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The goal of this dissertation is to present new and improved techniques

for fully automatic verification of sequential and concurrent software libraries.

In most cases, automatic software verification is plagued by undecidability,

while in many others it suffers from prohibitively high computational complex-

ity. Model checking – a highly successful technique used for verifying finite

state hardware circuits against logical specifications – has been less widely

adapted for software, as software verification tends to involve reasoning about

potentially infinite state-spaces. Two of the biggest culprits responsible for

making software model checking hard are heap-allocated data structures and

concurrency.

In the first part of this dissertation, we study the problem of verify-

ing shape properties of sequential data structure libraries. Such libraries are

implemented as collections of methods that manipulate the underlying data

structure. Examples of such methods include: methods to insert, delete, and

ix



update data values of nodes in linked lists, binary trees, and directed acyclic

graphs; methods to reverse linked lists; and methods to rotate balanced trees.

Well-written methods are accompanied by documentation that specifies the

observational behavior of these methods in terms of pre/post-conditions. A

pre-condition ϕ for a method M characterizes the state of a data structure

before the method acts on it, and the post-condition ψ characterizes the state

of the data structure after the method has terminated. In a certain sense, we

can view the method as a function that operates on an input data structure,

producing an output data structure.

Examples of such pre/post-conditions include shape properties such as

acyclicity, sorted-ness, tree-ness, reachability of particular data values, and

reachability of pointer values, and data structure-specific properties such as:

“no red node has a red child”, and “there is no node with data value ‘a’ in

the data structure”. Moreover, methods are often expected not to violate

certain safety properties such as the absence of dangling pointers, absence of

null pointer dereferences, and absence of memory leaks. We often assume such

specifications as implicit, and say that a method is incorrect if it violates such

specifications. We model data structures as directed graphs, and use the two

terms interchangeably. Verifying correctness of methods operating on graphs

is an instance of the parameterized verification problem: for every input graph

that satisfies ϕ, we wish to ensure that the corresponding output graph satisfies

ψ. Control structures such as loops and recursion allow an arbitrary method

to simulate a Turing Machine. Hence, the parameterized verification problem

x



for arbitrary methods is undecidable.

One of the main contributions of this dissertation is in identifying math-

ematical conditions on a programming language fragment for which parame-

terized verification is not only decidable, but also efficient from a complexity

perspective. The decidable fragment we consider can be broadly sub-divided

into two categories: the class of iterative methods, or methods which use loops

as a control flow construct to traverse a data structure, and the class of recur-

sive methods, or methods that use recursion to traverse the data structure.

We show that for an iterative method operating on a directed graph,

if we are guaranteed that if the number of destructive updates that a method

performs is bounded (by a constant, i.e., O(1)), and is guaranteed to termi-

nate, then the correctness of the method can be checked in time polynomial

in the size of the method and its specifications. Further, we provide a well-

defined syntactic fragment for recursive methods operating on tree-like data

structures, which assures that any method in this fragment can be verified in

time polynomial in the size of the method and its specifications. Our approach

draws on the theory of tree automata, and we show that parameterized cor-

rectness can be reduced to emptiness of finite-state, nondeterministic tree au-

tomata that operate on infinite trees. We then leverage efficient algorithms for

checking the emptiness of such tree automata to obtain a tractable verification

framework. Our prototype tool demonstrates the low theoretical complexity

of our technique by efficiently verifying common methods that operate on data

structures.
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In the second part of the dissertation, we tackle another obstacle for

tractable software verification: concurrency. In particular, we explore applica-

tion of a static analysis technique based on interprocedural dataflow analysis

to predict and document deadlocks in concurrent libraries, and analyze dead-

locks in clients that use such libraries. The kind of deadlocks that we focus

result from circular dependencies in the acquisition of shared resources (such

as locks). Well-written applications that use several locks implicitly assume a

certain partial order in which locks are acquired by threads. A cycle in the lock

acquisition order is an indicator of a possible deadlock within the application.

Methods in object-oriented concurrent libraries often encapsulate inter-

nal synchronization details. As a result of information hiding, clients calling

the library methods may cause thread safety violations by invoking meth-

ods in a manner that violates the partial ordering between lock acquisitions

that is implicit within the library. Given a concurrent library, we present a

technique for inferring interface contracts that specify permissible concurrent

method calls and patterns of aliasing among method arguments that guaran-

tee deadlock-free execution for the methods in the library. The contracts also

help client developers by documenting required assumptions about the library

methods. Alternatively, the contracts can be statically enforced in the client

code to detect potential deadlocks in the client. Our technique combines static

analysis with a symbolic encoding for tracking lock dependencies, allowing us

to synthesize contracts using a satisfiability modulo theories (SMT) solver.

Additionally, we investigate extensions of our technique to reason about dead-
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locks in libraries that employ signaling primitives such as wait-notify for coop-

erative synchronization. We demonstrate its scalability and efficiency with a

prototype tool that analyzed over a million lines of code for some widely-used

open-source Java libraries in less than 50 minutes. Furthermore, the contracts

inferred by our approach have been able to pinpoint real bugs, i.e., deadlocks

that have been reported by users of these libraries.
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Chapter 1

Introduction

1.1 Motivation

Software systems now control several important aspects of human life.

The benefits of automation come at a price; we have to endure the possibility of

catastrophic system failures resulting from programming errors. In the recent

past, crippling bugs have surfaced in the software that governs the operation

of life-support systems, medical devices, space missions, safety features in cars,

and microprocessor chips. Even in mundane software systems, errors severely

hamper the productivity of the users of such software. A study prepared in

2002 for the National Institute of Standards and Technology1 helps put things

into perspective. It concluded that errors in software industry were costing

the American economy $59 billion annually, of which $22.2 billion could be

eliminated by earlier and more effective identification and removal of software

defects.

Human fallibility in writing programs is likely to persist; thus, the

onus lies with computer scientists to develop frameworks that are (a) capable

1http://www.nist.gov/public_affairs/taglance/taglance_summer02/

summer2002.htm#bugs

2

http://www.nist.gov/public_affairs/taglance/taglance_summer02/summer2002.htm#bugs
http://www.nist.gov/public_affairs/taglance/taglance_summer02/summer2002.htm#bugs


of minimizing the likelihood of such errors, (b) verifying the correctness of

existing programs, and (c) aid the debugging process by better identification

of the root cause of bugs. Formal methods for synthesis, verification and

debugging have long held the promise to help achieve these goals [74, 122, 46].

Automatic and semi-automatic techniques for ensuring program cor-

rectness or reliability can be sub-divided into two broad categories: dynamic

techniques and static techniques.

Dynamic techniques operate by executing a program, and observing

the results of the program execution. Testing and profiling of software are

examples of dynamic analyses. Software testing runs the program against a

suite of test-cases that encapsulate intended program behavior, and program

correctness is predicated upon the program satisfying each of the test-cases

within this suite. Testing usually occurs at different levels; unit testing for

checking the functional correctness of individual modules; integration test-

ing for checking the module interfaces versus the system design; and system

testing for checking a completely integrated system against its requirements.

The advantages of dynamic analyses are accuracy and speed (they are as fast

as program execution), while the shortcomings are lack of coverage and de-

pendence on human input for test-cases or code instrumentation for profiling.

Though coverage tools help measure the amount of code coverage using var-

ious metrics, it is rare for a dynamic technique to offer comprehensive code

coverage.

Static techniques on the other hand inspect the program code without

3



actually executing it, and reason about possible behaviors that may manifest

at run-time. Static program analysis [91, 114], model checking [52, 30, 123],

symbolic simulation [23], symbolic trajectory evaluation [151] are examples of

static techniques.

In some cases, the efficacy of static techniques is often predicated upon

the availability of specifications, which may require additional effort in devel-

opment and formalization. Static techniques also make use of conservative

abstractions, which lead to false positives (i.e., errors introduced due to the

abstraction process). Applications such as testing user interfaces (UI)s are

also not easily amenable to analysis by static techniques. In spite of these

limitations, static techniques hold the promise of exhaustive analysis of the

program, by inspecting all possible program behaviors, and hence have in-

creasingly become a popular alternative to dynamic techniques.

The choice of the right static technique is usually a tradeoff between pre-

cision and speed. Precise static techniques such as model checking [52, 30, 123]

rely on statically constructing the state-space of the program. Model checking

can be thought of as an intelligent search algorithm that scans the reachable

configurations of the underlying system for certain temporal patterns that en-

code desirable or undesirable sequences of configurations. As state-spaces are

often enormous, model checking faces the state explosion problem. In spite of

this, due to advances such as symbolic model checking [107], bounded model

checking [28], abstraction-refinement [29], symmetry reductions [27, 60], and

partial order reduction [119, 67], model checking has fast become an efficient

4



approach to identify critical bugs early in the hardware development cycle.

As testing-based approaches are inexhaustive, bugs that remain undiscovered

till the post-silicon phase incur significant expense in both in terms of time

and money, and hence model checking has endeared itself to the hardware

verification community.

It can thus seem mystifying that model checking has not had as much

of an impact on software verification. The key reason for this is the computa-

tional complexity of software verification in comparison to that of hardware.

Even large hardware systems are essentially finite state, and with techniques

to ameliorate the state explosion problem, model checking can now handle rea-

sonably sized hardware designs. Software model checking, on the other hand,

often runs into the brick wall of undecidability or extremely high complexity,

often rendering it infeasible for practical software systems. Heap-allocated dy-

namic data structures, recursion, and program variables with large domains

are commonplace in even the most ordinary software. Each of these in itself,

often leads to either undecidability in reasoning, or causes prohibitively high

number of program configurations that need to be inspected. Even successful

software model checking tools such as Slam [8], Java PathFinder [81] and

Blast [13] often use conservative approximations for heap-allocated struc-

tures, which may lead to a large number of false errors.

The faster static techniques, such as static program analysis, are inac-

curate as they are prone to a slew of false positives, i.e., errors arising from

conservative approximation of program behavior that are infeasible during ac-

5



tual program execution. The challenge in these techniques is to increase the

accuracy by novel approaches such as symbolic reasoning, without compromis-

ing on their space and time complexity.

Concurrency adds yet another dimension of complexity to static tech-

niques in software verification. The increasing use of multi-threaded code is a

major source of heisenbugs. Such bugs (named after the uncertainty principle)

are particularly tricky to detect, as they only appear in certain interleavings

of the multi-threaded code. The key reason for this is that individual threads

or processes within concurrent programs are often scheduled by the operating

system, giving the software developer little or no control over allowable con-

current behaviors – some of which may contain lurking heisenbugs. Therefore,

a reasonable assumption in analyzing most multi-threaded or multi-process

programs is thus that scheduling is nondeterministic, and it is possible to get

all possible concurrent interleavings as possible program behaviors. Unfortu-

nately, there is an exponential number of such interleavings to be considered,

leading to an astronomical number of possible program configurations to be

inspected. Coupled with dynamic data structures and recursion, reasoning

about even the simplest concurrent programs becomes undecidable [124].

The overarching goal of this dissertation is development of strategies to

make static techniques in software verification tractable. We accomplish this

goal in two ways:

1. We formulate a framework for efficient verification of methods in se-

6



quential data structure libraries. This framework can be viewed as an

extension of conventional model checking to automatically reason about

methods that manipulate parameterized data structures.

2. We explore applications of static program analyses for ensuring thread

safety in concurrent libraries. We introduce a novel symbolic encoding

scheme for deadlock prediction in concurrent libraries, which is both

more accurate than existing techniques, and highly scalable – being able

to analyze over a million lines of Java code in less than 50 minutes, on

an off-the-shelf (dual core) uniprocessor system.

We now introduce each of these sub-problems, with emphasis on why

the problems are important, what makes them difficult to solve, and a brief

overview of how we tackle them.

1.2 Verification of Data Structure Libraries

Problem Overview. Data structures are the basic building blocks for es-

sentially all software systems. Most data structures are usually embedded in a

data structure library and are associated with specialized methods that perform

various operations on the data structures. Examples of such data structures

include linked lists, queues, binary search trees, balanced trees, hash-tables,

and general directed graphs. Examples of methods include methods to insert

and delete nodes, methods to rotate parts of trees; and methods to reverse

lists. It is often convenient to model data structures as vertex and edge-
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labeled directed graphs, and methods as routines to transform these graphs.

In this dissertation, we often use the terms data structures and directed graphs

interchangeably.

The correctness of methods is often specified informally with Appli-

cation Programming Interface (API) rules. These rules can be interpreted or

re-written as pre/post-conditions, similar to Hoare logic [83]. If M is a method

of interest, we denote by ϕ the pre-condition, which is a structural property of

the input data structure (Gi) for a method. We often term the data structure

resulting from the action of M on Gi as the output structure Go, and denote it

as M(Gi). We denote by ψ the post-condition or a structural property speci-

fying the data structure resulting from the action of M on the input structure.

The correctness problem for such methods can be stated as: “If each input

data structure Gi for M satisfies ϕ, does the data structure Go resulting from

the action of M on Gi (denoted M(Gi)) satisfy ψ?”

For instance, we would like to ensure that a method that inserts a node

in a singly-linked list does not violate the invariant of acyclicity, or a method

to delete a node from a balanced tree ensures that the resultant tree is also bal-

anced, or a method that sorts a linked list produces a sorted list with elements

that are a permutation of the original list. Frequently, the only correctness

criterion required is that a method does not violate a structural invariant of

the data structure, i.e., the pre-condition and the post-condition are identical.

Common examples of pre/post-conditions or structural invariants include:
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1. Shape properties such as: acyclicity, existence of sharing (two nodes

point to a common node), tree-ness (each non-root node has a unique

parent), list-ness (given graph is a list), and balanced-ness (given tree is

balanced).

2. Connectivity properties such as: reachability of a target node from a

source node (where the nodes are specified by pointers), reachability of a

given data value from a given node, unreachability of garbage (memory

that has been marked as free), strongly connectedness (every node is

reachable from itself).

3. Data-dependent properties such as sorted-ness, “no red node has a red

child”, “every node labeled b is preceded by a finite number of nodes all

labeled a”, and so on.

Methods that modify data structures usually perform a number of

memory-related operations. Hence, an often unstated requirement is that the

method should not contain violations of safety properties such as null pointer

dereferences, presence of dangling pointers, and memory leaks. In most cases,

in addition to the structural invariants specified above, we assume that invari-

ance of safety properties is implicit to the verification problem.

In practice, programmers usually certify correctness of methods by test-

ing them for candidate input data structures of varying sizes. However, data

structures can get arbitrarily large during program execution, and it is com-

putationally infeasible for a testing-based strategy to exhaustively verify cor-
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rectness. In a certain sense, verification of data structure-altering methods is

an instance of the parameterized verification problem [57, 58]. In parameter-

ized verification, the system of interest is characterized by certain parameters,

and correctness mandates that the system satisfies its specifications for all val-

ues that the parameters can take. Similarly, correctness of methods on data

structures requires that the methods display desired behavior for all sizes of

the input data structure, and not just for some sizes as in testing-based ap-

proaches. However, the biggest obstacle to the automatic verification of such

methods is that parameterized verification is undecidabla [57, 58].

Solution Overview. Though verification of arbitrary methods is undecid-

able, we show that with a few restrictions, broad classes of practical methods

on data structures can be algorithmically verified. Specifically, in this disserta-

tion, we make the observation that under certain constraints, methods acting

on data structures can be exactly mimicked by finite state machines. This

critical insight allows us to employ an automata-theoretic framework to verify

the parameterized correctness of such methods.

We show that for a method M that performs a bounded (by a con-

stant k) number of destructive updates to the underlying data structure, we

can construct an exact abstraction known as the method automaton AM. The

automaton AM is defined to operate on a composite graph Gc which is a super-

position of a finite number of graphs G0, . . . , Gk, where G0 is the input graph,

the k pairs (G0, G1), . . ., (Gc−1, Gl) encode the c destructive updates, and Gk
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is the output graph. In other words, G1, . . . , Gk−1 denote intermediate values

encountered during the action of M before obtaining the final output graph

Gk.

We also show how a significant subset of the properties outlined before

can be modeled using finite state nondeterministic tree automata on finite

and infinite trees. We assume that pre/post-conditions are specified as a pre-

condition automaton Aϕ and a (negated) post-condition automaton A¬ψ. The

final step is to compute Ap, the composition of AM, Aϕ and A¬ψ, which is

nonempty iff there exists an input graph satisfying ϕ for which the action of M

produces an output graph that does not satisfy ψ. In effect, we reduce checking

correctness of M to checking the language emptiness for Ap. Thus, the final

computational complexity of our approach is dominated by the complexity of

nonemptiness of the product automaton, which is polynomial in the size of Ap.

This in turn is proportional to the sizes of the pre/post-condition automata,

and the size of the method. Thus, the overall computational complexity is

polynomial in the size of the method and its specifications.

In a certain sense, our basic methodology can be viewed as an extension

of conventional model checking. The core characteristic of model checking,

i.e., fully automatic and efficient verification, given a set of specifications, is

preserved by our approach.

Organization. In Chapter 2, we formally define data structures, the use of

directed graphs to model data structures, and methods over parameterized
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data structures. We present a finitary encoding (known as the window-based

encoding) that allows data structures containing arbitrary pointer values to be

encoded as sequences of finite neighborhoods within the data structure known

as windows. Finally, we give the necessary background on tree automata to

conclude the preliminaries.

Within the broad automata-theoretic framework for verifying methods

that manipulate data structures, we consider two distinct classes of meth-

ods. In Chapter 3, we discuss iterative methods operating on general directed

graphs. We establish mathematical conditions under which methods can be

mimicked by finite state automata. We then outline Bud-Pl: a programming

language with syntax similar to high-level programming languages such as C

for expressing methods, and provide an algorithm to compile a method in

Bud-Pl into a method automaton AM.

In Chapter 4, we extend Bud-Pl to allow expression of recursive meth-

ods on tree-like data structures. In our approach, a method M is mimicked

by a method automaton AM. AM is defined to operate over some compos-

ite graph Gc (as defined before) that encodes the possible actions of some

method. If the actions encoded in Gc are consistent with the actions of M,

then AM accepts Gc. Typically, recursive methods employ an unbounded stack

to store information about the calling context before executing the recursive

call. However, we show that a suitably defined composite graph contains all

the relevant information about the calling context (i.e., the state of the data

structure) before a recursive call is executed. Thus, by constructing a suitable
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composite graph, we can avoid explicit reasoning about the unbounded stack.

This syntactic class of recursive methods is an improvement over the

class for iterative methods: methods in this class are guaranteed to respect

the stipulations that allow them to be mimicked by finite state automata.

Thus, methods in this class can be efficiently verified without further manual

input. For expository reasons, we divide the decidable syntactic class of recur-

sive methods into tail-recursive methods and the more general case, and give

algorithms to translate each class of methods into method automata. Note

that tail-recursive methods mimic iterative methods, and thus this extension

also provides us with a syntactic class of iterative methods on tree-like data

structures that can be automatically verified.

Our approach has favorable theoretical complexity. The practical util-

ity of our approach is further demonstrated by our prototype tool Pravda,

which is able to verify a large subset of both iterative and recursive methods on

data structures, for many interesting shape properties, within reasonable time

and memory constraints. We present the experimental results in Chapter 5.

1.3 Analysis of Concurrent Libraries

Problem Overview. There are two kinds of paradigms for parallel com-

putation: shared memory systems (that we use synonymously with the term

concurrent systems), and distributed systems. Distributed systems are charac-

terized by the lack of a shared memory, and as a result it is impossible for any

one process to know the global state of the system. Such systems thus use the

13



notion of a distributed memory, and use message passing for communication

between different processors [68]. In this dissertation, we largely focus on the

former paradigm, i.e., concurrent systems or systems with shared memory.

Analysis of shared memory systems has gained considerable attention

recently, especially since multi-core processors have become the de facto stan-

dard for hardware platforms. The day when systems with thousands of cores

become ubiquitous is imminent. In spite of decades of research in the develop-

ment of concurrent software, there is a gap between the programming practices

for concurrent software and the theoretical research in concurrency synthesis

and verification. This is evident by the number of errors arising in applications

using poorly designed concurrent libraries. Such errors are commonly referred

to as thread safety violations. We can broadly classify them into violations

of safety properties such as data races, atomicity violations and violations of

liveness properties such as starvation and deadlocks.

As safety violations such as data races are abundant and difficult to

debug, they have garnered considerably more attention. A knee-jerk response

to avoiding race conditions is evident in the prolific use of locking constructs

in concurrent programs. Languages such as Java have promoted this by pro-

viding a convenient synchronized construct to specify mutual exclusion with

monitors. Locking is sometimes naively used as a “safe” practice, rather than

as a requirement. Overzealous locking not only causes unnecessary overhead,

but can also lead to unforeseen deadlocks. Deadlocks can severely impair real-

time applications such as web-servers, database systems, mail-servers, device
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drivers, and mission-critical systems with embedded devices, and typically

culminate in loss of data, unresponsiveness, or other liveness violations.

Deadlock detection is a well-studied problem, and approaches based on

model checking, static analysis, dynamic (run-time) analysis have been applied

for detecting deadlocks. Though model checking based tools can be quite use-

ful for detecting deadlocks, for large software systems their scalability is often

called into question. Hence, the programming languages community has grav-

itated towards the use of both static program analysis and dynamic analysis

based techniques [79, 2, 32, 145, 5, 110, 148] for deadlock detection. Typically,

such techniques construct lock-acquisition order graphs that track dependen-

cies between locks for each thread. Lock-order graphs for concurrent threads

are then merged, and a cycle in the resulting graph indicates a possibility of

a deadlock. Such techniques typically assume a closed system, and are thus

useful for detecting existing deadlocks in a given application.

However, most software is modular and treating individual components

as closed systems could lead to potential deadlocks being undetected. In par-

ticular, consider the now prevalent concurrent libraries, i.e., collections of mod-

ules that support concurrent access by multiple client threads. Modular design

principles mandate that the onus of ensuring thread safety lies with the devel-

oper of such a library. This has an undesirable side-effect: several details of

synchronization are obscured from the developer of client code that makes use

of this library. Consequently, the client developer may unintentionally invoke

library methods in ways that can cause deadlocks.
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In the later part of this dissertation, we investigate a kind of static

program analysis that we have called deadlockability analysis. The goal of

deadlockability analysis is to use static analysis for the prediction, documen-

tation, and analysis of deadlocks in concurrent libraries. A form of dead-

lockability analysis was first investigated in [148]. However, the authors used

types of syntactic expressions corresponding to object monitors as conservative

approximations for the alias information between these monitors. While the

authors identify important potential deadlocks, their approach is susceptible

to many false positives, which have to be then filtered using (possibly unsound)

heuristics. Higher precision can be attained if precise information about alias-

ing between object monitors is available. However, the cost of performing a

precise alias analysis and recording the high number of aliasing relationships

that can exist between monitors can add up, affecting the scalability of the

deadlockability analysis.

Solution Overview. We focus on deadlocks arising from circular dependen-

cies in lock acquisition in common concurrent programming languages. We also

identify usage patterns of wait-notify based synchronization that can lead to

potential deadlocks.

In our approach, we reason about possible aliasing patterns between

nodes in lock graphs explicitly rather than with type-based approximations.

As suspected, this incurs a considerable cost, as several complex aliasing re-

lationships have to be remembered and used by our tool. In fact, we show
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that the problem of finding all aliasing relationships between nodes of two

lock-order graphs, such the aliasing relationship causes the merged lock-order

graph to have a cycle is NP -complete by a reduction from CNF-SAT.

However, we reduce the space of possible aliasing patterns between

nodes by using a notion of subsumption between aliasing patterns. Essentially,

we show that if an aliasing pattern α causes a deadlock, then every aliasing

pattern that subsumes α also causes a deadlock. Conversely, we show that if

an aliasing pattern α is safe, then every aliasing pattern subsumed by α is also

safe.

We also introduce a symbolic encoding for lock-order graphs and alias-

ing relationships that encodes the cycle detection problem as a constraint sat-

isfaction problem. We then feed the set of constraints to a satisfiability modulo

theories (SMT) solver, which uses various engineering optimizations, such as

incremental cycle detection and unsatisfiable cores, to efficiently enumerate

all aliasing patterns that lead to deadlocks. By enabling symbolic reasoning

along with subsumption, our analysis is highly scalable. The focus on aliasing

patterns allows us to rule out infeasible aliases by means of a prior pointer

analysis. Thus, our analysis combines the scalability of static analysis with

the precision of an approach based on model checking or dynamic analysis.

Lastly, we synthesize logical expressions, termed interface contracts in-

volving aliasing between the parameters of concurrent method invocations such

that these expressions guarantee deadlock-free execution of the library meth-

ods. These contracts can then be used to statically detect deadlocks or dy-
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namically enforce deadlock freedom in a particular client.

Organization. In Chapter 6, we introduce the general principles of static

analysis and program analysis techniques. We formally introduce a program-

ming language model that closely adheres to object-oriented imperative lan-

guages such as Java and C++. We include a discussion on the implementation

of common synchronization primitives such as locks, monitors and condition

variables within these languages. We conclude with an informal introduction

to deadlockability analysis.

In Chapter 7, we discuss a static analysis algorithm to compute lock-

graphs for methods in a concurrent library. We define deadlockability analysis,

and finally present a symbolic encoding to represent lock-graphs and aliasing

patterns as constraints in a suitable decidable theory. We then show how

the symbolic encoding can be leveraged to efficiently enumerate all deadlock-

causing aliasing patterns for methods in a library using a SMT solver. Finally,

we discuss how the results of deadlockability analysis for a library can be used

for statically detecting deadlocks in a client.

In Chapter 8, we extend deadlockability analysis to methods that use

signaling-based synchronization with the help of wait-notify statements. We

extend the nested monitors rule used for deadlock analysis in lock-based syn-

chronization, and term it the generalized nested monitors rule. We show how

the static algorithm for lock-graph computation can be extended to accom-

modate the generalized rule. The resultant graph obtained from such a static
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analysis is termed an extended lock-graph. Finally, we show how the ex-

tended lock-graph can be symbolically encoded into constraints, thereby en-

abling symbolic reasoning for enumerating deadlock-causing aliasing patterns

as in Chapter 7.

An approach based on static analysis can produce too many false pos-

itives to be of practical use. However, as we use precise aliasing information,

our approach does not suffer from this shortcoming as much. We empirically

validate our technique with the help of a tool on a broad class of Java libraries.

We present the most notable results in Chapter 9.

Any serious research is incomplete without situating it in the past and

the contemporary work in the area. Hence, after each chapter we include a

detailed discussion on related work. Lastly, we summarize our contributions,

and enumerate a list of open problems in Chapter 10.
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Part II

Verification of Sequential Data
Structures

20



Outline. Sequential software verification is hard due to (1) variables with

large domains such as integers, strings, and floating-point precision variables,

(2) heap-allocated linked data structures that can grow arbitrarily in size such

as queues, linked lists, and trees, and (3) unrestricted recursion. Each of

these by itself makes software verification undecidable. There are two possible

approaches to mitigate this issue: (a) develop algorithmic solutions that can

conservatively approximate software correctness, (b) identify decidable sub-

classes of software programs that are amenable to exact verification.

In our approach to verifying programs that manipulate data structures,

we choose Option (b). The goal of our work in Part II is thus to formulate

(sufficient) mathematical conditions for programs that ensure efficient and

exact software verification. In Chapter 3 we show how such conditions can be

used to verify iterative methods on general directed graphs. In Chapter 4, we

show how we present a well-defined syntactic fragment of recursive methods

that can be automatically verified. In Chapter 5, we present experimental

evaluation of the techniques developed in Chapters 3 and 4.
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Chapter 2

Preliminaries

In this chapter, we introduce the necessary formal notation, definitions,

and terminology for sequential verification of data structure manipulating pro-

grams.

2.1 Data Structure Manipulating Programs

A data structure manipulating program can be described as a pair

(S, V ), where V is a set of program variables, and S is a set of program

statements. We assume that program variables belong to only one of two

types: a variable over some finite set D (referred to as a D-variable), and a

pointer variable. D is termed as the data domain: typical examples include the

set of alphanumeric characters, the set of integers up to a fixed word length,

the set of strings up to a fixed length over a finite alphabet, finite products

of such sets, etc. To define a pointer variable, we first introduce the memory

model.

Memory Model. A heap H is an ordered set (array) of memory cells, where

each memory cell contains the value of some program variable. We say that
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Ω is an address domain that contains memory addresses and null. Each

memory cell has a unique address from the set Ω−{null}. A pointer variable

(or simply pointer) p is a variable that evaluates to some address in Ω. We

seek to reason about heap-allocated data structures. In general, this consists

of arrays (data structures with contiguous memory allocation) and linked data

structures (non-contiguous). In this work, we focus on the latter.

