The University of Texas Publication No. 3819 May 15, 1938 HEAT TRANSFER AND PRESSURE DROP IN HEAT EXCHANGERS By BYRON E. SHORT oa1 "' ~ri•t-r or ~'!S~tt­r111i11u~t1t1HJ Bureau of Engineering Resea·rch of the College of Engineering The University of TexJts PUBLISHED BY THE UNIVERSITY FOUR TIMES A MONTH AND ENTE!fED AS SECOND·CLASS MATTER AT THE POST OFFICE AT AUSTIN, TEXAS, UNDER THE ACT OF AUGUST 24, 1912 The University of Texaa Publication No. 3819 May 15, 1938 HEAT TRANSFER AND PRESSURE DROP IN HEAT EXCHANGERS By BYRON E. SHORT Bureau of Engineering Research of the College of Engineering The University of Texas PUBLISHED BY THE UNIVERSITY FOUR TIMES A MONTH AND ENTERED AS SECOND•CLASS MATTER AT THE POST OFFICE AT AUSTIN, TEXAS, UNDER THE ACT OF AUGUST 24, 1912 The benefits of education and of useful knowledse, senerally diffused throush a community, are eHential to the preservation of a free sovern• ment. Sam Houston Cultivated mind is the guardian genius of Democracy,andwhile guided and controlled by virtue, the noblest attributeof man. It is the only dictator that freemen acknowledse, and the only security which freemen desire. Mirabeau B. Lamar Table or Contents Topic Table or Symbols Introduction and Acknowledgments iii SUmmary•• iv Object • • • 1 Scope. 1 Apparatus and Experimental Procedure • 3 Discussion and Correlation of Results, Transfer Coefficients 9 Discussion and Correlation or Results, Pressure Drop 18 Conclusions. 21 Bibliography 21 Appendi:l!: • • •• 22 COPYRIGHT -1938 THE UNivERSITY OF TEXAS TABLE OF SYMBOLS (Listed in order in which they occur in text) ht =tube side film coefficient of heat transfer, B.t.u. per hr.­ sq.ft.-deg.F. hs shell side film coefficient of heat transfer, B.t.u. per hr.­ sq.ft.-deg.F. D =diameter of tube (inside in Eq. 1, outside in Eq. 11), ft. k = thermal conductivity, B.t.u.-ft. per hr.-sq,ft.-deg.F. N = heated length of tube, ft. G = weight rate of flow, lb. per hr.-sq.ft. of cross-sectional area µ = absolute viscosity of fluid, lb. per hr.-ft. c = specific heat of the fluid, B.t.u. per lb.-deg.F. U =overall transfer coefficient, B.t.u. per hr.-sq.tt.-deg.F. m.t.d. = outside radius of tube, ft. r2 r= inside radius of tube, ft. 1 Gx = effective weight rate of flow, lb. per hr.-sq.ft. of effec­tive area GR = radial flow in disk-and-doughnut type baffles, lb. per hr.­ sq, ft. GA = flow in annular area in disk-and-doughnut type baffles, lb. per hr.-sq.ft,flow through hole in disk-and-doughnut type baffles, lb, per hr.-sq.rt, = flow through orifices in orifice type battles, lb. per hr.­ sq, ft, Ga = flow along tubes between baffles in orifice type baffles, lb. per hr.-sq,ft, Gb = f~~~r~:neath baffles in halt-moon type baffles, lb. per hr, GP = flow across tubes in halt-moon type baffles, lb. per hr.­ sq. ft. S = baffle spacing, ft. ~ = free area of radial flow in disk-and-doughnut baffles, sq.ft. (See Fig, 6)A = free area between snell and disk in disk-and-doughnut A baffles, sq. ft. ~ = free area in hole of doughnut in disk-and-doughnut baffles, sq. ft. A = total free area of orifices at each baffle in orifice baf­ 0 fles, sq, ft. Aa_ = tree area between baffles in orifice type baffles, sq, ft, Ab = free area beneath baffle in half-moon type baffles, sq. ft. A = free area for cross-flow between baffles in half-moon baf-P fles, sq. ft. P =tube pitch, ft,, p =tube pitch, inches L = total baffled length of exchanger, ft. L:.P = pressure drop in baffled length of exchanger, inches of mercury w = specific weight of fluid, lb. per cu. ft, DD = diameter of disk of disk-and-doughnut baffles, ft. DH = diameter or hole in disk-and-doughnut baffles, ft, = outside diameter of tube, inches dt = diameter of orifice of orifice baffles, inches do = number of baffles on the tube bundle. Nb INTRODUCTION AND ACKNOWLEDGMENTS This Bulletin is the result of a series of experimental in­vestigations on the subject of heat transmission in heat exchang­ers which began with a series of experiments on a shell-and-tube type exchanger with a single horizontal baffle (Bulletin No. 3128, The University of Texas), then followed by a series of ex­periments to determine the effect of tube spacing and baffle ar­rangements on tbe pressure loss in tube bundles (Oil and Gas Journal, May 10, 1934), and was then followed by tbe present work, part of which was written up by Mr. S.A. Perrone and pub­lished in 1935 (Oil and Gas Journal, March 28, 1935). This ex­perimental work was done in the Mechanical Laboratory at The University of Texas and tbe results were computed and correlated while the writer was a gradute student at Cornell University in 1935-36. With some minor changes, this Bulletin is a sunnnary of the thesis presented at Cornell University in June 1936 in part­ial fulfillment of the requirements for a Master of Mechanical Engineering degree. The writer wishes, therefore, to acknowledge the criticism and suggestions of Professors W.N. Barnard, F.O. Ellenwood, c.o. Mackey, and J.O. Jeffrey of Cornell University on the original phases of this work; the help of the Department of Mechanical Engineering and the Bureau of Engineering Research at The Uni­versity of Texas in acquiring the materials used in the experi­mental work; and the able assistance of Mr. Fre9 Morris, Labo­ratory Mechanician at The University of Texas, and Mr. S,A. Perrone, former graduate student at The University of Texas, in setting up tbe apparatus and in the conduct of the tests. And, the writer wishes to thank the Dean of the College of Engineer­ing of the University of Texas in obtaining funds for the publi­cation of these results, SUMMARY The material in this Bulletin presents in both a graphical and an analytical manner the results of a series of experiments with water and several grades of oil being cooled in a shell­and-tube heat exchanger. The heat exchanger was first used with­out baffles or turbulence promoters, and then with half-moon type, then orifice type, and finally disk-and-doughnut type baf­fles. Both the heat transfer coefficients for the outside of the tubes in the bundles and the pressure drop on this same side are treated. Steps in the graphical correlation of the results in obtaining the final transfer coefficient plots are presented. An effective velocity that consists of a combination of the weight rates of flow in the restricted regions is used in the correlation, and methods of obtaining this velocity for the dif­ferent types of construction are given. A graphical comparison of the heat transfer coefficients is made with results from tests of similar heat exchangers by Ross Heater Company and Foster Wheeler Corporation showing that the methods are applica­ble to units of other length and shell diameter than the one used in this experimental work. A graphical comparison is also made with the results of others on flow along and across single pipes as well as across banks of pipes. Colburn•s equation for heat transfer coefficients for flow across banks of staggered pipes using the velocity in the minimum cross-section is also present­ed for comparison. Pressure drop relations are given using the Darcy or Fanning equation with the friction factor combined with a "roughness" coefficient. Equations for deter.mini~ the rough­ness coefficient for the different baffle forms are given along with the friction and roughness factor graphs. The