’s inequality,

they demonstrate that the preconditioned matrix has a conditioner number

that is independent of mesh size h but dependent on the Poisson’s ratio. Sim-

ilar results can be found in Blaheta (1994). Several block-ILU factorization

techniques for the DiD system are proposed in Axelsson (1983), Axelsson et

al. (1984) and Axelsson & Polman (1986). Their robustness and parallel vec-

torizability are discussed in Axelsson (1983), Axelsson & Polman (1986), and

Axelsson & Eijkhout (1987).

Gustafsson & Lindskog (1998) analyze the block diagonal precondi-

tioners based on the SDC part of the elasticity equations. Each subproblem is

solved by the PCG method with a modified incomplete factorization MIC(0)

preconditioner. In Gustafsson & Lindskog (2002), full block incomplete fac-

torization preconditioners are presented and analyzed. To avoid inner/outer
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iterations they replace the inner PCG iterations by their MIC(0)-factors. Spe-

cial finite element discretization and node numbering lead to partial parallelism

for the MIC(0) preconditioners. However, in order to guarantee the existence

of MIC(0) factorization, the preconditioning matrices need to satisfy the max-

imum principle (to be M-matrices). Chan et al. (1997) present block-ILU

factorization preconditioners based on block-size reduction for 2D elasticity

systems. Their factorization exists for symmetric and positive definite block-

tridiagonal matrices that are not necessarily M-matrices.

Padiy (1999) suggests a DiD (block diagonal) preconditioner for the

discretized linear elasticity problems on a tensor product of two-dimensional

and one-dimensional meshes. The author considers an approximation of the

diagonal blocks by the additive AMLI (algebraic multilevel iteration) method

(Axelsson & Vassilevski 1989 and Axelsson & Vassilevski 1990). Mihajlović &

Mijalković (2002) adopt a scalar algebraic multigrid (AMG) solver to obtain

the approximate solution of each subproblem. They demonstrate the superior-

ity of DiD-based AMG preconditioners over the standard ILU preconditioners.

Similar to the analysis in Axelsson (1978), the spectrum of their DiD/AMG

preconditioners is bounded independently of the mesh parameter (h) though

not independently of the problem parameter (Poisson’s ratio).

While the realization of DiD-based preconditioners can be vectorized,

they only allow partial parallelism. For massively parallel, or at least medium-

sized computer systems (fewer than one hundred processors), DiD methods

need to be used together with DD methods. The idea is to consider the com-
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ponents of the displacement vector as a base for additional space decomposi-

tion. Domain decomposition is performed in such a way that local subspace

problems are solved for the material displacement along a single Cartesian

coordinate. Blaheta et al. (2003) address the use of DiD and overlapping

DD preconditioners for linear elasticity problems. In their two level schemes,

each subdomain problem is approximately solved by incomplete factorization

(DiD-MIC(0)) while the coarse grid problem is solved by inner PCG itera-

tions preconditioned by DiD-MIC(0). To handle nonlinear preconditioning

by the inner PCG iterations, a GPCG (generalized preconditioned conjugate

gradient) method is used for outer iterations.

Another variant of DiD preconditioners for parallel computing is pre-

sented by Lirkov (2003). After constructing the decoupled block-diagonal part

of the original stiffness matrix, a circulant block factorization is used for solving

each displacement component.

1.4 Outline of the Thesis

Discussions in this thesis are organized as follows:

1. In Chapter 2, a mathematical model for a three-phase, three-component

black-oil system in deformable porous media is derived. Mass conser-

vation and equilibrium equations, as well as boundary conditions, for a

coupled problem are presented.

2. In Chapter 3, a finite element formulation for the coupled system is
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described.

3. In Chapter 4, the iteratively coupling technique is reformulated. The

optimality of incorporating rock compressibility terms as precondition-

ers is discussed. Several other preconditioners are also proposed, and

their performance is compared with respect to grid refinement, jumping

coefficients and the changes of fluid and rock properties.

4. In Chapter 5, we present two numerical examples to verify our numerical

model for the coupled system.

5. Chapter 6 is devoted to the discussion of linear solvers and precondition-

ers for the discrete elasticity block.

6. In Chapter 7, parallel implementation issues for the poroelastic model

are addressed. In particular, the parallel aspects of a super-coarsening

multigrid method are illustrated. Performance of the proposed linear

solver and preconditioners is evaluated in terms of parallel scalability

and efficiency.

7. Chapter 8 concludes the thesis with a summary of accomplishments and

recommendations for future research.
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Chapter 2

Mathematical Model

In this chapter we present mathematical models for describing coupled

multiphase flow with geomechanical calculations in a deformable hydrocarbon

reservoir. The coupled-field problems are characterized by the interaction of

essentially different physical phenomena within the same material domain.

Biot’s self-consistent theory is used to develop the governing equations. Rock

mechanical behavior in deformable porous media will be also investigated.

2.1 Linear Porelasticity Theory

Many sedimentary rocks display instantaneous and, above all, reversible

elastic behavior. Biot’s poroelasticity theory is derived by extending the gen-

eral linear elasticity theory for continuum media to fully saturated porous

media. There are numerous volumes that deal exhaustively with linear elas-

ticity, such as Timoshenko and Goodier (1969). In all subsequent discussion,

stress, strain and pore pressure are defined relative to an initial state unless

stated otherwise, and they follow a sign convention wherein the tensile stress

and strain are taken as positive. Repeated subscript indexes imply summation.

The first attempt to describe fluid-solid coupling in a deformable porous
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medium is found in Terzaghi (1925). He introduced the concept of effective

stress for incompressible solid grains in a strictly one-dimensional framework.

His one-dimensional consolidation theory has been widely used in practice to

study landsurface subsidence problems. Later, Biot (1941a, 1941b) generalized

the theory to the three-dimensional case in a framework consistent with the

basic principles of continuum mechanics. In his subsequent works (Biot 1955,

1956a, 1956b, 1956c, 1957, 1962, 1973), Biot extended the poroelastic theory

to anisotropic and nonlinear material.

Biot’s consolidation equations consist of equilibrium equations for an

element of the solid frame, stress-strain relations for the solid skeleton, and a

continuity equation for the pore fluid. The theory is based upon the following

assumptions:

1. The solid phase is assumed to comprise a porous skeleton of particles

surrounded by one or more fluids (liquid or gaseous hydrocarbons and

water);

2. The shear stresses in the fluid phases are small while a surrounding

pressure is exerted on the solid phase;

3. Solid material is isotropic with respect to rock mechanical properties;

4. The equilibrium equation accounts for only quasi-static behavior, and

inertial effects are negelected;
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5. The small-strain deformation is assumed so that linear elasticity theory

applies;

6. An isothermal condition is assumed.

The poroelastic equations are formulated in terms of total stresses, bulk strains

and pore pressure. The three basic principles in the poroelastic theory (Biot

1941) are described as below.

Stress equilibrium equations:

−∇ · σ = f , (2.1)

where σ is the total stress, σ = (σ11, σ22, σ33, σ12, σ23, σ13)
T . The gravity

term f is a function of porosity (φ), fluid saturations (So, Sw, Sg), fluid densi-

ties (ρo, ρw, ρg) and solid density (ρs), i.e.,

f = [ρs(1− φ) + φ(ρoSo + ρwSw + ρgSg)]g. (2.2)

Isotropic constitutive equations:

σ =
E

1 + ν

(

1 +
ν

1− 2ν
mmT

)

ε− αmp, (2.3)

ε =

(

1 + ν

E
−

ν

E
mmT

)

σ + α
1− 2ν

E
mp. (2.4)

Here, ε is the strain vector, ε = (ε11, ε22, ε33, ε12, ε23, ε13)
T ; p is the

pore pressure; α is one of Biot’s constants; m = (1, 1, 1, 0, 0, 0)T ; E and ν are
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Young’s modulus and Poisson’s ratio respectively. Often, it is more convenient

to express the above stress-strain relations in terms of Lamé’s constants, i.e.,

σ = (λmmT + 2µ)ε− αmp, (2.5)

ε =
1

2µ

(

1−
λ

3λ+ 2µ
mmT

)

σ +
2µ

3λ+ 2µ
αmp, (2.6)

where λ and µ are related to E and ν by

λ =
νE

(1 + ν)(1− 2ν)
,

µ =
E

2(1 + ν)
.

Strain-displacement relation:

εij =
1

2

(

∂ui
∂xj

+
∂uj
∂xi

)

. (2.7)

Numerical simulation of the poroelastic model involves solving the

above equations with displacements as primary variables. Either traction or

displacement needs to be specified on the boundary.

2.2 Fluid-Flow Theory in Deformable Porous Media

Several excellent reviews or re-interpretations of Biot’s consolidation

have been presented, e.g. Geertsma (1957), Jaeger and Cook (1979), Ver-

ruijt (1969), Rice and Cleary (1976), Detournay and Cheng (1993), and Bear

and Bachmat (1990). In particular, the works by Verruijt and Bear are the

most pertinent to the porous flow modeling coupled with poroelasticity theory.
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Their coupled equations are based on the mass conservation law for both fluid

and solid phases. Both works, however, assume incompressible solid grains

(α = 1). Following the same approach, Chen et al. (1995) present a mathe-

matical model for single phase flow with the solid grain’s compressibility taken

into account. In this section, we shall derive mass conservation equations for

a three-phase black-oil system in deformable porous media. The difference be-

tween our derivation and Lewis & Schrefler’s derivation (Lewis and Schrefler

1998) lies in the handling of solid grain’s compressibility.

2.2.1 Coupled Black-oil Model Mass Conservation Equations

The black-oil model is a simplified compositional model for describing

multiphase flow with mass interchange between phases. The standard black-

oil model consists of three distinct fluid phases: gas, water, and oil, and two

pseudo-hydrocarbon components: oil and gas. The oil component is defined

as produced oil at stock tank conditions, and the gas component is defined as

produced separator gas. The black-oil model (Lu 2000 and Lu et al. 2001)

under the framework of IPARS (Integrated Parallel Accurate Reservoir Simu-

lator) (Parashar &Wheeler et al. 1997, Wheeler 1998) is designed to be able to

predict fluid compressibility and simple mass transfer effects between oil and

gas phases. The underlying assumptions are (1) gas may dissolve in the oil

phase, but oil will not dissolve in gas; and (2) no mass transfer occurs between

the water phase and the other two phases. Other assumptions include:

1. The reservoir is isothermal;
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2. No chemical reaction, precipitation or adsorption occurs;

3. The mass fluxes due to dispersion and diffusion are much smaller than

the advective mass flux, and may, therefore, be neglected;

4. Fluid flow is characterized by Darcy’s law for a Newtonian fluid;

5. Well injection and production are treated as source or sink terms;

6. The permeability tensor is diagonal;

7. The viscosity of each phase is constant;

8. Reservoir formation is slightly compressible;

9. The reservoir is surrounded by an impermeable formation so that no flow

occurs on the external boundaries.

Under these assumptions, the mass continuity equations for water, oil, gas and

solid components are given by the following equation. Fluid phase mass

conservation equations:

∂(φNw)

∂t
= −∇ ·

(

φ
Sw
Bw

vfw

)

+ qw, (2.8)

∂(φNo)

∂t
= −∇ ·

(

φ
So
Bo

vfo

)

+ qo, (2.9)

∂(φNg)

∂t
= −∇ ·

(

φ
Sg
Bg

vfg + φ
So
Bo

Rovfo

)

+ qg. (2.10)

Solid phase mass conservation equations:

∂(1− φ)ρs
∂t

= −∇ · [(1− φ)ρsvs] . (2.11)
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Darcy’s law:

v̄α = −
kkrα
µαBα

(∇pα − g∇D) . (2.12)

In the above equations, Sα (α = o, w, g) is the phase saturation; Bα

is the phase formation volume factor; Ro is the solution gas-oil ratio; vfα is

the interstitial phase velocity while v̄α is the Darcy velocity; k is a diagonal

absolute permeability tensor; krα is the relative permeability for phase α; pα

is the phase pressure; No, Nw and Ng are the so-called concentrations for oil,

water and gas components, respectively. The relations between concentrations

and phase saturations are defined as

Nw =
Sw
Bw

, (2.13)

No =
So
Bo

, (2.14)

Ng =
Sg
Bg

+Ro
So
Bo

. (2.15)

Note that our fluid mass conservation equations are really volume con-

servation equations. The basis for all mass balance is the volume of each phase

at stock-tank conditions. Once the stock tank conditions are specified, the vol-

ume balances on the oil, water and gas components may be converted to mass

balances through the phase densities at stock-tank conditions.

The velocity terms that appear in (2.8), (2.9) and (2.10) are the inter-

stitial velocities. Darcy velocities and solid phase velocity enter the continuity

equations through their relations to the interstitial velocities. Considering
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the solid phase as the reference phase, the macroscopic Darcy velocity can be

written as

v̄α =
φSα
Bα

(vfα − vs) . (2.16)

Substituting (2.16) into the mass balance equations for vfα and using the

relations defined in (2.13), (2.14) and (2.15) leads to

∂(φNw)

∂t
= −∇ · v̄w −∇ · (φNwvs) + qw, (2.17)

∂(φNo)

∂t
= −∇ · v̄o −∇ · (φNovs) + qo, (2.18)

∂(φNg)

∂t
= −∇ · (v̄g +Rov̄o)−∇ · (φNgvs) + qg. (2.19)

We can further write the above continuity equations in a compact form as

∂(φNα)

∂t
+∇ · vα +∇ · (φNαvs) = qα, (2.20)

with the Darcy velocity vα for each component at the stock tank condition

defined as follows,

vw = v̄w,

vo = v̄o, (2.21)

vg = v̄g +Rov̄o.

The coupling terms in (2.20) are φ and vs. They account for the effect of

solid deformation on flows. In conventional reservoir simulation, the term

∇ · (φNαvs) is always neglected in light of the fact that rock deforms very

slowly compared to multiphase flow, i.e., vs ¿ vfα.
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In the rest of our discussion we shall replace the solid velocity in (2.20)

with displacements. Thus, the displacement variables in the poroelastic model

will be shown explicitly in the porous flow equations. We rewrite the continuity

equations for both the fluid and the solid phases as

∂(φNα)

∂t
+∇ · vα +∇ · (φNαvs) = qα, (2.22)

∂(1− φ)ρs
∂t

+∇ · [(1− φ)ρsvs] = 0. (2.23)

Applying the chain rule to (2.22) and (2.23) yields

∂(φNα)

∂t
+ ∇ · vα + vs · ∇(φNα) + φNα∇ · vs = qα, (2.24)

∂(1− φ)ρs
∂t

+ vs · ∇ [(1− φ)ρs)] + (1− φ) ρs∇ · vs = 0. (2.25)

Applying the definition of a material derivative with respect to a moving solid,

D(·)

Dt
≡
∂(·)

∂t
+ vs · ∇(·), (2.26)

(2.24) and (2.25) can be further written as

D(φNα)

Dt
+∇ · vα + φNα∇ · vs = qα, (2.27)

D(1− φ)ρs
Dt

+ (1− φ) ρs∇ · vs = 0. (2.28)

Using (2.28) we obtain

∇ · vs = −
1

(1− φ) ρs

D(1− φ)ρs
Dt

. (2.29)

Introducing 1− φ = Vs/Vb in (2.29) we get that

∇ · vs = −
Vb
ρsVs

D

Dt

(

ρsVs
Vb

)

, (2.30)
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where Vb is the bulk volume and Vs is the solid volume. For constant solid

mass (d(ρsVs) = 0), (2.30) is equivalent to

∇ · vs =
1

Vb

DVb
Dt

. (2.31)

Recall in the linear elasticity theory that the volumetric strain εv is defined as

εv = ∇ · u =
dVb
Vb

.

Introducing the above volumetric strain in (2.31) yields

∇ · vs =
Dεv
Dt

=
D (∇ · u)

Dt
. (2.32)

Thus, the divergence of solid velocity in (2.31) simply reflects the rate of bulk

volume change. Substituting ∇ · vs to (2.27) with Dεv/Dt we have

D(φNα)

Dt
+ φNα

Dεv
Dt

+∇ · vα = qα. (2.33)

After adding and subtracting εvD(φNα)/Dt we obtain

D

Dt
[φ (1 + εv)Nα] +∇ · vα − εv

D(φNα)

Dt
= qα. (2.34)

Since the last term on the left hand side of (2.34) is small compared to the

term D
Dt
(φNα) which is contained in the first term, i.e.,

εv
D(φNα)

Dt
¿

D(φNα)

Dt
,

εv
D(φNα)

Dt
can be neglected. Thus (2.34) can be written in a form quite similar

to the flow equations in an uncoupled simulation,

D (φ∗Nα)

Dt
+∇ · vα = qα. (2.35)
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where the Darcy velocity vα is defined in (2.21), and φ∗ is the so called fluid

fraction and is defined as

φ∗ = φ (1 + εv) . (2.36)

For poroelastic material with small deformation the total bulk volume

Vb can be approximated by a linear function of εv,

Vb = V 0
b (1 + εv) . (2.37)

Taking into account (2.37), the fluid fraction defined by (2.36) is nothing but

“porosity” relative to the initial undeformed bulk volume V 0
b , i.e.,

φ∗ = φ
Vb
V 0
b

=
Vp
V 0
b

. (2.38)

In non-deformable porous media or in the initial state of deformable porous

media (2.38) implies that the fluid fraction φ∗ is equal to the true porosity

φ. Notice that φ∗ in (2.36) depends on both the pore pressure and the total

stresses. In an uncoupled reservoir model, however, the contribution of total

stresses to the fluid fraction is always approximated by a linear function of

pore pressure, i.e.,

φ∗ = φ0 [1 + cr(p− p0)] . (2.39)

Next, the true porosity term in (2.36) will be expanded to obtain a

full expression of φ∗ in terms of pressure and displacements. According to

Geertsma (1957) and Charlez (1991) the relative porosity variation in a de-
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formed porous medium is approximated by

dφ

φ
=

[

1

φ
(
1

Kb

−
1

Ks

)−
1

Kb

]

(dσ̄ + dp), (2.40)

σ̄ =
3λ+ 2µ

3
εv − αp. (2.41)

where σ̄ is the mean stress; Kb and Ks are respectively the bulk moduli of

solid skeleton and solid constituent. Biot’s coefficient α can be measured

independently in a jacketed drained test (Biot, 1956 and Detournay & Cheng,

1993) and is associated with Kb and Ks as follows,

α = 1−
Kb

Ks

. (2.42)

If small strain is assumed, the porosity φ can be approximated from (2.40) by

φ = φ0 +

[(

1− φ0

Kb

−
1

Ks

)]

(σ̄ + p) . (2.43)

Substituting (2.43) into (2.36) for φ, dropping the second order terms, and

using the relations defined in (2.41) and (2.42), we obtain

φ∗ = φ0 +
[

cb −
(

1 + φ0
)

cs
]

p+ (cb − cs) σ̄, (2.44)

or in terms of ε and p,

φ∗ = φ0 + αεv +
1

M
p, (2.45)

where 1
M

is the Biot constant defined as

1

M
= (1− α) (α− φ0) cb. (2.46)
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In (2.44) and (2.46), cb and cs are respectively the bulk compressibility and

solid grain compressibility. They are related to Kb and Ks by

cb =
1

Kb

,

cs =
1

Ks

.

From (2.46) and the fact thatM > 0 we require that α lies within the following

bounds,

φ0 ≤ α ≤ 1. (2.47)

If the solid material is incompressible, i.e., cs = 0 and α = 1, or α = φ0, then

1
M

= 0.

The final assumption that we are going to impose on the coupled mass

balance equations is

∂(φ∗Nα)

∂t
À vs · ∇(φ

∗Nα), (2.48)

that is

D(φ∗Nα)

Dt
'
∂(φ∗Nα)

∂t
. (2.49)

The physical interpretation of this approximation is that the medium is under-

going deformation but remains stationary. Thus the multiphase flow equations

coupled with geomechanics, (2.35), can finally be written as

∂

∂t

[

Nα(φ
0 + α∇ · u+

1

M
p)

]

+∇ · vα = qα, (2.50)

with φ∗ in (2.49) being replaced by (2.45). However, in rock mechanics anal-

ysis, it is standard to write the coupled equations in terms of total stress and
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pressure as

φ∗
∂Nα

∂t
+Nα [cb − (1 + φ0)cs]

∂p

∂t
+Nα(cb − cs)

∂σ̄

∂t
+∇ · vα = qα. (2.51)

2.2.2 Coupling Parameters

The above derivation is based on volume variations, including bulk

volume, pore volume and porosity variations. As a result, displacements or

stresses explicitly show up in the continuity equations. Another term that

implicitly involves geomechanical effect is the transmissibility term (∇ · vα)

through permeability changes. Although rock permeability is generally con-

sidered to remain constant in standard reservoir simulations, published labora-

tory studies for stress-sensitive rocks indicate the dependency of permeability

on pore pressure and total stress, see Fatt (1952), McLatchie (1958), Wyble

(1958), Gray and Bergamini (1963), Wilhelmi (1967) and Somerton (1967),

Vairogs, et al. (1971), Thomas and Ward (1972), Jones and Owens (1980),

Warpinski and Teufel (1990), Holt (1990), Rhett and Teufel (1992), and Morita

et al. (1992). Gutierrez & Lewis (1998) and Osorio (1999) pointed out that

the reduction of permeability in stress-sensitive reservoirs may have significant

effect on the reservoir productivity.

Permeability-stress coupling, however, is not as straight forward as pore

volume coupling. It is usually conducted in a staggered manner. One simple

approach is to assume that permeability depends on porosity as, for example,

in the Garman-Kozeny relation commonly used in basin simulators. Other

stress-dependent permeability models may also be used, e.g. the one in Morita
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et al. 1992.

We point out here that pore volume coupling is the primary interest of

this work. Permeability-stress coupling is proposed as future work.

2.3 Summary of Coupled Geomechanics and the Reser-
voir Flow Model

The mathematical description for coupling porous flow and geomechan-

ics n must account for the following important characteristics of the system

(Osorio 1999):

1. The multi-component nature of the reservoir rock requires descriptions of

both the pore fluid and the solid component. Mass and force conservation

laws, and constitutive relations, which represent the coupling effects, are

used to obtain the coupled equations.

2. Pressure depletion, which occurs inside the reservoir, induces an ex-

tended stress-disturbed region outside the reservoir boundaries. The

disturbed region affects the evolution of the stress state at the reservoir

boundaries, which, in turn, affects the evolution of the stress state in-

side the reservoir. The geomechanical interaction between the reservoir

and its surroundings is a fully coupled process. This indicates that the

inclusion of a surrounding environment (overburden, underburden and

sideburden) leads to a realistic modeling of the actual geomechanical

boundary conditions. The surrounding domain needs to be extensive
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enough to ensure that its boundaries are not perturbed by reservoir pro-

duction or injection during the time period of interest.

The coupling process is thus characterized by the interaction of essentially

different physical phenomena within overlapping material domains. For sim-

plicity we have assumed the two domains to be the same. Generally, solving

for displacements takes much more CPU time than solving for pressure and

concentrations. Thus, assuming a larger domain for the flow calculation will

not induce substantial computational overhead.

2.3.1 Black-oil Model

Primary variables chosen for the black-oil model are water phase pres-

sure (pw), oil concentration (Nw), and gas concentration (Ng). Here, pressure

and stresses are taken to be their real values instead of their relative values

with respect to initial conditions. Pore pressure is taken to be the wetting

phase pressure, i.e., water phase pressure pw.

