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Abstract 

 Strained cycloalkynes, particularly cyclohexyne and cyclopentyne, are interesting 

synthetic intermediates that have largely been overlooked in organic synthesis. In addition, the 

Pauson-Khand reaction is a formal [2+2+1] cycloaddition that utilizes an alkene, an alkyne, and 

carbon monoxide. The use of strained cycloalkynes in the Pauson-Khand reaction has been 

surveyed, but it has not been performed successfully for cyclohexyne and cyclopentyne containing 

substrates. Design and optimization of such a reaction could lead to the swift synthesis of a 

polycyclic scaffold that is found in many natural products, many of which have not been 

synthesized. 

 This thesis presents several approaches to a new class of vinyl triflates that could serve as 

cyclohexyne precursors for the Pauson-Khand reaction. While only a few cyclohexyne precursors 

were successfully synthesized, a synthetic route is presented that can access this class of molecules 

in moderate yield over three steps. In addition, use of these cyclohexyne precursors in the Pauson-

Khand reaction led to the formation of the desired polycyclic product.  
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1. Introduction 

1.1 The Synthesis and Application of Strained Cycloalkynes  

 Strained cycloalkynes are highly reactive synthetic intermediates, the use of which has 

been demonstrated through a variety of reactions, including Diels-Alder reactions, nucleophilic 

additions, and a number of other cycloadditions.1 While rings with eight atoms or more contain 

alkyne bonds that can be stabilized via the use of a transition metal, the isolation of smaller 

cycloalkynes is impractical due to their instability, making their in situ production more practical 

in synthetic applications.2 The presence of cyclohexyne was first theorized by Roberts in 1957 as 

the intermediate in the coupling of phenyllithium and chlorocyclohexene (1) (Scheme 1).3 

Elimination of chloride produces cyclohexyne (2), which can then undergo carbolithiation to form 

cyclohexene 3. 

 

Scheme 1 Generation of cyclohexyne from chlrocyclohexene. 

 Similarly, cyclopentyne (4) was first theorized as an intermediate by Wittig in 1960 as an 

intermediate in the reaction of dibromide 5 with magnesium and dihydrazone 6 with HgO (Figure 

1).4 This reactive intermediate could then undergo a Diels-Alder reaction with furan 7 to yield 

molecule 8 in low yield, providing evidence for the presence of cyclopentyne (4). It has also been 

demonstrated that cyclopentyne can be produced from a rearrangement of cyclobutanone.5 
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Figure 1 Generation of a cyclopentyne intermediate. 

 The reactivity of these small cycloalkynes can be attributed to their significant angle 

strain.1 While a typical alkyne has a bond angle of 180°, unsubstituted cyclohexyne (2) and 

cyclopentyne (4) have bond angles of 132° and 116° respectively, according to computational 

studies. Substitution adjacent to the alkyne can further distort the ring structure.1 

 Since the initial discoveries regarding cyclohexyne and cyclopentyne, there have been 

efforts to produce small cycloalkynes using milder conditions. Guitián has demonstrated that vinyl 

triflate 9, when combined with an excess of cesium fluoride, can be used to produce cyclohexyne 

(2) in situ (Scheme 2).6 The nucleophilic attack of the TMS group followed by the elimination of 

triflate ion yields the desired intermediate. Cyclohexyne (2) can then be trapped with pyranone 10 

in a Diels-Alder-decarboxylation cascade that yields tetraline 11 in good yield.  

 

Scheme 2 Generation of cyclohexyne form vinyl triflate 9. 

 Using a similar elimination mechanism, Fujita has developed vinyl hydroiodonium salt 12, 

which can produce cyclohexyne (2) in the presence of base (Scheme 3).7 Again, cyclohexyne (2) 
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can then be used for a variety of cycloaddition reactions, in this case a Diels-Alder reaction with 

cyclopentadienone 13 followed by decarbonylation to yield tetralin 14.  

 

Scheme 3 Hyperiodonium salts as cyclohexyne precursors. 

 Using Guitián’s cyclohexyne precursor, the vinyl triflate 9, Garg has demonstrated that 

cyclohexyne (2) can undergo a number of cycloadditions (Figure 2).1 Generally, each reaction 

proceeded with moderate to excellent yield, producing 15-19. This methodology demonstrates the 

use of cyclohexyne in swiftly producing unique molecular architectures with various cycloaddition 

partners. The analogous five-membered ring precursors have been demonstrated to produce 

cyclopentyne, which was used for similar cycloadditions; however, the substrate scope was more 

limited and yields were lower, owing possibly to the reduced stability of cyclopentyne versus 

cyclohexyne.1 
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Figure 2 Cycloadditions of cyclohexyne with a variety of compounds. 

 Indeed, the chemistry of small cycloalkynes has proven to be a diverse but largely 

overlooked topic in organic synthesis.1 In addition, except for work regarding the 

cyclotrimerization of cyclohexyne and cyclopentyne, little has been done in regards to utilizing 

these unstable intermediates in transition metal catalyzed cycloadditions.8 

1.2 The Pauson-Khand Reaction 

 The Pauson-Khand reaction (PKR) was first reported in 1973.9 It in involves the reaction 

of alkyne 20 coordinated to a. dicobalt complex, alkene 21, and carbon monoxide, forming 

cyclopentenone 22 in a single step (Scheme 4).9 
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Scheme 4 General form of the Pauson-Khand reaction. 

 While the intermolecular version of the reaction was the first to be reported and explored, 

it was found that the intramolecular form, in which the alkene and alkyne are linked, proceeds in 

better yield with fewer issues in regards to regiochemistry.10 In addition, the intramolecular 

reaction can be used to swiftly form bicycles from linear molecules (Scheme 5). Finally, 

replacement of the alkene with either an imine or an aldehyde, such as in alkyne 23, can form the 

corresponding lactams and lactones 24, greatly expanding the substrate scope of the reaction.10 

 

Scheme 6 Synthesis of cyclopentenones, lactams and lactones via the PKR. 

 Although the original procedure for the reaction required a stoichiometric amount of the 

dicobalt complex, more recent advances have allowed this cycloaddition to proceed with a 

catalytic amount of transition metal and a carbon monoxide source.11 Likewise, enantioselective 

varieties of the PKR have been developed using phosphine ligands in various systems.10 

 The PKR has also been used on cyclic alkynes, primarily cycloheptyne and cyclooctyne, 

in order to swiftly form polycyclic structures. Schreiber first reported the use of the cyclooctyne 

containing substrates 25 with norbornene (26), producing cyclopentenones 27 and 28 in high yield, 

although no selectivity was observed for the orientation of the cyclopentenone (Scheme 7).12 It 
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was found, however, that the intramolecular reaction proceeded with an excellent regiochemical 

outcome and with good yield.  

 

Scheme 7 First example of a strained cycloalkyne in the PKR. 

  Masuda and coworkers developed a similar methodology using cycloheptyne 29 to form 

polycycle 30 (Scheme 8).13 In addition to quickly accessing these complex substrates, heteroatoms 

were incorporated into the carbon chain linking the alkyne and alkene, demonstrating some amount 

of functional group tolerance in this reaction. 

 

Scheme 8 Use of cycloheptyne in the PKR. 