The basic building block of a linked data structure is a node. A node

n consists of contiguous memory locations containing values of the tuple of

variables: (d, l1, . . . , lK). Note that Here d is a D-variable, while each li is a

pointer. Note that the number of links K is fixed and is part of the definition

for a node. We use addr(n) to denote the address of the first memory location

within n. We use n.d (respectively n.li) to denote the variable d (respectively

pointer li) contained in n. The value n.d is also called the data value of n,

and n.li is also referred to as a link, or the ith next pointer of n. We say that

a pointer p points to n if p = addr(n). If p = addr(n), then the expression

deref(p), also called dereference of p evaluates to n. If the value of p is null,

the expression deref(p) is undefined and generates an error known as a null

pointer dereference (NPD). We assume that all pointers p in our programs are

either null, or that deref(p) evaluates to a valid node. Wherever convenient,

we use the symbols ∅ and ⊥ interchangeably with null.

Data Structure. A data structure is defined as an arbitrary set of nodes.

In this work, we focus on rooted and connected data structures. As shown in

23



a 0x60 0x80

b 0xa0 ∅ c 0x40 0xc0

0x40:

0x60: 0x80:

(a) Data Structure

a

b c

0 1
0

10

(b) Corresponding Directed Graph

Figure 2.1: Correspondence between a Data Structure and a Directed Graph

Figure 2.1, a rooted, connected data structure D has a one-to-one correspon-

dence with a rooted, labeled, directed graph G(V,E,LV ,LE): V is the set of

vertices, E is the set of edges, LV : V 7→ D is a function that maps each vertex

to some data value in D, and LE : E 7→ {1, . . . , K} is a function that maps

each out-going edge of a given node to a unique positive integer. Each node

n in D corresponds to a vertex vn, such that LV (vn) = n.d, and for every n′,

such that n.li = addr(n′), the edge e : (vn, vn′) belongs to E, and LE(e) = i.

We term every v′ such that (v, v′) ∈ E, a child or successor of v, and term v a

parent or predecessor of v′. We assume that there is a designated unique root

vertex r ∈ V (corresponding to the root node of the data structure) with the

property that r has no predecessor.

Parameterized Data Structures and Shapes. A specific data structure

is characterized by certain structural properties that can loosely be termed

the shape of the data structure. For instance, an acyclic singly linked list

is characterized by the properties that: (a) each node can have at most one

successor, (b) each node has a unique parent (except the root node, which has

24



none), (c) starting from the root node of the list, it is possible to reach every

node in the list by following the links to the successors, and finally reach a

node that does not have a successor (i.e., n.l0 is null).

Several formalisms such as first-order logic [21], monadic second order

logic [108], various decidable logical fragments [9, 152], three-valued logics

[131], separation logic [125, 115] and tree automata [42, 20, 41] have been

employed to describe shapes of data structures. In this work, we focus on the

use of tree automata and fragments of temporal logic (such as CTL and µ-

calculus) to describe such properties. Examples of specifications of such shape

properties can be found in Chapter 3.

An important aspect of dynamic, heap-allocated data structures is that

they typically do not have a fixed bound on their size, and can grow during

the execution of the program. Thus, dynamic data structures can get arbi-

trarily large. As we wish to focus on verifying programs that alter such data

structures, we are required to verify program correctness for all possible data

structure sizes. It is thus useful to consider such a data structure as a pa-

rameterized system: different instances of the data structure can be uniformly

described using a representation that is parameterized by attributes of the

data structure. For example, an acyclic singly linked list is parameterized

by its length, and a binary tree is parameterized by its height and/or by the

number of nodes.

Let G denote the corresponding directed graph for a given data struc-

ture D. We denote by ϕ the logical formula (in any appropriate formalism)
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describing a specific shape property over graphs. The parameterized family of

graphs, denoted Gϕ is described as the set Gϕ = {G | ϕ(G) is true}. We also

use G |= ϕ to denote that ϕ(G) is true.

Methods over Parameterized Data Structures. In the object-oriented

programming parlance, a method is a sub-routine associated with an abstract

data type specified as a class or with an object that is an instance of such a

class. In this work, we specialize the meaning of this term.

Def. 2.1.1 (Method). A method M is a program that operates on an input

data structure Di, and (possibly) modifies it, resulting in the data structure

Do. We denote this as Do = M(Di)
1.

An arbitrary method contains a set of D-variables, and a set of pointer

variables. We assume that each pointer variable points to some valid node of

the input (or output) data structure. We use the terms cursor or iterator to

denote such pointer variables. It is important to bear in mind that the methods

that we seek to verify operate on parameterized data structures. Such data

structures can get arbitrarily large; hence, methods typically employ control-

flow structures such as loops or recursion for traversal over the structure. A

single pass over the data structure is a traversal that visits each node exactly

once. Methods perform traversal with the use of cursors, by advancing to

1It is possible to view a method as a partial function that maps an input data structure
Di to some output data structure Do. Henceforth, we refer to the data structure resulting
from the action of the method M as the output data structure for convenience.
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nodes that are reachable from the current set of nodes (accessible through the

current set of cursors) and modifying cursors to point to these “next” nodes.

The general syntax and semantics of such methods closely mimics high-level

programming languages such as C++ or Java. We give the precise syntax and

semantics in later chapters.

2.2 Problem Definition

Def. 2.2.1 (Parameterized Correctness). Let ϕ be a shape property specifying

valid input graphs. Let ψ be a shape property specifying valid output graphs.

We wish to verify the total correctness assertion: 〈ϕ〉M〈ψ〉.

In other words, the above correctness assertion says that given families

Gϕ and Gψ, we wish to check if for all input graphs Gi ∈ Gϕ, M(Gi) is in Gψ.

An alternate, equivalent, way to state the above problem is: if for any graph

Gi s.t. ϕ(Gi) is true, if there exists Go = M(Gi), s.t. ¬ψ(Go) is true, then

M fails to satisfy its correctness assertion. We refer to ϕ as the pre-condition,

and ψ as the post-condition.

A special case of Def. 2.2.1 is invariance of shape properties. In this

case, ϕ is the same as ψ, and we wish to verify the total correctness assertion:

〈ϕ〉M〈ϕ〉.
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2.3 Window-based Encoding

As data structures can have arbitrary sizes, the addresses of the nodes

in the data structure are unbounded. This is one of the key reasons why

reasoning about data structures fails to scale when reasoning explicitly about

the program state. Arbitrarily large addresses also lead to undecidability as

we see in Chapter 3.

Hence, we propose a finite encoding for a data structure that abstracts

a sequence of nodes in the data structure as a sequence of local neighborhoods

within the data structure. Each such local neighborhood is an abstraction of

the corresponding set of nodes in the data structure. We refer to such a local

neighborhood as a window.

Formally, a window w is a finite encoding of a node n and a bounded

number of nodes that succeed n, similar to the finite encodings developed

in [42, 19]. Let G(V,E) be a directed graph corresponding to some data

structure D. Let Ω denote the set of memory addresses for the nodes in D. A

window is obtained by mapping memory addresses within the neighborhood

of a designated node to a small, finite subset of integers.

Def. 2.3.1 (Window). Given a node u0, let nodes(u0, z) = {u1, . . . , u`}

be the set of nodes within distance z from u0, i.e., ∀i, (u0, ui) is in one of

E or E2, . . ., Ez, for some (small) finite positive integer z. A window of

height z rooted at uo (denoted wz(u0)) is the set {û0, . . . , û`}, where: If ui =

(di, addr(ui1), . . . , addr(uiK )), then, ûi = (di, la(ui1), . . . , la(uiK )). Here, la or
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Figure 2.2: Window-based Abstraction

the local address function replaces the concrete memory address for a node ui

with i if ui ∈ nodes(u0, z), and ∗ otherwise.

Intuitively, given a small neighborhood of nodes (of size `) with a des-

ignated root node u0, a window assigns an integer 0, . . . , `− 1 as an abstract

address to each node in the neighborhood. It then proceeds to replace the

concrete addresses in the links of the nodes within this neighborhood with the

abstract addresses. If a link points to a node outside the neighborhood, the

corresponding abstract address is marked as ∗.
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We note that this construction can be extended to allow for predeces-

sor nodes of u0. The idea is to designate u0 as the “center” of the window,

with abstract addresses that can range over negative integers (indicating pre-

decessors), zero (indicating u0) and postive integers (indicating successors).

Figure 2.2 gives an example of the window-based abstraction.
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Figure 2.3: Windowed Representation. (a) List li, (b) Windowed List l̃i, (c) Tree
ti, (d) Windowed Tree T̃i

The window-based abstraction is crucial as it allows an arbitrarily large

data structures (containing possibly unbounded addresses) to be represented

as a sequence of windows (with the caveat that adjacent windows that encode

overlapping neighborhoods are consistent with each other). Given a graph

G, we denote by G̃ the corresponding “windowed” data structure. In lieu of
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a formal definition, we pictorially represent this in Figure 2.3. We have not

shown the local addresses in each window for simplicity.

As we will see in Chapter 3 and Chapter 4, we stipulate that methods

perform localized updates to data structures. Thus, by our stipulation, each

update performed by a method to a data structure is constrained within a

window of some size. The motivation for the term window comes from this

stipulation: Imagine the data structure as a set of customers, and the method

as a clerk sitting at an office window. At any given time, only part of the set

is visible to the clerk, through the window. The clerk can only take action

to whichever part of the set is visible to him. Similarly, the method can only

modify nodes that are part of a window.

2.4 Tree Automata

Trees. A tree is a directed, acyclic, labeled graph T (V,E) that satisfies the

property that each vertex (except the root vertex) has a single parent, and the

root vertex has no parent. We say that the branching arity or degree of T is K

if the maximum out-degree of any vertex in T is K. Each vertex of the tree is

associated with a vertex-label defined by the function LV : V 7→ D, where D

is some finite data domain. Each edge is associated with an edge-label defined

by the function LE : E 7→ {1, . . . , K}. The height of a tree, denoted by h(T ),

is the maximum distance of any vertex from the root vertex. We say that a

tree is finite if h(T ) is a finite positive integer, and infinite otherwise.

Def. 2.4.1. A nondeterministic finite state tree automaton over an infinite
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k-ary tree is a tuple A = (Σ, Q, δ, q0,Φ) where:

Σ is the finite, nonempty input alphabet labeling the nodes of the tree,

Q is the finite, nonempty set of states of the automaton,

δ : Q× Σ 7→ 2Q
k

is the nondeterministic transition function,

q0 ∈ Q is the start state of the automaton, and

Φ is an acceptance condition.

The run ρ of A on a Σ-labeled T is an annotation of T with the states Q

compatible with δ. The acceptance of T by A is defined by a suitable temporal

property over the paths in the tree. We identify certain useful acceptance

conditions that we require in this dissertation.

The Büchi acceptance condition requires that some state in a given set of

states F occurs infinitely often along every path in ρ. An automaton A with

the Büchi acceptance condition is also called a Büchi tree automaton.

The parity acceptance condition is specified in terms of a set of mutually

disjoint subsets {Φ0, . . . ,Φm} of Q. If π = 〈q0, . . . , qi, . . .〉 is a finite or infinite

sequence of automaton states, then we say that π satisfies the parity condition

if the following condition is satisfied: there exists an even number r, 0 < r < m,

such that some state in Φr appears infinitely often in π, and each of the states

in the set
⋃
r<j≤m Φj appears only finitely often in π. The parity condition

is often alternately expressed as follows: A sequence of states π satisfies the

parity condition, when the states of the automaton are colored with a set of

colors {c0, . . . , cm}, and for all colors that appear infinitely often in π, the color

32



with the highest index has an even index. We say that a run satisfies parity

acceptance, if the parity condition holds along all paths in ρ.

Run of a Tree Automaton on an Arbitrary Graph. A tree automaton

can be meaningfully defined to run on general graphs. For simplicity, consider

a binary graph (graph with degree 2) We note that an infinite binary tree

T can be viewed as a binary structure M = (S,R, L), where S = {0, 1}∗,

R = R0 ∪ R1 with R0 = {(s, s0) : s ∈ S} and R1 = {(s, s1) : s ∈ S},

and L = T . We can extend the notion of a run of a tree automaton to

appropriately labeled binary, directed graphs that are not binary trees. Such

graphs, if accepted, are witnesses to the nonemptiness of tree automata. A

binary structure M = (S,R0, R1, L) consists of a state set S and labeling

L as before, plus a transition relation R0 ∪ R1 decomposed into two partial

functions: R0 : S 7→ S, where R0(s), when defined, specifies the 0-successor of

s, and R1 : S 7→ S, where R1(s), when defined, specifies the 1-successor of s.

We say that M is a full binary structure iff R0 and R1 are total. A run ρ of

automaton A on binary structure M = (S,R0, R1, L), if it exists, is a mapping

ρ : S 7→ Q such that for all s ∈ S , (ρ(R0(s)), ρ(R1(s))) ∈ δ(ρ(s), L(s)), and

ρ(s0) = q0 . It turns out that if an automaton accepts some binary tree, there

does exist some finite binary graph on which there is a run that is accepting:

all of the paths through the graph denote state sequences of the automaton

meeting its acceptance condition, [49].
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Language, Product, Emptiness. Given two automata A1 = (Σ1, Q1, δ2,

q01,Φ1) and A2 = (Σ2, Q2, δ2, q02,Φ2), the synchronous product Ap = A1 ⊗A2

is defined if Σ1 = Σ2. The tuple-components of Ap are defined in in terms

of A1 and A2 as follows: Σp = Σ1 = Σ2, Qp = Q1 ×Q2, q0p = (q01, q02). Each

element in δ(q1, σ) is a next state tuple of the form (r1, . . . , rK); we denote

such a next state tuple by r̄. We define a product-tuple r̄ × s̄ as the K-

tuple of the form (r1, s1), (r2, s2), . . . , (rK , sK). Now let qp = (q1, q2) be a state

of Ap. Let δ1(q1, σ) = {r̄1, . . . , r̄m}. Similarly, let δ2(q2, σ) = {s̄1, . . . , s̄n}.

Then δ(qp, σ) is defined as the set {r̄i × s̄j|1 ≤ i ≤ m, 1 ≤ j ≤ n}. The

acceptance condition Φp depends on the kind of acceptance condition used for

the constituent automata. For instance, if A1 and A2 are Büchi tree automata,

then Φp is specified in terms of the set Fp = F1 ∩ F2. For parity automata,

the acceptance condition for the product is defined in terms of the coloring

function for the constituent automata; for more details see [25].

The language of an automaton A, denoted L(A), is the set of all trees

accepted by A. We say that L(A) is nonempty if there exists some tree that

is accepted by A, and empty otherwise.

Checking Nonemptiness of a Tree Automaton. The transition func-

tion δ of a tree automaton A can be viewed as a bipartite AND/OR-graph,

where the set of states Q comprises the set of OR-nodes, and the set of sym-

bols Σ comprises the set of AND-nodes. Intuitively, the OR-nodes indicate

a nondeterministic choice for A, while the AND-nodes force the automaton
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along all directions corresponding to their successors. For instance, consider

the following set of transitions for an automaton A operating on a binary tree:

δ(q0, a) = {(q1, q2), (q2, q1)}

δ(q0, b) = {(q2, q2)}

These transitions can be represented using the AND/OR-graph shown

in Figure 2.4.

q0

a a b

q1 q2

0 1 01 0 1

Figure 2.4: AND/OR-graph

For purpose of testing nonemptiness, without loss of generality, we can

restrict our attention to a tree automaton with a single symbol alphabet. In

other words, replace the symbols at the AND-nodes with the same distin-

guished symbol, say c. Let the resulting automaton be denoted by A′. It can

be shown that the original automaton A is empty iff A′ is empty.
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Henceforth, we assume that the tree automaton transition diagram is

specified as an AND/OR-graph, and the input symbol alphabet consists of a

single symbol. If an automaton A is nonempty, there is a structure contained

within the AND-OR graph that represents an accepting run of A. The root of

such a structure is the OR-node corresponding to the initial state. For each

OR-node o in the structure, the structure contains at least one AND-node

successor of o, and at each AND-node a, the tree contains all the (OR-node)

successors of a. In fact, if we restrict the structure to just its constituent

AND-nodes (which is a Σ-labeled tree T ), and label each AND-node with the

preceding OR-node in the structure, we get precisely an accepting run of A

on T .

We note that acceptance conditions are specified as temporal logic for-

mulas on the sequences of states (i.e., OR-nodes). Thus, if there is an accepting

run of A on some tree T , there is a structure contained within the AND/OR-

graph such that the OR-nodes of the structure satisfy the desired temporal

logic formula. We can exploit this fact to check for nonemptiness. To check

if A accepts any tree, we simply model check the AND/OR-graph represen-

tation of A with respect to a modified temporal logic formula denoting the

acceptance condition. (The modification accounts for the extra AND-nodes

between consecutive OR-nodes). For instance, the Büchi condition specifies

a set of states colored green, and A accepts a tree T if it sees a green state

infinitely often along every path in T . Thus, to check for nonemptiness of a

Büchi-tree automaton, we model check the AND/OR-graph with respect to
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the µ-calculus formula: νZ.µY.EXAX(green ∨ Y ∧ Z). Details can be found

in [56, 54, 51].
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Chapter 3

Verifying Iterative Methods

Outline. In this chapter, we present an automata-theoretic framework for

verification of iterative methods that modify directed graphs. We first present

a bird’s eye view of our solution strategy. We then discuss certain require-

ments that methods should satisfy to be verifiable using our approach. We

then present a programming language to facilitate specification of methods

that satisfy our stipulations, and present the necessary algorithms to trans-

late a method to an equivalent method automaton. We discuss specifications

provided as tree automata, and conclude with complexity analysis and related

work.

3.1 Verification with Automata

We can cast the problem outlined in Section 2.2 as an equivalent prob-

lem in automata theory. Recall from Section 2.2 that we wish to verify a

method M given a pre-condition ϕ and a post-condition ψ. Suppose the

pre/post-conditions can be specified as automata Aϕ and A¬ψ respectively.

The pre-condition automaton Aϕ accepts a graph G iff G |= ϕ, similarly, the

post-condition automaton A¬ψ accepts a graph G iff G 6|= ψ. We can rep-
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resent a method M by an automaton known as the method automaton AM.

Informally, AM accepts a pair of graphs (Gi, Go) iff Go = M(Gi). Consider

the product Ap of AM, Aϕ and A¬ψ. Ap is nonempty iff there exists an input

graph Gi satisfying ϕ for which the action of M produces an output graph Go

that does not satisfy ψ. In effect, we can reduce checking correctness of M to

checking the language emptiness for Ap. Note that with sufficiently expressive

automata models, the correctness problem for any method operating on an

input graph and transforming it to an output graph can be similarly cast in

terms of automata. However, except for specific methods and properties, the

parameterized correctness problem is undecidable.

Theorem 3.1.1. Given arbitrary properties ϕ, ψ, and an arbitrary method

M, the problem of determining if 〈ϕ(Gi)〉M〈ψ(Go)〉 is undecidable.

Proof. The proof follows from a simple reduction to the halting problem for

Turing machines. A method operating on a data structure can be interpreted

as a Turing Machine TMM, where the data structure represents the tape, and

the finite number of statements in the method represent the finite state control

of the Turing Machine. Thus, in the most general case, parameterized correct-

ness of M is equivalent to checking if the initial tape configuration of TMM

satisfies ϕ, and if the tape configuration obtained by the actions of TMM sat-

isfies ψ when TMM halts. Clearly, as the halting problem for Turing Machines

is undecidable, the parameterized verification problem is undecidable.

On the other hand, if we restrict attention to decidable fragments of
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the parameterized correctness problem, we can see that it hinges on having

a product automaton Ap with decidable nonemptiness. This is possible if:

(a) each of AM, Aϕ, and A¬ψ have a decidable emptiness problem, (b) the

product operator ⊗ for combining these automata is well-defined, and (c) the

intersection of the languages of AM, Aϕ and A¬ψ has decidable nonemptiness.

In this work, we restrict our attention to properties (A¬ψ and Aϕ) speci-

fiable as finite state nondeterministic tree automata with suitable acceptance

conditions. Thus, Aϕ and A¬ψ thus trivially satisfy the requirement in (a) and

(b). The action of an arbitrary M is equivalent to that of an arbitrary Turing

Machine. However, in practice, methods can be mimicked by automata that

are much simpler than Turing Machines, for instance, nfas, pdas, finite state

tree automata, pushdown tree automata, etc. In what follows, we identify

conditions on methods that allow methods to be mimicked by finite state tree

automata.

3.2 Scope

In this section, we outline the requirements that the methods verifiable

in our framework should satisfy. We begin by defining a a method automaton

AM as an exact abstraction for a method M. We formalize the definition of

AM below.

Def. 3.2.1 (Mimics). We say that AM mimics a method M (denoted A on M),

if for all input graphs Gi, AM accepts (Gi, Go) if and only if Go = M(Gi).
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If a method M performs only a fixed amount of work (independent of

the size of the data structure) on each node of its input data structure, then

we show in Lemma 3.2.1 that there exists a finite state automaton AM, s.t.

AM on M. To precisely explain the notion of bounded work, we first define a

destructive update.

Def. 3.2.2. A destructive update (du) is a modification to a data structure

node n (directly by accessing n or indirectly through a pointer p to n). Let

x be some element of D, and let pi’s be pointers, then du is of one of the

following forms:

• n.d = x or p− >d = x (changing the data value of n),

• n.li = pj or p− >li = pj (changing a link of n),

• delete(p) (marking the node pointed to by p as free),

• p− >lj = new(x, p1, . . . , pK) (inserting a new node as a successor of node

pointed to by p).

Note that a destructive update itself may be composed of multiple

smaller, atomic operations, but all the operations performed by M once it

visits a node are together termed a destructive update. We say that a method

performs a destructive pass over a graph if it visits nodes in the graph starting

from the root to the leaf nodes, possibly performing a destructive update at

each node in the graph. For instance, a method that reverses a linked list by
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setting the next pointer of every node to point to the previous node, performs

a single destructive pass over the list (in which it performs one destructive

update to every node). On the other hand, a method that sorts a linked list

using bubble sort potentially performs k2 destructive passes over the list.

We remark that a method that performs a bounded number of de-

structive passes effectively does a bounded number of destructive updates per

node of the data structure. We use these two notions of “bounded work”

interchangeably.

Before we formally state Lemma 3.2.1, we introduce some terminology

to encode actions of methods that perform a bounded number of destructive

passes. Note that any graph G can be unwound and unfolded into a (possibly

infinite) tree T (G). Let Gi and Go be two arbitrary graphs of the same arity

K. The composite graph Gc = Gi ◦ Go is the (tree) graph obtained by super-

imposing T (Gi) and T (Go). Informally, super-imposition pairs nodes that

correspond to the same topological rank in the tree, and if Gi (resp. Go) does

not have a node at a particular topological index we replace that node by ⊥.

We define projection operators Γi(Gc) and Γo(Gc) to obtain the graphs Gi and

Go respectively.

The composite graph can be thought of as a joint encoding of the input

and output graphs for a method that performs a single destructive pass over

the input graph. For instance, consider the following annotation scheme: each

vertex v ∈ Vc and each edge e ∈ Ec annotated with one of three colors black,

green or red. The color black represents part of the input graph that remains
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the same, color red represents deleted nodes or edges, and the color green

represents new nodes or edges. Also, the data values of each node of the

composite graph model the old and the new data values at the corresponding

node in the data structure. It is easy to see that such a Gc is a well-defined

super-imposition of the input/output graphs Gi and Go.

Lemma 3.2.1. Let the maximum number of destructive updates performed by

M on any node of the input data structure Di, before it terminates, be r. If

r ≤ c for some constant c, then there exists a finite state automaton AM, such

that AM on M.

Proof. For simplicity, consider the case where r = 1. Let Gc = Gi ◦Go. Each

vertex nc in Gc is a pair of nodes (ni, no). We can now define the method

automaton1 AM to run on Gc, starting at the root of Gc in state q0. We can

view the single destructive update performed by M on ni as a function (fdu)

that maps each node ni to some output node. AM transitions to a reject state

rej if no 6= fdu(ni), otherwise it transitions to state q0 along all successors

of ni. Finally, if AM reaches a terminal vertex in Gc, it transitions to acc.

By structural induction over the nodes in the tree, for all input trees Gi for

which Go = M(Gi), AM accepts the composite tree Gc = Gi ◦ Go. If r > 1,

i.e., if M performs a bounded number of destructive passes over the input

graph Gi, then the composite graph Gc is defined to have r + 1 layers, i.e.,

Gc = G0 ◦G1 ◦Gr, where G0 = Gi and Gr = Go, and AM accepts Gc if for each

1For further insight into obtaining a suitable AM, please see Section 3.4.1.
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pair (Gj, Gj+1), Gj+1 = fduj(G
j). By construction, if r is a constant, we can

always statically define a finite state AM that mimics M and runs on such a

Gc. Thus, as long as M performs a bounded number (r) of destructive updates

to each node in Gi, there always exists an AM such that AM on M.

We refer to Lemma 3.2.1 as the bounded updates property. Unfortu-

nately, Lemma 3.2.2 shows that it is impossible to determine whether an ar-

bitrary method satisfies the bounded updates property. The proof is based on

a reduction from Rice’s theorem [137].

Lemma 3.2.2. For an arbitrary method M, operating on an arbitrary graph,

the question whether M has the bounded updates property is undecidable.

Proof. It follows from Rice’s theorem that it is undecidable if the language

accepted by an arbitrary Turing Machine is regular. By Lemma 3.2.1 we know

that if M has the bounded updates property, there is a finite state automaton

AM (with the corresponding regular language L(AM)) that mimics M. The

automaton that mimics an arbitrary M is an arbitrary Turing Machine. Thus,

if it were decidable to check if an arbitrary M has the bounded updates prop-

erty, it would be decidable to check if the language of the Turing Machine that

mimics M is regular.

3.2.1 Stipulations

We now outline the stipulations for methods to be verifiable in our

framework.
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Bounded Updates Stipulation. As seen in the previous section, we can

mimic a method by a finite state automaton if it satisfies the bounded updates

property. Henceforth, we assume that all methods satisfy this property. While

Lemma 3.2.1 shows that for any M that has the bounded updates property,

there is some AM s.t. AM on M, it does not provide a recipe for extracting AM

from M. Also, Lemma 3.2.2 establishes that trying to compile an AM from

an arbitrary M is also futile. However, it is possible to identify a syntactic

fragment such that for any method M in this fragment, the corresponding AM

can be mechanically obtained from M. In order to obtain such a syntactic

fragment, we need further stipulations.

Localized Updates Stipulation. Most methods operating on data struc-

tures use a cursor or an iterator to traverse the data structure. Methods which

have multiple cursors mimic the operation of multi-head automata. Unfortu-

nately, the parameterized correctness problem for such methods is undecidable,

since the nonemptiness problem of a k-head automaton with k ≥ 2 is unde-

cidable [129, 113]. Thus, we focus on methods which can be simulated by a

single head automaton. Such methods can have multiple cursors, which are

constrained to remain within some bounded distance at all times. In terms

of syntactic constructs, absence multiple (unbounded) iterators means that

we disallow nested loops in which the inner loops can access pointer variables

initialized in the outer loop, and global pointer variables.

In effect, every action of the method at a particular node is localized to
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a neighborhood around that node. Thus, by this stipulation, the method can

be viewed as a sequence of localized updates to the nodes of Gi. In other words,

we can replace the original graph Gi by its windowed version G̃i, and define

M to operate on G̃i to obtain corresponding G̃o, without loss of precision.

Termination Stipulation. It is stipulated that the method under consid-

eration terminates2. While the bounded updates property ensures that the

observational behavior of M in terms of its effect on Gi can be mimicked by a

finite state AM, it says nothing about the operational behavior of M. Thus, it

is likely that M performs a bounded number of updates and then gets stuck

in an infinite loop. For certain restricted methods (for instance, methods on

acyclic data structures), it may be possible to decide termination. However,

for methods on general graphs (which may contain cycles), termination may

be crucial to ensure the bounded updates property. Hence, for simplicity, we

assume a proof of termination.

Finiteness of the Data Domain. We assume that the domain D of data

values is finite. In practice, nodes can have multiple data fields. We assume

that these are combined into a single data field that is a tuple of the actual

data fields. If a data field has a domain that is potentially infinite (for instance,

strings of arbitrary lengths), then we assume that a suitable abstraction func-

2A similar assumption on program termination can be found in techniques such as shape
analysis [101], PALE [108], and separation logic [115], which implicitly assume the termina-
tion of the program being analyzed.
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tion is provided which maps the large (possibly infinite) data domain into a

small finite data domain. Since we are largely interested in structural prop-

erties of methods, such an abstraction typically does not lose precision. Note

that such an abstraction is an instance of the data independence argument

[149].