Let Ω denote the domain of interest. Let ΓsD and ΓsN be the com-

plementary parts of the boundary ∂Ω. n denotes the unit outward normal

vector on ∂Ω. Then the coupled mass balance and force balance equations are

written as follows:
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Mass conservation equation:

∂

∂t

[

Nw

(

φ0 + α(∇ · u−∇ · u0) +
1

M
(p− p0)

)]

+∇ · vw = qw,(2.52)

∂

∂t

[

No

(

φ0 + α(∇ · u−∇ · u0) +
1

M
(p− p0)

)]

+∇ · vo = qo, (2.53)

∂

∂t

[

Ng

(

φ0 + α(∇ · u−∇ · u0) +
1

M
(p− p0)

)]

+∇ · vg = qg, (2.54)

vw = −
kkrw
µfwBw

(∇pw − ρwg∇D), (2.55)

vo = −
kkro
µfoBo

(∇po − ρog∇D), (2.56)

vg = −
kkrg
µfgBg

(∇pg − ρgg∇D) +Rovo, (2.57)

So + Sw + Sg = 1,

Ro = Rso (three phase),

Ro =
Ng

No

(two phase),

pcow(Sw) = po − pw,

pcgo(Sg) = pg − po.

Initial conditions:

pw = p0w,

Sw = S0
w,

Sg = S0
g ,

Ro = R0
o.

38



Boundary conditions:

vw · n = 0, on ∂Ω,

vo · n = 0, on ∂Ω,

vg · n = 0, on ∂Ω.

2.3.2 Poroelasticity Model

The general poroelastic problem is defined by the following equations

subject to the specified initial and boundary conditions. Displacements are

chosen to be the primary variables.

Equilibrium equations:

−∇ · σ = f , (2.58)

σ = σ0 +
E

1 + ν

(

1 +
ν

1− 2ν
mmT

)

ε− αm(p− p0), (2.59)

εij =
1

2

(

∂ui
∂xj

+
∂uj
∂xi

)

. (2.60)

Initial conditions:

σ = σ0,

p = p0.

39



Boundary conditions:

u · n = 0, on ΓsD,

σn = gNs , on ΓsN .
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Chapter 3

Finite Element Formulation

In this chapter we present the finite element discretization of the cou-

pled equations. An expanded mixed finite element (MFE) or cell-centered

finite difference (CCFD) scheme is used for (2.52)-(2.54), while a conforming

Galerkin finite element formulation is used for (2.58). The relationship be-

tween MFE and CCFD is demonstrated and analyzed in Russell & Wheeler

(1983), Weiser & Wheeler (1988) and Arbogast, Wheeler & Yotov (1997).

The expanded MFE formulation for multiphase flow equations is presented in

Yotov (1996) and Peszyńska, Wheeler and Yotov (2002).

To use the expanded mixed method that allows for proper handling of

the degenerate phase mobility, we define

ṽa = −∇pa (a = w, o, g). (3.1)

Then the Darcy velocities in (2.55)-(2.57) can be written as

vw = λw(ṽw + ρwg∇D), (3.2)

vo = λo(ṽo + ρog∇D), (3.3)

vg = λg(ṽg + ρgg∇D) +Rovo. (3.4)
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where λa (a = w, o, g) is the phase mobility,

λa =
kkrw
µfwBw

. (3.5)

Let H(div,Ω) ≡
{

s ∈ (L2(Ω))
3
: ∇ · s ∈ L2(Ω)

}

and S ≡ H(div,Ω) ∩

{s : s · n = 0 on ∂Ω}, which is the subspace of H(div,Ω) consisting of func-

tions with normal trace on ∂Ω equal to zero. Let W ≡ L2(Ω), S̃ ≡ (L2(Ω))
3

and V ≡
{

v ∈ H1(Ω) : v = 0 onΓDs
}

. Then the weak formulation of (2.58),

(2.52)-(2.54), (3.1) and (3.2)-(3.4) is to: find u ∈ V, pa ∈W , Na ∈W , ṽa ∈ S̃

and va ∈ S such that,

ã(u,v) = (f ,v) + (gNs ,v), ∀v ∈ V, (3.6)

(αNa∇ · u̇, w) + (
1

M
Naṗ, w) + (φ∗Ṅa, w)

+(∇ · va, w) = (qa, w), ∀w ∈ W, (3.7)

(ṽa, s) = (pa,∇ · s), ∀s ∈ S, (3.8)

(va, s̃) = (λaṽa, s̃) + (λaρag∇D, s̃) + (coRovo, s̃), ∀s̃ ∈ S̃, (3.9)

where co = 1 if a = g, and co = 0 otherwise; pore pressure p and fluid fraction

φ∗ are respectively given by

p = swpw + sopo + sgpg,

φ∗ = φ0 + α(∇ · u−∇ · u0) +
1

M
(p− p0).

The bilinear function ã(u,v) in (3.6) has the form of “virtual work”, i.e.,

ã(u,v) =

∫

Ω

σ(u) : ε(v)dx, (3.10)
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where σ : ε =
∑3

i,j=1 σijεij. It is common in engineering to interpret (3.6) as

a statement about the balance of external and internal “virtual work”. Test

function v is then the “virtual displacement”. Applying (2.59) and (2.60) to

(3.6) yields:

a(u,v)− (αp,∇ · v) = l(v), (3.11)

where

a(u,v) = (λ∇ · u,∇ · v) + (2µε(u), ε(v)) , (3.12)

L(v) =

∫

Ω

f · vdx−

∫

Ω

σ0 : ε(v)dx

+

∫

Ω

αp0∇ · vdx+

∫

ΓNs

gNs · vdx, (3.13)

Let {Th}h>0 be a non-degenerate, quasi-uniform finite element parti-

tion of Ω consisting of rectangular parallelepipeds in R3. Let Vh be the finite

dimensional subspace of V consisting of continuous piecewise tri-linear poly-

nomials defined on Th,

Vh =
{

v = (v1, v2, v3) : vi|E = Π3
j=1(αij + βijxj) ∀E ∈ Th

}

, (3.14)

where αij, βij ∈ R. Let S̃h be the subspace of S̃, and let (Wh,Sh) indicate

the lowest order Raviart-Thomas spaces (Raviart and Thomas 1977) defined

on Th,

S̃h = {s = (s1, s2, s3) : si|E = ri1 + ri2xi ∀E ∈ Th} , (3.15)

Sh =
{

v ∈ S̃h : v · n on ∂Ω
}

, (3.16)

Wh = {w : w|E = θ ∀E ∈ Th} , (3.17)
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where r, θ ∈ R. The finite element approximation of (3.6)-(3.13) is defined as

follows: determine uh ∈ Vh, pha ∈ Wh, Nha ∈ Wh, ṽha ∈ S̃h and vha ∈ Sh

satisfying

a(uh,v)− (αph,∇ · v) = l(v), ∀v ∈ V, (3.18)

(αNha∇ · u̇h, w) + (
1

M
Nhaṗh, w) + (φ∗Ṅha), w)

+(∇ · vha, w) = (qa, w), ∀w ∈ W, (3.19)

(ṽha, s) = (pha,∇ · s), ∀s ∈ S, (3.20)

(vha, s̃) = (λaṽha, s̃) + (λaρag∇D, s̃) + (coRovho, s̃), ∀s̃ ∈ S̃ (3.21)

For simplicity, let u, pa, Na, va and ṽa denote the nodal values of uh,

pha, Nha, vha and ṽha respectively. The discrete problem (3.18) and (3.19) can

be written in a matrix form as








0 0 0
Mwu Mwp Mwn

Mou Mop Mon

Mgu Mgp Mgn









d

dt





u
p
N





+









Euu Eup 0
0 0 Twv
0 0 Tov
0 0 Tgv













u
p
vf



 =









Fu
Fw
Fo
Fg









. (3.22)

where N = (Nw, No, Ng)
T , p = (pw, po, pg)

T , and vf = (vw, vo, vg)
T . Apply-

ing certain quadrature rules to the vector integrals in (3.20) and (3.21) (see
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Arbogast, Wheeler and Yotov 1997) leads to the following algebraic forms:

Ãṽṽf =





Ãṽw ṽw 0 0

0 Ãṽoṽo 0

0 Ãṽg ṽg









ṽw
ṽo
ṽg





=





Ãṽwpw 0 0

0 Ãṽopo 0

0 Ãṽgpg









pw
po
pg



 = Ãpp, (3.23)

and

Avvf =





Avwvw 0 0
0 Avovo 0
0 Avgvg









vw
vo
vg



 (3.24)

=





Avw ṽw 0 0
0 Avoṽo 0
0 Avg ṽo Avg ṽg









ṽw
ṽo
ṽg



+





Fvw
Fvo
Fvg



 = Avṽṽf + Fv,

where Ãṽṽ and Avv are diagonal matrices, and Fva is resulted from the gravity

term in (3.21). Thus, vf can be solved from (3.23) and (3.24) by

vf = A−1
v

[

AvṽṽÃ
−1
ṽ Ãpp+ Fv

]

. (3.25)

Substituting vf into (3.22) we obtain a simplified system in terms of displace-

ments, pressures and concentrations, i.e,









0 0 0
Mwu Mwp Mwn

Mou Mop Mon

Mgu Mgp Mgn









d

dt





u
p
N



+









Euu Eup

0 Twp
0 Top
0 Tgp









[

u
p

]

=









Fu
F̄w
F̄o
F̄g









, (3.26)

which is equivalent to the system resulted from the CCFD scheme. Eq. (3.26)
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can be rewritten in an expanded form as









0 0 0 0
Mwu Mwpw Mwpo Mwpg

Mou Mopw Mopo Mopg

Mgu Mgpw Mgpo Mgpg









d

dt









u
pw
po
pg









+









0 0 0
Mwnw 0 0

0 Mono 0
0 0 Mgng









d

dt





Nw

No

Ng



 (3.27)

+









Euu Eupw Eupo Eupg

0 Twpw 0 0
0 0 Topo 0
0 0 Tgpo Tgpg

















u
pw
po
pg









=









Fu
F̄w
F̄o
F̄g









.

Here, Mau, Mapm , Mana , Euu and Eupm for a = (w, o, g) and m = (w, o, g)

correspond to the following bilinear forms,

Mau =

∫

Ω

αNa∇ · uhwdx, ∀w ∈ Wh,

Mapm =

∫

Ω

1

M
Nasmphmwdx, ∀w ∈Wh,

Mana =

∫

Ω

φ∗Nhawdx, ∀w ∈Wh,

and

Euu =

∫

Ω

λ∇ · uh∇ · vdx

+

∫

Ω

2µε(uh) : ε(v)dx, ∀v ∈ Vh,

Eupm = −

∫

Ω

αsmphm∇ · vdx, ∀v ∈ Vh.
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Notice that in (3.23) and (3.24) we have

Ãṽw ṽw = Ãṽoṽo = Ãṽg ṽg = Ãṽṽ,

Ãṽwpw = Ãṽopo = Ãṽgpg = Ãṽp,

Avwvw = Avovo = Avgvg = Avv.

Thus, the transmissibility matrices Twpw , Twpw , Tgpo and Tgpg in (3.27) are

given by

Twpw = ÃT
ṽpA

−1
vv Avw ṽwÃ

−1
ṽṽ Ãṽp,

Topo = ÃT
ṽpA

−1
vv AvoṽoÃ

−1
ṽṽ Ãṽp,

Tgpo = ÃT
ṽpA

−1
vv Avg ṽoÃ

−1
ṽṽ Ãṽp,

Tgpg = ÃT
ṽpA

−1
vv Avg ṽgÃ

−1
ṽṽ Ãṽp.

Applying backward Euler’s method to the time derivatives in (3.26), we obtain

a fully implicit system,









0 0 0
Mwu Mwp Mwn

Mou Mop Mon

Mgu Mgp Mgn









[

un+1 − un

∆t

]

+









Euu Eup

0 Twp
0 Top
0 Tgp









[

un+1

pn+1

]

=









Fu
F̄w
F̄o
F̄g









. (3.28)

Multiplying both sides of (3.28) by ∆t, and moving un, pn and Nn to the right
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side, we get









Euu Eup 0
Mwu Mwp +∆tTwp Mwn

Mou Mop +∆tTop Mon

Mgu Mgp +∆tTgp Mgn













un+1

pn+1

Nn+1



 =











F̂u
F̂w
F̂o
F̂g











. (3.29)

Bear in mind that (3.29) is a highly nonlinear system because some of

the coefficients depend on the solutions of the primary variables. In the next

chapter we will discuss the linearization and iterative solution schemes for the

above nonlinear system.

For single phase flow (3.29) can be further simplified to a symmetric

positive definite form, i.e.,

[

Euu Eup

ET
up −Mpp −∆tTpp

] [

un+1

pn+1

]

=

[

F̂u
−F̂p

]

, (3.30)

where Mpp is induced by the compressibility of fluid and solid constituents.
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Chapter 4

Iteratively Coupled Technique

After discretization in space and time, the linear system for coupled flow

and geomechanics, (3.29), can be written as a compact 2 × 2 block system,

i.e.,
[

Eu Ep

Au Ap

] [

u
p

]n+1

=

[

Fu

Fp

]

, (4.1)

where matrix Eu and Ap are, respectively, the result of Galerkin FE formu-

lation of the elasticity operator and CCFD (MFE) formulation of multiphase

flow equations; Ep is a discrete negative gradient operator; Au is a discrete

divergence operator; u is a vector of nodal displacements, and p is a vector of

cell pressure and concentrations; n+ 1 stands for a new time step level.

The main objective of this chapter is to investigate the operator split-

ting techniques for solving the above discrete system. In particular, we shall

formulate in a more general framework the iterative coupling scheme that is

frequently adopted by the reservoir simulation community for a coupled anal-

ysis. Here we reexamine this method from mathematical perspective with

the intent of obtaining preconditioners which yield improved computational

efficiencies. Later, we shall show that this iteratively coupled scheme can be

easily adapted to a fully coupled scheme. The resulting algorithm retains
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the modularity of the iterative method, but it converges faster in nonlinear

iterations.

For simplicity, in the following discussion we assume that linear solvers

for each physical model (elasticity and porous flow) have already been devel-

oped. For a description of the iterative methods implemented in IPARS for the

CCFD discretization of multiphase flow equations we refer the reader to the

work of Dawson, Klie, Wheeler and Woodward (1997), Klie (1996), Edwards

(1998) and Lacroix, Vassilevski and Wheeler (2000, 2001). Linear solvers and

preconditioners Eu will be discussed in Chapter 6.

4.1 Overview of Different Coupling Techniques

In this section we briefly review different coupling methods that have

been used extensively in the petroleum industry. We discuss in detail the

single phase flow model since a theoretical convergence analysis for this case

has been obtained by Phillips and Wheeler (2003). Moreover, the iterative

techniques discussed here can be readily generalized to the multiphase flows.

For single phase flow, we rewrite the algebraic system (3.30) as

[

Eu QT

Q −(Mcf +∆tTp)

] [

u
p

]n+1

=

[

Fu

−Fp

]

. (4.2)

In seeking the solution of (4.2) one can use a fully coupled approach to solve

simultaneously for displacements and pressures. However, the assembly and

factorization of the coefficient matrix may pose major computational require-

ments for large scale 3D problems. For some field applications that do not
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involve strong fluid/structure interaction, a tight coupling may not be eco-

nomical. Instead, a loosely coupled method may be preferred.

In past decades, operator or time splitting have been proved to be a

useful approach for solving large systems of coupled equations. In Biot’s poroe-

lastic modeling, the operator splitting technique is used to design a loosely

coupled scheme by separating the elasticity operator from the diffusion oper-

ator. Then, each field problem can be solved efficiently by available iterative

methods. The degree of coupling is generally based on the time scale and the

frequency at which it is necessary for the two physical models to exchange

information. More specifically, time evolution is controlled by the flow model,

and the degree of coupling depends on how often displacement needs to be

updated. Clearly, the choice of coupling scheme affects the stability and accu-

racy of the solutions as well as the computational efficiency. Trade-offs must

be made, sometimes, to optimize the computer running time. Settari and

Walter (1999) discuss the different coupling methods and categorized them as

decoupled, explicitly coupled, iteratively coupled and fully coupled.

Fully Coupled

A fully coupled approach solves two field equations simultaneously. As

shown in Phillips and Wheeler (2003), the method is unconditionally stable in

time and optimally accurate in the energy norm for displacements and second

order accurate for pressure and velocities. However, its practical usefulness is

limited by the fact that special linear solvers are required to handle the fully
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coupled system. This makes the coupling of two existing complex individual

models even more complicated, especially if one adds in the thermal effects.

Decoupled

In this approach the flow equations are completely decoupled from the

poroelastic model by assuming that dσ = 0. Porosity changes are approxi-

mated only by pore pressure changes via a rock compressibility term, i.e.,

φ = φo
[

1 + cr
(

p− p0
)]

.

The pressure equation is written as

(Mcr +Mcf +∆tTp)p = Fp, (4.3)

where Mcr is a pressure mass matrix induced by the rock compressibility cr.

Once the pressure has been solved, displacement may be obtained whenever

necessary by

Euu = Fu −QTp,

where the pressure is imposed as an external load.

Explicitly coupled

Explicit coupling is essentially a staggered partitioning method. It is

achieved by lagging the coupling terms in one or more time steps. Generally,

quasi-static behavior is assumed for the geomechanics model. Different time

steps may be used for displacement and flow calculations respectively. For
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instance, several flow time steps may be taken for a given displacement time

step. The geomechanical updates are driven by the magnitude of porosity

change during the time steps (Dean et al. 2003).

In the case that the same time scale is used for flow and displacement

the explicit coupling technique involves the solution of the following decoupled

system, as follows:

(Mcr +Mcf +∆tT)pn+1 = Fp, (4.4)

Eun+1 = Fu −QTpn+1.

A major drawback of the explicit method is that it is only conditionally stable,

as shown in Booker and Small (1975). Stability considerations may lead to

time step restrictions.

Iteratively Coupled

The iterative method is a tightly coupled scheme designed primarily for

nonlinear problems. Advantages of this method include:

1. Stability and accuracy. It can produce the same results as a fully coupled

technique if a sufficiently tight nonlinear convergence criteria is enforced.

2. Modularity feature. It allows the coupled equations to be processed by

separate program modules, taking full advantage of specialized features

and disciplinary expertise built into independently developed single-field

models.
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In an iteratively coupled scheme, solutions for multiphase flow and poroelas-

ticity equations are coupled through the nonlinear iterations in one time step.

If n denotes the time step and k denotes the nonlinear iteration, an iterative

method involves the repeated solution of the following system in each time

step n+ 1,

(Mcf +∆tT)pn+1,k+1 = Fp +Qun+1,k, (4.5)

Eun+1,k+1 = Fu −QTpn+1,k+1.

Details about this method will be discussed in the next section.

4.2 Iteratively Coupled Technique

The iterative coupling defined in (4.5) is basically a nonlinear variation

of the block Gauss-Seidel method with Picard linearization. In this section,

we present an alternative scheme that yields faster convergence. It will be

shown later that the method may be viewed as a special case of a precondi-

tioned Richardson method applied to the Schur complement of the pressure

equations. Throughout this chapter we denote the time step level by n, the

nonlinear iteration number by k, and the linear iteration number in each non-

linear iteration by l.

4.2.1 Linearization of Nonlinear Systems

In the case of nonlinear systems (multiphase flow), we modify our it-

erative strategy, (4.5), by applying a predictor-multicorrector scheme at each
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time step. A series of corrected solutions are computed after starting with

an initial approximation that is either the solution at the last time step or

an extrapolated solution from previous time steps. For this purpose, New-

ton’s method is used here to linearize the system (4.2). Residuals at the kth

nonlinear iteration are computed as:

Rn+1,k
u = Fu − Euu

n+1,k −QTpn+1,k,

Rn+1,k
p = −Fp −Qun+1,k + (Mcf +∆tTp)p

n+1,k.

Applying Newton’s linearization to the above residual equations yields the

following algebraic system:








−
∂Ru

∂u
−
∂Ru

∂p

−
∂Rp

∂u
−
∂Rp

∂p









[

δu
δp

]n+1,k+1

=

[

Ru

Rp

]n+1,k

. (4.6)

The final linearized system is given by:
[

Eu QT

Q −(M̄cf +∆tT̄p)

] [

δu
δp

]n+1,k+1

=

[

Ru

−Rp

]n+1,k

. (4.7)

Newton iterations are performed on (4.7) until a given tolerance for the resid-

uals is satisfied. Solutions at the end of each iteration are corrected by:

un+1,k+1 = un+1,k + δun+1,k+1,

pn+1,k+1 = pn+1,k + δpn+1,k+1.

4.2.2 Iterative Coupling by Operator Splitting

An iterative coupling scheme is based on the classical operator splitting

technique. Namely, the two field equations in (4.7) are solved sequentially at
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each Newton iteration by

(M̄cf +∆tT̄p)δp
n+1,k+1 = Rn+1,k

p +Qδun+1,k (4.8)

Euδu
n+1,k+1 = Rn+1,k

u −QT δpn+1,k+1 (4.9)

They are then coupled through the calculation of porosity at the end of the

iteration.

The iterative scheme defined in (4.8) and (4.9) is basically one block

Gauss-Seidel iteration for (4.7). The method adopted by reservoir engineers

(Settari & Mourits 1994 and Settari 1999) is based on an augmented form of

(4.8), i.e.,

(Mcr + M̄cf +∆tT̄p)δp
n+1,k+1 = Rn+1,k

p . (4.10)

Note that the lagged term Qδun+1,k in (4.8) is replaced by Mcrδp
n+1,k+1.

Convergence is thus improved.

4.2.3 Physics-based Preconditioners to Qδu

The idea comes naturally from the way porosity is approximated in

conventional reservoir simulations, i.e.,

φ = φo
[

1 + cr
(

p− p0
)]

, (4.11)

where the rock compressibility cr is generally obtained from a laboratory uni-

axial strain test. In a coupled simulation, a term similar to φ appearing in the

mass balance equation (2.35) is

φ∗ = φ0 + α
(

∇ · u−∇ · u0
)

+
1

M

(

p− p0
)

. (4.12)
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The underlying idea is to approximate (4.12) in a form similar to (4.11). Thus,

a standard reservoir simulator may be coupled with geomechanics with mini-

mum changes and an improved convergence.

∇ · u in (4.12) can be expressed in terms of pore pressure and mean

stress as

∇ · δu =
3α

3λ+ 2µ
δp+

3

3λ+ 2µ
δσ̄.

Accordingly, the porosity change satisfies

δφ∗ =

(

3α2

3λ+ 2µ
+

1

M

)

δp+
3α

3λ+ 2µ
δσ̄.

If δσ̄ during a nonlinear iteration is assumed to be small and thus ignored, we

obtain the following approximations:

∇ · δu ≈
3α

3λ+ 2µ
δp, (4.13)

δφ∗ ≈

(

3α2

3λ+ 2µ
+

1

M

)

δp. (4.14)

The Galerkin FE approximation to (4.13) yields

Qδu = −Mcrδp. (4.15)

The pressure equation in (4.7) is then decoupled from the displacement by

substituting (4.15) into (4.8) for Qδu as shown in (4.10). Mcr is equivalent to

a pressure mass matrix corresponding to

Mcr =

∫

Ω

3α2

3λ+ 2µ
phwdΩ ∀w ∈ Wh. (4.16)
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Once δp in (4.10) is solved, δu is then obtained using (4.9). The current

Newton iteration is terminated by the update of φ∗ using (4.12). The iterative

coupling scheme described above is summarized as follows:

1. Start a new time step n+1.

2. Initialize pn+1,0 = pn and un+1,0 = un, or pn+1,0 = pe and un+1,0 = ue

where pe and ue are the extrapolated values from previous time steps.