 A very similar approach was taken by Shea and coworkers, who utilized cyclooctyne, 

cycloheptyne, and cyclohexyne containing substrates 31 in the intramolecular PKR to form 

polycycles 32 (Scheme 9).14 Again, this demonstrates the tolerance of heteroatoms in the reaction, 

but it also demonstrates the first attempt at using cyclohexyne as a substrate in the PKR. It is 

important to note, however, that the reaction proceeded with only 3 % yield, which the authors 

attribute to the instability of the carbocation intermediate in the preceding Nicholas reaction. 
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Scheme 9 Use of various sized alkyne rings in the PKR. 

1.3 Potential Utility of Cyclohexyne in a Pauson-Khand Reaction 
 The use of cyclohexyne 33 in the PKR would result in the construction of polycycle 34, 

which contains a synthetically challenging tetrasubstituted alkene (Scheme 10). 

 

Scheme 10 Use of cyclohexyne in the PKR. 

This proposed approach differs from Schreiber’s, Shea’s, and Masuda’s use of 

cycloalkynes in the PKR.12–14 Instead of two step sequence that complexes the alkyne to a 

transition metal followed by the PKR, a cycloalkyne precursor would be used that can produce the 

cycloalkyne in situ followed by the PKR in a single pot. This approach could allow the utilization 

of more strained alkynes, preventing the low yielding cyclohexyne PKR that Shea and coworkers 

observed, and could potentially allow the use of cyclopentyne as well.14  

There are several natural products with interesting biological activity that contain the 

structural motif that such a PKR would produce (Figure 3). Natural products isolated from the 

Pseudopterogorgie elisabethae, such as amphilectolide (35) and sandresolide A (36), have been 

shown to have a variety of biological activity against inflammation, tuberculosis, cancer, and 

antiplasmodial activity.15 The biological activity of many Daphniphyllum alkaloids, such as 
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daphnipaxianine A and B (37), has not been assessed, but other compounds in the family exhibit 

activity against cancer cell lines.16 Finally, guanacastapene A has demonstrated antiobiotic 

activity, but other members of the family, such as guanacastapene N (38) and M (39) have yet to 

be assessed.17 By developing a method by which this important motif can be swiftly synthesized, 

it might be possible to provide concise routes to molecules that display interesting biological 

activity. 

 

Figure 3 Natural products with relevant polycyclic moiety. 

Other researchers have attempted to synthesize the polycyclic, tetra-substituted olefein as 

part of total syntheses, but this usually required two synthetic steps that were typically low 

yielding.18–20 A recent paper by Trauner in the synthesis of the caribenol alkaloids presents a higher 

yielding synthesis of this motif; however, this methodology still requires two steps.21 The 

development and optimization of such a Pauson-Khand reaction could overcome these shortfalls 
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and allow for a more concise synthesis of molecules with this polycyclic moiety. In addition, this 

methodology could demonstrate an additional synthetic utility for cyclohexyne. 

1.4 Previous Work Towards This Goal 

 Before my opportunity to work on this project, several advances had been made by the 

Martin lab towards this goal. The original strategy utilized the vinyl triflate precursors developed 

by Guitián and coworkers.6 Although this method was heavily pursued, under optimized 

conditions with vinyl triflate 40, polycycle 41 could only be obtained in 20% yield (Scheme 11). 

A significant amount of starting material was recovered after the reaction, suggesting that the 

fluoride anion was not removing the TMS group via nucleophilic attack. It was theorized that the 

fluoride, instead, reacted with the molybdenum complex, thereby stopping the reaction. While the 

reaction was not high yielding, it did present thus far the highest yielding PKR that utilized 

cyclohexyne. In addition, it validated our synthetic approach towards cyclohexyne production and 

use. 

 

Scheme 11 Optimized PKR conditions using vinyl triflate 40. 

 After the initial results, alternative cyclohexyne precursors were targeted, specifically ones 

that did not require fluoride as an activating agent. A synthesis of hyperiodonium salt 43, which 

was based on Fujita’s cyclohexyne precursors, from vinyl TMS 42 was attempted, but the product 

was found to be remarkably unstable and, therefore, unsuitable for reaction screening (Scheme 
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12).7 Indeed, Fujita reports that substitution in positions adjacent to the alkene results in reduced 

stability for the iodonium species.7 

 

 

Scheme 12 Attempted synthesis of a hyperiodonium cyclohexyne precursor. 

In addition, an attempt was made to synthesize diazocarboxylate 45 from enamine 44, 

which has been shown to produce benzyne with analogous aromatic precursors (Scheme 13).22 

The use of this cyclohexyne precursor seemed advantageous because it could be thermally 

activated. Unfortunately, it was found that this substrate was unable to be prepared. 

 

Scheme 13 Attempted synthesis of a diazocarboxylate cyclohexyne precursor. 

In order to move the project forward, alternate, novel cyclohexyne precursors were 

surveyed. It was theorized that vinyl-triflates could produce cyclohexynes via a decarboxylation 

followed by elimination of triflate. To this end, the three potential cyclohexyne precursors, 48-50, 

were synthesized form tert-butyl ester 46 and allyl ester 47 (Figure 4). It was theorized that the 

tert-butyl ester and free acid could be thermally activated, while the allyl ester could be activated 

catalytically via transition metal deallylation.  
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Figure 4 Approaches toward novel cyclohexyne precursors. 

 Unfortunately, none of these initial conditions led to cyclohexyne formation; however, it 

was reported in the Martin group that [Rh(CO)2Cl]2 could be used in an allylation-PKR cascade.23 

Gratifyingly, it was found that when this catalyst was combined vinyl triflate 51, production of 

polycycle 41 was observed (Scheme 14). 

 

Scheme 14 Synthesis of polycyclic tetra-substituted olefin using a rhodium complex. 

 During the course of this project a similar methodology was published that used vinyl 

triflate 52 to produce linear alkyne 53 (Scheme 15).24 While this methodology could not be used 

to produce cyclic alkynes, it provides some evidence that our reaction involves a cyclohexyne 

intermediate. 
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Scheme 15 Vinyl triflates as precursors for linear alkynes. 

 The synthesis of vinyl triflate 51 from cyclohexanone 54, however, was fairly low yeilding 

(Scheme 16). With 18% yield over two steps, producing enough starting material was neither 

plausible nor economical. In order to properly screen conditions for the PKR, it was first necessary 

to develop a scalable method for the production of starting material. 

 

Scheme 16 Initial conditions for substrate synthesis. 
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2. Results 

2.1 Second Generation Approach to Cyclohexyne Precursors 

 Due to the poor yield obtained in Scheme 16, we envisioned that an alternate approach 

would allow us to access these precursors in a significantly higher yield. The dianion chemistry 

developed by Weiler seemed to provide a concise route to the desired triflates.25 To this end, allyl 

ester 47 was deprotonated twice, first with NaH and then with n-BuLi, creating the dianion, which 

should undergo alkylation to the keto-group (Scheme 17). It was found, however, that the allylic 

position was somewhat acidic, leading to competitive alkylation, producing both allyl ester 50, the 

target compound, and allyl ester 55, an unwanted byproduct. 

 

Scheme 17 Alkylation of allyl ester 54, leading to a mixture of products. 

 In order to prevent this problem, ethyl ester 56 was employed, with the assumption that a 

simple trans-esterification reaction following the alkylation should result in a higher yielding 

pathway to the substrates of interest. It was found, however, that ethyl ester 57 was not formed 

after alkylation with 4-bromobutene (Scheme 18). 

 

Scheme 18 Unsuccessful alkylation of ethyl ester 56. 
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 Two equivalents of LDA were employed instead of the stepwise deprotonation with NaH 

and n-BuLi, which is cited as an alternate method to produce the dianion.25 To our delight, ethyl 

ester 57 was obtained in moderate yield. 