In this chapter, we assume that methods are iterative in nature, i.e.,

they make of loops to traverse and possibly mutate the data structure. We

assume that all calls to other methods are inlined in the method body.

3.3 Bounded Updates Programming Language

Bounded UpDates Programming Language (Bud-Pl) is a fragment

that allows methods to be written so that they satisfy the bounded updates

property if they terminate. We first present the syntax for this fragment,

and then present an algorithm to translate a M written in Bud-Pl to the

corresponding AM.

Table 3.1 shows the syntax for a method in Bud-Pl. In this table, we

use the convention that the italicized text corresponds to the non-terminals in

the grammar, while the text in the typewriter font corresponds to terminals

(or keywords) in the grammar. Recall from Section 3.2.1, that we allow only a

single primary pointer variable or iterator and a finite number of virtual iter-

ators (that are always constrained to be within a bounded distance from the

iterator) for a method in our syntax. For simplicity, we omit the extension to

include virtual iterators. We use the keyword iter to denote an iterator. We
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Table 3.1: Bud-Pl Syntax for Iterative Methods

Method Declaration

M ::= sig { block }
sig ::= name (iter) | name (iter, x1, . . . , xn)

Sequential Composition

block ::= block stmt | stmt
stmt ::= loop | ifthen | ifelse

| du | skip | return

Conditional Statement

ifthen ::= if (expr) { block }
ifelse ::= ifthen else { block }
Assignment Statement

du ::= delete lptr | lptr->data := newdata
| lptr:= ptr | lptr:= newnode

ptr ::= lptr | prev

lptr ::= iter | iter->li1 ->. . . ->liz
newnode ::= new node { d, ptr, . . ., ptr }
expr ::= (expr) | expr and expr | expr or expr

| not expr | ptr->data==d | ptr ==null

| ptr ==ptr

Loop Statement

loop ::= while (expr) { lbody advance }
lbody ::= lbody lstmt | lstmt
lstmt ::= du | lifthen | lifelse

| skip | break | return

advance ::= advance0 . . . advanceK
advancej ::= skip | iter:=lptr when expr
lifthen ::= if (expr) { lbody }
lifelse ::= lifthen else { lbody }
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use a C-like syntax for describing access to fields of a node. Thus, the abbre-

viation iter->f indicates the field f of the node being pointed to by iter.

A method consists of a signature (sig) that defines the data arguments along

with the single pointer argument and a method body (that is a block state-

ment, block). The statement block is a sequential composition of one or more

statements (denoted as stmt). Each stmt is either a conditional statement,

an assignment (i.e. a destructive update) or a loop statement. A conditional

statement has an associated test-expression expr, which is any Boolean-valued

predicate that allows Boolean-valued predicates on D (the data domain), com-

parisons of the data in nodes with values from D and comparisons of pointer

(ptr) values. A loop statement consists of a loop guard, (similar to expr), and

a loop body. Similar to a block statement, the loop body (lbody) is a sequential

composition of lstmt statements, with the exception that it cannot have nested

loop statements. The only different between the conditional statements ifthen

and lifthen (and the corr. statements with the else part) is that lifthen cannot

have nested loop statements in it. This is to avoid getting a nested loop in an

indirect fashion.

A loop statement has standard semantics, with a few additional caveats.

Every update to a iter is preceded by storing the current value of the iter in

a special variable called prev, which cannot be used on the left hand side of an

assignment statement. The addition of prev enhances the expressive power of

our language by allowing methods to perform operations based on past value

of the iter.
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A loop has a special advance statement that advances iter to the next

desired node in the data structure. While we do not show this in the syntax

for simplicity, care is taken to ensure that iter is advanced only to a node

within the original input window. When a new node is created, the pointer

fields of the new node are initialized to any value within the current input

window. These two constructs together prevent the method from inserting

an unbounded sequence of nodes by repeatedly advancing to a newly inserted

node, and inserting a new node as its child. A break statement causes the

method to break out of the loop. We note that advancing the iterator is also

a guarded command, specified by the when keyword.

Recall that destructive updates are allowed only within the bounded

window defined by the iter. This is ensured by restricting the left hand sides

of assignments to pointer expressions (lptr), which only allow access to nodes at

a bounded distance from iter. The required size of the window can be gauged

by inspecting the longest such pointer expression in the method. Finally, a

skip statement is represents an empty method action, or a nop instruction.

3.4 Method Automata

In this section, we present the algorithms for compiling methods into

equivalent method automata.
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3.4.1 Method Automaton

As discussed in the previous section, the action of an arbitrary method

M on a data structure can be mimicked by a Turing Machine. However, with

the stipulations in Section 3.2.1, methods are substantially simpler, and can,

in fact, be mimicked by a finite state transducer. A transducer is an acceptor

with an additional output language, and rules to specify an output symbol

corresponding to each state and an input symbol. We choose to model methods

as accepting automata, known as method automata, instead of transducers,

in order to streamline the product construction with the pre/post-condition

automata, and make use of efficient algorithms for emptiness and intersection

for traditional automata.

The proof of Lemma 3.2.1 hints at a constructive approach to obtain a

finite state AM that mimics a method M. Here, we refine this idea and present

an algorithm to do so. By Def. 3.2.1, we know that a method automaton AM

accepts a pair of graphs (Gi, Go) iff Go = M(Gi). It is clear that when reading

graphs Gi and Go, AM would need to incorporate some mechanism to check if

Go is the same as M(Gi). As the graphs Gi and Go could be arbitrarily long,

in order to make this check, AM would have to remember an arbitrarily large

amount of information if it reads Gi and Go independently. Needless to say,

AM would fail to be finite state. In order to enable construction of a finite

state AM, we define AM to run over a suitable composite graph.

From the localized updates stipulation in Section 3.2.1, we know that

M can be viewed as a sequence of destructive updates to G̃i, i.e., the windowed
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version of the input graph Gi. Let G̃i be some windowed input graph, and

G̃o be a possible output graph, and let G̃c = G̃i ◦ G̃o be the composite graph

obtained by super-imposing G̃i and G̃o. Each node of G̃c is thus a pair of

windows (wi, wo), where wi is a vertex in G̃i and wo is a vertex in G̃o. The

G̃o component of G̃c represents a possible guess for an execution of M on (the

Gi corresponding to) G̃i. AM checks if this guess is correct, by iteratively

checking if the guessed value of the output window matches the action of M

on the input window. Thus, an each atomic step of AM needs to be able to

model a destructive update. We show how we can achieve this below.

Modeling destructive updates. A destructive update du to a node n,

either marks a node n as deleted, or changes n.d or n.li (for some i). We can

view du as a function mapping an “input” window wi to an “output” window

wo, where wo is obtained by performing the actions of du on wi. Thus for

statement: p− >d:=x, wo is identical to wi except for p− >d, which has the

value x. When du modifies p− >li, the expression on the RHS of du is a

pointer expression, or a new node. The effect of statement p− >li:=pj, is to

set p− >li in wo to laddr(pj). Insertion of a new node is modeled by adding

a new node to wo and setting p− >li to the laddr of this new node. Deleting

a node is modeled by over-writing each field in the corresponding node in wo

with some special character (say ‘−’). Thus, for any destructive update du,

we can compute the map from wi to wo, denoted by the function fdu.

52



3.4.2 Translation Algorithm

The method automaton AM is the tuple (Σ, QM, δM, q0,M,ΦM) where

each component of the tuple has the standard meaning. For a method M that

operates on graphs with degree K, AM is a K-ary tree automaton. We assume

that each statement in M is labeled with a unique line number {1, . . . , |M|},

where |M| is the length of M. The parity acceptance condition ΦM is specified

using two colors {(red = c1), (green = c2)}. States colored green are accepting

states and those colored red are rejecting.

Recall from Section 2.3, the window-based abstraction for graphs. From

Table 3.1, we can see that each destructive update is restricted to a set of nodes

that are a bounded distance from the special pointer variable iter. Thus, each

destructive update is restricted to a window. Each node of the (windowed)

composite graph G̃c = G̃i ◦ G̃o is a pair of windows (wi, wo).

Consider a composite graph in which a node wc = (wi, wo) is followed by

nodes x1c = (x1i, x1o), . . . , xKc = (xKi, xKo) corresponding to the K children

of wc. Suppose AM is reading the node wc, and will advance to the nodes

x1c, . . . , xKc. The actions of AM are as follows:

1. Remembering destructive updates:

M possibly destructively updates wi multiple times before finally “leav-

ing” wi. Thus, when at a particular node, AM stores the most recent

value of the input window in its state.
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2. Checking if Gc encodes action of M:

Before advancing to the next symbol xjc (by setting iter to iter− >lj)

AM checks if the action of the sequence of destructive updates performed

by M on wi (which is remembered in the state of AM) is the same as wo,

i.e., AM checks if wo = M(wi).

3. Remembering changes:

When AM advances to the next symbol xjc, the overlapping nodes in

the window wi and xji could be possibly changed due to the action of

M. By remembering the portion of wo that overlaps with xji, AM knows

the most recent values of these overlapping nodes. Let the height of the

windows wi, wo be z. We denote the overlapping portion by succ(j, wo),

i.e., the sub-graph rooted at the jth successor of wo. Let tail(xji) denote

the leaf nodes of of xji. Essentially, once AM arrives at a new symbol xjc,

due to the actions of M on the previous symbol (wc), the value of xji is

already modified to the window obtained by splicing together succ(j, wo)

and tail(xji). Let rj denote the short-hand for succ(j, wo). We denote

the splice by rj ↪→ wo.

4. Consistency check:

After reading xjc, AM checks if the portion of the current window that

overlaps with the previous input window is the same in both windows.

We call this the consistency check. Let head(xji) denote the sub-graph of
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height z−1 rooted at the root of xji. Essentially, we check if head(xji) =

succ(j, wi).

Thus, the state of AM is a tuple (`, ri, ro, cw), where ` is the line num-

ber in M, ri (resp. ro) is the trailing portion of the input (resp. output)

window, and cw is the current (possibly modified) value of the input win-

dow. We describe the algorithm to populate the transition relation of AM in

Algorithm 3.1. This algorithm implements Steps 1-4 as discussed above.

We assume that each statement s` in M is labeled with a unique line

number `. The succ (resp. prev) returns the statement after (resp. before) s`

in M, and lineNum returns the line number for any statement. We use reject

and accept as macros to add transitions to special reject and accept states from

a given state, on a given symbol. Algorithm 3.1 uses a while-loop to iterate

over each statement s` in M (Line 29). The set Q` denotes the set of reachable

states for AM before executing the statement s`. For each s`, the algorithm

iterates over the set of states Q` and all possible input/output window pairs

(wi, wo) and (possibly) adds transitions to AM to mimic the action of M. If

the predecessor of s` has advanced the iterator iter, then in Lines 10-9, we

check if the overlapping value of the “previous” input window (remembered

in the ri portion of the state) is consistent with the current input window. If

not, we add transitions to a special reject state from the state q on the symbol

(wi, wo) (Line 8).

Let s` cause the iterator iter to advance to the jth successor of the
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Algorithm 3.1: CompileIterative

begin1

` :=1 , q0 = (0, ∅, ∅, ∅), Q1 = {q0} ;2

while (` < |M|) do3

foreach ( q in Q`, (wi, wo) in (W (z)×W (z)) ) do4

n = lineNum(succ(s`)) ;5

if ( prev (s`) advanced iter ) then // check consistency6

if ( (ri 6= head(wi)) && (` 6= 0) ) then7

reject (q, (wi, wo)) ;8

continue ;9

cw := ro ↪→ wi ; // create splice10

switch s` do11

case [du advances iter to iter->lj ] :12

/* Check if Gc encodes the actions of M */

if (cw 6= wo) then reject (q, (wi, wo)) ;13

else14

ri :=succ(j, wi), ro :=succ(j, wo), q
′ :=(n, ri, ro, ∅) ;15

if (j = k) then nextTuple[k] :=q′ ;16

else nextTuple[k] :=accept;17

addTransition(q, (wi, wo), nextTuple) ;18

Qn :=Qn ∪ {q′} ;19

case [du does not modify ‘iter’ ] :20

/* Memorize destructive updates */

if (cw = ∅) then cw:=du(wi) ; // at the root node21

else cw:= du(cw) ;22

Qn:= Qn ∪ {(n, r, cw)} ;23

case [if (expr) { t : st; . . . } else { e : se; . . . }] :24

if (cw |= expr) then Qt :=Qt ∪ (t, ri, ro, cw) ;25

else Qe :=Qe ∪ {(e, r, cw)} ;26

case [ while (expr) { t : st; . . .; }] :27

if (cw |= expr) then Qt :=Qt ∪ {(t, r, cw)} ;28

else Qn :=Qn ∪ {(n, r, cw)} ;29

case [break]:30

n′ :=lineNum(first statement after loop statement) ;31

Qn
′
:=Qn

′ ∪ {(n′, r, cw)} ;32

case [advance]: similar to Line 19 ;33

case [halt/return]: accept (q, (wi, wo)) ;34

` :=` + 1 ;35

end36
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node pointed to by iter. Before advancing, we need to check if the “final”

value of the current window (as remembered in the cw component of the state

q) matches the output window wo. If not, AM transitions to a reject state

Line 13. If yes, we remember ri = succ(j, wi) and ro = succ(j, wo) in the

state q′ (Line 16). AM then transitions to the state q′ along the jth successor,

and trivially accepts along all other successors. Further, we add state q′ as a

reachable state for the statement following s`.

If s` is a destructive update that does not advance the iterator, then

we simply remember its effect in the cw component of the state (Lines 23-22).

In automata-theoretic terms, this can be viewed as an ε-transition, which is

used only to keep track of intermediate actions of M till it reaches a statement

that advances the iterator.

Conditional and loop statements cause similar ε-transitions. If the cur-

rent value of the input window, cw, satisfies the loop condition expr, then we

add the state q as a reachable state for the first statement within the if-block,

else we add it as a reachable state for the first statement within the else-block

(Lines 26-26).

Loop guards are handled similar to conditional statements (Lines 29-

29). The main difference is if cw does not satisfy the loop guard, transitions

are added to the statement following the loop statement. Inside the loop body,

individual statements are processed according to the their types. An exit from

the loop (a break statement) causes state q to be placed in the reachable states

for the first statement after the loop statement. If M reaches a halt-point due
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to a return statement, AM transitions to the accept state (Line 34).

Lemma 3.4.1. Methods that perform a bounded number of destructive passes

over the input graph can be mimicked by a finite state tree automaton.

We omit a formal proof for brevity. The basic idea is to encode the

changes for each pass in the composite graph. Assuming that we make at

most b destructive passes, the composite graph is represented as a b+ 1-tuple,

Gc = (G0, G1, . . . , Gb) with G0 = Gi and Gb = Go. Intuitively, the result of

the mth traversal is encoded as Gm and the automaton can verify that the

graph Gm = M(Gm−1).

Remark: The use of a Büchi or parity acceptance conditions for AM might

seem ill-conceived as any input graph that AM is designed to run over is es-

sentially finite. We resolve this by additing gratuitous self-loops to the null

nodes in the input/output graphs. This makes it possible to the unwind the

input/output graphs into infinite trees suitable for these acceptance condi-

tions. The motivation for using these acceptance conditions lies in the fact

that pre/post-condition automata may be defined with the parity or Büchi

condition. Thus, for the product construction to be well-defined, we need to

define AM with a similar acceptance condition.

Finally, we formalize the correctness of Algorithm 3.1 in the Theo-

rem 3.4.1.

Theorem 3.4.1 (Correctness). AM derived using Algorithm 3.1 for a method

written with syntax specified in Table 3.1, has the following properties: (a) AM
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is a finite-state tree automaton, (b) AM rejects G̃c = G̃i ◦ G̃o if G̃i is inconsis-

tent, and (c) AM accepts G̃c iff Go = M(Gi), i.e., AM on M.

Proof. To prove that M compiles into a well-defined AM, we can use structural

induction on the method syntax: we can show that each statement causes only

a finite number of states and transitions to be added to AM. To show (a), i.e.,

AM is finite state, we note that each state in AM is a tuple containing a line

number, and three windows (two of height z− 1, and one of height z, where z

is the diameter of the window). Thus, the number of states of AM is finite, as

there are a finite number of windows of a given diameter z. We note that the

cw component is only used by the ε-transitions and can be removed during

state minimization of the automaton. We note that (b) is true by construction.

We note that (b) ensures that any graph accepted by G̃c corresponds

to the windowed version of some valid input graph. We note that we can

always uniquely obtain the original graph from the windowed graph by eliding

the repeated nodes in overlapping portions of neighboring windows. Thus,

AM accepts only those graphs G̃c such that each node (which is a pair of

input/output windows) of G̃c encodes an action of M. By structural induction

on G̃c, we can we can show that AM accepts only those graphs that represent a

superposition of the windowed versions of graphs Gi, Go, s.t. Go = M(Gi).
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3.5 Specifications

Tree automata are widely used to specify shape properties [42, 41, 19,

20]. One of the inputs to our technique is pre/post-conditions specified as

nondeterministic finite tree automata. We now give a few examples of shape

properties that can be specified as automata.

Acyclicity. Acyclicity in a binary graph can be checked by the following

parity tree automaton Aacyc:

Q = {q, qf}

q0 = q

δ(q, σ) =

{
(qf , qf ) σ = null

(q, q) otherwise

δ(qf , σ) = (qf , qf )

colors = {c1 = {q}, c2 = {qf}}

Essentially, this automaton scans for the terminal null node along each

path, and transitions to state qf upon reading null. Once Aacyc reaches qf ,

it stays in qf for all input symbols. By the parity condition, Aacyc accepts the

binary graph if along every path it sees the color c2 infinitely often. This can

happen only if each path ends in a null node, or the binary graph is acyclic.

Note that we can define the same automaton as a Büchi automaton, with {qf}

being the set of accepting states specified by the Büchi condition.
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Existence of a cycle. Existence of a cycle in a binary graph can be checked

by the following parity tree automaton Acyc:

Q = {q, qr, qf}

q0 = q

δ(q, σ) =

{
{(qr, qr)} σ = null

{(q, qf ), (qf , q)} otherwise

δ(qr, σ) = {(qr, qr)}

δ(qf , σ) = {(qf , qf )}

colors = {c1 = {qr}, c2 = {q, qf}}

In contrast to the automaton for acyclicity, this automaton is nonde-

terministic. If Acyc reads a null node, it transitions to a rejecting qr state.

Otherwise, in each step Acyc guesses a successor that is likely to be part of a

cycle (by transitioning to q), and trivially accepts along the other successor

(by transitioning to qf ). If the input graph has a cycle, there exists a run of

Acyc in which it continually makes the right choice staying in state q along the

cycle, and trivially accepts all other paths. As q is an accepting state, Acyc

accepts the graph along this path. On the other hand, if the input graph is

acyclic, Acyc will reach a null node in state q along some path and transition

to the reject states qr. Since there will always be one path that is rejected,

there is no run of Acyc on an acyclic graph that is accepting.

Note that for the case when the degree of the input graph K, is 1 the

automaton for accepting cycle containing graphs is considerably simpler and
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can be obtained by simply taking the automaton for acyclicity, and switching

the colors c1 and c2 on its states.

Finally, note by using the set {q, qf} as the set of accepting states in

the Büchi condition, we can obtain a (nondeterministic) Büchi tree automaton

that is equivalent to Acyc.

Reachability of a given data value. Suppose, given a binary tree we wish

to determine if there exists a node with a given data value (key) reachable from

the root node of the graph. Automaton Areach described below can achieve

this:

Q = {q, qf}

q0 = q

δ(q, n) =

{
{(qf , qf )} n− >data == key
{(q, qf ), (qf , q)} otherwise

δ(qf , σ) = {(qf , qf )}

colors = {c1 = {q}, c2 = {qf}}

Intuitively, this automaton guesses a path to the node with the value

key, and trivially accepts along other paths. If key is found, Areach transits

to a final state along each successor. If a node with data value key does not

exist in the given graph, then Areach will be in state q along some path, and

hence reject the graph.
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Sortedness. A linked structure satisfies the sortedness property if within

each bounded window of size two, the value of the current node is smaller (or

greater) than the successor node. An automaton that checks if a list is sorted

in ascending order rejects the list iff there exists a window such that the data

value of the current node is greater than the data value of the successor node.

In a variant approach, for some properties, we can use a suitable tem-

poral logic in lieu of automata to specify properties. We now consider two

such examples:

Reachability. Since specific nodes in the data structure are usually spec-

ified by their pointers, we are interested in checking reachability of pointer

expressions, where x and y are pointers to nodes nx and ny respectively. We

introduce virtual nodes labeled with vx and vy, such that vx− >l1 = nx and

vy− >l1 = ny. We then check if AG(EXvx ⇒ EFEYvy). Intuitively, this

formula checks that for all nodes being pointed to by vx− >l1 (alias for x),

there exists some node ny being pointed to by vy− >l1 (alias for y) which is

reachable from x3.

Sharing. A node n in a data structure is called shared if there exist two

distinct nodes, x and y in the graph such that they have n as the common

immediate successor. We say that sharing exists in a graph if there exists a

3EY is a temporal operator in CTL with branching past, which means there exists a
yesterday, where “yesterday” means the immediate previous step [97]
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node in the graph which is shared. The following specification in CTL with

branching past is satisfiable only if the graph contains sharing: (x ≡ EY(n))

∧ (y ≡ EY(n)) ∧ (x 6≡ y).

Note that formulas in CTL and CTLbp can be translated into equivalent

tree automata at a cost that is exponential in the size of the formula [97].

Thus, as a first step we can translate the temporal logic specifications into

tree automata, and use these in our technique.

As a final remark, we note that the pre/post-condition automata, as

provided to our technique, may be defined over nodes of graphs. However, the

method automaton AM is defined over windowed input/output graphs. Thus,

we first need to convert the pre/post-condition automata from the given form

to a windowed form. This can be easily done for the pre-condition automaton

by adding the appropriate consistency checks to the automata. The post-

condition automaton is nuanced as the output component of the composite

graph may not be a consistent windowed version of the actual output graph. In

this case, constructing the post-condition automaton from the non-windowed

version requires some additional machinery. For details see [43].

3.6 Complexity Analysis

The complexity of testing nonemptiness of the product automaton Ap,

depends on the sizes of the pre/post-condition automata Aϕ and A¬ψ and the

method automaton AM. A method M having |M| lines of code gives rise to an

automaton of size O(|M|) states. However, the size of AM is dominated by the
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sizes of D, the degree of the graph K, and the window size z. The dependence

of |AM| on |D| is polynomial, while its dependence on K and z is exponential.

The number of states of Ap proportional to the product of the number

of states of its constituent automata. Hence the number of states of Ap is linear

in the number of states of the property automata and the size of the method.

Since the number of colors used for the parity condition by the property and

method automata is fixed (and typically small), the number of colors used by

the product automaton is also fixed.

The complexity of checking nonemptiness of a parity tree automaton is

polynomial in the number of states [56, 54] (for a fixed number of colors in the

parity acceptance condition). Thus, our solution is polynomial in the size of

the method as well as the sizes of the property automata. Note that for linear

graphs (such as lists) the method automaton and property automata can be

specialized to automata on strings (i.e.nfas and dfas) and thus the complexity

of our technique is linear.

In case the specifications are provided as Büchi-tree automata, the com-

plexity of nonemptiness is quadratic in the number of states of Ap [56].

3.7 Bibliographic Notes

Techniques such as shape analysis [131], pointer assertion logic engine

[108] and separation logic [45] address a similar genre of problems as the frame-

work presented here. We make a brief comparison with these techniques in
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what follows.

Shape Analysis. Shape analysis is a technique for computing shape invari-

ants for programs by providing over-approximations of structure descriptors at

each program point using 3-valued logic. Shape analysis typically uses static

analyses to compute shapes. Shape analysis can be used to analyze a broad

class of methods, but to our best knowledge provides approximate results in

double exponential time.

Predicate abstraction has also been used for shape analysis in [6, 106,

14]. [6, 14] focus on singly linked lists, and [7] extends the authors’ previous

work to an abstraction-refinement approach for single-parent heaps. While

[35] provides a way to combine predicate abstraction and model checking, it

may require hints to converge to a solution. Bottom-up shape analysis [73]

for heap-manipulating programs computes Hoare triples as summaries for a

given method. It may be possible to combine our technique with bottom-up

analysis by substituting method fragments that do not respect our imposed

syntax rules with equivalent summaries, thereby allowing us to model a larger

class of methods.

Logic-based Approaches. In [9], the authors discuss a decidable logic Lr

for describing linked data structures. However, their work does not provide a

practical algorithm for checking the validity of formulas in this logic and the

complexity of the given decision procedure is high. In [152], the authors de-
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scribe a logic of reachable patterns that is undecidable, which when restricted

to certain reachability patterns, yields a decidable fragment reducible to MSO

on trees that can be checked in double exponential time. The restrictions im-

posed to obtain decidability are incomparable to this work, and combinations

of decidable theories is likely. The worst-case complexity of this logic is doubly

exponential.

In [155], the authors present a verification technique for functional cor-

rectness of data structure implementations in Java, using the Jahob verification

system with respect to specifications written in higher-order logic. The ver-

ification problem, which is inherently undecidable is split into a conjunction

of sub-formulae, each of which is solved by an array of solvers that includes:

first-order theorem provers, a host of decision procedures such as those for

monadic-second order logic and Presburger arithmetic, and interactive theo-

rem provers. This technique may be able to engineer a verification solution;

however, it may involve substantial manual effort in writing specifications that

are amenable to splitting, and in guiding the proof of correctness for verifica-

tion conditions that are beyond the scope of fully automated techniques. This

approach is an extension of the Hob analysis system [99].

In [94, 104, 105], the authors present an approach for automatically

generating representation invariants of complex data structures, with a special

focus on graph properties. The approach makes use of the relational first-order

logic analyzer - Alloy [88]. The representation invariants are output as Java

methods that operate on a given data structure, and determine if it satisfies
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the invariant. Such representation invariants are highly useful as specifications,

and it would be interesting to see if these could be automatically translated

into tree automata, and subsequently used in our verification framework. In

[153], the authors explore the use of sequential circuits for encoding first order

relational logic formulas (written in the Alloy modeling language). Such an

encoding can be used to show the equivalence of different logical formulas

specifying a given shape property.

PALE. Pointer Assertion Logic Engine tool [108] encodes programs and par-

tial specifications as formulas of monadic second order logic. Though their

approach can handle a large number of data structures and methods, the com-

plexity of the decision procedure is non-elementary. Moreover, the technique

works only for loop-free code and loops need to be broken using user specified

loop invariants.

Separation Logic. Classical separation logic [45], which is an extension

of Hoare Logic for giving proofs of partial correctness of methods, has been

traditionally used for manual proofs or in conjunction with a theorem prover.

Classical separation logic without arithmetic is not recursively enumerable

[125]. However, recent work has focussed on automation, by deriving decidable

fragments for programs operating on structures with single successors [11].

Automata-based Approaches. In [20], system configurations (states) are

trees succinctly encoded as tree automata. The transition relation is expressed
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as a bottom-up tree transducer τ , and the technique checks if the transitive

closure of τ applied to the initial states reaches a bad state. Though this is un-

decidable, the authors use abstraction-refinement to obtain a conservative solu-

tion. This approach known as abstract regular tree model checking (ARTMC),

and has been extensively used for verifying properties of programs that ma-

nipulate tree-like data structures. [128] contains a comprehensive treatment

of the application of ARTMC to verifying dynamic data structures. [19], a

precursor to most work on ARTMC, presents a fully-automated technique for

verifying programs manipulating 1-selector linked structures.

[75] considers the problem of proving the termination of programs ma-

nipulating tree-like structures. The approach, based on a counterexample-

guided abstraction-refinement loop uses abstract regular tree-model checking

to infer program invariants, and translates the program into a counter automa-

ton. If the counter automaton can be shown to terminate, then the program

terminates, else the counterexample is analyzed for feasibility.

[76] describes tree automata with size constraints that are used to verify

methods modifying balanced trees. The paper allows reasoning about algebraic

path properties such as balancedness using tree automata with size constraints.

However, the complexity of the decision procedure is high.
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Chapter 4

Verifying Recursive Methods

In the previous chapter, we presented an automata-theoretic framework

for verifying correctness of iterative methods operating on parameterized data

structures. In this chapter, we extend this framework to reasoning about

recursive methods. We first look at some of the challenges posed by recursion,

and then define a syntactic class of methods that can be mimicked using finite

state tree automata. For expository reason, we divide this class into tail-

recursive methods and methods with non-tail recursion. We conclude with a

discussion on the related work.