effect of cooling on the pressure drop is considered as a function of Prandtl's number. HEAT TRANSFER AND PRESSURE DROP IN HEAT EXCHANGERS This experimental study was made to determine the possibil­ity or establiShing a relation that would permit both the film coefficient or heat transfer and the pressure drop to be calcu­lated tor a particular heat exchanger irrespective of the type, size and spacing or the battles used, or of the size and spacing of the tubes in the bundle, or or the fluid used. This paper covers the results of experimental work that was done on a shell-and-tube type heat exchanger in which three dif­ferent forms or baffles (turbulence promoters) were used and, also, in which the spacing of these baffles and the size and spacing of the tubes were varied. The fluid used on the inside or the tubes as the coolant was water, while water and three different grades or oil were used on the shell side. In case or the halt-moon battles, Table I shows the differ­ent arrangements (tube sizes, tube spacing, and baffle spacing) that were used: Table I Tube Diameter Tube Pitch Humber of Baffles 3/81' o.d. 1/2" 19, 15, 11, 7, 3 11/16" 19, 15, 11, 7, 3 " 1/2" o.d. 19/3211 19, 15, 11, 7, 3 II 11/16" 19, 11, 3 25/3211 19, 11, 3 " n 1" 19, 11, 3 n 1-3/3211 19, 15, 11, 7, 3 5/8" o.d. 3/4" 19, 11, 3 II 7/8" 19, 15, 11, 7, 3 1-1/1611 19, 11, 3 " while 1n the case or the orifice baffles, Table II shows the dif­rerent arrangements that were used: Table II Tube Diameter Tube Pitch Orifice Diameter Humber of Baffles 3/8" o.d. 11/16" 7/1611 19, 11, 3 1/2" o.d. 25/3211 17/32" 19, 15~ 11, 7, 3 n 9/1611 19, 11, 3 " II 5/811 19, 11, 3" 1-3/32" 9/1611 19, 11, 3 " 19, 11, 3 5/811 o.d. 1-1/1611 11/1611 while tor the disk-and-doughnut battles Table III shown the va­riation in constn.tction or tbe unit; and tor the bundles without battles Table IV shows the arrangements: Tube Diameter 3/8" o.d. 1/2" o.d. n n n 5/8" o.d. Table III Tube Diameter Pitch of DS..k ll/16" 4.5" 25/32" 4.511 n 4,95" II 5.511 1-3/32" 4.5" 1-1/16" 4.5" Table IV Tube Diameter 3/8" o.d. n 1/2" o.d. n n 5/811 o.d. Diameter of Hole 4.011 4.0" 3.511 2.5" 4.011 4.0" Tube Pitch 1/2" 11/1611 19/3211 25/32° 1-3/3211 7/811 Number of Baffles 19, 11, 3 19, 11, 7, 3 19, 11, 3 19, 11, 3 19, 11, 3 19, 11, 3 For practically all or these investigations the rate or tube fluid was maintained at 2 rt. per sec. while the shell flu­id was varied from a minimum or 2000 lb. per hour to 45000 lb. per hour. The total range in Reynolds' number was approximately 10,000 told and, 1n Prandtl's number, approximately 3 to 2000. Apparatus and Experimental Procedure The heat exchanger used in this series of investigations consisted, as shown by Fig. 1, or a 6-inch steel pipe shell with inlet and outlet for the shell fluid placed on the top side near each end. The tube plate on one end was attached to the shell flange and then the "water box" placed over this, while, on the other end, the tube plate was attached to a "floating water box" which had an inlet connection extending through a stuffing box in the shell end-housing to the outside. The tube bundles that were used were made or No. 18 B.W.G. brass tubes, 5 ft. long, attached to 3/8 inch thick brass plates at each end. The holes in the tube plates were drilled 1/64 inch larger in diameter than the outside diameter of the tubes and, in assembling, the tubes extended 1/8 inch beyond the inner (water box side) face of the plates and were soldered to these plates. The battles were made trom 1/16 inch thick brass plate. These baffles were cut from the flat plate to a size slightly in excess of the inside d1rumter of the exchanger shell and then the tube holes were drilled before the baffles were fitted to the shell. For the half-moon and disk-and-doughnut baffles, the tube holes were drilled 1/64 inch in diameter larger than the tubes with which they were to be used, whereas, the tube holes for the orifice baffles were drilled to a size shown by Table II for each particular tube bundle. After the tube holes had been drilled in the circular plates that were to be used for half-moon baffles, a portion was cut off along a horizontal line 7/8 inch above or below the cen­ter line, depending on whether it was desired to have the fluid flow under or over the baffle. In the case or the disk-and­doughnut baffles, the outer portion was cut oft so as to leave a disk of the desired size for those plates from which the disks were ma.de, and the inner portion cut out so as to leave an annu­lar shaped plate of the desired size for those plates from which the •doughnuts11 were made. Fig. 2 shows the dirensions of all or these baffles as well as showing the tube pattern. Arter tb3 baffles had been cut to the desired shape, they were assembled as a group (19 for each particular tube size and spacing) and filed so as to allow them to be forced through the shell. Th.en after a group of tubes had been assembled with 19 baffles and the tubes had been soldered to the end plates, the baffles were fitted into the shell in such a manner, that the assembled bundle could be drawn in or out or the shell w1 th vecy slight effort. The initial and final baffles were always at the same points relative to the shell inlet and exit connections and the distance 4 4. o•Dia.Hole 3" II" 5t· ~p 45"Dia.Di>k 4.0" Dia..Holo 4.5" Dia.Di•k 3.5"'Dla. Hole 55"D :I; > 2f "fu2 IVIE..THOD=> gr C.y:.ANINQ ~ 0.40 o.~ -­ ~ ~ i.:oSf, ). ~ !::: t 11.M ~d I­" ~ '· 0. - ~..-­ ~..-­ ~ (.-:>c.c. Miii.Ada.m~ H.,..*. Tro.narnl•MonJ o~ z"' 3~ ..Jl­ j~::1--.---.,.-1 1----r---T'"I ·b·~-:> lllll4r---T-1---r-T"'I · pa----,.,. 1---r---rl1-Q!.h-, ~.,,, 60 71> 80 !10 100 110 li!O ISO 140 1!10 TE.MPE!i!A TURE. -r: VAglATION Qf THE&MAL C ottpuc,I!VIT)' 2!" WATE.2 ~ Q.u.. ~ TEMPERAJVAA Fiea.4 l50 IOO 90 80 1111 "' 1.11 r.o :l.0-(5...W !>or wo.t..) Vt6C.061T.Y VAlll.1"-TIOM ~TgM!MAT!JRE .l'.213. WA'T"ER. ~'!ti& ~~~TWe..FU!..USe:p Fici. 5 7 per hour. The minimum rate was governed by the stability or pumping and heating conditions while the maximum was governed by the range or the pressure drop manometer in some cases (the manometer bad a range or 40 inches) and by accurate weighing ranges in other cases. Bu!rtcient intermediate tests were made between these extreme limits to permit definite trends or re­ sults to be ascertained. Plots or the overall transfer coeffi­ cients against rate or flow and pressure drop were used as a means or control on the experimental procedure. The heat ab­ sorbed by the tube fluid was balanced against the heat given up by the shell fluid tor each set or data recorded and this was used as a verification or the fluid temperature determinations. As the shell was not insulated, the heat absorbed was usually 1/2 to 3 per cent less than tlllt given up. The viscosity or each on that was used was detennined at several teaperatures by means or a 8aybolt Universal V1scos1meter and the viscosity ot the water was based on the values given in the International Critical Tables. The thermal conductivities ot the water and or the oils were based on the values given by McAdams1-* The curves ot these data are shown by Fig. 4 and 5. (•Numbers refer to bibliography at end of text of Bulletin.) DISCUSSION ANO CORRELATION OF RESULTS TRANSFER COEFFICIENTS Since there are numerous data available relating to tilln coefficients or heat