3. Start a new nonlinear iteration k+1.

4. Compute residuals in (4.6) using pn+1,k, un+1,k and φ∗n+1,k from the

last Newton iteration and check for convergence by

‖Rp‖L∞ < Tol

and
∥

∥φ∗n+1 − φ∗n+1
f

∥

∥

L∞
< Tol,

where φ∗n+1
f is computed by (4.14). If both tolerances are satisfied, ter-

minate the current time step and go to step 1 for a new time level.

Otherwise, continue with the following steps.

5. Update Jacobian matrix.

6. Solve for δpk+1 using (4.10) and update solutions by pn+1 = pn+1,k +

δpk+1.

7. Compute φ∗n+1 using (4.14) and denote it by φ∗n+1
f .
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8. Solve for δuk+1 using (4.9). Update displacement by un+1 = un+1,k +

δuk+1.

9. Compute φ∗n+1 with (4.12).

10. Go to 3.

Since (4.13) is derived directly from the constitutive equations, the decoupling

scheme above is applicable to general boundary conditions. An ideal case

is the one with unconfined lateral boundaries where the total stress change

is relatively small. However, in most subsidence and reservoir compaction

applications, rock deformation is induced by pressure depletion in the reservoir.

As fluid is being pumped out of the reservoir, support for overburden load is

gradually transfered from pore fluid to solid matrix. If the reservoir is confined

horizontally, the deformation under the act of overburden will be in the vertical

direction primarily. This observation suggests that a better approximation

than (4.16) may be derived for these types of boundary conditions.

If we assume that lateral displacements are small compared to the reser-

voir horizontal extensions, and hence lateral strains are close to zero, i.e.,

∂ux
∂x

+
∂uy
∂y
¿

∂uz
∂z

,

then the 3D poroelastic model can be approximated by an uniaxial strain
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deformation. Thus, we have

∇ · δu ≈ εzz =
1

λ+ 2µ
(δσzz + αδp),

δφ∗ ≈

(

α2

λ+ 2µ

)

δp+
1

λ+ 2µ
δσzz.

Assuming δσzz is small enough to be neglected we obtain another approxima-

tion to Qδu,

Mcr =

∫

Ω

α2

λ+ 2µ
phwdΩ ∀w ∈ Wh. (4.17)

4.3 Iterative Coupling as One Iteration of a Precondi-
tioned Richardson Method

In this section we shall reformulate the iterative coupling scheme in

a more general framework where the method appears to be one iteration of

a preconditioned Richardson method for a fully coupled system. The new

formulation casts a new perspective on the potentials of the iterative coupling

method. It leads us naturally to the investigation of new preconditioners and

provides a fundamental basis for further theoretical convergence analysis. We

first consider the fully coupled system (4.7) for time level n + 1 and Newton

iteration k + 1 rewritten here as,

Aδx =

[

Eu QT

Q −(M̄cf +∆tT̄p)

] [

δu
δp

]

=

[

Ru

−Rp

]

. (4.18)

Applying block Gaussian Elimination yields:

[

Eu QT

0 (M̄cf +∆tT̄p) +QE−1
u QT

] [

δu
δp

]

=

[

Ru

Rp +QE−1
u Ru

]

, (4.19)
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where the second diagonal block,

S = (M̄cf +∆tT̄p) +QE−1
u QT (4.20)

is denoted as a Schur complement to Eu. In general, the solution of (4.18) is

sought in two ways:

1. Nested iterative solutions. Linear solutions involve the repeated so-

lution of

Sδpn+1,k+1 = Rn+1,k
p +QE−1

u Rn+1,k
u (4.21)

and back substitution of

δun+1,k+1 = E−1
u (Rn+1,k

u −QT δpn+1,k+1). (4.22)

If an iterative scheme is used to solve the two subsystems, then we have

a two-level solver with inner and outer iterations.

2. Non-nested iterative solutions. A Krylov subspace approach is used

(4.18) with simple preconditioners such as a block diagonal precondi-

tioner,

PD =

[

Ẽu

S̃

]

,

where Ẽu and S̃ are, respectively, approximations to Eu and S. Since

both Ẽu and S̃ are chosen to be readily invertible, no inner iteration is

required. Phoon et. al. (2003) suggest an ideal, though academic, block

diagonal preconditioner for Biot’s system, i.e.,

PD =

[

Eu 0
0 βS

]

, (4.23)
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where β is a non-zero scalar. They demonstrated that t P−1
D A has

three distinct clusters of eigenvalues, each with a diameter of order
∥

∥S−1(M̄cf +∆T̄p)
∥

∥.

Clearly, both approaches require a good approximation to S. In the following

we shall concentrate on the first type of solution method since it represents a

two-level iterative scheme.

For simplicity we first assume that an efficient and optimal approxima-

tion to S has been established. Next, we use S̃ to construct iterative schemes

for solving the coupled system (4.18). Despite its slow convergence rate, the

preconditioned Richardson method is chosen here to demonstrate that an it-

erative coupling may be formulated in a general framework of a fully coupled

scheme.

Given a linear system,

Ax = b,

the preconditioned Richardson iteration reads

xl+1 = xl + τÃ−1
(

b−Axl
)

,

where Ã−1 is a preconditioner, l is the linear iteration number, the scalar τ is

a damping factor, and x0 is an initial guess. Applying this approach to (4.21)

leads to the recursion of

δpn+1,k+1,l+1 = δpn+1,k+1,l + τ S̃−1
(

Rp +QE−1
u Ru − Sδpn+1,k+1,l

)

. (4.24)
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In the following we show that the iterative coupling defined in (4.10)

and (4.9) can be generalized to a form equivalent to (4.24). For convenience,

we rewrite the iterative scheme for one Newton step as

δpn+1,k+1 =
(

Mcr + M̄cf +∆tT̄p

)−1
Rp, (4.25)

δun+1,k+1 = E−1
u

(

Ru −QT δpn+1,k+1
)

. (4.26)

If Mcr + M̄cf +∆tT̄p in (4.25) is viewed as an approximation to S, i.e.,

S̃ = Mcr + M̄cf +∆tT̄p, (4.27)

then (4.25) can certainly be generalized to multiple iterations for solving

δpn+1,k+1, as shown below.

δpn+1,k+1,l+1 =δpn+1,k+1,l + S̃−1[Rp +Qδun+1,k+1,l

− (M̄cf +∆tT̄p)δp
n+1,k+1,l]. (4.28)

Substituting (4.26) into (4.28) for δun+1,k+1,l immediately yields

δpn+1,k+1,l+1 = δpn+1,k+1,l + S̃−1[Rp +QE−1
u Ru − Sδpn+1,k+1,l]. (4.29)

Clearly, this iteration scheme represents the preconditioned Richardson method,

(4.24), with τ = 1. This indicates that the iterative coupling approach can

be viewed as the first iteration of a preconditioned Richardson method with

zero initial guess (δpn+1,k+1,0 = δun+1,k+1,0 = 0). If additional iterations are

performed, using (4.29) and (4.26), until a given tolerance is satisfied, we have

a converged iterative method for solving a fully coupled system. The build-

ing blocks needed here are fast solvers for E−1
u and S̃. But usually these are
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readily available as special software modules. Attractive features of the pre-

conditioned Richardson method described above lie in its accuracy, its stability

and software modularity.

Efficiency is another important feature of the iteratively coupled ap-

proach. Frequently, the choice of the scheme is based on its ease of imple-

mentation and software modularity with the acceptance of slow convergence.

However, a close examination of the method shows that this may not always

be true. Both the nested and non-nested methods require the inversion, or

approximate inversion, of Eu. Numerical experiments demonstrate that such

an inversion is not trivial. It generally takes more CPU time than solving

the pressure block (4.21). The strategy of the iteratively coupled approach is

to minimize the steps for solving the elasticity block, say, once per Newton

iteration. Poor accuracy in the solution of a linear system (4.18) will invari-

ably cost more Newton iterations to correct. But the computation overhead

incurred by the solution of (4.21), as well as the update of the Jacobian matrix

(4.6), is well compensated by the reduced CPU time for solving (4.22). Thus,

the overall efficiency of an iterative coupling method may be even better than

that of a fully coupled scheme, as shown by Dean (2003).

4.3.1 Preconditioners for S

If the iteratively coupled technique is understood as one iteration of a

preconditioned Richardson method for the Schur complement of the pressure

equation, its convergence hinges decisively on the preconditioning techniques

64



for S and Eu. Fast and efficient preconditioners for Eu will be discussed in

Chapter 6. In the following we shall investigate the preconditioners for S .

First we present two types of optimal preconditioners by showing their spectral

equivalency to S. Later, we give several specific forms of these preconditioners.

Numerical experiments and comparison results will be shown in Section 4.4.

4.3.1.1 Optimal Preconditioners for S

Here we utilize an inequality established by Wathen & Silvester (1993)

to show the optimality of the preconditioners given in (4.16) and (4.17). For

MFE approximations to the classical Stokes problems Wathen & Silvester

demonstrate that

0 ≤

(

QBu
−1QTp,p

)

(Mpp,p)
≤ Γ2 ∀p ∈ R

np . (4.30)

where Γ2 is positive constant independent of h; Mp is the symmetric positive

definite pressure mass matrix with a condition number independent of h; np

is the total number of discrete pressure variables; Bu is the discrete Laplacian

operator for u corresponding to the following bilinear form,

b(u,v) =

∫

Ω

∇u : ∇vdΩ ∀u,v ∈ V. (4.31)

For convenience, in the bilinear form a(u,v) in (3.12) we assume µ = 1. Then

Eu is related to Bu by

Eu = Cu +Bu. (4.32)

Next, we demonstrate that (4.30) still holds with Bu replaced by Eu.
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Using Korn’s inequality, Ciarlet (1988) proves the H1(Ω) ellipticity of

the bilinear form a(u,v). In other words, the “a” norm in V is equivalent to

the norm ‖·‖1,Ω, more precisely,

c1 ‖v‖
2
1,Ω ≤ a (v,v) ≤ c2 ‖v‖

2
1,Ω ∀v ∈ V, (4.33)

where c1 and c2 are two positive constants; ‖v‖1,Ω is defined for 3D elasticity

as

‖v‖1,Ω =

(

3
∑

i=1

‖vi‖
2
1,Ω

)1/2

.

Since the bilinear form b(u,v) in (4.31) also generates a norm in V equiva-

lent to the H1-norm, it is clear that the matrices Eu and Bu are spectrally

equivalent, i.e.,

γ1 ≤
(Bu,v,v)

(Euv,v)
≤ γ2 ∀v ∈ R

nu , (4.34)

where γ1,γ2 > 0 and they are independent of h.

The significance of (4.34) is twofold. First, if Bu is used as a precon-

ditioner for Eu, the eigenvalue spectrum of B−1
u Eu is highly clustered and

bounded independent of h. In Chapter 6 we describe preconditioners based on

Bu. Secondly, (4.34) together with (4.30) leads to an optimal preconditioner

for the Schur complement S as shown below.

Using Lemma 3.2 in Bramble (1993), for SPD matrices Eu and Bu,

(4.34) holds if and only if

γ1 ≤
(E−1

u ,v,v)

(B−1
u v,v)

≤ γ2 ∀v ∈ R
nu . (4.35)
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Note that r1 and r2 are the same constants in both inequalities. Since v is

arbitrary, we choose v = QTp. Then, (4.35) leads to

γ1 ≤

(

QE−1
u QTp,p

)

(

QB−1
u QTp,p

) ≤ γ2 ∀p ∈ R
np . (4.36)

From (4.30) and (4.36) we immediately obtain

0 ≤

(

QE−1
u QTp,p

)

(Mpp,p)
≤ γ2Γ2 ∀p ∈ R

np . (4.37)

Now we are ready to prove the following spectral equivalency, i.e., given

the inequalities in (4.37) and a positive definite matrix M̄cf +∆tT̄p satisfying

(

(M̄cf +∆tT̄p)p,p
)

≥ β (Mpp,p) ∀p ∈ R
np , (4.38)

then there exist two positive constants θ and Θ, independent of mesh param-

eter h, such that

θ(S̃p,p) ≤ (Sp,p) ≤ Θ(S̃p,p) ∀p ∈ R
np , (4.39)

where S and S̃ are defined to be

S̃ = Mp + M̄cf +∆tT̄p. (4.40)

S = QE−1QT + M̄cf +∆tT̄p (4.41)

Proof. From the upper bound in (4.37) we have

(Sp,p) ≤
(

(γ2Γ2Mp + M̄cf +∆tT̄p),p,p
)

∀p ∈ R
np . (4.42)

Choosing Θ = max (γ2Γ2, 1) we obtain

(Sp,p) ≤ Θ(S̃p,p) ∀p ∈ R
np . (4.43)
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To prove the lower bound in (4.39), we note that M̄cf + ∆tT̄ ≥ βMp from

(4.38). Thus, it is obvious that

M̄cf +∆tT̄+Mp ≤ (1 +
1

β
)(M̄cf +∆tT̄). (4.44)

By choosing θ = 1
1+1/β

we get

θ(M̄cf +∆tT̄+Mp) ≤ M̄cf +∆tT̄. (4.45)

Since QEu
−1QT ≥ 0 from (4.37) we immediately have

θ(M̄cf +∆tT̄+Mp) ≤ M̄cf +∆tT̄+QEu
−1QT , (4.46)

or simply,

θ(S̃p,p) ≤ (Sp,p) ∀p ∈ R
np . (4.47)

Therefore, optimal preconditioners for S̃ will also give rise to optimal

preconditioners for S in the sense that the condition number κ(S̃−1S) = O(1)

uniformly in h. For convenience, we rewrite the decoupled matrix in (4.10) as

preconditioners to S, i.e.,

1. unconfined problem: S̃p = MI
cr + M̄cf +∆tTp,

2. confined problem: S̃p = MII
cr + M̄cf +∆tTp.

Here, MI
cr and MII

cr are given, respectively, in (4.16) and (4.17). They are

equivalent to the pressure mass matrix Mp in (4.40) scaled by a factor of rock

compressibility.
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Another preconditioner, which was also proven to be optimal by Lip-

nikov (2002), is obtained by omitting the QE−1
u QT term in S, i.e.,

S̃ = M̄cf +∆tT̄p. (4.48)

Comparing with (4.40), it is easy to see that preconditioner (4.48) would be

more sensitive to fluid compressibility due to the neglecting of rock compress-

ibility. This is especially true if pure Neumann-type flow boundary conditions

are imposed.

4.3.1.2 Preconditioners Based on Other Approximations of QE−1
u QT

Suppose that fast efficient linear solvers have already been developed

for the operator M̄cf + ∆tT̄p in a standard reservoir simulator, then precon-

ditioning the Schur complement S depends on the construction of QE−1
u QT .

However, the inversion of Eu is generally too expensive, and a direct calcula-

tion of QE−1
u QT is obviously not an option. Therefore, constructing a good

approximation of QE−1
u QT turns out to be the fundamental issue in precondi-

tioning S. It is essential that the stencil structure of an approximation matrix

be compatible with the structure of M̄p + ∆tT̄p. Otherwise, we may not be

able to take advantage of the existing linear solver packages for multiphase

flow equations.

Several approximations of QE−1
u QT can be obtained intuitively, such

as

1.
{

Q [bdiag (Eu)]
−1QT

}

27−point
,
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Preconditioner S = QE−1
u QT + M̄cf +∆tT̄p

S̃p1 M̄cf +∆tT̄p

S̃p2 MI
cr + M̄cf +∆tT̄p

S̃p3 MII
cr + M̄cf +∆tT̄p

S̃p4 βdiag
{

Q [bdiag (Eu)]
−1QT

}

+ M̄cf +∆tT̄p

S̃p5 βdiag
{

Q [diag (Eu)]
−1QT

}

+ M̄cf +∆tT̄p

S̃p6 if
(

δσ̄
σ̄
< δσzz

σzz

)

S̃p = S̃p2 else S̃p = S̃p3

Table 4.1: Preconditioners for the Schur complement of the pressure equation.

2. diag
{

Q [bdiag (Eu)]
−1QT

}

,

3. diag
{

Q [diag (Eu)]
−1QT

}

.

In the first approximation, bdiag (Eu) represents the block diagonal of Eu.

Each block is a 3×3 matrix corresponding to the coupling of three displacement

components on a nodal point. The resulting S̃ has a 27-point stencil for

3D rectangular parallelepipeds, which is substantially larger than the 7-point

stencil for the pressure equation. The other two approximations are promising

due to the diagonal structure. Adding these diagonal matrices to the flow

equations is equivalent to taking into account the rock compressibility effect.

In summary we construct five preconditioners that are easy to imple-

ment in the IPARS framework, see Table 4.1. Numerical experiments and

comparison results are given in Section 4.4.
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4.3.2 S̃p as a Preconditioner for Krylov Subspace Methods

As we have demonstrated in Section 4.3, an iterative coupling ap-

proach can easily be generalized to a fully coupled scheme with preconditioned

Richardson iterations. Note that in (4.24) pl+1 is obtained by using only the

information of pl and none of the previous pm (m < l) is used explicitly. If

a Krylov subspace accelerator is applied instead, convergence can be substan-

tially improved.

Krylov subspace methods generally applied for Biot’s system include

GMRES (Generalized Minimum Residual), CG (Conjugate Gradient), MIN-

RES (Minimal Residual), GCR (Generalized Conjugate Residuals) and others.

They are constructed either as a two-level scheme or as a single level scheme.

Both schemes require a good preconditioner for S to achieve reasonable con-

vergence. However, that better linear solver performance can be obtained by

adding an approximate QE−1
u QT to the pressure block has not been well rec-

ognized. In some cases, it is merely neglected as shown in Prevost (1997) and

Lipnikov (2002). Advantages of accounting for QE−1
u QT in the approximation

of S are twofold, namely:

1. Acceleration of convergence rate by reducing the condition number of a

preconditioning matrix.

2. More stable flow model system. In the case of incompressible fluid and

∂ΩD = 0, decoupling of pressure and displacement equations using S̃ =
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M̄p +∆tT̄p leads to an elliptic problem with ∂Ω = ∂ΩN , i.e.,

∆tT̄pδp = Rf ,

which does not have a unique solution. Adding the QE−1
u QT term to S

transforms an elliptic problem back into a parabolic one.

4.4 Numerical Results

In this section we present several numerical examples to evaluate the

performance of different preconditioners suggested in Table 4.1. Convergence

rate is reported based on the Newton iteration counts for single or multiple

time steps. Numerical examples are tested on a 2.0 GHz AMD Athlon Dual

processor machine with 1 GB memory for each processor. In all cases, though,

only one processor is used.

Newton convergence is achieved when (1) the relative residual for each

component (oil, water and gas) with respect to the total in-situ fluid volume

is less than 10−6 and (2) the maximum relative pore volume error is less than

10−4. The algebraic linear system for the single phase or multiphase flow

equations (4.25) is solved iteratively by GMRES with LSOR preconditioning.

The backsolve for displacement is either by a direct method or by an iterative

scheme. In the case that an iterative method is used, tolerance for linear solver

convergence is chosen to be tight enough to ensure that the outer Newton

iterations are not affected.
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Figure 4.1: Example 1: Confined reservoir with no flow boundaries.

4.4.1 Examples

4.4.1.1 Example 1: Depletion in a Confined Reservoir

Reservoir geometry and boundary conditions are shown in Figure 4.1.

A zero normal displacement condition is enforced on all lateral and bottom

boundary faces (confined problem). A constant vertical stress of 6000 psi is

applied on the top. The finite element mesh consists of 1210 (11 × 11 × 10)

uniform 8-noded brick elements. Initial reservoir pressure is 3000 psi at the

depth of 6000 ft with a vertical gradient of 0.4333 psi/ft. Initial horizontal

stresses are 4000 psi over the entire reservoir. Initial vertical stress is 6000 psi

at the depth of 6000 ft with a vertical gradient of 1.0231 psi/ft. A vertical well

with a wellbore radius of 0.25 ft is completed in the center of the reservoir.

It produces at a constant rate of 15, 000 stb/day for 500 days. A no-flow

boundary condition is assumed. Other parameters specified in this case are

kx = ky = 50 md, kz = 5 md, φ = 0.2, cf = 0.0 1/psi, µf = 1.0 cp, E = 10000

psi, ν = 0.3, α = 1, and 1
M

= 0.0.
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Figure 4.2: Example 2: Unconfined reservoir with no flow boundaries.

Numerical studies are conducted to investigate the convergence behav-

ior of the preconditioners in Table 4.1 with respect to fluid compressibility,

rock permeability, Young’s modulus and Poisson’s ratio. A constant time step

of 10 days is used for this problem.

4.4.1.2 Example 2: Depletion in an Unconfined Reservoir

The second example is slightly modified from the first by enforcing

traction boundary conditions on the lateral boundary faces, see Figure 4.2.

This case is used to verify the assumptions under which S̃p2 is derived.

4.4.1.3 Example 3: A Confined Reservoir with Surrounding Non-
pay Rocks

The reservoir is at a depth of 10,000 ft underground. It has an area of

22, 000×11, 000 ft. The total thickness is 250 ft. To characterize the changing

boundary conditions around the reservoir our numerical model includes the

surrounding non-pay rocks in the calculation, as shown in Figure 4.3. The
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dimensions of the computational domain are 62, 000× 31, 000× 10, 450 ft, in-

cluding an overburden of 10,000 ft, an underburden of 200 ft, and a sideburden

of 10,000 ft at each side of the reservoir flanks. The domain is non-uniformly

discretized into 21× 21× 12 8-noded brick elements with much coarser grids

in the extended regions (Figure 4.4). The model is confined at the bottom

and lateral boundary faces, i.e., no normal displacement is allowed at those

boundaries. The top of the grid is traction-free. A no-flow boundary condition

is applied for the surrounding non-pay rocks.

The initial rock porosity is 0.25. The horizontal and vertical perme-

abilities are respectively 100 md and 10 md in the reservoir while they are

set to zero in the non-pay rocks. Both regions contain the same single phase

fluid with the following properties: cf = 3.0 × 10−6 psi−1 and µf = 1cp. The

initial reservoir pressure satisfies the local equilibrium condition and is set to

be 14.7 psi at the surface. The initial vertical stress is 0 psi at the top and

increases with depth at a gradient of 0.9869 psi/ft. The horizontal stresses

are assumed to be half of the vertical stress. The elastic moduli are 1 × 104

psi in the reservoir and 1× 106 psi in its surroundings. Poisson’s ratio is 0.25

everywhere.

A vertical well is completed in the center of the reservoir. It is only

perforated in the reservoir layers. The model is simulated for a 4000-day

production scenario. The well produces at a constant rate of 50,000 stb/day.

Small time steps of 20 days each are used for the first 500 days followed by

time steps of 200 days until the end of the simulation.
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Figure 4.3: Example 3: Confined reservoir with surrounding non-pay rocks.

If E1 and E2 denote, respectively, the Young’s modulus inside and

outside the reservoir, the sensitivity of our preconditioners with respect to the

jump ratio (E2/E1) will be investigated.

4.4.1.4 Example 4: an Unconfined Reservoir with Stiff Non-pay
Rocks

This is an unconfined case modified from Example 3. It is designed

to show that boundary conditions are not the sole factor in determining an

efficient preconditioner S̃p. The convergence speed of an iteratively coupled

scheme also depends on reservoir heterogeneity and the interaction between

the reservoir and its surroundings. Here we have chosen E1 = 104 psi (inside

the reservoir) and E2 = 106 psi (outside the reservoir). Notice that the non-

pay rocks are stiffer than the reservoir rocks. Small time steps of 20 days each
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Figure 4.4: Example 3: Finite element discretization

77



are used for the first 500 days followed by time steps of 200 days until the end

of the simulation.

4.4.1.5 Example 5: an Unconfined Reservoir with Soft Non-pay
Rocks

The only difference between Example 5 and Example 4 lies in the

Young’s moduli specified in and out of the reservoir. In this case, a stiffer reser-

voir is surrounded by softer non-pay rocks, i.e., E1 = 106 psi and E2 = 104 psi.