 

Scheme 19 Successful alkylation of ethyl ester 56. 

 For longer chain alkenes, such as 5-bromopentene and 6-bromohexene, the obtained yield 

of ethyl ester 58 was significantly reduced to around 10%. It was rationalized that this may be due 

to the reduced electrophilicity of the longer chain alkyl bromides. We decided, instead, to attempt 

an in situ Finkelstein reaction with potassium iodide in order to catalytically produce the 

corresponding iodides, which should serve as better electrophiles (Scheme 20). While yields of the 

desired product were generally higher using this method, yields were inconsistent, and heating 

would occasionally produce a viscous fluid that would complicate aqueous work-up. 

 

Scheme 20 Alkylation of ethyl ester 56 using an in situ Finkelstein reaction. 

 After the promising results from the in situ Finkelstein reaction, it was hypothesized that 

the direct use alkyl iodides might result in better yields. The iodides could be produced from the 

analogous bromides using a simple Finkelstein reaction in acetone (Scheme 21). While 5-
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iodopentene (60) was obtained in good yield and could be used without issue, it was found that 4-

iodobutene (59) was light sensitive. Since the alkylation proceeded in moderate yield with 4-

bromobutene, the use of 4-iodobutene was abandoned.  

 

Scheme 21 Production of alkyl iodides using the Finkelstein reaction. 

 Similarly, we imagined that dimethyl acetal 61 would serve as a viable precursor for an 

aldehyde, which could be a substrate for the hetero PKR. A slight modification of the Finkelstein 

reaction using CaCO3 at room temperature could convert bromide 61 to iodide 62 (Scheme 22).26 

Under standard conditions, it was found that a portion dimethyl acetal 61 was converted to the 

aldehyde. 

 

Scheme 22 Conversion of dimethyl acetal 61 to its corresponding iodide. 

 Finally, 6-hexenol (63) could be converted to 6-iodohexene (64) via an Appel reaction with 

triphenyl phosphine, iodine, and imidazole in moderate yield (Scheme 23).27 

 

Scheme 23 Appel reaction of 6-hexenol. 
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 With these electrophiles in hand, we attempted to alkylate ethyl ester 56 again. In general, 

the yields were greatly improved using the iodide electrophiles for molecules 65-67 (Figure 5). 

Indeed, the 89% yield of ethyl ester 65 represented a significant improvement.  

 

Figure 5 Alkylation of ethyl ester 56 using iodide electrophiles. 

 After initial optimizations of the alkylation, we started exploring methods to introduce the 

allyl ester moiety. Initial attempts at trans-esterification using traditional acidic and basic 

conditions gave at most 50% yield and required reaction times on the order of days. Certain Lewis 

acids were also screened, but results were still unsatisfactory. Finally, we used conditions 

developed in the Martin lab using Otera’s catalyst (68) under microwave conditions for trans-

esterification.28 Unfortunately, initial attempts at trans-esterification gave only ketone 69 instead 

of allyl ester 70, indicating decarboxylation of the β-keto ester (Figure 6). 
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Figure 6. Initial attempts at trans-esterification using Otera’s catalyst. 

 However, after close monitoring of the reaction by 1H-NMR, it was found that the reaction 

proceeds with a high level on conversion after 50 minutes, yielding the allyl-ester 71 (Scheme 24). 

It should be noted that this reaction was highly time sensitive, and that reaction times of 1 hour 

could result in cleavage of the ester and a considerable amount of ketone being formed. 

 

Scheme 24 Optimization of trans-esterification catalyzed by Otera’s catalyst. 

 Trans-esterification followed by triflation gave the desired triflates in poor to moderate 

yields over three steps, starting from ethyl-ester 56 to form triflates 51, 72, and 73 (Scheme 25). 

While these yields were not ideal, they provided a  higher yielding procedure to produce the desired 

substrates than what was previously attempted.  
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Scheme 25 Successful synthesis of PKR substrates. 

 Issues arose, however, when these reactions were run on a larger scale. As more ethyl ester 

58 was introduced to the trans-esterification reaction, less allyl-ester 69 was observed, and the 

cleaved ketone 70 was instead recovered (Scheme 26). Due to this issue, this synthetic route was 

abandoned. 

 

Scheme 26 Decarboxylation during the trans-esterification on larger scales. 

2.2 Third Generation Approach to Cyclohexyne Precursors 

 In order to produce the triflates of interest, we developed a different strategy that could 

access allyl ester 69 via the acylation of 70 with acylating agent 75, which can then be used to 

access vinyl triflate 74 (Scheme 27). This method avoids the tricky trans-esterification and may 

provide a more scalable route to the desired cyclohexyne precursors. In addition, this method is 

more similar to the initial approach presented in Scheme 16. 
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Scheme 27 Retrosynthetic approach to cyclohexyne precursors. 

 Ketones 77, 54, and 78 were produced via the alkylation of cyclohexanone 

dimethylhydrazone (76) followed by hydrolysis to yield the ketone (Scheme 28).29 Use of the 

dimethylhydrazone 76 prevents polyalkylation, an issue frequently observed with the alkylation of 

cyclohexanone.29 The process is high yielding and requires only an aqueous work up to yield 

sufficiently pure product, allowing the substrates to be quickly produced. 

 

Scheme 28 Alkylation of cyclohexanone dimethylhydrazone. 

 In addition, a method was determined for the production of the alkylating agents, 

particularly 6-bromohexene and 5-bromopentene. This started with the production of the 

dibromides 80 and 82 from tetrahydropyrone (79) and 1,6-hexanediol (82), which could be done 

in excellent yield using HBr as a bromide source (Scheme 29).30,31  
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Scheme 29 Synthesis of dibromide compounds from economic starting materials. 

 The terminal alkene was then be produced using a simple HMPA promoted elimination, 

producing 5-bromopentene (83) and 6-bromohexene (84) (Scheme 30).32 The reaction is done at a 

temperature significantly higher than the boiling point of the desired alkene, so a short path 

distillation apparatus is attached in order to collect the product. Similarly, the reaction is performed 

at reduced pressure in order to prevent over elimination of the product. Despite the relatively low 

yields of this reaction, the starting materials are cheap and easily accessible, and the reaction is 

scalable, allowing gram amounts to be made in a single reaction. 

 

Scheme 30 HMPA-promoted elimination of dibromide compounds to form a terminal alkene. 

 Following the production of the ketones, we surveyed methods to introduce the allyl ester 

moiety. Our first attempt involved the use of diallyl carbonate (86), which has been shown to be 

able to introduce allyl esters to wide range of compounds, producing β-keto esters.33 In addition, 

diallyl carbonate (86) could be produced in high yield through the reaction of allylchloroformate 

(85), allyl alcohol and pyridine (Scheme 31). 
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Scheme 31 Synthesis of diallyl carbonate. 

 Using conditions from the literature, initial attempts showed high conversion of starting 

material, but only trace amounts of allyl ester 71 after 12 hours (Scheme 32).33 

 

Scheme 32 Unsuccessful acylation of ketone 53. 

 Reaction monitoring with 1H NMR, however, revealed a 90% conversion after only 3 

hours, with approximately 70% of the product being the desired β-keto ester 71 (Scheme 33). 

Triflation of the crude product gave a 49% yield of 51, a process comparable to our work with 

Otera’s catalyst (Scheme 25). 