transfer tor liquids flowing inside or cir­cular tubes, it was assumed that these data could be used tor the computation, in this case, or the film coefficients tor the tube fluid from the t3st data and thus allow the shell side co­efficient to be determined. The equation2 used tor this purpose is as follows: \D = 0.0225 [1 + 5~D1 [D:] 0.8 [c:] 0.4 • •(1) (Note: See first page or Bulletin tor symbols) After the tube side coefficients were computed from Eq. 1, with the fluid properties evaluated at the main stream temperature, the shell side coefficients were computed from Eq. 2. :, " ~ -:: ~-; log, ( :: ) • • • • • • • (2) In correlating the shell side transfer coefficients and the pressµre drop, it was assumed that the effective velocity or the shell fluid was governed by a combination or the velocity thra.igh the restricted passages at the battles with the velocity across or along the tubes between successive battles. It was assumed that the combination or these velocity components would be governed by the relative proportion or the areas involved in each case as well as by the baffle spacing since the effect!veness or the baf­fles as turbulence promotors would thus be indicated. Eq. 3, 4, 5, and 6 show how the effective velocity was computed tor the disk-and-doughnut baffles, orifice battles, halt-moon baffles, and zero battles, respectively. (Aa}0.88 (A~ 0.48 Gx = GR + GA + (S) 0.33 (S) 0.5 G = x (S) 0.59 • • • • • • • • ( 4) where n = 0.332 (Ao) 0.15 • (4a) G -Ab Gb + (S) 0.44 GP • (5) x -(S) 0.5 Gx = 0.53 G .(6) In these equations AFFLE5 Dl~\,(,-ANO·Dou~HNUT f!>A.FF""LE.'!> 0400-t--+-t--t-+-t-t-++++~-+~+--+-+-+-+-+4--+~~~-+-1-J-1.~f.-1..j~i-----1~-+---1~t-r_--r-+-t-~ I I ir.K ~ ~Qf V-1 QpTY CoMPONl!..N"TS 2l!J ~~Col;r'P'!CJ&.NT.5 El.§l.Z 50 .50 'n:> 100 200 !100 500 ~flTl::i.a. 0E.ti QEi ~~C,ogfJl'lC.\l:NT · 12 Fig. 9 and 10 give an indication or the procedure used to determine the effect or Prandtl's number, ~ , on the shell side coefficient and this result shown analytically is h8 =B' • • • • ( 8} The composite relation obtained from the foregoing graph­ical and analytical analysis is hsD =0.37 (p; Dt5 (~) 0,32 (~~ 0.6 k • • ( 9} or • • • •(9a} and this relation is shown graphically by Fig. 11 for the disk­and-doughnut type baffles and by Fig. 12 tor all types, while Fig. 13 gives a graphical comparison or Eq. 9 with data and re­sults or other experimenters on nearly comparable designs of apparatus. Colburn's equation3 for flow across banks of stag­gered tubes c0·33:\0.667Gm 0.6 h8 =0.33 -------"'"''---­ • • • • • • • • • • (10} is quite similar to Eq. 9 except tor the term showing the effect ot the tube spacing. Its relation to Eq. 9 ts shown graphical­ly on Fig. 13. Yz_r;EIC.11!..NJ":> ... "1 ·­ Ill "' "' -~ .. l\ ' - 17 Pressure Drop In correlating the pressure drop ror these different cases, methods similar to those used in correlating the transfer coef­ficients were used with the following results. 2 ~P =5.46 x 10-10 <•r> L Gx• • • • • (11) +gDw where the friction and roughness !actor, •r, is obtained rrom Fig. 14 ror the three baffle types. It will be observed that the friction and roughness !actor, ror each or these cases, is shown as a !unction or the product or Reynolds' number and Prandtl's number to some exponential power. In order to account tor the cooling errect on the pressure loss this method gave the best correlation. That is, plotting the !r1ctton !actor as a !unction of the product of Reynolds' number and Prandtl's number to some power as ts done tn heat transfer {example Eq. 9) appear­ed to give the most consistent relations. The roughness effect produced by the baffies and the now perpendicular to the tubes and the eftect of variable areas in the path of flow are ac­counted for in the function, +,in each case. This !Unction ls given for each case as follows: Dlsk-and-Dougl!nut Baffles 1 • • • • • • • • •(12) • = ~~) l.&5 Or1t1ce Baffles (Nb -2.3) 0.33 {d-dt + 0.031) 2•0 • = 0 • • • •(13)(p ~ d~ 3.3 (dt) 2.38 Half-Moon Baffles 1 • = ----------------,-· •(14) 0.51 -s\ 2.0 Jr~-=.~~,,.t-21 2.06 0.53 ( s ) + 2.7 p J [dt J [ To determine the pressure drop tor a particular heat ex­changer tor a particular weight and kind or nutd flowing through the shell, the effective velocity, Gx, ls computed, and then the Reynolds' number ls obtained. Following this the Prandtl number ls calculated and then raised to the proper exponential power. Using the product or the Reynolds number and the Prandtl function \. 10 ' 1 =~' AV£~/i6£IWICT/ONANO.120VGH/V£SS r.Acro.e roBEV5CD IN TfleL"QVA770N ~ I ""P "5~~x/04" #LG/ ('90.,,.,­ ~ me /)/,5J(-~p-t)Ol/(i/INVTTYP£CYlrrLES i\ l ~ ' ' ~ '\ i:: ~ ~ lO II! -~ ... ~ 0.7 IO• ~1tla1 10+ Z11io+ 5xKJ'f /06 I I I I I I I I I I I I I I I I I I I I I I I I I I I AV£R.19Ge r.t:?ICT/C:W A/VO .120UGHN£S5 ~~ FA~77:)~£tt5eo IN THEeQVHT/0/11 '" -IJ ........ ~ zo dpa..S46x/0"/0 fll'LG_/ ~" ;gow­ 'r-.., ~ ........ -~ ;=t),€ Oi?IPICG 7YP£ 8/IFFL£5 .... , ....-!~ ...... '" '­ ...... =i" =~ - ' ~s :~ ,~ Zlltcr Sx/()#: '°"' zxm-3x#" " ' " ' Zl6lfl' " " \ ID" 47' (for the disk-and-doughnut baffles the Prandtl number is raised to the 0.78 power, for the half-moon baffles it is raised to t~ 0.52 power, and for the orifice baffles it is raised to the 0.38 power), reference is made to the friction-roughness factor plot corresponding to the type or baffle in question and the proper factor is obtained. Then using Eq. 12, 13 or 14, depending on the barfle type, and the dimensions of the heat exchanger bundle, the ~ function is computed. Having determined the +function in this manner, 1t is used along with the friction-roughness facto~ effective velocity, tube diameter, length or exchanger, and spe­ific weight of the fluid 1n Eq. 11 to obtain the pressure drop for the exchanger. In other words, the pressure drop 1s determined by means of the Darcy equation with the fr1ct1on factor combined with a roughness coefficient, +· With the kind of fluid and !ts effec­tive rate known, the Reynolds and Prandtl runct1ons are computed and, by reference to F1g. 14, the product, +f, 1s obtained. Then ~ is computed from Eq. 12, 13, or 14 for the particular type of baffle and used along with +f in Eq. 11. Due prinarily to the effect of the tube pattern, 1.e., tube arrangement over the cross-section of the bundle, on the turbu­lence set up at entrance and exit and its effect as the fluid passes by or through a baffle, the tube pattern enters into the pressure drop to a greater extent than in the heat transfer co­efficients. This results ina wider divergence oft~ friction factor for the different arrangements than was round for the heat transfer coefficients. And too, in the case or the heat transfer coefficients, it was found that a single relation for all baffle types gave results not greatly different from those given by a relation for each particular type of baffle. This was not true in the case of the pressure drop data and hence, no single relation is presented. Conctu1lons In conclusions, then, it may be said that the shell side coett1e1ent ot heat transfer may be computed for shell and tube type exchangers irrespective ot the size and spacing of the tubes, or the type, size, and spacing ot baffles, or the kind or fluid. This may be ~one, as shown by Fig. 13, with a reason­able degree or acc\U'acy by the equation, atter having obtained the errect1ve rate of now, ox, rrom Eq. 3, 4, 5, or 6, tor the particular case. It may also be conclude~ that the pressure loss produced by !low along and across the tubes in baffled tube. bundles of heat exchangers may be closely approximated by after having obtained the product, ~r, from the experimentally determined curves ot Fig. 14. It should be ~inted out that a single relaticn !or all types of baffles does not give as close a value of the coeffi­cient as can be obtained by using a separate equation tor each particular type of baffle, but the divergence is not more than 15 per cent tor the usual case and this 1s as close as the ef­fective areas, leakage effects, and tube patterns may be deter­mined. BIBLIOGRAPHY 1. McAdams "Heat Transmission" pages 320,322, 339 2, " " " " 169, 181 3. Transactions of A.S. Ch.E. (1933)(Chicago Meeting} page 197. 