4.1 Scope

Recursive methods can inherently “remember” a long history of com-

putations, and are thus harder to model than iterative methods. Consider the

simple case of an arbitrary recursive method M operating on a list of fixed

size. For simplicity, consider the case where M inspects a single node in the

list at any given time. Recursion allows M to change the current node being

inspected, traverse to the successor node, or return back to the parent node.

In effect, recursion allows M to move in both directions along the input, pos-
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sibly modifying it. Thus notions of destructive passes over the data structure

are consequently harder to define.

In effect, an arbitrary recursive method simulates the action of a linear

bounded automaton (LBA). To check for correctness of such a M would require

us to check the emptiness of an LBA, which is an undecidable problem [86].

We are interested in obtaining syntactic sub-classes of recursive meth-

ods for which verification is efficiently decidable. Recall from Section 3.2 that

if a method M performs only a bounded number of destructive updates to the

underlying data structure, then M can be mimicked by a finite state automaton

AM (also known as the method automaton). We use this result (Lemma 3.2.1)

as a starting point to to obtain decidable syntactic sub-classes of recursive

methods by identifying methods that satisfy the bounded updates property.

In this work, we focus on recursive methods that traverse the input graphs in

a depth-first fashion.

Control Flow Structure of Recursive Methods. Similar to the stipula-

tions in Section 3.2, and similar to iterative methods as specified in Section 3.3,

we assume that the method M has a single pointer and possibly multiple data

values as arguments. As before, the pointer argument is referred to as the

iterator (iter). Let the node pointed to by iter be denoted vI. We say that

M visits a node n pointed to by a pointer variable p when M is invoked with

p as an argument. The control-flow structure of a recursive method M that

traverses a graph in a depth-first fashion is as follows: M begins the traversal
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at the root node. For every node vI, M visits the child nodes of vI in some

order, possibly interspersed with destructive updates to n. M returns back to

the parent of vI once it is done with all its recursive visits to the children of

vI.

4.1.1 Bounded Updates Property Revisited

We first show the ways in which such recursive methods fail to satisfy

the bounded updates property. As in Section 3.2.1, we stipulate that the

updates are localized, and hence prevent the use of global pointer variables.

Unrestricted Visits to Child Nodes. For simplicity, consider a recursive

method operating over a list. At a specific node n, let visits(M) denote the

number of times M visits it. Suppose the control-flow of M allows two recursive

visits for every child node of a node. As shown in Figure 4.1, M would visit

the root node of the list once, the successor of the root node twice, the node at

distance 2 from the root four times, and so on. In particular, it visits a node

at distance ` from the root 2` times. Clearly, if it does a destructive update,

every time it visits a node, then it can perform 2` destructive updates for a

node at distance ` from the root. The same argument holds for a M operating

over a tree - the leaf node of a tree of height h would be visited O(rh) times,

where the number of visits of M for each child node is O(r). We note that

meaningful methods that need an unrestricted number of visits to each child

node are highly uncommon.
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visits(M) = 1

visits(M) = 2

visits(M) = 4

visits(M) = 2h−1

visits(M) = 2h

Figure 4.1: Recursive Method on a List

Sharing. Suppose we restrict the control-flow of recursive methods so that

they can visit a child node of a given node at most once. However, even

with this restriction, if the underlying graph contains sharing, the number of

destructive updates performed by a method could be proportional to the size

of the graph, i.e., not bounded by a constant. We show an example of this in

Figure 4.2. Here, a node at the bottom of the hth diamond could be visited 2h

times.

Directed acyclic graphs (dags) allow sharing of isomorphic sub-graphs

in order to reduce space complexity. Hence, most methods on dags typically

visit any given sub-graph at most once. Thus, for a large class of methods

operating on dags, it is reasonable to assume that these methods would visit

nodes in the dags at most once, and thus trivially satisfy the bounded updates

property. We call this the single visit property.

While it is relatively easy to syntactically enforce the number of visits

allowed per child node, it is much harder to enforce the single visit property
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visits(M) = 1

visits(M) = 2

visits(M) = 4

visits(M) = 2h−1

visits(M) = 2h

Figure 4.2: Recursive Method on a Diamond Graph

syntactically. In what follows, we thus focus on tree-like data structures, i.e.,

data structures in which each node has a unique parent node. A decidable syn-

tactic fragment for methods operating on dags is an interesting open problem.

For ease of discourse, we divide the class of recursive methods on tree-like data

structures into two sub-classes: tail-recursive methods, and the more general

class that uses non-tail recursion. The syntax presented herein for methods

operating on tree-like data structures guarantees that methods written using

this syntax satisfy the bounded updates property. This helps eliminate man-

ual effort that is required for iterative methods, where a proof of the bounded

updates property is necessary step before the actual verification.
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Method Declaration

M ::= sig { baseblks recurblk return }
sig ::= name(iter) | name(iter, x1, . . . , xn)

Base Case

baseblks ::= baseblk | baseblks baseblk
baseblk ::= if (bcondj) { bblockj return}
bblockj ::= block

Recursive Case

recurblk ::= rblock calls
rblock ::= block
calls ::= call | calls call
call ::= if (rcondj) M(iter− >lj)
Statements and Expressions

block ::= stmt | block stmt
stmt ::= ifthen | du | skip

bcondj ::= expr
rcondj ::= expr

Table 4.1: Syntax for Tail-Recursive methods

4.2 Tail-Recursive Methods

Recall from Section 2.3, the window-based abstraction for data struc-

tures. In what follows, we use w(vI) to denote the window with vI as its root

node. The syntax of tail-recursive methods is formally stated in Table 4.1. As

before, we use italicized text for non-terminals and text in typewriter font for

terminals in the grammar. As in Section 3.3, we define M to have a signa-

ture sig, and a body. The method body is sub-divided into base case blocks

(baseblks), and a recursive block. The semantics are as follows: M first eval-

uates bcondj over the nodes in w(vI), and if bcondj is true, M performs the

actions within bblockj followed by a return. If none of the bcondj evaluate

to true, then M performs the actions within recurblk. This involves destruc-
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tive updates (rblock) to the nodes within w(vI) followed by recursive visits

to successors of vI for which rcondj evaluates to true (over the possibly up-

dated w(vI)). Block statements (block) are recursively defined to consist of

conditional statements (ifthen), destructive update statements (du), or empty

statements (skip). The syntax for the non-terminals expr, du, and ifthen is

the same as that for iterative methods (See Table 3.1). We assume that any

calls to methods other than M are inlined within the body of M. In contrast to

standard programming languages, we specifically disallow loops, and advanced

features like pointer arithmetic and arbitrary address manipulation.

Of special note is the syntactic restriction that allows M to recursively

visit each successor of vI at most once. This is both syntactically enforced, and

statically checked by analyzing M. Thus, a case where M visits the l1-successor

of vI, followed by updating vI so that vI.l2 = vI.l1, followed by visiting vI.l2

(which is now the same as vI.l1) is detected at compile-time and disallowed.

Since M is tail-recursive, M effectively visits any vI at most once (since no

work is done when M returns). Thus, M trivially satisfies the bounded updates

property, as each w(vI) is destructively updated at most once.

Algorithm 4.1 shows the procedure for compiling M that respects the

syntax specified in Table 4.1 into AM. AM runs on a composite tree T̃c; thus,

each σ ∈ Σ is a pair of windows (wi, wo). We initialize the states Q, the

symbols Σ, the initial state q0, and the accepting states Φ in Line 3. The

states acc, rej, init have their usual meanings as an accept state, a reject state,

and an initial state respectively.
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The states in QΣ are used to check if w(vI) is consistent with the

window(s) read at predecessors of vI. If |w(vI)| = 1, then QΣ is empty, and

then Lines 3-7 are skipped. Otherwise, we reject those state/symbol pairs

that correspond to an inconsistent annotation at neighboring nodes in T̃c. If

a state/symbol pair is consistent, we add it to the map H in Line 6.

Each state in QΣ is a pair of sub-windows (ri, ro). If AM reads the

symbol wc = (wi, wo), then it remembers ri = succ(j, wi) and ro = succ(j, wo)

in its next state along the jth successor of wc. If the height of a window wi is

h, let head(wi) denote the sub-window of height h − 1 rooted at the root of

wi. Thus, once AM reads a new symbol (xi, xo) as a successor of the symbol

wc, it checks if xc = (xi, xo) is consistent with wc by checking if head(xi) is

the same as ri.

Thus, upon reading a node (xi, xo) in the state (ri, ro), we define the

function consistent as true iff head(xi) = ri.

Note that the action of M at wi (in wc) changes the values of the nodes

that are also a part of xc. Thus, when AM arrives at xc, some of its nodes are

already modified. However, this information is encoded in the ro component

that AM remembers in its state. To compute the current and correct value of

the input window at node xc, we splice ro with tail(xo) (or the leaf nodes of

xo). We denote this splicing operation by ro ↪→ xo.

We explore all symbols and identify those that correspond to M entering

any of the base cases. For the bblockj block of statements within the jth base
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Algorithm 4.1: CompileTailRecursive

begin1

W (z) = all windows of height z2

Σ:=W ×W , q0:=init, Q:={init, acc, rej} ∪QΣ, Φ:={acc}, H :={}3

/* Note that σ = (wi, wo) */

foreach σ in Σ, q in QΣ do4

/* Reject inconsistent (q, σ) */

H :=H ∪ {(σ, init)}5

if (consistent(σ,q)) then H :=H ∪ (σ, q)6

else reject(q,σ)7

RS:=Σ8

foreach baseblk in baseblks, σ in Σ do9

if (σ |= bcondj) then10

RS :=RS \ {σ}11

fbblockj := computeBlock(bblockj)12

/* σ mimics bblockj? */

if (faithfulUpdate(wi, wo, q, bblockj)) then13

foreach q in H(σ) do accept(q,σ)14

else15

foreach q in H(σ) do reject(q,σ)16

foreach σ in RS do17

frblock :=computeBlock(rblock)18

if (faithfulUpdate(wi, wo, q, rblockj)) then19

/* σ mimics rblock */

foreach q in H(σ) do20

foreach j in {1, . . . ,K} do21

if (σ |= rcondj) then22

next[j]:= computeState(σ)23

else24

next[j]:=acc25

δ:= δ ∪ {(q, σ, next)}26

else27

/* σ does not mimic rblock */

foreach q in H(σ) do reject(q,σ)28

end29
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case, we can compute a function fbblockj that represents the composition of the

functions for individual statements within bblockj. If the update encoded by σ

is faithful to fbblockj , we accept all consistent states for this symbol (Line 14),

else we reject them (Line 16).

The function faithfulUpdate(wi, wo, q, block) for a state q = (ri, ro) is

defined to be true if fblock(ro ↪→ wi) = wo, and false otherwise. Thus, for the

base case this is equivalent to checking if fbblockj(ro ↪→ wi) = wo.

Once all baseblk statements are processed, the remaining symbols (in

the set RS) correspond to symbols for which M enters the recursive case.

For each symbol σ ∈ RS, we check if the update encoded by σ is faithful to

frblock. If not, we reject all consistent states for that σ (Line 28). If yes, we

identify the successors of vI within wo(vI) that M would visit (by virtue of

rcondj evaluating to true), and transition to the appropriate state (from QΣ)

for those successors (Line 23). The remaining successors are not visited by M,

and hence, we simply transition to acc for these (Line 25). We use reject(q,σ)

as a macro to indicate adding a transition of the form (q, σ, (rej, . . . , rej)) to

δ (similarly accept). The function computeBlock composes the functions fs

for individual statements s within a block statement. computeState returns

the state in QΣ that encodes the value of the current pair of windows (σ).

Essentially, for ease of implementation, we map each (ri, ro) pair to a unique

string, which is returned by computeState. As a final step (not shown in the

algorithm), we add self-loops to the acc and rej states, making them “trap”

states.

79



Tail-recursive methods can be simulated by iterative methods that use

loops. Thus, in theory, we could translate a tail-recursive method specified

here into an iterative method, and verify it using techniques in Chapter 3.

However, in Chapter 3, we assume that there exists an oracle that predicts

if a given M satisfies the bounded updates property. In contrast, the syntax

presented in Table 4.1 ensures that methods written with this syntax satisfy

the bounded updates property. Thus, we eliminate most of the manual effort

that was previously required. Furthermore, we are also able to handle a larger

class of recursive methods beyond just tail-recursive methods, as seen in the

next section.

4.3 Decidable Syntactic Class of Recursive Methods

In the previous section, we identified a syntactic class containing tail-

recursive methods, for which automatic verification was possible as the cor-

responding method automata obtained were finite state tree automata. In

this section, we show that finite state method automata can also be obtained

for more general recursive methods, subject to nearly identical syntactic con-

straints as in Table 4.1. In contrast to tail-recursive methods, non-tail recursive

methods can re-visit a node between recursive calls to its successors, and per-

form destructive updates. We make the same assumptions as for tail-recursive

methods that: a) methods do not use global pointers, b) methods use a sin-

gle pointer argument during recursive invocation, and c) at any node, for any

given successor s, M is invoked with s as an argument at most once. Consider
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a tree where the maximum out-degree of any node is K. A recursive method

M satisfying the above assumptions visits a node with K out-going edges: a)

the first time when called from the parent node of n, and b) K times after

each recursive call returns. Thus, if M makes a constant number of destructive

updates per visit, then the total number of destructive updates to any node

is O(K + 1). However, for a given tree, K is a constant, and thus the total

number of destructive updates is still bounded by a constant. Thus, such a M

satisfies the bounded updates property.

The syntax for general recursive methods is largely similar to the syntax

presented in Table 4.1. Instead of a single recurblk, the there are up to K

recurblk statements, where each recurblk statement consists of a block of

statements (rblockj) followed by a recursive call to the jth successor of vI. We

show the differing parts in Table 4.2. All the other definitions remain the

same.

The overall scheme for compilation into AM for the class in Table 4.2 is

similar to the one used for compiling tail-recursive methods. In Algorithm 4.1,

all destructive updates by a tail-recursive method on a given window can be

composed into a single destructive update described by the function fblock

using computeBlock. This is not possible for a method belonging to Table 4.2,

since it performs K + 1 distinct blocks of updates. However, by altering the

way we define the composite tree, we can use an algorithm very similar to

Algorithm 4.1 to compile M into AM. We first observe that if we record the

actions of such a M during a depth-first traversal at each node in the underlying
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Method Declaration

M ::= sig { baseblks recurblks return }
sig ::= name(iter) | name(iter, x1, . . . , xn)

Base Case

baseblks ::= baseblk | baseblks baseblk
baseblk ::= if (bcondj) { bblockj return}
bblockj ::= block

Recursive Case

recurblks ::= recurblks recurblk | recurblk
recurblkj ::= rblockj callj
callj ::= if (rcondj) M(iter− >lj)
Statements and Expressions

block ::= stmt | block stmt
stmt ::= ifthen | du | skip

bcondj ::= expr
rcondj ::= expr

Table 4.2: Decidable Syntactic Class for Recursive Methods

data structure D, we obtain an annotated D′, where every node of D′ is a

K + 1 tuple of values. We illustrate this with an example in Example 4.3.1.

Example 4.3.1. Consider the method M = changeData shown in Figure 4.3b.

M changes the data value of each node in the input tree. We assume that the

data domain D is the set {0, 1, 2}, and use incrMod3 as a macro to replace

three conditional assignments that specify modulo-3 increment. Figure 4.3a

shows the actions of M on an input tree, while Figure 4.3c shows the input

tree annotated with the actions of M.

We use the intuitive idea that the action of a depth-first recursive

method M generates an annotation similar to that in Example 4.3.1 on the

underlying tree. We define the composite tree T̃c s.t., each node wc in T̃c
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(a) Actions of M on tree T̃i

changeData (iter) {
/* base case */
if ((iter->l1 == null) &&

(iter->l2 == null)) {
incrMod3 (iter− >data);
return;

}
/* recursive case */
incrMod3 (iter− >data);
if (iter− >l1 6= null) {

changeData(iter− >l1);
}
incrMod3 (iter− >data);
if (iter− >l2 6= null) {

changeData(iter− >21);

}
incrMod3 (iter− >data);
return;

}

(b) Method changeData

0,1,2,0

1,2,0,1

0,1,1,1 2,0,0,0

(c) Annotated Composite tree T̃c

Figure 4.3: Composite Tree Encoding Action of a Recursive Method
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is a (K + 2)-tuple of the form (w0, w1, . . . , wK , wK+1). Here, wi = w0, and

wo = wK+1.

Algorithm 4.2 shows the algorithm to compile a method with non-

tail recursion. Note that it is largely similar to Algorithm 4.1, except for

Lines 17-31. Note that the definition for faithfulUpdate slightly changes. If

j = 0, faithfulUpdate is true iff frblockj(ro ↪→ w0) = w1 (since w0 is the same

as wi). For j > 0, faithfulUpdate is true iff frblockj(wj−1) = wj. We use

the computeBlock procedure to compute frblockj corresponding to each rblockj

statement. If any of the faithfulUpdate checks fails, we reject the entire symbol

wc (Line 22). If all pairs of windows encode faithful updates, then we proceed

as before.

We formalize the correctness of Algorithm 4.2 in Theorem 4.3.1. We

can informally prove the theorem using a similar argument as in Section 3.4.2.

Theorem 4.3.1 (Correctness). AM derived using Algorithm 4.2 has the fol-

lowing properties: (a) AM is a finite-state tree automaton, i.e., a finite Q and

Σ, (b) AM accepts T̃c = T̃i ◦ T̃o iff To = M(Ti), i.e. AM on M, and (c) AM

rejects T̃c if T̃i is inconsistent.

Finally, we remark that we can extend our basic approach to handle

returning data values and pointers that are not modified by the parent node.

Also, we can allow methods to have a limited access to predecessor nodes

up to a bounded distance, and allowing more than one pointer argument in

the method signature, with the restriction that all arguments are contained
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Algorithm 4.2: CompileGeneralRecursive

begin1

W (z) = all windows of height z2

Σ:=WK+2, q0:=init, Q:={init, acc, rej} ∪QΣ, Φ:={acc}, H :={}3

/* Note that σ = (wi, wo) */

foreach σ in Σ, q in QΣ do4

/* Reject inconsistent (q, σ) */

H :=H ∪ {(σ, init)}5

if (consistent(σ,q)) then H :=H ∪ (σ, q)6

else reject(q,σ)7

RS:=Σ8

foreach baseblk in baseblks, σ in Σ do9

if (σ |= bcondj) then10

RS :=RS \ {σ}11

fbblockj := computeBlock(bblockj)12

/* σ mimics bblockj? */

if (faithfulUpdate(wi, wo, q, bblockj)) then13

foreach q in H(σ) do accept(q,σ)14

else15

foreach q in H(σ) do reject(q,σ)16

foreach σ in RS do17

rejected:=false18

/* Check if σ is faithful to each rblockj */

foreach j in {1, . . . ,K} do19

frblockj := computeBlock(rblockj)20

if (¬ faithfulUpdate(wj−1, wj , q, rblockj)) then21

foreach q in H(σ) do reject(q, σ)22

rejected := true23

break24

if (¬rejected) then foreach q in H(σ) do25

foreach j in {1, . . . ,K} do26

if (σ |= rcondj) then27

next[j]:= computeState(σ)28

else29

next[j]:=acc30

δ:= δ ∪ {(q, σ, next)}31

end32
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within a window. Each of these extensions still preserves the bounded up-

dates property. The algorithms for translation can be modified accordingly to

accommodate these extensions.

4.4 Complexity Analysis

The complexity of our technique is proportional to the complexity of

checking emptiness of the product automaton Ap. For acceptance conditions

such as the Büchi condition, and parity condition with a small finite number

of colors, this is polynomial in the number of states of Ap. This is in itself

linear in the size of AM (denoted |AM|), |Aϕ| and |A¬ψ|.

The number of states in |AM| is linear in the size of M and |Σ|. Recall

that all automata have the same input alphabet Σ, and all automata sizes

are dominated by |Σ|. For tail-recursive methods, Σ is the set of all pairs of

windows. Suppose the size of the window is h (number of nodes in the win-

dow). For a data domain of size |D|, the number of distinct nodes, the pointer

fields for which range over {0, . . . , h− 1, ∗, ∅} is n = |D|.(h + 2)K . The num-

ber of possible windows is thus nh. Since h is fixed, |Σ| is thus O(|D|h.hK.h),

i.e., polynomial in |D|, and exponential in the window size h and the degree K.

Remark 1: We note that for purely structural properties, D can be often ab-

stracted to a single symbol, and in practice K is small. Also, a large h in

practice is uncommon, as most methods are written so that their action is

local in nature.
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Remark 2: We note that for both input and output windows, a large num-

ber of windows are illegal, i.e., for example, in the case of input windows,

disconnected windows are not possible, and in the case of output windows (if

the desired output is a tree), windows that violate acyclicity, treeness, are not

valid. Thus a large number of windows can be pruned away reducing the size

of Σ.

Remark 3: It is possible to further reduce the size of Σ by introducing predi-

cates that divide windows into equivalence classes. We term this symbol clus-

tering. The product and emptiness operations can be re-defined and inter-

preted over symbol clusters instead of actual symbols. This would give orders

of magnitude reduction in the size of Σ, and hence the sizes of the automata.

In summary, the overall complexity of our technique is polynomial in

the size of the method, the sizes of the specifications, the data domain and

exponential in the window size and the degree of the data structure. In prac-

tice, since window size and degree are small positive integers, we can safely

say that our technique has polynomial complexity in |M|, |Aϕ| and |A¬ψ|.

In Chapter 5, we demonstrate the capability of our technique with

the help of a prototype tool that is able to verify real-world methods for an

interesting set of specifications.
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4.5 Bibliographic Notes

Most of the material presented in this chapter appears in [41], and

some of the required background can be found in [42]. Most of the comparison

with related work can be found in Section 3.7; we discuss the work relevant to

verifying recursive methods here.

Recursion is usually one of the big challenges in automatic software

verification. Modeling recursive methods typically requires reasoning about

call stacks. In fact, many popular and highly useful software verification tech-

niques choose to not handle recursion. For instance, Java PathFinder, which

is a highly successful software model checking tool does not handle recursion

[80]. The authors report that recursion modeled as a process concept in the

Promela language (which is an input language for the Spin model checker),

could be done in theory, but initial experiments showed that it made for inef-

ficient verification.

Analysis of recursive methods based on model checking, is usually

framed as the model checking problem for pushdown systems [64, 18, 134].

Many of these techniques leverage the fact that the state space of a pushdown

system is a regular set [26]. However, all of these techniques assume that the

system is finite state except for the additional pushdown structure. In case

of possibly unbounded linked data structures, the system state includes the

state of the data structure, and hence the system is not a finite state system as

required in these approaches. Interprocedural dataflow analyses such as those

explored in [63] track flow facts across method calls. Typically, such dataflow
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facts are elements of a finite lattice, whereas such a construction would fail for

potentially infinite linked data structures.

The most pertinent work for verifying recursive methods on data struc-

tures is that of interprocedural shape analysis [126] of recursive methods that

manipulate lists. This summarization-based algorithm iteratively annotates

each program point with a set of 3-valued logical structures in a conservative

fashion. These 3-valued structures are bounded size over-approximations of

the possibly unbounded lists. To model recursion, the analysis summarizes ac-

tivation records in the same way that it summarizes linked list elements. This

approach improves the precision with respect to previous approaches such as

[130]. The approach is parameterized by a predefined set of library properties;

though this eases the burden of specification, it can lead to poor results on

programs that require other properties to be tracked.

[127] extends the authors’ previous work to cutpoint-free programs -

programs in which reasoning on a procedure call only requires consideration of

context reachable from the procedure parameters. Here, the analysis computes

procedure summaries as transformers from inputs to outputs while ignoring

parts of the heap not relevant to the procedure. [90] presents an approach for

context-sensitive interprocedural shape analysis that uses relational represen-

tation for the approximation of the evolution of linked data structures. The

approach is able to handle lists and binary trees in a conservative fashion. [72]

presents an analysis that makes use of spatial locality and is able to handle

cyclic and shared data structures.
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The key difference between shape-analysis based approaches and our

technique is exactness and expressivity. Shape analysis can handle arbitrary

programs, properties (albeit restricted to those provided as combinations of

core predicates and instrumentation predicates), and is this highly expressive.

However, it uses of 3-valued logic over first-order structures, and is thus conser-

vative, and thus, prone to inaccurate results due to false positives. Moreover,

the theoretical complexity of the decision procedure is doubly exponential, and

thus its scalability is subject to engineering optimizations. On the other hand,

we only model methods that satisfy a certain syntax, and properties that can

be expressed as tree automata. While the latter is typically quite expressive,

the former restriction is a limitation. It may be possible to combine the ab-

straction offered by the interprocedural shape analysis based approaches with

our exact verification technique, to obtain a larger class of methods that can

be verified more efficiently and precisely.

In [4], the authors describe visibly pushdown tree languages as a subclass

of context-free tree languages for explicitly modeling calls/returns in a recur-

sive program. The authors define visibly pushdown automata (VPTA) that

operate on trees representing the branching behavior of structured programs.

Non-deterministic VPTA have desirable closure properties and an EXPTIME-

complete decision procedure. Though this work focuses on a different problem,

application of such automata for verification of methods operating data struc-

tures is worth investigation.
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Chapter 5

Experimental Evaluation

In Chapters 3 and 4, we presented a solution framework to respectively

verify the correctness of iterative and recursive methods on heap-allocated

linked data structures. We have developed a prototype tool Pravda (Tool

for PaRAmeterized Verification of DAta structures). We briefly explain the

tool architecture followed by the results obtained using the tool.

5.1 Tool architecture

Pravda, written in Java, consists of two high-level modules. The first

module is a parser-lexer scheme written in Java-CUP[87] and jflex[95], which

parses the given method text and the given properties and builds a method

automaton and pre/post-condition automata respectively. The second module

is a library for manipulating tree automata, containing implementations of

standard algorithms for product construction checking nonemptiness. This

module also outputs a counter-example to the correctness of the method if the

product automaton is nonempty.

One of the features of Pravda is its ability to detect important bugs

such as: null pointer dereferences, memory leaks, and double deletion of nodes.
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Figure 5.1: Architecture of Pravda

To ease the burden of specification from the user, these checks are built into the

tool, and do not have to be explicitly specified. Furthermore, these checks are

reported during the construction of the method automaton from the method

description. The tool architecture is shown in Figure 5.1.

The current implementation of the tool is only a prototype, and lacks

important engineering optimizations that can dramatically increase scalability

by reducing the memory consumption. For instance, pruning the size of the

method and automata to include only reachable states is a simple optimization

that can lead to significant savings. We remark that further space savings

are possible by using a symbolic representation for the transition tables of the

various automata by leveraging the power of BDDs or SAT encodings [107, 28].

5.2 Experimental Results for Iterative Methods

Table 5.1 displays some of the notable results obtained using Pravda.

The method AddSelfLoop is a very small method that introduces a self-loop

on the first node of a linked list. AddSelfLoopTail introduces a self-loop on
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Table 5.1: Pravda: Performance Results for Iterative Methods

Method Memory Time Specification Result
Consumed Taken

(MB) (secs)

On Lists:
AddSelfLoop 1.3 0.4 Acyclicity Incorrect

AddSelfLoopTail 1.2 0.4 Acyclicity Incorrect

NPD

InsertAtTail 10 1.2 Acyclicity, Correct

SubstituteAll(a,b) 1.5 0.4 Acyclicity, Correct

AG(iter− >data 6= a) Correct

On Trees:
GetListofRightChildren 12 1.2 Acyclicity Correct

DeleteLeaf 530 15 Acyclicity, Correct

EF(iter 6= 0) Correct

SubstituteAll(a,b) 250 8 Acyclicity, Correct

AG(iter− >data 6= a) Correct

InsertNode 2.5K 221 Acyclicity Correct

the tail node of a linked list. Method InsertAtTail inserts a node at the

tail of the linked list. Method SubstituteAll(a,b) changes the data values

of all nodes that have data value a to the data value b in both trees and

lists. Method GetListOfRightChildren returns a list-like representation of

the rightmost path in a binary tree by setting the 0th child pointer of each

(rightmost) node to null. The DeleteLeaf method deletes a leaf node if it

is not the same as the root node. The InsertNode method inserts a node at

some location in a binary tree. We primarily checked for whether acyclicity

was preserved by the methods.