 

Scheme 33 Synthesis and triflation of a β-keto ester. 

 It was also possible to apply this three step process to hydrazone 87, which could serve as 

a cyclopentyne precursor. Hydrazone 87 was alkylated, producing ketone 88, which was then 

acylated to form allyl ester 89 (Scheme 34). Allyl ester 89 was then converted to vinyl triflate 90 

in excellent yield using Hünig’s base and triflic anhydride. In general, this method seemed to 
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provide satisfactory yield and could be used to produce material on the scale of several hundred 

milligrams, an amount much more convenient for reaction screening. 

 

Scheme 34 Synthesis of cyclopentyne precursor via a three-step process. 

 In addition, ketone 92 was produced from hydrazone 91, in the interest of producing the 

analogous cycloheptyne precursors (Scheme 35). Currently, yields for this transformation are low, 

and studies are ongoing to optimize this reaction. 

 

Scheme 35 Progress towards a cycloheptyne precursor. 

 Unfortunately, it was found that this acylation process is not amenable to small scale 

processes, especially on the scale of 50-100 mg. At these smaller scales, starting material was 

converted at a high rate, but only an unidentified byproduct was produced. Due to the significant 

keto-enol tautomerization of allyl ester 71, it was also impractical to attempt to purify any product 
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that did form via flash chromatography due to the broad range of Rf values that the compound 

displayed. It is not clear why the nature of the reaction changes so drastically as scale is reduced. 

Nonetheless, different methods for acylation were surveyed. 

 Our first attempt to synthesize the β-keto ester utilized chemistry developed by Noyori, 

which could produce β-keto esters from a TMS-protected ketone 93, using MeLi to produce the 

Li-anion followed by the addition of dimethylzinc in order to form mixed Zn-Li aggregates, giving 

octyl ester 94 and carbonate 95 (Scheme 36).34 This method seemed advantageous because it used 

the commercially available chloroformate as an acylating agent.  

 

Scheme 36 Synthesis of β-keto esters using mixed Li-Zn aggregates. 

 Before applying this methodology to our system, we wanted to determine if the lithium 

anion could be produced by a sterically hindered lithium base, such as LDA or LiHMDS, if the 

technique tolerated substitution alpha to the ketone, and if allyl chloroformate could be used as an 

acylating agent. As a model substrate, we used 2-methylcyclohexanone (96) and LiHMDS as a 

base (Scheme 37). To our delight, C-acylated product 97 dominated over O-acylated product 98. 
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Scheme 37 Synthesis of a β-keto ester. Yields are estimated by 1H NMR. 

  When applying this to our system, however, we found that the extended substitution at the 

2-position encouraged higher rates of O-acylation (Scheme 37). To our knowledge, no research 

had been done in the application of this methodology to more complex systems. We therefore 

abandoned this method and looked for an alternative route to convert the ketones to the β-keto 

ester.  

 

Scheme 37 Application of Noyori’s production of β-keto esters. Ratio of C to O acylation was 

estimated by 1H NMR. 

 In addition, we also attempted the acylation using diallyl dicarbonate (101) with potassium 

hydride in benzene (Scheme 38).35,36 With unsubstituted cyclohexanones, it was demonstrated that 

C-acylation was preferred, but the O-acylated product 102 dominated when using ketone 54. 



29 
 

 

Scheme 38 Acylation of ketone 53 with diallyl dicarbonate. 

 Finally, acylation of ketone 54 with allyl cyanoformate was attempted again (Scheme 39). 

By heating the reaction under reflux, it was found that a larger amount of C-acylated product was 

formed. With subsequent triflation, a moderate yield of 50% of vinyl triflate 51 was obtained over 

two steps.  

 

Scheme 39 Production of triflate with allyl cyanoformate followed by triflation. 

 This prompted us to revisit the idea of using allyl cyanoformate as an acylating reagent. 

While initial results gave poor yield, we found that the reaction is time dependent, and that the 

product may not be indefinitely stable under the reaction conditions. After monitoring the reaction 

by 1H NMR, it was determined that the C-acylation reaches a maximum after 2 hours at 0 °C. 

Using these new conditions, along with the use of Comins’ reagent (104), a milder triflate source 

than triflic anhydride, it was possible to synthesize 51, 72, and 103 (Scheme 40).37 While 51, 72, 

and 103 were synthesized in yields roughly equal to our previous syntheses, this process appears 

to be more reproducible. As it stands these are the optimized conditions for the production of the 

desired triflates. 
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Scheme 40 Synthesis of triflates using improved conditions. 

2.3 Synthesis of Heteroatom Containing Substrates 

 While synthesizing the all-carbon substrates, we wanted to start work towards the synthesis 

of heteroatom containing substrates, specifically N and O containing heterocycles 106 to form 

polycycles 105 (Scheme 41). This would allow us to both test the functional group tolerance of 

both the cyclohexyne production and the subsequent PKR. 

 

Scheme 41 Retrosynthetic analysis for the synthesis of N and O containing heterocycles. 

 We first started our work with a nitrogen containing substrate, N-Boc piperidone (107). 

Using a catalytic amount p-toluenesulfonic acid in toluene with a Dean-Starke trap, it was possible 

to obtain the hydrazone 108 in quantitative yield (Scheme 42).38 

 

Scheme 42 Synthesis of N-containing dimethyl hydrazine. 
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 Next, alkylation of hydrazone 108 was attempted. Despite literature precedent for 

alkylation of hydrazone 108, only decomposition of starting material was observed instead of 

production of piperidone 109 (Scheme 43). Indeed, a D2O quench following deprotonation also 

revealed decomposition of the starting material. It seems, however, that difficulty in alkylating 

dimethylhydrazone 108 is a known problem.39 A similar procedure was attempted with the tosyl 

protected piperidone 110 to yield piperidone 111, but this substrate gave similar results. 

 

Scheme 43 Attempted alkylation of protected N-containing hydrazones. 

 Similarly alkylation using enamine 112 was attempted (Scheme 44).40 Unfortunately, 

piperidone 109 was not formed. 

 

Scheme 44. Attempted alkylation of enamine 112. 

 While the initial attempts at alkylation N-Boc piperidone (107) were unsuccessful, the Boc 

protecting group seemed advantageous because it could easily be exchanged for another protecting 

group. Conditions developed by Noyori using dimethylzinc as an additive were employed in order 

to alkylate this substrate (Scheme 45).34 Since this method requires the use of an alkyl iodide as 
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an electrophile, iodopentane was employed for reaction screening since it is more readily available 

than 5-iodopentene. Unfortunately, these conditions did not give piperidone 113. 

 

Scheme 45 Attempted alkylation of N-Boc piperidone. 

 Finally, the alkylation of the dimethylhydrazone 114 was attempted. Gratifyingly this 

reaction proceeded with moderate yield to give piperidone 115 (Scheme 46). 

 

Scheme 46 Alkylation of dimethylhydrazone 114. 

 It was hypothesized, however, that the free amine could bind to the metal catalyst in the 

PKR, poisoning the catalyst and halting the reaction. We, therefore, attempted to introduce a 

methylcarbamate moiety using methylchloroformate to produce carbamate 116 from piperidone 

115 (Scheme 47). Under these conditions, no product was formed.41 It was hypothesized that this 

may be due to the insolubility of the intermediate quaternary amine, preventing the reaction from 

preceding.  
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Scheme 47 Attempted introduction of methyl carbamate protecting group. 