21 APPENDIX Additional Symbols tt = initial temp. of tube fluid, deg. F. 1 tt = final temp. of tube fluid, deg. F. 2 ts = initial temp. of shell fluid, deg. l'. 1 ts = final tanp. of shell fluid, deg. F. 2 ~p = pressure drop across shell, in. of hg. wt = weight of tube fluid, lb. per hr. ws = weight of shell fluid' lb. per hr. Qt =heat absorbed by tube fluid, B.t.u. per hr. Qs =heat given up by shell fluid, B.t.u. per hr. em = log mean temp. diff., deg. F. U =overall transfer coefficient, B.t.u. per hr.­sq. ft.-deg. F. DATA BAFFLES• HALF-MOON SIZE-3.92• Hl6H TUBE DIA.-lA" TUBE PITCH-1/2" TRANSFER AREA• 48. lo' SHELL FLUID-WATER * S•• first page of Appendixfor Syllbols. HO.OF TUBES• 98 TUBE FLUID· WATER RUN NUMBER * t;_ \ \. t"2 "'p wt w. Qt Q. em u 19 BAFFLES 51 58.3 71.3 140.6 74.8 0.37 18,540 5,365 352.8 353.0 34.76 211.0 52 58.2 85.3 140.7 86.0 0.88 18,380 9,220 498.2 503.8 40.10 258.3 53 58.1 88.8 140.4 92.1 1.39 18,520 11,900 569.0 574.8 42.14 280.8 54 58.1 91.6 139.6 97.6 2.?..2 18,7.30 15,~0 628.0 631.0 43.60 299.5 55 58.0 95.0 139.5 102.7 3.24 18,220 18,360 673.5 676.5 44.59 314.1 56 58.1 99.2 140. 1 lOe .2 5.19 18,330 23,630 752.5 756.0 45.34 345.2 57 58.1 99.6 141.2 109.1 5.19 18,300 23,7.30 759.0 760.5 46.08 342,6 58 57.9 100.3 139.2 110.8 6.86 18,370 27,430 778.0 781.0 45.50 355.4 59 58,0 101.5 140.1 112.6 7.78 18,370 29,150 800.0 802.5 46.18 360.2 60 58.0 103.1 140.2 114.3 9,63 18,420 32,430 830.5 838.0 46.00 375.4 61 58.0 104.5 140.6 117.0 11.67 18,540 36,7.30 002.0 867.0 46.63 384..4 62 57.8 l~.9 140.0 117.3 13.52 18,460 38,530 870.0 873.0 46.25 391.1 63 57.5 94.6 139.0 101.7 3.33 18,550 18,420 688.0 687.5 44,31 322.8 219 60.1 96.4 139.6 102.4 3.06 18,530 18,280 673.5 680.0 42.73 327.8 220 60.1 101.9 139.4. 110.5 5.98 17,950 26,090 7.50 .5 753.5 43,75 356,7 15 BAFFLES 228 229 230 231 232 ~ 234 235 236 237 238 239 58.9 58.8 58.9 59.0 59.0 59.2 59.4 59.5 59.5 59.5 59.5 59.5 80.9 78.5 81.0 86.7 00.8 91.2 96.3 98.6 101.5 103.4 l~.9 106.2 138.8 139.0 138.7 139.7 139.8 139.4 140.8 139.9 139.5 139.6 140.2 :M.0.4 80.3 71.9 81.7 89.9 90.0 96.9 102,9 108.4 112.8 115.5 117.8 119.7 0.28 0.28 0.37 0.70 0.70 1.20 1.90 3.15 4.91 6,51 7.92 9.63 15,720 18,540 19,130 18,850 18,620 18,150 18,240 18,540 18,370 18,330 18,370 18,330 5,900 5,970 7,410 10,420 10,480 13,610 17,320 23,120 28,950 33,520 37,350 41,460 345.2 365.0 423.5 522.8 518.5 581.0 655.0 725.0 711.5 804.0 834.6 ffi6.5 345.0 3M.6 423.0 519.0 522.0 .579.0 656.0 727.5 714.0 809.0 838.5 860.0 36.70 35.90 37.60 41.00 41.06 42.80 44.48 45.00 45.22 45.46 45.80 46.00 195.6 211.4 234.2 265.1 262.? 282.3 306.2 335.0 354.8 367.8 378.8 387.1 11 BAFFLES 247 248 249 250 251 252 253 254 59.2 59.2 59.6 59.5 59.6 69.5 59.3 59.0 71.2 86.5 !l3.l 97.2 99.4 102.4 105,2 106~4 141.5 140.1 139.6 139.7 ·140.5 141.3 141.8 140.4 '1'8.5 91.4 101.6 108.l 111.3 115.9 119.8 120.9 0.14 0.42 0,88 1.67 2.18 3.33 4.91 6.39 18,380 18,420 18,400 18,210 18,470 18,330 18,390 18,520 5,080 10,390 16,250 21,780 25,360 31;030 38,370 44,090 330.3 501.5 619.0 686.0 '737.0 787.0 844.0 869.0 330.2 506.0 616.0 687.0 739.0 788.0 84.5.0 ~0.0 35.84 42.00 44.20 45.46 46.15 47.20 47.58 47.17 191.6 248.2 291.2 313.8 332.0 346.8 368.8 378.8 1 BAFFLES 285 61,3 81.0 139.3 86.7 0.14 18,120 6,850 3fl7 .5 360.5 39.54 188.0 286 61.5 89.l 140.4 99.l 0.32 18,100 12,120 499.5 501.0 44.06 236.8 ~ 61.6 92.l 140.2 l~.o 0.51 18,170 15,320 554.0 655.5 45.18 255.0 288 61,6 96.9 140.4 109.4 0.74 18,230 a:>,030 625.0 6a:>.o 46.10 282.0 289 61.6 98.0 140.8 112.3 1.11 18,340 23,610 670.0 674.0 46.70 298.3 290 61.5 99.7 140.5 U5.0 1.48 18,160 27 ,330 004.0 697.0 46.90 307.7 291 61.5 102.l 141.0 118.4 2,04 18,100 32,550 734.0 737.0 47.32 322.4 292 61.6 104.2 141.5 121.4 2.59 17,390 37,000 742.0 745.0 47.65 323.8 293 61.5 1C6.0 140.5 122.3 3.33 17,670 42,280 769.0 710.6 47.06 339.8 3 BAFFLES 301 60.8 71.0 138.5 !l3.2 0.07 17,870 6,450 289.0 292.0 45.40 132.3 302 303 304­305 306 307 308 309 310 311 61.0 61,l 61.2 61.4 61.2 61.l 61.2 61.2 61.2 61.2 81.8 rn.7 92.l 96.0 95.3 96.3 96.2 97.2 98.4 97.4 l.39.7 139.6 l.40.0 140.8 141.0 138.9 139.2 138.4 138.2 139.l 100.4 109.5 .114.2 119.2 118.7 118.9 119.6 120.7 122.2 121.4 0.12 0.20 0.39 0.54 0.54 0.'1'8 0.76 1.07 1.34 l.06 17,910 17,290 18,250 16,620 l.7,360 l.8,700 l.7,940 18,410 18,430 18,380 9,560 15,320 21,800 26,800 26,680 32,230 32,150 37 ,620 42,800 37,620 373.0 459.0 563.0 576.0 sn.o 641.0 627.0 663.0 685.0 664.5 376.0 461.0 563.5 578.0 593.0 643.5 628.0 665,0 689.0 666.0 48.12 50.15 50.40 50.96 51.42 50.35 50.30 49.80 49.70 50.35 161.l 190.4 232.2 235.0 Z'll ,O 264.8 259.2 276.8 286.6 ?74.S 23 DATA BAFFLES-HALF-MOON TUBE DIA,-3/8" TRANSFER AREA-25.510 , SIZE-3.,2• Hl6H TUBE PITCH-1t/16" SHELL FLUID-NATER * s.. first P•Q• of Appendl1 NO.OF TUBES-52 TUBE FLUID-NATEJt tor Sy•boh. * RUN t82 \. wt \ l:. p Q,, e. w. NUHIER \. ~ u 1' BAFFLES 10 61.6 88.6 139.3 96.2 0.37 9,960 270,8 6,135 268.9 41.• 55 253.6 11 61.2 10!!.8 141.8 126.4 8.85 9,910 31,580 481.5 485.l 46.63 404.8 12 60.3 108.0 139.4 124.4 8.89 9,900 31,000 472.2 4?5.• 0 45.BO 40l.l 13 58. 9 108.9 140.7 125.4 7.97 9,760 32,150 488.0 492.6 47.02 406.8 14 58.5 107.8 139.9 124.7 7.97 9,830 32,150 485.0 489.8 47.13 403.3 15 58.5 107.8 14.Q.4 124,8 7.83 9,900 31,580 488.5 492.0 47.50 403.2 16 58,2 103.2 138.9 119.8 4.26 9,870 23,680 444.5 451.0 47.42 367.6 17 58.l 102.3 138.l 119.0 4.31 10,180 23,680 450.0 47.15 453.l 374.0 18 60.4 107.2 139.5 123.3 6.11 9,690 28,000 453.0 453.5 45.93 386.7 19 60.4 107.7 140.3 123.6 6.16 9,';11,0 28,000 460.8 467.0 46.20 391.0 24 61.0 107.9 140.7 124.3 6.30 9,870 463,3 28,500 467.3 46.40 391.S 25 60.l 89.8 139.8 97.8 0.42 9,870 7 ,04.0 293.0 295.2 43.50 264.0 26 60.l 89.l 138,5 97.3 0.42 9,870 287,0 i>a;.o 43.(3 6,920 261.6 27 60.2 92.7 138.9 102.8 0.65 10,000 9,030 325.3 325.5 44.36 2fn.5 28 60.2 97.0 138.3 109,6 1.30 9,950 12,800 365.8 368.0 45.20 317.2 29 60.4 99,0 138.6 112.8 1.81 9,970 15,33> 386.0 394.5 46,57 331.0 30 60.3 99.8 138.4 115.7 2.55 10,050 18,000 409.3 397.0 46,62 334.6 31 60.3 102.9 138,6 118.9 3.?15 22 000 J.0,060 428,4 434.0 46.J.7 363.9 60.3 32 105.4 140.5 122.0 4.82 10,000 454.0 24:780 458.3 47.15 377.4 33 60.2 105.8 140.4 122.9 5.37 458.0 10,000 26,350 461.l 47.22 380.l 34 60.2 106,0 140.0 123.l 5.97 10,120 27 ,980 464.0 471.0 47.00 387.0 35 00.l 100.5 131.l 124.0 7,69 31.,630 470,5 10, 150 478,6 46.58 396 .0 36 60 .l 107.3 139.4 125.l 10,170 8.80 479.6 481.2 403.0 33,650 46.65 60,0 37 107.7 139.7 125.8 9.72 10,240 488.0 492,0 35,300 46.90 408.0 38 60.l 108.2 139.6 126.6 10.';11, 37,260 489.6 494.5 46.84, 10,160 409.6 39 oo.o 108.9 139.7 127.l 46.62 13.12 40,370 506.0 418.8 J.0,200 498.0 40 60.0 109.4 139.5 127.8 15.66 10,160 502.0 43,380 607.5 46 .46 433 .7 41 69.8 100.4 138.6 115.6 2.69 10,260 18,180 416.5 420.0 46.46 351.6 142 57.8 98.5 139.2 113.0 1.81 9,760 16,220 397.0 399.2 326.9 47.62 143 57~8 99.l 141.0 113.8 410.0 1.81 9,930 15,300 415.7 48.60 330.7 144 58,l 5 .