The time steps used here are the same as those used in Example 3. This case

will be tested to determine the preconditioner with the fastest convergence

rate, which may not necessarily be the S̃p2 in Table 4.1.

4.4.1.6 Example 6: Three-phase Flow in a Confined Reservoir

This is a three-dimensional, three-phase water-flooding problem in a

quarter of a five spot pattern. The size of the reservoir is 1056 × 1056 × 160

ft. The domain is discretized uniformly into a grid of 16×16×8 which will be

further refined to evaluate the performance of (S̃p) with respect to the mesh

parameter h. The initial in-situ porosity is 0.3. The initial oil saturation is 0.8.

No free gas is present. The permeability field varies by layers. The Young’s

modulus and Poisson’s ratio are, respectively, 3.095 × 104 psi and 0.3. Two

wells are completed at the reservoir corners. The injection well injects water

at a rate of 500 stb per day. The production well produces 750 stb of oil per

day. A load of 6000 psi is applied on the top of the reservoir. All the other

reservoir boundary faces are confined in the normal directions. A time step

78



that varies from 0.1 to 10 days is specified in this example.

4.4.2 Convergence with Respect to Fluid and Rock Properties

The Schur complement matrix S in (4.20) is composed of two parts,

namely, M̄cf+∆tTp andQE−1
u QT , which correspond to two physical processes:

fluid flow and rock deformation. We are interested in the effect of these physical

interactions on the performance of our preconditioners. Thus, the first example

is tested with varying fluid or rock properties. We report the total number of

Newton iterations for the first two time steps.

Comparison results are plotted in Figure 4.5. The missing points for

S̃p1 indicate that the iterative scheme does not converge. Our observations

based on these numerical results are as follows:

1. While S̃p1 is an optimal preconditioner for the Schur complement matrix

S, its performance depends on the fluid compressibility (cf ). For pure

Neumann flow boundaries, the fluid has to be sufficiently compressible

to achieve convergence. For example, S̃p1 fails to converge until cf is

larger than 10−4 psi−1, as shown in the upper left picture in Figure 4.5.

2. In the case of small cf , the Newton convergence is greatly affected by the

approximation ofQE−1
u QT . Different choices of S̃p result in substantially

different numbers of nonlinear iterations. However, as cf is getting larger,

the performance of these preconditioners tends to be the same.

3. In reservoirs with high permeability, the strong flow dominant conditions
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Figure 4.5: Example 1 with varying fluid compressibility and rock properties:
Number of Newton iterations for the first two time steps.
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dictate a consolidation scenario that is closer to a drained deformation.

The upper right picture in Figure 4.5 demonstrate a faster convergence at

high permeability than thoses at low permeabilities. However, differences

in the performance of these preconditioners still exist, whether k is low

or high.

4. The effect of Young’s modulus on the Newton convergence S̃p is not as

drastic as that of fluid compressibility and rock permeability. Faster

convergence is observed with a moderate value of E.

5. Poisson’s ratio also plays an important role in controlling the nonlinear

iterations. As ν increases, all preconditioners achieve significant reduc-

tions in the Newton iteration counts.

6. Example 1 is a confined homogeneous reservoir. The underlying assump-

tion for S̃p3 is well satisfied. Thus, it performs consistently better over

the full range of our parameter tests. In contrast, S̃p2 performs poorly

as compared to other preconditioners.

7. S̃p4 and S̃p5 hardly show any difference in terms of Newton iteration

counts. Thus, the decoupling of displacement components at each nodal

point is clearly a method of choice.

4.4.3 Convergence with Respect to Coefficient Jump

In Example 3, we consider a non-homogeneous domain that consists of

two subdomains. At the interface there is a discontinuous jump in the Young’s
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E2/E1 S̃p1 S̃p2 S̃p3 S̃p4 S̃p5

100 * 83 47 39 39
101 * 41 24 17 17
102 * 80 46 24 24
103 * 149 85 43 43

Table 4.2: Example 3 with varying ratios of jump in Young’s modulus: To-
tal number of Newton iterations for the first two time steps. The symbol ∗
indicates failure to converge.

modulus (E). Numerical experiments are conducted to investigate the robust-

ness of our preconditioners with respect to the jump ratio (E2/E1). Table 4.2

reports the number of Newton iterations for the first two time steps, and Table

4.3 shows the total Newton iteration counts and CPU time in seconds for the

entire run. Comparison of these results clearly shows that,

1. S̃p1 does not converge for any choice of E2/E1 even though the fluid

is slightly compressible (cf = 3.0 × 10−6 psi−1). Numerical experiments

suggest that fluid compressibility has to be roughly in the same order of

magnitude as 1
E

in order for S̃p1 to converge.

2. As expected, S̃p2 converges almost two times slower than the other pre-

conditioners.

3. S̃p4 and S̃p5 are superior to S̃p3 with faster convergence (95.7 seconds as

compared to 146.5 seconds in Table 4.3) and less degradation with large

jump ratios (Table 4.2) .
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Preconditioner Newton iterations CPU time (sec)

S̃p2 333 228.1

S̃p3 189 146.5

S̃p4 106 95.7

S̃p5 106 96.1

Table 4.3: Example 3 with E1 = 104 psi and E2 = 106 psi: Total number of
Newton iterations for the entire simulation with a total of 38 time steps.

Figure 4.6 shows the time evolution of Newton iteration counts per

time step over the entire simulation. Notice that the Newton convergence is

much slower at the early stage of depletion (less than 100 days in Figure 4.6).

An increased time step may also cause slow convergence (400 - 1000 days in

Figure 4.6). In these two cases, preconditioning the Schur complement matrix

S is very important. It determines the efficiency of an iteratively coupled

approach. S̃p5 appears to be more robust in handling coefficient jumps and

performs consistently better than the other preconditioners.

4.4.4 Convergence with Respect to Grid Refinement

Robustness with respect to the discretization parameter h is another

important criteria in evaluating the performance of a preconditioner. Example

6 is used here to test the deterioration of convergence with grid refinement.

The number of Newton iterations for the first two time steps are given in Table

4.4.

S̃p1 still does not converge. The other preconditioners demonstrate a

fairly stable convergence rate with refined meshes. This observation is justified
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Figure 4.6: Example 3 with E1 = 104 psi and E2 = 106 psi: Time evolution of
Newton iteration counts per time step over the entire reservoir depletion.

by the spectral equivalency analysis in Section 4.3.1.1.

4.4.5 Convergence with Respect to Reservoir Heterogeneity

In Section 4.2.3 we derive two approximations toQδu based on reservoir

boundary conditions. However, in some applications the reservoir is strongly

heterogeneous and the interaction between the reservoir and its surroundings is

Grid S̃p1 S̃p2 S̃p3 S̃p4 S̃p5

16× 16× 8 * 12 9 18 18
32× 32× 16 * 12 11 19 19
64× 64× 32 * 13 13 19 19

Table 4.4: Example 6 with grid refinements: Total number of Newton itera-
tions for the first two time steps. The symbol ∗ indicates failure to converge.
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complicated. Thus, the two simplified models may not represent real physics.

The poor performance of a preconditioner, chosen on the sole base of

boundary types, can be clearly seen from the numerical results shown in Table

4.5 and Figure 4.7. Since Example 4 is an unconfined reservoir, S̃p2 is expected

to be the optimal preconditioner. However, the Newton convergence history in

Figure 4.7 demonstrates the opposite. S̃p2 converges at least 1.5 times slower

than S̃p3. This indicates that the reservoir deforms more like a uniaxial strain

type even though the domain is not confined laterally. Numerical experiments

with Example 5 shows similar results (Table 4.5 and the lower picture in Figure

4.7).

Here we propose a practical strategy for choosing an effective precon-

ditioner for the iterative coupling. It is based on the relative changes in total

stress and vertical stress. We denote the resulting preconditioner by Sp6 in

Table 4.1. The procedure is summarized as follows:

1. Start with time step n.

(a) If (n = 1), compute Mcr according to the boundary conditions.

(b) If (n > 1), compute the relative changes in mean stress and vertical

stress in each cell by

δσ̄rel =
σ̄e − σ̄n−1

σ̄n−1
,

δσrelzz =
σezz − σn−1

zz

σn−1
zz

,
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Example 4 Example 5

S̃p Newt. iterations Time (sec) Newt. iterations Time (sec)

S̃∗
p2 331 244.0 300 296.1

S̃p3 189 157.6 234 247.8

S̃p6 210 162.9 197 212.5

Table 4.5: Examples 4 & 5: Total number of Newton iterations and CPU time
for the entire simulation with 38 time steps. Example 4: E1 = 104 psi and
E2 = 106 psi; Example 5: E1 = 106 psi and E2 = 104 psi.

or simply,

δσ̄rel =
σ̄n−1 − σ̄n−2

σ̄n−2
,

δσrelzz =
σn−1
zz − σn−2

zz

σn−2
zz

,

where σ̄e and σezz are the extrapolated values of σ̄ and σzz respec-

tively.

i. if (δσ̄rel <= δσrelzz ) choose S̃p = S̃p2.

ii. if (δσ̄rel > δσrelzz ) choose S̃p = S̃3
p.

2. Solve the coupled problem iteratively for pressure, concentration and dis-

placement.

3. Compute total stresses and extrapolate the values to the next time step.

4. Go back to step 1 for a new time step.

The residual reduction history in Figure 4.7 shows that S̃p6 is more

effective than the default S̃p2 preconditioner. It almost reproduces the history
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Figure 4.7: Examples 4 & 5: Residual reduction histories with respect to the
number of Newton iterations in the second time step. Upper: Example 4;
Lower: Example 5.
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Figure 4.8: Total numbers of grid points using Sp2(M
I
cr) and Sp3(M

II
cr ) re-

spectively at different reservoir depletion time. Upper: Example 4; Lower:
Example 5.

by S̃p3. In the case of Example 5 where a stiff reservoir is surrounded by soft

non-pay rocks, S̃p6 performs better than S̃p2 and S̃p3 (Table 4.5).

Figure 4.8 shows the total number of grid cells that use S̃p2 and S̃p3,

respectively, as reservoir depletion proceeds.. The transition between S̃p2 and

S̃p3 mostly occurs at the early stage of consolidation or at large time step

changes.
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β in βdiag
{

Q [diag (Eu)]
−1QT

}

Time step n 1.0 1.1 1.2 1.28a 1.4o 1.6 1.8

Step 1 21 15 11 9 8 9 11
Step 2 23 16 12 11 8 9 11
Step 3 22 16 12 10 8 9 11

Total (n = 3) 66 47 35 30 24 27 33
Total (n = 50) 401 292 231 201a 176o 188 213

Table 4.6: Example 1: Newton iteration counts using S̃p5 with varying scaling
factors (βo: optimal factor, βa: approximate factor).

β in βdiag
{

Q [diag (Eu)]
−1QT

}

Time step n 1.0 1.2 1.4 1.6 1.8o 1.9 2.07a

Step 1 * 61 17 9 7 7 8
Step 2 65 19 11 7 7 7
Step 3 65 19 11 7 6 7

Total (n = 3) 191 55 31 21 20 22
Total (n = 50) 1021 307 191 182o 191 207a

Table 4.7: Example 2: Newton iteration counts using S̃p5 with varying scaling
factors (βo: optimal factor, βa: approximate factor). The symbol ∗ indicates
failure to converge.

4.4.6 Scaling Factor β in S̃p5

As shown in Section 4.4.3, S̃p5 is more robust in handling reservoir

heterogeneity. However, its convergence rate depends on the scaling factor β

(Table 4.1). For some unconfined problems Sp5 fails to converge with β =

1.0. In this section, we present a simple, but not the optimal, approach for

computing β.

In Tables 4.6—4.10 we report the number of Newton iterations using S̃p5
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β in βdiag
{

Q [diag (Eu)]
−1QT

}

Time step n 0.55 0.6 0.8o 1.07a 1.2 1.4

Step 1 10 7 10 13 14 16
Step 2 11 7 9 11 12 14
Step 3 10 7 7 10 11 13

Total (n = 3) 31 21 26 21 37 43
Total (n = 50) 104 94 91o 110a 121 138

Table 4.8: Example 3: Newton iteration counts using S̃p5 with varying scaling
factors (βo: optimal factor, βa: approximate factor).

β in βdiag
{

Q [diag (Eu)]
−1QT

}

Time step n 0.55 0.6 0.8 1.0o 1.2 1.4 1.92a

Step 1 11 8 10 12 14 16 22
Step 2 11 7 9 10 12 14 19
Step 3 11 6 7 9 11 13 17

Total (n = 3) 33 21 26 21 37 43 58
Total (n = 50) 293 194 118 110o 123 138 183a

Table 4.9: Example 4: Newton iteration counts using S̃p5 with varying scaling
factors (βo: optimal factor, βa: approximate factor).

β in βdiag
{

Q [diag (Eu)]
−1QT

}

Time step n 1.0 1.35 1.4 1.5o 1.56a 1.6 1.7

Step 1 * 37 21 20 21 22 23
Step 2 40 21 18 19 20 21
Step 3 39 21 16 17 17 18

Total (n = 3) 116 63 54 57 59 62
Total (n = 50) 245 185 183o 192a 199 212

Table 4.10: Example 5: Newton iteration counts using S̃p5 with varying scaling
factors (βo: optimal factor, βa: approximate factor). The symbol ∗ indicates
failure to converge.
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S̃p5(β = 1.0) S̃p2 or S̃p3(based on B.C.s)

Example Boundary type c
S̃p5
r (psi−1) cr(psi

−1) cr/c
S̃p5
r

1 confined 5.81× 10−5 7.43× 10−5 1.28
2 unconfined 5.81× 10−5 1.2× 10−4 2.07
3 confined 1.09× 10−6 1.17× 10−6 1.07
4 unconfined 1.09× 10−6 2.10× 10−6 1.92
5 unconfined 1.53× 10−4 2.38× 10−4 1.56

Table 4.11: Rock compressibility predicted by different approximations to
QE−1

u QT .

with varying scaling factors (β). In these tables, βo denotes the optimal scaling

factor obtained by numerical experiments, and βa denotes our approximate

value. We summarize the results as follows:

1. All these results show that the scaling factor affects the performance of

S̃p5. The optimal value of β is problem dependent.

2. The average rock compressibility (c
S̃p5
r ) predicted by S̃p5 (β = 1.0) is

close to the value estimated by S̃p3 for confined reservoirs (Example 1 &

3 in Table 4.11). However, for unconfined problems, c
S̃p5
r is much smaller

than the compressibility computed by S̃p2 (Example 2, 4 & 5 in Table

4.11).

Thus, the scaling factor β can be simply approximated by

β =
c̄r

c̄
S̃p5
r

, (4.49)
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where c̄r is the average rock compressibility estimated by S̃p2 or S̃p3 according

to the boundary conditions, as shown below:

c̄S̃p2r =

∑np
i=1(M

I
cr)ii

∫

Ω
dΩ

(unconfined),

c̄S̃p3r =

∑np
i=1(M

II
cr )ii

∫

Ω
dΩ

(confined).

Similarly, c̄
S̃p5
r is computed by

c̄S̃p5r =

∑np
i=1

{

Q [diag (Eu)]
−1QT

}

ii
∫

Ω
dΩ

In Tables 4.6—4.10, the columns of βa show the total number of Newton

iterations using β calculated by (4.49). We observe that the approximation of

(4.49) leads to reasonable convergence rates that are close to the optimal ones.

It should be mentioned that Example 4 behaves more like a uniaxial strain

deformation even though it is an unconfined problem. Thus, barcr in (4.49) is

over estimated by S̃p2, and the resulting β leads to poor convergence.

4.4.7 A Fully Coupled Approach with Preconditioned Richardson
Iterations

If an iterative coupling is understood as the first iteration of a precon-

ditioned Richardson method defined in (4.28), then it can be adapted easily

to a converged iterative scheme or a fully coupled scheme. This is achieved by

applying the operator splitting repeatedly in each Newton step until a given

tolerance is satisfied.

Here we use the first three examples in Section 4.4.1 to compare the

efficiency of the two coupling schemes. For the iterative coupling we choose
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Iteratively coupled Fully coupled

Example S̃p Newt. Iter. Time (sec) Newt/linear Iter. Time (sec)

1 S̃p3 272 24.7 106/362 30.1

2 S̃p2 240 22.7 105/360 29.7

3 S̃p3 316 273.7 41/250 234.7

3 S̃p5 194 210.7 41/166 193.1

Table 4.12: Comparison of Newton iteration count and CPU time in seconds
for the iteratively coupled and the fully coupled approach. The discrete elas-
ticity system is solved by a direct solver.

Iteratively coupled Fully coupled

Example S̃p Newt. Iter. Time (sec) Newt/linear Iter. Time (sec)

1 S̃p3 277 76.2 106/406 94.7

2 S̃p2 249 228.9 105/364 371.4

3 S̃p3 316 389.4 41/250 315.1

3 S̃p5 194 226.8 41/166 215.6

Table 4.13: Comparison of Newton iteration count and CPU time in seconds
for the iteratively coupled and the fully coupled approach. The discrete elas-
ticity system is solved by ICCG.

a tolerance that is sufficient tight to reproduce the pressure and displacement

solutions that are computed by the fully coupled technique. Preconditioned

Richardson iterations are terminated once the initial residual (l∞ norm) of the

pressure equation (4.28) is reduced by a factor of 102.

Results in Table 4.13 demonstrate that a significant reduction in the to-

tal number of Newton iterations is obtained by the converged iterative scheme,

(4.28) and (4.26). However, the faster Newton convergence is at the expense

of more inner iterations for pressure and displacement. Notice that the nonlin-
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earity of this problem is due to the rate specified wells. Thus, more than one

Newton iterations are required to satisfy the tolerance for nonlinear iterations.

The efficiency of the iterative coupling lies in that it solves the elasticity block

once per Newton iteration. Thus, its overall merits, in terms of efficiency and

accuracy, are comparable to a fully coupled approach. Similar comparison

results can be found in Dean et al. (2003).
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Chapter 5

Numerical Verification

In this chapter, our goal is to provide numerical validation for the cou-

pled flow and geomechanics model described in Chapter 2. First it will be

demonstrated that the governing equations can be solved to a satisfactory ac-

curacy using the FE approximations proposed in Chapter 3. Next, we will ver-

ify that the numerical solutions computed by the iterative coupling technique

are as accurate as those computed by a fully coupled scheme. Two examples

will be presented. The first one is the classical Mandel problem with the well-

known Mandel-Cryer effect (Mandel 1953, Cheng 1988 and Abousleiman et

al. 1996). Numerical and analytical solutions for this plane strain problem

will be compared. The second example is a 3D single-phase and single-well

reservoir production problem with surrounding non-pays (Dean et al. 2003).

Its numerical results will be validated using ACRES (ARCO’s Comprehensive

Reservoir Simulator) (see ARCO Reservoir Simulator Development 1999).

5.1 Mandel’s Problem

The geometry of Mandel’s problem is depicted in Figure 5.1. An in-

finitely long specimen (perpendicular to the paper) with a rectangular cross-
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section is sandwiched between two rigid, frictionless and impermeable plates.

The specimen consists of incompressible solid constituents, and it is saturated

with a single-phase incompressible fluid. The initial pore pressurem, p0, is

also the ambient pressure. At t = 0+ a force of 2F per unit thickness of the

specimen is applied at the top and bottom. The lateral boundary surfaces

perpendicular to the x direction are traction free and exposed to the ambient

pressure p0. As predicted by the Skempton effect (Skempton 1954), a uni-

form pressure rise will be observed inside the specimen upon the exertion of a

force 2F on the rigid plates. Thus, drainage will occur at the side boundaries.

As time passes on, pore pressure near these boundaries must dissipate due

to drainage access. Later, the pressure depletion region will propagate into

the center of the specimen. Fluid drainage will finally stop once the initial

pressure rise totally vanishes over the entire domain.
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Figure 5.1: Mandel’s problem.
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Parameter Value

a 100 m
b 10 m
F 1.0×108N
p0 0.0 Pa
E 1.0× 108Pa
ν 0.2
α 1.0
cf 0.0 Pa-1

k 100 md
φ 0.2

Table 5.1: Parameters in Mandel’s problem.

y

x

ux=0

uy=0

2F

2F

Figure 5.2: Mandel’s problem computation domain.
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As shown in Figure 5.1, the axis of material rotational symmetry is

the y-axis. A plane strain condition is assumed in the z direction. Table 5.1

gives the dimensions of the specimen and its material properties as used in

this calculation. For a finite element approximation, the 2D problem is solved

numerically using our 3D poroelastic model. However, proper boundary condi-

tions must be specified in the z direction to ensure the plane strain condition.

A quarter symmetry feature about the x− and y−axes allows us to choose

only a quarter of the physical domain as our computation domain, as shown

in Figure 5.2. The rigid plate condition is enforced by adding constrained

equations such that vertical displacements on the top plate are all equal to an

unknown constant value.

The original Mandel’s solution (1953) provides only the analytical form

for the pore pressure. Later, Abousleiman et al. (1996) extend the solution to

all field quantities for materials with transverse isotropy, as well as compress-

ible pore fluids and solid constituents. Their analytical solutions are given as
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follows,

ux =

[

Fν

2Ga
−
Fνu
Ga

∞
∑

i=1

sin βi cos βi
βi − sin βi cos βi

exp
(

−β2
i ct/a

2
)

]

x

+
F

G

∞
∑

i=1

cos βi
βi − sin βi cos βi

sin
βix

a
exp

(

−β2
i ct/a

2
)

,

uy =

[

−
F (1− ν)

2Ga
+
F (1− νu)

Ga

∞
∑

i=1

sin βi cos βi
βi − sin βi cos βi

exp
(

−β2
i ct/a

2
)

]

y,

p =
2FB(1 + νu)

3a

∞
∑

i=1

sin βi
βi − sin βi cos βi

(

cos
βix

a
− cos βi

)

exp
(

−β2
i ct/a

2
)

,

σyy = −
F

a
−

2F (νu − ν)

a(1− ν)

∞
∑

i=1

sin βi
βi − sin βi cos βi

cos
βix

a
exp

(

−β2
i ct/a

2
)

+
2F

a

∞
∑

i=1

sin βi cos βi
βi − sin βi cos βi

exp
(

−β2
i ct/a

2
)

,

σxx = σxy = 0.

In the above equations, βi satisfies

tan βi =
1− ν

νu − ν
βi,

and the other parameters, which are not listed in Table 5.1, are the shear

modulus G, the Skempton pore pressure coefficient B, the undrained Poisson

ratio νu and the diffusivity coefficient c. They are defined respectively as (Rice
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1976)

G =
E

2(1 + ν)
,

B = 1−
φK (Ks −Kf )

Kf (Ks −K) + φK (Ks −Kf )
,

νu =
3ν +B(1− 2ν)(1−K/Ks)

3−B(1− 2ν)(1−K/Ks)
,

c =
2kB2G(1− ν)(1 + νu)

2

9µf (1− νu)(νu − ν)
=

k

µfS
,

where K, Ks and Kf are, respectively, the bulk moduli of the solid skeleton,

the solid constituent and the pore fluid. In the special case of incompressible

fluids and solid grains, the above coefficients are reduced to

B = 1,

νu = 0.5,

c =
2kG(1− ν)

µf (1− 2ν)
.