 The scope of reactions to deprotect methyl amines is limited. It is, therefore, proposed that 

the corresponding benzylamine 117 might be a better candidate to produce carbamate 116 due to 

the increased electrophilicity of the benzyl position (Scheme 48). Experiments are ongoing to 

check the validity of this hypothesis. 

 

Scheme 48 Proposed substrate for introduction of methyl carbamate moiety. 

 Considerable work was also done in attempting to synthesize an O-containing heterocycle 

with a similar structure. Starting with pyranone 118, dimethylhydrazone 119 was synthesized in 

moderate yield (Scheme 49). Alkylation of the substrate to produce pyranone 120, however, did 

not proceed under standard conditions. 1H NMR analysis of the crude product indicated 

decomposition of starting material under the reaction conditions. 



34 
 

 

Scheme 49 Attempted alkylation of tetrahydropyanone 118. 

 Next, alkylation of enamine 121, which can be produced from pyranone 118, was 

attempted (Scheme 50). While this reaction has been demonstrated to work on the same substrate 

using allyl bromide as an electrophile, it had not been demonstrated using longer alkyl chains.42 

While it was possible to detect product via GC-MS, this reaction did not produce a significant 

amount of alkylated pyranone 122. In addition, enamine 121 was found to be unstable, making it 

inconvenient to use. 

 

Scheme 50. Alkylation of pyranone 118 using an enamine intermediate. 

 Similar to trials with the N-Boc piperidone, alkylation of pyranone 118 was also attempted 

using the dimethyl zinc promoted alkylation conditions developed by Noyori; however, this also 

resulted in degradation of the starting material, producing none of the desired pyranone 122 

(Scheme 51).34 
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Scheme 51 Attempted alkylation of pyranone 118 using dimethylzinc as an additive. 

 Finally, we decided to change our strategy and target a different O-containing substrate. 

The epoxide opening of cyclohexene oxide (123) followed by oxidation seemed to be a well 

precedented route which should reliably produce the desired motif. Indeed, using a Cu(BF4)2 

catalyzed epoxide opening followed by a Swern oxidation, cyclohexanone 124 could be obtained 

in satisfactory yield over two steps (Scheme 52).43 Subsequent acylation with allyl cyanoformate 

followed by triflation should deliver the desired vinyl triflate 125. 

 

Scheme 52 Synthesis of an O-containing substrate. 
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3. Future Work 

 While this work does provide the synthesis of a few cyclohexyne precursors, there are still 

more that are to be synthesized (Figure 7). In addition, the use of allyl cyanoformate as an acylating 

agent to produce the allyl esters of interest is promising, but further work must be done in ensuring 

consistency of yield across different trials. 
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Figure 7. Triflates to by synthesized and screened for the PKR. 

 This work provides a series of methods that have been screened in order to produce 

cyclohexyne precursors; however, it is imperative that the conditions for the cyclohexyne 

production and the subsequent Pauson-Khand reaction are optimized. As it currently stands, the 

cascade requires a stoichiometric of Rh catalyst and proceeds in moderate yield (Scheme 53). 

 

Scheme 53 Current conditions for the PKR. 
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 While this represents a great improvement upon the original conditions, the requirement of 

stoichiometric rhodium makes this reaction impractical for the production of more than a few 

milligrams of material. This work does, however, display the synthetic utility of cyclohexyne. 

Although the use of stoichiometric amounts of rhodium is not ideal, it does provide proof of 

concept and may pave the way for other researchers to further develop this method. 
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4. Conclusion 
 
 Strained cycloalkynes, such as cyclohexyne and cyclopentyne, are substrates with 

significant potential utility that have largely been underused in organic synthesis. As a result, there 

are relatively few methods to produce cyclohexyne using conditions that are amendable to the use 

of a transition metal catalysts. This work provides both the mechanistic rationale and approaches 

to the synthesis of a novel cyclohexyne precursor. While the final conditions did not deliver the 

desired substrates in considerably higher yield, it does pave the way for further optimization of 

this method. In addition, this work does demonstrate the validity of our initial strategy. Using a 

novel cyclohexyne precursor, it was possible to perform the PKR using an in situ produced 

cyclohexyne.  
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Supplementary Information 

Experimental 

 General methods for chemistry: Tetrahydrofuran, toluene, and diethyl ether were dried 

by filtration through columns of activated, neutral alumina according to procedure described by 

Grubbs.44 Allyl alcohol, diisoproylamine, pyridine, 4-bromobutene, 5-bromopentene, and 6-

bromohexne were distilled from CaH2 directly before use. Tf2O was distilled from P2O5 directly 

before use. Allyl chloroformate was distilled from CaCl2 directly before used. All other reagents 

were reagent grade and used without further purification unless otherwise noted. All solvents were 

determined to have less than 50 ppm H2O by Karl Fischer coulometric moisture analysis. All 

reactions involving air or moisture sensitive reagents or intermediates were performed under and 

inert atmosphere of nitrogen or argon in glassware that was flame dried. Reaction temperatures 

refer to the temperature of the heating/cooling bath. Volatile solvents were removed under reduced 

pressure using a Büchi rotary evaporator at 35-40 ºC unless otherwise noted. Thin layer 

chromatography (TLC) was run on pre-coated plates of silica gel (0.25 mm thick with 60 F254 

indicator) was visualized using one or more of the following methods: UV light (254 nm), and/or 

staining with KMnO4 stain or cerium ammonium molybdate (CAM) stain. Chromatography was 

performed using forced flow (flash chromatography) and the indicated solvent system on 

SiliaFlash® F60 silica gel (Silicycle, 40-63 μm, 60 Å) according to the method of Still, unless 

otherwise noted.45 

 Infrared (IR) spectra were obtained either neat on sodium chloride or as solutions in the 

solvent indicated and reported as wavenumbers (cm-1). Proton nuclear magnetic resonance (1H 

NMR) and carbon nuclear magnetic resonance (13C NMR) spectra were obtained at the indicated 

field as solution in CDCl3 unless otherwise indicated. Chemical shifts are referenced to the 
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deuterated solvent are reported in parts per million (ppm, δ) downfield from tetramethylsilane 

(TMS, δ = 0.00 ppm). Coupling constants (J) are reported in Hz and the splitting abbreviations 

used are: s, singlet; d, doublet; t, triplet; q, quartet;, m, multiplet; comp, overlapping multiplets of 

magnetically nonequivalent protons; br, broad; app, apparent. 