• 70 105.8 140.4 123.l 27,280 472,0 9,750 48.20 378.Z 465.2 146 106.7 141.6 5!!.0 124.l 478.6 5.70 9,700 27,400 472.6 48.80 379.8 146 57,8 106.5 141,7 124.0 4.79,8 482,8 5.70 49.10 383.0 9 ,ffiO 27 ,200 14.7 57.8 141,6 105.9 123.5 5,74 27,280 492.0 492.6 49.16 10,220 392.4 15 BAFFLES 221 222 223 224 225 226 227 60.0 oo.o 60.0 60.2 59.6 59.8 59.8 92.3 98.9 102.7 107.2 106..S 107.5 108.5 139.6 140.3 139.6 141.l 139.2 139.2 139.5 104,5 114.4 119.6 125.5 125.2 126.4 127. 7 0.46 1.07 2.22 4.66 5.98 7.32 8.89 lo,oro 9,960 10,000 9 670 10:020 10,090 10 070 9,350 14 Bro 21;520 29,760 34 020 38:300 42.260 324.0 367.5 428.7 464-.0 470.2 481.0 490,5 328,2 384,6 430.0 464.3 476,6 490.4 499.8 45,90 47.67 47.36 47.92 47.22 47.06 47,08 276.7 318.8 353.2 379.6 390.3 400.8 408.5 11 BAFFLES 83,5 294 61.4 295 61.4 88.4 296 61.7 93.4 99.6 297 61.8 1CX3.l 298 62 .l 100,6 62.2 299 108.l 300 62.l 7 BAFFLES 138.3 139.7 139.6 139.8 138.8 140.6 140.6 93.5 101.3 109.l 117.5 122.0 126.5 128.3 0.11 0.18 0.32 0.83 1.78 3,03 4,17 9,790 9,830 9,870 9,860 9,900 9,910 9 94.0 4 890 5;900 10,230 16,630 24,23031,350 36 7.30 216.l 265.0 312.8 372.2 406.0 440.5 457.2 219.0 42.46 199.6 264.8 45,18 Z30.0 312.5 46.80 262.0 371.4 47.63 307.0 4-07.0 440,0 46,80 47.56 340.l 363,2 454.0 47.42 378.0 182.2 44.33 163,6 286.7 49.12 225.3 353.2 50.00 275,0 377.2 50.20 291.l 411.4 422.5 50,45 49.30 317.7 333.3 435.5 49.43 342.8 466.4 49.10 361.0 465.0 49.12 368 2 ~3.22.6 51.95 53.73 !5~:S 314.0 54.10 225.2 347.2 53.93 249.8 368.3 53.15 269.3 395.0 53.13 288.2 413.6 53.03 !303.3 415.3 52.35 309.2 428.6 444.8 52.85 52.45 315.l 329.6 60.0 78.9 255 60.2 69.0 256 94.4 60.3 257 98.4 60.5 258 100.9 60.5 259 102.6 60.5 260 60,5 104.0 261 60.5 1C6.5 262 106.8 60.5 263 3 BAFFl"i'< 80.2 ~-5 85.9 9.5 ~ 59.6 9Q.5 266 59.7 93.8 267 96.3 59.7 268 98.7 59.7 269 100.2 59.7 270 102.l 59.7 271 102.3 59.6 272 102.5 59.6 273 139.0 139.2 139.6 140.l 140.6 139.2 139.7 139.7 140 2 J.DD,O 139.l. 139.5 ]39,7 139.2 139.8 140.2 140.1 140.9 140.2 91.6 108.2 115.4 100.4 123.6 125.l 126,9 128.3 129 8 i~:~ ij·l.5 124.6 126,9 128.3 129.5 ].2Q.9 130.1 0.09 0.19 0.65 0.86 1.20 1.81 2.47 3.31 3.89 o.~ 0.2 0.46 0.56 o.70 0.93 1.28 1.44 1.44 1.34 9,770 18·~ 9 1 830 10;1109,960 9 ,!130 ig,~g l~:~ig 10,~ lg,980 10;015 10,140 ~·~ 10:270 3,840 l~·~ 19:120 24,16030,100 34,100 a2·~ 1S:~8 ~,410 ,15025 280 30:570 34,760 39,300 39,200 44,300 185.0 282.5 350.5 372.8 408.8 419.2 432.2 452.2 461.5 ~:8 310,8 343.7 365.0 390.5 4.J.O,S 413.0 425441:8 DATA BAFFLES-HALF-MOON TUBE DIA.-1/2" TRANSFER AREA-43.180 , SIZE-J.92• HIGH TUBE PITCH-19/32" SHELL FLUID-NATER * SH first page or Appendix HO. OF TUBES-66 TUBE FLUID-NATER for Sy•bols. * RUN tt2 t"2 e., Q, wt w. t;. \ ~ "'p u Nm1BER 19 BAFFLES 75 76 77 78 79 80 81 82 83 84 57.8 58.0 58.0 58.0 57.3 57.3 57.0 56.7 56.6 56.4 65.9 70.9 72.3 75.3 78.6 82.0 84.5 85.9 88.5 79. 0 139.7 138.2 138.9 138.2 138.2 138.8 139.8 139.2 140.4 137.6 66 .0 75.9 80.0 85.0 91.8 99.9 104.8 108.1 112.5 94.9 0.19 0.56 0.70 1.25 2.36 4.03 6.21 8.80 12.87 2.96 26,320 26,480 25,930 26,060 26,610 25;010 26,210 26,430 26,320 26,240 2,900 5,450 6,340 8,570 12,270 16,53) 20,690 24,930 30,100 14,010 212.5 340.5 371.7 450.0 568.0 639.6 722.0 770.0 838.0 592.0 214.0 339.5 373.5 456.0 569.5 643.0 724.0 772.0 84,0.0 597.5 29.92 37.35 40.28 42.46 45.88 49.43 51.45 52.36 53.85 47.88 211.2 ~:~ 286.9 299.7 325.0 340.9 360.4 286.4 16 BAFFLES 321 322 323 324 326 326 327 328 329 330 60.8 61.• 0 61.0 61.1 61.2 61.3 61.3 61.3 61.3 61.3 72.4 74.0 75.4 80.6 85.9 89.2 91.1 92.1 93.1 94.1 140.6 140.2 141.4 141.0 140.9 140.8 141.0 140.8 140.• 7 140.2 77.0 80.1 83.0 92.2 102.8 109.2 112.8 114.8 116.8 118.5 0.28 0.37 0.46 1.02 2.60 4.82 6,58 8.11 10.28 12.97 25,400 24,800 25,840 26,480 26,200 26,870 26,090 26,000 26,~ 25,980 4,625 5,456 6,420 10,63'.l 17,000 23,830 2:7,700 31,030 35,000 39,330 294.8 321.7 372.2 516.0 646.0 749.5 778.0 801.0 831.5 852.5 294.4 328.0 375.6 618.0 649.0 752.0 780.0 600.0 835.0 E64.5 36.13 37.94 40.00 44.16 48.10 49.80 50.75 51.10 51.45 51.30 189.0 196.3 215.3 270.6 311.2 348.7 355.2 363.2 374.3 385.0 11 BAFFLES 60.8 73.9 341 60.8 76.9 342 60.9 81.5 343 85.5 60.9 344 60.9 88.2 345 60.9 89.7 346 60.8 90.8 347 92.4 60.8 348 7 BAFFLES 60.4 72.4 349 73.6 350 60.5 77,2 351 60.5 60.7 83.1 352 60.7 86.5 353 88.7 00.7 354 00.7 91.3 355 92.3 60.7 356 139.0 139.0 139.5 139.5 139.8 139.9 139.1 138.9 141.l 140.0 140.9 140.4 141.3 140.3 142.0 141.5 82.7 88.9 98.3 106.5 111.2 114.2 116.5 119.5 84.8 88.4 94,7 100.3 112.3 116.2 iro.2 122.0 0.20 0.37 0.83 1.81 2.92 4.08 5.65 8.15 0.09 0,19 0.28 0.74 1.39 2.36 3.38 4.54 25,820 25;740 25,720 25,820 25,620 26,000 25,~o 26,010 25,900 25,960 25,860 25,820 26,280 26,170 26,100 26,100 6,095 8,33'.l 12,840 19,a:>O 24,590 29,230 34,480 41,800 5,570 6,670 9,410 16,900 23,420 30,500 36,720 42,550 339.0 414.5 530.0 634.5 699.0 748.0 'ffl.o 822.0 310.8 340.8 4;32.0 577.5 678,0 733.5 798.5 825.5 343.2 39.60 198.2 417.0 42.85 224.0 529.5 46.95 261.5 633.5 49.75 295.5 702.0 51.00 317.5 752.0 51.80 334.5 781.0 51.95 346.5 810.0 52.40 3113.3 313.6 42.80 168.3 344.2 44.4-0 177.8 434.7 47.40 211.1 575.5 51.22 261.1 680.3 53.17 295.6 735.0 53.55 317.3 801.0 55.00 336.4 830.0 M.90 348.3 3 BAFFLES 365 60.3 69,6 366 60.5 72.3 367 60.8 78.8 368 61.0 82.4 369 61.0 84,6 370 371 61.0 61.0 86,087.4 372 61.0 BB.7 139.2 140.1 140.7 139.9 140.3 140.0 141.1 140.0 94,,3 98.4 110.0 114.9 118.l 120.0 122.0 123.5 0.09 0.09 0,28 0.51 0,74 1.02 1.39 1.95 25,800 25,610 26,050 25,900 25 820 25:120 26,2.30 25,960 5,415 7,300 15,32.0 22,310 Z'l,700 32,360 36,550 43,680 240.8 302.3 468.0 555.0 610.0 644.0 692,5 719,0 ~.2 49.68 112.3 304.4 51.4-5 136.1 470,2 56.30 196.2 557.0 55.65 231.0 613.3 56.40 250.5 647.0 56.50 264.0 696.0 57.30 280.0 722.0 56,65 294.0 DATA BAFFLES-HALF-MOON TUBE DIA,-1/2" TRANSFER AREA-31,<4a' SIZE-3,92" HIGH *See first page of Appendix TUBE PITCH-11/16° SHELL FLUID-WATER for Symbols. NO OF TUBES-<48 TUBE FLUID-WATER RUN t t * tt2 ttl •1 w, e. Wi; '2 A p Q. ~ u NUMBER 19 BAFFLES 155 58.9 156 59.0 157 59.1 158 ES.2 159 ES.3 160 59.3 161 59.2 162 59.1 163 59.1 164 59.1 165 59.0 11 BAFFLES 73.6 78.9 84,4 86,l 89.9 92.5 92.6 93,2 94.8 $,5 95.4 138.4 138.3 140.1 139.4 139.8 140.5 142.4 139.9 140.7 139.9 138.7 79,3 90.5 100,8 105.l 111.2 115.5 116.0 117.6 119.7 121.3 121.6 0.28 0,70 1.48 3.15 4.17 5.74 5.74 8,36 9.81 12.50 15,65 18,990 19,070 19,100 19 130 19:100 18,460 19,160 iN~8 18:680 19.120 4,755J·m 15;050 20,66024,450 24,400 ~·~8 36~370 40 ffiO 279.0 380.0 482.0 514 .5 587.0 612.0 640.0 660,0 670.0 681.0 696,5 280.8 382,2 488.0 517..0 589,5 612.0 642.8 661.5 r~:8 698,5 38.45 44.05 48.35 ~.46 50.90 52.00 53.20 52.45 53.00 52.80 52.35 231.1 274.8 317.5 331.3 367.3 374.8 383.2 400.8 402.6 410,8 423.8 73.0 73.4 78.2 83,1 87.5 90.5 92.6 93.7 95,9 96.8 140.3 140.3 138.9 140.3 140.~139. 