In some cases, post-conditions for methods involved reasoning over data
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values of nodes. In these cases, the pre-condition was assumed to be true. For

instance we checked for the property “there does not exist a node with data

value a” (AG(iter− >data 6= a)) and “there exists at least one node in the

data structure” (EF(iter 6= 0)).

All experiments were performed on an AMD Athlon 64X2 4200+ system

with 6GB RAM. The memory consumption is proportional to the sizes of

the automata constructed by our technique. There is a direct correlation

between the memory consumption and (a) the size of the window required to

verify (or falsify) a method, and (b) the branching degree of the underlying

data structure. The window size for all methods except InsertNode was 2,

while that for InsertNode is 3. We can observe that as the window size and

branching degree increase, the memory consumption increases exponentially.

The time taken, on the other hand, increases linearly with the size of the

automata. This is expected as the complexity of checking nonemptiness is

polynomial (quadratic in most cases).

5.3 Experimental Results for Recursive Methods

We show some of the notable results in Table 5.2. We can see in Ta-

ble 5.2 that the time required to construct AM is a fraction of the total time

taken, but the memory consumption is a sore spot, as we use explicit represen-

tation for Σ. As before, we can observe that the time taken and memory con-

sumption dramatically increases with increasing degree K. Also, with increase

in the size of the window, the time taken and memory consumed increases,
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as can be seen for the method InsertNode that uses a window of size 3, in

contrast to other methods that use a window of size 2.

Table 5.2: Pravda: Performance Results for Recursive Methods

Method Specification Time Mem.
(secs) (GB)

AM Total

On Linked Lists:
DeleteNode Acyclicity 0.3 1.3 0.02
InsertAtTail Acyclicity 0.01 0.8 0.001
InsertNode Acyclicity 0.4 1.6 0.04

On Binary Trees:
InsertNode Acyclicity 15 329 2.5
SubstituteAll(a,b) Acyclicity 5 26 0.3

AG(iter− >data 6= a) 5 27 0.4
DeleteLeaf Acyclicity 12 48 0.6

The methods that we present have similar functionality as the iterative

methods in Section 5.2, with the difference that these employ recursion. As

before, they are commonly found methods in implementations of linked list

and tree libraries written in C, adapted to our syntax.

5.4 Counterexample Generation

If Ap is found to be nonempty, the tree T̃c witnessing its nonemptiness

is extracted from the transition diagram δp of Ap using standard techniques.

By projecting T̃c onto its first and last components, we can obtain trees T̃i

and T̃o respectively, and from these obtain a candidate input tree Ti and an

output tree To. Ti represents an input to M for which the “bad” output To is
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generated, i.e., a concrete counterexample to the correctness of M.

Figure 5.2: Method AddSelfLoop

1: DataDomain :={ a }
2: AddSelfLoop (iter) {
3: iter->data :=a;

4: iter->l0 :=iter;

5: }

Example 5.4.1. Consider the method shown in Figure 5.2. This method in-

troduces a self-loop on the first node of the linked list that it operates on. The

product of the method automaton (Figure 5.3a), the pre-condition automa-

ton (Figure 5.3b) and the negated post-condition automaton (Figure 5.3c) is

nonempty, and accepts the super-imposition of the input/output graphs shown

in Figure 5.3d.
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Part III

Analysis of Concurrent Libraries
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Outline. Concurrent software presents some of the greatest challenges to

software verification. Thread safety violations such as data races, atomicity

violations, deadlocks, and starvation compromise the reliability and stabil-

ity of multi-threaded software. In this part of the dissertation, we focus on

static techniques for deadlock analysis in concurrent software libraries. Such

libraries, being open systems, require techniques that exceed the scope of dead-

lock analysis techniques for conventional software that is typically treated as

a closed system.

In what follows, we first provide the necessary background on concur-

rent programming, static analysis-based techniques and synchronization prim-

itives in Chapter 6. We discuss deadlockability analysis - a deadlock analysis

technique for libraries in Chapter 7, with a focus on lock-based synchroniza-

tion. In Chapter 8, we extend deadlockability analysis to reason about dead-

locks in libraries that use signaling-based synchronization with wait-notify

constructs. Finally, we present experimental results in Chapter 9.

99



Chapter 6

Background

Design and verification of concurrent software is one of the grand chal-

lenges in computer science. Concurrency verification poses a number of ob-

stacles that sets if apart from any other formal verification problem. It is a

well-researched area with a vast and ever-expanding literature. For a compre-

hensive treatment of some of the earlier techniques in concurrency verification,

please see [38].

Most concurrent software is built assuming an interleaved model of

execution. This model allows for nondeterministic scheduling of individual

threads of computation. Hence, exhaustive reasoning about correctness typi-

cally requires building the entire global state graph, which is astronomical in

size due to an exponential number of interleavings. While techniques based on

model checking coupled with partial-order reduction [119, 67] and symmetry

reductions [59] or combinations of these techniques [53] have ameliorated this

problem to a certain degree, analyzing real-life software, which is a source of

many bugs, is a computationally formidable task.

Verification techniques based on static analysis have emerged as a vi-

able alternative to model checking. Model checking uses state-based opera-
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tional semantics of programs, in converting a program to an equivalent Kripke

structure. In contrast, static analysis techniques typically rely on an abstract

interpretation of the program. Thus, depending on the kind of analysis to

be performed, the effect of each program statement is interpreted accordingly.

This is usually achieved by interpreting the state of the program as a dataflow

fact, and re-defining the program statements as operators that modify the

dataflow facts.

Model checking, which searches for the existence of certain temporal

patterns with the state-space of a program, can also be classified as a static

technique, as it does not involve executing the program. However, the term

static analysis is conventionally associated with techniques that infer informa-

tion from a static representation of the program, such as the program text,

or some intermediate representation, rather than from the finite or finitized

state-space of the program.

The biggest advantage for analyzing concurrent software statically lies

in the ability to perform thread-modular analysis. In such an analysis, the

dataflow facts for the statements in a thread are combined to obtain a thread

summary. Thread summaries are then meaningfully combined in order to

reason about concurrent executions of such threads. Thus, such an analysis

reduces complexity on two distinct indices: (1) by abstract interpretation of

the statements in a thread it reduces the complexity of local reasoning in a

thread, and (2) by safe approximation of possible schedules of thread execution,

it reduces the complexity introduced by interleaving.
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However, the biggest price paid by static analysis is in its lack of preci-

sion. Most static analysis tools such as data race detection tools are plagued

by too many false positives. A false positive is a suspected error in the abstract

interpretation of the program, which is infeasible in the concrete program. In

other words, a false positive is an error introduced by the abstraction, and

not a concrete error in the program. It is possible to improve the precision

of static analysis tools; however, any such effort has to be aware of the fine

balance between precision and scalability.

In presence of recursion, it has been shown that dataflow analysis for

computing simultaneous reachability of locations in a pair of threads for even

the simplest of programs is undecidable [124]. In other words, there is an upper

limit on the available precision for concurrent data flow analysis. Nevertheless,

due to the remarkable scalability vis-á-vis model checking based approaches,

static analysis based tools are widely gaining currency in software verification

practice.

In this part of the dissertation, we focus on the application of static

analysis to modular verification of concurrent software libraries. In particu-

lar, we focus on the problem of deadlock prediction and detection. Analyzing

concurrent libraries has its own set of challenges in addition to the challenges

faced by concurrency verification. Modular software development principles

promote well-encapsulated concurrent software libraries that can then be used

by multiple programs (referred to as clients). Such libraries may be infor-

mally specified by the application programming interface (API) documents
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that accompany their object (or source) code. However, information hiding

obscures internal synchronization details of the libraries from the client devel-

opers. This is further worsened by the fact that such details of synchronization

are rarely made a part of the API. This results in developers invoking library

methods in potentially hazardous fashion, exposing the client code to thread

safety violations such as data races and deadlocks. In what follows, we give

a brief overview of static analysis, a programming language model, and in-

troduce deadlockability analysis as a way to analyze deadlocks in concurrent

libraries.

6.1 Static Analysis

Static code analysis techniques have emerged as scalable alternatives

within the purview of formal approaches to exhaustive software verification.

Model checking, which searches for the existence of certain temporal patterns

with the state-space of a program, can also be classified as a static technique,

as it does not involve executing the program. However, the term static analy-

sis is conventionally associated with techniques that infer information from a

static representation of the program, such as the program text, or some inter-

mediate representation, rather than from the finite or finitized state-space of

the program.

We now give a brief introduction to dataflow analysis, which is a type

of a static analysis, and provide a quick glossary of terms that we will use

throughout the rest of this dissertation. Most of this material is adapted from
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[114].

Control-flow Graph. A control flow graph (cfg) is a directed graph (V,E)

where the V is a set of control-flow graph nodes, and each edge in E is labeled

with a program statement. Each control-flow graph has a designated entry

vertex entry, and a designated exit vertex exit.

Partial Order, Lattices. A partial order is a structure (X,v), where X is

a finite set, and v is a reflexive, transitive and anti-symmetric binary relation

on X. If S ⊆ X, then y ∈ X is an upper bound for S if ∀s ∈ S, s v y. An

upper bound ŷ is a least upper bound (also called join) for S if for every y that

is the upper bound for S, ŷ v y. We can similarly define a lower bound and the

greatest lower bound (also called meet). Given a subset {a, b}, we denote the

join by atb, and meet by aub. A partially ordered set X (with the the partial

order (X,v)) forms a lattice if the meet and join exist and are contained in

X for every pair of elements in X. A finite lattice has a unique least element

or infimum, denoted as ⊥ or inf, and a unique greatest element or supremum,

denoted as > or sup.

Monotone Framework. A function f : X → X is monotone if ∀x, y ∈ X :

x v y ⇒ f(x) v f(y). An element x is a fixpoint for f if f(x) = x. By the

Knaster-Tarski theorem it follows that for every finite lattice, every monotone

function has a unique least fixpoint computed as lfp(f) = ti≥0f
i(⊥) [36].
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A set of dataflow facts (L,v) forms a lattice, and thus has a well-defined

associated partial order v, well-defined meet (u) and join (t) operators. The

inputs to a dataflow analysis are the control-flow graph cfgP (V,E) of a program

P . Let u, v be control-flow graph nodes, and let s be a program statement.

The analysis is formulated as the following set of equations:

fact(v) =

{
i if v ∈ I
�{fs(fact(u))|(u s−→ v) ∈ E ′} otherwise

Here, fact(u) represents a dataflow fact at the control-flow graph node

u, � is either the join operator t or the meet operator u, E ′ is either E or

ER (i.e., the set of reverse edges in cfgP ), I is either > = fact(entry) or ⊥ =

fact(exit), and fs is a transfer function associated with a program statement

s.

If E ′ is E, we term the dataflow analysis as a forward analysis, and if E ′

is ER, we term the dataflow analysis as a backward analysis. If � is t, we are

interested in computing the least sets that solve the set of data-flow equations.

These analyses are able to detect properties satisfied by some execution path

within the program, and are also referred to as may analyses. On the other

hand, if � is u, we are interested in computing the greatest sets that solve

the equations. These analyses are able to detect properties satisfied by all

execution paths within the program, and are also referred to as must analyses.
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If the transfer functions fs in the dataflow analysis are monotone, it

follows from Knaster-Tarski theorem, that the least (or greatest) solutions to

the set of dataflow equations exist, and can be computed iteratively, starting

from ⊥ (or >). Historically, there have are two variant methods to solve

dataflow equations: the MFP solution or the Maximal Fixed Point solution,

and the MOP or the Meet Over all Paths solution1.

Interprocedural Analysis. The monotone framework presented above only

solves dataflow equations within a procedure, and hence is an instance of an

intraprocedural analysis. Interprocedural analyses deal with analyzing flow in-

formation in the presence of functions (or methods, in Java parlance). In this

work, we primarily make use of interprocedural analysis by means of comput-

ing function summaries [136]. Here, the key idea is to succinctly represent

the behavior of a method parameterized by information about its arguments.

The formalism introduced in [136] is limited to finite lattices of dataflow facts,

which suits our purpose in this work.

There are two flavors for summary-computation based interprocedural

analysis. In the eager approach, we try to compute an approximate call graph2,

and pre-compute method summaries in the reverse topological order of the

1For may analyses, we compute the Least Fixed Point, or analogously, do a Join Over
all Paths, but historically analyses have focussed on must analyses, and hence it is common
to call the techniques MFP or MOP solutions.

2A call graph is a directed graph representing the order in which methods are invoked
in a program. The “top-level”, i.e., typically the main method is at the root of the graph,
and for each method m, any method m′ invoked in the body of m is a child of m in the call
graph. Recursion leads to cycles in the call graph.
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call graph. This ensures that intraprocedural analysis of a method m has the

summaries of the methods that are invoked by m available at the point of

invocation. On the other hand, the lazy or demand-driven approach computes

function summaries as required.

Context-sensitivity. A context-insensitive analysis is one in which the in-

formation about calling states is combined at call sites, the procedure is ana-

lyzed only once using the combined information, and the resulting information

about the set of return states is used at all return points. On the other hand,

context-sensitive analysis uses the precise information (also known as context)

at a call-site. In an interprocedural context-sensitive analysis, each call-site

is treated differently, and the actual values of variables in the call-site are

mapped to the formal parameters present in the method summary.

Flow-sensitivity. The dataflow analysis that we presented is flow-sensitive,

i.e., the flow information is influenced by the order in which statements appear

in the program. In simple terms, in a flow-insensitive analysis the order in

which statements appear in a program has no importance. Flow-insensitive

analyses have application where a cheap and fast (albeit less precise) analysis

is needed.

Lock-Graph Analysis. In Chapter 7, we outline a static lock-graph anal-

ysis that captures dependencies between lock-acquisitions in a program. In
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terms of the concepts outlined above, our lock-graph analysis is a context-

sensitive, flow-sensitive, interprocedural analysis. A dataflow fact in our anal-

ysis is a lock-order graph, which encodes the lock dependencies. For a given

set of locks, the possible lock-order graphs forms a lattice under the partial

order imposed by the subset (⊆) relation for the vertices and edges. The sup

is the fully connected graph, while the inf is the graph where no two nodes are

connected. The join or t operator computes the union of two graphs (union

of the sets of vertices and edges respectively). We use the MFP method to

compute least fixpoint solutions for the dataflow equations, and define trans-

fer functions for statements that acquire or release locks. Finally, we note

that a precise lock-graph analysis requires an a priori alias analysis. We start

with a default context-insensitive, intraprocedural alias analysis offered by the

static analysis framework that we use. However, as we wish to focus on preci-

sion, during the course of our lock-graph analysis, we track context-sensitive,

interprocedural aliases for objects (lock variables) of interest.

6.2 Programming Language Model

We assume that we are given a concurrent library written in a class-

based object-oriented programming language such as C++ or Java. In the

following discussion, we introduce the type-based semantics and the concur-

rency model for such libraries, loosely adhering to the model used in Java.
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Library and Types. Formally, we define a library L as a collection of class

definitions 〈C1, . . .Ck〉. Each class Ci denotes a corresponding reference type

Ci. A class definition consists of definitions for data members (also called

fields), and methods (member functions). We say that C2 is a subtype of C1 if

C2 is a subclass of C1
3.

Data members have primitive types (int, double, etc.), or reference

types4. An object is an instance of a class Ci, and the type of the object is

the corresponding reference type Ci. Let V = {ob1, . . . , obk} be a (super-)set

of all the object variables (references in Java terminology) occurring in the

methods of interest in L.

Access Expressions. Given a universe of object variables V , access expres-

sions are constructed as follows:

(a) A variable obi is an access expression of type Ci.

(b) Let ej be an access expression of non-primitive type Cj, and fk be a field

of the class Cj of type Ck. Then e : ej.fk is an access expression of type

Ck.

3A subclass C2 of a class C1 is defined in standard fashion as a class that contains all
definitions of methods and fields of C1, with possible additional definitions. In other words,
subclassing defines an inheritance hierarchy between classes.

4Apart from class types, array types are also classified as reference types, and our tech-
nique handles array variables conservatively; we omit a detailed discussion on array types
for simplicity.
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Informally, access expressions are of the form ob.f1.f2. . . . .fk for some

valid sequence of field accesses f1, . . . , fk. Let Type(e) denote the type of

an access expression e. A runtime environment associates a set of concrete

memory locations and values to each object instance and its fields.

Aliasing, Sharing. Aliasing is a relationship between access expressions

such that two access expressions e1 and e2 are aliased under runtime environ-

ment R, if they refer to the same object instance. Two objects obi, obj are

said to share in a runtime environment R if some access expression of the form

obi.f1 . . . .fk aliases another expression of the form obj.g1 . . . .gj. In a type sys-

tem similar to Java’s type system, we can generally assume that if e1 and e2

are aliased, then C1 : Type(e1) is a subtype of C2 : Type(e2) or vice-versa. In

this case, we also assume that if f1, . . . , fk are the common fields between C1

and C2, then e1.fi aliases e2.fi for all 1 ≤ i ≤ k.

A method m of class C is associated with a signature sig(m) that defines

the types for the formal parameters of m, and a return type. Each method

m is always executed on an object of some type Ci. The object on which the

method is executed is referred to as “this” within the method body. The

method body consists of a sequence of statements, including calls to other

member methods of classes within L. The operational semantics of m are

defined using a control-flow graph (denoted cfg(m)). We define cfg(m) as a

tuple (Vc, Ec, S), where Vc is a set of program points, and Ec is a set of edges,

each labeled with a unique program statement s ∈ S.
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6.2.1 Synchronization Primitives

Lock-based synchronization. We seek to analyze object libraries that sup-

port concurrent accesses to their fields and methods. Therefore, we assume

that synchronization statements for lock-acquisition and lock-release are used

to provide mutual exclusion for shared data. We assume that these statements

are of the form lock(ob) and unlock(ob), where ob is some object variable. A

thread executing lock(ob) is blocked unless it can successfully acquire the lock

associated with ob. The statement unlock(ob) releases the lock, returning it

to the unlocked state.

In certain languages such as C++/pthread and C# there is a desig-

nated type for lock variables. For instance, the pthread library uses the type

pthread mutex t for mutex locks, and the functions pthread mutex lock and

pthread mutex unlock to implement acquisition and release of mutexes. In

such a model, the programmer decides upon a lock variable to protect access

to one or more shared data items. It is the programmer’s responsibility to en-

sure that each access to shared data is preceded by necessary lock acquisition

and release, and that the locking discipline is uniform. Failure to do so results

in low-level data races or high-level atomicity violations.
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1: public class Foo {
2: public void method1() {
3: . . .

4: synchronized (mon) {
5: . . .

6: }
7: }
8: public synchronized void method2 () {
9: . . .

10: }
11: }

Figure 6.1: Monitor Usage

Monitor-based synchronization. Languages like Java, use monitors to

implement synchronization5. A monitor object is a special object with built-in

mutual exclusion and thread synchronization capabilities. A monitored region

corresponding to the monitor mon is a sequence of statements that begins with

the acquisition of mon, and ends with the release of mon. In Java, any object

can be used as a monitor, and a monitored region is specified with the help of

the synchronized keyword. For instance, in the example shown in Figure 6.1,

Lines 4-6 constitute a monitored region associated with the monitor object

mon.

Java also allows using the keyword synchronized in a method signa-

ture (Line 8 in Figure 6.1), which makes the entire method a monitored region

corresponding to the implicit object (this) on which the method is invoked.

In theory, a monitor is associated with two explicit queues, an entry

5With the addition of the java.util.Concurrent library to Java, there is now language
support for an explicit lock construct.
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queue and a wait queue. In Java, instead of queues, each monitor maintains

an entry set and a wait set. Queues are intended to implement FIFO access

to a monitored region; Java makes no such guarantees. In the rest of the

presentation, we assume the Java model, i.e., we have an entry set and a wait

set for each monitor. The entry set is used primarily for mutual exclusion,

while both sets are used in concert for cooperative synchronization.

Mutual Exclusion with Monitors. Let mon be a monitor object. When a

thread T reaches the beginning of a monitored region for mon, it is placed in the

entry set of mon. T is granted access to a monitored region if no other thread

is executing inside it; we say that T acquires mon when it enters the monitored

region. Any other thread T ′ that reaches the beginning of the monitored region

once mon is acquired by T , is placed in the entry set for mon. Once T leaves the

monitored region, we say that T releases mon. At this time, some (randomly

chosen) thread in the entry set is able to acquire mon. Essentially, a monitor

maintains the invariant that at any given time there is at most one thread

inside the monitored region.

In effect, monitors mimic locks: replace the beginning of a monitored

region with lock(mon), the end of the monitored region with unlock(mon). One

advantage with having a monitored region is that every monitor acquisition

has a matching release, and monitors can be acquired and released only in a

strictly nested fashion, i.e., if ob1 is acquired before ob2, then the monitors

are released in the reverse order.
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Co-operation with Monitors. Use of signaling allows monitors to im-

plement cooperation between threads. We focus on the wait-notify style of

monitors used by Java. Each monitor is provided with two special methods:

wait and notify. We explain the semantics of wait and notify methods

with the code fragment shown in Figure 6.2.

A thread (say T1) executing code fragment P acquires the monitor

mon, at Line a0. After executing code-block A1, in Line a2, T1 executes the

mon.wait() statement, which has the following effect: (a) release the monitor

mon, (b) add T1 to the wait set for mon, (c) suspend execution of T1. Assume

that some other thread, say T2, reaches the beginning of the monitored region

in code fragment Q (Line b0) after T1 has executed Line a0. T2 is then placed

in the entry set for mon. Once T1 releases mon in Line a2, T2 can enter the

monitored region, subsequently executing B1, followed by mon.notify(). The

effect of the notify statement is to remove any one thread (say T1) from the

wait set for mon, and place it in the entry set for mon. T1 cannot resume

execution as it is still in the entry set for mon, and T2 “owns” mon. Once T2

executes Lines b3, b4, it releases mon. Now T1 may acquire mon, and proceed,

executing Lines a3, a4.

Condition Variables. To contrast with wait-notify monitors in Java, we

briefly discuss signaling-based synchronization in the pthread library. A con-

dition variable cv is a shared resource that is used in conjunction with a

mutex lock l. The variable cv is typically associated with a Boolean-valued
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P: Q:
a0: synchronized (mon) { b0: synchronized (mon) {
a1: A1; b1: B1;

a2: mon.wait(); b2: mon.notify();

a3: A2; b3: B2;

a4: } b4: }

Figure 6.2: Wait-Notify Monitors

expression known as the condition. The method pthread cond wait has two

arguments: cv and l, and its semantics are similar to that of wait: unlock

mutex l, start waiting on variable cv, and upon being notified re-acquire mu-

tex l. The method pthread cond signal takes one argument: cv, and its

semantics are similar to that of notify: issue notification to the variable cv.

6.3 Deadlock Detection for Concurrent Libraries

We focus on deadlocks arising from circular dependencies in synchro-

nization constructs such as locks and signaling primitives. Languages such as

Java combine the mutual exclusion provided by locks with the cooperative syn-

chronization provided by signaling primitives into a single monitor construct.

Here, we use the abstract term lock to mean both specialized lock variables in

languages such as C, C++/pthread, and monitors used for enforcing mutual

exclusion in Java.

Static and dynamic approaches for deadlock detection construct lock-

acquisition order graphs that track dependencies between locks for each thread.

Lock-order graphs for concurrent threads are then merged, and a cycle in the
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resulting graph indicates a possibility of a deadlock. Such approaches are use-

ful for determining the existence of deadlocks in a closed system. Moreover,

in closed systems, aliasing information is readily available, or can be conser-

vatively approximated with good precision. Analyzing libraries for deadlocks

requires some additional effort due to their open nature.

Analyzing concurrent libraries for deadlocks has two main aspects:

First of all, we wish to identify if, for any client, there are library methods

that can be concurrently called in a manner that causes a deadlock. This is

termed the deadlockability problem. Secondly, we wish to use the results of

this analysis to search for the existence of deadlocks in a particular client that

invokes these library methods. Deadlockability analysis was first introduced

by Williams et al. [148]. Therein, the authors construct a lock-order graph

for each library method. The types of syntactic expressions corresponding

to object monitors are used as conservative approximations for the may-alias

information between these monitors. The authors show that their approach

helps in identifying important potential deadlocks; however, their approach is

susceptible to false positives, which have to be then filtered using (possibly

unsound) heuristics.

We informally introduce deadlockability analysis with the help of an

example. We use the Java code snippet (shown in Figure 6.3) from the

EventQueue class in Java’s awt library. In Lines 5 and 17, the synchro-

nized (this) statement has the effect of acquiring a lock on the this object.

The nextQueue variable is a data member of the EventQueue class, which is set
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1: public class EventQueue {
2: EventQueue nextQueue;

3: void postEventPrivate (Event e) {
4: . . .

5: synchronized (this) {
6: nextQueue.postEventPrivate(e);

7: }
8: . . .

9: }
10: void push (EventQueue eq) {
11: . . .

12: nextQueue = eq;

13: . . .

14: }
15: void wakeup(boolean f) {
16: . . .

17: synchronized (this) {
18: nextQueue.wakeup(f);

19: }
20: . . .

21: }

Figure 6.3: Methods in java.awt.EventQueue

by the push method (Line 10). By design, the postEventPrivate and wakeup

methods are intended to perform their action on the EventQueue instance

this, on which they are invoked, and then act on this.nextQueue (Lines 6 and

18). Consider the case wherein one client thread (say T1) invokes a.push(b),

while another client thread (say T2) invokes b.push(a). Subsequently, if T1

invokes a.postEventPrivate(e) concurrently while T2 simultaneously invokes

b.wakeup(true), then this may result in a deadlock. This deadlock can mani-

fest itself in real client code, as reported by client developers in [139, 6542185].

Our deadlockability analysis first performs static inspection of the given

concurrent library to identify lock-order graphs for each method. The lock-
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order graph for the wakeup method in Figure 6.3 captures the acquisition of

the lock for the this object followed by that of the this.nextQueue object:

this.wakeup(..):

this this.nextQueue

Similarly, postEventPrivate method first acquires a lock on the this

object followed by the this.nextQueue object, yielding an identical acyclic

lock-order graph:

this.postEventPrivate(..):

this this.nextQueue

Consider a client that performs concurrent calls to the methods from two

different threads on objects: ob1, ob2:

T1 : ob1.wakeup(true) ‖ T2 : ob2.postEventPrivate()

Assuming no other lock acquisitions are made by the threads them-

selves, no other calls to methods and no aliasing/sharing between the objects,

the lock-order graph of the client is as shown in Figure 6.4.

Normally, the two graphs by themselves are acyclic, and the method

calls by themselves do not seem to cause an obvious deadlock. However, the

lock-order graph above assumes that the objects ob1,2 are not aliased/do not

share fields. Consider, on the other hand, the scenario wherein the object
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ob1.nextQueue aliases ob2 and ob2.nextQueue aliases ob1. Under such a sce-

nario, the lock-order graph of Figure 6.4 is modified by fusing the aliased

nodes into a single node to obtain the graph depicted in Figure 6.5. This

graph clearly indicates the possibility of a deadlock. Furthermore, prior calls

to the push methods set up the required pattern of aliasing along the lines

of [139, 6542185]. It is important to note that techniques that assume a closed

system would only generate the lock-order graph shown in Figure 6.4, and

would thus miss a potential deadlock.

At a broad level, our techniques for deadlockability analysis provide a practical

framework to:

(a) identify potential deadlock situations by efficiently considering all feasible

aliasing and sharing scenarios between objects at the concurrent call-sites

of library methods,

(b) derive an interface contract that characterizes safe aliasing patterns for

concurrent calls to library methods.

Concretely, our technique synthesizes the aliasing scenario described

above. For calls to the wakeup and the postEventPrivate methods, our

ob1 ob1.nextQueue

ob2 ob2.nextQueue

T1

T2

Figure 6.4: Merged Lock-order Graph for postEventPrivate & wakeup
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ob1, ob2.nextQueue ob2, ob1.nextQueue

T1

T2

Figure 6.5: Lock-order graph for T1||T2 under aliasing of nodes.

analysis derives the contract specifying that at any concurrent call to a.wakeup

() and b.postEventPrivate (), the aliasing between a,b must satisfy:

¬isAliased(a,b.nextQueue) ∨ ¬isAliased(b,a.nextQueue)

This is sufficient to guarantee deadlock-free execution of these methods

assuming that the synchronization operations of the client cannot interfere

with that of the library.

In Chapter 7, we elaborate on the steps in deadlockability analysis,

and discuss a symbolic encoding that allows us to considerably speed up our

technique without loss of precision. In Chapter 8, we extend deadlockability

analysis to reason about libraries that use signaling-based synchronization.