 

 2-Cyclopentylidene-1,1-dimethylhydrazine (87). Prepared according to literature 

procedure by Mino, et al. with cyclopentanone (5.0 mL, 56 mmol), dimethylhydrazine (5.2 mL, 

68 mmol) and trifluoracetic acid (0.25 mL), giving 4.1 g (58%) of a yellow oil after distillation.46 

1H NMR spectra were consistent with those reported in the literature.46 

 

 2-Cyclohexylidene-1,1-dimethylhydrazine (76). Prepared according to literature 

procedure by Mino, et al. with cyclohexanone (10 mL, 96 mmol), dimethylhydrazone (8.8 mL, 

115 mmol) and trifluoroacetic acid (0.5 mL), giving 7.7 g (57%) of a clear oil after distillation.46 

1H NMR spectra were consistent with those reported in the literature.46 
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 2-Cycloheptylidene-1,1-dimethylhydrazine (91). Prepared according to literature 

procedure by Mino, et al. with cycloheptanone (3.0 mL, 25 mmol), dimethylhydrazine (2.3 mL, 

31 mmol) and trifluoroacetic acid (0.25 mL), giving 2.25 g (57%) of a pale yellow oil after 

distillation.46 1H NMR spectra were consistent with those reported in the literature.46 

 

 

 1,5-Dibromopentane (80). Prepared according to literature procedure by Odinokov, et al. 

with tetrahydropyranone (9.8 mL, 100 mmol), 48% HBr (68 mL) and sulfuric acid (16 mL), giving 

21.1 g (95%) as an orange oil.30 1H NMR spectra were consistent with those reported in the 

literature.30 

 

 1,6-Dibromohexane (82). Prepared according to literature procedure by Coleman et al. 

with 1,6-hexanediol (10 g, 90 mmol) and 48% HBr (45 mL), giving 19.1 g (87%) as a yellow oil.31 

1H NMR spectra were consistent with those reported in the literature.31 

 General procedure for HMPA induced elimination. This procedure was adapted from 

the procedure developed by Hoye.32 A dibromide (93.4 mmol) was heated to 200 °C at 100 Torr 

with a short path distillation apparatus attached. HMPA (21.1 mL, 121 mmol) was added dropwise 

over 5 minutes, and the reaction was stirred for 1 hour. The solution in the receiving flask was then 
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dissolved in Et2O (50 mL), washed with water (2 × 50 mL) and brine (50 mL), dried with MgSO4, 

filtered, and concentrated under reduced pressure. The resulting oil was distilled, giving the desired 

product. 

 

 5-Bromopentene (83). 5-Bromopentene (83) was prepared according to the general 

protocol using 1,5-dibromopentane (21.5 g, 93.4 mmol) and HMPA (21.1 mL, 121 mmol), giving 

5.01 g (37 %) of a clear oil after distillation. 1H NMR spectra were consistent with those reported 

in the literature.47 

 

 

 6-Bromohexene (84). 6-Bromohexene (84) was prepared according to the general 

protocol using 1,6-dibromohexane (19.1 g, 78.2 mmol) and HMPA (17.7 mL, 102 mmol), giving 

5.30 g (41%) of a clear oil after distillation. 1H NMR spectra were consistent with those reported 

in the literature.48 

 General protocol for the alkylations of dimethylhydrazones. A dimethyl hydrazone 

(3.57 mmol) was dissolved in THF (3.5 mL). The solution was brought to 0 °C, and n-BuLi 

(1.71 mL, 2.5 M in hexanes) was added in one portion. The solution was stirred for 30 minutes, 

after which a salt precipitated. An alkyl bromide (4.28 mmol) was then added, and the reaction 

was stirred for 1 h at room temperature. Hydrochloric acid (1 M, 3.5 mL) was added, and the 

reaction was stirred for 30 min. The mixture was then diluted with H2O (15 mL) and was 

extracted with EtOAc (3 × 20 mL). The combined organic extracts were washed with 1 M HCl 
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(60 mL) and brine (60 mL). The organic layer was dried with MgSO4, filtered, and concentrated 

under reduced pressure giving the desired compound. 

 

 2-(But-3-en-1-yl)cyclohexan-1-one (77). Cyclohexanone 77 was prepared according to 

the general protocol using dimethylhydrazone 76 (500 mg, 3.57 mmol) and 4-bromobutene (0.43 

mL, 4.28 mmol) giving 462 mg (85%) of a yellow oil. 1H NMR spectra were consistent with those 

reported in the literature.49 

 

 2-(Pent-4-en-1-yl)cyclohexan-1-one (54). Cyclohexanone 54 was prepared according to 

the general protocol using dimethylhydrazone 76 (500 mg, 3.57 mmol) and 5-bromopentene (0.51 

mL, 4.28 mmol), giving 516 mg (87%) of a yellow oil. 1H NMR spectra were consistent with those 

reported in the literature.50 

 

  2-(Hex-5-en-1-yl)cyclohexan-1-one (78). Cyclohexanone 78 was prepared 

according to the general protocol using dimethyl hydrazone 76 (500 mg, 3.57 mmol) and 6-

bromohexene (0.57 mL, 4.28 mmol), giving 577 mg (90%) of a yellow oil. 1H NMR (400 MHz, 

CDCl3) δ 5.75 (ddtd, J = 16.9, 10.2, 6.7, 1.0 Hz, 1 H), 4.98 – 4.90 (m, 1 H), 4.88 (ddt, J = 10.2, 
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2.3, 1.1 Hz, 1 H), 2.34 (m, 1 H), 2.29 – 2.15 (m, 2 H), 2.12 – 1.91 (m, 4 H), 1.87 – 1.55 (m, 4 H), 

1.42 – 1.08 (m, 6 H); 13C NMR (100 MHz, CDCl3) δ 213.5, 139.0, 114.3, 50.8, 42.0, 33.9, 33.7, 

29.30, 29.1, 28.1, 26.7, 24.9; IR (neat) 3077, 2929, 2859, 1713, 1641, 1462, 1449, 1312, 1127, 

993, 910 cm-1; HRMS (CI) m/z 180.1508 (C12H20O requires 180.1514). 

 NMR Assignments: 1H NMR (400 MHz, CDCl3) δ 5.75 (ddtd, J = 16.9, 10.2, 6.7, 1.0 Hz, 

1 H, C2-H), 4.98 – 4.90 (m, 1 H, C1-H), 4.88 (ddt, J = 10.2, 2.3, 1.1 Hz, 1 H, C1-H), 2.34 (m, 1 

H, C11-H), 2.29 – 2.15 (m, 2 H, C11-H, C3-H), 2.12 – 1.91 (m, 4 H, C7-H, C3-H, C6-H), 1.87 – 

1.55 (m, 4 H, C8-H, C9-H, C5-H), 1.42 – 1.08 (m, 6 H, C8-H, C9-H. C10-H, C11-H); 13C NMR 

(100 MHz, CDCl3) δ 213.5 (C12), 139.0 (C2), 114.3 (C1), 50.8 (C7), 42.0 (C11), 33.9 (C3), 33.7 

(C8), 29.30 (C6), 29.1 (C4), 28.1 (C5), 26.7 (C9), 24.9 (C10). 

 

 2-(Pent-4-en-1-yl)cyclopentan-1-one (87). Cyclohexanone 88 was prepared according to 

the general protocol using dimethylhydrazone 87 (500 mg, 3.96 mmol) and 5-bromopentene (0.68 

mL, 4.75 mmol), giving 426 mg (71%) of a yellow oil. 1H NMR spectra were consistent with those 

reported in the literature.51 

O

92  

 2-(Pent-4-en-1-yl)cycloheptan-1-one (92). Cyclohexanone 92 was prepared according to 

the general protocol using dimethylhydrazone 91 (300 mg, 1.94 mmol) and 5-bromopentene (0.28 
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mL, 2.33 mmol), giving 150 mg (43%) of a yellow oil. 1H NMR spectra were consistent with those 

reported in the literature.52 

 General protocol for the synthesis of vinyl triflates. A ketone (0.33 mmol) was added to 

lithium diisoproplyamine (0.49 mL, 1.0 M in THF) at -78 °C in THF (1.0 mL). After 45 min, allyl 

cyanoformate (50 mg, 0.49 mmol) was added, and the reaction was warmed to 0 °C. After 3 h, the 

reaction was quenched with water (10 mL) and extracted with EtOAc (3 × 15 mL). The organic 

extracts were combined and washed with 1 M HCl (45 mL) and brine (45 mL). The organic layer 

was dried with MgSO4, filtered, and concentrated under reduced pressure giving a yellow oil. A 

portion (0.28 mmol) of the crude product was dissolved in THF (1.5 mL) and KHMDS (0.39 mL, 

0.84 M in PhMe) was added at - 78 °C. After 1 h, Comins’ reagent (130 mg, 0.33 mmol) was 

added in THF (1 mL), and the reaction was warmed to room temperature and was stirred overnight. 