139 .8 140.2 141.2 140.7 80.2 78.0 91.5 101.0 109.3 114.4 118.l 120.l 123.1 124.4 0,05 0.05 0.19 0.37 0.83 1.53 2 .27 3.10 4.17 5.33 18,980 18,ffiO 18,76018 ffiO 18:950 18,390 18,680 i§;~818-ffiO 3,620 3,610 6,610l0,3ro 15,66821,326,320 ~·M8 40'450 218.3 224.8 312.0 401.0 483,0524.0 .570.5 614.5 642.0 ·656.0 217.5 225.0 313.2 405.3 486,0525,0 572.2 615.5 644,0 659,0 37 .as 36.05 43.58 47,60 5g.oo5 .45 51.50 52.15 52.92 52.56 183.7 198.6 228.0 268.2 m·7.8 ~:g 300.5 397.8 73.4 73.l 78.0 81.5 84.4 87.3 89.4 90.6 91.5 140,8 140.6 140.6 139.2 139.4 139.7 140.0 140.3 139.1 94,9 94.6 105.3 112.0 116.3 120.5 122.8 124.5 125.2 0.04 0.17 0.32 0,460,70 0.89 1.11 i~·6r6 19:130 18,62018,94,0 18,910 18 950 18:910 18,980 4 640 4:700 J·g~17;94,0 24,27029 ,620 33,630 39,560 212,8 212.2 301.7 353.7 415.0 468.0 507.0 529.0 549.0 212.8 216.2 303.0 353,6 415,2 465.0 510.5 530.5 552.0 48.13 48.04 52.25 53.50 54.40 56.10 56.50 55.50 54.82 140,8 140.7 183.9 210,6 243.0 270.6 291.1 303.7 318.8 470 471 472 473 474 475 476 477 478 479 3 61.5 61.5 61,6 61.8 62.0 62.0 62.1 62,0 62.1 62.0 BAFF'"• 518 62,0 519 62.0 520 62.2 521 62 .5 522 62.5 523 62.6 524 62.6 525 62.6 526 62.6 DATA BARRELS-HALF-MOON TUBE DIA,-1/Z" TRANSFER AREA-Z6,16a· SIZE-3,9Z" HIGH TUBE PITCH-25/3Z" SHELL FLUID-WATER NO.OF TUBES-<40 TUBE FLUID-WATER RUN Nm1BE R ttl tt2 t 'i t •2 A p wt w• Qt Q. e.. u 19 BAFFLES 95 96 97 98 99 58.1 58 .0 58.1 58.2 58.1 78.8 84.4 88.6 92.4 94.3 139.6 139.3 139.8 140.7 140.1 92.8 104.0 112.2 117.8 121.0 0.51 1.30 2.59 4.63 7.41 15,800 15,800 15,660 15,430 15,430 7,075 11,960 17,370 23,180 29,340 326.0 417.0 477.0 527.0 558.0 331.0 422.2 480.0 530.0 559.6 46,58 50.35 52.67 53.95 53.$ 267.7 316.9 346.3 373,5 395.6 100 58.2 95.8 140,8 123.3 9.45 15,280 32,930 574.0 577.o 54.45 403.0 101 58.2 96.0 141.6 123.3 9.45 15,780 32,930 596.5 602.0 54.ffi 416.0 102 58.1 96 .2 140.1 124.2 12.22 15,760 37,800 601.0 603.0 54.25 423,6 103 i04 58,0 57 .6 96.7 86.2 141.l 138.2 124.7 108.7 12.22 2 .04 15,770 15 660 37,500 15 280 610.0 447.5 614.0 450.0 54.90 51.55 425,0 332.0 437 61.3 83.9 438 61.4 87.0 439 61.5 90.5 440 61.7 92.8 441 61.7 95 .0 442 61.8 96 .8 443 61.0 75 .9 444 61.2 79.6 3 BAFFLES 508 62. 2 75.0 509 62 .2 75.0 510 62 .4 77.8 511 62 .5 80 .7 512 62.6 83.9 513 62.8 87.2 514 62,9 89.8 515 62.9 91.5 516 63.0 92.4 517 62 .8 93.6 11 BAFFLES 10,610 14,120 20,060 24,800 31,720 38,300 5,030 7,110 138.6 139.2 139.2 139.4 139.4 139.5 137 .o 138.5 104.8 110.4 116.3 119.7 122.8 125.1 90.2 97.1 0.37 0.74 1.35 2 .08 3.33 5.10 16,780 15,775 15,700 15,770 15,830 15,820 15,660 15 ,825 356.5 48.90 278. 8 358.5 404.0 407.4 50.63 305.2 338.9 458.0 459.0 51.70 52.10 360.8 491.5 490.b 385,8 528.0 528.5 52.35 554.0 554.0 52.45 404.0 ro6,9 233.8 235.8 43.20 239.3 290.8 294.2 46.45 139,5 139.3 139,8 139 ,7 140.4 140,6139,9 138.9 139.0 138 ,5 102.1 101.5 107,0 111.9 116.5 121.2 124.2 125.6 126.2 127 .1 0.02 0,09 0.19 0,37 0 .53 0.74 0.93 1.30 15,680 15,740 15,730 15,720 15,580 15,60015,560 15,550 15,660 15,560 5,365 5,370 7,470 10,375 14,880 19,890 25,640 31,270 36,370 42,480 199.7 201.5 241.8 286.5 332.3 379.8 418.8 444.8 461.4 479 ,5 200,6 51.25 149.0 203.0 50.72 152.0 244.6 52.85 174.9 288,5 54.25 ro1.9 334.0 54.45 233.4 381.2 420.5 446,0 55.80 55,70 56.15 260.2 287.5 308.4 463.0 54.50 323.8 482.0 54.10 339.0 26 DATA BAFFLES-HALF-MOON TUBE DIA.-1/2" TRANSFER AREA-19.62cJo SIZE-3.92• Hl&H TUBE PITCH-1" SHELL FLUID-WATER * S•• first pav-of Appendixfor Sy•bols. NO.OF TUBES-30 TUBE FLUID-WATER DATA BAFFLES-HALF-MOON TUBE DIA.-1/2" TRANSFER AREA-13.0801 SIZE-3.92" HIGH TUBE PITCH-1 3/32" SHELL FLUID-WATER * See first page of Appendix Z7 DATA BAFFLES-HALF-MOON TUBE DIA.•1/2" TRANSFER AREA• 13.08a• SIZE-3.~2• HIGH TUBE PITCH•1 3~2" SHELL FLUID-WATER *SH fl rst page of Append 1·x for Syllbo Is. NO.a: TUBl;S-20 TUBE FLUID-WATER t * RUN tt2 t"i Q,, wt w. •2 I>. p e. ~ u NUMBm \. 1 BAFFLES 382 61.0 78.1 138.4 109.4 7,7415 4,665 132.4 135.0 54.25 186.5 383 61.1 81.5 138.3 115.1 0.05 7,815 6,830 159.2 158.7 55.40 219.6 384 61.5 84.0 139.0 119.1 0.14 7,795 9,025 175.6 179.7 56.22 238.8 385 61,4 8?.0 139.l 122.8 0,23 7,890 12,560 201,0 204.7 56.43 272.2 386 61.7 91,1 138.9 127,0 0.56 7,875 19,480 231.2 233.0 56.10 315.0 387 61.9 93.8 140.0 130;0 0, 93 7,890 25,360 252.1 252.0 56.48 341.2 388 61.9 95.9 140.7 132.0 1.30 7,850 30,900 266.4 267.9 56,60 360,0 389 62.0 96.9 140.3 132.8 1.90 7,830 36,320 273.3 273.6 56.05 372.8 390 61,9 97.3 140.1 133,0 2.22 7,905 39,600 279.8 280.1 55,80 383.3 3 BAFFLES 391 61.4 392 61.8 &13 62.0 &14 62.0 395 62.0 396 62.1 397 62.0 398 62.2 399 62.3 77.0 81.7 85.8 88.7 91.3 93,1 93.9 95.0 96.3 139.1 138.3 138.9 139.0 140.• 2 140,2 140.0 139.8 140.6 115.0 121.5 125.7 128.1 130.6 132.2 132.7 133.2 134.2 7,885 o.oo 7,095 0.10 7,890 0.22 7,960 0.34 7,855 0.46 7,905 0.57 7,905 0.74 7,990 0.74 7 380 DATA 5,305 9,450 14,470 19,750 :?A,800 3>,300 34,430 &l,:?AO 39 400 122.8 157.5 188.0 212.5 229,8 244.6 252.-0 261,7 2150.4 128.0 159.0 191,9 214.0 236.6 244.2 252.3 257.4 254.5 57.80 58.20 58.25 57.95 58.30 57.78 57.58 56.93 57.00 162.4 006.9 246.8 280,3 3>1.2 323.6 334.7 351.6 336.0 BAFFLES-HALF-MOON SIZE-3.92• HIGH •See first page of Appendix TUBE DIA.-S/8~ TUBE PITCH-3/4° TRANSFER AREA-32,72·a• SHELL FLUID. WATER for Syllbols. NO.OF TUBES40 TUBE FLUID-WATER 88 29 DATA BAFFLES-HALF-MOON SIZE-3.92• Hl6H* S•• first pege of Appendix TUBE DIA.-5/8" TUBE PI TCH-7/8 • TRANSFER AREA-24•54a• SHELL FLUID-WATER for Sy•boll. NO.OF TUBES-30 TUBE FLUID-WATER * tt2RUN \lNIJMBIB 19 BAFFLES 188 60.6 70.8 189 00.5 73.7 190 60.6 77.6 191 00.7 80.6 192 60.7 83.2 193 60.7 85.l 194 60.7 87.7 195 60.3 87.3 196 60.3 88.4 15 BAFFLES 411 60.8 72.0 412 60.9 74.9 413 61.0 77.7 414 61.2 82.5 415 61.2 85.5 416 61.2 87.6 417 61.l 88.4 418 61.l 89.4 11 BAFFLES 427 60.8 72.2 428 61.0 ?5.9 429 61.0 75.S 430 61.0 77.5 431 61.l 80.2 432 61.4 83.7 433 61.4 85.3 434 61.5 87,0 ~ ~i:t 87.6 88.5 SH'" Ou :T 552 60.4 70.3 553 60.3 73.3 554 60.3 75.7 555 60.4 79.7 556 60.5 83.9 557 60.3 86.2 558 60.2 87.6 559 60.0 as.5 560 60.0 87.6 561 59.9 87,3 562 59.8 87.0 563 59.l 71.7 564 59.3 76.3 565 59.5 81.3 566 59.5 84.7 ~~~ 59.5 as.3 59.5 87:1 CHP• ING 51 RIES 573 59.6 73.6 574 59.7 77.8 575 59.7 81.8 576 59.7 84.3 577 59.6 84 .4 578 S9.5 86.0 579 59.4 86.0 580 59.4 86.8 581 59.4 87.l 7 BAFFLES t "l 139.l 140.8 140.8 141.2 140.0 141.0 142.4 139.6 139.4 140.3 139.4 139.l 139.3 140.2 140.l 140.2 139.3 138.4 139. l 138.9 139.2 138.8 140.l 139.l 140.5 139.7 139.2 1~11: 138.5 141.7 139.5 140.0 140.l 141.6 140.6 140.5 140.3 140.l 140.0 139.2 139.2 139.6 141.4 141.4 1140 5 139.l 140.2 139 .9 140.9 141.6 140.3 140.5 139.7 140.4 t •2 82.2 90.4 99.5 107.3 112.2 116.5 120.8 121.6 123.4 87.0 94.4 101.5 111.9 117.6 121.2 123.l 124.5 91.3 102.0 100.8 104.5 110.4 117.7 120.3 123.4 124.6 125 8 I nl'..ATll 86.6 94.2 100.8 110.0 118.3 122.9 125.2 123.4 125.l 125.0 124.7 92.8 103.8 114.8 121.2 124.l ,~ 2 96.9 106.5 114.9 119.9 120.2 123.4 123.5 124.8 125.4 "'p wt 0.19 20,480 <;J.37 20,460 0.83 20,340 1.67 20,360 3.24 20,580 4.77 20,3ro 7.60 20,360 11.21 20,760 15.14 ro,7oo O.l,4 20,420 0.28 20,460 0.65 ro,430 1.76 20,460 3.38 20,460 5.74 20,490 7.60 ro,540 10.56 20,370 0.10 20,180 0.28 19,730 0.28 ro,eoo 0.43 20,220 0.76 20,160 1.69 ro,080 2.64 20,240 3.61 20,190 5.00 20,100 7.04, 20 350 "' 1'MAW<.en 0.09 20,580 0.19 ro,ooo 0.28 20,370 0.74 20,480 1.95 20,410 3.24 20,410 5.47 20,460 4.08 ro,300 5.47 19,870 5.47 19.,870 5.47 20,520 20,000 20,120 20,280 20,120 20,320 