Experimental evaluation is presented in Chapter 9.
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Chapter 7

Symbolic Deadlockability Analysis

In this chapter, we introduce the formal definitions for a lock-order

graph, deadlockability analysis, and deadlock-causing aliasing patterns. We

then discuss a scheme to encode a lock-order graph into a constraint to en-

able symbolic reasoning with a SMT-based constraint solver. Finally, we use

this scheme to enumerate deadlock-causing aliasing patterns for concurrent

libraries, which are then used to derive interface contracts for the library.

7.1 Lock-Graph Computation

Lock-Order Graph. A lock-order graph for method m denoted lg(m) is a

tuple (V,E), where V is a set of access expressions, and E is a set of edges.

An edge e1 → e2 denotes a pair of nested lock statements lock(x) followed

by lock(y) wherein x aliases1 the access expression e1, y aliases the access

expression e2, and the lock acquisitions are nested along some path in cfg(m)

or along a path in the cfg of one of m’s callees. In what follows, we frequently

use the shorter term lock-graph interchangeably with lock-order graph.

1For a formal definition of aliasing, please refer Section 6.2.
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Procedure computeLG(m)

begin1

worklist :=∅2

V, E, lockset, roots :=∅3

worklist.push(>m)4

while (worklist 6= ∅) do5

/* Edge u
s−→ v in cfg(m) */

u :=worklist.deque()6

succs(u) :={v|(u s−→ v) ∈ cfg(m) }7

foreach (v in succs(u)) do8

old sum :=psum(v)9

new sum :=computeFlow(u, s, v)10

if (old sum 6= new sum) then worklist.push(v)11

summary(v) :=psum(v) t new flow12

summary(m) :=psum(⊥m)13

summaries map.put(m, summary(m))14

end15

Static Forward Lock-Graph Analysis. lock-order graph computation for

the methods of a given library involves summarization of each method m

within the library. Let u
s−→ v be an edge in cfg(m). The partial sum-

mary of m at control-flow node v (denoted psum(v)) is the symbolic state

of m after executing the statement s. It is described as the data structure

(lg(V,E), lockset, roots), where lg(V,E) is the lock-order graph, lockset is

the set of locks acquired (but not released) by m at v, roots is the set of locks

that do not have any incoming edges2.

We closely follow the technique described in [148] for fixpoint-based

summary computation. The procedure computeLG implements a simple work-

2In the actual implementation, we also track as a part of the summary a mapping env,
that tracks any local variables that may be aliased to global variables on the heap, and thus
escape the scope of m. We omit this for simplicity.
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list based forward flow analysis. We introduce a single (dummy) entry-point

>m that has all the actual entry-points of the m as successors, and an exit-

point⊥m that is the successor of all actual exit-points (i.e., return statements)

for m. We assume that the partially computed summary at each point in the

control-flow graph is initialized to (∅, ∅, ∅). In each step, a new edge (u
s−→ v) in

cfg(m) is examined. Using the flow equations for the edge as specified by the

function computeFlow and the partial summary at control point u (psum(u)),

we obtain psum(v) (Line 10). If the new psum(v) is different from the original

psum(v) , then v is added to the work-list (Line 11), and the new psum(v)

is merged with the old (Line 12). The merge operation (t) computes the

union of each component in the partial summary. Finally, the summary of

method m (and lg(m) contained therein) is obtained as the merge of the

partial summaries at ⊥m, which is then stored into a map (Lines 13-14).

We remark that in the presence of recursive (classes containing them-

selves as members) or mutually recursive types and recursion/loops in the

CFG, the fixpoint computation may not terminate, in general. We ensure ter-

mination by artificially bounding the length of recursive access expressions in

the lock graph nodes.

The computeFlow function is used to compute the effect of a statement

s on the partial summary. For the edge u
lock(mon)−−−−−→ v corresponding to a lock-

acquisition, we add edges from every lock mon′ in lockset(u) to mon, and then

add mon to lockset(v) (Lines 5-7). The edge u
unlock(mon)−−−−−−→ v corresponding

to a lock-release is modeled by setting lockset(v) to the set obtained by
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Function computeFlow

input : cfg edge: u
s−→ v

output : partial summary out

begin1

in :=psum(u), out :=∅2

/* in = (Vi, Ei, rootsi, lockseti), out = (Vo, Eo, rootso, lockseto) */

switch (s) do3

/* Lock acquisition. */

case lock(mon) :4

foreach (mon′ ∈ lockseti) do Eo :=Ei ∪ {(mon′, mon)}5

lockseto :=lockseti ∪ {mon}6

if (rootsi = ∅) then rootso :={mon}7

/* Lock release. */

case unlock(mon) :8

lockseto :=lockseti − {mon}9

if (lockseto = ∅) then rootso :=∅10

/* Method Invocation. */

case m′(a1, . . . , ak) :11

/* Check if summary(m′) = (V′, E′, lockset′, roots′) exists, if

not compute it. */

if (summaries map.contains(m′)) then12

summary(m′) :=summaries map.get(m′)13

else summary(m′) :=computeLG(m′)14

/* Map formal parameters in the summary to actual

parameters. */

sum′ :=summary(m′)|∀i:fi 7→ai15

/* Concatenate new summary with current summary. */

Eo :=Ei ∪ E′, Vo :=Vi ∪ V′16

foreach (mon ∈ lockset) do17

foreach (mon′ ∈ roots′) do18

Eo :=Eo ∪ {(mon, mon′)}19

otherwise20

out :=in21

end22
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removing mon from lockset(u) (Lines 9-10). Upon encountering a call to a

method m′, we check if the summary for m′ has been computed, and if not,

we first compute it. We then replace the formal parameters in summary(m′)

with the actual parameters at the call-site, and concatenate the result sum′

with the partial summary computed thus far (Lines 13-19). Concatenation

involves adding edges from every lock in lockset to every root in the roots′

(in sum′) and adding all other edges in lg′ (in sum′) to the lock-graph in the

partial summary.

7.2 Deadlockability Analysis

Let m1, . . . ,mk be a set of methods in library L that are concurrently

invoked by k separate threads. For ease of exposition, we consider the case

of two threads (i.e., k = 2). However, our results readily extend to arbitrary

values of k. Let objects ob1, . . . , obk denote a set of objects on which the

methods m1, . . . ,mk are invoked. Let obk+1, . . . , obn be the set of parameters

to these method calls. Let lg(m1) and lg(m2) be the lock order graphs for

the methods m1 and m2 after substituting the this object and the formal

parameters in m1 and m2 with ob1, . . . , obn. We assume that lg(m1) and

lg(m2) are themselves cycle free3. Let V1,2 = {e1, . . . , em} denote the set of

access expressions occurring in lg(m1) or lg(m2). We first characterize the

patterns of aliasing/sharing between the access expressions corresponding to

3This assumption relies on re-entrancy of locks. Java monitors are re-entrant. Mutexes
in C/C++ with the pthread library are commonly defined to be re-entrant. Thus this
assumption generally holds true for the libraries that we seek to analyze.
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ob1, . . . , obn under some fixed runtime environment R.

Def. 7.2.1 (Aliasing Pattern). An aliasing pattern α over a set of access

expressions V is a symmetric, reflexive and transitive relation over V . If

(e1, e2) ∈ α then (e1.fi, e2.fi) ∈ α for all shared fields fi between Type(e1) and

Type(e2).

Given graphs G1(V1, E1) and G2(V2, E2), we use G = G1tG2 to denote

the union of the two graphs (i.e., the set of vertices of G is V1 ∪ V2, and

the set of edges is E1 ∪ E2). For lock-graphs lg(m1) and lg(m2), we refer to

lg(m1) t lg(m2) as the merged lock-graph for m1 and m2. Given an aliasing

pattern α over the nodes of a merged graph lg(m1) t lg(m2), we fuse the

nodes ei, ej of the graph if (ei, ej) ∈ α. The outgoing and incoming edges to

the individual nodes ei, ej are preserved by the fused node. Let α . G denote

the resulting graph after merging all aliased nodes.

Def. 7.2.2 (Deadlock Causing Pattern). An aliasing pattern α is potentially

deadlock-causing for m1,m2 iff α . (lg(m1) t lg(m2)) contains a cycle. An

aliasing pattern that is not deadlock-causing is termed safe.

Example 7.2.1. Consider two methods from the java.awt.EventQueue class:

m1 (wakeup) and m2 (postEventPrivate), shown in Figure 6.3. Section 6.3

illustrates the individual lock-order graphs lg(m1) and lg(m2). Following the

notation established, let ob1, ob2 denote the objects on which methods m1,m2

are invoked, respectively. The access expressions involved in the lock graph

G : lg(m1) t lg(m2) are V1,2 = {ob1, ob2, ob1.nextQueue, ob2.nextQueue}. Let

126



α1 be the aliasing pattern {(ob1, ob2.nextQueue)}. The merged lock graph

α1 . G is shown below:

α1 . G:

ob2 ob2.nextQueue, ob1 ob1.nextQueue
1 2

The pattern α1 does not cause a deadlock. However, the following

pattern α2, considered in Section 6.3 is deadlock-causing:

α2 : {(ob2, ob1.nextQueue), (ob1, ob2.nextQueue)}

Def. 7.2.3 (Deadlockable). A library is termed potentially deadlockable if

there exists a pair of methods m1,m2, and some aliasing pattern α amongst

the access expressions in V1,2 such that α . (lg(m1)t lg(m2)) contains a cycle.

A simplistic approach consists of (a) enumerating all possible aliasing

patterns α, and (b) checking every graph α . G for a cycle. As pointed out in

[148], there may exist a huge number of aliasing/sharing relationships between

the parameters, invoked objects, and their fields. Explicit reasoning over such

a large number of patterns is intractable, as enumerating all deadlock-causing

aliasing patterns is NP -complete, as we show later in Section 7.3. Hence, we

use a symbolic representation to encode the graphs and the aliasing patterns as

constraints, enabling the use of SAT-Modulo Theory (SMT) solvers to perform

the enumeration efficiently.
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7.2.1 Symbolic Encoding

We first discuss how we can encode the cycle detection problem into an

efficient theory amenable to a SMT solver. The inputs to this problem are a

graph G = lg1 t lg2, and a fixed aliasing pattern α. In Section 7.3 we will use

this encoding to efficiently enumerate all possible patterns to detect potential

deadlocks and derive interface contracts.

The overall strategy consists of two parts: We first encode a lock graph

G over a set of access expressions VG as a logical formula Ψ(G). Next, we

show how a given alias pattern α may be encoded as a formula Ψ(α). As a

result, we guarantee that Ψ(α) ∧ Ψ(G) is unsatisfiable if and only if α . G

has a cycle. The formula Ψ(G) represents a topological ordering of the graph

and Ψ(α) places equality constraints on the vertex numbers based on aliasing.

If the result is unsatisfiable then no topological order can exist, indicating a

cycle.

Graph Encoding. Corresponding to each node vi ∈ V , we create an integer

variable x(vi) representing its rank in a topological ordering of the node vi.

Corresponding to each edge vi → vj in the graph, we add the constraint

x(vi) < x(vj). The resulting formula Ψ(G) is the conjunction of all edge

inequalities:

Ψ(G) :

 ∧
(vi,vj)∈E

(x(vi) < x(vj))

 . (7.2.1)
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Example 7.2.2. Consider once again the running example from Figure 6.3,

continuing with the notation established in Ex. 7.2.1. The merged lock graph

G : lg(m1) t lg(m2) is recalled in Figure 6.4. The constraint Ψ(G) for this

graph is as follows:

(x(ob1) < x(ob1.nextQueue)) ∧ (x(ob2) < x(ob2.nextQueue)) .

Aliasing Pattern Encoding. Given an aliasing pattern α, we wish to derive

a formula Ψ(α,G) whose satisfiability indicates the absence of a cycle in α.G

(and conversely). This is achieved by encoding α by means of a set of equalities

as follows:

Ψ(α) :

 ∧
(ei,ej)∈α

(x(ei) = x(ej))

 . (7.2.2)

In effect, the rank of the access expressions that are aliased is required

to be the same in the topological order.

Example 7.2.3. Continuing with Ex. 7.2.2, the aliasing pattern

α1 : {(ob2, ob1.nextQueue)}

may be encoded as:

Ψ(α1) : (x(ob2) = x(ob1.nextQueue)) .

Given an aliasing pattern α, and a graph G, the formulae Ψ(G), Ψ(α)

are conjoined into a single formula Ψ(α,G) : Ψ(G) ∧ Ψ(α) that enforces the
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requirements for a topological order specified by G, as well as for merging

nodes according to the aliasing pattern α.

Example 7.2.4. Continuing with Ex. 7.2.3, recall Ψ(G) from Ex. 7.2.1, con-

sider the combined formula:

Ψ(α1, G) : (x(ob1) < x(ob1.nextQueue)) ∧ (x(ob2) < x(ob2.nextQueue)) ∧

(x(ob2) = x(ob1.nextQueue))

This formula is satisfiable in the theory of integers, indicating a topological

ordering over Ψ : α1 . G, thus showing that no cycle exists in α1 . G. On the

other hand, consider the formula Ψ(α2, G) obtained from the pattern:

α2 : {(ob2, ob1.nextQueue), (ob1, ob2.nextQueue)}

i.e., Ψ(α2) : (x(ob2) = x(ob1.nextQueue)) ∧ (x(ob1) = x(ob2.nextQueue))

The combination of Ψ(G)∧Ψ(α2) is clearly unsatisfiable indicating that α2.G

has a cycle, which in turn shows that α2 may cause a deadlock.

Theorem 7.2.1. The formula Ψ(α,G) is satisfiable iff α .G does not have a

cycle.

Proof. We begin by simplifying the statement of the theorem. Let G′ = α.G.

Let Ψ(G′) be the encoding for G′ as per (7.2.1). We observe that Ψ(G′) can be

obtained from Ψ(α,G) by by replacing integer variables x(vi) and x(vj) by a

new variable xij, if Ψ(α) contains the relation x(vi) = x(vj). Note that Ψ(G′)
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is satisfiable iff Ψ(α,G) is satisfiable. Thus, we now wish to prove that Ψ(G′)

is satisfiable iff G′ is acyclic.

We first prove that if G′ is acyclic, Ψ(G′) obtained as per (7.2.1) is

satisfiable. Note that the edge relation of an acyclic graph G′(V,E) defines

a strict partial order4 on the set of its vertices, and for a given strict partial

order (E) we can define the linear extension of E (denoted Etot) by the order-

extension principle. By definition, Etot is a total order, and if (u, v) ∈ E, then

(u, v) ∈ Etot. Since Etot is a total order, we can define a bijection f from

the set of vertices V to N such that if (u, v) ∈ Etot, f(u) < f(v). Thus, the

interpretation of Ψ(G′) where each x(u) is replaced by f(u) evaluates to true,

i.e., Ψ(G′) is satisfiable.

To prove the reverse direction, we prove by contradiction. Assume that

Ψ(G′) is satisfiable and G′(V,E) contains a cycle. Since Ψ(G′) is satisfiable,

we can find a satisfying assignment to Ψ(G′) such that each x(vi) corresponds

to a distinct integer. By definition, each constraint x(vi) < x(vj) corresponds

to an edge (vi, vj) ∈ E. Since G′ contains a cycle, it contains a path π =

(v1, . . . , vk, v1) in G′, s.t. each consecutive pair of vertices in π is in E. The

conjunction of constraints corresponding to π contains the inequality (x(vk) <

x(v1)) and by transitivity of < over integers, also contains (x(v1) < x(vk)).

This is a contradiction as each x(vi) is a distinct integer.

4A strict partial order is a transitive and asymmetric binary relation on a set.
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Constraint Solving. Given an aliasing pattern α, the constraint Ψ(α) is a

conjunction of equalities, whereas Ψ(G) is a conjunction of inequalities of the

form: vi < vj, i.e., a unit two variable per inequality (utvpi) constraint [98].

In practice, solving Boolean combinations of utvpi and equality constraints

can be solved quite efficiently using modern SMT solvers such as Yices and Z3

[47, 37].

We also note that the problem of solving a set of utvpi constraints is

equivalent to cycle detection in a graph. Therefore, our reduction in this sec-

tion has not gained/lost in complexity. On the other hand, encoding the graph

cycle detection problem as a utvpi constraint in an SMT framework allows

us to efficiently make use of strategies such as incremental cycle detection and

unsatisfiable cores. The subsequent section shows the use of these primitives

to effectively enumerate all aliasing patterns by computing subsumed and sub-

suming patterns. The discovery of such patterns reduces the set of aliases to

be examined and speeds up our approach enormously.

7.3 Contract Generation

We now consider the problem of enumerating all possible aliasing pat-

terns, in order to generate interface contracts for a given concurrent library.

The number of such patterns is exponential in the number of nodes of the

lock-order graphs. Following Section 7.2, we need to enumerate all possible

equivalence classes over the sets of nodes in the lock-order graphs. A naive

approach thus suffers from an exponential blow-up. We avoid this using var-
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ious optimizations. These optimizations are instances of branch and bound

procedures, because in each step large subsets of candidate aliasing patterns

that do not cause a deadlock are discarded.

(a) We prune the lock-order graphs to remove all nodes that cannot contribute

to a potential deadlock.

(b) We restrict the possible aliasing patterns with the help of a prior alias

analysis and typing rules imposed by the underlying programming lan-

guage.

(c) Based on the set of aliasing patterns already enumerated, we remove sets

of subsumed or subsuming aliasing patterns from consideration.

7.3.1 Pruning Rules

Let Ei, Vi represent the edges and vertices of the lock graphGi : lg(mi).

This pruning strategy is based on the observation that nested lock acquisitions

are relatively uncommon and non-nested lock acquisitions may be removed

from the lock graph. As a results, nodes without any successors and pre-

decessors can be trivially removed. This results in a large reduction in the

size.

A terminal node in the graph is defined as one without any successors.

Similarly a node in the lock graph is termed initial if it has no predecessors.
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In general, a terminal node ei ∈ V cannot be removed without missing any

potential deadlocks.

Example 7.3.1. Returning to the lock graph in Figure 6.4 we note that the

two terminal nodes may not be removed since their incoming edges can be

used in a potential cycle. The same consideration applies to initial nodes.

However, a terminal node can be removed if all the other nodes to which

it may alias to are also terminal. Similarly, an initial node can be removed

if all the other nodes to which it may alias are also initial. The pruning

strategy for removing terminal/initial nodes of the graph utilizes the result of

a conservative may-alias analysis. Let mayAlias(v) = {u ∈ V | u may-alias v}.

1. Let v be a terminal node such that all nodes in mayAlias(v) are also terminal.

We remove the vertices in mayAlias(v) from the graph.

2. Let u be an initial node such that all nodes in mayAlias(u) are also initial.

We remove all nodes in mayAlias(u) from the graph.

The removal of a terminal/initial node from the graph may create other

terminal/initial nodes respectively. Hence, we iterate steps 1 and 2 until no

new nodes can be removed. The mayAlias relationship can be safely approx-

imated in languages like Java by type-masking. As a result, we regard two

nodes as aliased for the purposes of lock graph pruning, if the types of their

associated access expressions are compatible (one is a sub-type of another).

Note that no potential deadlocks are lost in this process. Our experiments
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indicate that the pruned lock graph is an order of magnitude smaller than the

original graph obtained from static analysis, making this an important step in

making the overall approach scalable. We now shift our focus to reducing the

number of aliasing patterns to be enumerated.

7.3.2 Reducing Aliasing Patterns

Given two graphs with n nodes each, the number of possible aliasing

patterns that need to be considered across the nodes of the two graphs is

exponential in n. In our experiments with Java libraries, we have observed

that due to the extensive use of locking with the synchronized keyword lock-

order graphs contain 100s of nodes. After pruning, we reduce these to lock-

order graphs with 10s of nodes. However, given the exponential number of

aliasing patterns that may exist, we need to impose restrictions on the set of

aliasing patterns that we examine. First of all, it suffices to consider aliasing

patterns that respect the type safety considerations of the language and the

conservative may-alias relationships between nodes.

Def. 7.3.1 (Admissible). An aliasing pattern α is admissible iff for all (u, v) ∈

α, u ∈ mayAlias(v). Once again, type information can be used in lieu of alias

information for languages such as Java.

Another important consideration for reducing the aliasing patterns, is

that of subsumption. Subsumption is based on the observation that for a

deadlock causing pattern α adding more aliases to α does not remove the
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deadlock. Similarly, for a safe pattern β, removing aliases from β does not

cause a deadlock.

Def. 7.3.2 (Subsumption). A pattern α2 subsumes α1, denoted α1 ⊆ α2, iff

∀(u, v) : (u, v) ∈ α1 ⇒ (u, v) ∈ α2. In other words, α1 is a sub-relation of α2.

Lemma 7.3.1. If α1, α2 are aliasing patterns, and α1 ⊆ α2, then the following

are true:

(A) α1 is deadlock-causing ⇒ α2 is deadlock-causing,

(B) α2 is safe ⇒ α1 is safe.

Proof. Since α1 ⊆ α2, Ψ(α2, G) can be expressed as Ψ(α1, G)∧Ψ(α2\α1). Since

we know that α1 is deadlock-causing, by definition Ψ(α1, G) is unsatisfiable.

As the conjunction with an unsatisfiable formula is unsatisfiable, it follows

that Ψ(α2, G) is unsatisfiable.

Note that (B) is simply the contrapositive of (A) and is stated here in

Lemma 7.3.1 for the sake of exposition.

Def. 7.3.3 (Maximally Safe/Minimally Unsafe). A pattern α that causes a

deadlock is minimally unsafe iff for any (u, v) ∈ α, α \ {(u, v)} is not deadlock

causing. Similarly, a safe (non-deadlock) pattern α is maximally safe if, for

any (u, v) 6∈ α, α ∪ {(u, v)} is deadlock causing.

Following Lemma 7.3.1, it suffices to enumerate only the maximally

safe and minimally unsafe patterns. Hence, after enumerating a pattern α
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that is safe, we can add previously unaliased pairs of aliases to α as long as

the addition does not cause a deadlock. The resulting pattern is a maximally

safe pattern. Similarly, upon encountering a deadlock-causing pattern β, we

remove “unnecessary” alias pairs from β as long as pairs that contribute to

some cycle in β . G can be retained.

Example 7.3.2. Consider the aliasing pattern α0 : ∅ for the example described

in Section 6.3. Figure 6.4 shows the resulting graph. We can add the pair

(ob1, ob2.nextQueue) to α0 without creating any cycles. The resulting pattern

α1 is shown in Ex. 7.2.1. However, if we add the pair (ob2, ob1.nextQueue)

to α1 then we obtain a cycle in the graph. As a result, the pattern α1 is

maximally safe.

The explicit enumeration algorithm (Algorithm 7.3) for aliasing pat-

terns maintains a set U of unexplored patterns, sequentially exhausting the

unexamined patterns from this set while updating the set U . The algorithm

terminates when U = ∅. First of all, a previously unexamined pattern α is

chosen from the set U (Line 4), and the graph α . G is examined for a cycle

(Line 5). If the graph is acyclic, we keep adding previously unaliased pairs

(u, v) to α as long as the addition does not create a cycle in α′ . G, where

α′ is the symmetric and transitive closure of α ∪ {(u, v)}. The result is a

pattern α that is maximally safe, which is then added to the set S (Line 9).

We then remove all patterns β that are subsumed by α from the graph G, as

they are safe (Line 10). On the other hand, if the graph α . G has cycles, we
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Algorithm 7.3: EnumerateAllAliasingPatterns
Input: G : Graph
Result: D : Deadlock Scenarios
begin1

U := all legal aliasing patterns2

while U 6= ∅ do3

Choose element α ∈ U .4

if α . G is acyclic then5

/* Add aliases without creating a cycle */

foreach (u, v) 6∈ α do6

/* Add (u, v) and compute closure. */

α′ := Closure({(u, v)} ∪ α)7

if α′ . G is acyclic then α := α′8

/* α maximally safe */

S := S ∪ {α}9

U := U \ {β | β ⊆ α}10

else /* α . G has a cycle */11

/* Choose a cycle C */

C:=FindACycle(α . G)12

/* Remove aliases that do not contribute to C */

α′:=α ∩ {(u, v) | u, v ∈ C}13

/* α′ is unsafe */

U := U \ {β | α′ ⊆ β}14

D := D ∪ {α′}15

16

end17

choose some cycle C in the graph (Line 12), and the aliases in α that involve

the merged nodes in C. Discarding all the superfluous aliases not involving

nodes in the cycle C yields an alias relationship α′ ⊆ α that is still deadlock-

causing 5 (Line 13). The set U of unexamined patterns is pruned by removing

all patterns that subsume α′ (such patterns also cause a deadlock) (Line 14).

The application of Algo. 7.3 on the graph from Figure 6.4 enumerates

5Note that α′ may not be a minimally unsafe relation.
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the max. safe/ min. unsafe patterns in Table 7.1.

Table 7.1: Max. Safe/Min. Unsafe Patterns Enumerated.

{(ob1, ob2), (ob1.nextQueue, ob2.nextQueue)} SAFE
{(ob1, ob2.nextQueue)} SAFE
{(ob2, ob1.nextQueue)} SAFE
{(ob1, ob2.nextQueue), (ob2, ob1.nextQueue)} DL

Symbolic Enumeration Algorithm. Algorithm 7.3 relies on explicit rep-

resentation of the set U of alias patterns in order to perform the enumeration.

Representing an arbitrary set of relations explicitly is not efficient in practice.

Therefore, we leverage the power of symbolic solvers to encode aliasing pat-

terns succinctly. Specifically, we wish to represent the set U of unexamined

aliasing patterns with the help of a logical formula. Let V = {e1, . . . , ek} be

the set of access expressions labeling the nodes of the graph G. We introduce

a set of integer variables y(ei), such that each y(ei) corresponds to an access

expression ei. We then encode all aliasing patterns with the help of a logical

formula Ψ0 involving the y(ei) variables, as follows:

Ψ0(V ) = ∀ei,ej∈V


∧

ei 6∈mayAlias(ej)

(y(ei) 6= y(ej)) ∧∧
ei.f,ej .f∈V

((y(ei) = y(ej))⇒ (y(ei.f) = y(ej.f)))


The formula Ψ0, ensures the consistency of alias patterns considered

in the enumeration process. Specifically, expressions that cannot be aliased

to each other according to a conservative pointer analysis are not considered
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aliased in any of the patterns generated. Secondly, if e1, e2 are aliased then

for every field f , e1.f and e2.f must be aliased (provided the two expressions

are in the set V ). Algorithm 7.4 shows the symbolic version of Algorithm 7.3.

The correspondence between the two algorithms is immediately observable

upon comparing them. Since we represent sets of aliasing patterns as a logical

formula, a witness to the satisfiability of this formula is an aliasing pattern α

(Line 5).

Recall from Section 7.2.1 that we can encode the problem of cycle de-

tection in a graph using inequality constraints. Thus, in Line 12 we check

the inequality constraints specified by the graph G, i.e., Ψ(G), conjoined with

the previously unexamined aliasing pattern α (encoded as Ψ(α)) for satisfia-

bility. Satisfiability of this formula indicates that the graph G is cycle-free,

and we proceed to compute a maximally safe aliasing pattern from the given

α (Line 10). Once a maximally safe α is obtained, we remove all aliasing

patterns that are subsumed by α from the set of all aliasing patterns (repre-

sented by ΨU), and add α to S (Line 12). If the formula is unsatisfiable, then

we obtain the minimal unsatisfiable core (Line 14) and extract the minimally

unsafe aliasing pattern α′ from the constraints represented in this core. We

then remove all aliasing patterns that subsume α′ from ΨU (Line 16), and add

the minimally unsafe α′ obtained (if any) to the set D (Line 17).

Such a symbolic encoding of sets of aliasing patterns has many ad-

vantages, including: a) the power of constraints to represent sets of states

compactly, and b) the use of blocking clauses to remove a set of subsumed
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Algorithm 7.4: SymbolicEnumerateAllAliasingPatterns
Input: G : Graph
Result: D : Deadlock Scenarios
begin1

ΨU :=Ψ0(V ) (encoding all alias patterns)2

while ΨU SAT do3

(y(e1), . . . , y(ek)) := Solution of ΨU .4

α:={(ei, ej) | y(ei) = y(ej)}.5

/* Construct Ψ(α,G) */

if Ψ(α,G) SAT then6

/* Add aliases without creating a cycle */

foreach (ei, ej) 6∈ α do7

α′:=Closure(α ∪ (ei, ej))8

Ψ(α′, G):=Ψ(α,G) ∧ (x(ei) = x(ej))9

if Ψ(α′, G) SAT then α := α′10

/* α is maximally safe */

ΨU :=ΨU ∧
∨

(ei,ej)6∈α y(ei) = y(ej)11

S :=S ∪ {α}12

else13

/* Ψ(α,G) UNSAT */

C:=MinUnsatCore(Ψ(α,G))14

α′:={(ei, ej) | x(ei) < x(ej) constraint in C}15

/* α′ is unsafe */

ΨU :=ΨU ∧
∨

(ei,ej)∈α′ y(ei) 6= y(ej)16

D := D ∪ {α′}17

end18

or subsuming aliasing patterns. Modern utvpi solvers such as Yices and Z3

incorporate techniques for fast and incremental cycle detection upon addition

or deletion of constraints [47, 37]. This is very useful in the context of Al-

gorithm 7.4. In practice, our use of subsumption and pruning ensures that

a very small fraction amongst the alias patterns is explored by the symbolic

algorithm.