The reaction was then quenched with sat. NH4Cl (10 ml) and extracted with EtOAc (3 × 10 mL). 

The organic extracts were combined and were washed with brine (30 mL), dried with MgSO4, 

filtered, and concentrated under reduced pressure. 

 

 Allyl 3-(but-3-en-1-yl)-2-(((trifluoromethyl)sulfonyl)oxy)cyclohex-1-ene-1-

carboxylate (103).  Vinyl triflate 103 was prepared according to the general protocol using ketone 

77 (50 mg, 0.33 mmol), and the resulting reside was purified by flash chromatography eluting with 

Et2O/hexanes (1:20) to give 55 mg (50%) as a clear oil. 1H NMR (400 MHz, CDCl3) δ 5.97 (ddt, 

J = 17.2, 10.4, 6.0 Hz, 1 H), 5.76 (dddd, J = 17.3, 10.2, 7.2, 6.1 Hz, 1 H), 5.35 (dq, J = 17.2, 1.5 

Hz, 1 H), 5.27 (dt, J = 10.4, 1.3 Hz, 1 H), 5.11 – 4.86 (m, 2 H), 4.69 (qdt, J = 13.1, 5.9, 1.3 Hz, 2 
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H), 2.65 – 2.30 (m, 3 H), 2.25 – 2.13 (m, 1 H), 2.09 – 1.96 (m, 1 H), 1.94 – 1.80 (m, 2 H), 1.77 – 

1.39 (m, 5 H); 13C NMR (100 MHz, CDCl3) δ 164.5, 154.3, 137.2, 131.6, 123.7, 119.9, 119.0, 

116.7, 115.6, 66.2, 37.6, 30.6, 30.6, 29.7, 27.1, 26.7, 18.6; IR (neat) 2944, 1730, 1425, 1277, 1249, 

1210, 1142, 1039, 914, 821, 763, 603, 409 cm-1; HRMS (ESI) m/z 391.0792 (C15H19F3O5SNa 

requires 391.0803). 

 NMR Assignments: 1H NMR (400 MHz, CDCl3) δ 5.97 (ddt, J = 17.2, 10.4, 6.0 Hz, 1 H, 

C14-H), 5.76 (dddd, J = 17.3, 10.2, 7.2, 6.1 Hz, 1 H, C2-H), 5.35 (dq, J = 17.2, 1.5 Hz, 1 H C15-

H), 5.27 (dt, J = 10.4, 1.3 Hz, 1 H, C15-H), 5.11 – 4.86 (m, 2 H, C1-H), 4.69 (qdt, J = 13.1, 5.9, 

1.3 Hz, 2 H, C13-H), 2.65 – 2.30 (m, 3 H, C5-H, C8-H), 2.25 – 2.13 (m, 1 H, C3-H), 2.09 – 1.96 

(m, 1 H, C3-H), 1.94 – 1.80 (m, 2 H, C4-H, C6-H), 1.77 – 1.39 (m, 5 H, C4-H, C6-H, C7-H); 13C 

NMR (100 MHz, CDCl3) δ 164.5 (C10 or C12), 154.3 (C10 or C12), 137.2 (C2), 131.6 (C14), 

123.7 (C9), 119.9 (C11), 119.0 (C15), 116.7 (C11), 115.6 (C1), 66.2 (C13), 37.6 (C5), 30.6 (C3 

or C4), 30.6 (C3 or C4), 27.1 (C6), 26.7 (C7), 18.6 (C8). 

 

 Allyl 3-(pent-4-en-1-yl)-2-(((trifluoromethyl)sulfonyl)oxy)cyclohex-1-ene-1-

carboxylate (51). Vinyl triflate 51 was prepared according to the general protocol using ketone 

53 (50 mg, 0.30 mmol), and the resulting reside was purified by flash chromatography eluting with 

Et2O/hexanes (1:20) to give 46 mg (42%) as a clear oil. 1H NMR (400 MHz, CDCl3) δ 5.95 (ddt, 

J = 17.6, 10.4, 5.9 Hz, 1 H), 5.76 (ddt, J = 17.0, 10.2, 6.7 Hz, 1 H), 5.33 (dq, J = 17.2, 1.5 Hz, 1 

H), 5.25 (dq, J = 10.4, 1.3 Hz, 1 H), 5.07 – 4.86 (m, 2 H), 4.74 – 4.55 (m, 2 H), 2.66 – 2.35 (m, 2 

H), 2.17 – 1.97 (m, 2 H), 1.93 – 1.83 (m, 1 H), 1.82 – 1.18 (m, 8 H); 13C NMR (100 MHz, CDCl3) 
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δ 164.5, 154.4, 138.0, 131.6, 123.6, 123.1, 119.9, 119.0, 116.7, 115.0, 66.1, 38.2, 33.5, 30.9, 27.4, 

26.7, 25.8, 25.8, 18.7; IR (neat) 2945, 1730, 1425, 1248, 1211, 1142, 1038, 902, 816, 604, 442 cm-

1; HRMS (ESI) m/z 405.0954 (C16H21F3O5SNa requires 405.0959). 

 NMR Assignments: 1H NMR (400 MHz, CDCl3) δ 5.95 (ddt, J = 17.6, 10.4, 5.9 Hz, 1 H, 

C15-H), 5.76 (ddt, J = 17.0, 10.2, 6.7 Hz, 1 H, C2-H), 5.33 (dq, J = 17.2, 1.5 Hz, 1 H, C16-H), 

5.25 (dq, J = 10.4, 1.3 Hz, 1 H, C16-H), 5.07 – 4.86 (m, 2 H, C1-H), 4.74 – 4.55 (m, 2 H, C14-H), 

2.66 – 2.35 (m, 2 H, C9-H), 2.17 – 1.97 (m, 2 H, C3-H), 1.93 – 1.83 (m, 1 H, C6-H), 1.82 – 1.18 

(m, 8 H, C4-H, C5-H, C7-H, C8-H); 13C NMR (100 MHz, CDCl3) δ 164.5 (C11 or C13), 154.4 

(C11 or C13), 138.0 (C2), 131.6 (C15), 123.6 (C16), 123.1 (C12), 119.9 (C12), 119.0 (C1), 116.7 

(C12), 115.0 (C10), 66.1 (C14), 38.2 (C6), 33.5 (C3), 30.9 (C5), 27.4 (C4), 26.7 (C7), 25.8 (C8), 

18.7 (C9). 