20.410 0.19 20,300 0.46 20,390 20,230 19,970 20,110 20,580 20,300 20,430 20,250 w• 3,790 5,380 8,430 12,000 16,680 20,380 25,480 31,300 36,450 4,270 6,370 9,210 16,030 22,Cl40 28,730 33,030 38,800 4,970 7,980 7,965 9,730 13,680 20,140 25,860 29,920 35,100 41 500 3,,,t>V 5,540 8,240 13,210 2l.,960 28,400 36,510 31,480 36,400 36,400 36,400 5,450 9,760 18,000 25,290 31,620 37.000 6,900 11,130 18,090 23,450 23,500 32,230 32,04,0 37,260 37,320 Q,_ 210.0 269.4 346.5 405.0 463.0 497.0 549.5 561.0 582.5 229.4 285.7 340.6 435.0 496.3 540.5 561.5 576.5 230.5 294.0 301.6 333.8 384.0 449.0 485.0 514.5 527.0 551.5 "'-""·4 259.4 313.0 395.0 477.0 529.5 560.0 540.0 547.5 544.0 558.5 252.0 341.0 442.0 506.0 545.0 562.5 284.8 368.4 445.0 490.8 498.6 545.0 53).5 559.0 560.0 Q. 215.3 271.l 348.0 407.0 463.0 500.0 550.0 564.0 584.0 227.8 286.8 346.7 439.0 498.0 544.0 564.0 573.0 234.0 296.l 303.6 338.0 388.0 452.5 486.0 515.5 529.0 553.5 l<:>J0.7 263.2 319.0 397.0 479.0 531.0 562.5 540.0 552.0 548.5 558.0 252.7 345.5 446.0 510.5 547.0 566.0 291.5 375.0 451.2 492.5 503.0 545.5 543.6 555.0 562.5 e m 40.56 46.04, 50.08 53.32 54.15 55.85 57.37 56.72 56.70 43.92 47.33 50.23 53.70 55.58 56.18 56.80 56.38 46.07 51.32 50.70 52.15 53.90 56.35 56.32 57.56 57.56 57.30 143·""' 49.15 51.22 54.80 57.00 58.90 58.78 58.86 58.76 58.75 58.75 48.70 53.20 56.80 59.20 59.85 59.45 50.05 54.30 56.65 58.40 59.00 58.90 59.05 59.10 59.40 u 211.0 238.4 282.0 309.5 348.2 362.6 390.3 403.l 418.5 212.9 245.9 276.0 330.0 363.9 392.0 402.6 416.7 203.8 233.3 242.2 260.8 290.2 324.8 350.8 364.3 373.0 392.0 18~.ti 215.0 248.8 293.6 34;)..0 366.3 388.2 373.8 379.5 377.3 387.5 210.0 261.0 317.0 348.2 371.0 385.5 231.8 276.3 320.0 342.3 344.3 377.0 372.2 385.4 384.0 445 61.5 ?6.6 139.9 107.2 0.19 20,520 9,540 310.5 312.0 53.95 234.4 446 61.5 78.6 138.7 110.3 0.37 20,300 12,140 345.6 345.0 54.43 258.6 447 61.6 81.5 139.4 115.7 0.67 20,260 16,960 402.5 401.5 56.03 292.5 448 61.9 84.2 139.6 120.4 1.25 20,120 23,380 448.8 449.5 56.90 321.2 449 61.9 86.2 140.4 123.8 1.96 20,070 29,220 487.5 487.0 57.96 342.7 450 451 452 453 454 61.9 61.9 61.9 61.2 61.4 87.5 88.3 88.6 71.2 75.6 140.2 140.l 140,8 137.5 139.7 125.E! 126.9 127.6 92,8 104.6 2.69 3.71 3.71 o.04 0.14 19,770 20,260 20,280 20,060 19,880 34,840 40,650 40,980 4,600 8,140 500.5 535.0 541.5 201.0 283.5 506.5 537.0 542.0 205.5 285.4 58.17 58.00 58.70 46.88 52.90 354.2 375.4 376.0 174.6 218.3 DATA BAFFLES-HALF-MOON TUBE DIA,-5/8" TRANSFER AREA-24.54, SIZE-J.92• HIGH tuBE PITCH-7/a• * see first page of Appendix SHELL FLUID-WATER for Sylll>ols. NO.OF TUBES-JD TUBE FLUID-WATER t t * RUN tt2 w• a., wt Qt Q. ,,p •1 •2 ttl u NUMBER 3 BAFFLES 463 61.2 71,0 464 61.3 73.0 465 61.7 77.2 466 61,8 80.6 467 61.8 83.7 468 61.8 ffi ,5 469 61,8 86.8 139.l 139.5 139.8 139.6 141.0 141.l 141.2 BAFFLES-HALF-MOON SIZE-J,92• HIGH *See first page of Appendix 1CX3.4 107.8 115.7 120.8 125.2 127.3 129.l 0.09 0.09 0.19 0.37 o.ro 1.02 1.57 20,360 20,220 ~·ril 20:110 ~:~~ DATA 5,620 7,515 13,050 20,380 ~·~~ 42'200 TUBE DIA.-5/&" TUBE PITCH-1 1/16" 198.9 236.6 313.5 381.0 441.2 478.0 506.5 201.0 54.15 149,6 238.0 56,08 171.8 315.0 5a.ro 219,4 383.0 59.01 263.0 443.7 60.22 298,3 481.0 60.56 321,7 509.0 60.70 340,0 TRANSFER AREA-16.36tJ• SHELL FLUID-WATER for Syllbols. NO.OF TUBES-20 TUBE FLUID-WATER • RUN w•wt Qt Q. \2 t •1 e• u t •2 "'p NUl1BER \ 19 BAFFLES 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 55.6 55.6 56.0 56.l 56.l 56.l 57.3 57.l 57.0 56.9 57 .o 57.3 57 .2 57 .2 56.9 77.l 77.3 82.9 86.0 87.8 89.0 70.7 75.3 79.l 82.6 81,. 8 86,8 87.7 89.3 83.9 140.7 141.4 140,2140.6 141.0 143.8 139.l 140.l l~.l 139.5 139.4 139.8 139.l 140,3137 7 110.4 110.5 120.8 125.5 127.8 130.l re.3 i01.613.0 119.4 122.9 126.l 127.4 129.8 121 5 ll .74 0,74 2,~5,5 a.so a.so 0.14 0.37 1.02 2.27 4,CX3 6.53 10.09 13.52 4.12 TI,IBU it·GJ8 14:160 14,20014 250 13:720 13,69013,780 g.~ 13:€150 13 950 13:a10 14-025 10:oro ~9,6207,640 34,53034,6004,095 7 050 11:760 17,540 ~·~ 36:720 ~·fill8 1foto 379.0 423.0 452,0 469.0 181,.3 248.3 305.0 349.6 387.0 409.0 426.0 443.4 378.0 '""'""•u309,5 m:8 455.2 471.5 187.5 2.liQ.,0 307.0 352.5 389.7 412.5 429.7 445,8381.6 1011 • .iz 59.20 ~i:~ 62.02 ~-83.45 55.ffi 58.00 59.65 60.25 60.65 60.25 61.16 58.95 ".>J..L.11 ~~:g417,4 445.2 449.0 223.2 271.7 321.4 358.2 392.6 412.2 432.0 443.5 392.0 AFTE ~POLIS llNG u 1 nw"' INS. I DE u.rn rn1 -.. rm:: 5l;i5596 597 res 599 600 601 602 603 604 605 606 607 608 609 610 62,§62.5 62.9 63.l 62 .8 62.5 62.7 62.6 62.9 63.0 63.l 63.0 63.0 62.9 62.5 62.4 "f"I.~ 77.6 83.8 88.9 88.6 75.5 81.3 81.7 85.0 88.6 90.6 90,l 90,6 91.l 81,.383.7 1138,5 139.8 139.8 139.8 141.2 139.0 138.9 140.5 139.0 139.9 140.4 139.9 138.0 139.3 139.5 138.5 i8Y:~ 114.0 123.l 123.5 96,5 109.4 110.4 116.4 122.8 126.0 125.5 126.0 127.0 115.6 114.8 0,23 0.23 0.88 2.87 2.87 0 . 14 0.51 0.56 1.25 2.92 4.63 4.63 6.81 6.81 1.07 1.07 ~~~-eB 13,640 13,050 13,925 13,500 13,19013,480 13,53.0 13,540 13,430 13,600 13,605 13,550 g.~g ~·~~ 11:010 20,360 20,1304,260 8,470 8,520 13,2SO20,140 25,460 fo~t~ 30,920 12,29012.390 1,;vv.O 206.3 '2158:2 284.7 337,2 358.5 175.0 246.0 257.5 299.0 345.8 370,0 369.0 376,4 381.5 290,4 292.7 285.0 340.0 357,6 181.2 250.0 256.3 299.8 343.3 366.5 368.2 370,5 382.3 293.0 293.3 14<>.70 49.44 53.50 55,47 56.55 47.20 52.00 53.17 53.79 55.45 56.10 56,00 54.83 55.76 54.18 53.65 =.L.6 255.l 325.2 387.5 226.7 289.2 296.0 340.0 381.0 4CX3.2 402.8 419.7 418.2 327.9 333.4 11 BAFFLES 527 50,00 199.5 528 163.2 165.6 0,05 4,45513,49074.7 138.3 101.l 62.6 165,8 50.22 201.0 529 165.2 4,500138.3 0.05 13,65074.7 101.4 62.6 Z58,7 530 212.8 53.40 008.6 6,97078.0 139.5 109.0 0.19 13,700 62.8 278,4 531 256.5 56.CX3 10,620 255.2 140,4 0.32 13,75081.6 116.3 63.0 57,35 313.2 532 293,8 296.7 13,275 15,840 ffi ,3 141.0 0.74 122.3 63.2 331,0 57.55 348.8 328.4 13,390 23,190140.2 1.39 87.7 125.9 63.2 57.50 366.3 534 344.6 346.8 28,7202.13 13,44088.8 139.9 127.8 63.2 533 383.0 535 361.4 57.70 363.3 13,600 33,330140.0 2.87 89.7 129.l 63.l 56.85 392.0 536 364.5 368.0 13,420 39,90090,4 4.26 138.7 129.5 63.2 401,7 3 BAFFLES 537 378,5 57.75 40 000 379.5 13 800 130.5 4 26 90.7 139.9 63.2 57,00 153.4 538 143.2 5,005 143.l 13,500110.9 139.5 62,4 7.3 .o 57,85 182.3 172,5 175.0 7,3700,02 13,410115.0 138.8 62.6 75.4 213.0 59 .20 59,00 207.l 206.2 10,28013,5000.05 139.8 119.6 62.8 78.l 539 243.0 234.5 234.8 14,17013,4500.14 80,4 122.4 63,0 139.0 540 279.2 273.8 59.45 308,4 271.6 13,580 191840 0.23 139.4 125.6 83.0 63.0 541 59.75 313.2 306.2 27,43013,6250.45 128.7 140.0 63.2 85.7 542 60.20 332.0 330.4 327.0 32,4000,58 13,650 14Q,9 130.7 87.2 63.2 543 347.8 340.0 58.97 335.5 38,50013,7300.79 130.2 139.0 87.5 544 63.l 00 ,65 248,3 2.54.7 248.6 15,77013,5400.16 123.7 139 .5 81.l 62.8 545 30 DATA BAFFLES-ORIFICE 1UBE DIA.-J/a• TRANSFER AREA-25.510 , SIZE.-17~2· DIA.HOLE TUBE PITCH-11/16" SHELL FLUID-WATER* S•• first page of Appendix BAFFLES-ORIFICE TUBE DIA,-1/2• TRANSFER AREA-26.160 , TUBE PITCH-25132" SHELL FLUID-WATER DATA BAFFLES-ORIFICE SI ZE-17/32" DI A. HOLE 629 63.8 74. 630 64.0 81.4 276:5 631 64.3 ffi.4 330.9 632 64.3 87 .3 362.2 633 64.4 89.5 387.4 634 64.4 90.8 412.0 635 64.5 92.0 434.0 DATA BAFFLES-ORIFICE TUBE DIA.-1/2" SIZE-9/16" DIA.HOLE TUBE PITCH-25/32" * See first page of Appendix for Syllbo Is. NO.OF TUBES40 274:3 52:57 201:2 334.3 53.05 238.3 361.4 53.98 256.4 389.7 53. 