141



7.3.3 Rationale for Symbolic Encoding

We now formally justify the use of a Boolean encoding along with

SAT/SMT solvers to perform the symbolic enumeration of unexamined alias

patterns. Specifically, we justify the use of SAT to test for unexamined pat-

terns in line 12 of Algorithm 7.4 by showing that the underlying problem

of detecting unexamined alias patterns is NP -complete. Let G1 : (N1, E1)

and G2 : (N2, E2) be two graphs. An aliasing pattern is a binary relation

α ⊆ N1 × N2 between the nodes of G1 and G2. Recall that the execution

of our algorithm for symbolic enumeration of “interesting” aliasing patterns

yields the set S (set of aliasing patterns that are maximally safe) and the set

D (set of aliasing patterns that are minimally unsafe). Also recall that in the

set S, maximally safe patterns are obtained by adding aliases to safe patterns

as long as they do not cause deadlocks (cf. line 10 in Algorithm 7.4). Simi-

larly, minimally unsafe patterns are added to D by removing pairs of aliases

from a deadlock causing pattern until no more can be removed (cf. line 14 in

Algorithm 7.4).

We say that a pattern α is unexamined w.r.t. S,D iff

(∀Si ∈ S α 6⊆ Si) and (∀ Di ∈ D Di 6⊆ α) .

We now consider the problem AnyUnexaminedPatterns as below:

Inputs: (G1, G2, S,D)
Output: yes, iff ∃α ⊆ N ×N unexamined w.r.t.

S,D.
no, otherwise.
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Theorem 7.3.1. AnyUnexaminedPatterns is NP -complete.

Proof. Membership in NP is straightforward. An aliasing pattern α claimed

to be unexamined can be checked by iterating over the aliasing patterns in S

and D, and checking (in polynomial time) for the subset relation.

We prove NP -hardness by reduction from the CNF satisfiability prob-

lem. Let V = {x1, . . . , xn} be a set of Boolean-valued variables and C =

{C1, . . . , Cm} be a set of disjunctive clauses over literals of the form xi or ¬xi.

Corresponding to this instance of SAT, we create an instance 〈G1, G2, S,D〉 of

the AnyUnexaminedPatterns problem.

Consider a graph G1 consisting of n vertices, each labeled with a vari-

able in V . Consider a graph G2 consisting of two vertices labelled true and

false, respectively. Informally, aliasing between the node labeled xi in G1 and

a node in G2 can be interpreted as an assignment of true or false to xi. We

now design the sets S and D so that any unexamined aliasing pattern α has

the following properties:

1. For each xi, exactly one tuple in the set {(xi, true), (xi, false)} belongs

to α. In other words, α represents an assignment of truth values to

variables in V .

2. The assignment represented by α is a solution to the original SAT prob-

lem.
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We define the set S as {A1, . . . , Ai, . . . , An}, where

Ai : (V \ {xi})× {true, false} .

Intuitively, each Ai represents an aliasing pattern in which the xi variable is

missing, and all other variables have both the true and false value assigned.

Clearly, any unexamined pattern that is a subset of any Ai does not have a

truth-value assigned to the variable xi, and hence cannot represent a valid

assignment of truth values to the original SAT problem. We define the set D

as a union of two sets B and T . The set B is defined as {B1, . . . , Bn}, where:

Bi : {(xi, true), (xi, false)} .

Intuitively, any aliasing pattern α that is a superset of some Bi cannot repre-

sent a valid truth value assignment to the original SAT instance, as it would

contain conflicting assignments of truth values to the variable xi.

The set T is defined in terms of the clauses Ci ∈ C. T = {T1, . . . , Tm},

wherein Ti corresponds to the ith clause Ci as follows:

Ti =
⋃
j

{
{(xj, false)} xj ∈ Ci
{(xj, true)} ¬xj ∈ Ci

Intuitively, any aliasing pattern α that is a superset of Ti cannot satisfy

the clause Ci (i.e., Ci = false). Hence, such an α cannot represent a solution

to the SAT problem. Combining B and T , any α that is the superset of any

aliasing pattern Di ∈ D, thus, cannot represent a solution to the original SAT

problem.
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To summarize, corresponding to each SAT instance (V,C), we construct

an instance of the AnyUnexaminedPatterns problem with

S : {A1, . . . , An} , and, D : {B1, . . . , Bn} ∪ {T1, . . . , Tm}

In order to complete the proof, we show that there is a satisfying as-

signment to the original problem if and only if there is an unexamined aliasing

pattern.

Let µ : {x1, . . . , xn} 7→ {true, false} be any satisfying solution to the

original problem. We construct a pattern α that maps xi to true if µ(xi) =

true and to false otherwise. We now show that α is an unexamined aliasing

pattern. It is easy to see that α 6⊆ Ai, since α contains at least one of (xi, true)

or (xi, false). We can also show that Bi 6⊆ α since α contains only consistent

assignments for each variable xi. Similarly, Ti 6⊆ α, or else the corresponding

clause Ci is not satisfied by α. Therefore α is an unexamined aliasing pattern.

Conversely, we can demonstrate that any unexamined aliasing pattern α that

can be discovered corresponds to a satisfying truth assignment. This shows

that CNF-SAT reduces to the problem AnyUnexaminedPattern, and is thus NP -

complete.

7.3.4 Deriving a Contract

The enumeration scheme in Algorithm 7.3 and Algorithm 7.4 can gen-

erate a contract that succinctly represents the set of all safe aliasing patterns.

The result of the enumeration is a set of patterns D such that any aliasing
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pattern β is deadlock-causing iff it subsumes a pattern α ∈ D.

Lemma 7.3.2. An aliasing pattern α is safe iff for all β ∈ D, β 6⊆ α.

Proof. We prove this by contradiction. Suppose α is safe, and there exists

β ∈ D, s.t. β ⊆ α. By definition, α subsumes β; hence, if β is deadlock-

causing, α should be deadlock-causing, which is a contradiction.

In practice, contract derivation consists of first compacting the set D

to obtain the minimal deadlock-causing patterns. The contract for safe calling

contexts can then be expressed succinctly using the fact that any such pattern

must not subsume any element of the set D.

Example 7.3.3. From Table 7.1, the only unsafe pattern enumerated is

α2 : {(ob1, ob2.nextQueue), (ob2, ob1.nextQueue)}

The set of safe patterns therefore is specified by the following set:{
α
∣∣ (ob1, ob2.nextQueue) 6∈ α or (ob2, ob1.nextQueue) 6∈ α

}
.

In terms of a contract, this set is expressed as

¬isAliased(ob1, ob2.nextQueue) ∨ ¬isAliased(ob2, ob1.nextQueue).

Theorem 7.3.2. The set D of deadlock-causing alias patterns for each pair of

library methods obtained by the enumeration technique in Algorithm 7.4 yields

a contract of the form: ∧
α∈D

∨
(ei,ej)∈α

¬isAliased(ei, ej).
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Note that the contract is a Boolean combination of propositions con-

jecturing aliasing between access expressions. Thus, such a contract can be

both statically and dynamically enforced in a client, as the concrete aliasing

information between access expressions can be obtained through alias analysis,

or may be available at run-time.

7.4 Analyzing Clients

The interface contracts generated by our tool vastly simplify the anal-

ysis of client code that makes use of the library methods that are part of the

library’s interface contract. Furthermore, they serve to document against the

improper use of the methods in a multi-threaded context.

We recall from Section 7.3 that the final contract for a safe call to a

pair of methods m1,m2 is a Boolean expression involving propositions of the

form ¬isAliased(ei, ej), wherein ei and ej are access expressions corresponding

to the formal parameters of the methods, including the “this” parameter.

In practice, checking such a contract for a given client that uses the library

involves two major components: (A) a May-Happen in Parallel (MHP) analysis

[102] for calls to methods m1 and m2 to determine if two different threads may

reach these method call-sites simultaneously, and (B) a conservative, thread-

safe alias analysis in order to determine the potential aliasing of parameters

at the invocation sites of the methods in question.

On the basis of such an alias analysis, we may statically evaluate the

contract at each concurrent call-site. Note that these two components are
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already part of most data-race detection tools such as CHORD [109, 110].

In theory, deadlock violations can be directly analyzed by a “whole-program

analysis” of the combined client and the library code. In practice, this requires

the (re-)analysis of a significant volume of code. Using contracts has the

distinct advantage of being fast in the case of small clients that invoke a large

number of library methods. Moreover, decoupling the client analysis from

the library analysis allows our technique to be compositional. Since library

internals are often confusing and opaque to the client developers, another key

advantage is the ability to better localize failures to their causes in the clients,

as opposed to causes inside the library code.

We remark that the deadlock analysis in the client is considerably sim-

pler if the client does not use any additional synchronization. In this case, any

two statements in each client thread can be conservatively treated as being

simultaneously reachable, i.e., may happen in parallel. If the two simulta-

neously reachable statements are library method invocations, then these can

cause a deadlock if the aliasing between the client variables corresponds to

a deadlock-causing aliasing pattern. In addition to the aliasing information

gleaned from the MHP analysis, any aliasing between client variables that a

library method may introduce is available as the map env, which is part of

the method summary. Thus, given a map Als that contains a set of aliases

for each thread-local and global client variable, we append the mappings in

env to Als. We then use the computed alias information, and the interface

contracts of the library to determine if the aliasing at the respective call-sites
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corresponds to a deadlock-causing aliasing pattern.

For clients that use their own synchronization, computing the may hap-

pen in parallel relation is much harder. Here, we can utilize techniques that can

perform a concurrent reachability analysis such as in [93, 109]. For any simul-

taneously reachable statements s and t, we can obtain the partial summaries

as in Section 7.1 and aliasing information from a thread-safe alias analysis. If

s and t are calls to library methods, we can use the interface contracts and

the aliasing information to first check for possible deadlocks due to calls to the

library methods. If not, we can check for any high-level deadlocks, i.e., dead-

locks due to circular dependencies in the client’s synchronization primitives by

merging the partial summaries for s and t.

We remark that due to the conservative approximations in comput-

ing simultaneous reachability, some reported deadlocks could be spurious.

This occurs in the following situations: when threads involved in deadlock

meticulously use the control flow to prevent simultaneous reachability of the

deadlock-causing method invocations; or when applications use a tree hierar-

chy for ordering locks that will thus not alias in practice. In our experiments,

we have found the latter to be much more common than the former.

To fully verify if a reported deadlock is a true deadlock, we would need

to use dynamic techniques like run-time analysis, model checking or testing.

Some false positives could be filtered by annotating lock acquisitions with path

expressions, i.e., the precise conditions in the code that are required to be true,

for a particular lock to be acquired. Path expressions can be gleaned from
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static analysis of the library code, and evaluated with the help of a suitable

constraint solver.

7.5 Bibliographic Notes

Deadlock detection has been a well-studied problem with various extant

approaches. We highlight some of the key approaches that merit a comparison.

Most of the material in this chapter is drawn from [40].

Runtime Techniques. Runtime techniques for deadlock detection track

nested lock acquisition patterns. The GoodLock algorithm [79] is capable of

detecting deadlocks arising from two concurrent threads; [3] generalizes this

to an arbitrary number of threads, and defines a special type system in which

potential deadlocks correspond to code fragments that are untypable. Agar-

wal et al. [2] further extend this approach to programs with semaphores and

condition variables.

Model Checking. Model checking techniques [30] have been successfully

used to detect deadlocks in programs. For instance, Corbett et al. employ

model checking to analyze protocols written in Ada for deadlocks [32]. Model

checkers such as SPIN [84], Java Path Finder [81, 79] have been used exten-

sively to check concurrent Java programs for deadlocks. However, program

size and complexity limit these approaches in presence of arbitrary aliasing. A

compositional technique based on summarizing large libraries can help these
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approaches immensely. Bensalem et al. [10] propose a dynamic analysis ap-

proach, based on checking synchronization traces for cycles, with special em-

phasis on avoiding certain kinds of guarded cycles that do not correspond to

a realizable deadlock.

Static Techniques. Static techniques based on dataflow analysis either use

dataflow rules to compute lock-order graphs [145, 62] or examine well-known

code patterns [5, 118] to detect deadlocks. Naik et al. present an interesting

combination of different kinds of static analyses to approximate six necessary

conditions for deadlock [110]. Most static techniques focus on identifying dead-

locks within a given closed program, while in [110], the authors close a given

open program (the library) by manually constructing a harness for that pro-

gram. In [135] the author analyzes the entire Java library, and uses a coarser

level of granularity in lock-order graph construction.

Deadlock Detection for Libraries. As mentioned previously, deadlock

analysis for concurrent libraries was first introduced by Williams et al. [148]

for analyzing Java libraries. Therein, the authors use types to approximate

the may-alias relation across nodes in the lock-order graphs for a library, and

reduce checking existence of potential deadlocks to cycle detection. Our ap-

proach is inspired by this work and seeks to solve the very same problem under

similar assumptions. Our distinct contributions lie in the use of aliasing in-

formation in the library. As Williams et al. rightly point out, there is an
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overwhelming amount of aliasing possible. Therefore, we use pruning as well

as symbolic encoding of the aliasing patterns. Our use of subsumption ensures

that a tiny fraction of the exponentially many alias patterns are actually ex-

plored, and doing so clearly reduces the number of false positives without the

use of unsound filtering heuristics. The use of aliasing pattern subsumption

also ensures that the final deadlock patterns can be inverted to yield statically

enforceable interface contracts.
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Chapter 8

Deadlocks in Signaling-based Synchronization

In Chapter 7, we focussed on deadlocks arising from circular depen-

dencies in lock acquisition. Recall that a lock is really an abstraction for

specifying mutual exclusion, implemented as Java monitors or pthread mu-

texes. In languages such as Java, each object monitor is provided with wait

and notify methods to achieve signaling-based synchronization. In this chap-

ter, we extend the nested-monitors rule used during lock-graph computation

in Chapter 7 to account for signaling-based synchronization. We call this ex-

tended rule the generalized nested-monitors rule. We then show how we can

use static analysis to construct extended lock-graphs that encode potential

deadlocks. Finally, we discuss a symbolic encoding scheme for such extended

lock-graphs.

Background

We briefly recall the semantics of wait and notify methods. A thread

T executing a mon.wait() statement inside the monitored region for mon has

the effect of releasing mon, and suspending its execution. A thread T ′ executing

mon.notify() has the effect of waking up a thread T that might be waiting (on
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mon). Upon waking up the thread T tries to re-acquire mon before it can resume

execution. For precise details, please see Section 6.2.1. As before, we assume

that the library is intended to be well-encapsulated: every wait statement in

some library method is expected to have a matching notify statement from

within some (possibly the same) library method.

Happens Before. We define a happens before relation similar to [100] ap-

plied to concurrent systems (cf. [66]). In simple terms, a statement s1 happens

before s2 (denoted s1 → s2) if causal precedence can be established between

the execution of s1 by T and s2 by some (possibly same) thread T ′. For in-

stance, statements in the same thread are trivially ordered by →, and causal

precedence is established across statements in different threads by synchro-

nization operations such as lock release, lock acquisition, thread notification,

etc..

8.1 Generalized Nested-Monitors Rule

In this section, we first elaborate on scenarios that can cause deadlocks

in libraries with wait-notify statements. We postulate a rule to capture such

scenarios in the generalized nested-monitors rules, and show how these rules

can be used to construct an extended lock-graph.
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8.1.1 Deadlock Scenarios

A thread executing a method that contains a statement s = mon.wait()

is suspended upon executing s. It is understood that a waiting thread will

be eventually notified by another thread that executes the statement r =

mon.notify(), failing which the waiting thread fails to progress (causing a

deadlock). Such a lack of notification can be ascribed to either a missing, or a

lost or an unreachable notification. We elaborate on these scenarios as follows:

I. For some wait() statement, there is no matching notify() statement

in the library. This is an instance of a missing notification.

II. For some concurrent execution, it is possible that every notify statement

r satisfies that r → s. This is an instance of a lost notification, i.e., the

appropriate object is notified, but before it has a chance to wait.

III. Assume that for every wait statement s, there is a matching notify

statement r present in some library method (i.e., notify is not missing).

For some concurrent execution, s→ r, but r is unreachable in a possible

notifying method.

Analyzing programs with wait-notify synchronization is hard. In fact,

context-sensitive synchronization-sensitive analysis is undecidable [124]. As

the general problem is undecidable, we use a case-by-case analysis to identify

sub-problems with conservative solutions.
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To statically detect Case I, we can make use of a thread-aware, thread-

safe alias analysis: For a given pair of methods (such that one invokes a wait,

and other a notify), we need to check if the wait and notify are invoked on

objects that alias to each other. We remark that that this case subsumes the

common beginner mistake of Java programmers to invoke wait and notify

on the this object from within two different monitors. The result is that

the wait is issued on one monitor, while the notify is issued on an entirely

different monitor, causing the waiting thread to wait forever.

Case II requires semantic analysis of the code to deduce whether there

is an interleaving in which a notify precedes the matching wait statement.

Thus, case II is tricky to detect statically without introducing a slew of false

positives. It may be possible to predict such deadlocks by conservative ap-

proximation of the happens before relation; however, this is beyond the scope

of this paper.

Case III can manifest due to different reasons, such as (a) the notify is

in a control-flow path that the “notifying” method does not execute, (b) waits

and notifies are mismatched, and (c) methods acquire monitors in a nested

fashion. As in Case II, (a) requires semantic analysis, and goes beyond the

scope of this paper. Examples of Case III(b) include cases where there are more

wait statements that notify statements, and there is a circular dependency

between wait and notify instructions,i.e., T1 executes mon1.wait() followed

by mon2.notify(), while T2 executes mon2.wait() followed by mon1.notify().

We can extend our approach to statically detect these kind of deadlocks by
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checking compatibility between wait-notify sequences as a part of future

work. In what follows we focus on Case III(c).

8.1.2 Nested Monitor Deadlocks

Nested monitor deadlocks have been well-known in the literature since

before the advent of programming languages that use monitors, cf. [103].

We wish to analyze potential nested monitor deadlocks in concurrent libraries

written in languages such as Java that use wait-notify constructs. As before,

we assume that library methods are invoked by separate threads, and use the

terms threads and methods interchangeably.

The semantics of wait-notify create situations that not only lead to

unpleasant deadlocks, but also violate the well-encapsulation principle of mod-

ular software. We explain this with an example.

Example 8.1.1. The library method foo contains a this.wait() statement

within the monitored region for this. foo is invoked on the object lib from

within the monitored region for mon1 inside the client method bar. As the

acquisition of this (i.e. lib) is nested within the scope of mon1, this is an

instance of a nested monitor acquisition. Recall the semantics of wait from

Section 6.2.1. For a thread T executing the this.wait() statement, the effect

is that T releases the monitor associated with this, but not the monitor mon1.

Thus, a library method foo holds on to a client resource, which violates the

spirit of well-encapsulation.
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1: public class Library {
2: public synchronized void foo() {
3: this.wait();

4: }
5: }

1: public class Client {
2: Library lib;

3: public void bar() {
4: synchronized (mon1) {
5: lib.foo();

6: }
7: }
8: }

Thus, we argue that among all the different cases in which deadlocks

manifest in concurrent libraries using wait-notify, these kind of deadlocks are

the most important to document and predict. We now give concrete examples

of nested monitor deadlocks due to wait-notify.

Unreachable Notification. Consider the case where a method m acquires

some monitors before executing the mon.wait() statement. As per the seman-

tics of wait(), (the thread executing) m releases mon, but while waiting, it

still holds the previously acquired monitors. Now, any method m′ that needs

to acquire one of the “held” monitors before it can execute s2 (mon.notify())

will never reach s2. Thus, method m waits for some method to notify it, while

m′ waits for the locks held by m1. In the literature, such a deadlock has also

been called a hold and wait deadlock. We discuss two examples of such a

deadlock.

1It is possible that there is a third method m′′ in which notify is reachable, and it can
issue a notification. However, while checking possibility for a deadlock between concurrent
invocation of m and m′, we err on the conservative side, and do not make assumptions
about the existence of such a m′′.
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Example 8.1.2. Consider the code shown below. In Line 4, method m1 w

releases the monitor mon2, but still holds mon1. As a result, m1 n can never

reach Line 4 as it remains “stuck” in the entry set of mon1 at Line 2. As both

m1 w and m1 n cannot progress, this could lead to a deadlock.

1: public void m1 w () {
2: synchronized (mon1) {
3: synchronized(mon2) {
4: mon2.wait();

5: }
6: }
7: }

1: public void m1 n () {
2: synchronized (mon1) {
3: synchronized (mon2) {
4: mon2.notify();

5: }
6: }
7: }

Example 8.1.3. Methods m2 w and m2 n shown below have a similar situation

as in Example 8.1.2. Method m2 w releases mon1 in Line 4, but still holds mon2.

Thus, m2 n cannot proceed beyond Line 3, where it gets stuck in the entry set

of mon2.

1: public void m2 w () {
2: synchronized (mon1) {
3: synchronized(mon2) {
4: mon1.wait();

5: }
6: }
7: }

1: public void m2 n () {
2: synchronized (mon1) {
3: synchronized (mon2) {
4: mon1.notify();

5: }
6: }
7: }

Deadlock due to lock-order inversion. In addition to the deadlocks due

to unreachable notification, nested monitors also cause deadlocks due to an

inversion in the lock acquisition order. We explain this scenario in Exam-

ple 8.1.4.

Example 8.1.4. Consider the following interleaved execution of the methods

m3 w and m3 n shown below:
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1: public void m3 w {
2: synchronized (mon1) {
3: synchronized(mon2) {
4: mon1.wait();

5: }
6: }
7: }

1: public void m3 n {
2: synchronized (mon1) {
3: mon1.notify();

4: synchronized(mon2) {
5: . . .
6: }
7: }
8: }

Method m3 w holds the monitor mon2, and is in the wait set of mon1 at

Line 4. Method m3 n acquires mon1, and then calls mon1.notify() (Line 3).

Upon waking up, m3 w first tries to re-acquire mon1. However, as m3 n holds

mon1, m3 w cannot proceed. On the other hand, m3 n tries to acquire mon2,

but as m3 w holds mon2, m3 n cannot progress beyond Line 4. Effectively, due

to the semantics of wait, the lock-acquisition order gets reversed, causing the

classic cyclic dependency deadlock that we discussed in the previous sections.

In this section, we show how we can extend the lock-graph computation

in Section 7.1 to capture deadlocks induced by nested monitors.

8.1.3 Extended Lock-Graph

We extend the notion of a lock-acquisition order graph defined in Sec-

tion 7.1. Consider the following set of edges in cfg(m):
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el : (u0
s0 = lock(mon)−−−−−−−−−→ v0)

ew : (u1
s1 = mon.wait()−−−−−−−−−→ v1)

en : (u2
s2 = mon.notify()−−−−−−−−−−→ v2)

We recall the rule for modeling the edge el in Rule R0 from Section 7.1.

Recall that the set of locks held by m before executing a statement s is

lockset(u) for the edge u
s−→ v in cfg(m). We denote the extended lock-

graph by elg(V,E). Rules R1,R2 specify how to model the edge ew for a wait

statement, while Rule R3 specifies how to model the edge en for a notify

statement.

∀` ∈ lockset(u0), add edge (`, mon) (R0)

∀` ∈ lockset(u1), ` 6= mon, add edge (`, smon) (R1)

∀` ∈ lockset(u1), ` 6= mon, add edge (`, mon) (R2)

∀` ∈ lockset(u2), ` 6= mon, add edge (smon, `) (R3)

For a method m executing s1, Rule R1 mimics the act of relinquishing

mon and waiting. While m waits, it holds all the locks in lockset(u1) (except

for mon). To model this, we create a vertex smon in the lock-graph, and add

edges from every monitor ` (except mon) in lockset(u1) to smon. A method
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m′ containing statement s2 can reach s2 if it can successfully acquire all the

monitors (except mon) that dominate mon.notify(), i.e. all the monitors in

lockset(u2) except mon. We model this by adding edges from smon to each

monitor in lockset(u2) (Rule R3). Rules R1 and R3 ensure that if monitor

` is held by method m when it starts waiting, and if the method m′ needs to

acquire ` to reach statement mon.notify(), then elg(m) t elg(m′) contains a

cycle of the form `→ smon→ `.

Rule R2 encodes lock-order inversion. Suppose m holds certain moni-

tors, and is waiting as a result of a call to mon.wait(). Upon waking up, m

tries to re-acquire mon; so we add dependency edges (mon′, mon), where mon′

is some monitor ( 6= mon) held by m before executing mon.wait() Recall from

Section 7.2 that a cycle in the lock-graph indicates a potential deadlock. We

show how a similar rule can be obtained for extended lock-graphs.

Def. 8.1.1 (Distinct Cycle). A cycle in the merged extended lock-graph is

called a distinct cycle if each edge in the cycle is induced by a distinct method

(invocation).

Lemma 8.1.1 (Generalized Nested Monitor Rule). Let the extended lock-

graphs obtained using Rules R1, R2, R3 for methods m1, . . . ,mk be denoted by

elg(m1), . . . , elg(mk). Concurrent calls to methods m1, . . . ,mk may deadlock

if
⊔k
i=1 elg(mi) contains a distinct cycle.

Example 8.1.5. Consider the extended lock-graphs for m1 w and m1 n from

Example 8.1.2:
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We can observe that there is a distinct cycle in lg(m1 w) t lg(m1 n).

Example 8.1.6. Consider the extended lock-graphs for m2 w and m2 n from

Example 8.1.3:
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In this case, there are two distinct cycles in the merged graph indicating

potential deadlocks. The cycle due to unreachable notification corresponds to

the solid edges.

Example 8.1.7. Consider the extended lock-graphs for m3 w and m3 n from

Example 8.1.4:
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There is a distinct cycle between nodes mon1 and mon2 by picking the

label m3 n for the edge (mon1, mon2) and m3 w for (mon2, mon1), which indicates

a potential deadlock.

8.2 Extended Lock-Graph Extraction and Encoding

In this section, we first discuss the modifications to the static analy-

sis algorithm in order to extract extended lock-graphs from library methods.

We follow this by a discussion on the modifications to the symbolic encoding

scheme outlined in Section 7.2.1 to accommodate extended lock-graphs.

8.2.1 Modifications to Lock-Graph Computation

The algorithm for lock-graph computation outlined in Section 7.1 can

be extended to accommodate the generalized nested monitor rule. Recall

that the summary computed for each point in the control-flow graph of a

method m is a tuple (lg(V,E), lockset, roots) where lg(V,E) is the lock-

order graph, lockset is the set of locks currently acquired by method m, and

roots is the set of locks that do not have parent nodes in lg. For comput-

ing the extended lock-graphs, the partial summary is defined as the tuple:

(elg(V,E), lockset, roots, notifySet), where elg is the extended lock-graph

as defined in Section 8.1.3, and notifySet is the set of monitors on which

mon.notify() has been invoked.