Numerical results at ten different time steps (see Table 5.2) are com-

puted to compare with the analytical solutions. Figures 5.3—5.6 demon-

strate the comparison results for p, σyy, ux and uy respectively. In these

pictures the distances in the x direction are normalized by a. According to

the exact solution, at the instant of loading an initial uniform pressure rise,

∆p(x, y, 0+) = FB(1 + νu)/3a, should be observed. The upper plate will in-

stantaneously deform by the amount of uy(x, b, 0
+) = −Fb(1− νu)/2Ga, and,

eventually, it will stabilize at uy(x, b,∞) = −Fb(1− v)/2Ga. After the initial

outward movement of ux(a, y, 0
+) = Fνu/2G, the side boundaries will contract
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toward the center, and its final state should be ux(a, y,∞) = Fν/2G. During

the entire consolidation scenario both the horizontal stress, σxx, and the shear

stress, σxy, are identically zero. As shown in Figures 5.3—5.6, all quantities

mentioned above have been verified by our numerical results.

ti Time (seconds)

t1 1× 103

t2 5× 103

t3 1× 104

t4 1× 105

t5 5× 105

t6 8× 105

t7 1× 106

t8 2× 106

t9 3× 106

t10 5× 106

Table 5.2: Mandel’s problem output time steps.

The contribution of Mandel’s solution lies not only in the fact that

it can be used as a benchmark problem for testing and validating numeri-

cal poroelasticity codes but also as a demonstration of non-monotonic pore

pressure response under constant boundary conditions. This non-monotonic

behavior of pore pressure is known as the Mandel-Cryer effect as Cryer (1963)

presents similar results at the center of a sphere under a hydrostatic pressure.

Later, this interesting physical phenomenon is confirmed by the results of both

laboratory (Gibson et al. 1963 and Verruijt 1965) and field tests (Verruijt

1969). The Mandel-Cryer effect refers to the observation that, after an initial

instantaneous rise, pore pressure near the center region continues to increase
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Figure 5.3: Mandel’s problem pore pressure distribution along the x-axis.

Normalized pore pressure = ap/F .
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Figure 5.4: Mandel’s problem stress (σyy) distribution along the x-axis.

Normalized stress = aσyy/F .

102



−1 −0.5 0 0.5 1
−6

−4

−2

0

2

4

6
x 10

−3

x

N
or

m
al

iz
ed

 D
is

pl
ac

em
en

t u
x

analytical t
1

analytical t
10

numerical t
1

numerical t
10

Figure 5.5: Mandel’s problem displacement ux along the x-axis.

Normalized displacement = ux/a.
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Figure 5.6: Mandel’s problem displacement uy along the x-axis.

Normalized displacement =uy/b.
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for some time before it starts to dissipate. This phenomenon is contrary to

what is observed in general free drainage problems. The non-monotonic pore

pressure response shown in Figure 5.7 is due to the loading condition through

a rigid plate. As pressure depletion continues near the drainage boundaries

the material is effectively softened around those areas. Since the loading is

applied through a rigid plate there is a gradual load transfer of compressive

total stress to the stiffer center region. The transfered load serves as a source

term in the porous flow diffusivity equation. As a result, the pressure build-up

at the center region will last for a while before the entire domain starts to

deplete.
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Figure 5.7: Mandel’s problem pore pressure history along the x-axis.

104



5.2 A 3D Confined Reservoir with Non-pay Rocks

The numerical example described in Section 4.4.1.3 is used here to test

our 3D poroelasticity code. Numerical results are verified using the ACRES

simulator (ARCO Reservoir Simulator Development 1999). A fully coupled

technique is implemented in the ACRES’s program.

In Section 2.3 we mention briefly the effect of reservoir boundary condi-

tions on the pressure and stress evolutions inside the reservoir. However, it is

very difficult, if not impossible, to accurately define these changing boundary

conditions before solving the coupled equations. One solution is to incorpo-

rate an outer domain surrounding the reservoir. Gutierrez & Lewis (1998) and

Dean et al. (2003) construct numerical examples that take into account the

exterior non-pays. Their numerical results also demonstrate a non-monotonic

pressure response at the reservoir flanks. In this section we consider Dean’s

problem first to validate our 3D poroelastic model, then to demonstrate the

effect of material properties in the outer domain on surface subsidence and

reservoir compaction.

The reservoir geometry is depicted schematically in Figure 4.3. The FE

discretization is shown in Figure 4.4. A description of the reservoir properties,

the initial and boundary conditions, as well as the well configurations, can be

found in Section 4.4.1.3.

Table 5.3 presents the numerical values for pressure, displacement,

stress and strain at the end of 4000 days. Pore pressure histories at cell
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(6,11,6) and cell (11,11,6) are plotted in Figure 5.8 and 5.9 respectively. It

appears that our iterative coupling technique nearly reproduces the results of

the fully coupled scheme in ACRES.

Acres IPARS

Avg. reservoir pressure 3435.3 psi 3435.6 psi
Pressure (6,11,6) 3506.1 psi 3506.4 psi
Pressure (11,11,8) 2690.7 psi 2690.8 psi
ux(6,11,1), surface 1.02 ft 1.02 ft
uy (11,6,1), surface 1.15 ft 1.15 ft
uz (11,11,1), surface 4.04 ft 4.03 ft

uz (11,11,6), top of reservoir 1.15 ft 1.15 ft
εxx(11,11,8) 0.08% 0.08%
εyy(11,11,8) 0.13% 0.13%
εzz(11,11,8) 3.13% 3.13%
σxx(11,11,8) 3395.4 psi 3395.5 psi
σyy(11,11,8) 3399.3 psi 3399.4 psi
σzz(11,11,8) 8635.0 psi 8635.9 psi

Table 5.3: Results of the 3D problem at the end of 4000 days.

A non-monotonic pressure change similar to the Mandel-Cryer effect

is observed at the reservoir boundary cell (6,11,6), as shown in Figure 5.8.

As the reservoir depletion proceeds the pore pressure at cell (6,11,6) is not

monotonically decreasing, but continues to increase for about 200 days. This

is a distinctive feature of a coupled analysis. The time evolution of the Mandel-

Cryer zone can be seen more clearly in Figures 5.10 and 5.11.

Gutierrez & Lewis (1998) discuss the effect of reservoir material prop-

erties on surface subsidence and reservoir compaction. In the following we
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Figure 5.8: Pore pressure history at cell (6, 11, 6) for the 3D problem.

Figure 5.9: Pore pressure history at cell (11, 11, 6) for the 3D problem.
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Figure 5.10: Pressure Mandel-Cryer zones at the end of 20 and 60 days for the
3D problem.
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investigate the effect of the material properties of the surrounding non-pays

on surface subsidence and reservoir compaction. Three runs are conducted for

the purpose of comparison. Parameters used in each run are shown in Table

5.4.

Comparison runs Parameters
Reservoir Non-pay

Uncoupled case cr = 3.3× 10−4psi−1 cr = 3.3× 10−6psi−1

Coupled case Stiff non-pay E = 1.0× 104psi E = 1.0× 106psi
Soft non-pay E = 1.0× 104psi E = 1.0× 104psi

Table 5.4: Parameters used in comparison runs for the 3D problem with sur-
rounding non-pay rocks.

Significant differences in the average reservoir pressure are observed

in Figure 5.12. Soft non-pays result in a larger reservoir compaction, but a

minor surface subsidence as compared with stiff non-pays (see Figure 5.13).

The non-monotonic pressure evolution is observed only in the reservoir with

stiffer non-pays, as shown in Figure 5.14.
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Figure 5.12: Comparison of average reservoir pressure history.

Figure 5.13: Comparison of vertical displacements from cell (11,11,1) to cell
(11,11,12).
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Figure 5.14: Comparison of pore pressure history at boundary cell (6,11,6).
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Chapter 6

Linear Solvers for the Poroelastic Model

The convergence of the iterative coupling technique discussed in Chap-

ter 4 depends crucially on the accuracy of the displacement solutions. However,

solving the elasticity system frequently poses a computational bottleneck in

coupled simulations. First, the Galerkin finite element approximation for the

elasticity equations generates an algebraic linear system that is substantially

larger than the 7-point stencil in the CCFD formulation of multiphase flow

equations. Secondly, to characterize the interactions between a reservoir and

its surroundings, the computational domain needs to be extended to the over-

burden, under-burden and side-burden. Numerical experiments indicate that

more than 70 percent of the total CPU time for a coupled simulation is spent

on the solution of displacement. In summary, we are solving a coupled sys-

tem in a large physical domain as generally preferred on a full-field scale with

great vertical depth. Such a coupled analysis involves a large linear system

with millions of unknowns, whose solution needs to be computed on parallel

machines.

In this chapter we discuss linear solution techniques for a discrete elas-

ticity system. In particular, domain decomposition preconditioners with a
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super-coarsening multigrid (SCMG) and displacement decomposition (DiD)

preconditioners are presented. Their performance is evaluated based on nu-

merical experiments on a single processor machine. Parallel implementation

issues will be addressed in the next chapter.

6.1 Krylov Linear Iterative Solvers: GMRES and BiCG-
STAB

The Krylov iterative solvers chosen for the solution of displacement in-

clude the preconditioned conjugate gradient (PCG), the right preconditioned

generalized minimal residual (GMRES) (Saad and Schultz, 1986) and the bi-

conjugate gradient stabilized (BiCG-STAB) method (Van Der Vorst, 1992).

PCG is a popular technique for solving large scale symmetric positive definite

linear systems. But it may fail to converge with non-symmetric precondi-

tionings. GMRES is known to be the most robust Krylov subspace method

for solving non-symmetric systems, or symmetric systems with non-symmetric

preconditioning matrices. A major drawback of the GMRES method is the

large memory requirement for storing all the Krylov spaces. A restart version

of GMRES can alleviate these intensive memory demands. BiCG-STAB re-

quires less memory storage, but it involves two preconditioning steps and two

matrix-vector products in one iteration. Thus, it expends more CPU time per

iteration than the GMRES method.

Table 6.1 shows the comparison results for the GMRES and the BiCG-

STAB methods. Linear solver iterations are terminated when the initial resid-
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GMRES BiCG-STAB

Preconditioner IC(0) IC(1) RB-GS IC(0) IC(1) RB-GS
Iteration 6025 4535 3577 4272 3332 5279

Time (seconds) 516.8 554.9 811.1 563.5 656.6 942.4

Table 6.1: Total numbers of linear solver iterations and CPU times in seconds
for GMRES and BiCG-STAB methods.

ual (l2norm) is decreased by a factor of 106. CPU times are measured in sec-

onds on a 1.2 GHz Athlon Linux machine with 512 MB RAM memory. We

use an incomplete Choleksy factorization (IC) and a 4-color line Gauss-Seidel

as preconditioners. In all cases, GMRES converges faster than BiCG-STAB.

Thus, in the following discussion, all numerical results are obtained using the

GMRES algorithm unless stated otherwise.

6.2 Domain Decomposition Preconditioners

The widespread availability of parallel computers and their potential

for the numerical solution of partial differential equations has led to a large

amount of research in domain decomposition (DD) methods. DD methods

are generally flexible methods for the solution of linear or nonlinear partial

differential equations (PDEs). For linear problems, DD methods can often

be used as preconditioners for Krylov subspace acceleration techniques, such

as PCG and GMRES methods. For details about DD methods we refer the

reader to the book by Smith, Bjorstad and Gropp (1996)

The advantage of applying DD-type preconditioners lies in their ease of
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parallelization and their satisfactory parallel performance. In the next three

sections we employ the general framework of space decomposition and subspace

correction to present several one-level and multilevel DD preconditioners.

6.2.1 One-level Overlapping DD Preconditioners

We first consider a finite element discretization of a boundary value

problem in a domain Ω. Let Th(Ω) be a non-degenerate, quasi-uniform finite

element partition of Ω that defines the finite dimensional subspace V = Vh ⊂

V. The resulting linear system takes the form of

Au = b. (6.1)

Here, A is the discrete elasticity operator, and u is the displacement vector.

We also assume that Ω is decomposed into a set of overlapping subdomains

{Ωi}
p
i=1. One way of defining the subdomains and the associate partition is

by starting with disjoint open sets {Ω0
i }

p
i=1of size h0 with Ω̄ = ∪pi=1Ω̄

0
i , where

Ω̄ = Ω ∪ ∂Ω and Ω̄0
i = Ω0

i ∪ (∂Ω0
i ∩ ∂Ω). Then the subdomain Ωi is defined to

be a subdomain containing Ω0
i with the distance from ∂Ωi ∩ Ω to Ω0

i greater

than or equal to ch0 for some prescribed constant c called the number of

overlapping. For simplicity, we further assume that each subdomain Ωi can

be represented as a union of a group of finite elements from Th(Ω). Then the

division of Ω results in a decomposition of the space V into a number of finite

element subspaces Vi (i = 1, · · · , p), i.e.,

V = V1 + · · ·+ Vp, (6.2)
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where

Vi = {v ∈ V : v(x) = 0, ∀x ∈ Ω\Ωi} .

The above domain decomposition (6.2) allows us to construct different iterative

schemes (additive, multiplicative and hybrid Schwarz methods) by correcting

residuals in these subspaces. The goal is to divide a large global problem into a

number of smaller, local ones. In solving the linear system (6.1) a DD method

will start from an old approximation un to compute a new approximation un+1

by

un+1 = un + e (6.3)

where e is the subdomain correction.

In this implementation, a domain is always divided in the horizontal

directions (x and y) with one overlap (c = 1). A subdomain problem can

be solved by a direct method or by one sweep of an incomplete Cholesky

factorization (IC). Three one-level DD preconditioners have been implemented,

namely, an additive Schwarz with a direct subdomain solver (DDa-Direct), an

additive Schwarz with an incomplete Cholesky factorization (DDa-IC), and a

4-color line Gauss-Seidel (DDm-4color-LineGS).

Algorithm 1 DDa-Direct

1: Compute residual: rn = b− Aun.
2: Restrict and solve the subdomain corrections directly: eni = A−1

i Rir
n, for

i = 1, · · · , p.
3: Extend and update solution: un+1 = un +RT

i e
n
i .

In Algorithm 1 Ri is the restriction operator (Ri : V → Vi) while R
T
i

is the prolongation operator (RT
i : Vi → V ); Ai is the restriction of A to the
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subspace Vi, which is computed by

Ai = RT
i ARi.

Algorithm 1 can be written in a one-step form as,

un+1 = un +MDDa−Direct (b− Aun) ,

where the preconditioner MDDa−Direct is given by

MDDa−Direct =

p
∑

i=1

RT
i A

−1
i Ri. (6.4)

Algorithm 2 DDa-IC

1: Compute residual: rn = b− Aun.
2: Restrict and solve the subdomain correction approximately by incomplete

Cholesky factorization: eni = Ã−1
i,IC(k)Rir

n, for i = 1, · · · , p

3: Extend and update solution: un+1 = un +RT
i e

n
i .

Here Ã−1
i,IC(k) represents the application of an incomplete Cholesky fac-

torization in subdomain Ωi with a fill-in level of k. The one step representation

of Algorithm 2 is

un+1 = un +MDDa−IC(k)(b− Aun),

where

MDDa−IC(k) =

p
∑

i=1

RT
i Ã

−1
i,IC(k)Ri. (6.5)

Similar to the classical convergence results for Jacobi and Gauss-Seidel

methods the multiplicative Schwarz preconditioners have a faster numerical
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convergence rate than the additive Schwarz methods. However, they have

little potential for parallelism. The problem can be overcome by the general

idea of multicoloring. In multicoloring, each subdomain is associated with a

color such that two subdomains having the same color do not share common

grid points. Thus, solutions can be updated simultaneously (in parallel) for

all the subdomains of the same color. In reservoir simulation a subdomain

is generally taken to be a vertical line. A 4-color line Gauss-Seidel algorithm

(DDm-4Color-LineGS) is defined as follows.

Algorithm 3 DDm-4Color-LineGS

for i = color1, · · · , colorp do
Compute residual: r = b− Aun+(i−1)/p.
Restrict and directly solve the lines associated with color i:

ei =
∑

j∈colori

RT
j A

−1
j Rjr.

Extend and update solution: un+i/p = un+(i−1)/p + ei.
end for

The above preconditioner can be written as

MDDm−LineGS =

[

I −

colorp
∏

i=color1

(I −BiA)

]

A−1, (6.6)

where

Bi =
∑

j∈colori

RT
j A

−1
j Rj.

Multicolor Gauss-Seidel is frequently used as a preconditioner for the

Krylov subspace methods. But it is also common to use the method together
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with a one-level additive Schwarz preconditioner in a parallel implementation.

The resulting preconditioner is essentially a hybrid scheme that is given by:

MDDh = MDDa−Direct +MDDm−LineGS(I − AMDDa−Direct), (6.7)

or

MDDh = MDDa−IC(k) +MDDm−LineGS(I − AMDDa−IC(k)), (6.8)

where MDDa−Direct, MDDa−IC(k) and MDDm−LineGS are respectively defined in

(6.4), (6.5) and (6.6).

6.2.2 Multilevel Domain Decomposition Preconditioners

The efficiency of single level methods deteriorates with increasing num-

bers of subdomains. Table 6.2 shows the numerical results of a test case with

a 16× 16× 8 grid discretization. The entire domain is divided into a varying

numbers of subdomains. An additive Schwarz preconditioner, MDDa−Direct, is

applied. Linear solver iterations are terminated when the initial residual (l2

norm) is reduced by a factor of 105. Clearly, GMRES takes more iterations to

converge as the number of subdomains increases from 4 to 256. To overcome

this problem we need a mechanism for the global communication of informa-

tion in each iteration. The best known of these techniques are the multilevel

or multigrid methods. Among the extensive multigrid literature, we refer the

reader to the book by Hackbusch (1985) and Trottenberg et al. (2001). The

following discussion is organized as follows: Section 6.2.2.1 gives a brief in-

troduction to the multigrid methods; a description of the super-coarsening

120



multigrid (SCMG) algorithm for the elasticity system follows; several mul-

tilevel schemes using the SCMG and the one-level Schwarz preconditioners,

(6.4), (6.5), and (6.6), are presented in Section 6.2.2.3.

Total Number of Subdomain DDa-Direct
Subdomains Size nx × ny × nz Iterations

4 8×8×8 1520
16 4×4×8 2035
32 4×2×8 3277
64 2×2×8 3448
256 1×1×8 4336

Table 6.2: Total number of (GMRES) linear iterations for different domain
decompositions.

6.2.2.1 A Multigrid Introduction

Multigrid is motivated by the observation that standard iterative meth-

ods, like Jacobi and Gauss-Seidel, are effective at eliminating the high-frequency

or oscillatory components of the error but are ineffective in reducing the low fre-

quency or smooth components. Another important observation is that smooth

modes on a fine grid appear to be less smooth on coarser grids. This suggests

that solutions on the fine grid may be projected to the coarse grid such that

low frequency or smooth contents of the error can be reduced by the same

iterative scheme as used on the fine grid. Multigrid methods are well-known

for their high efficiency and the low arithmetic complexity of O(n) or, at most,

O(nlog(n)).

In the context of subspace corrections, a multigrid algorithm can be
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defined using the coarse grid function spaces. Consider a nested sequence of

gradually coarsened grids, ΩL ⊂ · · · ⊂ Ω2 ⊂ Ω1 = Ω. Corresponding to each

grid Ωm, a finite element space Mm is defined such that

ML ⊂ · · · ⊂M2 ⊂M1 = V.

Each space Mm is equipped with an inner product (·, ·)m and a coarse operator

Am that defines a second inner product (·, ·)Am = (Am·, ·)m. A conventional

multigrid method requires three types of operators:

1. Grid transfer operators, namely, restriction operators (Im+1
m ) and pro-

longation operators (Imm+1);

2. Coarse grid operator Am;

3. Cheap iterative solvers that are effective at reducing the high frequency

errors on each grid.

Generally, operator Am may be formed in one of two ways. We can either

algebraically construct a Galerkin coarse grid matrix by Imm−1Am−1I
m−1
m , or

create a new finite element problem on each coarse grid, thereby allowing

the finite element implementation to construct the matrix. Using the above

components we construct the following multigrid V-cycle scheme.

Several authors have investigated varying combinations of multigrid

and the conjugate gradient methods. Keller (1982) and Kettler and Meijerink

(1981) use multigrids as preconditioners for the PCG solver while Bank &
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Algorithm 4 MGV(Am, bm)

if there is a coarser grid m+ 1, i.e., m < L then
Relax k1 times on Amum = bm.
Perform coarse grid correction:
{
Set um+1 = 0.
Compute bm+1 = Im+1

m (bm − Amum).
Recursively apply MGV on level m + 1 : um+1 =
MGV (Im+1

m AmI
m
m+1, bm+1).

Correct the solution by um := um + Imm+1um+1.
Relax k2 times on Amum = bm.
}

else
uL = A−1

L bL.
return um.

end if

Douglas (1985) treat PCG as a relaxation method for the multigrid solver.

Braess (1986) considers these two combinations and reports that the conju-

gate gradient method, with multigrid preconditioning, is effective for elasticity

problems. Here we propose a multilevel preconditioner for the GMRES and

PCG type solvers. The method obtains coarse level corrections using a super-

coarsening multigrid algorithm. Due to the low arithmetical complexity of

SCMG, the resulting preconditioners are very efficient.

6.2.2.2 Super-coarsening Multigrid Preconditioner

In the reservoir simulation community, the first attempt to apply the

super-coarsening type of preconditioners was by Watts (1971) for solving 2D

elliptic problems with Neumann boundary conditions. In his work, a one-
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Figure 6.1: Super-coarsening multigrid preconditioner.

dimensional residual correction is applied after each line-SOR (LSOR) sweep

to dampen the low frequency components. Later, the one dimensional correc-

tion is generalized to two dimensions using the constrained residual technique

(Wallis, 1985). This method generates subspaces by aggregating all system

equations along a certain direction, solves the reduced system in a lower di-

mension, and then projects the solution back to the original grid. It is recom-

mended that the 2D problem is solved by either a direct solver or an iterative

scheme. However, such a reduced problem may still be too large to solve ef-

ficiently. Killough and Wheeler (1985) implement a 2D correction scheme to

improve the performance of a 3D domain decomposition preconditioner. To

reduce the effect of aggregation direction on linear solver convergence, residual
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corrections in the three directions are computed alternatively. The aggregate

problem is solved very roughly though. A parallel version of the 2D correc-

tion for a 3D LSOR method is implemented by Wheeler and Smith in 1989

(Wheeler and Smith, 1989). They augment the original method by adding

a second level 2D coarse grid that is chosen to be sufficiently coarse so that

direct methods may be applied. The two-level scheme is later generalized to a

multigrid V-cycle by Lacroix et al (2000) for multiphase flow problems. Based

on the theoretical analysis of Watts (1973), and justified by the observation

that in most reservoir applications the vertical depth of the domain is gener-

ally much smaller than the horizontal extent, collapsing is, thus, conducted

only in the vertical direction.

In this work the SCMG method is extended to the algebraic linear

system arising from the finite element discretization of elasticity equations.

The newly developed modules are called immediately after a one-level DD

preconditioner (MDDa−Direct in (6.4), MDDa−IC(k) in (6.5) and MDDm−LineGS

in (6.6)) for the coarse level corrections. Numerical experiments show that

the 2D correction is not accurate in the case of strongly heterogeneous layers.

However, it is capable of dampening the low frequency aggregated components

which is the main purpose of applying SCMG.

In the SCMG method, a 3D grid Ω1 is first super-coarsened to a 2D

grid Ω2 The coarsening from Ω1 to Ω2 is conducted in two steps: 1) perform

aggregation along each vertical line to form a collapsed 2D grid; 2) conduct

standard 2 × 2 coarsening to generate Ω2. Letting v2 = I21v
1, the restriction
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operator may be written as

v2i,j =
1

16

nz
∑

k=1

[

v12i−1,2j−1 + v12i−1,2j+1 + v12i+1,2j−1 + v12i+1,2j+1

+ 2
(

v12i,2j−1 + v12i,2j+1 + v12i−1,2j + v12i+1,2j

)

+ 4v12i,2j
]

,

1 ≤ i ≤
nx
2
− 1, 1 ≤ j ≤

ny
2
− 1,

where nx, ny and nz are respectively the number of grid points in the x, y and

z directions. On other coarser level grids (Ωm, m > 2) the components of the

SCMG algorithm are defined as follows:

1. Full weighting restriction operator. In a stencil notation, it reads:

Im+1
m =

1

16





1 2 1
2 4 2
1 2 1





2h

h

.