83 275.1 410.5 54.12 rog:6 436.0 54.23 TRANSFER AREA-26. l'o• SHELL FLUID-WATER TUBE FLUID-WATER RUN NUJ1IER * ttl tt2 \ t •2 fl. p ""' w. ~ Q. e.. u 19 BAFFLES 648 649 650 651 652 653 654 655 666 667 668 65.4 65.4 65.7 65.9 66.0 66.0 66.l 66.2 66.3 66.4 66.4 77.4 78.0 85.4 88,0 88,8 92.4 93.6 94,,8 96.3 97,2 98.2 139.6 139.2 139.6 138.6 139.2 139.9 139.4 138.7 139.3 141.0 140.0 83.4 84.2 99.5 104,,8 106.2 113.2 115.1 117.5 119.9 121.3 122.9 0.42 0.42 l.'75 3.06 3.06 6.30 8.71 11.76 16.48 16.40 23.15 16,670 15,590 15,800 16,220 15,530 15,580 15,950 15,810 l.6.160 16,tlOO 15,750 3,560 3,640 7,750 10,600 10,8211 15,360 18,070 21,240 2A,900 2A,930 29,500 201.0 196.5 311.0 358.0 353.6 411.8 438,5 452.0 484..0 493,0 501.0 200.0 200.4 310,8 358,6 357.0 410.0 438.0 451.6 482.0 492.0 502.5 36.70 35.97 43,26 44.44 45.23 47.30 47.40 47.48 48,07 49.10 48.82 215.2 208.9 275.0 308.0 299.0 332.8 363.7 364.0 386.0 384.0 392.3 11 BAFFLES 669 660 661 662 663 664 666 666 66.0 66.3 66.5 66.6 66.7 66.7 66.7 66.7 75.6 85.5 89,8 91.8 94,.2 95.8 97.0 97.9 139.6 138.3 l.38.6 138.5 139.l 139.5 139,6 139.8 83.4 1CX3.4 111.l 114.8 118.7 12l .2 123.0 124.3 0.23 1.25 2.87 4.40 7.13 10.00 13.33 16.48 16,650 15,650 15,630 15,620 15,700 15,700 15,710 15,690 2,675 8,680 13,450 16,660 21,280 25,000 28,750 31,820 149.9 301.0 364.3 395.2 431.7 456.0 475.5 490.0 150.5 3CX3.0 369.6 395.0 432,6 457.6 478.0 492.5 35.74 44,50 46.66 47.48 48.35 48.82 49.15 49.26 160.4 258.7 298.6 318.4 341.3 367,0 370.0 380.3 3 BAFFLES 667 668 669 670 671 672 673 674 66.2 66.5 66.7 66.8 66.8 66.8 66,8 66,8 75.2 82.l 86.9 00.7 91~1 93.2 94.5 95,5 137.5 137.7 138.6 139.7 138.9 139.7 139.6 139.7 95.4 110.4 118.3 122,5 124.0 126.1 127.6 128.6 0.-09 0.46 1.20 2.13 3.15 4.54 6.67 8.52 15,690 15,696 15,700 15,710 15,650 15,675 15,690 15,710 3,370 9,000 15,60021,000 25,390 30,420 36,360 41,100 141.2 2.44.8 316.5 360.3 300.6 413,8 434.6 451.0 141.7 ?AB.2 316.0 360.0 379.0 413.6 436.4 453.7 43.72 49.• 62 51.63 52.78 52.40 52.70 52.58 52,50 123.4 188.6 234-.3 261.0 277.7 300.2 316.0 326.4 BAFFLES-ORIFICE SIZE-5/8" DIA.HOLE t RUN tti t2 NUMBm 19 BAFFLES 81.3 69.0 686 87.4 W.5 687 87.7 W.5 688 90.B 00.7 600 93.9 69.9 690 97.4 70.2 691 98.0 70.2 692 99.1 70.2 893 99.6 70.3 Ell4 101.l 70.4 005 t •1 138.2 140.8 140.l 138,0 138,0 141.3 138.4 137.9 l.38.5 138.2 t '.a 90.8 102,3 102.'7 108.5 114.0 119.5 120.9 122.7 123.ol 125.4 DATA TUBE DIA,-1/2" TUBE PITCH-25/32" MO.OF TUBES-40 TRANSFER AREA-26.16tJo SHELL FLUID-WATER TUBE FLUID-WATER .o.P 0.17 0,46 1.02 l.ffi 2,87 4,64 6.'16 6,76 0.46 10.32 wt 15,600 16,160 15,620 15,640 15,740 15,910 15,800 16,200 15,800 15,760 w. 4,165 7,500 7,8'5 11,170 15,770 19,890 a;,070 30,700 30;'730 37,950 ~ 192,0 290.0 283.0 330.0 377.6 433.5 440.0 470.5 4,63,4, 484,,5 Q. e• u 36,63 201.0 197.4 289.0 42.30 2Q3.3 257.l 42.06 29l.2 3al.5 42.88 378.5 44.07 327.8 434,3 366.2 46.53 45.34 371.1 438.6 466.6 46.33 464.0 45.60 388.7 4,5,62 407.0 485.6 32 DATA BAFFLES-ORIFICE TUBE DIA.-1 /2 " TRANSFER AREA-26.16cJo TUBE PITCH• 25/32" SHELL FLUID· WATER SIZE-5/8" DIA.HOLE MO.OF TUBES-40 TUBE FLUID-WATER TRANSFER AREA-13.080 , SHELL FLUID-WATER TUBE FLUID· WATER RUN NUHBEi\ •\ \2 t "i t '\? L>.P wt w• ~ Q, e• • 1' BAFFLES 711 712 713 714 715 716 717 73,3 '73.4 73.7 73.8 73.9 73.9 73.9 88.6 92.4 97.9 100,5 102.3 103.6 104..3 138.2 137.9 138.8 138.3 139,6 140.l 139.4 98,2 1C6.9 116.l 120.9 123.9 126.0 126.9 1,02 2.22 6.58 13.38 18.00 23•. 98 33,07 7,670 7,906 7,810 7,890 7,9407,890 7,925 3,C65 4,755 8,410 12,075 14,390 16,510 19,350 120.4 150.2 188.6 210.6 225.4 234.3 241.0 122.3 152.4 190.8 210,8 225 .8 233.3 241.3 35.80 38.66 41.62 42.32 43.30 43.75 43.46 257.2 297,0 346.2 360.3 398.0 409.4 424.0 it BAFFLE$ 725 726 727 728 729 730 72.5 72.8 72.9 73.0 73.l 73.0 lli .1 92.4 96.2 99.l 101.9 lols, * RUN \ NUMBER \ 19 BAFFLES 11 BAFFLES 807 75,9 89.3 97,8 808 76.l lela.8 809 76.4 107.0 810 76.7 110.6 76.8 811 76,9 112.4 812 3 BAFFLES t t "J. "z 96.3 140.7 110.2 139.5 117.6 139.l 123.0 138.1 .127.2 139.l 129.2 138.5 ti. p o.oo 0.10 0,23 0.43 0.80 1.50 w t 9,860 9,920 9 ,ITTO 9,785 9,800 9,780 w • 3,065 7,300 12,060 19,670 27 ,940 37,360 ~ 132.1 214.6 260.4 296.7 331.5 347.6 Q• e u • 136.0 33.60 154.l 213.9 37.80 222.5 260.0 38.70 263.8 297.0 38.22 &>4.3 331.8 38.44 338.0 347.3 37.73 361.0 781 782 783 784 785 786 7ITT 788 ?5.4 75.2 75.8 76.0 76.3 76.4 76 .6 76.6 89.6 91.2 100,3 1C6.2 108.9 112.6 114.5 114.9 138.8 139.5 140.l 139,3 138,8 140.0 140.1 138,4 93.2 97.3 109.7 116.7 121.7 126.4 128.5 129,0 o.oo 0.00 0.16 0.35 0,79 1.53 2.41 3.72 10,100 10,000 9,615 9,?50 9,780 9,640 9,780 9,750 3,200 3,865 7,820 12,600 18,630 25,620 32,150 39,900 143.5 159,5 235.6 284,3 318.8 349.2 371.0 373.8 145.9 163.0 237,6 284.4 318.5 349.2 372.0 375,0 30.92 33.56 36.80 37.28 37,18 37.58 37.22 36.07 181.8 186.3 251.0 299,l 336.0 364.3 390.7 406.3 100,738.31 106.2 100.3 3,110 9,780 o.oo 104.1 137.9 86.8 76 .3 842 lITT,5 176.4 41 .33 100.0 8,100 227,5 9,7B5 0.04 115.7 138.8 76.4 95.4 843 212.5 41.97 229.2 13,350 21,!l30 9,B50 0,07121.7 99,8 138.8 76.7 844 41.27 251.7 265.3 265.0 9,740 29,0000,15126.1 138.2 104.1 76.9 845 278.0 41.07 293.0 291.3 9,810 0.25 128.7 138.8 106.9 77.2 846 39,90 &>1.0 3)6.3 307.7 37,350 9,725 0.41 129.6 137.9 108.5 77.0 847 DATA 8AFFLIS• DISIC•AllO.DOUlllNUT Slll""'.1• Dlll,4,o• HOLE TUllli DIA,-1/2•'TUBE PITCH•25/32" NO.OF TUBES-40 TRANSFER AREA· 26.160 ,SHELL FLUID· WATER TUBE FLUID· WATER 19 llAl'l'US 770 771 772 m 774 776 '716 m 778 779 780 74;6 'M-.7 ?5.0 75.0 75.0 75,0 '15 ,O 74.5 74.9 'I; .1 75.9 82.7 88.7 IK.B 90.7 102,3 la.5.2 lOl,Oee.1 90.l Qll.9 l~.4 139.2 l.37.3 139 •. 9 139~ 140,7 139,2 138,3 ~.8 ' ]218 .2 138,2 ~.3 87.2 99,6 111.1 119.3 lZ3.9 125,ll26.l 100.l 102,7 100.4:i.u.o O.Ol 0.11 0.34. 1.06 l,llO a.oe 4.26 0,14 0,13 0,13 2Jl6 15,660 15,470 IB,610 15,075 15,650 l.6,630 15,6?5 15,300 15,300 15,700 15 760 2,470 5,825 10,860 18,700 25,430 31,450 'lrl,430 6,295 6,590 6,560 Zl 360 126.8 216.2 309.6 372.2 426.0 441.3 454.5 Z32.0 231.6 Z32.0 416.5 128.3 219.6 312.8 375.0 426.0 441.6 456.0 236,8 234.0 234.7 416.2 29.30 35.48 40.50 41.94 43.47 42.?3 42.04 'S"l,73 37.05 36.83 42.33 165.6 233.0 292.3 339.4 374.8 395.0 413.5 235.0 239.0 240 .8 376.2 11 9415f!.EI 801 '15,6 75.B 802 76,l eoe eOl 76.3 006 76.4 flOB 76.3 1841'~ 3 04P:PUS 86.0 90,7 9l.2 98.4 101.4 102.9 139,0 JM),6 138.9 138,9 139,0 136,3 DB.2 lJ17.7 113,9 120.9 125,l 127,0 0.(1) 0,10 0.19 0,61 1,11 1.89 15,600 15,61015,61)() 15,800 l6,780 15 815 4,140 7.,120 ;U,480 19,630 28,620 'lrl 060 163,7 Z32.2 283.7 "349.3 395.0 420.8 100.0 233.6 287.0 352.2 ~5.6 421.0 35.77 40.23 41.18 42.48 42.92 42.63 175.l 220,8 263.5 314.5 352.0 'lrl7 .4 m51 8!15 ~ 835 - 7e.2 '111.4 76.6 '7'6,8 '1'8,8 M._O 91.9 95.l 100,). 102.4 140.4 ]4.0,4 l39,6 139.5 138.9 96,6 113.2 118,6 125.1> 128,3 O.1 852 863 76,2 76.3 76.6 76.8 76.9 76.0 83.l 88,6 92.5 95.6 98,7 99.7 138.9 139.9 139.9 139.0 140.0 138.2 101.7 113.0 120.7 124.6 128.5 129.0 0.03 0.05 0,09 0.20 0.37 0.58 15,710 15,875 15,815 15,740 15,915 16,680 2,980 7,230 13,160 20,720 29,900 'lfl,800 100.0 l~.2 252.5 296.4 346.4 356.0 111,0 194.5 252.7 298.0 343.8 350.0 38.68 43,63 45.78 45.62 46.36 45.02 106,8 169.3 210.9 2A8.4 285.8 302.2 DATA JAl'FLE$-DISl·AND-DOU&HNUT TUBE DIA.-1/2• TRANSFER AREA· 26.160 ,SIZE-4,95• DISl-3.5• HOLE TUBE PITCH-25/32• SHELL FLUID-WATER* S•• first page of Appendix tor Syllboll, NO.