The extendedComputeFlow function specifies the flow equations for the

wait-notify statements, and modified flow equations for method calls. For a
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Function extendedComputeFlow

input : cfg edge: u
s−→ v, Method name: m

output : partial summary out

begin1

in :=psum(u), out :=∅2

/* in = (Vi, Ei, rootsi, lockseti, notifySeti), out =

(Vo, Eo, rootso, lockseto, notifySeto) */

switch (s) do3

Lines 7-19 of function computeFlow4

/* Wait Statement. */

case mon.wait() ():5

foreach (mon′ ∈ lockseti) s.t. (mon′ 6= mon) do6

/* Rule R1: */

Eo :=Eo ∪ {(mon′
m−→ smon)}7

/* Rule R2: */

Eo :=Eo ∪ {(mon′
m−→ mon)}8

/* Notify Statement. */

case mon.notify() ():9

foreach (mon′ ∈ lsi) s.t. (mon′ 6= mon) do10

/* Rule R3: */

Eo :=Eo ∪ {(smon
m−→ mon′)}11

notifySet :=notifySet ∪ {smon}12

/* Method Invocation. */

case m′(a1, . . . , ak) :13

Lines 13-19 of function computeFlow14

/* Recall, sum′ = summary(m′)|∀i:fi 7→ai */

/* Also, sum′ = (V′, E′, lockset′, roots′, notifySet′) */

foreach smon ∈ notifySet′ do15

foreach mon ∈ lockset do16

Eo :=Eo ∪ {(smon
m−→ mon)}17

notifySet :=notifySet ∪ notifySet′18

end19
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given method m1, the edges induced by Rules R1 and R2 are fully contained

within summary(m1), and are added in standard fashion (Lines 7, 8). However,

the edges induced by Rule R3 are “reverse” edges that can point to nodes

outside of summary(m1). Consider the case where m calls m1 and m1 contains

a mon.notify() statement. Now, by Rule R3, we add edges from mon (which

is a node in elg(m1)) to every lock in lockset at the call-site of m1 (which

is in m). To ease this computation, we add mon to the set notifySet, when

mon.notify() is called (Line 12). Let u
s=m1(a1,...,ak)−−−−−−−−→ v be the call-site of

method m1 in cfg(m). When we concatenate summary(m1) with the partial

summary at point u in m (i.e. psum(u)), we add edges from the set notifySet

in summary(m1) to every monitor in lockset(u) in psum(u) (Line 17-17).

8.2.2 Symbolic Encoding Revisited

Recall that for a given pair of methods m1 and m2, there is a potential

deadlock if elg(m1) t elg(m2) contains a distinct cycle. For deadlockability

analysis, we can extend the above rule as follows: α is a deadlock-causing

aliasing pattern for methods m1 and m2 if α . elg(m1) t elg(m2) contains a

distinct cycle. We can extend the symbolic encoding described in Section 7.2.1

to encode the extended lock-graphs. The main difficulty is that an extended

lock-graph elg(m) for a methodm can have cycles, while our symbolic encoding

for graphs and aliasing patterns relies on encoding acyclic graphs.

We observe that a cycle is added to elg(m) due to simultaneous appli-

cation of Rule R0 and R2. For instance, consider the case where m acquires
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monitor mon1 followed by mon2, and then executes mon1.wait(). Rule R0 re-

quires an edge to be added from mon1 to mon2, while Rule R2 requires an edge

to be added from mon2 to mon1. To check for existence of a distinct cycle, we

need either the edge (mon1, mon2), or, the edge (mon2, mon1), but not both. In

effect, we can decompose elg(m) into two acyclic graphs elg1(m) and elg2(m),

each of which contains exactly one of these two edges. It is easy to see that

such a disjunctive decomposition of the extended lock-graph can be systemat-

ically performed by “breaking cycles” formed by the symmetric edges induced

by R0 and R2.

Example 8.2.1. Consider the method m2 w shown in Example 8.1.3, and its

corresponding extended lock-graph shown in Example 8.1.6. The encoding for

lg(m2 w) is expressed as two conjunctions as follows:

Ψ(G1) = x(mon1) < x(mon2)︸ ︷︷ ︸
R0

∧ x(mon2) < x(smon1)

Ψ(G2) = x(mon2) < x(mon1)︸ ︷︷ ︸
R2

∧ x(mon2) < x(smon1)

Example 8.2.2. Continuing with Example 8.1.6 and Example 8.2.1, let α

be the empty aliasing pattern. Consider the merged lock-graphs obtained by

merging G1 and G2 individually with the lock-graph for m2 n.
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Ψ(α,G1 t lg(m2 n)) =

[
x(mon1) < x(mon2) ∧ x(mon2) < x(smon1)
x(mon1) < x(mon2) ∧ x(smon1) < x(mon2)

]
Ψ(α,G2 t lg(m2 n)) =

[
x(mon2) < x(mon1) ∧ x(mon2) < x(smon1)
x(mon1) < x(mon2) ∧ x(smon1) < x(mon2)

]
We can see that both conjunctions are unsatisfiable. Moreover, each

conjunction encodes a distinct cycle in the merged extended lock-graph.

Example 8.2.3. Consider Example 8.1.7. Let α be the empty aliasing pat-

tern. Note that lg(m3 w) in Example 8.1.7 is identical to lg(m2 w) in Exam-

ple 8.1.6, and thus the decomposition of elg(m3 w) into graphs G1 and G2 is as

in Example 8.2.1. Now consider the merged lock-graphs obtained by merging

G1 and G2 with lg(m3 n) from Example 8.1.7.

Ψ(α,G1 t lg(m3 n)) =

[
x(mon1) < x(mon2) ∧ x(mon2) < x(smon1) ∧
x(mon1) < x(mon2)

]
Ψ(α,G2 t lg(m3 n)) =

[
x(mon2) < x(mon1) ∧ x(mon2) < x(smon1) ∧
x(mon1) < x(mon2)

]
We can see that the second conjunction is unsatisfiable, and corresponds

to a distinct cycle in the merged extended lock-graph for t1 and t2.

Thus, we can observe that if the extended lock-graph elg(m1) for a

method m1 has cycles, then we can decompose it into components {elg1(m1),

. . ., elgn(m1)}, s.t. each elgi(m1) is acyclic and elg(m1) is the union of the

components, i.e., elg(m1) =
⋃n
i=1 elgi(m1). We can see from the above ex-

amples that for a pair of methods m1, m2, the merged extended lock-graph
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elg(m1) t elg(m2) has a distinct cycle if there exist some acyclic components

elgi(m1) and elgj(m2) such that elgi(m1) t elgj(m2) has a cycle. This is for-

malized in the theorem below.

Theorem 8.2.1. Let Gi be some acyclic component of elg(m1) and Gj be

some acyclic component of elg(m2). Let Gij denote Gi t Gj. The formula

[Ψ(α,Gij)] is satisfiable for all i, j iff [α . (elg(m1) t elg(m2))] does not have

a distinct cycle.

Proof. We give a proof outline:

1. We first prove that [α . elg(m1) t elg(m2)] does not contain a distinct

cycle iff ∀i and ∀j, elgi(m1) t elgj(m2) does not contain a cycle. This

follows from the definition of the decomposition operation.

2. If elgi(m1)telgj(m2) does not contain a cycle, then by Theorem 7.2.1, we

know that Ψ(α,Gij) is satisfiable. Thus if ∀i and ∀j, if elgi(m1)telgj(m2)

does not contain a cycle, then ∀i and ∀j, Ψ(α,Gij) is satisfiable.

8.3 Bibliographic Notes

In a short paper raising some of the issues with nested monitors [103],

the author points out that there are potential deadlocks due to nested monitors

and discusses one such situation. Some of the issues raised by this paper are

addressed in [77]. While the author convinces the reader that nested monitors
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are indeed an important structuring device for concurrent methods, the paper

admits the need for further analysis to elucidate the rules required for avoiding

deadlocks.

[15] presents a discussion on structuring modular concurrent programs,

and proposes that a shared resource abstraction should contain the implemen-

tation of the synchronization scheme, as well as the definitions of the internal

structure and operations of the resource. It further argues that monitors only

satisfy this structure partially, and that if shared resources were to be im-

plemented as suggested, nested monitor deadlocks would be greatly reduced.

Though this idea seems promising, it does not seem to have become popular

in concurrent programming languages such as Java and C/pthreads.

[22] presents a type system for deadlock-free execution of programs.

The type system requires programmers to partition locks into a fixed number

of equivalence classes and specify a partial order between the classes, while the

type checker statically verifies if these conditions are met. The approach also

allows for lock classes to be specified in a tree order, which can be dynamically

updated at run-time. While such a method could be very useful for developing

deadlock-free applications in the future, it is not clear if it could be applied to

analyzing existing concurrent software. Furthermore, it could be argued that

specifying such partial orders and lock equivalence classes could be difficult

for an inexperienced developer.

[33] shows the application of the Bandera tool-set to model check Java

programs with the help of property-directed slicing algorithms. [144] discusses

170



Java PathFinder (JPF) which intergrates program analyses, model checking

and testing. It can handle real Java programs, and integrates deadlock detec-

tion as a part of the analysis algorithm. The paper says that JPF can handle

programs that are about 1000 to 5000 lines in range. For a model checking-

based exhaustive verification tool, this is quite impressive. However, we have

used static analysis-based (conservative) techniques on libraries with millions

of lines of Java code, and it seems unlikely to obtain the coverage and preci-

sion of model checking for libraries of this size with the current state of the

art.

Finally, [148], which presents deadlockability analysis with type-based

abstractions, contains a rule to model wait-notify statements. This rule

essentially captures the lock-order inversion due to nested monitors in our ap-

proach. The authors also track wait statements that may occur outside the

scope of a monitor. Such wait statements result in a run-time exception in

Java. We could easily add similar static rules to detect such ill-formed synchro-

nization patterns that pose a threat to thread safety in our approach; however,

this is orthogonal to the issue of deadlockability, and thus not included in our

current algorithms.
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Chapter 9

Experimental Evaluation

We have implemented a prototype tool for synthesizing interface con-

tracts for Java libraries. The tool consists of a summary based lock-order

graph analysis using summarization, as outlined in Section 7.1. The lock-

graphs are then encoded into logical formulae for symbolic enumeration of

aliasing patterns, as outlined in Section 7.2.

The tool is designed as a plug-in into the soot framework for imple-

menting the lock-order graph extraction [140]. Must-aliases for lock objects

are tracked across methods using our own analyzer built using the cg.spark

intraprocedural alias analysis phase within soot. We augment spark to track

aliasing between fields, yielding a field-sensitive analysis. Before generat-

ing constraints for analysis with the SMT solver, we prune the lock-order

graphs using various filtering strategies strategies (in addition to those dis-

cussed in Section 7.3):

(a) Pruning unaliasable fields (e.g., final fields).

(b) Removing objects declared private that are not accessed outside the con-

structor or finalizer.

172



(c) Removing immutable string constants and java.lang.Class constants.

(d) Pruning objects that cannot escape the scope of a given library method

using an escape analysis.

These filtering strategies are sound: our tool does not miss any potential

deadlock due to these strategies. The generated constraints are solved using

the SMT solver Yices [47]. Table 9.1 summarizes the potential deadlocks thus

obtained. Table 9.1 shows that our tool runs in a relatively short amount of

time even for large Java libraries; we could analyze about over a million lines of

code in about 48 minutes. Furthermore, the runtime is dominated by the lock-

order graph computation rather than the enumeration and constraint solving

with the SMT solver. Thus, the most time-consuming phase in deadlockability

analysis, i.e., explicit reasoning over lock-graphs, is made highly efficient with

the help of our symbolic reasoning techniques.

Some deadlock-causing aliasing patterns are false positives. These pat-

terns result from the following main sources: a) the static lock-order graph

construction is a may analysis, and hence there are inaccurate edges and nodes

in the lock-order graph, b) our alias analysis is a may analysis, which leads

to aliasing patterns that cannot be realized, and c) there could be gated cy-

cles, i.e., cycles having a common lock as a prefix, which prevents them from

being simultaneously reachable. We manually examine the output of our tool

to discard such patterns. However, the output of our tool may also consist

of a large number of “redundant” deadlock-causing patterns. These patterns
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Table 9.1: Experimental Results

Library KLOC Num. of Aliasing Time Taken Unique
Patterns (secs)a Scenarios

Pote-
Deadlock- Lock- False ntial

Checked causing Graph SMT Posi- Dead-
tives locks

apache-log4j 33.3 4 4 130 0.1 1 1
cache4j 2.6 0 0 15 - - -
ftpproxy 1.0 0 0 13 - - -
hsqldb 157.6 369 231 804 2.8 3 3
JavaFTP 2.6 0 0 9 - - -
netty 11.0 0 0 14 - - -
oddjob 41.3 0 0 250 - - -
java.applet 0.9 102 64 64 1.0 1 1
java.awt 163.9 5325 3800 454 26.4 2 3
java.beans 16.2 148 108 31 1.5 1 2
java.io 28.6 32 0 39 0.0 - -
java.lang 55.0 279 89 46 1.9 3 2
java.math 9.1 0 0 18 - - -
java.net 26.5 55 44 32 0.5 1 1
java.nio 46.7 0 0 19 - - -
java.rmi 9.1 2 2 14 0.1 1 0
java.security 34.2 0 0 27 - - -
java.sql 22.2 1836 0 10 8.0 - -
java.text 22.6 26 18 26 0.2 1 0
java.util 116.8 188 117 190 2.0 4 3
javax.imageio 24.7 0 0 22 - - -
javax.lang 5.2 0 0 8 - - -
javax.management 67.5 16 6 74 0.2 2 0
javax.naming 19.5 0 0 64 - - -
javax.print 2.1 2 0 27 - - -
javax.security 11.7 164 110 27 1.2 2 0
javax.sound 14.3 0 0 10 - - -
javax.sql 18.2 0 0 14 - - -
javax.swing 322.2 132 120 353 1.6 2 2
javax.xml 48.9 0 0 27 - - -

aAll experiments were performed on a Linux machine with an AMD Athlon 64x2 2.2
GHz processor, and 6GB RAM.
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that are repeated instantiations of the same underlying deadlock scenario,

and appear due to the fact that several library methods typically invoke the

same deadlock-prone utility method. Such a deadlock gets reported multiple

times in our current implementation, each under a different set of library entry

methods. The table shows the number of unique scenarios after considering

such redundancies. While the process of identifying unique scenarios can be

automated; presently, we identify such scenarios by manual inspection.

Example 9.0.1. From the lock-order graph of postEventPrivate presented

in Figure 6.3, if we concurrently invoke the method postEventPrivate on two

separate objects a and b, then it leads to a deadlock under a specific alias-

ing pattern. However, the methods postEvent, push and pop in the same

class also invoke the postEventPrivate method, and hence are susceptible to

the same deadlock. Thus, for each pair of these methods, the same under-

lying deadlock-causing aliasing pattern is generated. In our experiments, we

observed 324 possible deadlock-causing aliasing patterns, all of which corre-

spond to this single unique scenario involving calls to postEventPrivate.

Our tool predicts deadlocks that are highly relevant to some of the

clients using the libraries that we have analyzed. Some have already manifested

in real client code, and have been reported as bugs by developers in various

bug repositories. Table 9.2 summarizes the library name and the bug report

locations we have found using an internet search. Inspection of the bug reports

reveals that the aliasing patterns at the call-sites of the methods involved in the
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Library Name Method names Bug Report

java.awt postEventPrivate, [139]:4913324
(EventQueue) wakeup [139]:6424157,

[139]:6542185

java.awt removeAll, [117]
(Container) addPropertyChangeListener

java.util addLogger [139]:6487638
(LogManager) getLogger
(Logger)

javax.swing setFont Jajuk [89]
(JComponent) paintChildren

hsqldb isAutoCommit [116]
(Session) close

Table 9.2: Real Client Deadlocks

deadlock, correspond to a violation of the interface contract for that library,

as generated by our tool.
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Part IV

Conclusions
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Chapter 10

Conclusions

In this chapter, we conclude with a summary of the important results,

and indicate open problems and future directions of work.

10.1 Summary of Results

This dissertation presents techniques for tractable verification of soft-

ware. In contrast to hardware verification, which deals with an essentially

finite-state (albeit computationally intensive) problem, software verification is

usually undecidable. The sources of undecidability are typically heap-allocated

data structures, arbitrary recursion, and concurrency. We focus on particular

problems within the “usual suspects” for undecidability, and give directed so-

lutions for efficient and automatic verification for fragments that cover a large

range of useful sequential and concurrent software libraries.

The dissertation is broadly divided into two parts: (1) verification of

pre/post-condition based specifications for methods in sequential data struc-

ture libraries, and (2) verification of thread safety in concurrent libraries

through an investigation into techniques for deadlock analysis. We now sum-

marize the key results for each part.
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10.1.1 Sequential Verification: Contributions

I. Automata-theoretic Framework:

We formulate a general automata-theoretic framework for the verification of

methods acting on sequential data structures. The solution strategy can be

described in the following high-level steps:

(a) data structures are modeled as directed, labeled graphs,

(b) specifications are provided as a pre-condition automaton Aϕ specifying

valid input graphs, and a post-condition automaton A¬ψ specifying in-

valid output graphs,

(c) a method M is represented as a method automaton AM that accepts a

composite graph Gc = (Gi, Go) iff Go = M(Gi),

(d) a product automaton Ap = Aϕ⊗AM⊗Anpost is constructed; Ap accepts

a composite graph Gc = (Gi, Go) iff Gi satisfies the pre-condition, Go

is obtained by the action of M on Gi, and Go fails to satisfy the post-

condition,

(e) the product automaton is tested for emptiness; if Ap is empty, then the

method is correct, otherwise, a counterexample to the correct operation

of M is obtained from Ap.

II. Undecidability Result:

The automata-theoretic framework as outlined above, in theory, works for any

arbitrary method, and for arbitrary specifications. However, the method au-

tomata and the specification automata in themselves, and when combined in
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the product construction, may not have decidable emptiness problems. For

instance, the exact automaton to model a certain method may be a linear

bounded automaton, or a 2-headed automaton. Both these automata have un-

decidable emptiness problems. As another example, if the method automaton

is a finite state automaton, but if both the pre-condition and post-condition

automata are pushdown automata, checking the emptiness of the product is

undecidable. Thus, we show that the general verification problem for methods

operating on parameterized data structures is undecidable.

III. Specifications:

In our technique specifications can be data structure invariants or more nu-

anced pre/post-conditions that specify valid input graphs and corresponding

valid output graphs. While our preferred formalism for specifications is that of

tree automata and its variants, we also allow the use of any logic-based formal-

ism (such as temporal logics CTL and µ-calculus), which can be translated into

tree automata at a small cost. Example specifications include: shape proper-

ties such as acyclicity, tree-ness, sorted-ness, list-ness, data-centric properties

such as: “no red node has a red child”, ”there is no node with the data value

‘a’ in the data structure”, reachability of data values and pointer values, and

memory-related properties such as absence of dangling pointers, null pointer

dereferences, and (some types of) memory leaks.

IV. Methods:

We define the scope of our technique in terms of mathematical conditions on
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methods allowed (details are included in the next two contributions). Our

framework allows us to verify methods that include insertion, deletion, data-

value modification of nodes in a vast array of data structures including linked

lists, binary search trees, general trees, balanced trees, directed acyclic graphs,

and general directed graphs. We can also verify methods to reverse linked lists

and rotate balanced trees.

V. Decidable Fragments for Iterative Methods:

We formulate mathematical conditions on methods that, if fulfilled, ensure

efficient and automatic verification. In particular, we postulate that if (a)

methods perform only a bounded number of destructive updates on the un-

derlying data structure, (b) use only localized updates, and (c) terminate,

then the methods can be mimicked by finite state tree automata. Of these,

we show that it is undecidable to determine if (a) is true, we provide a pro-

gramming language (Bud-Pl) to syntactically enforce (b) and assume that a

proof for (c) is available through an oracle. The last assumption is typically

not an obstacle as there are techniques to prove termination of methods on

data structures [75].

VI. Decidable Fragments for Recursive Methods:

We provide a syntactic fragment for recursive methods operating on tree-like

data structures. We guarantee that a method in our fragment can always be

verified automatically, as our fragment ensures that the method performs only

a bounded number of destructive updates on the underlying data structure.
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Since this fragment subsumes tail-recursive methods (which in turn can be

used to model iterative methods), this provides us with a decidable syntactic

fragment for verifying iterative methods on tree-like data structures.

VII. Compilation Algorithms:

We provide algorithms to mechanically compile a method specified in our

syntax into method automata. Separate algorithms are provided for each of

the fragments outlined above, and the time complexity of each algorithm is

linear in the size of the method.

VIII. Experimental Validation:

We give the results of experiments performed with a prototype tool (called

Pravda) that is capable of verifying useful iterative and recursive methods

against pre/post-condition based specifications.

10.1.2 Concurrent Verification: Contributions

I. Deadlockability Analysis:

We formally define deadlockability analysis for concurrent libraries. The pur-

pose of this analysis is to identify if, for any client program using a concurrent

library, there are calling contexts for library methods which leads to a library-

level deadlock. A form of deadlockability analysis was introduced in [148].

This work uses types of syntactic expressions corresponding to object mon-

itors as conservative approximations for the alias information. Though the

authors are able to identify important potential deadlocks, their approach is
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susceptible to false positives, which have to be then filtered using (possibly

unsound) heuristics.

II. Interface Contracts:

The goal of the deadlockability analysis that we perform is to derive interface

contracts. These are logical expressions that encode aliasing patterns between

the arguments of a set of methods that can lead to deadlocks during concur-

rent invocation of these methods. These contracts can be used variously: (a)

statically checked in a client code to detect possible deadlocks in the client

application, (b) dynamically enforced at run-time in a client, to prevent dead-

locks, (c) as documentation for the developers of client code that use the

library.

III. NP -completeness of Aliasing Pattern Enumeration:

Static deadlock analysis typically involves obtaining lock-order graphs for

methods, and inspecting the merged lock-order graph for cycles. Existence

of cycles indicates a possible deadlock during the concurrent invocation of the

methods of interest. Analyzing methods in a library for possible deadlock-

causing aliasing patterns between the method arguments (for a pair of meth-

ods) can thus be formulated as: (a) initialize the set of unexamined aliasing

patterns to all aliasing patterns between the pair of lock-order graphs, (b)

for each unexamined aliasing pattern check if the merged lock-graph obtained

fusing the aliased nodes contains a cycle, (c) halt if there are no unexam-

ined aliasing patterns. We show that the problem of enumerating aliasing
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patterns (effectively checking if there is any unexamined aliasing pattern) is

NP -complete.

IV. Efficient Enumeration through Symbolic Reasoning:

We show how we can encode aliasing patterns and lock-order graphs into a

theory of integers (utvpi), and reduce cycle detection in a lock-graph to a SAT

problem amenable to Satisfiability Modulo Theory (SMT) solvers. Further,

we show how we can reduce the set of aliasing patterns to be considered by a

notion of subsumption, and a host of sound pruning techniques to reduce the

sizes of the lock-graphs. Finally, we derive interface contracts from the set of

deadlock-causing aliasing patterns.

V. Deadlocks in Signaling-based Synchronization:

We formulate syntactic rules for predicting deadlocks in methods that use

wait-notify statements for signaling-based cooperative synchronization. We

term the set of static rules that we derive, the generalized nested monitors

rule. We give the precise static analysis for deriving extended lock-graphs

that encode the dependencies between locks and wait-notify as per the above

rule. We present a symbolic encoding for extended lock-graphs that enables

efficient enumeration of deadlock-causing aliasing patterns and consequently

the interface contracts for methods that use wait-notify statements.

VI. Experimental Validation:

We present experimental results obtained with a deadlockability analysis tool

for Java libraries. Our tool demonstrates that our approach is more accurate
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than previous approaches, and at the same time has remarkable performance

on real-world concurrent libraries. Our tool is able to synthesize interface

contracts for deadlock-free execution with a low number of false positives for

over a million lines of Java code in less than 50 minutes. Significantly, our tool

predicts deadlocks that have already manifested in real client code, and have

been reported as bugs by developers in various bug repositories. Inspection

of the bug reports reveals that the aliasing patterns at the call-sites of the

methods involved in the deadlock, correspond to a violation of the interface

contract for that library, as generated by our tool.

10.2 Open Problems and Future Work

There are a number of interesting open problems that can be thought

of as a ready extension of the techniques presented in this dissertation. As

before, we divide them into two parts:

10.2.1 Data-Structure Manipulating Methods

1. In the case of iterative methods, our approach assumes the existence of

an oracle that determines if the method performs a bounded number

of destructive updates, or if it terminates. We derive a syntactic frag-

ment that guarantees the bounded updates property for tree-like data

structures. Whether such a syntactic fragment exists for a more general

class of graphs is an open problem. Combinations of our technique with

techniques that detect termination for heap-manipulating programs is
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another area that needs further exploration.

2. Verification of recursive methods on directed acyclic graphs (dags) is

hard, as dags can contain sharing between nodes. The restriction of “one

visit per successor” is not enough to ensure the bounded updates prop-

erty in dags. However, if we can enforce (or guarantee) that a method

visits each node in a dag, and thus every sub-dag, at most once, then

such methods would satisfy the bounded updates property. These could

be then verified using a modified form of the algorithms presented here.

Such a restriction is common for methods manipulating dags, and is usu-

ally implemented with the help of a marking scheme employing Boolean-

valued visited fields in the data structure nodes. The key to automatic

verification of recursive methods on dags thus lies in the single visit prop-

erty; however, the following problems are open: (a) Is there an elegant

syntactic class of methods (that does not not use visited fields) with the

single visit property? (b) Is there a translation from methods that use

visited fields to finite-state method automata? For (b), note that since

an automaton mimicking such a method would have to remember every

node that has been marked visited, a simplistic finite-state formulation

would not work.

3. Most interesting properties of data structures can be specified using non-

deterministic tree automata on finite and infinite trees. However, certain

properties such as: “Is the tree balanced?” are finite state tree automata
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ineffable [50]. For such properties, a class of automata called the de-

terministic bottom-up tree automata with constraints between brothers

(awcbb) [31, 16] looks promising. These automata are bottom-up tree

automata with a polynomial time emptiness algorithm, and are capable

of accepting full balanced trees. Alternatively, tree automata with size

constraints [76] also have good closure properties (under intersection);

however, the decision procedure for emptiness of these automata has

high complexity.

4. Pushdown tree-walking automata [141] are an interesting class of au-

tomata that can be used to model certain methods. As opposed to

conventional tree automata that split into multiple copies at each child

node, these automata have only one copy, that walks along the tree. It

also has a pushdown, with the restriction that the moves of the push-

down are synchronized with the moves of the automaton, i.e., symbols

are pushed when the automaton visits a child node, and popped when the

automaton returns back to the parent. These automata seem like a more

natural model of recursive methods on trees (and conceivably directed

acyclic graphs), and could be used to relax some of the restrictions we

place (such as disallowing updates to parent nodes). These automata are

exponentially more succinct than conventional tree automata; thus, they

do incur an exponential increase in cost in the nonemptiness procedure.

5. In our current framework, we require each of AM, Aϕ and A¬ψ to be

finite state (tree) automata. We can relax this requirement so that any
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one of these is a pushdown (tree) automaton. Thus, for instance, we

could have a richer class of methods, that can be modeled by pushdown

automata (in the case of lists) or pushdown tree automata (in the case

of general graphs). In the former case, the complexity of our technique

is still polynomial [85], while in the latter, the complexity is exponential

[120].

6. It is known that the deterministic o(log log n) space complexity class

equals the class of regular languages. In this dissertation, we show

that if a method modifies the underlying data structure a bounded (by

a constant) number of times, then effectively the language of the up-

dates by the method is regular. In other words, we exploit that the

class of regular languages Reg = Dspace(O(1)). However, Reg =

Dspace(o(log log n)), which is a looser upper bound. If we can identify

methods that are contained within this complexity class, we can still

mimic them by finite state automata. It would be interesting to identify

examples of such methods and possibly obtain syntactic fragments for

such methods.

7. Finally, from an engineering perspective, it would be worthwhile to be

able to broaden the scope of our framework to verify methods written in

C, C++ or Java. Techniques such as bottom-up shape analysis [73] could

be used to summarize portions of code that are not compliant with our

syntactic restrictions. Thus, the overall framework could leverage the
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power of exact verification offered by our framework to programs that

do not satisfy our stipulations.

10.2.2 Concurrency Verification

1. Synchronization primitives such as locks and monitors used for enforc-

ing mutual exclusion are the most common source of deadlocks. Hence,

the main thrust of this dissertation is on detecting deadlocks based on

cyclic dependencies in the acquisitions of such (lock and monitor) vari-

ables. Extension to other synchronization primitives such as (counting)

semaphores, barriers, locks with different re-entrancy models is an open

problem.

2. While the number of false positives generated by our tool is low, cases

such as guarded cycles, i.e., cycles that are infeasible as each entry node

in the cycle is protected by a common lock [10], are not currently handled.

While it is possible to examine lock-order graphs and aliasing patterns

automatically to rule out guarded cycles, it would be neater to encode

this as an additional constraint to the SMT solver. The exact formulation

remains open.

3. Dealing with newer features of the Java language such as generics, and

Java’s concurrency library (java.util.concurrent) that uses constructs

similar to the pthread library is a challenge for future work. Automatic

identification of unique scenarios from the interface contracts generated
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by our current implementation would further reduce the manual effort

required to process the output of our tool.

4. Empirical validation of the static analysis that checks/enforces the de-

rived interface contracts on real client code would be an important part

of future work.
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