2. Bilinear interpolation operator mapping corrections from a 2h-grid to an

h-grid. It is related to the restriction operator by

Imm+1 = (Im+1
m )T .

3. Galerkin coarse grid operator Am. It is computed by

Am = Imm−1Am−1I
m−1
m .

4. 4-color Gauss-Seidel (point GS for 2D and line GS for 3D) is used for

pre- and post-smoothing on each level.

126



Algorithm 5 SCMG(Am, bm)

if there is a coarser grid m+ 1, i.e., m < L then
Perform k1 line GS relaxations: um := um +MDDm−LineGS(bm − Amum)
Apply coarse grid correction:
{
Set um+1 = 0.
Compute bm+1 = Im+1

m (bm − Amum).
Apply SCMG on level m+ 1 : um+1 = SCMG(Im+1

m AmI
m
m+1, bm+1).

}
Perform k2 line GS smoothing: um := um +MDDm−LineGS(bm − Amum)..

else
uL = A−1

L bL or uL := uL +MDDm−LineGS(bL − ALuL).
return um.

end if

Using these components we construct an SCMG scheme as described in Algo-

rithm 5.

According to our experience with the SCMG method as applied to mul-

tiphase flow equations (Lacroix, Vassilevski and Wheeler 2001), this algorithm

features:

1. Low arithmetic complexity due to the reduction of unknowns by super-

coarsening;

2. Faster convergence rate for reservoirs with moderate thickness and het-

erogeneity in rock layers;

3. Dependence of convergence on mesh sizes in horizontal directions;

4. Sensitivity (not very strong) to coefficient jumps.
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6.2.2.3 Multilevel Preconditioners

As shown by the numerical results in Section 6.4, the performance of

the SCMG method deteriorates with stronger reservoir heterogeneity. This

ineffectiveness is caused by the fact that a 3D operator is corrected by 2D so-

lutions. However, the loss of efficiency may be ameliorated by applying strong

pre-smoothings on the first level grid Ω1. Using the one-level DD precondi-

tioners presented in Section 6.2.1, we construct two multilevel preconditioners,

namely, MLDD-Direct/SCMG in Algorithm 6 and MLDD-IC/SCMG in Al-

gorithm 7, where MLDD stands for a multilevel method while Direct and IC

denote the type of subdomain solvers on Ω1. We write the iteration schemes

in Algorithms 6 and 7 in a compact form as follows,

un+1 = un +MMLDD−Direct/SCMG(b− Aun), (6.9)

un+1 = un +MMLDD−IC(k)/SCMG(b− Aun), (6.10)

where the multilevel preconditioners are respectively given by

MMLDD−Direct/SCMG = MDDa−Direct +MSCMG(I − AMDDa−Direct), (6.11)

MMLDD−IC(k)/SCMG = MDDa−IC(k) +MSCMG(I − AMDDa−IC(k)). (6.12)

Using Algorithm 6 as a preconditioner for the BiCG-STAB solver we

reran the problem presented in Section 6.2.2. Numerical results are shown

in Table 6.3 for comparison. Clearly, we observe substantial reductions in

the linear iteration counts by applying SCMG. The deterioration of the one-

level schemes with increasing numbers of subdomains is also alleviated by the
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Algorithm 6 MLDD-Direct/SCMG

1: Solve Au = b approximately by DDa-Direct in Algorithm 1, i.e.,

un+1/2 = un +MDDa−Direct(b− Aun).

2: Correct u1 by SCMG

un+1 = un+1/2 +MSCMG(b− Aun+1/2).

Algorithm 7 MLDD-IC/SCMG

1: Solve Au = b approximately by DDa-IC(k) in Algorithm 2, i.e.,

un+1/2 = un +MDDa−IC(k)(b− Aun).

2: Correct u1 by SCMG

un+1 = un+1/2 +MSCMG(b− Aun+1/2).

Total number DDa-Direct MLDD-Direct/SCMG
of subdomains Iterations Time (sec.) Iterations Time (sec.)

4 1520 172.9 454 112.4
16 2035 121.8 531 83.3
32 3277 152.1 580 87.1
64 3448 121.1 602 68.4
256 4336 118.4 746 68.6
CG Takes 12891 iterations and 249.1 seconds.

Table 6.3: Total number of linear solver iterations and CPU time for one-level
and multilevel DD preconditioners.
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global coarse level corrections. More numerical experiments with the multilevel

preconditioners may be found in Section 6.4.

6.3 Displacement Decomposition Preconditioner (DiD)

Another important type of space decomposition method for solving

solid mechanics problems is the displacement decomposition (DiD) method.

We may simply describe it as a block diagonal preconditioner for the stiffness

matrix A. Each block or subsystem corresponds to a separate displacement

component. Axelsson and Gustafsson (1978) and Blaheta (1994) present theo-

retical analysis of the DiD preconditioners. In this section we shall investigate

the application of the DiD methods to the algebraic linear system arising from

the FE discretization of elasticity equations.

6.3.1 Displacement Decomposition

To describe the DiD algorithms, we rewrite the weak formulation of the

poroelasticity equation (3.11) here as

a(u, v) = f(v), ∀v ∈ V, (6.13)
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where f(v) includes the initial conditions, boundary conditions and pore pres-

sures. The bilinear form a(u, v) is given by

a(u, v) =

∫

Ω

[

(λ+ 2µ)
∑

i

∂ui
∂xi

∂vi
∂xi

]

dΩ

+

∫

Ω

[

∑

i

∑

j 6=i

µ
∂ui
∂xj

∂vi
∂xj

]

dΩ

+

∫

Ω

[

(λ+ µ)

(

∂uj
∂xj

∂vi
∂xi

+
∂ui
∂xj

∂vj
∂xi

)]

dΩ. (6.14)

Discretizing (6.13) in the finite element space Vh leads to the symmetric posi-

tive definite linear system (6.1) whose solution represents the nodal displace-

ments on a discretized grid. If displacement components are ordered separately

the assembled matrix A takes the form of a block structure, and the linear

system (6.1) is rewritten as





A11 A12 A13

AT
12 A22 A23

AT
13 AT

23 A33









u1
u2
u3



 =





b1
b2
b3



 .

Thus, a straightforward block diagonal preconditioner may be constructed as

B =





A11

A22

A33



 ,

where each block Aii is obtained by the FE discretization of a reduced form of

a(u, v) in (6.14), i.e.,

â(u, v) =

∫

Ω

{

(λ+ 2µ)
∑

i

∂ui
∂xi

∂vi
∂xi

+
∑

i

∑

j 6=i

µ
∂ui
∂xj

∂vi
∂vj

}

dΩ. (6.15)

131



The auxiliary Laplacian equations are

−(λ+ 2µ)
∂2u1
∂x21

− µ
∂2u1
∂x22

− µ
∂2u1
∂x23

= f1,

−µ
∂2u2
∂x21

− (λ+ µ)
∂2u2
∂x22

− µ
∂2u2
∂x23

= f2,

−µ
∂2u3
∂x21

− µ
∂2u3
∂x22

− (λ+ µ)
∂2u3
∂x23

= f3,

with boundary conditions corresponding to the considered elasticity problem.

In Section 4.3.1.1 we demonstrate the spectral equivalence of matrix B to the

stiffness matrix A, i.e.,

c1 (Bv, v) ≤ (Av, v) ≤ c2 (Bv, v) , ∀v ∈ V,

where c1 and c2 are constants that are independent of h. It follows that the

eigenvalue spectrum of B−1A is clustered and bounded independently of h, i.e.,

κ(B−1A) = O(1) uniformly in h. More specifically, it is shown by Axelsson

and Gustafsson (1978) and Blaheta (1994) that

κ(B−1A) ≤ (n− 1)c
1− ν

1− 2ν
(6.16)

where n is the spatial dimension and c is a positive constant depending only on

the computational domain and the boundary conditions. Thus, B is an optimal

preconditioner of A with respect to h, but it is not optimal with respect to

Poisson’s ratio ν. However, the inversion of B may still be too costly, so

further preconditioning to the subblocks of B is required. Methods that have

been traditionally used include incomplete block factorizations (Axelsson and
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Gustafsson 1978 and Blaheta 1994) and inner PCG iterations preconditioned

by incomplete factorizations (Blaheta et al. 2003).

Lirkov (2003) considers an even more simplified matrix corresponding

to the following Laplacians,

∇2u = f . (6.17)

The bilinear form in the weak formulation is written as

ã(u, v) =

∫

Ω

∑

i

∑

j

∂ui
∂xj

∂vi
∂vj

dΩ. (6.18)

In the case of rectangular parallelepipeds, the FE approximation of (6.17) with

special quadrature rules results in

B̃ =





Ã1

Ã2

Ã3



 , (6.19)

where subblock Ãi has a 7-point finite difference stencil. Each displacement

component may either be solved by a fast direct solver based on separation of

variables or be approximated by any preconditioner chosen from the numerous

libraries designed for the Laplace operator. The attraction of this type of

decomposition lies in its efficiency in both CPU time and memory storage. A

major drawback, however, is that B̃ is not very effective at handling reservoir

heterogeneities. To overcome this problem we propose to apply the same

discretization (7-point finite difference) to the weak form of (6.15) so that

varying material properties may be better characterized. In doing so, we
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obtain the following displacement decomposed (DiD) system,




ADiD,1

ADiD,2

ADiD,3









u1
u2
u3



 =





b1
b2
b3



 . (6.20)

Similar to the DD preconditioners, the above DiD scheme may also

be defined in the context of space decomposition and subspace corrections

(Blaheta et al., 2003). Consider the solution of a 3D elasticity problem in a

domain Ω ⊂ Rd (d = 3). Let V denote the finite dimensional subspace of a

Hilbert space V = V(Ω). Then, the displacement decomposition (6.20) may

be defined as follows:

V = V1 ⊕ · · · ⊕ Vd,

Vi = {v = (v1, · · · , vd) ∈ V, vl = 0 for l 6= i} . (6.21)

Since the displacement components are completely decoupled, we may write

MDiD−Direct in (6.20) as a space decomposition preconditioner in an additive

form,

MDiD−Direct =
d
∑

i=1

RT
i A

−1
DiD,iRi, (6.22)

where Ri and its transpose are, respectively, the restriction and prolongation

operators between V and Vi. DiD preconditioning is described in Algorithm

8.

It appears that the implementation of MDiD−Direct is as simple as an

additive Schwarz method. However, the direct subspace solutions incurred by

A−1
DiD,i may impose major preconditioning overheads. Thus we need further

preconditioning to the subproblem ADiD,iui = bi.
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Algorithm 8 DiD-Direct

1: Compute residual: rn = b− Aun.
2: Restrict and solve the subspace corrections directly: eni = A−1

DiD,iRir
n for

i = 1, · · · , d.
3: Extend and update solution: un+1 = un +RT

i e
n
i

6.3.2 Preconditioners for DiD Subsystems

Our preconditioners for the subsystems in (6.20) are still based on the

domain decomposition theory. If a domain Ω is decomposed into p subdomains,

the subspace Vi (i = 1, · · · , d) for ui in (6.21) will be further decomposed into

p sub-subspaces accordingly,

Vi = Vi,1 + Vi,2 + · · ·+ Vi,p, (6.23)

where

Vi,j = {v ∈ Vi : v(x) = 0, ∀x ∈ Ω\Ωj} .

Clearly, preconditioners based on the decomposition of (6.23) are combinations

of the DiD and DD methods.

6.3.2.1 Red-black Line Gauss-Seidel

One simple preconditioner that may be constructed from (6.23) is the

red-black line Gauss-Seidel (RB-LineGS). In a red-black coloring, we associate

one color (either red or black) to each vertical column so that lines marked

with the same color may be updated simultaneously.

Applying m iterations of RB-lineGS for the subproblem ADiD,iui = bi
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leads to the following DiD preconditioner,

MDiD−LineGS =
d
∑

i=1

RT
i M

m
DiD−LineGS,iRi. (6.24)

For one sweep of RB-lineGS we can write MDiD−LineGS,i as

MDiD−LineGS,i =

{

I −

colorp
∏

j=color1

[

I −

(

∑

k∈colori

RT
i,kA

−1
i,kRi,k

)

ADiD,i

]}

A−1
DiD,i.

While A−1
DiD,i is included here, it is never formed in the actual implementation.

The efficiency of the DiD methods is well demonstrated by the residual

reduction histories shown in Figure 6.2. Applying a 4-color line GS smoother,

i.e, MDDm−LineGS in (6.6), to the elasticity system (Au = b) certainly leads to

faster numerical convergence (the upper picture in Figure 6.2). However, it

takes more CPU time per iteration (1.81 versus 0.85 seconds) as compare to

the RB-LineGS scheme as applied to a decoupled system (ADiDu = b). Thus,

MDDm−LineGS converges slower than MDiD−LineGS in terms of CPU time, as

shown by the lower picture in Figure 6.2.

6.3.2.2 Algebraic Multigrid (AMG)

It is well known that the AMGmethods (Ruge & Stüben 1985 and 1987,

Trottenberg et al. 2001 and Vaněk et al. 1994) are very effective precondition-

ers for many linear systems stemming from a finite element or finite difference

discretization of partial differential equations. They are widely adopted in

practice for two main reasons. First, the methods are based solely on the in-

formation of the linear system to be solved. Hence, they obviate the need for
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Figure 6.2: Example 1 with 64 × 64 × 32 grid cells: Convergence histories of
multi-color line Gauss-Seidel preconditioners for the elasticity system and the
displacement decomposed system.
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constructing a sequence of nested grids, which is difficult for many applications

with unstructured meshes. Second, AMG is known to be robust with respect

to discontinuous coefficients and singular perturbations. In light of these ad-

vantages we propose to use an AMG algorithm for solving the subproblems in

(6.20).

The building components for AMG are the same as those in a standard

multigrid (Section 6.2.2.1), namely, grid transfer operators, coarse grid matri-

ces and a relaxation scheme on each level of the grid. Moreover, AMG follows

the same procedures as defined in a standard MG method. For convenience

we write a recursively called AMG V-cycle scheme as follows:

Algorithm 9 AMGV(Am, bm)

if there is a coarser grid m+ 1, i.e., m < L then
Relax on Amum = bm.
Perform coarse grid correction:
{
Set um+1 = 0.
Compute bm+1 = Im+1

m (bm − Amum).
Solve um+1 with AMGV : um+1 = AMGV (Im+1

m AmI
m
m+1, bm+1).

Correct the solution by um := um + Imm+1um+1.
}
Smooth on Amum = bm.

else
uL = A−1

L bL.
return um

end if

Recall that m (1 ≤ m ≤ L) stands for the level of the coarse grids.

Applying Algorithm 9 to the DiD system (6.20) is equivalent to replacing

A−1
DiD,i in (6.22) with an approximate inversion by the AMG method, i.e.,
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Ã−1
DiD,i = MAMG,i. We obtain the following iterative scheme,

un+1 = un +
d
∑

i

RT
i MAMG,iRi(b− Aun). (6.25)

In the case that the DiD subspaces are further decomposed by the DD

method, as shown in (6.23), Algorithm 9 is used as a subdomain solver for

each DiD component. Several sweeps of RB-lineGS are applied immediately

after the DiD system is solved. The iteration scheme takes the same form as

(6.25) with MAMG,i replaced by

MDiD−DD−AMG,i =

p
∑

j=1

RT
i,jMAMG,i,jRi,j

+ MDiD−LineGS(I −

p
∑

j=1

RT
i,jMAMG,i,jRi,jADiD,i),

where Ri,j defines a restriction from subspace Vi to Vi,j (i = 1, · · · , d and

j = 1, · · · , p), and MDiD−LineGS is given by (6.24).

A major difference of AMG from a geometrical multigrid method lies in

the coarse grid construction. Geometrical multigrids rely on an explicit coarse

grid mesh to form standard finite element function spaces while the AMG

method uses the information of the stiffness matrix on one grid to construct

subspaces on the next gird. The components of AMG are built in a separate

setup phase, as shown in Algorithm 10.

The goal of the setup step is to construct a set Cm for the coarse grid

points. For each fine grid point i ∈ Fm ≡ Ωm\Cm, a small set Cm,i ⊂ Cm

is chosen to be its interpolating points, while, for each coarse grid point j ∈
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Algorithm 10 AMG setup phase
1. Set m=1.
2. Partition Ωm into disjoint sets Cm (coarse grid) and Fm (fine grid ).
3. Set Ωm+1 = Cm.
4. Define interpolation operator Imm+1 and restriction operator Im+1

m .
5. Set Am+1 = Im+1

m AmI
m
m+1.

if Ωm+1 is small enough then
Set L = m+ 1.
Stop.

else
Set m = m+ 1.
Go to step 2.

end if

Cm ≡ Ωm+1, a small set Fm,j ⊂ Fm is selected to be its restriction points. The

interpolation and restriction operators are then decided, respectively, by

(

Imm+1um+1

)

i
=

{

um+1,i if i ∈ Cm,
∑

j∈Cm,i
ωijum+1,j if i ∈ Fm

,

(

Im+1
m um

)

j
= um,j +

∑

i∈Fm,j

ωjium,i,

where ωij is the weight.

The coarse grid set Cm on each level is chosen based on the degree of

coupling between unknowns. For fixed 0 ≤ α ≤ 1 and the index set N :=

{1, · · · , n} of all unknowns, an unknown i is said to be strongly coupled with

another unknown j if (|aij| ≥ α ·maxk∈N |aik|). Thus we define

Si := {j | |aij| ≥ αmaxk∈N |aik|}

as the set of all unknowns j to that i is strongly coupled and define ST
i as the

set of all points which are strongly coupled to i, i.e., j ∈ ST
i if i ∈ Sj. The
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coarse grid set Cm and the fine grid set Fm in Algorithm 10 are constructed

from the sets of Si and STi .

The AMG method is implemented in this work using the AMG1R5

code by Stüben. More detailed discussion of the method may be found in

Stüben (1983)

6.3.2.3 Algebraic Multigrid for an Aggregated System

The major drawback of the AMG algorithm described above is the

significant CPU time spent on the setup phase as compared to its iteration

time. For a linear elasticity problem this is acceptable as the stiffness matrix

is constant over time, and the coarsening process is, thus, required only in

the first solve. However, for nonlinear plasticity problems, the stiffness matrix

is to be reinitialized at each Newton step. Due to the fast convergence rate

of this method, the large amount of initialization time will not be compen-

sated by the iteration time. To overcome this problem we suggest applying

the AMG method to an aggregated system AC
DID,i where subscript i denotes a

displacement component. Numerical experiments demonstrate that this strat-

egy is successful for the linear system generated by the CCFD approximation

of multiphase flow equations (Vassilevski 2000a and 2000b). Aggregation is

achieved by the summation of coefficients and residuals over each small grid

block of size nx × ny × nz. The coarse grid matrix AC
DiD,i is computed by

AC
DiD,i = IC1 ADiD,i(I

C
1 )

T ,
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where IC1 is the restriction operator from the original grid Ω1 to the aggregated

grid ΩC . Clearly, AC
DiD,i is a Galerkin projection of ADiD,i to the subspace

defined on ΩC . In the case that we group unknowns within a small block

(3×1×1) that represents an aggregation along the x direction, the restriction

operator reads,

IC1 =















1 0 0 0 0 · · · 0 0 0 0
0 1 1 1 0 · · · 0 0 0 0
...

...
...

...
...

. . .
...

...
...

...
0 0 0 0 0 · · · 1 1 1 0
0 0 0 0 0 · · · 0 0 0 1















.

It corresponds to the summation over the following subsets along each grid

line in x: {1}, {2, 3, 4}, {5, 6, 6}, ..., {Nx}.

Algorithm 11 DiD-AMGC

for i = 1, · · · , d (d = 3) do
1. Perform k2 sweeps of RB line Gauss-Seidel on ADiD,iui = bi.
2. Set correction on the aggregated coarse grid to zero: eC,i = 0.
3. Compute residual and restrict to ΩC : bC,i = IC1 (bi − ADiD,iui).
4. Solve AC

DiD,ieC,i = bC,i with AMG: eC,i = AMGV (AC
DiD,i, bC,i).

5. Correct the solution by ui := ui + (IC1 )
T eC,i.

6. Perform k2 sweeps of RB line Gauss-Seidel on ADiD,iui = bi.
end for

Algorithm 11 may be written in one iteration as

un+1 = un +
d
∑

i=1

[

RiMDiD−AMGC,iR
T
i

]

(b− Aun), (6.26)

where MDiD−AMGC,i is given by

MDiD−AMGC,i = (IC1 )
TMDiD−AMG,iI

C
1

+ MDiD−LineGS,i

[

I − ADiD,i(I
C
1 )

TMDiD−AMG,iI
C
1

]

.
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If the displacement decomposition is combined with a domain decomposition,

the preconditioner MDiD−AMGC,i in (6.26) will be replaced by

MDiD−DD−AMGC,i =

p
∑

j=1

RT
i,jMDiD−AMGC,i,jRi,j

+ MDiD−LineGS,i

[

I − ADiD,i

p
∑

j=1

RT
i,jMDiD−AMGC,i,jRi,j

]

,

where Ri,j is a restriction operator from Vi to Vi,j . MDiD−AMGC,i,j stands for

the solution of displacement ui in subdomain Ωj. In this preconditioning each

subsystem in (6.20), ADiD,iui = bi, is solved by Algorithm 11 followed by

several sweeps of global smoothings by line Gauss-Seidel.

6.4 Numerical Experiments

In this section we evaluate the performance of our DD preconditioners

(MDDa and MMLDD) and DiD preconditioners (MDiD) on four numerical ex-

amples. The test cases are designed to include several features of challenging

finite element simulations: scalability with mesh refinement, large Poisson’s

ratios and discontinuities in material properties. The goal of these experi-

ments is to evaluate the effectiveness and robustness of our preconditioners

over a wide range of conditions as defined by these features.

All examples are tested on a 2.0 GHz AMD Athlon Dual processor

machine with 1 GB of memory each. Only one processor is used, which means

that we are considering the DD preconditioners with one subdomain (p = 1).

In all cases GMRES is used as the linear solver. Iterations are terminated once
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the relative residual norm is less than 10−6.

6.4.1 Numerical examples

6.4.1.1 Example 1

The first example is a three-dimensional, three-phase water-flooding

problem in a quarter of a five spot pattern. The size of the reservoir is 1056

ft×1056 ft×160 ft. The domain is discretized uniformly into a mesh consist-

ing of 16×16×8 cells. Later, the grid will be further refined to evaluate the

scalability of our linear solvers with respect to the mesh size h. The initial

in-situ porosity is 0.3. The initial oil saturation is 0.8. No free gas is present.

The permeability field varies by layers. The Young’s modulus and Poisson’s

ratio are, respectively, 3.095× 104psi and 0.3. Two wells are completed at the

reservoir corners. The injection well injects water at a rate of 500 stb per day.

The production well produces at a rate of 750 stb oil per day. A load of 6000

psi is applied on the top of the reservoir. All the other boundary faces are

confined (zero displacement in the normal direction and zero traction in the

tangential directions). No flow occurs at any of the reservoir boundaries.