 

 Allyl 3-(hex-5-en-1-yl)-2-(((trifluoromethyl)sulfonyl)oxy)cyclohex-1-ene-1-

carboxylate (72). ). Vinyl triflate 72 was prepared according to the general protocol using ketone 

78 (50 mg, 0.28 mmol), and the resulting reside was purified by flash chromatography eluting with 

Et2O/hexanes (1:20) to give 56 mg (51%) as a clear oil. 1H NMR (400 MHz, CDCl3) δ 5.96 (ddt, 

J = 17.3, 10.4, 5.9 Hz, 1 H), 5.78 (ddt, J = 16.9, 10.1, 6.7 Hz, 1 H), 5.34 (dq, J = 17.2, 1.5 Hz, 1 

H), 5.26 (dq, J = 10.4, 1.2 Hz, 1 H), 5.04 – 4.89 (m, 2 H), 4.69 (qdt, J = 13.1, 5.9, 1.4 Hz, 2 H), 

2.64 – 2.31 (m, 3 H), 2.12 – 1.95 (m, 2 H), 1.92 – 1.81 (m, 1 H), 1.78 – 1.52 (m, 4 H), 1.48 – 1.16 

(m, 5 H); 13C NMR (100 MHz, CDCl3) δ 164.4, 154.4, 138.3, 131.4, 123.3, 122.9, 119.7, 118.8, 

116.5, 114.4, 66.0, 38.1, 33.3, 31.1, 28.5, 27.2, 26.5, 25.8, 18.5; IR (neat) 2933, 1730, 1424, 1210, 
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1143, 1038, 912, 821, 604, 399 cm-1; HRMS (ESI) m/z 419.1119 (C17H23F3O5SNa requires 

419.1116). 

NMR Assignments: 1H NMR (400 MHz, CDCl3) δ 5.96 (ddt, J = 17.3, 10.4, 5.9 Hz, 1 H, C16-

H), 5.78 (ddt, J = 16.9, 10.1, 6.7 Hz, 1 H, C2-H), 5.34 (dq, J = 17.2, 1.5 Hz, 1 H, C17-H), 5.26 (dq, 

J = 10.4, 1.2 Hz, 1 H, C17-H), 5.04 – 4.89 (m, 2 H, C1-H), 4.69 (qdt, J = 13.1, 5.9, 1.4 Hz, 2 H, 

C15-H), 2.64 – 2.31 (m, 3 H, C10-H, C3-H), 2.12 – 1.95 (m, 2 H (C10-H, C6-H), 1.92 – 1.81 (m, 

1 H, C7-H), 1.78 – 1.52 (m, 4 H, C6-H, C8-H, C9-H), 1.48 – 1.16 (m, 5 H, C4-H, C5-H, C8-H); 

13C NMR (100 MHz, CDCl3) δ 164.4 (C12 or C14), 154.4 (C12 or C14), 138.3 (C2), 131.4 (C16), 

123.3 (C17), 122.9 (C13), 119.7 (C13), 118.8 (C1), 116.5 (C13), 114.4 (C9), 113.4 (C13), 66.0 

(C15), 38.1 (C7), 33.3 (C3), 31.1 (C6), 28.5 (C4), 27.2 (C8), 26.5 (C5), 25.8 (C9), 18.5 (C10). 

 

 2-(But-3-en-1-yloxy)cyclohexan-1-one (124). Cyclohexene oxide (200 mg, 2.04 mmol) 

and 4-butenol (0.70 mL, 8.2 mmol) were added to a suspension of Cu(BF4)·6H2O (7.0 mg, 0.02 

mmol) in CH2Cl2 (2.0 mL). After 24 h, the reaction was quenched with H2O (10 mL), and the 

mixture was extracted with CH2Cl2 (3 × 10 mL). The organic extracts were combined and washed 

with water (30 mL) and brine (30 mL), dried with MgSO4, filtered and concentrated to yield 279 

mg of a pale-yellow oil. In a separate flask, oxalyl chloride (0.21 mL, 2.36 mmol) was dissolved 

in CH2Cl2 (12 mL), and DMSO (0.36 mL, 5.09 mmol) was added dropwise at -78 °C in CH2Cl2 

(1 mL). After 20 min, a 271 mg portion of the crude reaction product was added dropwise to the 

mixture in CH2Cl2 (2 mL). After 30 min, Et3N (1.43 mL, 10.3 mmol) was added dropwise, and 

after 10 minutes the reaction was warmed to room temperature. The reaction was stirred for 4 h 
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and was quenched with H2O (30 mL). The layers were separated, and the organic layer was washed 

with 1 M HCl (30 mL), H2O (30 mL), and sat. NaHCO3 (30 mL), dried with MgSO4, filtered, and 

concentrated under reduced pressure. The crude product was purified by flash chromatography 

with EtOAc/hexanes (1:20) to give 158 mg (47%) as a pale-yellow oil. 1H NMR (400 MHz, 

CDCl3) δ 5.78 (ddt, J = 17.1, 10.3, 6.8 Hz, 1 H), 5.09 – 5.01 (m, 1 H), 4.98 (ddt, J = 10.3, 2.2, 1.2 

Hz, 1 H), 3.75 (ddd, J = 9.9, 5.3, 1.3 Hz, 1 H), 3.63 (dt, J = 9.1, 6.8 Hz, 1 H), 3.37 (dt, J = 9.1, 6.9 

Hz, 1 H), 2.52 – 2.42 (m, 1 H), 2.37 – 2.28 (m, 2 H), 2.28 – 2.18 (m, 1 H), 2.17 – 2.05 (m, 1 H), 

1.93 – 1.82 (m, 2 H), 1.78 – 1.53 (m, 3 H); 13C NMR (101 MHz, CDCl3) δ 210.3, 135.0, 116.5, 

83.0, 69.5, 40.5, 34.5, 34.3, 27.7, 23.0; IR (neat) 2941, 2865, 1724, 1450, 1431, 1142, 1115, 1073, 

1040, 996, 915 cm-1;  HMRS (ESI) m/z 191.1045 (C10H16O2Na requires 191.1043). 

NMR Assignments: 1H NMR (400 MHz, CDCl3) δ 5.78 (ddt, J = 17.1, 10.3, 6.8 Hz, 1 H, C2-H), 

5.09 – 5.01 (m, 1 H, C1-H), 4.98 (ddt, J = 10.3, 2.2, 1.2 Hz, 1 H, C1-H), 3.75 (ddd, J = 9.9, 5.3, 

1.3 Hz, 1 H, C5-H), 3.63 (dt, J = 9.1, 6.8 Hz, 1 H, C4-H), 3.37 (dt, J = 9.1, 6.9 Hz, 1 H, C4-H), 

2.52 – 2.42 (m, 1 H, C3-H), 2.37 – 2.28 (m, 2 H, C9-H), 2.28 – 2.18 (m, 1 H, C3-H), 2.17 – 2.05 

(m, 1 H, C6-H), 1.93 – 1.82 (m, 2 H, C6-H, C8-H), 1.78 – 1.53 (m, 3 H, C8-H, C7-H); 13C NMR 

(100 MHz, CDCl3) δ 210.3 (C10), 135.0 (C2), 116.5 (C1), 83.0 (C5), 69.5 (C4), 40.5 (C9), 34.5 

(C3), 34.3 (C7), 27.7 (C8), 23.0 (C6). 

 

 Diallyl Carbonate (86). Allyl alcohol (3.14 mL, 46.2 mmol) and pyridine (3.72 mL, 46.2 

mmol) were dissolved in DCM (10 mL) at 0 °C. Allyl chloroformate (4.46 mL, 42.0 mmol) was 

then added dropwise. After 30 min, the reaction was quenched with water (50 mL) and Et2O (40 

mL) was added. The layers were separated and the organic layer was washed with brine (50 mL), 
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dried with MgSO4, filtered, and concentrated under reduced pressure, giving 5.26 g (82%) as a 

pale yellow oil. 1H NMR spectra were consistent with those reported in the literature.53 
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