6.4.1.2 Example 2

Example 2 has the same reservoir configuration and parameter distri-

bution as example 1. The difference lies in the boundary conditions for the

equilibrium equations. Instead of confining the reservoir at its lateral bound-

aries, a normal stress of 2600 psi is applied. The rectangular domain is dis-
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cretized by a mesh of 32 × 64 × 64 grid cells. To study the robustness of our

preconditioners with respect to large Poisson’s ratios, a scenario of simulations

is conducted with varying Poisson’s ratios.

6.4.1.3 Example 3

The third example, presented in Section 4.4.1.3, is used here to test the

performance of our preconditioners with respect to jumping coefficients. The

surrounding non-pay rocks are also included in the numerical calculation for a

better characterization of the reservoir boundary conditions as in Figure 4.3.

The entire domain is non-uniformly discretized into 24×24×12 grid cells with

much coarser grids in the outer domain.

In our numerical testing, the Young’s modulus in the non-pay rocks

(E2) varies in each run so that a jump discontinuity is created at the inter-

face of the reservoir and its surroundings. Performance of the DD and DiD

preconditioners with increasing jump ratios is compared.

6.4.1.4 Example 4

In the solution of initial displacement, only body forces and boundary

conditions affect force equilibrium since the initial pore pressure has not been

disturbed. Hence, the convergence behavior of a linear solver in the initial

solve may not be representative for the entire pressure evolution history. Per-

formance of different preconditioners needs to be compared over multiple time

steps to account for the pressure effects. Example 4 is slightly modified from
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Grid DDa-IC MLDD
Nx ×Ny ×Nz IC(0) IC(1) SCMG IC(0)/SCMG IC(1)/SCMG

Displacement solution in initialization
8× 8× 4 17 11 4 6 5

16× 16× 8 36 22 5 8 7
32× 32× 16 73 46 5 15 12
64× 64× 32 156 97 6 28 23

Displacement solution in the first Newton step
8× 8× 4 18 11 5 6 5

16× 16× 8 39 24 6 9 7
32× 32× 16 71 45 10 14 12
64× 64× 32 146 93 19 27 22

Table 6.4: Example 1 with varying grid refinements: Total number of lin-
ear solver iterations for one-level DD (DDa-IC) and multilevel DD (MLDD-
IC/SCMG) preconditioners.

Example 3 by imposing traction conditions on the four lateral boundary faces.

The unconfined problem is simulated for 10 time steps of 20 days each. The

entire simulation involves 228 solves of the elasticity system.

6.4.2 Convergence with Respect to Grid Refinement

Example 1 is initially discretized with a 8 × 8 × 4 grid. We refine the

mesh three times further. The last refinement generates a grid of 64×64×32.

Poisson’s ratio is fixed at 0.3. The total number of iterations in the initial

solve on each grid is reported in Table 6.4.

The IC factorization preconditioners with both zero and one fill-in level

converge slowly and appear to degrade severely with the mesh refinements (e.g.

IC(0) takes 17 iterations to converge on a 8 × 8 × 4 grid while it takes 156
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Preconditioner Memory Initialization time Sol. time/iteration
MLDD-IC/SCMG (MB) (sec) (sec)

IC(0) 845 2.06 2.37
IC(1) 1039 7.20 3.25

Table 6.5: Example 1 with 64 × 64 × 32 grid cells: Comparison of memory
storage, linear solver initialization time and solution time per iteration for the
incomplete Cholesky factorization with zero and one fill-in levels.

iterations on a 64 × 64 × 32 grid). The multilevel DD preconditioners are

superior to the one-level DD methods. They converge faster and have more

stable performance with smaller mesh size h. Despite the poor performance of

DDa-IC(0), its multilevel variant, MLDD-IC(0)/SCMG, is barely inferior to

MLDD-IC(1)/SCMG. This observation may obviate the use of IC(1) as a first

level smoother in multilevel schemes. The advantage of MLDD-IC(0)/SCMG

over MLDD-IC(1)/SCMG is demonstrated in Table 6.5 by comparing their

memory storage and initialization time.

Figure 6.3 shows decreasing relative residual norms with linear iteration

counts on a mesh of 64× 64× 32 grid cells. The better performance of SCMG

is due to the initial and boundary conditions imposed for this problem. Under

these conditions, body force is the only external force. If the reservoir is

confined horizontally, it deforms primarily in the vertical direction, and strong

couplings are also in the vertical direction. Thus, pre-smoothings using line

Gauss-Seidel together with the super-coarsening are very effective at reducing

both the high frequency and low frequency error components. The convergence

shows minimal dependence on the mesh parameter h. However, once the time
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Figure 6.3: Example 1 with 64 × 64 × 32 grid cells: Convergence histories of
one-level DD and multilevel DD (MLDD) preconditioners.

evolution starts, and pore pressure plays a role in the deformation, SCMG

shows deterioration with smaller h. The degradation is well demonstrated by

comparing the iteration counts in the initial solve and the first Newton step

(Table 6.4).

The DiD preconditioners behave similarly to the multilevel DD methods

(Table 6.6), but convergence deterioration with mesh parameter h is improved.

For simplicity, we denote the application of AMG on an aggregated coarse

grid by AMG(nx, ny, nz), where ((nx, ny, nz) represents the dimension of each

subgrid block for aggregation. Applying AMG on an aggregated system causes

only slight deterioration in numerical convergence. For example, on a mesh of

64 × 64 × 32, AMG(1,1,1) takes 21 iterations to converge while AMG(1, 1, 3)
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DiD-AMG
Grid (1,1,1) (1,1,3) (3,3,2)

Nx ×Ny ×Nz 0/0 0/1 0/2 0/1 0/2

8× 8× 4 10 14 9 13 7
16× 16× 8 17 18 12 18 12
32× 32× 16 17 21 15 20 16
64× 64× 32 21 23 18 21 17

Table 6.6: Example 1 with varying grid refinements: Total number of linear
solver iterations using DiD-AMG preconditioners. (nx,ny,nz) indicates the
dimension of a small subgrid block for aggregation. k1/k2 denotes the number
of pre/post smoothings using multi-color line Gauss-Seidel.

Preconditioner Memory Initialization time Sol. time/iteration
DiD-AMG (MB) (sec) (sec)

(1,1,1) 956 17.90 2.58
(1,1,3) 746 3.24 1.18
(3,3,2) 647 0.65 0.88

Table 6.7: Example 1 with 64 × 64 × 32 grid cells: Comparison of memory
storage, linear solver initialization time and solution time per iteration for DiD
preconditioners.
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Figure 6.5: Example 1 with 64 × 64 × 32 grid cells: Convergence histories of
DiD preconditioners. DiD-AMG(nx,ny,nz)/k-LineGS indicates that AMG is
applied to a coarse grid (generated by aggregations over each subgrid block of
nx × ny × nz) with k sweeps of post-smoothing.

and AMG(3, 3, 2) take 23 and 21 iterations, respectively. Adding one more

sweep of line Gauss-Seidel for post-smoothing further reduces the numbers of

iterations to 18 and 17 in each case. The advantage of using AMG on a coarser

grid is demonstrated by comparing DiD-AMG(1,1,1), DiD-AMG(1,1,3) and

DiD-AMG(3,3,2) in terms of memory storage, initialization time and linear

solver time per iteration (Table 6.7). Observations are:

1. As much as 32 percent of memory space is saved by using AMG on an

aggregated coarse grid.

2. The execution time per iteration is reduced at least by a factor of 2.
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3. The preconditioner AMG(1,1,1) takes a substantial amount of time to

initialize as compared to its solution time per iteration, which may

greatly limit its paractical usefulness for nonlinear plasticity problems.

However, applying AMG to the Galerkin projection of the original dis-

placement blocks we obtain significant reductions in the initialization

time.

4. The residual reduction histories shown in Figure 6.4 indicate that precon-

ditioning an aggregated matrix may cause a slow numerical convergence,

but the slight degradation is well compensated by the low computation

cost per iteration. Thus, the total execution time is reduced considerably

(Figure 6.5).

6.4.3 Convergence with Respect to Poisson’s Ratio

It is well known that the condition number of a discrete elasticity sys-

tem depends on Poisson’s ratio (ν). As ν approaches 0.5 the stiffness matrix

approaches singularity. In the following, we use the second example above to

investigate the robustness of our DD and DiD preconditioners with respect to

Poisson’s ratio.

Table 6.8 shows the numerical results of using the SCMG precondi-

tioner. We apply point Gauss-Seidel (ω = 1.0) and SOR (ω = 1.3) with

varying numbers of pre- and post-smoothings on the 2D coarse grids. (k1/k2)

in Table 6.8 denotes a SCMG V-cycle with k1 pre- and k2 post-smoothing

steps. As expected, the speed of convergence becomes slower with increasing
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Poisson ratio ω = 1.0 ω = 1.3
(ν) (3/3) (3/3) (7/7)

0.05 40 36 33
0.1 41 36 34
0.2 :w 47 36 34
0.3 50 39 36
0.34 51 43 40
0.36 53 49 47
0.4 60 54 47
0.44 82 63 57

Time/iteration (sec) 2.86 2.86 2.90

Table 6.8: Example 2 with 64 × 64 × 32 grid cells with varying Poisson’s
ratios: Total number of linear solver iterations using SCMG with different
SOR relaxation parameters ω. (k1/k2) indicates the number of pre- and post-
smoothings in SCMG.

Poisson’s ratios. Both the type of smoother and the number of smoothing

steps affect the linear solver convergence for this unconfined problem, though

they have virtually no effect for the first example (confined problem). The

SOR smoother with ω = 1.3 is even more effective at larger Poisson’s ratios.

It is interesting to note, however, that additional sweeps of SOR smoothing on

each multigrid level do not incur significant computation overhead. Results in

Table 6.8 show that adding 8 more smoothing steps (pre- and post-smoothing

together) cause but an increment of 0.04 seconds in the total execution time

per iteration. Figure 6.6 demonstrates the total solution times for different

smoothers with varying numbers of smoothing steps. It shows that the effect

of smoothing quality on the performance of SCMG becomes more essential

with larger values of Poisson’s ratio.
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Figure 6.6: Example 2 with 64× 64× 32 grid cells and ν = 0.44: Total linear
solver solution time using SCMG with point Gauss-Seidel and SOR smoothers
of varying smoothing steps.

The other MLDDmethods, DDa-IC(0)/SCMG and DDa-IC(1)/SCMG,

deliver results similar to those of the SCMG method (Table 6.9 and Figure

6.7). They all seem to be robust for Poisson’s ratios less than 0.3, though

moderate deterioration of convergence is observed for larger Poisson’s ratios.

The DiD preconditioners converge more independently of Poisson’s ra-

tio than the multilevel methods. Iteration counts listed in Table 6.10 suggest

that applying AMG to an aggregated system leads to a more stable conver-

gence rate if the aggregated grid is not too coarse, e.g., AMG(1,1,3). Applying

additional pre- or post-smoothings by line Gauss-Seidel is only effective for

coarser aggregated grids, e.g., DiD-AMG(3,3,2) in Table 6.10.

Total linear solver solution time with varying Poisson’s ratios are plot-
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Poisson ratio SCMG Hybrid MLDD Hybrid MLDD
(ν) ω = 1.3 (7/7) DDa-IC(0)/SCMG DDa-IC(1)/SCMG

0.05 33 45 38
0.1 34 45 38
0.2 34 46 38
0.3 36 48 39
0.34 40 53 41
0.36 43 56 43
0.4 47 63 46
0.44 57 * 51

Table 6.9: Example 2 with 64 × 64 × 32 grid cells and varying Poisson’s ra-
tios: Total number of linear solver iterations using multilevel DD (MLDD)
preconditioners.

DiD-AMG
Poisson ratio (1,1,1) (1,1,3) (3,3,2)

(ν) 0/0 0/1 1/1 0/2 0/1 1/1 0/2

0.05 35 46 46 44 46 48 45
0.1 45 43 44 43 51 51 48
0.2 35 41 41 42 35 39 28
0.3 46 41 42 43 49 50 47
0.34 47 46 46 47 53 48 46
0.36 48 32 33 30 55 48 47
0.4 43 45 43 44 62 53 54
0.44 47 51 49 47 95 62 62

Table 6.10: Example 2 with 64×64×32 grid cells and varying Poisson’s ratios:
Total number of linear solver iterations for DiD-AMG preconditioners. k1/k2
indicates the number of pre- and post-smoothings.
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Figure 6.7: Example 2 with 64×64×32 grid cells and varying Poisson’s ratios:
Total linear solver solution time for multilevel DD and DiD preconditioners.

ted in Figure 6.7 for different peconditioners. The results of multilevel DD

preconditioners are comparable with the AMG(1,1,1) method. The precon-

ditioning of AMG for the Galerkin projection of a fine grid problem greatly

reduces the overall grid/operator complexity. Hence, both initialization time

and CPU time per iteration are significantly decreased. The resulting precon-

ditioner is more robust with respect to Poisson’s ratio and converges two times

faster than the other methods.

6.4.4 Convergence with Respect to Coefficient Jump

In the former numerical experiments we used constant material proper-

ties for the entire domain of the reservoir. However, such ideally homogeneous
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reservoirs rarely exist in practice. Reservoirs generally consist of different rock

types with different properties and demonstrate some degree of heterogeneity

in spatial distributions. The nonuniform distribution of material properties

leads to coefficient jumps in the elasticity operator. As a result, the corre-

sponding linear system is even more difficult to solve. Robustness with respect

to rock heterogeneity is one of the most important criteria for evaluating linear

solver performance in a coupled simulation. In this section we use Example

3, as described in Section 6.4, to examine the convergence behavior of our

linear solvers and preconditioners with varying degrees of jumps in the elastic

modulus.

The computation domain has two subdomains, as shown in Figure 4.3.

We choose the Young’s modulus inside the reservoir to be E2 = 104 psi−1

and solve the problem with different Young’s moduli in the surrounding rocks

(E1). Table 6.11 gives the number of linear iterations for a discretization of

24×24×15 elements. The magnitude of the jump (E1/E2) is on an order of 1

to 6. Figure 6.8 shows the decreasing relative residual norms with CPU times

for minimum and maximum jump ratios that are, respectively, E1/E2 = 1 and

E1/E2 = 106.

As shown in the previous examples, DiD preconditioners provide bet-

ter convergence results than multilevel DD methods. Their convergence rate

is fairly stable with increasing jump discontinuity. The multilevel methods

display a slight sensitivity to coefficient jumps. The robustness of DiD pre-

conditioners becomes even more obvious in the residual reduction histories
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DiD-AMG MLDD
E1/E2 (1,1,1) (1,1,3) (3,3,3) SCMG IC(0)/SCMG IC(1)/SCMG

100 24 26 23 18 13 10
101 25 27 24 19 13 11
102 26 28 25 22 17 13
103 26 28 26 24 18 13
104 26 28 27 24 22 13
105 26 28 27 24 23 13
106 26 28 27 24 23 13

Table 6.11: Example 3 with varying magnitudes of jumps in Young’s modulus:
Total number of linear solver iterations for DiD-AMG and MLDD precondi-
tioners.

shown in Figure 6.8. Figure 6.9 plots total linear solver solution time with

respect to varying magnitudes of jumps in E. Our main observations are:

1. DiD-AMG methods are robust in handling jump coefficients. Their con-

vergence rate is almost independent of the discontinuity in E.

2. The performance of MLDD preconditioners deteriorates with increas-

ing values of E1/E2. But the degradation may be overcome or signifi-

cantly improved by adopting a stronger smoother on the first level grid,

e.g. replacing IC(0) with IC(1). The resulting preconditioner (DDa-

IC(1)/SCMG) is comparable to DiD-AMG methods on a coarser grid.

Numerical tests on a refined grid of 24 × 48 × 48 demonstrate similar

convergence results (Figure 6.10). DiD preconditioners show their robustness

in handling strong heterogeneity. Their converge rate is almost independent of
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Figure 6.8: Example 3 with varying magnitudes of jumps in Young’s modulus:
Convergence histories of different space decomposition methods. Upper: DiD
preconditioners; Lower: multilevel DD preconditioners.
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Figure 6.9: Example 3 with varying magnitudes of jumps in Young’s modulus:
Linear solver solution times for DiD-AMG and MLDD preconditioners.

coefficient jumps. Multilevel methods, however, are only comparable to DiD-

AMGs for small or moderate discontinuities (E1/E2 < 100). For larger jumps

their convergence degrades quickly even with DDa-IC(1)/SCMG, which shows

fairly good results on the original mesh. The ineffectiveness of MLDD methods

for larger values of E1/E2 may be improved by enhancing the smoothing qual-

ity on the first level grid. For example, the DDa-IC(2)/SCMG preconditioner

reduces the convergence deterioration significantly, as shown in Figure 6.10.

However, applying stronger smoothers on 3D grids incurs higher computation

costs per iteration. The resulting preconditioners may be robust, but they are

not efficient. Thus, the development of a good preconditioner centers on the

issue of balancing efficiency and robustness.
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Figure 6.10: Example 3 with a refined grid (24× 48× 48) and varying magni-
tudes of jumps in Young’s modulus: Linear solver solution time for DiD-AMG
and MLDD preconditioners.
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6.4.5 Comparison over Multiple Time Steps

In the former numerical experiments, linear iteration counts and CPU

times are recorded in either the initialization or the first Newton step. Example

4 is used here to evaluate the overall performance of our preconditioners over

multiple time steps. Young’s moduli are chosen to be E1 = 106 psi and E1 =

104 psi. The entire simulation takes 10 time steps for a 200-day production

history. The time step is fixed at 20 days.

Figure 6.11 shows the residual histories in the first Newton step using

different preconditioners. Multilevel schemes converge much faster than one-

level DD methods, which indicates that SCMG is very effective in removing

the low frequency components of the error.

Comparison of total CPU times for different preconditioners are pre-

sented in Figure 6.12. They demonstrate results similar to those in Figure

6.11, namely, multilevel preconditions are faster than one-level method. They

are even slightly faster than DiD-AMG with no grid aggregation. However,

the fastest method is the DiD-AMG algorithm as applied to a coarse grid.
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time in the first Newton step.
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Chapter 7

Parallel Implementation of the Poroelastic

Model

A parallel version of the coupled reservoir flow and geomechanics model

is developed under the IPARSv2 framework using the message-passing inter-

face (MPI). The main objective of this chapter is to consider the paralleliza-

tion issues of the domain decomposition (DD) and displacement decomposition

(DiD) preconditioners discussed in Chapter 6. This work is motivated by the

petroleum industry’s increasing demand for coupled analysis for large scale

full-field 3D applications, together with the wide spread availability of ever

more powerful parallel computers. Note that a parallel three-phase reservoir

flow model (black-oil model) and its iterative linear solvers have already been

implemented by other contributors to IPARS (Lu 2000 and Vassilevski 2000).

A parallel performance analysis shows a nearly linear speedup and more than

90% paralle efficiency (Figure 7.1). A detailed description of the IPARS par-

allel data structure is given by Edwards (1998).

This chapter proceeds as follows: Grid partitioning and data allocation

among a given number of processors in IPARS are introduced in Section 7.1;

In Section 7.2 we discuss in general the inter-processor communications re-
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Figure 7.1: Parallel scaling of the black-oil model on a 64-node Beowulf Pen-
tium II 400 MHz PC cluster with a 1.28 gigabit/sec Myrinet network.

quired by our linear solvers and preconditioners; In particular, parallel aspects

of a super-coarsening multigrid (SCMG) algorithm are addressed in Section

7.3 which is followed by another Section describing the communication reduc-

tion techniques employed in this work to improve parallel efficiency; Numerical

results are presented in Section 7.5 and 7.6 to demonstrate the parallel per-

formance of our coupled simulations.

In the following discussion we mainly use the terminology of parallel

machines/computers for distributed memory machines.

7.1 Grid Partitioning

The IPARS framework uses the domain decomposition method to di-

vide the original grid into as many subgrids as the number of processors used.
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Figure 7.2: Grid partitioning based on domain decomposition.

We choose the partition in such a way that every grid point belongs to only

one subgrid or subdomain. Each processor is then assigned to one subgrid, as

shown in Figure 7.2 (a). To handle the dependency of a grid point on its adja-

cent interface points, one overlapping boundary (ghost point) is added around

each subgrid (Figure 7.2 (b)). To obviate the necessity of data exchange be-

tween the flow and geomechanics model among processors, both models use

the same grid partitioning and share the same memory storage. The solution

proceeds by solving the original problem in each subdomain followed by data

exchanges of the overlapping boundary conditions on the padded interfaces.

In IPARS grid cells and degrees of freedom are grouped in clusters

of vertical columns. Subdomains are obtained by decomposing the original

167



grid in horizontal directions (x and y). This implies that degrees of freedom

along a vertical grid line are associated with only one processor. The goal of

grid allocation is to distribute the total arithmetical workload evenly among

processors. Since the arithmetical workload is assumed to be proportional

to the number of grid points, the decomposition algorithm distributes grid

columns as evenly as possible over processors. Another major concern in grid

partitioning is the so called surface-to-volume ratio. In order to reduce inter-

processor communications, the ratio needs to be minimized.

7.2 General Inter-processor Communications

After grid partition and data distribution, the actual solution process

can be separated into two phases, namely, the setup phase and the linear

system solution phase. The setup phase involves the assembly of the stiffness

matrix and the residual calculation for discretized poroelasticity equations.

Since we are generating a nodal based linear system of equations, only “ghost

point” updates are required at this stage. Parameters that need to be updated

include:

1. Material properties: E and ν;

2. Biot’s constants: α and 1
M
;

3. Fluid variables: pressure, saturation and density for each phase;

4. Initial stresses and displacements.
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In the linear solution phase using Krylov subspace methods, generally three

types of operations require data communications among processors:

1. Matrix-vector product: f = Au;

2. Preconditioning matrix-vector product, e.g., fi = ADiD,iui where ADiD,i

is the subspace operator arising from the displacement decomposition;

3. Global scalar vector-vector product: a = u · v.

For a matrix-vector product, only the data at ghost points needs to be trans-

fered between neighboring processors. A vector-vector product, however, re-

quires a global summation over all processors, involving the passage of data

from slave processors to a master processor and broadcasting the summation

result from the master processor to all other processors. Frequently, the MPI

libraries for collective communications are employed here to optimize commu-

nications.

Parallel implementation of a preconditioner depends on its type. For all

the preconditioners developed in this work, the “ghost point” communication

technique is sufficient, except for the SCMG scheme that will be discussed in

detail in the next section.

7.3 Parallel Super-coarsening Multigrid (SCMG)

If a multigrid algorithm is to be implemented on a parallel system,

additional aspects (mathematical and technical) must be taken into account.
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Here, we are interested in practical issues such as the objective of minimizing

the corresponding parallelization overhead. In grid partitioning of a multigrid

algorithm, the mapping of subgrids or subdomains on each grid level to in-

dividual processors is based on the decomposition at the fine grid level. In

general, there is no reason to change the partitioning of subdomains or the

mapping of coarse grids to individual processors. In other words, the same

geometric points on different grid levels always belong to the same processor.

Otherwise, additional communications would be required in intergrid transfer

operations.

In terms of data communications, two types of overlappings are required

by the multigrid components (Lang et al. 2000), i.e.,

1. Horizontal overlap (HGhost): after a coarse grid is decomposed, at least

one overlapping boundary is placed around each subdomain. The cor-

responding ghost point communications are required by pre- and post-

smoothings, as well as restriction operations;

2. Vertical overlap (VGhost): in intergrid transfer operations, whenever a

coarse grid point requires the data information of a fine grid point that

belongs to other processors, the coarse grid point must have a local copy

of the data at that fine grid point.

Here we consider the five components of a SCMG scheme. Data communica-

tions in each component are detailed as follows.
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Relaxation

Assume that an initial guess is given and that the HGhost nodes have

been updated. Then, using a standard smoother, each processor may inde-

pendently perform one sweep of relaxation over its own subgrid. After all

processors have completed this sweep, the information at the HGhost points

must be updated for either the next relaxation sweep or the residual calcula-

tion. In the case that a multi-color Gauss-Seidel is used for smoothing, the

HGhost points must be updated after the relaxation for each color.

Residual calculation

The pre-smoothing step in a coarse grid correction scheme is followed

by the residual calculation. Since we have already updated the HGhost points

after each relaxation, there is no need for new updates prior to the defect

calculation. Each processor can complete this task independently.

Restriction

If full weighting is used as a restriction operator, each coarse grid point

must know the residual values of all its neighboring fine grid points. Local

copies are required in the restriction operation if some of these fine grid points

belong to other processors. Since the data communications here involve two

grid levels, local copies of the data should be stored in the VGhost points.

Later, we will introduce a simple scheme to transform VGhost (fine-to-coarse)

communications to HGhost (coarse-to-coarse) communications for the purpose
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of reducing communication overhead.

Interpolation

Using a bilinear interpolation, as in our case, if the HGhost nodes on

a coarse grid have already been updated after the last smoothing step, we

do not need additional communications to compute the fine grid corrections.

If the HGhost nodes on the fine grid have not been changed since the last

smoothing step, we may even perform the correction step on those HGhosts

points without data transfers between processors.

Generation of coarse grid operator

In the case of using Galerkin coarse grid operators, the calculation

of matrix coefficients at a coarse grid node requires the coefficient data of

all its neighboring fine grid nodes. The communications involved here are

quite similar to those in a restriction operation. They are basically the inter-

grid data transfers among processors. The amount of data to be transfered,

however, is significantly larger than that in the residual restrictions.

7.4 Communication Reduction Techniques

The parallel efficiency of an algorithm depends on the ratio of commu-

nication to computation time. It is directly proportional to the ratio of volume

to surface area for each subdomain. In a multigrid cycle, the volume-to-surface

area ratio decreases as the grid becomes increasingly coarser. In addition, as
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fewer and fewer grid points are mapped onto multiple processors, more and

more processors are left without any grid point to compute on very coarse

grids. Whereas the idling processors on very coarse grids appear to be the

main problem at first sight, experience and theoretical considerations demon-

strate that the large communication overhead on the coarse grids is usually

of greater concern. Special techniques have been developed to reduce coarse

level communications, e.g., coarse grid agglomeration and employing different

cycle schemes. However, as long as one demands that the results of a paral-

lel algorithm be identical with those of a sequential algorithm, a substantial

reduction in the total communication costs will not be achieved.

In a simple but practically useful communication model, the time re-

quired for sending a message of length L in one packet is modeled by (Trot-

tenberg 2001),

tcomm = α + βL, (7.1)

where α is the start-up time for communication that must be expended when-

ever a message is sent; β represents the time necessary to transfer one word,

and it depends on the bandwidth of the respective communication channel.

For a realistic evaluation of the performance of a solution method on a partic-

ular parallel system, tcomm must be compared with the computing time tcomp

needed, e.g., for an arithmetic operation. Employing this model, the overall

time spent in communication is determined by the architectural parameters α

and β, the total number of words to be transfered, and the number of messages

to be sent. Given a parallel computer, it is always useful, even necessary, to
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take the size of α and β into account when an algorithm is to be parallelized.

A rule of thumb frequently used is as follows: If α is large, the number of

messages should be minimized, while, if β is large, the communication volume

(the total number of words) is the primary concern. Here we present several

simple and easily implemented techniques to reduce linear solver paralleliza-

tion overhead by reducing both the number of messages and the number of

words to be transfered.

1. Inter-grid (VGhost) communications from fine to coarse grid may be re-

placed by intra-grid (HGhost) communications on the coarse grid. For

example, in a restriction operation, to handle the dependency of a coarse

grid point on its fine grid neighbors that have been assigned to other pro-

cessors, one may simply send those fine grid residuals to the processor

that owns the coarse grid point and performs the final weighted sum-

mation. However, a more efficient approach is to let each individual

processor compute its own share of the restricted defect and then send

its share to the processor where the coarse grid node belongs. In doing

so, we not only distribute the arithmetic operation (multiplication and

summation in a restriction operator) over more processors but also re-

duce the amount of data to be sent and received. The total number of

messages in communication stays the same, though. The same strategy

may be applied to the calculation of Galerkin coarse grid operators.

2. On coarse grid levels the start-up time α becomes increasingly dominant
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in the total communication time due to the decreasing number of grid

points. To overcome this problem, one may pack several variables in one

packet instead of sending one variable at a time.

3. If a multi-color Gauss-Seidel is used for smoothing the data volume L

in (7.1) may be reduced by the corresponding multi-color update after

each fractional sweep.

4. Communications overhead is incurred by message handling and network

latency, as shown in (7.1). The latter may be partially or completely

hidden by overlapping communication with computation. For example,

in a displacement decomposition algorithm the displacement components

are completely decoupled from each other. Thus, RB line Gauss-Seidel

iterations may be performed independently for each component, and one

component may be relaxed while a processor is waiting for incoming data

for other components.

7.5 Numerical Example 1

The first example is a 3D waterflooding problem. The reservoir has a

dimension of 76, 800 ft×76, 800 ft×1059 ft. It is discretized into 256×256×22

grid cells with ∆x = ∆y = 300 ft in the horizontal directions and a varying

thickness in the vertical direction. In total, there are around 1.52 million grid

points and 8.88 million unknowns. Porosity, permeability, Young’s modulus

and Poisson’s ratio are all heterogeneous by layers. The initial reservoir pres-
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sure is 3500 psi, and the initial oil saturation is 0.8. No free gas is present. A

water injection well is located in one corner of the reservoir, and twenty-five

production wells spread out over the entire reservoir. The injection well in-

jects 4000 stb of water per day. Each production well produces 2000 stb of oil

per day. Linear solver tolerance for the elasticity system is 10−4. Nonlinear

iteration tolerance for the coupled system is 10−5. The purpose of testing this

case is to evaluate the parallel performance of the SCMG method as defined

in Algorithm 5.

Numerical experiments are performed on a Cray-Dell Linux cluster at

the Texas Advanced Computing Center (http://www.tacc.utexas.edu). The

cluster employs of 600 3.06 GHz Xeon processors, including 282 Dell dual-

processor PowerEdge 1750 compute nodes, 16 Dell dual-processor PowerEdge

2650 compute-I/O server-nodes and 2 Dell dual-processor PowerEdge 2650

login/development nodes. Each compute node has 2GB memory. A Myrinet-

2000 switch fabric interconnects the nodes using PCI-X interfaces. The net-

work has a point-point bandwidth of 250MB/sec. Here we report the number

of linear iterations, the CPU time Tp on p processors, the parallel speed-up

Sp = T1/Tp and the parallel efficiency Ep = Sp/p. Since the memory of one

processor is not enough for this particular application, we compute T1 ideally

by T1 = T8 × 8 where eight is the minimum number of processors required to

run the example. Total CPU time and total number of linear solver iterations

for the first three time steps are presented.

As we mentioned earlier, communication cost is the primary concern
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SCMG
3 levels 6 levels

p Iterations Tp (sec.) Ep Iterations Tp(sec.) Ep

8 221 1063.2 1.000 197 954.0 1.000
16 221 517.0 1.030 197 468.2 1.020
24 221 349.0 1.020 197 316.3 1.000
32 221 261.0 1.020 197 240.9 0.990
48 221 176.7 1.000 197 160.0 0.994
64 221 133.0 1.000 197 122.5 0.974
80 221 108.9 0.977 197 100.5 0.949
128 221 77.7 0.855 197 72.9 0.819

Table 7.1: Example 1: Comparison of SCMG with different number of coarse
grid levels.

in the parallel implementation of a multigrid algorithm. This is especially

true for a SCMG scheme that is featured by the low arithmetical complexity.

Besides the idling processors, network latency may finally dominate the arith-

metic operations on very coarse grids. This may result in a significant loss

of efficiency for the overall performance of the SCMG method if coarse grid

communications are not handled properly.

Table 7.1 shows the comparison results for SCMG with three and six

coarse grid levels, respectively. In the later case, the coarsest grid is 2× 2× 1

with at most 4 processors while the original grid is 256 × 256 × 22 with as

many as 128 processors. Obviously, large amount of data communications is

involved in the coarsening process. However, numerical results in Table 7.1

show that the parallel efficiency is nearly 95%, even with six multigrid levels,

if no more than 80 processors are employed. In the case of 128 processors,
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the loss of efficiency is due to the fact that we do not scale up the size of

the problem as we increase the number of processors, and, as a result, the

computational intensity on each processor is getting lower as compared to the

increasing amount of data communications.

Note further that the number of coarse grid levels does affect the conver-

gence rate of the SCMG method. For instance, with three multigrid levels, our

linear solver takes 221 iterations to converge while it takes only 197 iterations

with six multigrid levels. However, as the number of processors increases, the

CPU time gained by faster numerical convergence rate is offset by the larger

communication overhead on those additional coarse grids. Thus, the overall

performance of SCMG with different number of grid levels demonstrates only

marginal difference if more than 32 processors participate in the computation.

The displacement decomposition (DiD) preconditioners are also tested

using this numerical example. On a parallel system, these preconditioners are

implemented as a combination of DiD and DD methods, as defined in (6.26)

and (6.27). Numerical results (total number of linear iterations, total CPU

time, parallel efficiency and parallel speed-up) for DiD-DD-AMG(1,1,1) are

plotted in Figure 7.3 with varying number of processors. As expected, its

numerical convergence rate deteriorates rapidly as more and more processors

participate in the computation. This is shown clearly by the increasing lin-

ear iteration counts in Figure 7.3. Degradation is due to the lack of global

coarse grid corrections after the one-level DD smoothing. This observation

motivates our investigation of new multilevel schemes using DiD-AMG as the
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Figure 7.3: Example 1: Comparison of DiD-DD-AMG(1,1,1) with and without
SCMG corrections.
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first level smoother followed by a global coarse grid correction by SCMG. The

corresponding results below are also plotted in Figure 7.3 for comparison.

1. The SCMG method is effective at accelerating the numerical conver-

gence rate of the DiD-DD-AMG preconditioner. The resulting multi-

level scheme (DiD-DD-AMG/SCMG) is at least three times faster than

DiD-DD-AMG in terms of iteration counts.

2. The convergence deterioration experienced by the DiD-DD-AMGmethod

is substantially improved. The number of total linear iterations is fairly

constant with varying numbers of processors.

3. The new multilevel preconditioner is two times faster than the DiD-DD-

AMG method.

4. Parallel efficiency is increased from 0.61 to nearly 0.8.

Experiments with DiD-DD-AMG applied to an aggregated system (DiD-DD-

AMG(2,2,2)) demonstrate similar results, i.e., faster convergence rate and less

convergence degradation, as shown in Figure 7.4. In the case of 128 processors,

the efficiency is improved by as much as 25%. The convergence rate is almost

1.5 times faster than the DiD-DD-AMG(1,1,1)/SCMG preconditioner.

7.6 Numerical Example 2

In the former example we have a relatively thin reservoir with large hor-

izontal extensions. The pancake reservoir topology results in a larger number
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Figure 7.4: Example 1: Comparison of DiD-DD-AMG(2,2,2) with and without
SCMG corrections.
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of grid cells in the horizontal directions as compared to the vertical direction.

Our numerical studies indicate that super-coarsening in the vertical direction

is very effective at damping the low frequency aggregated components of the

error. Thus, SCMG is clearly a method of choice in constructing efficient

multilevel schemes for this type of reservoir application. However, the effec-

tiveness of the SCMG method depends crucially on the relative thickness of a

reservoir with respect to its areal extensions and the heterogeneity of different

rock layers. In the following we present the numerical results of SCMG based

on a real life application. It will be shown later that the SCMG method is less

effective due to the reservoir’s large thickness and strong heterogeneity.

Figure 7.5 shows a reservoir below an overburden with varying thick-

ness. For a better characterization of the changing boundary conditions around

the reservoir, we include the surrounding non-pay rocks in our calculation. The

entire domain has an area of 5, 245.4 ft× 5, 246.1 ft and a thickness of 3, 275.6

ft. It is uniformly discretized into 128× 64× 111 grid cells. In total, there are

about 5.5 million degrees of freedom. The reservoir surface elevation shown

in Figure 7.5 indicates a dipping reservoir. Realistic data of porosity, per-

meability and elastic properties are used in the simulation. Figures 7.8 and

7.9 show the spatial distribution of the Poisson’s ratio and Young’s modulus,

respectively.

From the saturation profile shown in Figure 7.7, it can be clearly seen

that there are two pay-zones inside the reservoir. We denote the upper zone by

layer I and the lower zone by layer II. Well placement in each layer is based on
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Figure 7.5: Example 2: Reservoir porosity distribution.

the in-situ oil distribution, as shown in Figures 7.10 and 7.11. There are four

injection and three production wells in layer I while there are two injection

and two production wells in layer II.

Numerical studies are conducted on the same cluster as used for the

first example. Convergence tolerance for Newton iterations is chosen to be

10−5. A relative tolerance of 10−4 is used for the linear solution of elasticity

equations.

We observe that the SCMGmethod is ineffective for this example due to

its large thickness and strong heterogeneity in the vertical direction. Thus, nu-

merical results are only reported for MLDD-IC(0)/SCMG and DiD-DD-AMG

preconditioners which are defined in (6.12) and (6.27), respectively. Tables
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Figure 7.7: Example 2: Oil saturation profile at y = 2582.1 ft.
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Figure 7.8: Example 2: Poisson’s ratio.
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Figure 7.9: Example 2: Young’s modulus.
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Figure 7.10: Example 2: Well distribution in layer I.

p MLDD-IC(0)/SCMG DiD-DD-AMG(1,1,1) DiD-DD-AMG(2,2,5)

8 2228 2200 2192
16 2255 2479 2457
24 2252 2611 2611
32 2262 2780 2781
48 2286 2996 2977
64 2316 3226 3161

Table 7.2: Example 2: Comparison of total linear iteration counts for different
preconditioners.
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Figure 7.11: Example 2: Well distribution in layer II.

p MLDD-IC(0)/SCMG DiD-DD-AMG(1,1,1) DiD-DD-AMG(2,2,5)

8 6075.7 3699.2 1808.9
16 3259.7 2137.1 1165.1
24 2360.0 1594.6 918.8
32 1658.0 1243.4 694.3
48 1188.7 896.4 521.1
64 946.9 705.3 417.1

Table 7.3: Example 2: Comparison of total CPU time in seconds for different
preconditioners.
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Figure 7.12: Example 2: Domain decomposition with 16 processors.

p MLDD-IC(0)/SCMG DiD-DD-AMG(1,1,1) DiD-DD-AMG(2,2,5)

8 1.0 1.0 1.0
16 0.932 0.866 0.776
24 0.858 0.773 0.656
32 0.916 0.743 0.651
48 0.852 0.688 0.579
64 0.802 0.656 0.542

Table 7.4: Example 2: Comparison of parallel efficiency for different precon-
ditioners.
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Figure 7.13: Example 2: Comparison of DiD-DD-AMG(2,2,5) with and with-
out SCMG corrections.
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7.2, 7.3 and 7.4 compare the multilevel DD and the DiD-DD preconditioners

in terms of linear iteration count, total CPU time and parallel efficiency for

the first ten time steps. Our observations are as follows:

1. MLDD-IC(0)/SCMG has a faster and more stable numerical convergence

rate than the DiD-DD type of preconditioners. It takes less linear iter-

ations to converge. As the number of processors increases, the method

shows slight convergence degradation. This is reflected by the fairly con-

stant linear iteration counts in Table 7.2 and the high parallel efficiency

(more than 80%) in Table 7.4. However, MLDD-IC(0)/SCMG precon-

ditioner appears to be more costly in terms of CPU time per iteration.

Thus, its overall performance is still inferior to the DiD-DD type of pre-

conditioners, as shown in Table 7.3, even though it converges numerically

faster.

2. Both DiD-DD-AMG(1,1,1) and DiD-DD-AMG(2,2,5) perform consis-

tently better than the multilevel scheme (Table 7.3). Recall that DiD-

DD-AMG(2,2,5) represents applying the DiD-DD-AMG preconditioner

to an aggregated coarse grid by grouping each subgrid system of 2×2×5.

It converges more than two times faster than the MLDD-IC(0)/SCMG

method. A major problem of DiD-DD preconditioners is that they do

not scale with an increasing number of processors. For example, in the

case of 64 processors, the parallel efficiency of DiD-DD-AMG(2,2,5) is

as low as 54.2%. The severe loss of scalability is mainly caused by:
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(a) Large amount of data communications incurred by using more pro-

cessors.

(b) Convergence deterioration with an increasing number of subdo-

mains due to the lack of global coarse grid corrections (Table 7.2).

(c) Low computation intensity as compared to large communication

overhead. Applying the AMGmethod for solving each displacement

components is shown to be fast and efficient. The communication

time, thus, appears to be more significant.

In general, the poor parallel scalability due to a convergence degradation can

be alleviated by applying coarse space corrections. In Figure 7.13, we do ob-

serve a reduction in the total number of linear iterations and an improved

parallel efficiency and scalability. However, a comparison of the total CPU

time indicates that the improved numerical convergence rate is still not fast

enough to compensate the additional CPU time incurred by SCMG. It imme-

diately follows that for some reservoir applications with large thickness and

strong heterogeneity in the vertical direction, applying SCMG may be counter

productive. Therefore, improving the effectiveness and efficiency of the SCMG

preconditioner for such applications is the top priority of our future work.
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Chapter 8

Concluding Remarks and Future Work

In this dissertation, a mathematical model of multiphase flow in de-

formable porous media is derived based on the Biot’s consolidation theory.

Finite element discretization and numerical schemes for solving the coupled

system of equations are presented. Preconditioners for both outer and inner

iterations are developed. Numerical studies are conducted to evaluate the

performance of different preconditioning techniques. Parallel implementation

issues of the poroelastic model are also addressed.

8.1 Conclusions

The main accomplishments of this dissertation are summarized as fol-

lows:

Mathematical model and numerical discretization

• Based on the Biot’s consolidation theory, a mathematical model of mul-

tiphase flow coupled with geomechanic features is derived.

• A Galerkin finite element scheme is used to discretize the poroelastic

equations, and an expanded mixed finite element algorithm is used to
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discretize the multiphase flow equations.

Coupling Scheme

• An iterative coupling technique is employed to solve the two coupled

field equations. The iterative method, frequently adopted by reservoir

engineers in coupled geomechanics and reservoir simulation, is reformu-

lated in a general framework. By doing so, the method can be viewed as

one iteration of a preconditioned Richardson scheme applied to a fully

coupled system. In addition, adding a rock compressibility term to the

pressure equation is equivalent to approximating the Schur complement

matrix S. The resulting preconditioner is shown to be spectrally equiv-

alent to S. Thus, it is optimal in the sense that convergence rate is

independent of discretization parameter h.

• Several preconditioners for the iteratively coupled technique are pro-

posed. Their effectiveness and robustness are investigated over a wide

range of fluid and rock properties such as fluid compressibility, rock per-

meability and jumps in material properties.

• Numerical studies indicate that preconditioners chosen on the sole base

of boundary types (confined or unconfined) may not provide optimal

convergence results due to reservoir heterogeneity and complex inter-

actions between reservoir and its surroundings. A practical strategy is

introduced for dynamically choosing the right preconditioner element by

element. The numerical efficiency of this method is demonstrated.
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• A new introduced preconditioner S̃p5 appears to be more capable of han-

dling jump coefficients. But its convergence behavior depends crucially

on the scaling factor β. A practical guidance on the choice of β is rec-

ommended. Numerical experiments show that these approximate values

of β lead to a convergence rate which is quite close to the one generated

by an optimal value.

• A converged iteratively coupled scheme for single phase flow is devel-

oped by casting an outer loop for iterations between two field equations,

namely, flow and poroelasticity. Its convergence behavior is compared

to that of an iteratively coupled approach with different precondition-

ers. Numerical results indicate that the converged iterative scheme can

accelerate the nonlinear convergence rate. But it may be less efficient

than the iterative coupling for some problems.

Linear solvers and preconditioners for discrete elasticity system

• Krylov subspace methods such as PCG, GMRES and BiCG-STAB are

implemented for solving the algebraic linear system generated by the

FE discretization of poroelastic equations. Comparison results for non-

symmetric preconditioners suggest that GMRES with restart capability

is the method of choice.

• One level and multilevel domain decomposition preconditioners are de-

veloped. The multilevel schemes use a super-coarsening multigrid (SCMG)

for residual correction in the coarse spaces. It is characterized by low
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arithmetic complexity due to a substantial reduction of unknowns. For

reservoir applications with a relative small dimension in the vertical di-

rection as compared to the areal extensions, the method is shown to be

very effective in reducing the low frequency aggregated components of

the error. Thus, performance of a one level scheme can be substantially

improved by applying SCMG for additional corrections.

• A displacement decomposition technique is used to decouple the elas-

ticity system into subsystems respectively for each displacement com-

ponent. Applying certain quadrature rule in the numerical integration

leads to a linear system which is equivalent to the one generated by a

7-point stencil finite difference scheme. An algebraic multigrid (AMG)

method is then used to solve each subproblem. The so called displace-

ment decomposition preconditioner (DiD-AMG) is shown to be very effi-

cient and robust with respect to grid refinement, high Poisson ratio and

large jumps in coefficients.

• Major drawbacks of the DiD-AMG method lie in its large memory re-

quirement and long CPU time for initialization, which may greatly limit

its practical usefulness for nonlinear poroplasticity problems. The prob-

lem is overcome in this work by applying AMG for solving the Galerkin

projection of the original subsystem on an aggregated coarse grid. If the

aggregated grid is not too coarse, the resulting preconditioner exhibits

only slight deterioration in numerical convergence. But the initialization
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time and actual solution time are well balanced. It converges at least

two times faster than the original method.

Parallel Performance of Coupled Reservoir Flow and Geomechanics

• A parallel version of coupled multiphase flow and gemechanics simulator

is implemented in the IPARS framework. Special techniques are applied

to minimize the communication overhead induced by our precondition-

ers, especially the SCMG method.

• For the SCMG preconditioner, numerical experiments on a synthetic

case with 8.88 millions of unknowns show above 85% parallel efficiency.

The performance of DiD-AMG type of methods tend to degrade as more

processors are used, although they converge very fast. The convergence

deterioration can be overcome or alleviated by constructing a multilevel

scheme with the methods of DiD-AMG and SCMG. Parallel performance

of one-level DiD preconditioners can be significantly improved.

• Ineffectiveness of the SCMG, in the case that a reservoir is thick and

strongly heterogeneous, is shown by a real life application. Numerical

results indicate that applying the SCMG method in such case can im-

prove the parallel efficiency of a linear solver, but may slow down its

overall convergence rate.
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8.2 Future Work

Directions of future research suggested by this work are:

• Further investigation of preconditioners for the iterative coupling tech-

nique, which includes both theoretical analysis and numerical tests.

• Improving the performance of the SCMG method.

• Implementation of a fully coupled scheme using a Krylov subspace method

and the preconditioners developed in this work.

• Adaptive time step selection with different time scales for flow and dis-

placements.

• Mesh adaptivity.

• Adding the dependence of permeability field on pressure and stresses.

• Taking into account thermal effects in a coupled analysis for multiphase

flow and developing efficient iterative scheme for solving pressure, satu-

rations, displacements and temperature.

• Coupling of multiphase flow with poroplasticity on parallel computers.

• Coupling an existing compositional model with poroelasticity model.

• Modifying the elasticity scheme by adding discontinuous Galerkin ap-

proximation in the neighborhood of low permeability and low fluid com-

pressibility.
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